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ABSTRACT

Title of Thesis: Adaptive Pattern Classification

Name of Degree Canidate: Anthony Teolis, Jr.

Degree and Year: Master of Science, 1989

Thesis directed by: Associate Professor Shihab Shamma
Systems Research Center

Dept. of Electrical Engineering

Up until the recent past, the power of multi layer feed forward artificial neural
networks has been untapped mainly due to the lack of algorithms to train them.
With the emergence of the backpropagation algorithm; however, this deficiency
has been removed. Despite this innovation, the backpropagation method is still
not without its drawbacks. Among these the most prominent are the facts that
i) the learning is conducted in a supervised manner and ii) that learning and

operation must occur in two distinct phases.

Because of these properties, the backpropagation algorithm falls short of

solving a ‘true’ pattern classification problem. This is not to say that a network



could not be trained via backpropagation to mimic a previously solved pattern
classification scheme; but that the backpropagation method is not capable of

autonomously generating classification schemes.

A more realistic (and certainly more useful) learning scenario is that pat-
terns would be presented without supervision to the system continuously; con-
sequently, the system will begin to group like patterns into similar classes and
continue to do so indefinitely; i.e. continuous learning. It is exactly this type of

learning that is discussed here.
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NOTATION

Some common notation found throughout this thesis is presented below for

easy reference. Let z,y € R", 2z € R™ and A € R™*", where A = (aij)?;j:l,

andy = (y1 y2 -+, yn )T. Alsolet f(-) :IR"— R and g(-,+) : R* x R™ —» R

/ :

ay
a2
diag(ay, az, -, ay) diagonal matrix
0 an
AT AT = (a50); =1 transpose
tr(A) tr(A) = ey @i trace of A
a(A) A€ o(A) spectrum of A

JzeR"c#03 Az = Az

N(A) N(A) = {z € R": Az = 0} null space of A



A L
Iyll, lyll, = (i lwil?)? ¢, norm

y g 2 W/ﬁ normalization
T
Vaf Vof = ( %%l %é?- ) gradient with
respect to x
T
Vg Vg = (%%l -8%3%1) partial gradient
with respect to z
A :
(z,¥) (z,y) = X2y inner product
z |y dJaeR> y=oaz x parallel to y
zly (z,y) =0 z orthogonal to y

xi



CHAPTER

ONE

Introduction

There is little doubt that the ultimate goal of automated machine perception
is an important one. Yet, feats of perception that are effortlessly carried out by
biological means are not directly amenable to machine implementation. Already,
the discipline of neural networks is striving to provide architectures for cognition
that are biologically realistic. It is through the study of the biological nervous

system that the most promising models of perception should emerge.

In short, the idea of the neural network discipline is to understand, and
hence mimic, the processing done in biological nervous systems. One of the
most prominent ways that processing in the nervous system differs from conven-
tional sequential logic machines (computers) is by employing massively parallel
computational processors (neurons) to perform its function. Since these neu-
rons operate in a non-linear fashion, their complex behavior is not unexpected.
Moreover, and certainly more significantly, the nervous system develops most

of its processing strategies from observation of the environment, i.e. it learns,



while a conventional computer requires direct and precise programming. Models

of learning are realized in the form of a ‘learning rule’.

Many practical signal processing tasks to date have been accomplished by
digital implementation of some linear transformation process such as the (Fast)
Fourier Transform. Although this type of processing has proven invaluable in
low-level applications, it is inadequate for higher level tasks such as signal per-
ception (or alternatively pattern classification). If access to such knowledge is
ever to be granted to the machine world, stringent focus must be placed on
(biologically motivated) adaptive learning methods. This thesis focuses on one

such method.

Organized as follows, the thesis consists of four main chapters. In chapter
two a brief description of artificial neural networks and in particular feed for-
ward artificial neural networks is given. The inclusion of this chapter is mainly
to accentuate pertinent areas of the subject as well as in the interest of mak-
ing this thesis a self contained document. Chapter three introduces the pattern
classification problem in a formal manner. It serves mainly to make precise
the ideas and concepts associated with the pattern classification problem. In
addition a general model for the solution to the pattern classification problem
is described. Holding the main contribution of this exposition, chapter four
details the design of a learning algorithm which possesses numerous desirable

properties. In chapter five the derived algorithm/system is applied to several



classification problems, including the perception of pitch, as well as the classifi-

cation of phonemes.



CHAPTER

TWO

Neural Networks

Sparked by the technological advances in massive parallel processing via
VLSI [1], a resurgence of interest in the capabilities of ‘neural networks’ has
surfaced in the past decade. Contrasted to sequential computational processors,
the merits of neural computing are abundant. Because their processing strategy
is a distributed one, neural networks provide a high degree of fault tolerance (or
so called graceful degradation). Thus a failure in one component of the overall
system need not be catastrophic. Because of the inherent massive parallelism of
neural networks, their direct implementation in silicon follows immediately. Such
an implementation offers a significant advantage in terms of processing speed. It
is for this reason that massive parallelism is believed to be essential for real time
processing of sensory data, e.g. speech or vision information. Adaptation or
learning (through observation of the environment) is another significant feature

of a neural system.

Neural systems offer more than just pure computational robustness and adap-



tation. It seems appropriate that a successful model of perception should take
into account the biology of the nervous system. Solutions to many problems of
perception such as the pitch perception problem, pattern association, associative
memory, as well as pattern recognition should draw heavily from the discipline

of neural networks.

This chapter provides the basic footing that is necessary to develop an adap-
tive pattern classification scheme which employs a neural network as a major

component.

2.1 Artificial Neural Networks

A general description of an artificial neural network is presented in this sec-
tion. An in-depth presentation of the discipline of neural networks is out of the
scope of this thesis and the description is given in only as much detail as is perti-
nent. The description is begun with some definitions. An excellent introduction

into the realm of neural computation may be found in [2], as well as [3].

The essential components of an artificial neural network are i) the neurons
themselves, ii) the interconnections between the neurons (topology), and iii)
the designation of input, output and so called hidden units. These components

together with their mutual operation are described in detail below.



2.1.1 Neuronal Model

The basic computational processor in a neural network is the neuron. In the
simple model which is employed here each neuron in the network operates on
its input through a sigmoidal nonlinearity. In biological terms the value of the
output represents the ‘firing rate’ of the neuron. Associated with each neuron
is a bias which effectively shifts the sigmoidal along its domain axis. Hence, a
particular neuron is said to ‘fire’ (attaining a value close to one) if its input is a
sufficiently large positive value, and similarly it is said to be ‘resting’ (attaining
a value close to zero) if its input is a sufficiently large negative value. Before

a precise definition of the sigmoidal can be stated, the concept of an n-modal

function must be introduced.

Definition 2.1 Let f : I — IR be a continuous, monotone, and bounded func-
tion, defined on the interval I = (a,b), «,b € IR, and let n be a positive
integer. One says the function, f(:), is n-modal if there exists a partition,

P 2 { po, P1, .++) Put1 } of the interval I determined by
a:190<P1<"’<Pn<Pn+1=b (211)
so that

(i) on the intervals Iy = (po,p1), 12 = (P1,p2)s *** Iny1 = (PnyPnt1) the

function f() is either convex or concave, and

(ii) on LUI;41 the function f(-) is neither convex nor concave.



Note that the definition restricts n-modal functions to be bounded and mono-
tone. The special name given to the class of 1-modal or unimodal functions is
‘sigmoid’. A formal definition and some specific examples of sigmoids are de-

tailed below.

Definition 2.2 A function f: I~ IR is called sigmoidal if it is unimodal.

Example 2.1 Let h: (—a,a) — R for some o € R be given as
h(z) = sgn(z)-+/|z|, z € (—a,a), (2.1.2)
then the function h(-) is sigmoidal.

Example 2.2 Let h: R — IR be given as

1

h(z) = m,

(2.1.3)

then the function h(-) is sigmoidal and has a bounded range in (0,1).

The particular sigmoid employed in the neural model is termed the activation
function and denoted as h(-). Throughout the remainder of this thesis is assumed
that the activation function is given by the logistic function of example 2.2. The

logistic function is plotted in figure 2.1.

It is the sigmoidal which is responsible for the nonlinear behavior (and the
interesting properties) of the neural system. Some properties of the logistic

function denoted h(-) are:



Figure 2.1: The logistic function

¢ bounded range.
o limp %&,ﬂ =0.

As a convention the bounded range of the activation function, h(-) is taken to

be (0,1) and strictly monotonic increasing on R =

Oh(z)
'——a;— >0, Vr € R. (214)

2.1.2 Interconnections

Associated with each connection is a strength or connection weight which
quantifies the degree of coupling between two connected neurons. This strength
takes on a value in the real numbers; a strength of zero indicating a null con-
nection (unconnected), a large positive value indicating a strong excitatory con-

nection, and a large negative value indicating a strong inhibitory connection.



Figure 2.2: An arbitrary artificial neural network (ANN)

An arbitrary artificial neural network (ANN) with n nodes may be repre-
sented by a weight matrix, W € R™" and a bias vector b € R". A schematic

of an ANN is depicted in figure 2.2.

Given an n node neural network, the set of nodes present in the network can

be enumerated as

N={01,..,n-1}. - (2.1.5)

Now the connection between two arbitrary nodes, 7 connected to 7, can be
expressed as the scalar w;; € R,7,7 € M. Forming the weight matrix W as W =
[w;;] and the vector of biases as b = [b;]. Any ANN then may be fully described
by the parameters (W,b), where w;; € R is the strength of the connection

between nodes ¢ and 7, and b; € R is the bias associated with neuron z.



2.1.3 Operation

Each neuron operates asynchronously and in parallel with all other neurons
in the network; such systems have been referred to under the auspices of ‘dis-
tributed parallel processing’. The following presents a mathematical description

of the operation of an artificial neural system.

At the input of each neuron is the weighted sum of outputs from all other

neurons. Denoting the input to neuron 7 € A as x; and the output as y; then

r; = Z w;; - Y; + b;,, Vi€ N. (2.1.6)
JEN

Letting x = [z;] € R" represent the vector of inputs, y = [y;] € R" represent the
vector of outputs, and b = [b;] € IR" represent the vector of biases, the neuronal
input for every node can be concisely expressed in matrix notation as an affine

operation

z=Wy+b. (2.1.7)

The output of each neuron is simply its input mapped through the sigmoidal
nonlinearity, A(:),

Y; = h(mi), Vie N. (218)

If a nonlinear operator, H : R" — [0,1]", is defined as simply the vector de-
termined by operating element-wise on an input vector then the output may be

concisely written as

y = H(z). (2.1.9)

10



As a consequence of this structure it is easy to establish the validity of the

following fact.

Fact 2.1 The partial of the ith output function, y;, with respect to any parameter
in (W, b) is positive, i.e.

