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To keep pace with future climate change, forest tree species are often predicted to 

need to shift their geographic ranges and phenology to minimize exposure to climates 

they have not experienced in the recent past. While many approaches have been 

developed to predict range shifts and shifting phenology, most large-scale, spatial 

techniques do not explicitly account for intraspecific genetic variation. This can be 

problematic when populations are locally adapted to climate, a common characteristic 

of plant species, as species-level responses to climate may not be representative of 

populations. In this dissertation, I use balsam poplar (Populus balsamifera L.), a 

northern North American deciduous tree species, to test a variety of techniques of 

integrating genetic information with spatial models of balsam poplar’s distribution 

and phenology. First, I tested multiple hypotheses, identified in the literature, for their 



  

ability to predict genetic diversity in balsam poplar. Results show that diversity in 

balsam poplar was highest in the center of the range and lowest near the range edge – 

consistent with the ‘central-periphery hypothesis.’ Second, I tested whether 

genetically-informed distribution models are more transferable through time, than 

standard distribution models. Using pollen and fossil records to validate models, I 

show that standard and genetically-informed distribution models perform similarly 

through time, but genetically-informed models offer additional insights into where 

populations may have originated on the landscape during the last glacial maximum. 

Third, I developed a new approach to predict population’s exposure to future climate 

change. Using spatial models of adaptive genetic differentiation, I show that 

populations in the eastern portion of balsam poplar’s range have the greatest predicted 

exposure to climate change as they would need to migrate the furthest and will see the 

greatest disruption in their gene-climate association. Fourth, I assessed whether a 

genomic prediction of common garden observations of phenology can inform 

phenology measured on the landscape with remote sensing. I show that the genomic 

prediction was the most important variable explaining the date of spring onset on the 

landscape, but was relatively unimportant in predicting the heat sum accumulated at 

the date of spring onset. I also show that model error was correlated with multiple 

meteorological variables, including winter temperatures – illustrating the challenges 

of predicting phenology in changing climates. 

 

 

 



  

 

 

 

 

 

 

 

 

INTEGRATING GENETIC INFORMATION WITH MACROSCALE MODELS 

OF SPECIES’ DISTRIBUTIONS AND PHENOLOGY: A CASE STUDY WITH 

BALSAM POPLAR (POPULUS BALSAMIFERA L.) 

 

 

 

 

by 

 

 

Andrew Vincent Gougherty 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2019 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Associate Professor Matthew C. Fitzpatrick, Chair 

Professor Andrew J. Elmore 

Associate Research Professor Katia A.M. Engelhardt 

Professor Nathan G. Swenson 

Assistant Professor Stephen R. Keller 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Andrew Vincent Gougherty 

2019 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Preface 

This dissertation contains five chapters: an overall introduction, and four research 

chapters. The four research chapters are written in manuscript form, with tables and 

figures following each chapter. There is a single reference section at the end of the 

document for the literature cited throughout the dissertation. 
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Chapter 1: Overview 

Over the next century, temperatures in North America are predicted to 

increase by over 2oC, while precipitation regimes are predicted to shift regionally, in 

some areas by more than 10% (Romero-Lankao et al., 2014). This reshuffling of 

climates is expected to require dramatic responses by organisms, as many are likely to 

be exposed to climates outside those they have experienced in the recent past. Of 

particular concern are the effects of climate change on forests and forest trees species, 

which make up roughly 30% of the Earth’s land area, but account for a 

disproportionate amount of global carbon storage and net primary productivity 

(Bonan, 2008).  Understanding and predicting the effects of climate change on forest 

trees is one of the first steps to developing strategies to mitigate these effects (Heller 

& Zavaleta, 2009).  

  Because of their sensitivities to climate, two of the most often predicted 

responses to climate change by forest trees, and plants in general, are shifts in 

phenology and changes in geographic distributions (Chen, Hill, Ohlemuller, Roy, & 

Thomas, 2011; Fei et al., 2017; Menzel et al., 2006; Schwartz & Reiter, 2000; 

Walther, Berger, & Sykes, 2005). The magnitude of these responses will have a direct 

impact on species’ vulnerability to climate shifts. In areas where the pace of climate 

change is rapid, for instance, species may be unable to migrate quickly enough to 

prevent exposure to maladaptive climates. Similarly, rapid shifts in climate could 

disrupt the finely-tuned relationship species have with climate to maximize their 
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growing season, while minimizing exposure to harsh climatic conditions (Cleland, 

Chuine, Menzel, Mooney, & Schwartz, 2007). To understand species’ vulnerability to 

climate change there is a need to understand how species’ phenology and ranges may 

shift in the future. 

While many approaches have been developed to understand the effects of 

climate change on species’ distributions and phenologies, many large scale, spatial 

approaches do not explicitly account for intraspecific genetic variation. This can be 

problematic when species have genetic population structure or when populations are 

locally adapted to climate (a common characteristic of plant species) as a species’ 

response to climate may not adequately represent those of populations. With genomic 

data becoming increasingly available for model and non-model organisms, and the 

continued development of approaches to identify loci potentially under selection, 

there are new opportunities to account for this variability in macroscale models 

(Schoville et al., 2012; Thomassen et al., 2010) that may offer an improved 

understanding of how species may respond to climate change.  

In this dissertation, I use balsam poplar (Populus balsamifera L.) as a study 

system to test multiple ways of integrating genetic information with macroscale 

models of balsam poplar’s range and phenology. Specifically, I test whether 

genetically-informed models can improve spatial predictions of phenology and range 

shifts, and, importantly, whether they can offer additional insights into how species 

may respond to climate change. Below is a brief description of balsam poplar, and an 

overview of the four following research chapters. 
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Balsam poplar 

Balsam poplar is a northern deciduous tree species, with one of the largest 

geographic ranges of any North American tree. Its range spans 30 degrees of latitude 

- ranging from isolated populations in the US Rocky Mountains to north of the 

Brooks Range in northern Alaska - and over 100 degrees of longitude - spanning 

nearly the entire boreal region of North America (Little, 1971). As such, balsam 

poplar occurs over numerous climatic gradients, which previous work has shown 

populations are locally adapted for multiple functional traits (Keller et al., 2011; 

Olson et al., 2013; Soolanayakanahally, Guy, Silim, Drewes, & Schroeder, 2009). 

Like other Populus species, balsam poplar is wind-pollinated, wind-dispersed, and 

fast to reach reproductive maturity but can also reproduce clonally to form 

large  mono- and poly-clonal stands (Zasada & Phipps, 1990). Balsam poplar is 

closely related to the model tree species Populus trichocarpa - the first tree species to 

have its genome sequenced (Tuskan et al., 2006). Balsam poplar and P. trichocarpa 

are estimated to have diverged approximately 75 kya, and is one of the few examples 

of tree speciation during the Pleistocene (Levsen, Tiffin, & Olson, 2012). 

 

Chapter 2 

 

Motivating questions: Where is genetic diversity highest in balsam poplar’s range? 

Do hypotheses representing past climate or current range positions best explain the 

range-wide pattern of genetic diversity in balsam poplar? 
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In Chapter 2, I test seven hypotheses for their ability to explain the range-wide 

pattern of genetic diversity in balsam poplar. These hypotheses have varying levels of 

support in the literature and represent both the effects of past climate, current climate, 

and current range positions. Using a combination of spatial and non-spatial models, I 

show genetic diversity can best be explained by the center-periphery hypothesis, 

which predicts the highest genetic diversity in the center of the range, and the lowest 

diversity at the range edge. 

 

Chapter 3  

 

Motivating question: Are distribution models that incorporate genetic population 

structure more transferable to past climates than standard distribution models? 

 

In Chapter 3, I test whether accounting for genetic population structures 

improves species distribution models. Using both standard SDMs and genetically-

informed SDMs, I project balsam poplars distribution to 22 ky BP and test the 

relative abilities to distinguish pollen and fossil records from background records. I 

show that, while genetic population structure does not enhance the transferability of 

distribution models to different time periods, they offer numerous insights not 

available from standard distributions, such as potential refugial locations and 

migration paths. 

 

Chapter 4 

 

Motivating question: Where within balsam poplar’s range is population-level 

exposure to future climate change the greatest? 
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In Chapter 4, I develop a new technique to predict population’s exposure to 

future climate change using adaptive genomic variation. Using this technique, I 

predict population’s minimum adaptive offsets and migration distances to locations 

where populations are most preadapted to future climate. I show that populations in 

the eastern portion of balsam poplar’s range have both the greatest predicted genetic 

exposure to climate change, and the furthest migration distances. This new approach 

allows for a nuanced understanding of how populations may respond to climate 

change and has implications for identifying regions where conservation or 

management could be most effective. 

 

Chapter 5  

 

Motivating questions: Can precise observations of phenology made in common 

gardens be used to inform land surface phenology? What is the relative role of genetic 

variation and environment in explaining phenology measured at landscape scales? 

 

In Chapter 5, I assess the importance of accounting for genetic variation when 

predicting phenology at landscape-scales. Using a genomic prediction of phenology 

based on observations made in multiple common gardens, paired with meteorological 

variables, I rank the importance of genetic and meteorological variables in predicting 

multiple phenological metrics on the landscape. The genomic prediction ranked as the 

most important variable in predicting the timing of spring onset, but was not 

important in predicting accumulated heat sums. This Chapter illustrates that 

observations from common gardens can be used to inform phenology on the 
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landscape and provides a framework for linking phenotypic traits measured at 

multiple scales. 
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Chapter 2: Contemporary range position predicts the range-wide 

pattern of genetic diversity in balsam poplar (Populus 

balsamifera L.) 
 

Abstract 

Understanding patterns of genetic diversity within species’ ranges can reveal 

important insights into effects of past climate on species’ biogeography and 

population dynamics. While numerous biogeographical hypotheses have been 

proposed in the literature to explain patterns of genetic diversity across species’ 

ranges, they are rarely formally compared and comprehensively tested within the 

same study. Formally comparing competing hypotheses can lead to a better 

understanding of the underlying causes and consequences of range dynamics on 

genetic diversity, including potential vulnerability to future global change. Here, we 

compare seven hypotheses for their ability to describe the geographic distribution of 

within-population genetic diversity (expected heterozygosity and percent 

polymorphic loci) across the expansive geographic range of the boreal forest tree, 

balsam poplar (Populus balsamifera L.). We tested each hypothesis using spatial and 

non-spatial least-squares regression models to assess the importance of accounting for 

spatial autocorrelation on model performance. We found both metrics of genetic 

diversity could best be explained by the current range position and genetic structure 

of populations within the contemporary range. Population genetic diversity showed a 

clear gradient of being highest near the range center and declining towards the range 
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edges. In contrast, historical hypotheses accounting for the effects of past climate 

(e.g. past climatic suitability, distance from the southern edge) had comparatively 

little support. Model ranks were similar among spatial and non-spatial models, but 

residuals of all non-spatial models were significantly auto-correlated, violating the 

assumption of independence in least-squares regression. Our work adds strong 

support for the “Central-Periphery Hypothesis” as providing a predictive framework 

for understanding the forces structuring genetic diversity across species’ ranges and 

illustrates the value of applying a robust comparative model selection framework. Our 

work also emphasizes the importance of accounting for spatial autocorrelation when 

comparing biogeographic models of genetic diversity. 

 

Introduction 

Understanding the processes shaping the macroscale pattern of genetic 

variation across species’ ranges has been a pervasive goal of population genetics and 

ecology (Eckert, Samis, & Lougheed, 2008; Petit et al., 2003). Population-level 

genetic diversity may be shaped by historical and/or contemporary features of a 

species’ biogeography – from past migration and shifts in population size, to recent 

population dynamics and response to environmental change. Because of the 

importance of genetic diversity to understanding the past, current, and (potentially) 

future dynamics of species’ ranges, numerous hypotheses have been proposed to 

explain where populations may be expected to have the highest genetic diversity. 

These hypotheses often fall into two broad categories: (i) contemporary range 
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position – which emphasize the relative position of populations within the 

contemporary geographic or climatic range and (ii) past climate effects – which 

emphasize the proximity of populations to glacial refugia and effects of migration 

since the last glacial maximum.  

 

Contemporary range position 

Hypotheses that emphasize the position of populations within the 

contemporary range often posit that genetic diversity is related to the proximity of 

populations to the center of the range. One of the most commonly tested versions of 

this hypothesis, the central-periphery hypothesis (CPH; also known as the central-

marginal hypothesis), predicts that populations near the geographic (or climatic; Lira-

Noriega & Manthey, 2014) center of the range have the greatest genetic diversity, 

while populations near a range edge have the lowest genetic diversity (Eckert et al., 

2008). The CPH is based on an abundant-center view of species’ ranges, in which 

population abundance is expect to be greatest near the geographic or climatic center 

of the range due to its presumed proximity to the species’ environmental optimum 

(Brown, 1984; although the generality of the abundant-center model has been 

questioned, see Sagarin & Gaines, 2002). High population abundance near the 

geographic/climatic center is expected to coincide with high effective population 

sizes (Ne) and elevated gene flow resulting in low genetic differentiation and high 

within-population diversity (Kirkpatrick & Barton, 1997). Low abundance at the 
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range edge is expected to have opposite effects – lower gene flow, greater 

differentiation, and lower within-population genetic diversity (Bridle & Vines, 2007; 

Hampe & Petit, 2005). Support for the CPH in the literature is mixed. While one 

review found that as many as 64.2% of studies that tested the CPH found support in 

favor of the hypothesis (Eckert et al., 2008), another recent review found support in 

fewer than 50% of studies (Pironon et al., 2017). In a test of the climatic CPH, Lira-

Noriega & Manthey (2014) found that population genetic diversity of 40 species of 

various taxa could be better explained by distance from species’ climatic niche 

centroid than by the geographic distance from the range center.  

 

Past climate effects 

Past climate and demographic history may also shape patterns of 

contemporary genetic diversity across species’ ranges. Most of these hypotheses arise 

from the concept that, following the last glacial maximum (LGM), species migrated 

poleward out of glacial refugia to fill their current ranges. Poleward migration is often 

expected to result in decreasing genetic diversity away from refugial locations, due to 

repeated founding events along the migration routes (Excoffier, Foll, & Petit, 2009; 

Hewitt, 2000). The exact geographic pattern of genetic diversity that expansion from 

low-latitude refugia would generate has spurred numerous hypotheses. In its simplest 

form, species that have undergone a strictly poleward migration following the LGM 

are expected to exhibit a latitudinal gradient in genetic diversity (Hampe & Petit, 
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2005). Not all species, however, migrated strictly poleward following the LGM, and 

some may have refuged near (or north of) the southernmost glacial extent or in 

microrefugia (Anderson, Hu, Nelson, Petit, & Paige, 2006; Rull, 2009). Species may 

have migrated east, west or from multiple directions to fill their current ranges (e.g., 

Williams, Shuman, Webb, Bartlein, & Leduc, 2004), potentially obscuring a simple 

latitudinal gradient in genetic diversity. Refugial locations identified using 

distribution models, have often shown elevated levels of genetic diversity (e.g., 

Carnaval, Hickerson, Haddad, Rodrigues, & Moritz, 2009; Yannic et al., 2013). 

Relatedly, landscape age (i.e., time since the landscape was last glaciated) has also 

been found to be a significant predictor of genetic diversity across species’ ranges, 

where younger landscapes often harbor lower genetic diversity (Stewart et al., 2016). 

Genetic diversity could also be aligned with neutral population structure, which may 

have arisen from post-glacial migration or from historic separation of ancestral 

populations. If, for instance, some populations were historically isolated from others, 

or if populations were more recently founded, these populations could have lower 

genetic diversity than older or historically well-connected populations. Despite these 

past climate hypotheses being based on a similar mechanism (i.e., postglacial 

migration into areas that have become newly climatically suitable) the patterns of 

genetic diversity predicted by each hypothesis may differ depending on the species’ 

current and past distributions (e.g. if the current range was glaciated or not during the 

LGM), migration direction, and dispersal characteristic (e.g. propensity for long 

distance dispersal). 
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While genetic diversity within species’ ranges may be shaped by both 

contemporary range dynamics and past climate, their relative roles are rarely formally 

compared. This has led some authors (e.g., Vucetich & Waite, 2003) to suggest that 

studies often make uncritical assumptions about the roles of contemporary and past 

effects on genetic diversity within species’ ranges. Furthermore, many studies which 

formed the basis for the CPH (as discussed in Eckert et al., 2008; Pironon et al., 2017) 

and other hypotheses, often did not sample species’ entire ranges, and rarely 

accounted for potential effects of spatial autocorrelation in the pattern of genetic 

diversity. Taken together, failure to test the effects of both past climate and 

contemporary range positions and account for range-wide spatial autocorrelation can 

leave an incomplete understanding of species’ historic biogeography, current range 

dynamics, and an erroneous understanding of the drivers of genetic diversity within 

species ranges. 

In this study, we attempt to disentangle historical and contemporary landscape 

drivers of within-population genetic diversity of balsam poplar (Populus balsamifera 

L.), a northern broad-leaf tree species. Previous work has shown a latitudinal gradient 

in genetic diversity within balsam poplar, consistent with range expansion from a 

southern refugia (Breen, Murray, & Olson, 2012; Keller et al., 2010). Here, we extend 

this work using a larger set of sample populations to test multiple hypotheses 

representing both contemporary climate/range positions and past climate. 

