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the complete graph and reduce average commute time.
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Chapter 1

Introduction

Spectral graph theory has developed into a valuable tool for data analysis.

In this age of big data, there is a need to efficiently analyze data with a network

structure including social networks, molecular configurations, brain structure, and

the world-wide web, to name a few. Spectral graph theory uses analytic properties

of operators on these graph structures to unearth particular properties and gleam

insight into those spaces.

Harmonic analysis is concerned with the representation of functions and sig-

nals, be it through Fourier series, wavelets, or frames. Time-frequency analysis, di-

mensionality reduction, and image processing all are based on theory that is deeply

founded in harmonic analysis and are all valuable tools in this age of plentiful digital

data.

We shall bridge the world between spectral graph theory and harmonic analysis

to develop tools and techniques to analyze functions and signals on graphs. The field

is young and rapidly developing and this thesis is an exploration into the wild frontier

that is harmonic analysis on graphs.

1



1.1 Linear Algebra

In computational and applied problems in mathematics and engineering, ma-

trix analysis is often a crucial tool. The discrete and finite nature of graphs lead

themselves to represent functions and operators on graphs by finite vectors and

matrices, respectively.

We represent the space of d×m complex-valued (resp. real-valued) matrices

as Cd×m (resp. Rd×m). We denote the conjugate transpose of matrix A by A∗, i.e.,

A∗ij = Aji. In the case that A is real-valued, then the conjugate transpose A∗ agrees

with the usual transpose A>. The square matrix A ∈ Cd×d is Hermitian if A = A∗.

In the case that A is real-valued, being Hermitian is equivalent to being symmetric.

The Hermitian matrix A ∈ Cd×d is positive semidefinite provided for any vector

x ∈ Cd then the quantity 〈Ax, x〉 = x∗Ax is real-valued and nonnegative. We shall

let A � 0 to denote that matrix A is positive semidefinite and A � B to denote

that A−B is positive semidefinite.

There are three commonly used norms for matrices A ∈ Cd×m. The spectral

norm is defined to be the largest singular value of A, denoted ‖A‖2 = σmax(A);

the operator norm is defined as ‖A‖op = supx 6=0 ‖Ax‖ / ‖x‖; and the Frobenius

norm, or Hilbert-Schmidt norm, is the `2-norm of all entries in A, i.e., ‖A‖F =√∑d
i=1

∑m
j=1 |aij|2.

We let σ(A) = {λk} ⊂ C denote the spectrum of matrix A, that is the collec-

tion of scalars, known as eigenvalues, that solve Aϕ = λϕ for ϕ ∈ Cd and ϕ 6= 0. In

this case, we say that ϕ is the eigenvector associated with eigenvalue λ.
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Theorem 1.1.1 (Spectral Theorem of Hermitian Matrices, [38]). If A ∈ Rd×d is

Hermitian then all eigenvalues of A and the corresponding eigenvectors are real-

valued. Furthermore, if A is positive semi-definite, then its eigenvalues are all non-

negative.

The Courant-Fischer thereom (also known as the min-max theorem) charac-

terizes the eigenvalues of a Hermitian matrix, A, using the Rayleigh quotient of a

non-zero vector x defined as

RA(x) =
x∗Ax

x∗x
.

Theorem 1.1.2 (Courant-Fischer Theorem, [38]). Let A be a Hermitian matrix

with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN . Then,

λk = max
S⊆RN

dim(S)=N−k+1

min
x∈S
x6=0

x∗Ax

x∗x
= min

T⊆RN

dim(T )=k

max
x∈T
x 6=0

x∗Ax

x∗x
,

where the first maximum is taken over all subspaces, S, of dimension N −k+ 1 and

the last minimum is taken over all subspaces, T , of dimension k. In particular, we

have

λN = max
x∈RN

x∗Ax

x∗x
and λ1 = min

x∈RN

x∗Ax

x∗x
.

The Courant-Fischer theorem provides an iterative scheme that numerical

solvers deploy in approximation of the spectrum of a Hermitian matrix.