Oy Oh(z) Oz;

Fu; ~ Bz |,_, Gu, >0 (2.1.10)
and

Oy; _ Oh(x) Ox;

%~ 5s|_ o >0 (2.1.11)

for anyi,5 € N.

It is clear that the fact is a consequence of the mononicity and boundedness
properties of the sigmoid. This fact will prove useful in the latter portion of this

thesis (refer to chapter four).

2.2 TFeed Forward Networks

Here is described a very useful class of neural networks known as feed forward
(or layered) networks. At least theoretically, restricting attention exclusively to
feed forward networks represents no loss of generality. This is due to the fact
that for any arbitrary (recurrent) network there exists an equivalent feed forward

network [3].

A layered neural network consists of a serial linkage of layers, where each

layer is connected only to the layer following it (hence signals flow in only one

11



input Hidden Output

L, L, L,

Figure 2.3: The feed forward neural topology
direction). The first layer is designated the input layer and the last is designated
the output layer. A depiction of such a feed forward topology is given in figure

2.3.

It is clear that the constraint of a feed forward topology leads to a corre-
sponding constraint on the weight matrix, W, of the network. Not surprisingly,

the fixed feed forward structure forces most of the entries of W to be null.

Developed now is some further notation regarding the special form of a feed
forward network. A feed forward network topology can be parameterized by the
number of neurons (or nodes) in each layer, and the number of layers. With

the number of layers given as n;, and the number of nodes in each layer as

12



l;, 1=1,2,...,n; then the set of nodes present in each layer can be written as

T=L = {1,2, ..., 04}

L, = {L+1, ..., L+1}

j—1 J
L, = l,'-l-l,...,z:li
=1

1 =1

n;—1 n
O=1L, = {Zli+1,...,§l:li}.
i=1 i=1

The sets Ly and L,, are given the special names 7 and O to denote input and
output sets respectively. The quantities [; and I, are also given the special
names n; and n, denoting the number of input and output nodes respectively.
Residing between the input and output layers are the so called ’hidden‘ layers
L, through L,,_;. This notation will be adhered to whenever the discussion

involves a feed forward (FF) network.

2.3 Learning

One primitive form of learning that is especially amenable to neural architec-
tures is that of pattern association. In this case it is desired to map a set of input
patterns to a specific set of known output patterns. For example associating a

face with a voice, or a jingle with a merchandiser’s product.

Once knowledge of the weight matrix, W, and the bias vector, b, are given

13



the dynamics of the ANN are completely determined. Conversely, if one of
the parameters embedded in the bias vector or weight matrix is perturbed the
dynamics of the ANN system will also be perturbed. From a mathematical
viewpoint once the structure of the ANN has been fixed, it functions as nothing
more than a continuous nonlinear mapping which is a function of the parameters
making up the bias vector and weight matrix. As such, the problem of learning
is then reduced to determining the parameters (weights and biases) which will

force the ANN system to perform the desired mapping.

2.3.1 Numerical Optimization

Much of the types of learning that have been proposed for ANN’s can be cast
into the class of optimization problems. One popular method of learning through
minimization of some objective function is the backpropagation algorithm. This
method is described in detail below. Neural networks have been employed to
solve a host of other computational problems through optimization techniques
[4]; for example associative memory [5], the traveling salesman problem [6],

analog decoding [7], etc.
2.3.2 The Backpropagation Method

For many years the benefits of multi-layered feed forward neural networks
have been denied because of the lack of algorithms to train them. Recently.
though, an optimization approach has been proposed which has met with great

success. This so called backpropagation algorithm [3] provides a method for

14



a feed forward neural architecture (layered network) to learn a set of network
parameters (weights and biases) which map a known input pattern set to a

corresponding known desired output set.

As before let n; denote the number of layers in the feed forward network.
Further let n, be the number of patterns in the training set. Also let the
input training set be given as 7 and the output due to input pattern p as
Yo = ((Yp1 Yp2+++ Ypno )T, and the target corresponding to input pattern p as
tp = (tp1 tpa... tpn, ), p € P. Here n, = I, is the number of output nodes

and P £ {1,2,...,n,} the input training index set, i.e. T = Upep t,.

Because of the constrained form of a FF ANN the equations of operation

(2.1.7, 2.1.8) can be written in the form

Ty = Z Wi Ypj + b,‘ (231)
J€Lk—1
Ypi = h(a:p,'), t € Ly, k= 2,3,...,m (2.3.2)

It is desired to minimize the total squared error of the actual output, y, compared

to the desired t,. The objective energy function may then be written as

E = Y E (2.3.3)
pEP
1
By = 53 (e —tw)’ (2.3.4)
k€O
1
= v =l (2.3.5)

Following a descent type algorithm the parameter updates become

OE,

3wij

Aw,'j = —’)’2 (2.3.6)

13



20E,

Abi = '—’)’ "5—1-;—,

(2.3.7)

where 7?2 is called the learning rate and represents the step size in the descent
search. All that is necessary now is to compute the partials given in the update
equations 2.3.7. Attention is restricted to the computation of the partial with
respect to the weight, -887%’ since the other is analogous. Clearly this partial

may be written by the chain rule as

8E,, _ 0Ep 0y,,i a.’l?m'
aw,-j - ayp,' al'pi aw,'j '

(2.3.8)

Computation of the latter two terms in equation 2.3.8 is direct and presents no
problems. Computation of the first term, %%, however, is not direct for nodes
outside the output layer, O, and requires special attention. The essence of the
backpropagation algorithm is to determine a recursive method for computing

the quantity 6,; = g—fﬁ.

For nodes in the output layer é,; is simply computed from the expression for
the energy 2.3.5 as

5;)1' = Ypi —lpiy L E o. (2.3.9)

Now consider a node (say node i) in the lth layer, i.e. take ¢ € L;, | =

1,2,...,n; — 1. Again by the chain rule

5 = 3 2B O Oz (2.3.10)
Pt k€Lip1 8yp;c 8ka 8y,,i

> S (zpr)wii, 1€ Ly, 1=1,2,...,m~1.  (2.3.11)
k€Liya

16



Together equations 2.3.9 and 2.3.11 give a recursive scheme (starting from the
output layer and propagating backwards to the input layer) for computing the

quantity é,; for any node in the network.

Although the algorithm has met with great success, some of the drawbacks
of the backpropagation method are listed below:

e requires distinct training and operating phases

o the learning requires apriori knowledge of the entire set of desired outputs

(i.e., it is a supervised learning rule)
e convergence to a global minimum of the energy function is not guaranteed

e does not allow for the incorporation of new knowledge once the training

has been completed

17



CHAPTER

THREE

Pattern Classification

In this chapter a formal statement of the pattern classification problem is
presented along with a generalized approach to the solution of the pattern clas-
sification problem. A general system model, which includes a neural network as
a key element, is developed which incorporates a wide class of so called pattern
classifiers. The model also includes the backpropagation algorithm as a special

case.

3.1 The Pattern Classification Problem

The essence of pattern classification lies in the partitioning of a set of patterns
with respect to some measure of the likeness of each pattern. This notion of the
likeness of two patterns as well as a precise description of a partition is formalized

in the following definitions.

Let X denote the set of patterns, or pattern space, that the classifier is ex-

pected to segment. This space is assumed to be an inner product space (Hilbert

18



space, e.g L, or R™) with the norm induced by the inner product

Izl = ({z, 2))7 . (3.1.1)
Definition 3.1 The finite collection of subsets, S 2 {sk 1 sk C XYy, forms
a partition of the Hilbert space X if
1. X =U,s:i, and
2 sNs; = 0, Vi#£j=12...,n.
Take note that the regions sx, k£ = 1,...,n need not be connected.

Definition 3.2 A function r : X X X +— [0,1] is called a similarity measure

defined on the pattern space X if the two following conditions are satisfied:
1. r(-,-) is continuous

2. r(z,z)=1, Ve e X.

Condition 1 insures that small perturbations in a particular pattern when com-
pared to the same unperturbed pattern will yield small changes in similarity. The
second condition in the definition is somewhat arbitrary as is the restriction that
the range of the similarity measure be [0,1]. What is important, though, is that
the range of r(-,-) be compact with r(z, z) attaining a value on the boundary of
that range for all patterns, z, in the pattern space. Some examples of similarity

functions are presented below.

19



Figure 3.1: Pattern classification viewed as a partition

Example 3.1 With z,y € X the following functions are similarity measures on
X:

l=—yli2

L.r(z,y)=€e" , c€R

pe—— z'y
2. 7(2,9) = LG

3. r(z,y) = 1.

Case three, although a perfectly valid similarity measure, is somewhat useless
in the practical sense since it says that any partition segments as well as any
other. With the concept of a similarity measure established, a formal statement
of the pattern classification problem can now be presented. It will be evident that

the problem (and hence the solution) inherently has three major parameters: the



first being the similarity measure; the second, a measure of the quality of the

desired solution; and finally, a training subset of the pattern space X’.

Problem 3.1 The Pattern Classification Problem. Given an ¢ > 0, a finite
subset of an input space X', denoted T, and a similarity measure r(-,-) defined

on X, determine a finite partition (or segmentation) S, of the space X so that
1. S forms a partition of X, and
2. z,y € s,NT = |1l —r(z,y)] <e¢

Since it is stated with respect to the three parameters, r, e, and 7, the problem
is actually an infinite family of problems indexed by these three parameters.
For notational completeness, then, the pattern classification problem should be
specified with this dependence explicitly as PCP(r, €, 7). When the value of one
or more of these parameters is irrelevant or can be determined by the context

of the situation it will be dropped from the notation.

A simple example illustrating the need for a notion of minimality of the

solution to the PCP is given below.
Example 3.2 Suppose the input space X = R?, and the training set
i giy 18 2 i pi .
T={zi:2:=(05,0) }_,weR 0,0, R i=1,...6 (3.1.2)
as shown in figure 3.2. Suppose further that the similarity measure is given as

r(zi,x;) = =108, (3.1.3)

21
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Figure 3.2: A two dimensional PCP and some of its solutions
Note that any two samples lying on the same horizontal line in the parameter
space are considered identical with respect to this similarity measure. Because
of this any of the partitions shown in figure 3.2 solves the PCP(¢), Ve > 0.
Clearly, though it is the partition S* which is the best solution. This example

underscores the need for the notion of a minimal partition.

A minimal partition is best described as the "smallest” partition (ie. a
partition with the smallest number of distinct classes) that solves PCP(r,¢,T).

A formal definition is now given.

22



Definition 3.3 Let F be the family of partitions of X such that condition two

in the PCP holds, i.e.,
F={S={st}i; : 2,y € 5snT = |1 — r(z,y)| < e}. (3.1.4)
The partition S* is said to be minimal if
1. S* € F, and
2. C(5*) L C(S), VSePF.