Specifically, we compared seven hypotheses for their ability to describe the range-

wide pattern of genetic diversity in balsam poplar. These included (i) the geographic 
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central-periphery hypothesis (CPH), (ii) the climatic CPH, (iii) distance from the 

southern range edge, (iv) past climatic refugia effects, (v) landscape age, (vi) a model 

integrating the distance from the southern range edge with the CPH, and (vii) a model 

reflecting population structure and admixture. We also explored the effects of 

accounting for spatial autocorrelation on model rankings and coefficient estimates, as 

this helped to ensure model assumptions are being met, and coefficient estimates are 

unbiased. 

 

Materials and Methods 

Study species 

Balsam poplar (Populus balsamifera L.) is a wide-ranging boreal tree and the 

northernmost deciduous tree species in North America (Zasada & Phipps, 1990). 

Balsam poplar tends to be an early successional species found in mesic environments 

along floodplains, near streams, and other waterways. It is relatively short-lived 

(rarely living longer than 200 years), fast-growing, and fast to reach reproductive 

maturity. Being wind dispersed, balsam poplar is capable of long-distance dispersal 

and, like other Populus species, can reproduce vegetatively to form clonal stands. 

Like other northern tree species, balsam poplar’s current range was nearly entirely 

glaciated during the LGM, and species distribution models (SDMs) suggest the 

presence of refugia in the Central Rocky Mountains and possibly north of the ice 

sheets in Alaska (Breen et al., 2012; Levsen et al., 2012). Genetic studies to date 
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suggest that if a northern refugium was present, it left no signature in the current 

pattern of genetic diversity, which suggests expansion from refugia in the south 

(Breen et al., 2012; Keller et al., 2010). Balsam poplar’s large contemporary 

geographic range, occurrence over broad climatic gradients, and post-glacial 

migration history make it an exemplary species to test the effects of contemporary 

and past drivers on genetic diversity. 

 

Genetic diversity 

We used allele frequencies from single nucleotide polymorphisms (SNPs) to 

calculate two within-population metrics of genetic diversity that provide 

complimentary but distinct information on the genetic diversity within populations: 

average expected heterozygosity (Hexp) and percent polymorphic loci (%P). Expected 

heterozygosity (Hexp = 2pq) indicates the relative evenness of allele frequencies at 

biallelic SNP loci, while %P summarizes the fraction of all variable loci (range-wide) 

that are polymorphic within a given focal population. Both metrics were calculated by 

integrating existing (Keller et al., 2010; Fig. 2.1) and new (Chhatre et al., In prep.) 

population genomic datasets. The Keller et al. (2010) dataset consisted of 412 single 

nucleotide polymorphisms (SNPs) identified by sequencing an initial discovery panel 

of 15 individuals (1 per population, sampled throughout the range). These SNPs were 

then used in targeted Sequenom genotyping assays to genotype 474 individuals across 

a range-wide collection of 34 populations. Further details on SNP genotyping can be 
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found in Keller et al. (2010). The new SNP dataset was collected across 437 

individuals from 51 additional populations using genotyping by sequencing (GBS) 

following the Elshire et al. (2011) protocol. Loci were filtered to remove low quality 

variants (non-biallelic, minGQ < 95, heterozygote excess, site missingness >20%). 

Full details of GBS library preparation, SNP variant calling, and filtering are 

described in Chhatre et al. (In prep.). 

Because SNPs in the Keller et al. (2010) dataset were identified from an initial 

discovery panel and therefore reflect an ascertainment bias on the site frequency 

spectrum (Nielsen, Hubisz, & Clark, 2004), we applied a minor allele frequency 

(MAF) filter to the GBS SNPs to ensure Hexp and %P were comparable between the 

two datasets. Specifically, we filtered out SNPs with an MAF below 0.0333 (1/30) 

from the GBS dataset, which is equivalent to 1/2N diploid individuals (where N=15) 

used for SNP discovery in Keller et al. (2010). After filtering, this left 24,087 GBS-

SNPs to calculate the diversity metrics. The number of SNPs per chromosome was 

proportional before and after applying the MAF (r = 0.966, p < 0.01), as were both 

diversity metrics (Hexp: r = 0.87, p < 0.01, %P: r = 0.95, p < 0.01). 

 

Landscape variables, climate data & occurrences 

We calculated eight landscape variables to use as predictors of genetic 

diversity (Table 1), including four variables representing balsam poplar’s 

contemporary range and four representing effects of past climate: (i) distance from 

the geographic range center, (ii) distance from the range edge, (iii) climatic 
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suitability, (iv) climatic distance from the climatic niche centroid, (v) climatic 

stability since 22 kya, (vi) climatic variability since 22 kya, (vii) distance from the 

southern range edge, and (viii) landscape age since the last glaciation.  

We used climate data from Lorenz et al. (2016) to parameterize SDMs, and to 

calculate the climatic niche centroid. This climatic dataset includes seamless and 

debiased climate simulations from 22 kya to the 21st century in 500-year intervals, 

downscaled to a resolution of 0.5°. We chose six climate variables (summer and 

winter mean temperature and precipitation, annual precipitation variability, and 

average evapotranspiration ratio (actual/potential evapotranspiration)) from the 

Community Climate System Model to parameterize the models. Variables were 

chosen because of their potential importance in limiting the range of balsam poplar 

and lack of strong correlation between variables (|r| < 0.75). 

Occurrences of balsam poplar were collected from online databases (Gbif.org, 

2019), the US and Canadian forest inventory programs (Gillis, Omule, & Brierley, 

2005; Woudenberg et al., 2010), and records from the literature (Soolanayakanahally 

et al., 2009). Occurrences far outside the known North American range of balsam 

poplar (Little, 1971) were removed. To reduce the spatial and climatic bias of the 

occurrence records, we thinned the points in both geographic and multi-dimensional 

climate space, similar to the approach described in Varela et al. (2014). Briefly, first 

the occurrence points were thinned to one per 0.5°grid cell of the climate data. Next, a 

principal component analysis (PCA) was conducted on climate data extracted at 

occurrence points. The first two components of the PCA were then plotted on a grid 
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with a resolution of 0.2 units, and one occurrence was randomly selected per PCA 

grid cell. After removing outliers and geographic/environmental thinning, 464 

occurrences remained. 

 

Species distribution model 

We used SDMs to calculate three of the landscape predictors: current climatic 

suitability for balsam poplar, and climatic stability and variability since 22 kya. We 

used an ensemble model to predict balsam poplar’s current and past distribution using 

the BIOMOD2 package (Thuiller, Lafourcade, Engler, & Araújo, 2009) in R. Within 

the ensemble model, we used six algorithms including generalized linear models, 

boosted regression trees, generalized additive models, flexible discriminant analysis, 

multiple adaptive regression splines, and random forest. We used 5-fold cross 

validation iterated twice to validate models, where occurrence data were split into 

five subsamples and models were trained with four of the subsamples (80% of the 

data), and tested with the remaining subsample. Model discrimination ability was 

tested with true skill statistic (TSS), and the final ensemble prediction was calculated 

as the TSS-weighted mean of all models with TSS above 0.70. Each fold of each 

algorithm had a TSS above 0.7 (average: 0.83, sd: 0.04), so each was included in the 

final ensemble. The model was then projected to each of 45 time periods between 

current climate and climate at 22 kya, in 500 year intervals (Lorenz et al., 2016). The 

temporal resolution of the Lorenz data (500 year intervals) allowed for finer 
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assessment of past climate effects than studies limited to snapshot climate predictions 

for only the LGM and mid-Holocene.  

Climatic stability (sensu Ortego, Gugger, & Sork, 2015; Yannic et al., 2013) 

was calculated as the sum of climatic suitability through time, while variability was 

calculated as the standard deviation of climatic suitability through time. These metrics 

provide a measure of how the climatic suitability of balsam poplar has changed over 

the past 22 ky. Areas that were glaciated during a given time period (based on maps 

by Dyke, Moore, & Robertson, 2003) were not included in the calculations. We also 

calculated landscape age, similar to Stewart et al. (2016), using glacial data from 

Dyke et al. (2003) aligned to the 45 time periods. Shapefiles of glacial extent were 

rasterized to match the scale, resolution, and projection of the climate data. 

Landscape age was calculated as the time since the landscape was most recently 

glaciated. 

 

Geographic and environmental centrality 

We calculated three metrics representing the position of populations in balsam 

poplar’s current geographic and environmental ranges: distance from the geographic 

range edge, distance from the geographic range center, and climatic distance from the 

climatic niche centroid. Distance from the range edge was calculated by generating an 

alpha hull around occurrence records and calculating the distance between each 

population and the nearest edge. Alpha hulls are similar to convex hulls, and are 
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recommended as a way to decrease the bias and spatial error associated with convex 

hulls when estimating species’ range polygons (Burgman & Fox, 2003). Distance 

from the geographic range center was calculated as the geographic distance from the 

centroid of the alpha hull, similar to that done by Lira-Noriega & Manthey (2014) and 

Dallas et al. (2017). The alpha hull was also used to calculate population distance 

from the southern edge.  

We used Mahalanobis distance as a metric of population distance from the 

climatic niche centroid. Mahalanobis distance is a measure of the multivariate 

distance between climate extracted at each population location and the average 

climate of all balsam poplar occurrences. Mahalanobis distances account for 

correlation among variables by scaling the distances by the covariance between 

climate variables. The covariance matrix and average climate were based on the 

climate at the climatically-thinned balsam poplar locations. Climate variables were 

the same as those used for the distribution models. 

 

Population structure and admixture 

In addition to effects of geographic/climatic centrality, and past climate, we 

also tested for effects of population structure and admixture among genetic clusters 

on genetic diversity. For the previously published dataset, we used admixture 

proportions from Keller et al. (2010). For the new MAF-filtered GBS dataset, we 

estimated admixture proportions using ADMIXTURE 1.30 (Alexander, Novembre, & 
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Lange, 2009) and chose K = 3 for consistency with Keller, et al. (2010). The three 

inferred genetic clusters in the GBS data were spatially congruent with the previous 

dataset – both showed a distinctive eastern cluster, a large central cluster, and a 

northern cluster that tended to be well-mixed with the central cluster. Using these 

admixture proportions, we calculated a population-level index of admixture similar to 

that done by Ortego et al. (2015). To do so, first we averaged admixture proportions 

across individuals within populations, and calculated the standard deviation of the 

average proportions. Next, we rescaled this value between 0 and 1, such that the 

index was 1.0 when populations were evenly mixed among clusters, and 0 when 

populations were entirely affiliated with a single cluster. For each population, we also 

determined which of the three clusters had the highest average admixture proportion. 

 

Models & statistical analyses 

We assessed the local and global spatial pattern of Hexp and %P using Moran’s 

Index (I), a measure of spatial autocorrelation, where -1.0 indicates perfect dispersion 

and 1.0 indicates perfect clustering. Correlograms of Moran’s I for Hexp and %P were 

estimated in 100 km increments. Significance was determined for both the 

correlograms and global statistic by comparing the observed statistic to 999 random 

permutations. 

Using the eight landscape variables, we compared statistical support for 

models representing seven hypotheses listed in Table 2.1. For each hypothesis, we 



 

 

 

 

 

21 

 

created spatial and non-spatial models to assess the effect of accounting for spatial 

autocorrelation on model performance. To account for spatial autocorrelation, we 

used conditional autoregressive (CAR) models, which integrated a weighted estimate 

of the response variable (here, the metrics of genetic diversity) at neighboring 

locations, in addition to the explanatory variables, in parameterizing the model 

(Lichstein, Simons, Shriner, & Franzreb, 2002). Neighborhoods were defined as all 

populations within 600 km of one another (Fig. 2.1). This distance was chosen as it 

ensured each population had at least one neighbor, and was the approximate 

maximum distance of continuous significant positive spatial autocorrelation (see 

Results). A complementary set of non-spatial ordinary least squares (OLS) regression 

models were fit and compared to the CAR models. Models were compared using 

Nagelkerke R2, Akaike information criterion (AIC) and Akaike weights, which are 

recommended as a way to compare AIC scores across models (Wagenmakers & 

Farrell, 2004). Each explanatory variable was scaled to a mean of 0 and a standard 

deviation of 1, to facilitate the comparison of coefficient estimates (Schielzeth, 2010). 

All modeling and statistical analyses were performed in R (R Core Team, 2017). 

 

Results 

Spatial pattern and autocorrelation 

Both metrics of genetic diversity (Hexp and %P) were highest near the 

geographic center of the range and declined towards the latitudinal (southern and 
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northern) and longitudinal (eastern and western) range edges. Both Hexp and %P 

showed moderate (I = 0.28 and 0.45, respectively) but significant spatial 

autocorrelation (p < 0.05) among the 85 populations, indicating that adjacent 

populations tended to have more similar levels of genetic diversity than distant 

neighbors. Correlograms of Moran’s I revealed Hexp and %P were significantly 

positively autocorrelated up to ~600 km and at ~2000 km, and significantly 

negatively correlated around 1000 km and between 3000 – 4000 km (Fig. 2.2b & d). 

Genetic diversity metrics were significantly correlated among the 85 populations 

(Pearson’s r = 0.88, p < 0.001).  

 

Spatial models of genetic diversity 

 The top performing models for Hexp and %P were the models of population 

structure, and the geographic CPH, respectively, and had by far the highest Akaike 

weights and highest Nagelkerke R2’s (Tables 2.2 & 2.3). Inspection of the 

coefficients revealed that both diversity metrics were greatest near the range center, 

and lowest near the range edge (Fig. 2.3). Furthermore, we found that climatic 

distance from the climatic niche centroid was correlated with distance from the range 

center (r = 0.30, p < 0.01) and negatively correlated with distance from the range 

edge (r = -0.51, p < 0.01) – indicating that populations near the range center tended to 

be near the niche centroid, while populations near a range edge tended to be more 

distant. 
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In general, the spatial models incorporating past climate had less support than 

models incorporating current climate/range positions. For both Hexp and %P, past 

climate CAR models (i.e., landscape age, distance from the southern edge, past 

climatic stability) consistently had lower Akaike weights (i.e., all models had weights 

near zero) and tended to have lower Nagelkerke R2’s compared to models 

representing contemporary range positions. Coefficient estimates for all variables in 

the past climate models, other than the intercepts, were not significant (p > 0.05).  

 

Non-spatial models of genetic diversity 

The rank (based on Akaike weights) of non-spatial OLS models for both Hexp 

and %P were similar to that of the spatial models. The top model for both Hexp and 

%P was the population structure model and the geographic CPH, respectively (Tables 

S1 & S2). Coefficient estimates for these models again showed higher diversity near 

range center, and lower near the range edges. The model integrating distance from the 

southern range edge and the CPH had the second highest support for %P (Akaike 

weight = 0.15), but like the CAR models, only the coefficient for the distance from 

the geographic center was significant. Similar to the CAR models, OLS models 

representing past climate effects (i.e., landscape age, distance from the southern edge, 

past climate stability) had low support, with Akaike weights near zero. 
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Residual spatial autocorrelation 

Residuals of most models, spatial and non-spatial, were spatially 

autocorrelated, as quantified by Moran’s I. Of the CAR models, only four models 

(population structure models for Hexp and %P, and geographic and climatic CPH for 

%P) had uncorrelated residuals (p > 0.05) (Tables 2 & 3). Residuals of CAR models 

representing contemporary climate/range positions tended to have lower 

autocorrelation than past climate models, but all spatial models had relatively low 

autocorrelation (all < 0.11). In contrast, autocorrelation in OLS models was often 

nearly as strong as the actual diversity metrics being modelled. This suggests that the 

assumption of independent residuals is being violated in nearly all the non-spatial 

models. 

 

Discussion 

Quantifying patterns of genetic diversity within species’ ranges can reveal 

important insights into species’ biogeography, effects of past climate, and where 

populations may be best positioned to adapt to future climates. However, because 

these patterns can arise from multiple historic and contemporary processes, it is 

important to evaluate the comparative strength of different hypotheses. In this paper, 

we compared multiple biogeographic hypotheses established in the literature and 

tested them in a model selection framework using the range-wide patterns of genetic 

diversity in balsam poplar. We found the greatest support for hypotheses representing 
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populations’ position in the contemporary geographic and climatic range, in particular 

the center-periphery hypothesis (CPH) and population structure models, whereas we 

found comparatively little support for hypotheses that included variables for historical 

climate or distance from potential refugia. Our work illustrates the value of applying 

statistical model selection among multiple competing biogeographic hypotheses, 

representing both current and past climate, to better understand the landscape-scale 

predictors of genetic diversity across species’ ranges. 