Let A be a Hermitian matrix with real eigenvalues {λk}Nk=1 and associated

orthonormal eigenvectors {ϕk}Nk=1. Then A can be written as a sum of rank-one

matrices as

A =
N∑
k=1

λkϕkϕ
∗
k.
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If A is nonsingular then an inverse matrix A−1 exists. However, if A is singular,

equivalently 0 ∈ σ(A), then we resort to a generalization of the notion of an inverse

matrix known as the Moore-Penrose pseudoinverse of A, which we shall henceforth

refer to as just the psuedoinverse of A.

Definition 1.1.3. The pseudoinverse of the singular Hermitian matrix A, denoted

by A+, is defined as A+ = (A∗A)−1A∗ which acts as the inverse of A restricted to

vectors projected onto the column space of A. Equivalently, the pseudoinverse can

be expressed as

A+ =
∑
k:λk 6=0

1

λk
ϕkϕ

∗
k.

1.2 Graph Definitions

This section contains essential definitions and preliminary results on graphs

that will be used throughout this document. The results presented here can all be

found in [17,60].

An unweighted graph is defined by the pair (V,E) where V denotes the set

of vertices and E denotes the set of edges. When the vertex and edge set (V,E)

are clear, we will simply denote the graph by G, otherwise when necessary, we will

denote the graph by G(V,E) to indicate the vertices and edges in consideration.

Unless explictly stated otherwise, we will consider only finite graphs, meaning the

vertex set has finite cardinality. We reserve N to denote the cardinality of V . Each

element in the edge set E is denoted as an ordered pair (x, y) where x, y ∈ V . If

(x, y) ∈ E, we will often write x ∼ y to indicate that vertex x is connected to y. In
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such case, we say that y is a neighbor of x.

A graph is undirected if the edge set is symmetric, that is (x, y) ∈ E implies

(y, x) ∈ E. For the entirety of this document, we will consider only undirected

graphs. The graph is simple if there are no self-loops, that is, the edge set contains

no edges of the form (x, x). Additionally, we assume that graphs have only zero

or one edge between any two pair of vertices, i.e., we do not allow multiple-edges

between vertices; such graphs are known as multi-graphs and will not be considered

in this document.

A weighted graph is defined by the triple G(V,E, ω), where ω : E → [0,∞)

is known as the weight function that assigns a nonnegative weight to every edge

in the set E. The weight of edge (x, y) is denoted ω(x, y) or ωxy as shorthand. If

(x, y) /∈ E, we define ωxy = 0. When graphs are used as a model of a physical

system, greater weights are often used to differentiate and emphasize strengthed

connections, proximities, or similarities between points.

The degree of vertex x ∈ V in an unweighted undirected graph equals the

number of edges eminating from (equivalently, to) x and is denoted dx. For an

undirected weighted graph, the degree equals the sum of edge weights containing x,

i.e.,

dx =
∑

y∈V :(x,y)∈E

ωxy.

These two definitions of degree are consistent. An unweighted graph G(V,E) can

simply be viewed as a weighted graph G(V,E, ω) where ω is identically 1 on E. In

such case, dx =
∑

y ωxy =
∑

y∼x 1 equals precisely the number of edges containing
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the vertex x. A graph is called regular if every vertex has the same degree; it is

called k-regular when that degree equals k ∈ N.

Consider the graph G(V,E) and a subset of vertices S ⊆ V . The subgraph

induced by S is the graph with vertex set S and edge set consisting of all edges in

E with both endpoints in S.

We will consider functions on graphs that take on real (or complex) values on

the vertices of the graph. Since V = {xi}Ni=1 is finite, it is often useful, especially

when doing numerical computations, to represent f : V → R as a vector of length

N whose i’th component equals f(xi).

A path (of length m), denoted p, is defined to be a sequence of adjacent edges,

p = {(pj−1, pj)}mj=1. We say that the path p connects p0 to pm. A path is said to

be simple if no edge is repeated in it. A graph is connected if for any two distinct

vertices x, y ∈ V , there exists some path connecting x and y. The distance between

any two vertices x, y ∈ V is the length of the shortest path connecting x to y and is

denoted d(x, y). Let S, T ⊆ V be two vertex subsets. The distance between sets S

and T is defined as min{d(x, y) : x ∈ S, y ∈ T}.