Here the mapping C denotes a type of cardinality and is given as C(S) = N

where § is given as in definition 3.3.

3.2 The Classifier Model

The goal of this section is to present a (neural) system which solves the
PCP. Depicted in figure 3.3 is the generalized model of the classification process.
The three major components of the model are the transformation, the pattern

association, and the update.

Transformation The role of the transformation in the operation of the sys-
tem is multifold. First, it is necessary to transform any input data into the
domain space of the pattern associator. For instance, in the case of the pat-
tern associator taken as a neural network, this means that the transformation

should take inputs from the pattern space and transform them into a finite set of
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Figure 3.3: Classification system model

numbers between zero and one which serve as the input to the neural network.
Second, it is necessary to perform some sort of intelligent data reduction on the
input patterns. In many cases the input space consists of continuous data, e.g.
acoustic signals. Depending on the desired function of the classifier, a simple
sampling transformation may or may not be a desirable transformation. Ideally,

one would like to determine a transformation process which emphasizes only the

pertinent information with respect to classification.

Pattern Association Operation of the pattern associator is assumed to be
completely governed by a parameter vector, denoted z. In general the pattern
associator block of the classifier system need not be a neural network, however, a
neural network readily lends itself to this class of systems. A feed forward neural

network is chosen as the pattern associator with parameter vector z = (W,b),
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where W € IR™*™ represents the weight matrix and b € IR™ the bias vector.

Justification for such a choice is presented in section 3.3.

Learning: the Update Learning is facilitated through changes in the pattern

associator parameters z. The generalized learning rule can be written as
2D = () AL, (3.2.1)

Types of learning are usually distinguished by inclusion or absence in the class of
learning rules that are considered unsupervised. What the term ‘unsupervised’
means is somewhat subjective and the distinction can sometimes be subtle. Here,
the notion of a supervised (vs. unsupervised) learning rule is made precise in
the context of the pattern associator update by the inclusion (or exclusion) of

the external knowledge vector £. That is, there is some function f so that

e Unsupervised:

Az = f(0,y) (3.2.2)

e Supervised:

Az = f(aa €, y)- (3‘2'3)

In this thesis only a certain class of updates is considered. This class of
updates is referred to as minimum energy updates and is described below. As
discussed earlier, one may formulate learning as a minimization of some objective

function, E(:), representing energy. Such a formulation is motivated by physical
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| Variable I I Description j
number of training patterns
number of pattern associator inputs

C
R
R
N, R number of pattern associator outputs
]R+
IN
IN

v learning rate

P pattern indices

o output indices
zg, Kk EP R™ kth input pattern
Yk, K €P R™ kth output pattern

T R the training set

0 R™ the parameter transform

¢ R™ external knowledge vector of current input, z(¢)
z = (W,b) | R™*™ x R" classifier parameters

Table 3.1: Classifier notation

principles of least energy and the fact that nature enforces energy minimization.
The generalized learning rule as developed from descent methods on FE is simply

given as given as

2D = (W _ NV E, (3.2.4)

where 7% € R™ is the step size, usually termed the ‘learning rate’. For the case
of minimum energy updates then clearly Az(" = —~42V E. This indicates that
a minimum energy update will be a supervised rule only if the energy function

depends on the external knowledge vector.

Much of the classifier notation that will be used throughout this thesis is
summarized in table 3.1.

Some of the sets used in table 3.1 are defined below:

P = {1,2,3,...,n,} (3.2.5)
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0 = {1,2,3,...,n,} (3.2.6)
T = U7, {=} (3.2.7)

0 = {6, (3.2.8)

3.3 Existence of Solutions and the Topology

It is evident that the success of the pattern classification is dependent on
three major components of the system: transformation, pattern association, and
learning. To simplify the discussion it is assumed that no pertinent information
is lost in the transformation; e.g., the transformation process is taken to be the

identity. The question which must be addressed now is the following:

Does there exist a pattern associator topology and associated weights and biases

which will solve the PCP?.

If the answer to this question is ‘no’ then pursuing such an avenue for its solution
is certainly pointless. If the answer is ‘yes’ then it is the task of the learning to
find a parameter vector that solves the problem. Fortunately, the answer to this

question is in fact ‘yes’.

This question has already been addressed, although in a more general set-
ting, by Cybenko [8], [9]. In short, Cybenko has shown that a very wide class
of functions (in particular continuous functions of finite support) may be ap-

proximated by a feed forward neural network with just a single hidden layer
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[8]. Following Cybenko[8], one may relate this work to pattern association by

introducing the concept of a decision function.

Definition 3.4 Let S = {sk}i\;l be a partition of the space X. A function

d:R" +— N is called a decision function if
diz) =k <= z¢€ s;. (3.3.1)

It is clear that a decision function is discontinuous for non trivial partitions on

X.

With m representing the Lebesgue measure, the following theorem is a fun-
damental result of Cybenko [8]. The theorem extends the basic class of approx-
imatable functions to include discontinuous functions of the ‘decision’ type at

the cost of misclassification on a set of arbitrarily small measure.

Theorem 3.1 Let h(-) be a continuous sigmoidal function. Let d(-) be the de-
cision function for any finite measurable partition of I, 2 (0,1)*. For any

€ > 0, there is a finite sum of the form, G: R" — IR,
N
G(z) = > aih(w]z + b)) (3.3.2)
i=1
and a set D C I, so that the Lebesque measure of D, m(D) > 1 — € and
|G(z) —d(z)] <€ Vze D, (3.3.3)

where a;,b; € R, and w; € R".
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| Topology (n) | Form of Decision Region |

n =2 half plane bounded by hyperplane
n =3 convex
n =4 arbitrary

Table 3.2: Mapping abilities of feed forward networks

Proof See [8].

Basically the theorem says that an arbitrary decision function may be ap-
proximated by a single hidden layer ANN with misclassification occurring in an
arbitrarily small neighborhood of the underlying classes. Hence, this topology
can solve the PCP simply by chosing the decision function corresponding to a
partition which solves the PCP. However, the proof given by Cybenko is non-
constructive and says nothing about the number of neurons that are needed in
the hidden layer to achieve any given mapping. Typically the determination of

this quantity is carried out experimentally for a particular application.

An excellent review of the pattern association abilities with respect to topol-
ogy (number of layers) of feed forward neural networks is presented in [2]. Es-
sentially, the topology limits the type of regions that are able to be classified.
Mapping abilities of two, three, and four layer networks are given in compact

form in table 3.2 where n,; is the number of layers.

With the similarity function as in function number two in example 3.1, the

cosine of the angle between its two arguments, a two layer network is sufficient.
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This is because segmentations based only on angle information may be formed
by half planes. For the gaussian function (number one in the same example),
the similarity measure is a function of the euclidean distance metric. For this
reason decision regions should not in general be half planes. It is more plausible

that acceptable decision regions will be convex indicating a three layer topology.

3.4 Transformation: The Cochlea Model

The requirement that the transformation process map the pattern space
to the domain of the pattern associator is not overly restrictive and generally
presents no obstacle to the solution. However, the data reduction requirement
is problem specific and has no methodical implementation. The choice of trans-
formation is left as a design decision. Transformations in biological systems
are found quite naturally in the tactile, auditory, visual, and olfactory senses.
Each transformation process focuses on a specific sensory task underscoring the

importance of a pertinent transform in the classification model.

Should the system be required to classify acoustically perceived phenomenon
incorporation of a model of cochlea as the transformation seems appropriate (e.g.
pitch perception or phoneme recognition). Moreover, much of the perception of
the auditory environment is a product of its biological implementation. In this
section a model of the cochlea [10] is briefly described which is applied (chapter

5) to the classification of acoustic signals in the cases of pitch and phoneme
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recognition.

Tor a detailed description of the cochlea model the reader is referred to [11],
[12], [10]. Essentially, the acoustic model consists of a bank of 128 filters. Each
of these filters has an associated characteristic frequency at which it responds
best. A crude approximation to the operation of the cochlea would be to envision
each of these filters to be a band pass with center frequency at the characteristic
frequency. Typical cochlea outputs may be seen in appendix B for the case of

spoken words and sustained musical tones.
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CHAPTER

FOUR

An Orthogonalization Learning Algorithm with Generalization

This chapter details the design of a classifier system of the type outlined in
the previous chapter. This system is based on the choice of a similarity function
which is restricted to operate only on the system outputs. The update is taken
as a minimum energy update, and hence formulated as an optimization problem
in the form of locally minimizing some energy function with respect to an initial
point. That is, it is desirable to find the local minima which is closest to the

starting point in a sense to be made precise.

Formulated in this way, the algorithm is endowed with many desirable prop-
erties. Among the most important of these are that (i) the learning scheme is
unsupervised in the sense that no apriori (or external) knowledge is incorporated;
and (ii) learning and operation occur simultaneously. Property (ii) is especially
significant since learning in real biological neural networks is accomplished in

this fashion.

Along with an appropriate initialization scheme, a descent algorithm is de-
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veloped that is computationally efficient. Through the processes of estimation
and annihilation, the computation requirements are reduced drastically while

preserving the convergence properties of the underlying descent.

4.1 Solution Methodology

A proposed system for the solution of the classification problem is detailed in
chapter three. Here, it is seen that the classifier system (figure 3.3) is composed
of three main components: transformation, pattern association, and update. It
has been previously seen that the transformation portion of the design is problem
specific and therefore no further mention of it is made unless with respect to a
specific application. The pattern association is simply a parameterized (by z)
mapping H,(-) which may be viewed as an artificial neural network. Hence, the
only portion of the system not completely specified is the update. The remainder
of this chapter is dedicated to investigating one method of determining the

update.

As related earlier, the update is chosen to be a minimum energy update
(gradient descent with a constant step size). Always the problem is one of
searching for a ‘closest’ local minimum of the objective energy (a function of z,
the pattern associator parameter vector) with respect to some starting point,

denoted 2.

The proposed route to a solution is outlined as follows:
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e choosing a similarity which is dependent only on the pattern associator

outputs (the cosine function)

e constructing an energy landscape E| (-) with local minima aimed at solving

the PCP

e incorporating a ‘penalty’ term P(:) aimed at satislying the constraints on

the pattern associator outputs (to be specified)

e selecting an initial parameter vector 2, aimed at preserving input similarity

e performing descent to a ‘closest’ local minima of the energy function

>

EL()+ P() (4.1.1)

4.2 Local Minimization

Proposed for the updating rule is a local minimization scheme. It is the
purpose of this section to clarify exactly in what sense this local minimization
is performed. Intuitively it is clear that one only need identify a ‘closest’ local
minima with respect to some starting location. A precise statement of the
local minimization problem is stated with respect to some continuously Fréchet

differentiable energy function E(z).
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Problem 4.1 Local Minimization Problem. Given an initial point z(® = z,
find a local minimizer 2* of the function E(z) so that the path from zy to z*

denoted T' satisfies
1. (V,E,d) <0 Vd tangent to T

2. ||#* — 20| < ||z — 20|| V= which are local minima of E(-) and the path T

from z, to z satisfies condition 1.