 

Geographic pattern of diversity 

Like studies of other tree species (e.g., Walter & Epperson, 2005), we found 

genetic diversity in balsam poplar populations was spatially autocorrelated over large 

distances (here, hundreds of kilometers). Interestingly, the strength of spatial 

autocorrelation did not simply decay with increased distance, but rather oscillated 

between (significant) positive and negative autocorrelation over thousands of 

kilometers, indicating that the autocorrelation spanned multiple spatial scales. This 

pattern seems to be the result of multiple, discontinuous hotspots of diversity in 

balsam poplar’s sampled range, in particular near the center of the range in 

Saskatchewan and in populations north of the Great Lakes region. Both the diversity 

hotspots and positive autocorrelation among nearby populations are likely the result 

of nearby populations undergoing similar processes (such as gene flow and drift) as 

well as shared common ancestry. Indeed, individuals from these two regions have 
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been shown to belong to a large genetic cluster (as identified by admixture analyses; 

Keller et al., 2010) that coalescent models have shown has a large effective 

population size (Ne) and is the source of asymmetric migration from the center 

towards the periphery of the range (Keller et al., 2010). 

 

CPH and the abundant-center model 

Diversity in balsam poplar was highest in the center of the range and tended to 

decline towards the range edge, consistent with the CPH. The CPH is presumed to be 

driven by population abundance – where high abundance in the center of the range 

promotes high gene flow and Ne, while low abundance at the range edge results in 

isolation, reduced gene flow and ultimately low genetic diversity. Because we were 

unable to directly test if abundance peaked in the center of balsam poplar’s range and 

declined toward the edge, it remains unclear if population abundance is the ultimate 

driver of genetic diversity within balsam poplar’s range. There is reason to suspect, 

however, that abundance in balsam poplar’s range does not have a monotonic decline 

towards the edge. First, multiple studies have shown that the pattern expected by the 

abundant center model is rarely observed (Dallas et al., 2017; Sagarin & Gaines, 

2002). Dallas et al. (2017), for instance, showed that most North American tree 

species that the authors assessed (~97%) did not peak in abundance in the center of 

their ranges, but rather species more often had higher abundance near the range edge 

than the range center. Furthermore, balsam poplar, specifically, shows considerable 
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variability in abundance along its range edges. Recent analyses by the US Forest 

Service (Prasad, Iverson, Peters, & Matthews, 2014), for instance, show relatively 

high balsam poplar abundance at the range edge in the upper Midwest (e.g., northern 

Minnesota), lower abundance near the Great Lakes and northeastern US, and very 

low abundance in the Rocky Mountains. This high spatial variability in abundance 

suggests that, like other tree species, proximity to a range edge may not be the sole 

driver of abundance in balsam poplar’s range. Hence, other hypotheses may be 

necessary to explain the high diversity in the center of balsam poplar’s range 

irrespective of abundance. 

Other processes could plausibly result in the patterns expected by the CPH. 

For instance, if migration following the LGM occurred mainly from the center of the 

(current) range towards the range edges, rather than strictly poleward, diversity could 

be highest in the center of the range and lowest near the edges. Keller et al. (2010) 

suggested balsam poplar refuged in the Rocky Mountains during the LGM south of 

the center of the current range, followed by an expansion of the range eastward and 

northward following glacial retreat. Bottlenecks and founding events along the 

migratory paths from the center of the current range toward the edges likely left a 

gradient in genetic diversity often documented in tree species that have undergone 

long distance migration (Hewitt, 2000; Petit, Bialozyt, Brewer, Cheddadi, & Comps, 

2001). This hypothesized migration history may also explain the population structure 

observed in balsam poplar, where populations at the periphery of the range tended to 

belong to genetic clusters (i.e., northern and eastern clusters) that had lower diversity 
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than the cluster at the center of the range (Tables 2 & 3; Keller et al., 2010), and 

likely explains the relatively strong support for the population structure model. 

Although we cannot conclusively determine whether range/climatic marginality or 

population structure is the ultimate driver of genetic diversity (as population structure 

is correlated with distance from range centrality), both clearly indicate high diversity 

in the center of the range (which coincides with a genetic cluster with high Ne), and 

lower diversity in the range edges (coincident with two other genomic clusters). 

The possibility that post-glacial migration left a pattern of genetic diversity 

similar to that expected by the CPH would be unsurprising given recent work 

showing that migration following the LGM in North American trees rarely left a 

latitudinal gradient in genetic diversity, as has often been found for European species 

(Lumibao, Hoban, & McLachlan, 2017). The lack of distinctive migration barriers in 

North America (Soltis, Morris, McLachlan, Manos, & Soltis, 2006), combined with a 

large ice-free area north of the southern ice margin (Brubaker, Anderson, Edwards, & 

Lozhkin, 2005) may have allowed North American species to fill their current ranges 

from multiple directions, precluding a monotonic trend in genetic diversity within the 

range. This is apparent in other Populus species, such as P. trichocarpa a sister 

species of balsam poplar, which has been shown to have low diversity in the center of 

its range (Zhou L., Bawa R., & Holliday J. A., 2014), possibly reflective of refugia 

north and south of the current range. In contrast, P. tremuloides has been shown to 

have the lowest diversity in the southeastern portion of its range, and a peak near the 

center of its latitudinal range (Callahan et al., 2013). The similarity to quaking aspen 
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(P. tremuloides) is particularly interesting, as balsam poplar and quaking aspen share 

similar current ranges, and have co-occurred in the past (evidenced from the North 

American pollen database) – possibly suggestive that they have undergone similar 

migratory histories and could be under similar forces shaping their genetic diversity.  

 

Spatial autocorrelation 

Our comparison between the CAR and OLS models revealed the importance 

of accounting for spatial autocorrelation when assessing the drivers of genetic 

diversity at large spatial scales. Although the model ranks differed only slightly 

among the spatial and non-spatial models, the residuals of the non-spatial models 

were comparatively strongly autocorrelated, indicating lack of independence and 

violation of model assumptions. In fact, for multiple OLS models, residuals were 

nearly as strongly spatially autocorrelated as the actual diversity metric being 

modelled. While the spatial models did not completely account for the autocorrelation 

(many of these models also had significant residuals autocorrelation), residuals of all 

spatial models were substantially less autocorrelated than the actual diversity metrics. 

Although spatial effects are infrequently accounted for when assessing 

landscape drivers of genetic variability, when model residuals are strongly 

autocorrelated, spatial models should be used to ensure coefficient estimates are 

unbiased and OLS assumptions are not violated. Failing to account for spatial 

relationships of genetic variability can affect the sign and magnitude of model 
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coefficients and the associated inference (Dormann et al., 2007). Despite spatial 

models requiring additional steps to be fit (e.g. defining a spatial neighborhood), 

future studies should account for spatial non-independence, or at least test for (and 

report) the presence of spatial autocorrelation in model residuals to ensure this 

assumption is not being violated. 

 

Conclusions 

Our analyses indicated that genetic diversity in balsam poplar reflects 

distances from the geographic range center and edges, consistent with high Ne in the 

range center and lower Ne toward the range edges. In general, effects of past climate 

were not well supported, suggesting the main demographic center of the species has 

migrated into mid-latitudes during range expansion following the LGM, and 

maintained high diversity there, whereas edge populations show low diversity due to 

low Ne and/or reduced connectivity. Furthermore, our results point to the benefit of 

comparing multiple competing hypotheses when assessing the pattern of genetic 

diversity across species’ ranges, as well as the advantage of considering spatial 

effects to ensure assumptions are not violated and results are not biased. 
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Tables 

 

Table 2.1. Landscape variables used in models of expected heterozygosity and 

percent polymorphic loci in balsam poplar. 

Model Variable description Variable abbreviation 

Geographic CPH Distance from the geographic range edge geoEdge 

  Distance from the geographic range center geoCenter 

Southern edge + CPH Distance from the geographic range center geoCenter 

  Distance from the southern range edge southernEdge 

Climatic CPH Current climatic suitability suitability 

  Climatic distance from the climatic range center climDist 

Past climate stability Climatic stability since LGM stability 

  Climatic variability since LGM stabilitySD 

Landscape age Landscape age landAge 

Distance from southern edge Distance from the southern range edge southernEdge 

Population structure/mixing Admixture index mix 

  Highest average ancestry coefficient maxCluster 
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Table 2.2. Summary statistics for conditional autoregressive models of Hexp in balsam poplar, ranked by relative support. 

Model Coefficient Estimate p-value AIC AIC weight Nagelkerke R2 
Moran's I 

(residuals) 

Moran's I p-value 

(residuals) 

Population structure/mixing Intercept 0.208 <0.01 -456.40 0.84 0.39 0.00 0.37 

  mix 0.028 0.06           

  maxCluster-Eastern -0.034 <0.01           

  maxCluster-Northern -0.007 0.27           

Geographic CPH Intercept 0.205 <0.01 -451.81 0.08 0.35 0.07 0.03 

  geoEdge 0.004 0.11           

  geoCenter -0.009 <0.01           

Climatic CPH Intercept 0.208 <0.01 -450.73 0.05 0.34 0.05 0.06 

  suitability 0.006 <0.01           

  climDist -0.007 <0.01           

Southern edge + CPH Intercept 0.204 <0.01 -449.63 0.03 0.33 0.09 0.01 

  geoCenter -0.011 <0.01           

  southernEdge -0.001 0.55           

Landscape age Intercept 0.201 <0.01 -431.12 0.00 0.15 0.10 0.01 

  landAge -0.001 0.72           

Distance from southern edge Intercept 0.201 <0.01 -431.01 0.00 0.14 0.10 0.01 

  southernEdge 2.9E-04 0.91           

Past climate stability Intercept 0.200 <0.01 -430.64 0.00 0.16 0.11 0.01 

  stability 0.002 0.35           

  stabilitySD -0.002 0.33           
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Table 2.3. Summary statistics for conditional autoregressive models of %P loci in balsam poplar, ranked by relative support. 

Model Coefficient Estimate p-value AIC AIC weight Nagelkerke R2 

Moran's I 

(residuals) 

Moran's I p-value 

(residuals) 

Geographic CPH Intercept 0.694 <0.01 -161.44 0.77 0.43 0.04 0.12 

  geoEdge 0.037 0.01           

  geoCenter -0.040 <0.01           

Climatic CPH Intercept 0.705 <0.01 -158.53 0.18 0.41 0.02 0.19 

  suitability 0.038 <0.01           

  climDist -0.034 <0.01           

Southern edge + CPH Intercept 0.680 <0.01 -154.76 0.03 0.38 0.06 0.04 

  geoCenter -0.058 <0.01           

  southernEdge -0.006 0.64           

Population structure/mixing Intercept 0.716 <0.01 -154.38 0.02 0.39 0.00 0.35 

  mix 0.088 0.32           

  maxCluster-Eastern -0.168 <0.01           

  maxCluster-Northern -0.056 0.15           

Landscape age Intercept 0.667 <0.01 -140.95 0.00 0.26 0.08 0.02 

  landAge -0.016 0.16           

Distance from southern edge Intercept 0.664 <0.01 -139.04 0.00 0.24 0.08 0.02 

  southernEdge 0.003 0.85           

Past climate stability Intercept 0.655 <0.01 -139.73 0.00 0.26 0.09 0.01 

  stability 0.003 0.79           

  stabilitySD -0.021 0.10           
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Figures 

 

 
Fig. 2.1. Map showing location of newly sampled populations (red triangles; Chhatre 

et al., In prep.), populations from Keller et al. (2010) (blue circles), and the 

neighborhood network used in spatial analyses (black lines; see Methods). Balsam 

poplar range polygon is shown in white (Little, 1971). 
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Fig. 2.2. Maps and correlograms of (a & b) expected heterozygosity and (c & d) 

percent polymorphic loci among 85 balsam poplar populations. Circle size in the 

correlograms are proportional to the number of records used within each distance 

class, and filled circles indicate significant autocorrelation at particular distance 

classes (two sided, p > 0.975 or p < 0.025). Balsam poplar range polygon is shown in 

white (Little, 1971), in (a) and (c). 
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Fig. 2.3. Relationship between balsam poplar expected heterozygosity and (a) 

distance from the geographic range center and (b) distance from the range edge. 

Least-squares regression lines are shown in blue. 
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Chapter 3: Are genetically-informed distribution models more 

transferable to past climates than standard distribution models? 

A case study with balsam poplar (Populus balsamifera L.). 
 

Abstract 

In response to future climate change, species are often predicted to need to shift their 

geographic ranges. The typical way to predict range shifts, species distribution 

models (SDMs), however, assume species are genetically uniform throughout their 

ranges. While techniques have been developed to account for species’ genetic 

population structure, they have rarely been tested for their ability to be transferred to 

time periods outside those used in model training. Assessing model transferability 

through time is especially important as a major goal of SDM studies is to project 

distributions to future climates, which may be comparably novel to current climates. 

Here, we used standard and genetically-informed distribution models (gSDMs) to 

predict the future and past range of balsam poplar and used historic balsam poplar 

pollen and macrofossil occurrences to compare model transferability. In general, 

standard and gSDMs performed similarly through time – both predicted an expanding 

range and a northward shift as glaciers receded from the landscape over the past 22 

ky, but a contracting range in future climates. Both standard and gSDMs showed 

moderate abilities to distinguish balsam poplar pollen/fossils from background 

samples, but tended to predict lower suitability at pollen/fossil sites during the 

Pleistocene-Holocene transition. Although gSDMs applied to balsam poplar did not 

prove more transferable than standard SDMs, they provided numerous insights not 
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available from standard SDMs, such as the change in suitable area of genetic clusters 

through time and potential refugial locations. We argue more work should be done to 

determine which species may benefit most from the gSDM approach and the need to 

test gSDMs with temporally or spatially independent occurrences, as is often 

suggested for standard SDMs. 

 

Introduction 

Geographic shifts in species’ ranges are a commonly predicted biotic response 

to future climate change (Chen et al., 2011; Fei et al., 2017; Hickling, Roy, Hill, Fox, 

& Thomas, 2006; Parmesan, 2006; Scheffers et al., 2016) and are expected to have a 

variety of effects on ecosystems, at multiple organizational levels (Montoya & 

Raffaelli, 2010; Schweiger, Settele, Kudrna, Klotz, & Kühn, 2008; Walther, 2010). 

At the species-level, shifting ranges may result in loss of range area, and extirpation 

of populations at the trailing edge of range expansion. In turn, loss of edge 

populations could reduce genetic diversity and adaptive capacity within species, 

especially if trailing edge populations are adapted to marginal environmental 

conditions within the range and/or harbor unique alleles not found elsewhere in the 

range (Alsos et al., 2012; Hampe & Petit, 2005). Accurate predictions of species’ 

range shifts, hence, are needed to understand where populations may be most at risk 

of extirpation and the associated potential loss of genetic diversity. 
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Species distribution models (SDMs) are among the most common approaches 

to predict species range shifts (Araújo et al., 2019). SDMs, however, make multiple 

simplifying assumptions that can affect their performance and biological realism 

(Elith & Leathwick, 2009; Franklin, 2010; Wiens, Stralberg, Jongsomjit, Howell, & 

Snyder, 2009). For instance, SDMs typically assume genetic uniformity throughout 

the range (Fitzpatrick & Keller, 2015; Gotelli & Stanton-Geddes, 2015). The 

assumption of genetic uniformity can be problematic when species are structured into 

populations, encompass multiple lineages/subspecies, or when populations are locally 

adapted to climate – a characteristic of many plant species (Leimu & Fischer, 2008; 

Savolainen, Lascoux, & Merilä, 2013). The primary approach to accommodating 

genetic population structure in SDMs is by creating individual models for each 

biologically-relevant (e.g. genetic, morphological) subunit within a species’ range, 

and combining model predictions into a single composite prediction for the entire 

species (i.e., here, genetically-informed SDMs or gSDMs). While the gSDM 

approach has shown promising results when compared to standard species-wide 

predictions (e.g., Ikeda et al., 2017; Marcer, Méndez-Vigo, Alonso-Blanco, & Picó, 

2016; Oney, Reineking, O’Neill, & Kreyling, 2013; Pearman, D’Amen, Graham, 

Thuiller, & Zimmermann, 2010), it is often unclear if gSDMs are better able to 

predict responses to climate change, compared to standard SDMs (Peterson, Doak, & 

Morris, 2019). Assessing how well gSDMs can be transferred to time periods not 

used in model training is especially important as a major goal of gSDMs studies is to 
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predict species’ range shifts in future climates when climate may be dissimilar from 

current climate. 

While assessing the transferability of models decades into the future may not 

be possible, past occurrences, such as pollen and fossil records, offer a unique 

opportunity to test the ability of models fitted at one time to be transferred to another 

time. If gSDMs have a greater ability to predict the occurrence of pollen and fossils 

records than standard SDMs, gSDMs may similarly be more reliable in future 

climates. While future climates may become more novel than past climates 

(compared to current climate), requiring greater model extrapolation (Fitzpatrick et 

al., 2018), pairing past climate simulations with pollen/fossil data offer one of the few 

ways to validate the temporal transferability of SDMs with independent data. 

Furthermore, projecting gSDMs to past climates can offer numerous insights not 

available from standard SDMs, such as where different populations originated on the 

landscape and potential migration routes used to fill the current range. Using past 

climate simulations in concert with pollen/fossil data and genetic information can, not 

only help inform model transferability but may also provide inference about how 

species’ ranges have shifted in the past and how past range shifts compare to future 

range shifts. 