1.2.1 The Laplacian and other matrices associated with graphs

Given a finite unweighted graph G(V,E) the adjacency, the adjacency matrix

is the N ×N matrix, A, defined by

A(i, j) =


1, if xi ∼ xj

0, otherwise.
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The analogue of the adjacency for a weighted graph, denoted W , is defined by

W (i, j) = ωij.

The degree matrix is the N × N diagonal matrix D whose entries equal the

degrees dxi , i.e.,

D(i, j) =


dxi , if i = j

0, otherwise.

The main differential operator that we shall study is L, the Laplacian (or

Laplace’s operator). For a function f : R→ R, the Laplacian is precisely the second

derivative, for which we have the difference formula

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
. (1.1)

Suppose we were to discretize the real line, say, by the dyadic points, i.e., points

that can be written as k/2n for k ∈ Z, n ∈ N, and form a graph. Each vertex in

this graph would have an edge connecting it to its two closest neighbors. Then the

second difference quotient formula (1.1) would become

f ′′(x) = lim
n→∞

f(x+ 1
2n

)− 2f(x) + f(x− 1
2n

)(
1
2n

)2 (1.2)

Notice that (1.2) is the sum of all the differences of f(x) with f evaluated at all it’s

neighbors (and then properly renormalized).

Motivated by this construction on the real line, we define the Laplacian in a

graph setting. The pointwise formulation of the unweighted Laplacian applied to a

function f : V → R is defined as

Lf(x) =
∑
y∼x

f(x)− f(y). (1.3)
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This is precisely the same formulation given in [17,67] (up to a sign). For a weighted

graph, the formulation in (1.3) is generalized as Lf(x) =
∑

y∼x ωxy(f(x)− f(y)).

For a finite graph, Laplace’s operator can be represented as a matrix. As an

abuse of notation, we will interchangably use L to represent the Laplacian operator

and also the Laplacian matrix. For every point xi ∈ V , (1.3) gives a system of linear

equations depending on function values at other points in V . Each of these linear

equations can be represented in the rows of the Laplacian matrix yielding

L(i, j) =


dxi if i = j

−1 if xi ∼ xj

0 otherwise,

(1.4)

or, equivalently, L = D−A. In the case that the graph G is weighted, then we have

L = D −W .

Matrix L is called the unnormalized Laplacian to distinguish it from the nor-

malized Laplacian, L = D−1/2LD−1/2 = I − D−1/2AD−1/2, used in some of the

literature on graphs, e.g., [17]. However, we shall work exclusively with the unnor-

malized Laplacian and shall henceforth just refer to it as the Laplacian.

For an undirected graph, let ei denote the N × 1 vector defined by ei(j) =

δ(i, j) and for every ` = 1, ...,m = |E|, let v` = ei − ej, where (i, j) is the `’th

edge in the edge set E. The incidence matrix of G, denoted B, is the N × m

matrix B = [v1 v2 · · · vm]. The incidence matrix can be used to give yet another

characterization of the Laplacian matrix, L = BB∗. This gives the Laplacian matrix
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as a sum of rank-1 matrices, namely,

L =
m∑
`=1

v`v
∗
` (1.5)

Observe that in the definition of the incidence matrix, the ordering of i and j in

v` = ei − ej, were not specified and hence the incidence matrix B is not unique.

Furthermore, multiplying any of the columns of B by −1 does not affect (1.5).

1.2.2 Elementary properties of the Laplacian

By the Courant-Fischer theorem, Theorem 1.1.1, since L is a real symmetric

matrix, it has real eigenvalues {λk}N−1k=0 with associated orthonormal eigenvectors

{ϕk}N−1k=0 . Furthermore, since L = BB∗ we immediately can state that the Laplacian

is a positive semidefinite matrix and hence all of its eigenvalues are nonnegative. Let

us define Φ to be the N×N orthogonal matrix whose (k−1)th column is the vector

ϕk. The spectrum of the Laplacian, σ(L), is fixed but one’s choice of eigenvectors

{ϕk}N−1k=0 can vary and hence Φ is not unique. For instance, we can multiply any

column of Φ by −1 since if ϕ is an eigenvector of L then so is −ϕ. Furthermore,

if an eigenvalue λ has multiplicity m > 1, then any orthonormal basis for that

m-dimensional eigenspace will form m linearly independent eigenvectors associated

with λ. So while Φ is not unique, for the theory that follows, we assume that one

has fixed an eigenbasis and hence the matrix Φ is assumed to be fixed.