Condition 1 is a monotonic descent condition which says that the energy
must always be decreasing on the path I' from z, to 2*. Condition 2 merely

formalizes the notion of the shortest such path.

4.3 Energy Function Design

It is the objective of the design to create an energy landscape that has local
minima at points which correspond to valid solutions to the pattern classification
problem. In order to satisfy the desired constraints (C) on the solutions, the

designer can appeal to the penalty method described in the previous section.

4.3.1 Construction

Recall that the pattern classification problem is stated with respect to a

similarity measure (see section 3.1). One choice of similarity measure, r(-,-),
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might be the cosine of the angle between the two vector arguments. For discrete

vectors z,y € [0,1]"

Ty 1 ¢
Izl liyll =l flyll =

A
r(z,y) = TrYk (4.3.1)

for notational convenience r(ys, y,) will be denoted as simply ri,, where k, p € P.

The energy function is chosen as

E(y) = Ei(y)+PQy) (4.3.2)

Ei(y) = X E (4.33)
pEP

Ef(y) = D 9alrep) (4.3.4)
keP

where gq(-) : [0,1] = R* and P(y) is as in equation 4.6.1.

It will be seen that the role of the function ¢,(-) in the classification process
is significant. When chosen appropriately, this function will endow the system
with an essential clustering / orthogonalization property. ‘Orthogonalization’ is
termed the process by which patterns are cast into different classes. Specifically,
given two patterns, yx and y,, orthogonalization implies ry, — 0. Similarly
the term ‘clustering’ refers to the merging of patterns into the same class, i.e.
rkp — 1. In other words patterns which are close in similarity should be mapped
to the same class while patterns which are not close in similarity should be
mapped to distinct classes. With these considerations in mind, the form of the

function g,(+) is now determined.
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4.3.2 Design of g,(-)

To avoid pathological situations a prerequisite placed on the function g,(+)
is that it be both continuous and differentiable. More importantly it is chosen
to facilitate the desired clustering / orthogonalization property. Since ry, €
{0,1} corresponds to orthogonal and parallel conditions on the pair yx and y,
respectively, requiring the function g,(-) to attain a local minimum at these
and only these points insures that a local minimization scheme will arrive at a
solution with ry, € {0,1}. It is not difficult to see that this property is equivalent

to the requirement that g,(-) be concave.

Since a local minimization scheme will at some point involve the gradient of
E, it is quite clear that the derivative of the function g.(-) will appear in this
gradient. Therefore, for the sake of computational simplicity, it is desirable that

the derivative of the nonlinear function g,(-) be affine, that is

d
-a—;ga(r) =ar+b abeR (4.3.5)

In summary, the properties of the function g,(-) which are sought are given

below. It is required that the function g.(-) be
1. continuous and differentiable,

2. concave,

3. affine in the derivative M&'ﬂ.
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It will be seen in the sequel that property 3 indeed helps to minimize computa-

tional complexity.

These properties lead directly to the choice of the quadratic

go(T) = — [az —(a— %)] [:L' —(a+ %)] + const « € (0,1). (4.3.6)

The ‘const’ term above is chosen so that g.(-) is always positive on [0,1], i.e.
go(z) = 0, Vz € [0,1]. Related to the resolution of the partition solving the
PCP, the a term is used to control the resolution of the resulting classification.
Depicted in figure 4.1 is the function g,(x). It is a concave quadratic whose roots
are uniquely determined by the parameter a. It is easy to see that the restriction
of o € (0,1) insures that the points (r, go(r)) = (0, 9a(0)) and (1, g»(1)) are local
minima of the constrained problem:
min

9a(2) - (4.3.7)
z € [0,1]

4.4 Constraints on the Solutions

All that is required for an acceptable solution to the pattern classification
problem is that outputs to different patterns (with respect to some similarity
measure) produce orthogonal outputs. Chosen here is the more demanding (and
conceptually pleasing) constraint that the outputs be members in the unit basis

set. Tor clarity the constraints are stated informally as

(C) {outputs belong to the unit basis set} . (4.4.1)

38



g Ot(r)

%
Iorthogonalizc | cluster

7 .

o 1 \ r

Figure 4.1: The nonlinear function g,(+)

In order to develop a mathematically equivalent description of the constraints

it is necessary to introduce some notation.

It is customary to @hink of presenting patterns from the set of input patterns
to the network in a sequential manner with respect to some notion of time.
Conceptually, though, one can think of the set of all input patterns as a large
fixed vector yielding a corresponding large fixed output vector when presented

to the network. The reader is referred to table 3.1 for a summary of the classifier

notation.

Let y € IR™" represent the entire pattern output of the system, where y is

partitioned as

y= ( (yu1 12" Yino ) o0 (yn,,l"' Ynp(no—1) Ynpno ))T (4.4.2)

Physical realities of the problem make it desirable to access specific pat-
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tern information embedded in y. Define the linear projection operator, T} €

IR"™*""r  as a pattern mask so that

Yk

A Y2
T :IR™™ —»R™ 5Ty =y, = VkeP (4.4.3)

ykno }
Within this framework the constraints (C) on the solution space are now

given as

e unit norm, 1.e.,

ITewll, =1 VkeP (1.4.4)

e a scalar multiple of a unit basis element, i.e.,

uiT(Tky) . ujT(Tky) =0 Wi 75 5, t,3€0, VkeP (4.4.5)
where u; = (00 --- \1/ e 0)T 8
ith

It is easy to show that these constraints are equivalent to

ITeyll, — | Teyll, =0 VkeP (4.4.6)

Hence, the constraints can be stated mathematically by the the two following

equations

INote that ul z = z; for u;,z € R",i = 1,2,...n, where z; € IR is the ith component of
z.

40



1 —|Tkyll, =0
(C) : Vk € P. (4.4.7)

1 —[|Thyll, = 0

4.5 Initialization

It is clear that the question of parameter initialization is a key element in
the solution. That is, how should the initial value of the parameter vector, zo,
be chosen? Recall that it is desirable to perform the classification based on the
input pattern space. Yet, the derivations proceed as if the classification is to
be done on the output space (leading to the unsupervisibility of the algorithm).
Such an approach is justified by the intuitive notion of continuity that like input
patterns should yield like output patterns. Still it is desirable to achieve an
initial output mapping which preserves the similarity, r(-,+), in input patterns.
An exact solution to this problem is in general not possible due to the sigmoidal
nonlinearity 2. In lieu of an exact solution one may search for a ‘best’ solution
once again in the form a minimization problem. In other words, one would like

to pick zp so that the following minimization is achieved:

min

3o 3 r(wsy @) — v (Ha(w5), He(2))]? (4.5.1)

JEP keP

2The dilemma would be simply solved by estimating the sigmoidal as a truncated ramp
function and with zg = (W, ) chosen appropriately.
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where H,(:) : R™ +~ [0,1]% is the vector transfer function of parameter as-
sociator as given in equation 2.3.2. Unfortunately, this route to a solution is
usually implausible. The problem is compounded by the fact that in general the
patterns {a:j}jep are not known apriori. In the two layer case when n, = n; it is
clear that a solution to the problem may be achieved by choosing z, so that the
sigmoidal best approximates the identity mapping with coupling between layers
limited only to a one to one correspondence. For example choosing zo = (W, )
so that

W=4I, b=(-2 -2 -+ =2)F (4.5.2)

would achieve such a requirement. Such an initialization scheme, though, has the
drawback that it requires the number of inputs and outputs to be equal. Such a
requirement is necessary even in the linear case when H(z) = Wz, (b= 0) with

W € R™*". In this case the similarity between outputs, y = H(z), is given as

. HT(.’IZJ)H(.’IZk) _ CB?WTWII}k
1 Gl 1 (il IV illy [[Weell,

r (H(z;), H(zk)) (4.5.3)

With n, < n; and W having full row rank, rank(W) = n,, then rank(WTW) =
n, and WIW € R™*™ is singular. It is clear that WTW = I, would serve
nicely in equation 4.5.3; however, this is clearly impossible since WTW € R™*™

is singular. So it is seen that even in the linear case it is required that n, > n;

if the initial mapping is to preserve similarity.

In typical classification problems the number of distinct classes in the so-

lution is much smaller than the dimension of the pattern space, i.e. n, < n;.
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Because of this fact the requirement that n, > n; is computationally wasteful.
Alternatively, one may require that W = (w;);2, be initialized randomly with
a uniform distribution having F (||w;||,) = 1, Vi. Because of the randomness of

W it is expected that
llwill3 > (wi,w;), Vi j. (4.5.4)

It is clear that this weakened condition falls short of a more desirable (yet
impossible) orthogonalization property. For this reason the initialization given

by equation 4.5.4 is dubbed a ‘pseudo-orthogonal’ one.

4.6 Constraint Satisfaction: A Penalty Method

One may attempt to achieve constraint satisfaction through the addition of a
penalty function in the objective. This penalty term is chosen so that violation
of the constraints adds a positive non-zero penalty to the objective function

while constraint satisfaction yields no penalty or a penalty of zero.

A candidate for the penalty function, P(y), for the constraints given in 4.4.7
is
1

Pu) =5 3 (1= 1Tl) "+ (1= 1Tull) (4:6.1)

Note that the penalty function is nonnegative and equal to zero if and only if

the constraints are satisfied. That is

P(y) = 0, (4.6.2)

P(y) = 0 <= Constraint conditions (C) in 4.4.7 hold.  (4.6.3)
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In other words P(-) has global minima at exactly those points of constraint

satisfaction.