In this study we used balsam poplar, a northern North American tree species, 

to test the transferability of standard and gSDMs to past climates since the last glacial 

maximum (LGM) and used pollen/fossil records to validate models. Because 

pollen/fossil records were not used during model calibration, this provides a true test 
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of the transferability of standard and gSDMs to new time periods. We also used the 

distribution models to assess how the size of the range has shifted since the LGM, and 

how it may shift in the future. We show that while gSDMs may not enhance 

transferability, they can offer numerous insights not available from standard SDMs 

and should be continued to be developed to enhance their accuracy. 

 

Materials and Methods 

Genomic clusters 

Recent genetic studies have shown balsam poplar to be structured into three 

genetic clusters – a distinct cluster in the eastern portion of the range, and a gradient 

of two clusters in the northern and central parts of the range (Keller et al., 2010; 

Meirmans, Godbout, Lamothe, Thompson, & Isabel, 2017). To create gSDMs, we 

used admixture proportions from two SNP datasets (Ch. 2; Chhatre et al., In prep.; 

Keller et al., 2010), which together covered 85 populations throughout the range of 

balsam poplar. We used a minor allele frequency filter (described in Ch. 2) to ensure 

the two datasets were comparable. Populations were assigned the cluster with the 

highest average admixture coefficient for individuals within the population, resulting 

in 11, 62, 12 populations in the northern, central, and eastern clusters respectively. 

Because each cluster had relatively few populations (i.e., fewer than needed to 

create robust distribution models), like other studies (e.g., Ikeda et al., 2017; Oney et 

al., 2013), we supplemented the sampled population locations with occurrences from 
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multiple sources, including the global biodiversity information facility (Gbif.org, 

2019), the US and Canadian Forest Inventory analyses (Gillis et al., 2005; 

Woudenberg et al., 2010), and recent sampling efforts (Ch. 5). Occurrences were 

assigned the cluster of the nearest sampled population. Although assigning clusters to 

unsampled locations introduces some uncertainty into subsequent analyses, because 

clusters were spatially structured, and admixture coefficients were spatially 

autocorrelated over hundreds of kilometers (see Results), this approach should 

provide a reasonable approximation of cluster affiliation at unsampled locations.  

Because of strong spatial and climatic bias in the occurrences, we thinned 

occurrences in both geographic and environmental spaces. To do so, first, one 

occurrence was selected per grid cell of the climate data (0.5 degree resolution, see 

below). Next, a principal components analysis was conducted on climate extracted at 

the remaining occurrence locations. Finally, scores for the first two components were 

plotted over a 0.2 resolution grid and one occurrence was randomly selected per grid 

cell. Of the 4173 occurrences collected, 475 were kept after thinning and were used in 

the subsequent distribution models. Of the 475 occurrences, 149 were assigned to the 

northern cluster, 274 to the central cluster, and 52 to the eastern cluster. 

We used pollen and macrofossil records collected from online databases 

(www.neotomadb.org; Goring et al., 2015) and the literature (Mann, Groves, Reanier, 

& Kunz, 2010) to validate models. Although pollen is often identified only to the 

genus-level, morphological differences in pollen of Populus species has allowed 

some researchers to identify pollen to balsam poplar specifically (as in Brubaker et 
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al., 2005; Brubaker, Garfinkee, & Edwards, 1983; Cwynar & Spear, 1991; Edwards, 

Anderson, Garfinkel, & Brubaker, 1985 and various entries in the North American 

Pollen Database). We used only pollen identified as Populus balsamifera, but not 

Populus balsamifera-type or undifferentiated Populus pollen in our analyses. Pollen 

and macrofossils were assigned the nearest time period of the climate layers (±250 

years), based on their calibrated dates before present. In total, we used 390 

pollen/fossil site-years to validate the distribution models. 

We used downscaled and debiased climate data from Lorenz et al. (2016) to 

hindcast and forecast our distribution models. The distribution models were 

parameterized with six climate variables that lacked strong correlation (|r| < 0.75) 

with other variables: summer and winter mean temperature and precipitation, annual 

precipitation variability, and average evapotranspiration ratio (actual/potential 

evapotranspiration). Distribution models were hindcasted to 22 ky BP in 500-year 

increments, and projected to four future climates (2030, 2050, 2070, 2090), for two 

emission scenarios (RCP 4.5 and 8.5), and twelve global circulation models without 

dispersal limitations. Climate data had a resolution of 0.5 arc degrees. 

 

SDM calibration and validation  

We used the BIOMOD2 platform in R to create ensemble distribution models 

(Thuiller et al., 2009). Specifically, we used six algorithms (generalized linear 

models, boosted regression trees, generalized additive models, flexible discriminant 

analysis, multiple adaptive regression splines, and random forest) and two replicates 
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of five-fold cross validation (where 80% of data is used to train the models, and 20% 

is used to test the models, iterated 5 times, run twice) for a total of 60 models in each 

ensemble. Ensemble models were created separately for each genomic cluster 

(northern, central, and eastern clusters) and for the entire species as whole. Because 

we lacked true absences for balsam poplar, 1000 pseudo-absence points were selected 

from across North America, and were selected at least 2° from any occurrence used in 

model training (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012). Pseudo-absences 

and presences were given equal weight in each of the models to ensure pseudo-

absences did not have an outsized impact when fewer occurrences were used to train 

cluster models (compared to the species-wide model). Because of a lack of consensus 

in the best approach to evaluate model discriminatory ability of SDMs and limitations 

to any single statistic (e.g., sensitivity to prevalence and spatial extent, weighting of 

omission/commission errors, etc.; Leroy et al., 2018; Lobo, Jiménez-Valverde, & 

Real, 2008), we used three commonly-used statistics to evaluate predictions of testing 

data: true skill statistic (TSS; Allouche, Tsoar, & Kadmon, 2006), AUC, and kappa. 

We used a committee averaging approach to create the ensemble predictions. 

To do so, binary predictions (created by maximizing TSS) were averaged across all 

models with TSS scores above 0.7. The resultant continuous map illustrates the 

proportion of models that predict the cluster (or species) to be present across the 

landscape. To create binary maps of the ensemble predictions, we applied a threshold 

of 0.5 to the committee averaged maps – illustrating areas where at least 50% of 

models predict presence of the cluster (or species).  
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To compare the ability of standard SDMs and gSDMs to predict balsam 

poplar pollen and macrofossils in past climates, we first combined our individual 

cluster predictions into a single composite prediction. The composite prediction was 

calculated as the probability of at least one cluster being present across the landscape 

(Pearman et al., 2010), as given by: 

 

���� = 1 −∏ �1 − ���	�	 �,   Equation 3.1. 

 

where P(x) is the probability of at least one cluster being present, and P(xi) is the 

probability of i'th cluster. Next, climatic suitability was extracted at 

pollen/macrofossil locations from both the composite prediction of the gSDM, and 

the standard SDM and from an equivalent number of pseudoabsence points from 

unglaciated parts of the landscape. Because most time periods had relatively few 

pollen/macrofossils (Populus is often “palynologically silent”; Godwin, 1934; 

Pedersen et al., 2016), we calculated AUC, TSS, and kappa for the 

pollen/macrofossils pooled over all time periods. We also assessed model 

extrapolation directly by assessing the relationship between suitability and climatic 

novelty at pollen/macrofossil occurrences. This analysis informed whether suitability 

declined as pollen/fossil occurrences become more climatically distant from the 

climate used to train models. Climate novelty was calculated using Mahalanobis 

distance, a scale-invariant multidimensional distance metric. Mahalanobis distance 

was calculated from the average current North American climate to climate extracted 
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at pollen and macrofossil sites. Distances were transformed to probabilities using the 

lower tail of a chi-square distribution – illustrating the probability of climate at 

pollen/macrofossil sites falling outside current North American climate. 

We assessed variable importance for each ensemble distribution model to 

determine whether clusters responded differently to climatic variables, and whether 

important variables differed from the species-wide model. To do so, we used variable 

importance metrics from BIOMOD2. Briefly, variable importance was calculated by 

testing the correlation between model predictions when a single variable is permuted, 

and when it is not, and then subtracting the value from 1.0. A high correlation 

between model predictions when a variable is permuted and when it is not, indicates a 

variable has a small effect on the model prediction, and hence, is not very important 

in the model. For each of the 60 models, each variable was permuted ten times, for a 

total of 600 permutations per variable. Variable importance was averaged over each 

of the models in the ensemble. 

 

Analyses 

 We tested for multivariate spatial autocorrelation in admixture coefficients 

among the 85 populations using the MPMCORRELOGRAM package. Specifically, we 

quantified the relationship between the geographic distance between population 

locations and Euclidean distance between populations’ admixture proportion. 

Pearson’s correlation was calculated in 100 km bins up to 3000 km (approximately 

half the maximum distance between populations). Significance was determined using 
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999 permutations, and a progressive Bonferroni correction to p-values. We also tested 

how well predicted suitability of the three clusters in current climate related to 

observed admixture at the 85 populations. To do so, we extracted suitability for each 

cluster model at the population locations and standardized the values to sum to 1 by 

dividing the suitability for each cluster by the summed suitability (because admixture 

proportions similarly sum to 1). 

To assess past and future range dynamics of the clusters, we assessed how the 

suitable area of each cluster varied over time. To calculate the area of suitable climate 

for past predictions, continuous predictions were converted to binary (1/0) maps using 

the threshold that maximized TSS. Because each time-period included 60 predictions, 

a map cell was considered suitable if the majority (> 50%) of the binary models found 

it suitable (i.e., equal to 1.0). We repeated this procedure for future climate 

predictions, but averaged over the 12 GCMs. Once a composite binary map was 

calculated, the suitable area was calculated using the ‘area’ function in the RASTER 

package in R. 

 

Results 

Validation statistics 

Each of the ensemble models, whether fit species-wide or to individual 

genetic clusters, had good ability to discriminate between presences and pseudo-

absences in current climate (Fig. 3.1). Across the 60 models in each of the ensembles 
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(i.e., northern, central, eastern, and species-wide models), average AUC was greater 

than 0.90, average TSS was above 0.80, and average kappa was above 0.75 for each 

cluster except the eastern cluster (average kappa = 0.67). There were, however, 

significant differences in validation statistics across the models. The species-wide 

model had among the lowest TSS and AUC, but among the highest kappa, compared 

to each of the three cluster models. The central cluster models were not significantly 

different from the species-wide models for any of the metrics (p > 0.05) and the 

northern cluster models were not significantly different than the central cluster except 

for kappa, where the northern cluster had a lower kappa (p < 0.05). The eastern 

cluster, in contrast, had the highest TSS, but the lowest kappa. 

 

Pollen locations and validation 

Balsam poplar pollen and macrofossils tended to occur in areas of high 

predicted climatic suitability for both the gSDM (i.e., combination of northern, 

central, eastern models) and standard SDM. The occurrence of pollen/macrofossils 

tended to track the receding ice sheet northward, often very near the southern margin 

of the glacier. Pollen/fossils extended nearly the entire length of balsam poplar’s 

transcontinental range – from Beringia to the western Great Lakes to Atlantic Canada 

(Fig. 3.2). Interestingly, there were fossils that were solely suitable for each of the 

three clusters. AUC scores, calculated by pooling over all time periods, were 0.82 and 

0.81, for the gSDM and standard SDM respectively. TSS (gSDM: 0.53, standard: 

0.59) and kappa (gSDM: 0.53; standard: 0.59) were each similar between the gSDM 
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and standard SDM. Despite moderately high validation statistics, pollen/fossil 

suitability tended to decline between 10 and 15 ky BP, for both the composite and 

standard predictions. Many pollen/macrofossils between 10-15 ky BP occurred in 

eastern North America along the southern edge of the receding Laurentide glacier. In 

contrast, older fossils in Beringia were consistently predicted to have high suitability. 

The relationship between climatic novelty (quantified by Mahalanobis distance) and 

pollen/fossil suitability was weak, though significant, for the gSDM (r = -0.16, p < 

0.01), and insignificant for the standard SDM (r = -0.04, p = 0.46) – indicating 

pollen/macrofossils in novel climates tended to have marginally lower gSDM 

suitability than pollen/macrofossils in more analogous climates. 

 

Predicting admixture 

Admixture proportions were autocorrelated across the 85 populations over 

hundreds of kilometers. Multivariate spatial autocorrelation analyses showed 

admixture coefficients were positively correlated up to a maximum of 1500 km, and 

random or negatively correlated at longer distances. SDMs for the three clusters had a 

good ability to predict cluster affiliation, as well as the relative mixing among clusters 

within populations. Generally, the climatic suitability of the northern, central, and 

eastern clusters at population locations was proportional to average admixture 

coefficients within populations (Fig. 3.3). 
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Variable importance 

Variable importance differed across the cluster and the species-wide models 

(Fig. 3.4 & 3.5). The most important variables in the species-wide model were each 

related to temperature, specifically average winter temperature, while variables 

related to precipitation (summer and winter precipitation and precipitation variability) 

had relatively low importance. Temperature variables were similarly important to 

each of the cluster models, in particular average summer temperature. Unlike the 

other models, however, the eastern cluster had high importance of annual average 

evapotranspiration ratio, which tended to be amongst the lowest ranking variables in 

the other models.  

 

Change in suitable area 

The availability of climatically suitable area varied among the three genomic 

clusters through time, but some consistencies did emerge (Fig. 3.6 & 3.7). In general, 

each cluster increased in area over the past 22 ky. The suitable area available to each 

cluster at 22 ky BP ranged from 25 – 75% smaller than their current suitable area, 

while the species as a whole (gSDM and standard SDM) was around 50% smaller 

than the current range. As the glaciers receded in northern North America, each 

cluster expanded its range as it migrated northward (or eastward in the case of the 

northern cluster in Beringia), until eventually filling its contemporary range ~7.5 ky 

BP (Fig. 3.2). The central cluster exhibited the greatest relative increase in suitable 

area over the past 22 ky BP, and by 12 ky BP had the greatest absolute available area 



 

 

 

 

 

51 

 

among the three clusters. The eastern cluster similarly exhibited a gradual increase in 

suitable area over the past 22 ky, but maintained among the lowest absolute area from 

22 ky BP to present. In contrast, the northern cluster had the greatest absolute suitable 

area at 22 ky BP, approximately 75% of its current range. The suitable area available 

to the northern cluster oscillated at the end of the Pleistocene, before steadily 

increasing to its current range size over the past 10 ky. 

Suitable area for each of the clusters was predicted to decline by 2090. The 

central cluster is predicted to see a modest decrease in suitable area by 2030 (~15%), 

then maintain a stable range size through the end of the 21st century. Over the coming 

decades, the central cluster is predicted to gradually shift northward including into 

Alaska, where it currently has relatively low suitability. In contrast, the eastern cluster 

is predicted to decline by more than 25% of its current range by 2030, and further 

decline by the end of the century. The suitable area for the northern cluster followed a 

distinctly different future trend. By 2030, the northern cluster is predicted to increase 

in suitable area by nearly 50%, followed by a steady decline through the end of the 

century, ultimately resulting in a modest (< 5%) net loss in area by 2090. The modest 

loss in range area is the result of the northernmost parts of North America becoming 

climatically suitable for the northern cluster by 2030 and a declining northern 

landmass as the shift northward continues in later decades.  
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Discussion 

In this study, we compared the transferability of gSDMs and standard SDMs 

to multiple time periods using an independent set of pollen and fossil records to test 

model performance. In contrast to other studies, we found that predictions from 

standard and gSDMs were largely consistent through time and gSDMs did not 

improve model performance in balsam poplar. Despite the lack of improved 

performance, gSDMs offered numerous insights not available from standard SDMs, 

such as predicted changes in cluster range size and potential refugial locations during 

the LGM. Our findings suggest gSDMs can provide useful information about species’ 

past and future range shifts, but could be further improved to enhance transferability. 

 

Model comparison 

We found when models were tested with an independent set of occurrences 

not used to train models, the gSDMs did not perform better than standard SDMs. The 

lack of substantial improvement with gSDMs stands in contrast to other studies that 

have sometimes reported a multi-fold improvement in model accuracy with gSDMs, 

compared to standard SDMs (e.g., Ikeda et al., 2017). Most studies that compare 

standard and gSDMs, however, limit model training and testing to current climate 

(Ikeda et al., 2017; Marcer et al., 2016; Oney et al., 2013), and hence do not inform 

whether gSDMs are more transferable than standard SDMs to time periods outside 

those used to train models. This is an especially important distinction as a major 

motivation of integrating SDMs with genetic information, is to improve predictions of 



 

 

 

 

 

53 

 

species’ range shifts in future climates (Ikeda et al., 2017; Maguire, Shinneman, 

Potter, & Hipkins, 2018; Oney et al., 2013). Our findings suggest that to fully 

understand differences in performance of gSDMs and SDMs, model testing should be 

conducted on independent data, ideally from areas or time periods not used to train 

models, as is recommended for standard SDM implementations (Araújo et al., 2019). 

Testing models on occurrences from multiple time periods provides a true test of 

model transferability and extrapolation to novel climates, which is especially 

important when predicting to future climates (Fitzpatrick et al., 2018). 