The following is a cornerstone in characterizing the relationship between eigen-

values of a graph and connectedness properties of the graph.

Theorem 1.2.1 ( [17]). If the graph G is connected then λ0 = 0 and λi > 0 for
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all 1 ≤ k ≤ N − 1. In this case ϕ0 ≡ 1/
√
N . More generally, if the graph G

has m connected components, then λ0 = λ1 = · · · = λm−1 = 0 and λk > 0 for all

k = m, ..., N − 1. The indicator function on each connected component (properly

renormalized), forms an orthonormal eigenbasis for the m-dimensional eigenspace

associated to eigenvalue 0.

We index the eigenvalues from 0 to N − 1 (rather than 1 to N) because the

any graph will have at least one eigenvalue equal to zero and a connected graph will

have λ1 equal its first nonzero eigenvalue. This first nonzero eigenvaluen is known as

the algebraic connectivity of the graph, see [29], and is widely studied. The algebraic

connectivity gets its name because it is a measure of how connected a graph is. Its

corresponding eigenvector, ϕ1, is known as the Fiedler vector and will be discussed

more in-depth in Chapter 3

The graph Laplacian has been used to generalize standard results form cal-

culus and analysis on graph domains. In [41, 53, 56, 57, 67] and references therein,

the authors use the graph Laplacian to generalize theory calculus and differential

equations to graphs but only the specific case of graph approximations to fractals.

The authors of [31,32] derive the wave equation on more general graphs graphs and

use the graph Laplacian to derive Sobolev-type inequalities however their theory

applies only for functions defined on the edge set E, rather than the vertex set V

which is more commonly the case in the graph literature. In Chapter 2 we will

use the graph Laplacian to mimic properties of the Laplacian in Euclidean space to

define the graph analogues of time-frequency operators.

10



We conclude this subsection by defining the graph effective resistance.

Definition 1.2.2. For any two vertices, i 6= j ∈ V , the effective resistance between

i and j is defined as

R(i, j) = (ei − ej)>L+(ei − ej),

where ei is the vector of all zeros except for a 1 in the ith position. When i = j, we

define the effective resistance to be R(i, i) = 0.

See [25] for a survey and introduction to effective resistance on graphs. The ef-

fective resistance gets its name because it is derived from the physical interpretation

of the graph as an electrical network. Interpret the vertices of the graphs as nodes

and each edge as a resistor with conductance ωij. The effective resistance between

two nodes is the potential difference between those nodes when a unit current is

injected at one node and extracted at the other (this is the role of ei − ej).

Strichartz gives an interesting equivalent definition for effective resistance in

[67, Section 1.6] given as

R(i, j)−1 = min
f :V→R

{〈Lf, f〉 : f(i) = 1 and f(j) = 0}.

The effective resistance is studied becaue it can be shown, see [67], that the

effective resistance is a metric. The effective resistance is often times a more insight-

ful metric than shortest path metric or the Euclidean metric in which the graph is

embedded. It has been shown in [15, 24] that the effective resistance is equivalent

to the commute time between vertices in a random walk on graphs.
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1.3 Data graphs and common graphs

This section is devoted to introducing common graphs in the spectral graph

theory literature and their properties. We also introduce some graphs arising from

real-world data sets.

The path graph on N vertices is denoted PN . The edge set is contains the

N − 1 edges given by E = {(xi, xi+1)}N−1i=1 . It is called the path graph because the

entire graph is a path connecting x1 to xN . Figure 1.1 shows an illustration of P6,

the path graph on 6 vertices.

Figure 1.1: The path graph P6 on six vertices.