Attention is now turned to the computation of the gradient of E,. This

computation requires knowledge of the gradient of r with respect to y,. Com-

putation of this gradient is provided in appendix A. First note that with p € P

oF,

83/,”- keP 8rk,,

dg

87~k,,
aypi

(rkp)

which written in vector notation gives

dg
V.Fi = Thp) * V. T
yptoL & 0rkp( p) yplkp
1 g
= — (I - G4 (ko) Tk
”yp“ ( ? p)kepa P ?
1 o T -
= Tl (1= 53 ) 2 2(c = 72 1)k
Yp I keP
2 o _ o
= (I-530) X g — (3431 B
Nl poerd
2

_ mB(gp) [ ap(y) — S(@) 7 ]

with the following definitions

> i >

>

S ik

keP

> Uk
kep
(I - 5,57)

I — B(9,) = Uy

(4.6.4)

(4.6.5)
(4.6.6)
(4.6.7)
(4.6.8)

(4.6.9)

(4.6.10)
(4.6.11)
(4.6.12)

(4.6.13)

For notational convenience the explicit dependence of B(y,) and A(y,) as defined

above may sometimes be neglected by writing simply B, and A, respectively.
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Figure 4.2: Hyper region to which outputs are restricted when P'(y) =0

Let P'(y) 2 5%%, then

P'(y) = (ITyll; = D) + 1Ty ll, — s (4.7.15)

By the fact that ||z||, < ||z||, Vz € R",

(14 7) (I Tpyll, = 1) < P'(y) < (1Tl — 1) (1 + i) - (4.7.16)
Thus,
1Toyll, < 111(;; +1 < || Toyll, (4.7.17)

Setting P'(y) = 0 yields the result. O

The lemma says that should P(y) have a zero derivative with respect to any
output then the output vector must lie in the ‘hyper-wedge’ region depicted in

figure 4.2.
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Theorem 4.1 With

1 2 \
Ply) = 527,(1— I1Twll,)” + (1= 1 Tl,) (4.7.18)
pE
then
|Ipr||2 = ||Tp?/“1 =1, ie (C) holds
VyP =0 = or . (47.19)
{ Ty=a(11---1 ', a € R fized
Proof

Assume V,, P = 0. If ||T,y||, = 1 then ||T,y||; = 1 and (C) holds.

Now suppose that ||T,y||, # 1 so that || Ty||, < 1 by lemma 4.1. Since

V., P = 0 by assumption, it is true that

oP ~ '
£ = ([|Toyll, = 1) + (I Tyll; = D =0, Vi€ O. (4.7.20)
pi

This implies that

_ ||pr||1 -1

g = ¥~ 2y e 0, 4.7.21
"= T Tl (4.7.21)

Since the right side of this equation is independent of ¢, it must be concluded

that T,y is a vector with equal components. [

In view of theorem 4.1 one would expect that the inclusion of the penalty
term, P(-), in the energy function insures that a descent on the energy will go to
solutions where the constraints are satisfied since F, is concave. F, is plotted

in figure 4.3 as a function of rq;, and ry, for the case of only three patterns
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(1,1)

r

12
Figure 4.3: The function E, for n, =3.

(n, = 3) in the training set. Note that the gradient of F is not zero almost

everywhere on (0, 1)".

Crucial to the computation of the gradient equation 4.6.9 is the matrix quan-
tity yxy¥. Therefore, properties of matrices of the form A £ 72T become of
great interest. First, note that A is the projection operator; i.e., if y = Az, with
y,z € R” then y is the projection of z onto z. This relationship is depicted in

figure 4.4.

Fact 4.1 Suppose z,y € R*, with ||z]|, = 1 and A = zaT € R™™" then the

following statements are true:

tr(A) = 2Tz = 1 € o(A) with eigenvector « (4.7.22)

0 € 0(A) with multiplicity n-1 (4.7.23)
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Figure 4.4: The projection and parallel operators, A, and B.

Az=0 < z.lz (4.7.24)
A= AT (4.7.25)
A>0 (4.7.26)

A=A, k=1,23,... (4.7.27)

3J, P € R*™", P unitary >
(4.7.28)
J = PTAP = diag( 00--- 0 1)

n-1

The columns of P are the normalized eigenvectors of A.

Fact 4.1 leads to the following sister statements about B £ 1-A

Fact 4.2 Suppose z,y € R", with ||z]|, = 1 and B = I — 227 € R™™ then the

following statements are true:

0 € o(B) with multiplicity 1 (4.7.29)
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1 € o(B) with multiplicity n-1 (4.7.30)

Bz=0 < z|= (4.7.31)
B =BT (4.7.32)

B>0 (4.7.33)
B*=B, k=123,... (4.7.34)

aJ, P € R™", P unitary 3

] | (4.7.35)
J=P'BP=diag( 11---10)

n—1

The columns of P are the normalized eigenvectors of B. Note that the Jordan
form of B indicates that there are (n — 1) linearly independent eigenvectors

associated with the eigenvalue one.

4.8 Local Minimization: A Descent Strategy

As discussed earlier, descent methods are attractive as a numerical optimiza-
tion techniques. If applied directly to the task of minimizing the designed energy
function of the previous section, however, the numerical complexity of the task

becomes overbearing.

This section investigates the plausibility of using estimates of quantities
which are computationally intensive. Specifically it is desirable to estimate the

sums, S(§) and p(¥), given by equations 4.6.10 and 4.6.11 respectively.
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4.8.1 Numerical Complexity

Computation of both the quantities S(7) and p(¥) in equations 4.6.10 and
4.6.11 presents problems to a real-time pattern classifier. Both quantities require
knowledge of the entire set of outputs for the current state of the system for their
computation. If the system is to operate on a per pattern basis delays (memory)
are required as well as on the order of (n, —1) times the number of computations
for just one pattern. Further, knowledge of the number of patterns present is
needed apriori. Clearly, for a pattern classifier system to be practical, this

requirement must be removed.

This section deals with the problem of removing the above requirement of
complete output knowledge. Indeed, it is shown that the requirement can be
completely removed without affecting the global descent properties of the orig-

inal algorithm.

4.8.2 Reduction of Numerical Complexity

Two methods of reduction in numerical complexity are employed. First,
quantities which are nonessential with respect to the convergence of the general
algorithm are simply dispensed in some appropriate manner. This method of
reduction is termed annihilation. Second, other important quantities which are
numerically expensive are estimated while still preserving the overall descent

properties of the algorithm.
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The following shows that in gradient equation 4.6.9 the term TIZITB (9p) may
P

be ignored, while the terms S(7) and p(y) can be estimated.

Annihilation

It is desirable to show that the term W;;nB(gjp) in equation 4.6.9 is negligible

with respect to descent. To this end the following theorems are established.

Theorem 4.2 Suppose that f : IR™ — R is continuously Fréchet differentiable,

and 3IA € R™", A >0 and p € R" so that

Vi(z)=Ap (4.8.1)
then d £ —p is a descent direction for f(z).
Proof

Since f(-) is continuously Fréchet differentiable, there exists a Taylor expan-

sion of f(-) around = with ¢ € R™ which gives

fle+td) = f(=)+1(Vi(),d)+olt) (4.82)
= f(z)+t{Ap,—p) + o) (4.8.3)

where by definition of o(t),
1}1%1@ = 0. (4.8.4)

Since A > 0 then (Ap, p) > 0 by definition. For ¢ > 0 small enough in 4.8.3

flz +td) — f(z) =t (Ap, —p) + o(t) < 0. (4.8.5)
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Hence d = —p is a descent direction. [J

Lemma 4.2 Suppose that z,y € R", y # 0, with ||z}|,=1 and B=1—z2T €

R, If (y, By) = 0 then y € N (B).
Proof

Assume (y, By) = 0.
By virtue of fact 4.2 3P unitary with columns denoted as px, £k =1,2,...,n

so that p, € N (B) and

1, i=j#n
uf PYBPu; = p! Bp; = i=1,2,...,n (4.8.6)

0, otherwise

Since {px};_, spans R™, 3b € R™ with components bi,k = 1,2...,n such

that
k=1
Write
k=1 j=1
n-1n-~1
= > bib;pi Bp; (4.8.9)
k=1 j=1
n—1
= Y b= 0 by assumption. (4.8.10)
k=1

But this can be true if and only if b =0 Vk =1,2,...,n — 1. So this implies
that

Y =bupn, b, #0 (4.8.11)

53



since y # 0. Since p, was chosen in N (B) then y € N (B). O

Theorem 4.3 Suppose that f : R" — R is continuously Fréchet differentiable
and z,p € R" so that
Vi(z)= (I - :ca:T) P (4.8.12)

then cither d £ —p is a descent direction for f(z) or Vf(z) =0.

Proof
Since (I - ma:T) > 0 then either
1. <p, (I — :c:vT) p> >0 or

2. <p, (I — acmT) p> =0.

if case 1 is true then d 2 —p is a descent direction following an identical

argument as in the proof of theorem 4.2. This leaves case 2. But by lemma 4.2

peN (I — ac:vT) and hence V f(z) = (I — a:a:T) p=0. O
The above theorem shows that the term mlmB (9p) is negligible with respect

to descent.

Estimation

Through the process of estimation, a great reduction in numerical complexity
can be realized. It is shown that employing simple first order recursive estimation

is sufficient to generate ‘good’ descent directions.
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It is desirable to provide estimators for a sequence of the form

1 n n
s =3¢ "™ elo1), VkeP, Vn (4.8.13)
"y kep

It is clear that sum in equation 4.8.13 is dependent on outputs due to every
pattern in P; however, at any specific time instant, n, only knowledge of the
past outputs is possible. Moreover, the computational complexity and memory
requirements make it implausible to explicitly retain all past information. This
suggests that some sort of recursive estimation scheme may hold the solution. By
assumption there are only a fixed number of patterns, n,, that will be presented
to the network. In view of this assumption, the situation is modeled as one
where at a specific time instant a pattern is chosen randomly by nature (with a
uniform distribution on P) to be presented to the network. This will be made

more precise in the following.

Note that the above equation 4.8.13 is a scalar equation; however, both
the quantities S(y) and p(g) given by equations 4.6.10 and 4.6.11 respectively,
though not scalar, have elements which are of this form. For ease of analysis the
estimation is envisioned to be done on an element per element basis. Note also
that the sequence {s}¢° is bounded on [0, 1] and hence there exists for sure a

converging subsequence, i.e. Is € [0,1], IN' C N so that

lim s =s. (4.8.14)
nG]N,

N300

In fact, one may argue that the incorporation of the penalty term, P(y), will

force all subsequences of {s(™} to converge to the same s; in other words the
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convergence will be on all of IN. This is because the penalty term leads to
solutions where the constraints (C) are satisfied, which in turn implies that the

elements of the summation, q,(cn), will converge to either zero or one:

lim ¢ = qc € {0, 1} VkeP. (4.8.15)

Pursuing the idea of a recursive estimation scheme, let 3(*) denote an estimate

of s(®) where the estimate is given as

g(n) — d . g(n_l) + g . qgn)
(4.8.16)
500 = 50
where d € (0,1) and g € IR. It will be seen in the sequel that ¢ = 1 — d is the
desired value for g. Here, I, is a discrete random variable which takes values in
the set P, i.e.
> Pr(l,=j) = 1, V. (4.8.17)
J€P
It should be noted that for each n an independent random experiment is per-
formed yielding a sample in P which serves as the index of q. With the set
of random variables, {I},_,, independent and identically uniformly distributed

over P the joint probability distribution is given as

(L)", w€P, Ve=1,2,...,n

7p

Pl’( Ilzily 12:i2, R In=7'n)=
0, else
(4.8.18)

For an estimate to be useful it is necessary that it be a somewhat faithful

representation of the quantity being estimated. We should expect that as time
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progresses the estimation process will become increasingly more accurate. More
precisely, it is desirable to show that the estimator 3™ approaches s as n

becomes large.