There are numerous reasons why the gSDM approach, applied to balsam 

poplar, may not have improved performance compared to standard SDMs. First, 

gSDMs assume that clusters are completely differentiated from one another – insofar 

that each cluster is represented by a separate, independent model. While the 

assumption of complete differentiation may be adequate for species that are divided 

into subspecies or strongly differentiated along climatic gradients, complete 

differentiation may not be biologically realistic when individuals have mixed 

ancestries, or when populations include individuals from multiple ancestries. In 

balsam poplar, populations in the western portion of the range tend to be mixed 

among the central and northern clusters (Keller et al., 2010; Meirmans et al., 2017). 

Modeling the northern and central clusters separately likely introduces some 

uncertainty into the models (e.g., potentially affecting parameter estimates or model 

structure) as the northern and central models may be quantifying a mixed signal, not 

entirely representative of the hypothetical pure clusters. Furthermore, climate is likely 



 

 

 

 

 

54 

 

not the sole factor limiting the distribution of genetic clusters, and climate could be 

aligned with population structure by coincidence. Geographic isolation, limited 

dispersal/gene flow (Lecocq, Harpke, Rasmont, & Schweiger, 2019), or historical 

events (e.g., bottlenecks, founding events, genomic barriers) are also likely to be 

important factors limiting the distribution of clusters that would not be captured in 

correlative, climate-based SDMs. While using adaptive variation (versus population 

structure) to subdivide species’ climatic niches could help ensure clusters represent 

functional climatic differences, current adaptive variation may not be representative 

of the ancestral differences being assessed here. Despite its limitations, neutral 

population variation remains among the most common way to split species’ climatic 

niches into multiple subsets (Smith, Godsoe, Rodríguez-Sánchez, Wang, & Warren, 

2019). 

The gSDM approach, when used to predict past distributions, similarly 

assumes clusters have existed continuously on the landscape. However, clusters 

delineated by subdividing the range using neutral allele frequencies may not meet this 

assumption. For instance, if intraspecific variation arose following the LGM, the 

projection of individual clusters to earlier time periods (i.e., the LGM) may not be 

biologically meaningful. This could be the case with balsam poplar, as Keller et al. 

(2010) found the northern and eastern clusters likely differentiated from the central 

cluster during the migration northward to fill the current range. In other words, 

historically, there may have been a different number of clusters, compared to the 

three there are today. While the genetic population structure may not have been 
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present during the LGM, the pollen records suggest that the climate space currently 

occupied by the clusters was consistently occupied by the species, regardless of 

population structure. For instance, pollen/fossil sites exist in portions of Beringia that 

were suitable for the northern cluster before this cluster presumably differentiated 

from the central cluster, potentially violating the assumption that climate space 

occupied by clusters is temporally stationary. The non-stationarity in the climate 

space occupied by the clusters could be contributing to a mismatch between the 

pollen/fossil record and the current population structure that may partially explain 

why gSDMs do not enhance transferability when projected to past climates. 

It remains unclear when it is most advantageous to model clusters as discrete 

units. Most gSDM studies, including this one, have been done on single species 

which make it difficult to generalize results, especially since gSDM studies utilize a 

variety of modeling techniques and validation methods. Some, though not all, gSDM 

studies that report improved performance over SDMs have been conducted on species 

with disjunct ranges. In these cases, geographic isolation may more strongly 

differentiate clusters, and better fulfill the gSDM assumption of complete 

differentiation. Balsam poplar, in contrast, despite being structured into multiple 

genetic clusters, has a large continuous range with few impediments to gene flow, 

which may limit any advantage of separating the range into discrete units. Future 

work focused on (i) when it is most advantageous to split a species’ climatic space 

into multiple subsets, (ii) the minimum/maximum number of subsets required to best 

capture the species’ entire climatic niche and (iii) whether any functional or 
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geographic traits affect gSDM performance (as has been done for standard SDMs, 

e.g., Hanspach, Kühn, Pompe, & Klotz, 2010; Syphard & Franklin, 2010) could help 

improve the biological realism and, potentially, the performance of the gSDM 

approach. 

 

Past distribution and refugia 

While the gSDMs did not necessarily improve model performance, when 

paired with pollen/fossil data, gSDMs offer numerous insight into balsam poplar’s 

past range. gSDMs and pollen/macrofossil records suggest that following glacial 

retreat, balsam poplar’s migration northward was broad-fronted. By 13 ky BP suitable 

climate and pollen/fossil records extended from Beringia, to the center of the current 

range (Minnesota, Wisconsin), to the easternmost part of the current range in Nova 

Scotia. gSDMs and pollen/macrofossil records both point to the possibility that 

balsam poplar filled its range from multiple refugia– specifically in Beringia and 

south of the Cordilleran and Laurentide ice sheets (Fig. 3.2). The suitable area south 

of the ice sheets during the LGM was nearly continuous from the Rocky Mountains to 

the Atlantic Coast and was likely the primary refugium for balsam poplar as each of 

the three clusters had suitable area in this region. This is consistent with Keller et al. 

(2010), who suggested a refugium in the Rockies based on a signature of range 

expansion and the phylogeographic relationship between the three clusters. While 

genetic studies to date have not detected a signature of a refugia or expansion out of 

Beringia (Breen et al., 2012; Keller et al., 2010), both SDMs and pollen suggest 
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balsam poplar was present in Beringia during the LGM. Others have also reported the 

presence of balsam poplar pollen and fossils in Beringia. Brubaker et al. (2005), for 

instance, reported Populus pollen (the predominant species, they suggest, being 

balsam poplar) from at least 20 ky BP and an increase in occurrence and abundance 

of Populus pollen after 15 ky BP. They note that the increase in Populus pollen 

abundance is unlikely to be the result of migration from outside Beringia as an ice-

free corridor to the southern ice margin had not yet opened. When the ice-free 

corridor did open, however, our SDMs suggest climate within the corridor was 

suitable for balsam poplar nearly as soon as it opened (~13 ky BP) and recent work 

has shown Populus species, based on pollen and eDNA data, were likely the 

dominant tree species in parts of corridor (MacDonald & McLeod, 1996; Pedersen et 

al., 2016). This lends to the possibility that populations south of the ice sheet came 

into contact with Beringial populations soon after the ice-free corridor opened. Long 

and continued contact between populations north and south of the ice sheet could 

have eroded any distinctive markers that would have been emblematic of a distinctive 

northern refugium, and could explain the gradient in cluster affiliation throughout the 

western part of the range. 

 

Future trajectories 

Like studies of other North American plant species, we found the range of 

balsam poplar is predicted to shift northward in future climates (e.g., Iverson, Prasad, 

& Matthews, 2008; Morin, Viner, & Chuine, 2008; Oney et al., 2013). The largest 
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increases in suitability tended to occur in the northernmost portions of North 

America, where, interestingly, recent studies report an expansion of balsam poplar’s 

distribution and an increase in its abundance (Roland, Stehn, Schmidt, & Houseman, 

2016). Roland et al. (2016) suggest the expanding distribution and increasing 

abundance is primarily being driven by warming summer temperatures, which, 

coincidentally, we found to be the most important climatic driver for the northern 

cluster. The expansion of balsam poplar along its northern edge is likely facilitated by 

its ability to rapidly reach reproductive maturity, produce an ample annual seed crop 

and disperse its seeds long distances. Although we cannot be sure whether balsam 

poplar will be able to track its suitable climate throughout its range, these findings 

illustrate balsam poplar’s sensitivity to climate change and the need for an accurate 

understanding of species’ range shifts. 
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Figures 

 

 

Fig. 3.1. Validation statistics for central, eastern, northern clusters and species-wide 

ensemble models for balsam poplar (Populus balsamifera). Each ensemble includes 

10 folds of 6 algorithms. 
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Fig. 3.2. Ensemble predictions for northern, central, and eastern clusters, and species-

wide models for balsam poplar (Populus balsamifera) for (a) 2090, (b) current 

climate, (c) 7 ky BP, (d) 14 ky BP, and (e) 22 ky BP.  
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Fig. 3.3. Predicted suitability and average admixture proportions of 85 populations 

across three genetic clusters. 
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Fig. 3.4. Average variable importance of northern, central, and eastern clusters and 

species-wide ensembles models for balsam poplar (Populus balsamifera). 
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Fig. 3.5. Distribution of occurrences of three balsam poplar (Populus balsamifera) 

clusters and the entire species over six climatic variables used in ensemble 

distribution models.  
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Fig. 3.6. Change in geographic area through time of three balsam poplar (Populus 

balsamifera) individual clusters and the entire species, standardized by the current 

range area. The area for the entire species was based on two estimates: a single, 

species-wide model (‘Species’) and a combination of the three cluster models 

(‘Composite’). 
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Fig. 3.7. Change in geographic area through time of three balsam poplar (Populus 

balsamifera) individual clusters and the entire species. The area for the entire species 

was based on two estimates: a single, species-wide model (‘Species’) and a 

combination of the three cluster models (‘Composite’). 
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Chapter 4: Future climate change will promote novel gene-

climate associations in balsam poplar (Populus balsamifera L.), 

a forest tree species 

 

Abstract 

A central challenge to predicting climate change effects on biodiversity is integrating 

information on intraspecific variation, specifically population-level local adaptation 

to climate. Assessing how climate change could disrupt the gene-climate association 

of loci involved in climate adaptation can provide a new way of understanding 

population risk and exposure to climate change. For the wide-ranging boreal tree 

species, balsam poplar (Populus balsamifera), we used models of population-level 

genetic differentiation to estimate multiple metrics of its genetic exposure to climate 

change. These metrics included predicted shifts in genetic composition with and 

without migration, the potential for future novel gene-climate associations, as well as 

the distance and direction populations would need to migrate to minimize genetic 

composition change. We found exposure to climate change was greatest in the eastern 

portion of balsam poplar’s range, where future maladaptation peaked, migration 

distances to sites minimizing maladaptation were greatest, and the emergence of 

novel gene-climate associations were most likely. Our results suggested a greater 

likelihood of gene-climate associations disappearing from the landscape when 

migration distances were limited – consistent with the possibility of migration 

lessening maladaptation to future climate. Our work helps differentiate different types 
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of exposure of populations to climate change and the suite of potential strategies that 

could be used to minimize the risk of extirpation. 

 

Introduction 

Future shifts in climate are expected to reshuffle climates globally, with new 

novel climates (i.e., new combinations or seasonality of temperature and 

precipitation) emerging, and some current climates disappearing from the landscape 

(Williams, Jackson, & Kutzbach, 2007). Because climate is a main constraint of most 

species’ ranges, disappearing and novel climates will have a variety of consequences 

on biodiversity including extinction of endemic species, disappearance of current 

ecological communities, and the emergence of novel species assemblages (Williams 

& Jackson, 2007; Williams et al., 2007). Within species, climatically-adapted 

populations are likely to be particularly vulnerable to disappearing and novel 

climates. Disappearing climates could cause existing populations to become 

maladapted to local climate, resulting in local extirpation and disappearance from the 

landscape in the absence of genetic rescue by migration or adaptation. On the other 

hand, the emergence of novel climates, which existing genotypes have no prior 

selection history, could favor the evolution of novel genetic associations through the 

process of recombination of existing climate-adaptive alleles.  

Migration has the potential to lessen the effects of disappearing and novel 

climates on locally adapted populations. Dispersal to areas where populations are 

preadapted to climate could limit the risk of extirpation, especially in parts of species’ 
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ranges where climate change is minimal, or where analogous climates are expected to 

emerge nearby (e.g., upslope in mountains regions). If migration distances are 

particularly long, however, or the minimum adaptive offset (i.e., predicted disruption 

of gene-climate association, sensu Fitzpatrick & Keller, 2015) is particularly high, 

populations may face extirpation regardless of their ability to migrate or adapt. 

Quantifying the magnitude of maladaptation and the distance populations would need 

to migrate to minimize maladaptation, has the potential to inform where populations 

may be most at risk from climate change and where conservation or management 

efforts may be most effective. 

 In this paper, we develop a new approach to quantifying population-level 

exposure to climate change as a function of multiple metrics of population genetic 

maladaptation to future climate, and migration distances to locations that minimize 

maladaptation (Fig. 4.1). Using balsam poplar (Populus balsamifera L.) as a case 

study, we show maladaptation to future climates is highly variable throughout the 

geographic range, whereby some populations may be maladapted to all future North 

America climates, while others may be preadapted to future climate at or near their 

current location (i.e., would not need to migrate to minimize maladaptation). We also 

show that the distance populations would need to migrate to minimize maladaptation 

varied over multiple orders of magnitude, with the largest migration distances far 

outpacing balsam poplar’s ability to disperse unassisted. Our metrics of genetic 

maladaptation and migration distances allow for a nuanced understanding of how 
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different responses to climate change may vary geographically while informing the 

relative vulnerability of populations to future climate change. 

 

Materials and Methods 

Balsam poplar 

Balsam poplar is a northern broad-leaved forest tree species that occurs over a 

large portion of the boreal region of Canada and the northern United States. The 

expansive range of P. balsamifera spans more than 30 degrees of latitude across 

multiple broad climatic gradients (Little, 1971), with the center of its range in the 

boreal region of Canada that is expected to see amongst the highest levels of future 

warming in North America (Romero-Lankao et al., 2014). Trees in the genus Populus 

have emerged as a model system for landscape genomic studies of local adaptation to 

climate (Fetter, Gugger, & Keller, 2017) and balsam poplar, in particular, has been 

shown to be locally adapted to climate for numerous functional traits (Keller et al., 

2011; Soolanayakanahally et al., 2009). 

  

Generalized dissimilarity models 

We used generalized dissimilarity models to map predictions of local 

adaptation to climate (Fig. 4.S1). Generalized dissimilarity models (GDM; Ferrier, 

Manion, Elith, & Richardson, 2007) are a type of non-linear matrix regression that 

accounts for the curvilinear relationship between climatic (and optionally, 
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geographic) distance and genetic differentiation among populations separated along 

environmental gradients. We fit GDM to genetic differentiation (FST) of 33 single 

nucleotide polymorphisms (SNPs) in the Populus flowering time gene network 

genotyped in 995 individuals from 81 populations from across the range of balsam 

poplar (Keller, Chhatre, & Fitzpatrick, 2018). Genes in the flowering time network 

are associated with both reproductive and vegetative plant phenology, by regulating 

the timing of seasonal growth, dormancy, and reproduction with the permissive 

growing season. We selected SNPs that had a relationship with environment, 

identified using Bayenv2 and latent factor mixed models. The environmental 

variables assessed for a relationship with SNPs included the first 3 components of a 

principal components analysis (PCA) of 19 bioclimatic variables and elevation, meant 

to capture the dominant climatic gradients across balsam poplar’s range. See Keller et 

al. (2018) for a full description of how candidate SNPs were identified. We used 

SNPs showing an association with any of the 3 PCA axes identified across a range-

wide sample (see Table 2 in Keller et al., 2018). Based on these 33 climate-associated 

candidate SNPs, we calculated a multi-locus pairwise FST among the  81 populations 

using the ‘genet.dist’ function in the HIERFSTAT package (Goudet & Jombart, 2015) in 

R. Any pairwise FST values less than zero were assigned a value of zero.  

GDM was parameterized with six bioclimatic variables that lacked strong 

correlation (|r| < 0.75). These included: summer and winter mean temperature (bio10, 

bio11) and precipitation (bio18, bio19), isothermality (bio3), and mean diurnal range 

(bio2) downloaded from the WorldClim dataset (Hijmans, Cameron, Parra, Jones, & 
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Jarvis, 2005), at a resolution of 10 arc-minutes. We tested for variable importance in 

the model by permuting each variable 100 times and determining the average decline 

in deviance explained after permutation. Models were parameterized in current 

climate (centered on ~1975) and predicted to future climate (centered on 2070) using 

a composite average of five global circulation models (GCMs; UCAR Community 

Climate System Model, NOAA Geophysical Fluid Dynamics Laboratory Coupled 

Physical Model, MET Office Hadley Center Earth System Model, NASA Goddard 

Institute for Space Studies-E2-R, and the Norwegian Earth System Model). We 

performed all analyses using two different emission scenarios (RCP 4.5 and 8.5) for 

2070. Results and discussion refer to the composite mean of the five RCP 8.5 

projections for 2070 unless specifically noted. GDMs were fit using the GDM package 

(Manion, Lisk, Nieto-Lugilde, Mokany, & Fitzpatrick, 2017) in R.  

 

Genetic exposure metrics 

We used GDM to quantify the disruption of adaptive gene-climate 

associations expected under climate change using three different formulations of 

‘genetic offset,’ which we term: (i) local, (ii) forward, and (iii) reverse genetic offset 

(Fig. 4.1). Following Fitzpatrick & Keller (2015), local offset (a metric of predicted 

maladaptation to future climate within a focal site) was calculated by predicting FST 

for locally adaptive SNPs between present and future climate at the same location, 

assuming no migration or gene flow. Forward offset is the minimum expected 

disruption in the gene-climate association assuming populations have unlimited 
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dispersal capacity. Forward offset was quantified by first predicting FST between 

current climate at each focal grid cell within balsam poplar’s current range and all 

future climate grid cells in North America (exclusive of Mexico). From these 

predictions, we then identified the future climate grid cell with the minimum 

predicted FST, which we term forward FSTmin or forward offset. The distance to the 

location that minimized forward offset represents the minimum migration distance 

required to minimize maladaptation. High values of forward offset indicate 

maladaptation to all future North American climates. To assess the sensitivity of 

forward offset to dispersal constraints, we tested how FSTmin varied when migration 

was limited to five distance classes (50, 10, 250, 500, 1000 km). In addition to 

geographic distances, we also calculated the initial bearing populations would follow 

if they were to migrate to the location that minimized forward offset. Distance and 

bearing were calculated with the ‘distGeo’ and ‘bearing’ functions, respectively, in 

the GEOSPHERE package (Hijmans, 2017) in R. 