The cycle graph on N vertices is denoted CN . The graph is identical to the

path graph, PN , with the added edge (x1, xN) connecting the two endpoints of the

graph, thus forming a cycle. Figure 1.2 shows an illustration of the cycle graph C6

on six vertices.

The complete graph on N vertices is denoted KN . The complete graph contains

all possible edges allowed in a simple graph, i.e., E = {(xi, xj)}i 6=j. As such, one can

compute that the complete graph contains exactly |E| = N(N − 1)/2 edges, which

is an upper bound of the number of edges for any simple graph. Figure 1.3 shows

12



Figure 1.2: The cycle graph C6 on six vertices.

an illustration of the complete graph on 6 and 25 vertices. The complete graph is

significant because it is the most connected a graph can be; the distance between

any two vertices is one. The Laplacian for the complete graph KN has spectrum

λ0 = 0 and λ1 = · · · = λN−1 = N . It is the only graph for which λ1 = λN−1; that

is, the complete graph has the largest possible algebraic connectivity on N vertices.

The Sierpinski gasket, SG, is a post-critically finite fractal, which is an exam-

ple of an infinite graph. If q0, q1, q2 represent the three vertices of a triangle, then

the Sierpinski gasket is the unique nonempty compact solution to SG = ∪2i=0Fi(SG),

where Fix := 1/2(x− qi) + qi for i = 0, 1, 2 are contraction mappings to each of the

three corners of the triangle. As is done in [41, 53, 67], we consider finite graph ap-

proximations to the fractal. The m’th graph approximation to the Sierpinski gasket,

denoted SGm, is the image of the triangle q0, q1, q2 under all possible compositions

of {Fi}2i=0 of length m. Figure 1.4 shows some graph approximations to the full

13



Figure 1.3: Left: The complete graph K6 on six vertices. Right:

The complete graph K25 on 25 vertices.

Sierpinski gasket.

Finally, we shall demonstrate numerical implementations of theory developed

on a real-life dataset known as the Minnesota road network. The Minnesota road

network is available for download as part of the Sparse Matrix Collection hosted by

the University of Florida [23]. The network consists of 2640 nodes and 3302 edges.

Edges represent major roads in the US state of Minnesota and verties represent

intersections of those roads. Figure 1.5 shows the Minnesota road network in its

given coordinates.

1.4 Outline of results

In Chapter 2 we present the newly-developed theory of Fourier analysis on

graphs introduced in [59]. We primarily focus on the graph translation operator in

Section 2.4 since it has substantial differences to the classical Euclidean analogue of

14



Figure 1.4: The graph approximations SG1, SG2, SG3, to the full

Sierpinski gasket shown on the bottom right.

Figure 1.5: The Minnesota Road network
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translation. We prove when the graph translation operator acts as a semigroup and

completely characterize conditions in which the operator is invertible and derive its

inverse.

In Chapter 3 we examine characteristic sets of eigenvectors of the Laplacian

because it is directly related to the theory of translation developed in Section 2.4.

In particular, we focus on the support of the Fiedler vector of the graph. We prove

in Section 3.1 that planar graphs cannot have large neighborhoods of vertices on

which the Fiedler vector vanishes. We then introduce a family of (non-planar)

graphs, called barren graphs, that have arbitrarily large neighborhoods on which

the Fiedler vector does vanish in Section 3.1.1. In Section 3.1.2 we prove results

about the algebraic connectivity and Fiedler vector of a graph formed by adding

multiple graphs.

Chapter 4 presents the spectral graph wavelets developed in [35]. We modify

the existing theory in Section 4.3 to create graph wavelets with a bivariate generating

kernel which gives the user vertex-dependent control of the size and redundancy of

the wavelet frame. Finally, we prove in Section 4.5 that unlike classical wavelets,

the spectral graph wavelets do not admit a multiresolution analysis.

Chapter 5 explores the concept of graph sparsificaiton pioneered by Daniel

Spielman and his collaborators which has many applications in fast computation

on large networks. We briefly introduce Spielman’s twice-Ramanujan sparsification

results from [4]. Spielman conjectures the optimal sparsification bounds of any

graph. We prove that his algorithm cannot possibly exceed this conjectured bound.