Theorem 4.4 Let s and 50 be as in equations 4.8.13 and {.8.16 respectively.
Further assume that the set of random variables, {Ix},_,, are independent and

identically uniformly distributed. Then

lim B (5 - s™) =, (4.8.19)
provided g =1 — d.
Proof

In view of equation 4.8.15, given an ¢ > 0 there is a function K(-) so that
Is(”) — sl < e Vn > K(e). For ease of analysis take 3(® = 0 and suppose that

g=1-—4d.

(5 =)
0 2 (off) = o)
k=1

S gzn:dn—k Is(k) —8|+ gidn—ks_s(n)

_ g z": k) _ )
k=1

— Ki/)dn_|(k) |+g Z dnk‘ ‘Jrsgz":dnk <)
k>K(e/2) k=1
k(e ke ” o 1-4d "

-

<M€e]R
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< d"M. +%+ ’s (1 —d*)—s™

< an€+§+

st — sl + d" |3
S~

<
< d"(1+M,)+e

xS

Taking limit as n — oo yields

lim IE (g(") — 3("))

n—00

<e (4.8.20)

Since ¢ is arbitrary the result is established. O

Introduce the estimators for the quantities in equations 4.8.13 and 4.8.16 as
5(7) and p(7) respectively as

S = 4§01 4 (1 - d) T (4.8.21)

™ = dpt" 4 (1 - d) 1. (4.8.22)

The above theorem indicates that both these estimates are expected to have

elements which asymptotically approach the value being estimated. One may

conclude from this element convergence that

lim E (|5 - 5™) = o (4.8.23)
s (0~ 9],) = 0 (s

The norm in the top equation is an appropriate matrix norm (i.e. the matrix

sup norm) while the norm in the bottom equation is the usual L; norm.

The following facts concerning the relationship between some norms and the

inner product will be useful.
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Fact 4.3 Let z,y € R", then the following statements are true:

[{z, 9)| < llllo, - Iyl (4.8.25)

Izl < Nl (4.8.26)

These facts are employed in the following key theorem.

Theorem 4.5 Suppose that f : R™ — R is continuously Fréchet differentiable,
y,p™ € R™, and B,S e R™™, B & (I-g5") 20 and Vf(y) = B(ap™ —
SMy) with o € (0,1). If 5™ estimates S™ and p™ estimates p™ so that
equations 4.8.23 and 4.8.24 hold then 3 K € N 5 d = —(ap™ — §(")y) is an

expected descent direction or V f(y) =0Vn > K.
Proof
Let

w® 2 ap™ — Sy, (4.8.27)

@™ & E(apt™ - §®y). (4.8.28)
Conditions 4.8.23 and 4.8.24 clearly imply that

lim ”{FJ(") — w(® ”2 = 0. (4.8.29)

n—oo

Case 1: If w™ is such that <w("),Bw(")> = 0 then Vf = Bw(™ = 0 by

theorem 4.3.

59



Case 2: Now assume that <w("),Bw(")> > 0. Write

(8, Vf(y)) = <({5(n)_w(n))’Vf(y)>+<w(”),Vf(y)> (4.8.30)

= (@ - ™), Vi) +42, 7#£0  (4831)
Since lim,, o ”17)(") — w™ ”2 = 0, then 3 a function K(-) so that
|5 —w®)| < ¢ vn> K9 (4.8.32)
where ¢ £ e/ |IVf(y)|l, > 0. Using fact 4.3 leads to

[ (@ = w®), V@) | < (@ -w™)| IV, (48.33)
< @™ =) Iviwl,  (4.8.39)

< VG, =« (4.8.35)
Taking n > K(W?(—zm) equation 4.8.31 insures that
(&™), V() >0 (4.8.36)

and hence

d = —(ap™ — §"y) (4.8.37)

is an expected descent direction at y for f(y). O

4.9 The Parameter Update

With the vector z denoting the parameter vector for the pattern associa-

tor, the remainder of this thesis uses the convention that z is formed as the
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concatenation of the rows of the weight matrix, W, and the bias vector, b:
z= (W Wiz «.. Wnyn; by ... by, )T (4.9.1)

It is with respect to these parameters that the minimization must be performed.
For this reason it is necessary to make explicit the formula for descent directions

in theorem 4.5 as seen from the point of view of the parameter vector z.

Fact 4.4 In the case of a two layer network the parameter estimated descent

directions are computed directly via

d = =3 [uf (ap™ — 5y, + V,, P(y))] V., (4.9.2)
H{eAS ~ 5% f
Bypr

Extension to multi-layered (more than two) pattern associator networks can
be accomplished in exactly the same manner as in the backpropagation scheme
presented in chapter two. Essentially, this involves providing a recursive method

9E.
to compute By

Note that from theorems 4.5 and 4.1 and the fact that for nontrivial inputs

(xk # 0)7

20
* Vk (4.9.3)
1ic0> >0

evaluated at points where the constraints (C) are not satisfied (see chapter
2). This fact guarantees that directions generated through equation 4.9.2 will
not be driven to zero due to the partials of y, with respect to z. In other

words, direclions generated by equation 4.9.2 will be zero only in the case when
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directions generated by 4.8.37 are zero. This property discounts the event of a

descent type algorithm terminating prematurely.

Established now is a proposition which asserts that the gradient of the energy
as a function of the pattern associator parameter vector, z = (W, b) € R™*™ x
IR™, is equal to zero when the éonstraints (C) 4.4.7 are satisfied. In view of the
previous theoremr4.r5, this means that descent directions may be generated by

the estimates given in 4.9.2.

Proposition 4.1 The constraints (C) as in equation 4.4.7 are satisfied =
V.E =0.
Proof

Write

OE _ OF Onyi  Oypi
0zk - 8yp,- azk anpi,

(4.9.4)

where y,; = h(ny;) is the sigmoidal function and n, = 3 ez wijz; + b; (refer
to chapter two for further notation). Constraint satisfaction implies that y, —
{0,1}". Write

I oFE lim OE  OF Ony, lim
——— 1 — .
y;irﬁ) 8zk Npi=—>—00 8zk aym‘ 8zk Npi —— 00 an,,,-

aypi

=0, (4.9.5)

as a result of the boundedness and monotonicity properties of the sigmoid. O

Proposition 4.2 If the constraints (C) are satisfied then the estimated gradient

V.E =0, (4.9.6)
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where
5]”3 _ éE 8y,,.- 8np,-
8zk N ay,,,' 8n,,,- 6zk '

(4.9.7)
The proof mimics that of the proposition 4.1 and is omitted.

At this point a remark is warranted. It has been seen through theorem 4.5
‘that directions, say {d(")} generated from either equations 4.8.37 or 4.9.2 are
expected descent directions. Theser_direct‘ions inherit their random nature from
the randomness in the selection of the patterns. What is meant by an ‘expected’
descent direction is precisely that F (d(")) is a descent direction. There is no
guarantee that a particular sample of the process {d(")} will in fact be a descent
direction; however, it seems likely that most of the directions d(™ will be descent
directions since (i) F (d(")) is a descent direction, and (ii) any direction which
forms an acute angle (less than 90 degrees) with the gradient of the objective
is also a descent direction. Then, we should expect that the objective will be
decreased with the application of d® most of the time. Such an observation
provides justification for an implementation of the type proposed here. It is left
to the application portion of this thesis (see chapter 5) to actually demonstrate

the merits of this approach.

4.10 The Learning Algorithm

Previous efforts are cast in the direction of providing a learning scheme for

pattern classification. An energy minimization formulation of the problem has

63



proven to be a fruitful one; provided that estimators of quantities depending
on past inputs be incorporated. This section details the underlying descent
algorithm that has been in mind all along. Until now there has been no mention
as to the initial state of the parameter vector z;. The question of initialization

of the network is deferred until after a detailed description of the algorithm.
The main contribution of this thesis is the followir\xg learning algorithm.

Algorithm 4.1

1. compute S© and p®, set S = SO FO = p©
2. Initialize zg € R™*™ x R"™, set k=0
3. while convergence criterion unreached

(i) present a pattern z, to the network, denote y, as the output
(ii) compute the gradient estimate, e.g. 2 layer case:
d® = — 5, ul (ap® — §®y, + V,, P(y,)) Ve
(iii) perform pseudo descent update
set zgy1 = zx + y2dP
(iv) perform estimate update
a) set ﬁ(kfl) =d-p® + (1 - )y,
b) set S*HD = . 5® 4 (1 —~d) - g7

(v) increment k
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Presented in this chapter has been a learning algorithm aimed at solving
the PCP which is computationally efficient and averts many of the drawbacks
of the backpropagation method. Most predominant among these is that the
learning is conducted in an unsupervised and continuous manner. It is contin-
uous in the sense that learning and operation occur simultaneously. Moreover,
explicit knowledge of the entire train’ing set is not needed; heﬁée, training and

classification occur on a pattern per pattern basis.
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CHAPTER

FIVE

Applications

Explored in this chapter are several applications of the proposed classifier
system. In particular the update rule is given by the learning algorithm previ-

ously developed (algorithm 4.1).

The first ‘application’ is a simple experiment designed to demonstrate the
controllability of the resolving power of the resulting segmentation. The remain-
ing two applications are both acoustic ones. In the one case the algorithm is
applied to the task of phoneme recognition, while in the other to the problem
of pitch perception. As acoustic applications, the transformation stage of the
system is taken to be the model of the cochlea described in chapter three. Clear
statements of both these problems as well as the respective solutions determined

by the algorithm are provided.

In each case the topology of the pattern associator neural network is con-
strained to have only two layers. This is due primarily to (see chapter three) the

form of the chosen similarity function, the cosine function, in the algorithmic
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Figure 5.1: Training patterns for the line separation experiment

derivation.

5.1 Line Separation

It was previously claimed that the resolution of the resulting segmentation
via the learning algorithm 4.1 could be controlled by the parameter « in equation
4.3.6. An experiment aimed at verifying this claim is detailed below and followed

by some experimental results.

For this simple demonstration the topology of the feed forward network is
taken to be simply a two input two output layered network (2:2). Initialization
simply sets the weights and biases so that the pattern associator performs es-

sentially the identity mapping 4.5.2. Thus the classification is to be performed
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on a two dimensional pattern space. A training set, 7(0), of patterns is formed
by taking patterns on two straight lines situated at an angle of  with respect to
each other. For simplicity, the straight lines are taken to be at an angle of £+6/2
from the 45° line (see figure 5.1). With R(¢#) : R? = IR? denoting the rotation
(by ¢) operator, the tra.ining set may be written as
A 0.5 ' N
T0) = m:w:q-R(qS) ) ¢E{:l:0/2}, a€{1+kA}k=_N ,

0.5
(5.1.1)

where the pair (A, N) determine the spread and number of samples on each line.