Reverse offset follows the same idea as forward offset, but is calculated from 

future climate to current climate. In this case, we first used the GDM (the same model 

discussed above) to predict FST between each future climate grid cell within balsam 

poplar’s current range and all current climate grid cells within balsam poplar’s current 

range. From these predictions, we then identified the current climate grid cell with the 

minimum predicted FST, which we term reverse FSTmin or reverse offset. Reverse 

offset provides a metric of how novel the future gene-climate association is predicted 

to be at a given site, relative to existing gene-climate associations present at any 
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location throughout balsam poplar’s range under current climate. As such, high 

values of reverse offset indicate “genetic novelty” as there is no analogous gene-

climate association found anywhere in the current landscape. Note that for reverse 

offset we only considered pixels within balsam poplar’s current range at both times 

periods to ensure future novelty in gene-climate associations was quantified only with 

respect to locations where balsam poplar currently occurs (i.e., within the current 

range) as opposed to the entirety of North America. 

 To simultaneously visualize local, forward, and reverse offset, we mapped 

these three metrics as the red, green, and blue bands of an RGB image, respectively. 

Because values of local offset were systematically higher than forward or reverse 

offset, we rescaled values within each band to their quantiles before plotting. This 

ensured the full range of colors were possible in the RGB images, and is analogous to 

a histogram equalization performed on each band. We also tested for correlation 

between local, forward, reverse offsets and distances. We used a spatially-corrected 

Pearson’s correlation coefficient to quantify these relationships. The spatial 

correlations were implemented with the SPATIALPACK package (Vallejos, Osorio, & 

Bevilacqua, 2018) in R, after projecting latitude/longitude coordinates to an 

equidistant projection (Azimuthal equidistant). 
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Results and Discussion 

Model fitting 

 GDM explained 65.2% of the deviance in FST. Variable permutation revealed 

that winter precipitation was the most important variable in the model. Isothermality 

and summer temperature were of secondary importance, while summer precipitation, 

mean diurnal range, and winter temperature were least important. All variables were 

significant (p < 0.01) except winter temperature (p = 0.16). Variable importance was 

positively associated with the magnitude of predicted FST along the respective 

climatic gradients. For instance, the greatest predicted differentiation occurred over 

the gradients in winter precipitation, isothermality and summer temperature gradients, 

while predicted differentiation was low for the winter temperature gradient. 

 

Local, forward, and reverse offset 

Local genetic offset was moderately high throughout the range of balsam 

poplar (mean FST = 0.07) and peaked in the eastern portion of the range in Atlantic 

Canada and northern parts of the range in Alaska and the Yukon Territory. The 

spatial pattern of forward offset was largely consistent with local offset (r = 0.74, p < 

0.01), but was considerably lower – consistent with the potential for migration to 

dampen the disruption of genetic climate adaptation. Like local offset, forward offset 

was lowest in the center of the range in central Canada, and increased eastward and 

northward. Reverse offset (i.e., future novelty) was highest in the extreme eastern 
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portion of the range and in northern areas in the Northwest Territories, suggesting 

these areas were most likely to experience selection under future climates for gene-

climate associations that are not well-represented by current gene-climate 

associations across the landscape.  

While the predicted patterns of local, forward, and reverse offset were highly 

variable in different parts of the range, some generalities did emerge (Fig. 4.2, 4.S2, 

4.S4). For instance, all three metrics were low in the center of the range, indicating 

populations in this region are predicted to have the lowest overall exposure to future 

climate change because they (i) have low offset in their current location (i.e., with no 

migration), (ii) have low offset in other portions of North America (i.e., are 

preadapted to future climate somewhere in North America; low forward offset), and 

(iii) existing populations elsewhere in the range are preadapted to future climate in 

the center of the range (i.e., low reverse offset). In contrast, exposure was highest in 

the eastern part of the range and sporadically in the northern part of the range, where 

all three metrics of genetic offset peaked. That is, based on our knowledge of adaptive 

gene-climate associations, there are no existing balsam poplar populations that are 

predicted to be preadapted to the future climates expected to develop in this region, 

including local populations and populations from elsewhere in the range. While other 

parts of the range had various combinations of high local offset and high forward or 

reverse offset, only in the eastern part of the range were all three metrics consistently 

high, revealing a high likelihood of climate maladaptation in this region with little 
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opportunity for migration to mitigate impacts. As such, we would expect extirpations 

of balsam poplar populations to be most likely in these portions of the range. 

 

Migration distances and direction 

Interestingly, migration distances (i.e., distances to the location of forward 

offset) were only weakly correlated with forward offset (r = 0.14, p = 0.25) – 

implying that, across populations, longer distances were not linked to higher forward 

offset. Distances to forward offset peaked in the eastern portion of the range, where 

they exceeded 5000 km (Fig. 4.3a). Locations minimizing forward offset for many of 

the cells in the northeastern portion of the range were in mountainous areas in the 

western half of North America – indicating populations in the easternmost portion of 

the range would need to migrate across nearly the entire North American continent to 

minimize forward offset. The shortest distances to forward offset, in contrast, 

occurred along the southern range edge, and sporadically in the northern portion of 

the range, often near mountainous areas. Very few locations (<1%) had distances of 

zero, suggesting that populations in nearly all parts of the range would need to 

migrate some distance to reach the location they are most preadapted to in the future, 

barring allele frequency change in situ. Limiting the search distance for forward 

offset revealed a negative relationship between forward offset and distance (Figs. 4.4, 

4.S5, 4.S6), suggestive of a tradeoff between migration distances and forward offset. 

Forward offset decreased considerably when the search distance was expanded from 

0 to 500 km (mean decrease in forward offset across all cells: 53.9%), while the 



 

 

 

 

 

77 

 

decline in forward offset between distances of 500 and 1000 km was considerably 

lower (mean decrease: 14.9%), indicating a declining benefit of lowering forward 

offset as search distances increased. The relative range-wide pattern of forward offset 

was similar across search distances but the magnitude differed (Figs. 4.S5, 4.S6).  

While most range-shift projections from species-level bioclimatic models 

suggest a poleward trajectory, our results suggest that if populations migrate towards 

the location that minimizes forward offset, range shifts may be considerably more 

complex. For example, while most (82.8%) locations in balsam poplar’s range had an 

overall northward trajectory (i.e., the location with minimized forward offset was at a 

higher latitude than the source pixel), we found considerable variability along the 

southernmost range edge (Fig. 4.3b). In these southern edge populations, the 

migration trajectory was sporadically westward, eastward, and even southward. The 

variability in direction was most apparent in the upper Great Lakes region where 

directionality varied over short distances. Recent observational studies have shown 

similar variability when populations are aggregated over entire species (Fei et al., 

2017; VanDerWal et al., 2013). Fei et al. (2017), for instance, showed that over the 

past 30 years, eastern North American tree species have more often shown a 

westward shift in abundance than a poleward shift. The authors propose this is due to 

shifting precipitation regimes and moisture availability increasing suitability for 

eastern tree species in the center of North America. Precipitation was also important 

in our GDM, and may be causing a similar effect in our predictions. The lack of a 

strict poleward shift in observational studies could partially be due to local adaptation 
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of populations that, when aggregated across an entire species, translates into species-

level variability in migration direction. 

 

Advances 

Impacts of climate change on populations will be mediated by the spatial 

pattern and magnitude of climate change and the ability of populations to adapt or 

migrate in response. Our study quantifies these varied responses by developing a 

spatially-explicit understanding of the relative roles of local maladaptation, minimum 

migration distances, and gene-climate novelty on population-level exposure to 

climate change. In doing so, we attempt to shed new light on several major 

unresolved questions concerning how climate change will affect populations within a 

species’ range, specifically: (i) where will climate change cause the greatest mismatch 

between locally adapted populations and climate?, and (ii) which existing populations 

may be most preadapted or maladapted to future climates? By simultaneously 

calculating multiple metrics of maladaptation and migration distances, our approach 

provides insight into the tradeoff between in situ selection versus migration, and helps 

elucidate where within the range each may be most effective at reducing the genetic 

offset under future climates. It is important to emphasize that our approach makes no 

attempt to assess the ability of populations to adapt or migrate, or predict mean fitness 

and evolutionary response over multiple generations (Shaw, 2018). Nevertheless, our 

approach provides intuitive metrics of population-level exposure to climate change 
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that may serve as a useful baseline for understanding where populations may be most 

at risk from climate change.  

Interestingly, contrary to some theoretical work (e.g., Hampe & Petit, 2005), 

exposure to climate change was not greatest along the trailing (southern) edge of 

balsam poplar’s range, but rather at the longitudinal extremes of the range. This is 

likely partially due to the importance of precipitation in driving differentiation of 

SNPs we investigated. Changes in winter precipitation, the most important variable in 

our model, is predicted to be greatest in the eastern and northernmost parts of the 

range in areas similarly predicted to have high future offset. In the center of the range, 

and along much of the southern edge, climate shifts are predicted to be relatively 

modest compared to the eastern portion of the range, leading to relatively lower offset 

in these areas. These findings are consistent with recent work that has suggested that 

accounting for local adaptation could yield results contrary to the leading-/trailing-

edge paradigm of species’ range shifts (i.e., as ranges shift poleward, trailing edge 

populations are most vulnerable to climate change as they will be the first to 

experience temperatures outside the species’ climatic niche; Peterson et al., 2019). 

Indeed, other modelling studies have shown accounting for local adaptation can yield 

unexpected range shifts that are not strictly poleward (Atkins & Travis, 2010). 

Similarly, numerous empirical studies have reported that range shifts in response to 

recent climate change are rarely uniformly poleward (Chen et al., 2011; Fei et al., 

2017; Groom, 2013; VanDerWal et al., 2013), and may be in multiple directions, 

including southward. Together, our results point to the possibility that explicitly 
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considering the gene-climate association of multiple loci across multiple climatic 

gradients could yield a considerably more complex view of population’s responses to 

climate change than is often implied by a simple shift poleward shifts often predicted 

by species distribution models. 

  

Limitations and extensions 

There are a number of limitations to our approach of predicting population 

exposure to climate change. First, the offset metrics implicitly assume that the current 

pattern of genetic differentiation across space is representative of genetic change 

through time (i.e., space for time substitution). Although the offset metrics have not 

yet been empirically validated, selecting loci with an apriori relationship with climate 

(Keller et al., 2018), and related to a temporally/spatially variable trait (i.e., 

phenology), should help ensure we are modelling a robust, reliable gene-climate 

signal. Second, we used a correlative model (GDM) that does not account for the 

genetic forces (i.e., selection, gene flow, etc.) that will shape the future pattern of 

genetic variation. Nor do the models account for potential plastic responses to climate 

change, or population’s ability to persist in variable climates (i.e., interannual climatic 

variability) – both of which likely contribute to an overestimation of offset metrics. 

Finally, our models emphasize only abiotic adaptation. While this may be suitable for 

SNPs related to phenology, populations are also likely to experience unique biotic 

interactions in future climates (e.g., such as encountering new competitors or new 
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pest regimes). Hence, it is important to emphasize that the exposure metrics 

calculated here, are only relevant to the specific SNPs used in our study. 

Our approach to mapping forward and reverse offset could be expanded in 

numerous ways. For instance, the way we identified FSTmin in future climates assumes 

populations would follow a straight-line distance and direction to track the location 

that minimizes future genetic offset. Unless FSTmin is nearby, however, most 

populations will be unlikely to reach the location of forward offset given dispersal 

constraints and migration barriers (Carroll, Parks, Dobrowski, & Roberts, 2018; 

McGuire, Lawler, McRae, Nuñez, & Theobald, 2016). Thus, when considering 

realistic dispersal constraints, forward offset is likely to be higher than our unlimited 

migration scenario suggests, as illustrated when the search distance for forward offset 

was limited (Fig. 4.4). Using the forward offset as a landscape metric of resistance to 

movement in a dispersal simulation could produce more realistic estimates of FSTmin, 

without relying on discrete distance classes.  

Finally, our analyses were conducted on loci in balsam poplar associated with 

phenology, which have a well-studied physiological and phenotypic relationship with 

climate that is established to be locally adaptive in balsam poplar (Keller et al., 2011), 

and will be an important trait in future climates (Richardson et al., 2013). Our 

approach, however, is generalizable to any number of loci identified in genome scans 

for selection as having a robust adaptive association with climate. Additional insights 

could be gained by assessing the pattern of forward and reverse offset predicted based 

on loci associated with other climatically-adaptive traits (e.g. heat and drought 
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tolerance, growth rates, etc.). Assessing loci associated with different traits could help 

elucidate the variable impacts climate change may have on different parts of the 

genome, and could inform whether populations are likely to be preadapted to a single 

location on the landscape, or more likely, whether genomic regions underlying 

different functional traits will be preadapted to different locations within the future 

landscape.  

 

Conclusion 

Population’s responses to climate change are likely to be complex, requiring a 

combination of migration and adaptation to avoid extirpation (Aitken, Yeaman, 

Holliday, Wang, & Curtis-McLane, 2008; Alberto et al., 2013; Davis & Shaw, 2001). 

When we attempt to account for this complexity, we found a rich assortment of 

responses to climate change across the range. In balsam poplar, we found the eastern 

portion of the range had the highest local, forward and reverse offsets and longest 

migration distances – indicating eastern populations may have the greatest exposure 

to climate change compared to the rest of the range and may face the greatest risk of 

future extirpation. More broadly, our work shows that, just as some climates and 

biological communities may disappear from the future landscape, and novel ones may 

emerge in their place (Williams & Jackson, 2007), the same is true for gene-climate 

associations in climatically adapted tree populations. The concepts of forward and 

reverse genetic offset provide a new way to consider population-level risk to future 
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climate change that accounts for local adaptation and goes beyond the constraints of 

species-level predictions. 
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Figures 

 
Fig. 4.1. Schematic of how local, forward and reverse offset were calculated and 

mapped. (1) After fitting a generalized dissimilarity model to FST of climatically-

adaptive SNPs, the model is used to predict (2a) local, (2b) forward, and (2c) reverse 

offset. Local offset is calculated following Fitzpatrick & Keller (2015). Forward 

offset is calculated by predicting FST between each cell in the range in current climate 

and all cells in North America in future climate and selecting the minimum value. 

Reverse offset is calculated by predicting FST between each cell in the range in future 

climate and all cells in the range in current climate and selecting the minimum value. 

Gray polygons are balsam poplar’s range (Little, 1971). 
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Fig. 4.2. Red-green-blue map of local (red), forward (green), and reverse (blue) offset 

throughout the range of balsam poplar for 2070 and RCP 8.5. Brighter cells (closer to 

white) have relatively high values along each of the three axes indicating greater 

predicted exposure to climate change, while darker cells (closer to black) have 

relatively lower values, indicating lower exposure to climate change. (b-d) Bivariate 

scattergrams of (a). All units are FST, but forward and reverse offsets are minimized 

FST. 



 

 

 

 

 

86 

 

 

Fig. 4.3. (a) Distance and (b) initial bearing to the location that minimizes future 

offset for balsam poplar in 2070 and RCP 8.5. Polar histogram in (b) shows the log10 

number of cells in each bearing bin. 
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Fig. 4.4. Relationship between search distance and minimized forward offset (FSTmin) 

for 2070. Bands extend between the 25th and 75th percentiles, and points are median 

values. See also Fig. 4.S5 & 4.S6. 
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Supplemental figures 

 

Fig. 4.S1. Generalized dissimilarity model (GDM) fit and climatic response plots. 

GDM was fit to FST of 33 SNPs in the Populus flowering time network across 81 

range-wide balsam poplar populations (bio2: mean diurnal range; bio3: isothermality; 

bio10: mean summer temperature; bio11: mean winter temperature; bio18: summer 

precipitation; bio19: winter precipitation). 
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Fig. 4.S2. Red-green-blue map of local (red), forward (green), and reverse (blue) 

offset throughout the range of balsam poplar for 2070 and RCP 4.5. Brighter colors 

(closer to white) have relatively high values along each of the three axes indicating 

greater predicted exposure to climate change, while darker colors (closer to black) 

have relatively lower values, indicating lower exposure to climate change. (b-d) 

Bivariate scattergrams of (a). All units are FST, but migration and novelty offsets are 

minimized FST. 
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Fig. 4.S3. (a) Distance and (b) initial bearing to the location that minimizes future 

offset for balsam poplar in 2070 and RCP 4.5. Polar histogram in (b) shows the log10 

number of cells in each bearing bin. 
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Fig. 4.S4. (a & b) Local genomic offset, (c & d) forward offset, and (e & f) reverse 

offset for RCP 4.5 (first column; a, c, e) and RCP 8.5 (second column; b, d, f) for 

2070. Note the non-linear color scale. a, c, e are plotted as an RGB image in Fig. 

4.S2, and b, d, f are plotted in Fig. 4.1. 
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Fig. 4.S5. Effect of search distance on forward FSTmin for RCP 4.5 in 2070. Distance 

classes included (a) 50 km, (b) 100 km, (c) 250 km, (d) 500 km, (e) 1000 km, and (f) 

unlimited. See also Fig. 4.3. 
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Fig. 4.S6. Effect of search distance on forward FSTmin for RCP 8.5 in 2070. Distance 

classes included (a) 50 km, (b) 100 km, (c) 250 km, (d) 500 km, (e) 1000 km, and (f) 

unlimited. See also Fig. 4.3. 
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Chapter 5:  Integrating genomics, common garden experiments, 

and remote sensing to understand the phenology of balsam 

poplar (Populus balsamifera L.) at landscape scales 
 

Abstract 

The study of plant phenology encompasses multiple disciples that together use 

techniques that span taxonomic, spatial, and temporal scales. While important 

insights have been learned at each scale, it is often unclear how well the insights from 

one scale can inform our understanding of phenology at a different scale. Here, we 

test the extent which genotype information can be combined with common garden 

observations of phenology to predict phenology observed at landscape scales using 

remote sensing. To do so, we combine a genomic prediction of phenology observed 

in common gardens with meteorological variables to model two metrics of land 

surface phenology – the day of year of spring onset (DOY), and the number of 

growing degree days accumulated before spring onset (cGDD). We show that the 

genomic prediction based on phenology observed in common gardens was the 

strongest predictor of DOY and outranked all meteorological variables, but was 

amongst the least important predictors of cGDD. Although both the DOY and cGDD 

models did well predicting spatial and temporal patterns of phenology withheld 

during training, model error was correlated with multiple meteorological variables. 

Our work shows that common garden experiments can inform phenology at landscape 
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scales, but there remain considerable uncertainty about the ability to forecast 

phenology to future climates.  

 

Introduction 

Phenology, the study of repeated life history events, has received increased 

attention in recent decades as it is one of the key biological indicators of recent 

climate change (Parmesan & Yohe, 2003; Tang et al., 2016). A signal of advancing 

spring has already been detected in long-term, historic records and contemporary 

observations at a range of scales (Ahas, Aasa, Menzel, Fedotova, & Scheifinger, 

2002; Menzel et al., 2006; Schwartz, Ahas, & Aasa, 2006). Shifts in phenology are 

expected to have consequences across ecosystems from disrupting species’ 

interactions (Memmott, Craze, Waser, & Price, 2007; Rafferty & Ives, 2011) to 

affecting global nutrient cycles (Piao, Friedlingstein, Ciais, Viovy, & Demarty, 2007). 

Understanding how plant phenology will shift in future climates will be crucial to 

understanding how natural systems may be altered by climate change. 

While phenology has well-documented genetic and environmental 

components, the relative roles of each are often uncertain, especially at broad spatial 

scales. Most broad-scale studies do not explicitly account for genetic variability or 

local adaptation, and those that do often yield mixed results regarding its importance. 

Chuine et al. (2000), for instance, found little difference in climatic requirements 

among populations of nine European tree species, and suggested that considering 

local adaptation is not crucial to modelling phenological responses to global change. 
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Vitasse et al. (2009) found similar results when comparing phenology of three woody 

species across an elevational gradient. Others, however, have found a strong signal of 

local adaptation in phenology, particularly when phenology is observed in common 

gardens. Multiple studies, for instance, have reported differences in the amount of 

cooling or thermal forcing required for bud flush among populations of various tree 

species when individuals are grown in identical meteorological conditions (Morin, 

Roy, Sonié, & Chuine, 2010; Myking & Heide, 1995; Olson et al., 2013; Zohner & 

Renner, 2014), suggesting accounting for local adaptation or genetic differences 

could be important to understanding the drivers of phenology. 

In contrast to the genetic influence on phenology, climatic influences are often 

more clear. In temperate regions, where moisture is not limiting, temperature is 

typically a dominant driver of phenology. Whether assessed at the scale of individual 

plants or forest patches (i.e., satellite pixels), the accumulation of chilling during the 

winter and heat during the winter/early spring are often strongly tied to the timing of 

bud flush and leaf emergence (Hunter & Lechowicz, 1992). Although precipitation 

often plays a lesser role in temperate regions, numerous studies have found preseason 

precipitation to have an influence on spring phenology (Fu, Piao, et al., 2014; 

Lambert, Miller‐Rushing, & Inouye, 2010; Yun et al., 2018). While the general 

effects of temperature and precipitation on phenology have been well documented, 

the temporal range at which meteorological variables influence phenology is often 

uncertain. Temperature and precipitation in the weeks or months immediately 

preceding bud flush is often identified as important, but experimental work has 
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suggested that seasonal temperatures during the previous year can have residual 

effects on the timing of phenological events in tree species (Fu, Campioli, et al., 

2014). This is consistent with other observational work that has shown lag effects of 

temperature up to two years (Mulder, Iles, & Rockwell, 2017). 

Because phenological shifts will be an important biotic response to global 

change and will affect natural systems at multiple temporal, spatial, and taxonomic 

scales, the study of its drivers spans multiple disparate disciplines (Pau et al., 2011; 

Wolkovich, Cook, & Davies, 2014). While previous work has shown that phenology 

metrics are often correlated across scales (e.g., individual plants vs. near surface 

cameras vs. satellites; Fisher & Mustard, 2007; Graham, Riordan, Yuen, Estrin, & 

Rundel, 2010; Liang, Schwartz, & Fei, 2011; Melaas, Friedl, & Zhu, 2013), it is often 

unclear if the climatic/genetic drivers of phenology are consistent across scales, or if 

insights from one scale can be used to inform the understanding of phenology at other 

scales. Linking understandings that span scales has been an elusive but central goal to 

understanding phenological shifts. 

In this paper, we attempt to bridge scales by using observations of phenology 

across multiple common gardens to predict phenology observed on the landscape 

using remote sensing. Using balsam poplar (Populus balsamifera) as a case study, we 

modelled phenology in common gardens using genotypic, and genotype ⨉ 

environment information and then combined this genomic prediction with a variety of 

meteorological metrics to model phenology on the landscape across nearly the entire 

range of balsam poplar. Using this approach, we addressed multiple questions: (i) do 
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phenology metrics observed in common gardens match phenology measured on the 

landscape using remote sensing?, (ii) is accounting for genomics important in 

modelling land surface phenology?, and (iii) what is the importance of temperature 

and precipitation at various seasonal lags in driving phenology? 

 

Materials and Methods 

Common garden information and genomic prediction 

To estimate the contribution of genetic variation to phenology measured on 

the landscape, we first fit a genomic model to phenology observations made in 

common gardens. We then used this model to predict phenology of genotyped 

individuals sampled throughout the range (“landscape samples” below), that were not 

observed in the common gardens. We used this genomic prediction, in concert with 

meteorological variables, to predict land surface phenology derived from remote 

sensing. Using this approach, we sought to determine the extent to which common 

garden observations of phenology could be used to predict landscape metrics of 

phenology, and to determine the relative importance of genomic and meteorological 

variables to land surface phenology. 

We used phenology observations of bud flush from three common gardens to 

train genomic models. Bud flush observations were made in Fairbanks, Alaska (in 

2010), Indian Head, Saskatchewan (2010, 2015) (Olson et al., 2013), and in 

Burlington, Vermont (2015, 2016, 2017), on 869 individual plants whose origins 
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spanned the entire range of balsam poplar. Bud flush observations across the six 

garden-years were made two or three times a week during the beginning of the 

growing season. Observations from Fairbanks and Indian Head (2010) are previously 

reported in Olson et al. (2013). 

To produce the genomic predictions of phenology, we fit mixed effects 

models where cumulative growing degree days (cGDD) before spring bud flush (of 

individuals in the common gardens) was used as the response, and individual 

genotype were included as random effects. Genomic prediction models were fit using 

the Bayesian approach implemented in the BGGE package (Granato et al., 2018). For 

model training, we used 2061 bud flush observations for 869 individuals across all six 

garden-years, as well as genotypic data for each individual at 291 single nucleotide 

polymorphisms (SNPs). These 291 SNPs were derived from re-sequencing 27 

candidate genes in the Populus flowering time (FT) pathway (Keller, Levsen, Olson, 

& Tiffin, 2012; Olson et al., 2013; Palacio-Lopez, Keller, & Molofsky, 2018). We 

compared three multi-environment genomic prediction models (multi-environment 

main genotypic effect model, MM; multi-environment single variance genotype x 

environment deviation model, MDs; and multi-environment, environment-specific 

variance genotype x environment deviation model, MDe) and an additional set of 

models with a random intercept of genotype-specific reaction norms (MMl, MDsl and 

MDel) (Cuevas et al., 2018; Granato et al., 2018; Sousa et al., 2017). We compared 

models fit with two different covariance functions (i.e., genomic best linear unbiased 

prediction (GBLUP) and non-linear Gaussian kernel).  
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To assess model accuracy, we performed a bootstrap analysis where 80% of 

individuals were used to train the models, and 20% were used to test models. We ran 

this bootstrap analysis for 1000 iterations for each model and compared the resulting 

distributions of R2 values for the linear relationship between observed and predicted 

cGDD of individuals withheld for testing. In this initial testing, the MDs model fit 

using a Gaussian kernel was the best, as it produced predictions of cGDD that were 

closest to common garden observations. For this reason, we used the MDs to generate 

predictions of cGDD to bud flush for 1478 genotypes collected throughout the range 

of balsam poplar. All 1478 landscape samples had been genotyped at a set of 198,859 

genome-wide SNPs, but only 460 of these individuals had been genotyped at the 291 

FT pathway SNPs used to train the model. Therefore, we used the program Beagle 

(Version 4.1) to phase haplotypes for these 460 individuals and then to impute 

genotypes at the FT pathway SNPs for the remaining 1018 landscape samples using 

the phased haplotypes as a reference (B. L. Browning & Browning, 2016; S. R. 

Browning & Browning, 2007). We then used the MDs genomic prediction model to 

predict cGDD to bud flush for all 1478 landscape samples.  

For each landscape sample, the genomic model generated six predictions of 

cGDD, one for each of the six garden-years used to train the model. Because we 

sought to use just one genomic prediction per individual per year in the landscape 

model, we took a weighted mean of the six genomic predictions, where weights were 

based on how meteorologically-similar sample sites on the landscape were to the 

common gardens in years phenology observations were made. To calculate weights, 
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we first conducted a principal components analysis (PCA) on meteorological 

variables (seasonal temperature and precipitation, winter snow water equivalent, 

elevation, cumulative chilling days, and rate of cGDD increase, described below) at 

all landscape sample sites in all years. Next, we projected the same meteorological 

variables from garden-years into the same PCA space and calculated a 

multidimensional Euclidean distance between garden-years and sample sites, which 

served as our measure of meteorological similarity between each site and the gardens. 

We used the first nine axes of the PCA to calculate the distance as these captured 

>95% of the total variation. The inverse of Euclidean distances were used as weights 

in the weighted mean. Ultimately this process helped ensure that the genomic 

prediction was representative of the similarity between weather at the common 

gardens and at sample sites on the landscape. 

 

Land surface phenology 

To quantify land surface phenology, we applied the approach described by 

Elmore et al. (2012) to 250m-resolution remote sensing data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS). Briefly, this involved fitting a 

seven parameter dual logistic curve to normalized difference vegetation index 

(NDVI) extracted at forested MODIS pixels around each of our landscape sample 

points. Relevant NDVI observations were identified by searching increasing focal 

distances from the sample location for forested pixels until at least three were 
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identified. Forest pixels were defined using the 2010 land cover map generated by the 

North American Land Change Monitoring System (Latifovic et al., 2016). Limiting 

phenology model-fitting to NDVI extracted at forested pixels has been shown to 

improve the relationship between satellite-derived phenology and ground 

observations of phenology of forest trees (Elmore, Stylinski, & Pradhan, 2016). The 

seven parameter model is defined as: 

 

, Eq. 5.1 

 

where NDVIt is NDVI on day of year t, m1 is the baseline NDVI during the winter, m2 

is the difference between the spring and winter NDVI, m3 and m4 control the shape of 

the spring logistic curve, m5 and m6 control the shape of the autumn logistic curve, 

and m7 controls the slope of the curve during the summer (Elmore et al., 2012). We fit 

the phenology model to MODIS data from 2000 to 2016. 

We used both the m3 parameter (i.e., date of spring onset, ‘DOY’ below) and 

the number of growing degree days (cGDD) accumulated to DOY as phenology 

metrics. While the m3 parameter is expected to vary year to year within a site, cGDD 

should exhibit less interannual variation as it represents the heat sum required for leaf 

emergence. cGDD is often recommended as a more biologically meaningful 

phenology metric compared to phenology metrics referenced to a DOY, including for 

satellite-derived phenology (de Beurs & Henebry, 2010). cGDD was calculated as the 
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cumulative average temperature of days with an average temperature above 0℃. 

cGDD was calculated from the Jan. 1 until the date of m3. cGDD was calculated from 

daily temperature data from the Daymet dataset (see below; Thornton et al., 2017). 

Because phenology metrics from MODIS represent an aggregate signal of all 

plants within a pixel, we transformed phenology metrics to better represent balsam 

poplar phenology. To do so, we used ground observations of balsam poplar 

phenology to model the relationship between balsam poplar phenology and the m3 

parameter, and used the regression equation to transform m3 at all sample sites to 

represent balsam poplar. Ground observations of balsam poplar leaf emergence were 

downloaded from the National Phenology Network. We filtered the phenology data 

using similar approaches described by Elmore et al. (2016), where observations that 

were not preceded by observation within 7 days were removed (to ensure trees were 

being monitored regularly), as were out-of-season observations, i.e., if leaf emergence 

was observed before day-of-year 60 or after 180. Filtering citizen science data in this 

way has been shown to improve the relationship between ground observations (NPN) 

and MODIS-derived phenology. We then quantified the relationship between NPN 

observations of leaf emergence (n=18) and MODIS phenology using linear 

regression. Finally, we used the regression equation to transform the m3 parameter to 

represent balsam poplar at all sample sites. After transforming MODIS spring onset 

date, we recalculated cGDD to the transformed date, and used this as a response in 

our models. Because this was a simple linear transformation of DOY, it does not 
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affect subsequent models of DOY, but cGDD will shift by the number of growing 

degree days accumulated between the transformed and untransformed DOY. 

 

Meteorological variables 

We calculated 12 meteorological variables to model phenology on the 

landscape. These included seasonal mean temperatures, sum of seasonal precipitation, 

the rate of cGDD increase, cumulative chilling degree days (cCDD), elevation, and 

winter snow water equivalent. Each of these variables were calculated from daily 

meteorological data from the Daymet database (Thornton et al., 2017). Daymet 

contains interpolated daily minimum/maximum temperature, precipitation, and snow 

water equivalent, among other variables, for all of North America at 1 km x 1 km 

spatial resolution. We accessed the Daymet database using the R package DAYMETR, 

to batch download daily weather data for all sample locations (Hufkens, Basler, 

Milliman, Melaas, & Richardson, 2018). 

Mean temperature and precipitation sums were calculated over meteorological 

seasons (three month periods, where the month of the solstice or equinox is included 

as the starting month of the season), the year preceding leaf emergence. Mean 

seasonal temperature was calculated as the mean daily temperature ((Tmax + Tmin)/ 2), 

while precipitation was summed over the entire season. The rate of cGDD increase 

was calculated from Jan. 1 (the same starting time as cGDD used in predictions) 

through the end of spring. The rate was calculated by fitting an exponential curve to 

cGDD over time: 
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cGDD = exp(a + bt) ,   Eq. 5.2 

  

where t is day of year, using an iterative nonlinear least-squares algorithm. We used 

the estimated ‘b’ coefficient as an estimate of how fast growing degree days 

accumulated the year cGDD was calculated. 

Chilling was calculated following Kramer (1994). Unlike cGDD, cumulative 

chilling degree days (cCDD) accumulates individual days (or portion of days) rather 

than degrees, in relation to how close the average temperature is to the ‘optimum’: 

 

   , Eq. 5.3 

 

where Dchil is the number of chilling days accumulated in a single day, Tmin is -3.4, Tmax is 

10.4, and Topt is 3.5. Accumulated chilling days was calculated at the cumulative sum 

of Dchil over the autumn and winter the year before cGDD was observed. Average 

winter snow equivalent was calculated as the average snow-water equivalent during 

the winter, with units of kg/m2. 
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Moran eigenvector maps 

Because sampling sites were non-randomly distributed across the range of 

balsam poplar, and residuals of non-spatial models tended to be spatially 

autocorrelated, we used Moran Eigenvector Maps (MEMs) to account for residual 

spatial variation (Legendre & Legendre, 1998). MEM analysis decomposes a spatial 

distance matrix into orthogonal eigenfunctions, which can be used as predictors in 

models. We used the first 10 eigenvectors with positive eigenvalues (which represent 

positive spatial autocorrelation) as predictors in the models. We used the maximum 

distance of a minimum spanning tree to define the spatial network. 