Training sets with § = 15°, 30°, 45°, 60° and (A, N) = (0.03, 3) are depicted
in figure 5.1. These traiﬁing sets were presented to the network for learning via
algorithm 4.1 with the parameter, «, taking on the values & = 0.5, 0.7, 0.9, 0.99.
A summary of the resulting segmentations are presented in table 5.1. The actual

results of the experiment are given in appendix B in figures B.1, B.2, B.3, B.4

respectively.

Clearly, it is seen that there is a direct relationship between the resolution
of the resulting classification and the parameter a. Moreover, the results indi-
cate that one may control the resolution of the final segmentation by picking «

suitably. 1

1t is not surprising that for no value of a is the classifier able to segment patterns forming
an angle of 15° since (i) the similarity measure used to distinguish patterns is the cosine
(cos(15°) = 0.966) and (ii) the sigmoidal nonlinearity smears the input similarity, i.e. the
initial mapping is not the identity. :
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[ «a | 0 |separatioﬂ

15° no

30° no

0.5 45° no
60° no

15° no

30° no

0.7 45° no
) 60° yes
15° no

30° no

0.9 45° yes
60° yes

15° no

30° yes

0.99 | 45° yes
60° yes

Table 5.1: Line separation summary

5.2 Phoneme Classification

All speech may be decomposed into substructures known as phonemes [13],
[14]. There is no question that the classification of phonemes is a crucial element

in the overall goal of recognition of natural speech.

Employing the classifier system and associated learning algorithm ( 4.1 ), a
two layer network is proposed as the pattern associator for the phoneme classi-
fication problem. The system is tested with the two different voiced numerals 2

0.

, ‘one’ and ‘six’. Experimental results correlate highly to intuitive expectations.

Determined by the output set of the cochlea model, less those bands which

2As spoken by Bill Byrne, Neural Systems Laboratory, UMD
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never reach a threshold ¢ (taken to be ¢ = 0.2), the number of units in the input
layer may vary between words. In the case of the data ’one’, a 49:5 two layer feed
forward neural network is employed as the pattern associator, while in the case
of the data ’six’, a 57:10 architecture is used. The pattern associator parameter
vector is initialized with a random pseudo-orthogonal set of weights and biases

4.5.4.

Simulation results for each word, ‘one’ and ‘six’, are depicted in figures 5.2
and 5.3 respectively. These figures depict the response to the entire pattern set
generated by the cochlea model when trained on a reduced sample set. This
reduced sample set is given in appendix B. Desirihg a high degree of resolving
power, the parameter « is set at & = 0.9. Each figure displays the cochlea
response to the respective word (top graph) while the lower group of five windows
are representative of five corresponding output neurons of the pattern associator.
In the case of the 57:10 topology the five remaining outputs are assigned to zero

and not displéycd in figure 5.3.

An explanation of the figures follows. Essentially a three dimensional plot,
the cochlea response graph has a horizontal axis which represents time and a
vertical axis which represents both frequency and amplitude information. The
frequency axis is ordered (starting from the bottom of the graph and going
upwards) in a decreasing fashion. In other words low frequencies are represented

at the top of the graph and high frequencies at the bottom. At each frequency
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the amplitude response of the model is plotted as a function of time. Note that
at each fixed time instant a pattern (across frequencies) emerges. Hence, for
a finite set of sampling times a set of patterns results which may be labeled
from one to the number of samples. This is the pattern axis of the figures. The
remaining plots indicate the response of selected output neurons as a function

of pattern (time).

5.3 Pitch Perception

One form of musical knowledge is represented in the conventional western
musical scoring system developed hundreds of years ago. This system still re-
mains the prevalent method of conveying musical information among musically
literate humans. It has long been recognized that the conventional scoring sys-
tem is deficient in the sense of providing a complete representation of a piece
of music. This is demonstrated by a perfectly literal playing of a musical piece
by computer. The resulting rendition invariably is perceived as highly artificial
and mechanical. Hence, the problem of reconstructing a musical piece from its
conventional musical representation is highly non-trivial. Also of interest is the
inverse problem of generating a musical representation (not necessarily the con-
ventional one) from the acoustic data generated from a musical piece. Hence,

the perception of pitch plays a crucial role in the solution.

Pitch is not reserved strictly for sounds that are found in music but is an

attribute of any complex sound. Studies in the perception of pitch {15], [16], [17],
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[18], [19], show that it is the low order harmonics which are important. Such
a result supports the choice of the cochlea model as the sensory transformation
process. This is due to the cochlea’s model logarithmic structure (i.e. higher

order harmonics are muddled together along the tonotopic axis).

The pitch pérception problem is easily cast as a pattern classification prob-
lem. As such it presents itself as an excellent candidate for the classification
system proposed here. Again a simple two layer feed forward neural archi-tec-
ture is employed as the pattern associator with the learning algorithm given by

algorithm 4.1.

It is then experimentally verified that the system is capable of correctly
learning to identify the pitch of monophonically sounding musical instruments
in a timbre independent way. A simple tone is a single frequency sinusoidal
sound wave. A complex tone or complex sound is any nonsinusoidal periodic

sound wave.

Psychoacoustic studies show that the pitch associated with a simple tone
is simply determined by its frequency, i.e., there is a monotonic relationship
between the perceived pitch and the frequency of the simple tone. Complex
tones, however, require a more sophisticated analysis. Studies [15], [16], [17],
indicate that the perception of the pitch of a complex sound may be formulated
as a pattern matching (or classification) problem. In particular, Goldstein [17]

has proposed a model which simply determines the pitch of a sound complex
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bctrumpet

dxmarimba

Figure 5.4: Bi-timbred monophonic music presented for pitch classification
by matching its lower order harmonics to an harmonic series in a maximum

likelihood sense. In any case, the determination of the pitch of a complex sound

is non trivial.

The acoustic data is obtained from a commercially available electronic syn-
thesizer, a Yamaha DX7. As such the the perceived pitch of the generated data,

is known. For two different timbres, ‘bctrumpet’ and ‘dxmarimba’, a sequence

of three notes is generated resulting in the ‘song’ displayed in figure 5.4.

Cochlea outputs corresponding to each timbre represented in figure 5.4 are
depicted in the appendix B. It can be seen that these timbres exhibit a desirable
stationarity property, i.e. the change in patterns with respect to time is small.
Sequences of pitches are formed simply from the concatenation of small steady

state segments of these cochlea outputs.

A 30:5 two layer feed forward neural network is employed as the pattern

associator. As in the case of phoneme recognition, the pattern associator pa-
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rameter vector is initialized with a random pseudo-orthogonal set of weights and
biases (see chapter four). Experimental results (after 2400 epochs) for the ‘song’

represented in figure 5.4 is depicted in figure 5.5.

The figure shows that the system has not only determined that there are
only three distinct pitches, but that they occur in the correct sequence. In
other words the system is able to reconstruct the melody presented in figure 5.4

independent of the timbre producing it.
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CHAPTER

SIX

Conclusions and Future Research

Up until the recent past, the power of multi layer feed forward artificial neural
networks has been untapped mainly due to the lack of algorithms to train them.
With the:;emergence of the backpropagation algorithm; however, this deficiency
has been removed. Despite this innovation, the backpropagation method is still
not without its drawbacks. Among these the most prominent are the facts that

i) the learning is conducted in a supervised manner and ii) that learning and

operation must occur in two distinct phases.

Because of these properties, the backpropagation algorithm falls short of
solving a ‘true’ pattern classification problem. This is not to say that a network
could not be trained via backpropagation to mimic a previously solved pattern
classification scheme; but that the backpropagation method is not capable of

autonomously generating classification schemes.

A more realistic (and certainly ‘more useful) learning scenario is that pat-

terns would be presented without supervision to the system continuously; con-
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sequently, the system will begin to group like patterns into similar classes and
continue to do so indefinitely; i.e. continuous learning. It is exactly this type of

learning that has been developed in chapter four.

The following is a brief synopsis of what has been discussed here:

e Reviewed the discipline of neural networks; in particular the concept of a
feed forward artificial neural network. Formulated the pattern classifica-

tion problem and introduced the notion of a similarity measure.

¢ Proposed a neural system for a solution to the pattern classification prob-
lem which consists of three main components: transformation, pattern
association, and update. Have shown that the resolution of the resulting

classification is controllable via an external parameter.

¢ Based on an energy minimization scheme, developed a computationally
efficient learning (update) rule for the system in the case of a magnitude
independent similarity measure; leading to a two layer topology for the
pattern associator. Among the most prominent benefits of the learning
algorithm are computational efficiency, unsupervisedness, and continuous

learning,.

e Applied the system to several recognition tasks. Line separation, which
demonstrated the resolving abilities of the system. With a model of the

cochlea as the transformation stage, the system was assigned to the tasks
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of phoneme recognition as well as pitch perception. In each case the results

indicated the potential success of such an algorithm.

Attention is now turned to the future. Listed below are only a small seg-
ment of the numerous avenues possible for further investigation. The list is not

intended to be exhaustjve. Possible areas of future research:

¢ Developing a rigorous method of choosing the parametrization transform

so as to insure the optimality of the classification in some sense.

o Extending the learning algorithm to include the class of recurrent net-

works.
e Modeling musical dissonance as conflicts in classification.

e Forming a comparison of the optimum processor theory of pitch perception
based on the maximum likelihood estimate scheme proposed by Goldstein

[17].
e Investigating alternative similarity measures.

A rather interesting similarity measure with which to experiment may be the

gaussian similarity measure

f=—yl2
r(z,y) =e o o € R.

¥
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With such a similarity function its gradient with respect to the output pattern

y is readily computed as
2
Vyr(e,y) = —r(z,y)(y - ).

Using the same energy function as in 4.3.2 this leads to an expression for the

energy gradient as

. 2 :
VE,| = ; Z Tkp(l — 27'kp)(yp - yk)’
keP

where as before ry, 2 r(Yx,yp). Now assuming maximum resolving power
is desired, one may set the parameter a > 1 in g¢,(-). This in turn implies
that 3’;5551 > 0,Vz. Since rt, € (0,1) is positive, the gradient may be crudely

estimated as

vE, = (yp— > yk)

npo? keP
2
= ot (yp — p(¥))

where the quantity p(y) may be estimated just as in chapter four.
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Appendix

A

Some Derivations

A.1 Computation of the Gradient

The following presents a careful derivation of the expression for the gradient of

A _p_
Thp = y;{y,,. Let

Tz — 4T T
r=a = A.l.1l
Tl (A.L1)

where a = ¥, and = = y,. Further, let z; denote the ¢th component of z and

z 2 ”;“2. With this notation one may write
1 &
%7 (A.1.2)
Izl i

First, note

(“allt )——||x|| % (A.1.3)

Now,

or
0z;

= —llzlly” 7"z + |2y (A.1.4)

l2lly" (a: — 7:27a) (A.1.5)
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which gives

Var = — (1- 77") a.