 

Statistical models 

We used random forest to create two models, one using DOY as the response 

variable, and another using cGDD as the response. In both models, we used the same 

meteorological variables, the genomic prediction, and MEMs as predictors. Random 

forest is a non-parametric, machine learning algorithm that builds many regression 

trees using random subsets of the training data. We used 1000 trees in the forest, and 

implemented the model with the RANGER package (Wright & Ziegler, 2017). We 

quantified the importance of each variable in the model by assessing the increase in 

mean square error when variables were permuted. A large increase in mean square 

error indicates larger importance of a particular variable in the model compared to a 
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permuted variable resulting in a small increase in error. We also assessed the 

relationship between phenology metrics (DOY and cGDD) and predictor variables 

using partial dependence plots (Greenwell, 2017), which help to visualize the 

marginal effects of each predictor variable on the response. We tested for spatial 

autocorrelation in the model residuals for each year using correlograms in the NCF 

package (Bjornstad, 2018). 

 

Residual variation 

To test how well the model could predict observations withheld from model 

calibration, we used a variation of ‘leave-one-out’ cross validation. Rather than 

omitting single data points, we left out individual years, and individual cells of a 

spatial grid overlaying the sample sites. To test temporal predictions, we omitted all 

observations for a given year and tested how well the model could predict cGDD and 

DOY in the omitted year. To test the spatial predictions, we overlaid a 5o x 5o grid on 

the landscape, and then built the model using all but one grid cell. We then tested how 

well the model could predict DOY and cGDD in the omitted grid cell. This spatial 

and temporal leave-one-out procedure tests whether the signal in the data is robust 

enough to predict observations withheld during calibration, and implicitly tests the 

spatial and temporal autocorrelation in the data. We used root mean square error 

(RMSE) to quantify residual model error. In a further attempt to understand model 

performance, we tested whether RMSE in withheld years was correlated with any of 

the meteorological variables we used in our models. 
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Results 

Relationship between NPN and MODIS spring onset 

The relationship between NPN observations of balsam poplar leaf emergence 

and MODIS-derived spring onset was moderately strong (r = 0.56, p = 0.01). On 

average, ground observations of balsam poplar phenology occurred after the MODIS 

spring onset, although the regression line converged with the 1:1 line at later 

phenological dates (i.e., there were greater differences between MODIS spring onset 

and NPN observations at earlier phenological dates). We used the following 

regression equation to transform MODIS phenology to better represent ground 

observations of balsam poplar: y = 44.7961 + 0.6825*m3. On average, this resulted in 

a 3.8 day shift in m3 across all samples and years. 

 

General patterns of DOY and cGDD 

In general, across years, DOY (i.e., the day greenness increased most rapidly, 

quantified by the m3 model coefficient of the phenology model, Eq. 5.1) was 

consistently later at higher latitudes and higher elevations compared to lower 

latitudes/elevations. The relationship between cGDD and latitude/elevation, however, 

was more complex. In most years, cGDD declined with latitude - indicating that sites 

at higher latitudes required fewer GDD to reach the date of spring onset than did sites 
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at lower latitudes. In 2016, however, the trend was weakly positive (r = 0.08, p = 

0.01). The relationship between cGDD and elevation was more variable - the 

relationship was negative in five years (2000, 2002, 2008, 2010, 2011) and positive in 

the remaining years (2001, 2003 - 2007, 2009, 2012 - 2016).  

 

Variable importance and directionality 

Random forest models for DOY and cGDD both showed a very strong ability 

to explain out-of-bag variation (i.e., data withheld during construction of individual 

trees within the forest; out-of-bag R2 = 0.99, 0.93, respectively). The most important 

variables to DOY and cGDD, however, were considerably different. For DOY, the 

genomic prediction was the most important variable, followed by fall temperature, 

elevation, the rate of cGDD increase, and summer temperature (Fig. 5.1a). 

Precipitation variables tended to have low importance, although spring precipitation 

was the sixth most important variable explaining DOY. In general, seasonal 

temperature variables had a negative relationship with DOY - indicating that, as 

expected, cooler sites tended to have a later spring onset than warmer sites (Fig. 

5.S1). Interestingly, the relationship between DOY and precipitation switched during 

the course of the previous season - specifically, spring and summer precipitation had 

a negative relationship with DOY, while fall and winter precipitation had positive 

relationships. MEMs tended to have relatively high importance in explaining DOY, 

with many MEMs outranking the top meteorological variables. 
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Across all 24 predictor variables, the most important variable explaining 

cGDD was year, followed closely by the rate of GDD increase (Fig. 5.1b). While the 

relationship between cGDD and year was non-monotonic (i.e., varied year to year), 

the relationship with rate of GDD increase was clearly negative (Fig. 5.S2). A 

negative relationship between cGDD and rate of GDD increase indicates that sites 

that accumulate GDD more slowly tend to accumulate more overall growing degree 

days than sites that accumulate GDD more rapidly. Precipitation variables also tended 

to be important in explaining cGDD, with summer, fall, and winter precipitation 

representing three of the top five variables. Temperature variables tended to be lower 

ranked, as were the genomic prediction and elevation. In contrast to variable 

importance for DOY, the MEMs tended to have low importance. In general, the 

relationship between cGDD and meteorological variables tended to be in the opposite 

direction of the relationship with DOY. For instance, seasonal temperature variables 

tended to have positive relationships with cGDD, while temperature was negatively 

related to DOY. 

 

Residual variation 

Models of both DOY and cGDD showed similar abilities to predict variation 

across space and time. In general, when individual 5o grid cells were omitted from 

model training, RMSE tended to be highest in high elevation areas in the Rocky 

Mountains, and in the northern parts of the range in Alaska (Fig. 5.2) regardless of the 

response variable. This is likely due to high variability in DOY/cGDD over short 
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distances, which the models failed to predict when similar observations were withheld 

during model training. RMSE tended to be lowest in grid cells in the center of the 

range in the Great Lakes region, which had the greatest density of samples, and 

highest in topographically variable areas. 

 There were no clear temporal trends in residual error when individual years 

were omitted from model training, although models of both DOY and cGDD had 

local peaks of RMSE in 2002 and 2010 indicating models did relatively poorly 

predicting phenology in these years when they were omitted from training (Fig. 5.3). 

Models for DOY also had a peak in RMSE in 2015. RMSE of omitted years was 

correlated with numerous meteorological variables. RMSE of cGDD and DOY were 

both negatively correlated with winter precipitation and snow - indicating greater 

error in years with less snow. Even more revealing, RMSE of cGDD was positively 

correlated with winter temperature (r = 0.543, p = 0.02), suggesting greater error 

following warmer winters (Fig. 5.4). 

 

Pattern in residuals 

 Within individual years, residual spatial autocorrelation for both DOY and 

cGDD tended to be low, suggesting much of the spatial variation was being 

accounted for in the full model. When random forest models were fit to residuals (as 

opposed to phenology metrics), there were few clearly important variables. For 

residuals of both cGDD and DOY, year was notably more important than other 
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variables, potentially indicating the importance of other variables that vary year-to-

year, but not accounted for amongst our predictors. The rate of growing degree day 

increase was also important in explaining the residuals of DOY. 

 

Discussion 

Our approach shows that fine-scale, precise measures of phenology gathered 

from multiple common gardens in multiple years can be combined with genomic 

information to inform land surface phenology. When combined with meteorological 

information from the year preceding bud flush, much of the spatial and temporal 

variability in DOY and cGDD could be explained, signifying both the importance of 

pre-season weather to phenology and the contribution of genetic variability. This 

work provides a framework for linking precise phenotypic trait measurements in 

common gardens to landscape-scale patterns. 

 

Use of common garden information and genomic prediction 

The genomic prediction varied in its ability to explain cGDD and DOY. 

Curiously, the genomic prediction of cGDD was more important in explaining 

landscape DOY than cGDD. This is especially peculiar as the genomic prediction and 

cGDD were in the same units, and calculated from the same meteorological data set. 

There are multiple reasons why cGDD modelled from common garden data may have 

been a better predictor of DOY than cGDD. First, DOY on the landscape reflects the 
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combined effect of photoperiod and thermal forcing. Although we did not account for 

photoperiod in our model, recent studies have found photoperiod to be important to 

phenology of many tree species (e.g., Flynn & Wolkovich, 2018).If the genomic 

prediction also captured the effects of photoperiod (i.e., by accounting for GxE 

effects across the multiple gardens) it could have a better relationship with DOY than 

cGDD. cGDD on the landscape may also be affected by an interaction with 

photoperiod (Fu et al., 2019; Zohner & Renner, 2015) but this was not directly 

accounted for in our models, which may be contributing a mismatch between cGDD 

on the landscape and the genomic prediction. Both landscape cGDD and the genomic 

prediction were negatively correlated with DOY, suggesting both have similar broad-

scale trends with DOY, but are only weakly correlated with one another (r = 0.06, p < 

0.01). This suggests there may be additional factors affecting cGDD either in the 

gardens or on the landscape that is not fully being accounted for in our models. 

Perhaps the most obvious explanation for a lack of correlation between the 

genomic prediction and cGDD was that cGDD on the landscape is estimated using 

remote sensing of forest stands and therefore was not strictly representative of balsam 

poplar. Although we applied a transformation to DOY (and by extension cGDD) to 

better represent balsam poplar, the resolution of MODIS pixels necessarily meant that 

the phenology signal represents a mixture of numerous plant species and vegetation 

types. Variability in balsam poplar abundance and plant community composition 

across the range likely alters the relative contribution of balsam poplar to the MODIS 

phenology signal. Furthermore, the actual phenological stage that was measured 
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differed in the common garden and on the landscape. In the common gardens, 

observations were made of bud flush of individual plants, while on the landscape the 

phenology metric was the date greenness increased most rapidly. While previous 

studies would suggest remote sensing metrics and ground measures of phenology of 

individual plants are correlated (Elmore et al., 2016; Fisher & Mustard, 2007; Liang 

et al., 2011), it is unclear whether cGDD scales in a similar way. We attempted to 

address the fact that balsam poplar bud flush likely occurred before the date of 

greenness increase by using an earlier, alternative satellite-derived phenology metric 

(i.e., ‘onset of greenness increase’ - the date greenness just begins to increase within a 

pixel), but this date often occurred before any growing degree days had accumulated 

on the landscape. This further illustrates that even after transforming the MODIS-

derived phenology metrics to better represent balsam poplar, the satellite-derived 

metrics remain an aggregate signal that may not be entirely representative of balsam 

poplar. 

Our results also indicated that landscape cGDD was strongly influenced by 

the rate at which GDDs accumulated. If this is also true at local scales, cGDD in the 

garden and on the landscape could become decoupled if GDD accumulated more 

rapidly (or slowly) in the common gardens than on the landscape. For instance, if 

cGDD accumulated rapidly in a year phenology observations were made in a garden 

(i.e., years GP models were trained), it could effectively eliminate the differences 

between genotypes if all genotypes reached their thermal requirements within several 

days. Of the six common garden-years, three had increase rates faster or slower than 
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~90% of all increase rates (i.e., were in the 0.11, 0.10 and 0.93 quantiles of an 

empirical distribution of all increase rates). The discrepancy between the rate of 

increase in the garden versus that on the landscape could have contributed to the lack 

of a relationship between cGDD in the garden and on the landscape, resulting in low 

importance of the genomic prediction to cGDD. 

 

Importance of temperature and precipitation 

The importance of temperature to both cGDD and DOY largely matched 

previous studies. DOY tended to be earlier in warmer sites, while a greater number of 

GDD accumulated in warmer sites. Earlier DOY at warmer sites is likely due to 

plants accumulating their cooling and heat requirements earlier in the season, 

allowing buds to flush earlier and make use of a longer growing season (Zhang, 

Friedl, Schaaf, & Strahler, 2004). Conversely, we found that warmer sites also tended 

to accumulate more GDD than cooler sites - in other words, trees in warmer sites 

needed more GDD to flush buds than trees in cooler sites. This was apparent in the 

decline of cGDD with latitude, which was interrupted only by sites in mid-latitude, 

high elevation areas. Similar relationships have been observed at both satellite and 

local plant population scales (Fu, Piao, et al., 2014). The positive relationship 

between cGDD and temperature is likely due to plants in cooler regions having lower 

heat requirements than those in warmer, southern locations. In cool climates, lower 

heat requirements are likely an adaptation to cooler springs which may not 

accumulate as many GDD as lower latitude, warmer springs. A shorter growing 
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season at high latitudes/elevations likely also contributes to plants at high 

latitude/elevation sites requiring fewer GDD to flush buds. The latitudinal gradient in 

landscape cGDD largely matched previous common garden studies of balsam poplar 

that have shown genotypes from high latitudes tended to require fewer GDD than 

lower latitude genotypes to flush buds (Olson et al., 2013). 

While the relationship between cGDD and temperature was expected based on 

previous studies, the importance of precipitation to cGDD was somewhat surprising 

as precipitation is rarely considered an important driver of phenology in non-water 

limited climates (Polgar & Primack, 2011). Several studies, however, have reported 

similar relationships between precipitation and cGDD. Yun et al. (2018), using 

satellite imagery, found winter precipitation to be a major driver of cGDD in 

Northern Hemisphere boreal forests. They suggest that in years or sites with heavy 

snowfall, snow may persist longer into the spring, reducing spring temperatures (due 

to increased albedo effects and decreased absorption of solar radiation), which slows 

the accumulation of GDD before bud flush in the spring. This is consistent with the 

possibility of cooler winter temperatures reducing thermal requirements (Fu et al., 

2015), and which we also detected in our data (r = 0.585, p < 0.01). It is worth noting 

that others have found the opposite relationship between cGDD and the previous 

winter’s precipitation. Fu et al. (2014), also using satellite imagery, found a positive 

relationship between winter precipitation and cGDD in northern portions of the 

Northern Hemisphere. They suggest the positive relationship between cGDD and 
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snow may be due to GDD accumulating before snow has melted and begins 

contributing to plant’s thermal requirements.  

 

Residual model variation 

Although models did well overall in predicting cGDD and DOY in years and 

areas that were omitted from model training, RMSE was correlated with numerous 

meteorological variables. Perhaps most noteworthy was the positive relationship 

between winter temperature and RMSE, which suggests that, on average, models do 

more poorly when predicting phenology following warmer winters. In boreal regions, 

such as those occupied by balsam poplar, winter temperatures are expected to 

increase in coming decades - raising concerns about our ability to reliably predict 

phenology in future climates. Although we do not know the specific mechanism 

behind the increasing error following warmer winters, there are multiple possibilities. 

One possibility is that during warm winters, trees fail to reach their chilling 

requirements, which may alter the thermal requirements for bud flush the following 

year. Numerous studies, for instance, have suggested that additional GDD can 

compensate for a lack of winter chilling in trees (Fu, Campioli, Deckmyn, & 

Janssens, 2013; Guo et al., 2014; Murray, Cannell, & Smith, 1989). If the roles of 

meteorological variables are non-stationary over space or time (e.g., if chilling plays a 

greater or lesser role to different genotypes, regions or years) residual error could be 

correlated along meteorological gradients. Effect of non-stationary meteorological 

variables could also partially explain the annual variability of cGDD requirements 
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within sites, which, for numerous tree species, has been reported to have increased 

over time (Fu et al., 2015), presumably due to reducing chilling. Alternatively, cGDD 

or DOY can be affected by an interaction between winter temperature and 

photoperiod. Following cool winters, photoperiod can have a larger influence on leaf 

emergence than during warmer winters and not directly accounting for photoperiod 

could obscure this relationship. Ultimately, the finding of a relationship between 

meteorological variables and model residuals raises concerns about our ability to 

accurately forecast phenological responses based on a current understanding of the 

drivers of phenology (Carter et al., 2017; Isabelle Chuine et al., 2016), and highlights 

the complexity in predicting phenological shifts. 

 

Conclusions 

In this study, we tested the relative importance of temperature, precipitation, 

and genetic variation to predicting multiple metrics of phenology on the landscape. 

We found the genomic prediction to be amongst the most important variables 

explaining day-of-year on the landscape, but was not important in explaining cGDD. 

While models did well predicting phenology withheld from model training, error was 

correlated with multiple meteorological variables, illustrating the challenges of 

predicting phenological responses in shifting climates. 
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Figures 

 
Fig. 5.1. Variable importance (increase in mean square error) from random forest 

models for (a) day of year (DOY), and (b) cumulative growing degree days (cGDD). 

MEMs are Moran Eigenvector Maps. 
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Fig. 5.2. Scaled root mean square error for models of cumulative growing degree 

days when points from individual cells are left out of model training. The polygon is 

balsam poplar’s range, and purple points are the location of landscape samples. 
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Fig. 5.3. Scaled root mean square error of cumulative growing degree days when data 

from individual years were withheld from model training. 
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Fig. 5.4. Relationship between scaled root mean square error for cumulative growing 

degree days (cGDD) and average winter temperatures. In general, models have 

greater error predicting cGDD following warmer winters. 
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Supplemental figures 

 

 
Fig. 5.S1. Partial dependence plots for variables in the random forest model for day 

of year. Plots are in order of variable importance (Fig. 5.1a). 
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Fig. 5.S2. Partial dependence plots for variables in the random forest model for 

cumulative growing degree days. Plots are in order of variable importance (Fig. 

5.1b). 
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