[EN

Then substituting for z and «,

1 .
VipThp = (I - ypy;];) Yk-
sl

A.2 Concavity of E,
Let ¢ € R" and 7 : R™ — R be given as
r(z) =a"z,

and g: R+— R as

gr)y=r(l -r).

The expression for F, may then be written as

E, = z 9(7k)s

keP

where i, = r(zy), zx € R™.

(A.1.6)

(A.L.7)

(A.2.1)

(A.2.2)

(A.2.3)

Clearly g(r) is concave in r, and r(z) is linear in z. Now, take w,z € R”

and X € [0,1] so that

g(rQw+(1=-Xz)) = g(hr(w) + (1 = A)r(2))

< Aglr(w)) + (1= Ng(r(2)
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The first equality follows since 7(-) is linear, while the last inequality follows
from the concavity of g(-). But this inequality states that g(r(-)) is concave. So
E, and hence E, 2 > pep Ep is concave since the sum of concave functions is

concave. [J
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numerals ‘one’ and ‘six’.

86



1000 3 YY) PPO L .S DL LAY O SNLANS (SILAULE (SULASLON, S L
v 80O [~ (heta=d5 4 . B0 thetenoo 3
o F 3 a F 5
3 °°F ERE:- Bl 3
%4005— 3 %on- 4
% 200 F = * 200 F- -
Ll ST EFIURE AU WU AP AU O Ll I EPEPEIS RV EPUPE BPETTE WO I
Q 2 4 [} [ 10 12 1] 2 4 [} 10 12
paltern patlern
PSSP SoLIL AN AL B B B L B U S A W P I A S A B S S B B A e s o e
e P E 3
o theta=45 b o 800~ thela=00 3
o ] q o4 3
o - © 800}~ =
= o E 4 E 3
© E 3 - o 3
2 400 = = 2 400f- =
- - = -t - -1
% E 3 3 F 3
S 200 |- s 200 =
£ ‘ 3 E E
Ot o by o e a o b o baaa by s 14 Ll %P SRR IR BT IPAPA S TR A
o 2 4 6 8 10 12 1] 2 4 ] 10 12
pattern paltern
lm ——l LB l L IT] LA S l T T 'T T 1Y ] LA l '1 ’m 5" Ll Y“ T 7Tr I TV [ T 7V l' LANLE [ i l I-‘
o 3 3 3
w 800 F- theta=1$ =] o~ BOOE- theta=30 3
- E - =
8 s . 4 5 enf E
B E E 1
!on— 4 % wof 3
3 e 3 2 £ 3
? 20 1 % E
Ok st asadaaad vaalayal |_1 0-'—" PRI DTV ST U S S N I WO HAT N G ST U0 T T PR OO 4 a':
[+] 2 4 8 8 10 12 0 2 4 L] 8 10 12
pattern pattern
1000 A S (LS AN 0.0 0 ORS00SR Oy FRELANL LN BOASRL LI L5 FYY.Ye)) LJSILARLIND AR 0.0 S 00 .. 0.0 LS .
E £ 3
o 800F thetamls 3 o 800F thetax30 =
£ | 4 Sewf =
5 - e - 9 3
2 400 3 P ewof =
3 £ i 3 3 E
¥ 2ol 4 ¥l 3
£ E 3 E
Ob, sl baa e ba o o dyaaabu g o by O et s b el e a b Loty
[+] 2 4 10 12 0 2 4 [} L] 10 12

]
patteran

87

pattern

Figure B.1: Resulting segmentations for a = 0.5



sctivation !

activation Q

activation 1

activation 0

L SN ELANLIN S (DL.ALSN.00 SHLINE.S0 SN TS

T

b
]

1000 [
BOD |~  thata=45 =
sooi—-' 3
400 |- 4
200 - e
o;_. 3
ol aa e s d v g o bpaadaaal
0 2z 4 [ [ 10 12
pattern
lom:h"l['lTIFII'Ir"I"I’II"‘I’r'-
3 3
BODE- thela=45 -
800 |- :
400 4
E B
200 - -3
E E
[} v ararers Srararm S PR
0 2 4 [ [ 10 12
pattam
'OWE_‘ﬁ'IIIIIlT'!"lWll’llT]fll‘l—
800 F- theta=1$ =
600 |~ =
400 |- N =
200 |~ =
) S PN APPURYY WA GTSFIFI SYUTr e
[ 2 4 ] [ 10 12
. psttern
. 5.2 . L 0 A 3
3 E
600 |~ theta=15 * =
800 |- 3
400 =
o 3
200 £~ E
Y S TR TS TP NP R
[ 2 4 [ [ 10 12
pattern

Figure B.2:

Resulting segmentations for o = 0.7

YO SR B S0 ... L AL ILRLELS SLALARAR QU
o 3
,.uoot— thola=g0 -]
a E E
§ w0k =
> 4of E
a F =
¢ 200f 3
v 1
o 3
paabaaa d e by T T T o T
0 2 4 [} [ 10 12
pattern
IODUL WIV_VVII‘F"‘VVTIIVI
E -4
o BOOE- thata=00 =
a E E
© 600 |- 3
3 4 E
.%400:— _;1
o 200 3
o:llllxlllllllLLl‘l_lA_llJ_Jll|
[} 2 4 8 [ 10 12
palteara
1000 YT T T T T T T T T T T Y
- 800 [~ theta=30 3
a E
5”9.5' =
- - -
> 400 - -
g __F E
s 200 -3
E E
Ob ool b a bt s taaa 1.3
0 2 . ] [} 10 12
pattern
VU 5.0 0 D LI B0 SLJSLA A LRSS R AR ALES RLRLERI pUN-
= e
o 800~ theta=m30 3
a - =
§eoo;- E
é‘WE- E
& 200 [~ =
3 E
L rareess ara TS ST A AT N R
[ 2 4 [ [} 10 12
patltern

88



low YVI]I'TI"'1V-_: "rrl’l'IY’:
- 4 . oo fF :
g s H E
? b 1 ]
4 3 3 g =
H - = . =
L} U OIS SSTRTES JURTATIN RV B RS FATUTES BV R W
0 2 . [] 8 10 12 [ 2 4
pattern
‘ow :_l T T ' LA [ T T I LARLANL) l T ' T I_rj ¥ ]Ow :_I LI § ' L fr'l
o 800 F- theta=45 4 o B0 thela=6D
$ e 3 8ok
= 3 3 = 3
o - p= - -
2 400 = 2z 400f
b+ r s 3 o
i = E o -
% 200 b - — e 200
o LL]“IIIIJA’I‘I'AALJJ_]I]I o-—J__‘LLJ IJIlJ]
[ 2 ‘ [] 10 12 [ 2 . [ 8 10 12
pattern pattern
PTe% %) SALEULININ S S 00 ML ALINR 0 350 LA LRS00 A AL | I: 1000 F LR G ULANLON FLARL AL (LINLIN0 S0 SN SN0 00 .00 SN | |-‘
£ 3 E E
- 800 E-  theta=l$ J  ~ 800F- (thetax30 3
E E: 3 3
8 oo . 3 8 ewkE 3
3 r 3 3 - 3
2 w0 4 £ wof- 3
b r ' O E
® 200 - 4 « 200 -
L) S SN R ETAIS EP TP IR AT B L] =N PP IO SRS SPUPI IO W
[ 2 ¢ 6 8 10 12 [ 2 4 [ 8. 10 12
pattern pattsru
,m:" I‘Y‘llll'l"‘T_r'IT_r'lllfll'l: 'r'I'[l"I"_rI"T] l_:
oﬂOOE—- theta=15 - o 3
a o 3 o 3
3 *oF ERE: E
> 400 }- 3 » 3
o 3 % 3
& 200 - - -
E 3
L SraTerTa ErSrerI BRI PP B T e srerwre ST TR EG
0 2 i} 6 10 12 . [} 8 10 12
pattern pattern

Figure B.3: -Resulting segmentations for o = 0.9

89



l'l'—TVYT”‘

LSS B B

T

LA SRLAN (e o |

IDDO 1000 [ T T l Ty l Trrr ' LA A ’ 7":
o 000 thota<ss = Thela=00 2
4 £ 3
e 600 - =
] s
2 F E E
4 200 F- = 3
oF 3 5
=SS RTINS UV IS U PO BTSTI N A VIS IR WIS I U AT T PR R
0 2 4 ] 8 10 12 2 ¢ .3 8 10 12
patlern pattern
lODO T [fr LA [ Ty l T v r [ v I LA I U_: ‘om LIRS l T 7 l LB , LBELENL [ T 1 7T ' LIRS ] '_
o -4 -
o BOOF- ibetas45 - o 8001~ thela=g0 -
E s E 3
£ ool 4 §wof 3
¥ o E 3 E
% 400 E— -—:‘ .3 400 :'-' -E
* 200 -3 s 200 - B
L} SRS I e IFUTITES STV ISR e L S N PRI ST WO ST E AR | A':
1] 2 ] [} 10 12 ] 4 8 8 10 12
pattera - paltam
]OOO -1 T ‘if' T l L ] TrTr I 1T l T 1T I T3 ‘m _:(“' T l T v 7T ! LR B 4 l LA . | lf' T ' LI l '—:
~ 8OO~ thetax15 - T - B0 B
2 s 4 £ scof 4
3 E 3 ¥ E E
% 400 4 & «wop =
2 E 3 'y - he
o 200 |- .‘:‘ % 200 :_. —
3 < E
s L a s Ly ' BTN | L} S ST ST I B e
[} 8 10 12 Q 2 < 6 10 12
pattern pattern
IOOO :—l TF l T 1 1 l LERER ]' LB ] rvT l TrI7v l I_ ’ow - LB ] T l 1T I T rr I T v 1 “ LA ‘ LI
o’ 800 - thota=ts 4 o BOOF thetax30 =
8 ek 3 8 eoo - =
3 o 3 2 k 3
2 40| 4 X awof 3
3 - E 3 o 3
€ 200 3 “ = 3
L SR RN TS S A Ok s TN SV S UrEE SUNTTrEN U5 AT S A
[+] 2 4 [] 8 10 12 o 2 4 [} N 8 10 12
patten pattorn

Figure B.4: Resulling segmentations for o = 0.99

90




“datasite : A.lpix- -

Figure B.75: Cochlea response to a ‘dxmarimba’ A = 440Hz
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Figure B.6: Cochlea response to a ‘betrumpet’ A = J40Hz
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