Chapter 6 introduces a new concept of graph conditioning. Related to scal-
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able frames and Spielman’s sparsificaiton results, the goal is to rescale edges of a

graph to make its Laplacian act as an approximate identity. There are several ways

to approach this problem: via condition number (Section 6.2), spectral gap, and

Frobenius distance to identity (Section 6.3). We present numerical experiments and

analysis for each of these proposed methods.
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Chapter 2

Fourier Analysis on Graphs

Recently in [59] Vandergheynst and his collaborators have presented a way

to use the eigenfunctions of the graph Laplacian to define a Fourier transform of

a function defined on a graph. They then take this definition along with classical

properties in time-frequency analysis to define graph analogues of operators needed

in analysis, namely, convolution, modulation, and translation. In this chapter, we

analyze and expand on properties of the translation operator that they have intro-

duced. In particular, we characterize in Theorem 2.4.8 exactly when the translation

operator is invertible.

2.1 The Graph Fourier Transform

The classical Fourier transform on the real line is the expansion of a function

f in terms of the eigenvalues of the eigenfunctions of the Laplace operator, i.e.

f̂(ξ) = 〈f, e2πiξ·t〉. Analogously, we define the graph Fourier transform, f̂ , of a

functions f : V → C as the expansion of f in terms of the eigenfunctions of the

graph Laplacian.

Definition 2.1.1. Given the graph, G, and its Laplacian, L, with spectrum σ(L) =

{λk}N−1k=0 and eigenvectors {ϕk}N−1k=0 , the graph Fourier transform of f : V → C is by

18



f̂(λk) = 〈f, ϕk〉 =
N∑
n=1

f(n)ϕ∗k(n). (2.1)

Notice that the graph Fourier transform is only defined on values of σ(L).

There is a serious problem when λk has multiplicities greater than one because then

f̂ will not be a well-defined function. Rather, one should interpret the notation

f̂(λk) to designate the inner product of f with the k’th eigenfunction of L. However

to emphasize that the Fourier transform is defined in the spectral domain, we shall

abuse the notation as defined here.

The graph inverse Fourier transform is then given by

f(n) =
N−1∑
l=0

f̂(λk)ϕk(n). (2.2)

If we consider the function f and f̂ as N × 1 vectors, then (2.1) and (2.2)

become

f̂ = Φ∗f and f = Φf̂ .

Since, Φ is a unitary matrix, the derivation of (2.2) is a direct result of (2.1).

Futhermore, (2.2) implies that every function equals the analogue of what would be

its Fourier series using the definitions provided here.

Proposition 2.1.2 (Parseval’s Identity). For any f, g : V → R, then Parseval’s

relation holds. That is, 〈f, g〉 = 〈f̂ , ĝ〉. Moreover, this implies that

‖f‖2`2 =
N∑
n=1

|f(n)|2 =
N−1∑
l=0

|f̂(λ`)|2 =
∥∥∥f̂∥∥∥2

`2
.
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Proof. Since the matrix Φ is unitary, then we can compute directly

〈f̂ , ĝ〉 = f̂ ∗ĝ = (Φ∗f)∗Φ∗g = f ∗ΦΦ∗g = f ∗g = 〈f, g〉.

2.2 Graph Convolution

The convolution of two signals f, g ∈ L2(R) is defined as

f ∗ g(t) =

∫
R
f(u)g(t− u) du.

However, we have not yet established a clear analogue of translation in the graph

setting. Instead, we exploit the following property of the convolution: (̂f ∗ g)(ξ) =

f̂(ξ)ĝ(ξ), see [6]. Then by taking the inverse graph Fourier transform, (2.2), we can

define convolution in the graph domain. For f, g : V → R, we define the graph

convolution of f and g as

f ∗ g(n) =
N−1∑
l=0

f̂(λ`)ĝ(λ`)ϕ`(n). (2.3)

Many of the classical time-frequency properties of the convolution hold for the

graph convolution.

Proposition 2.2.1 ( [59, Proposition 1]). For α ∈ R, and f, g, h : V → R then the

graph convolution defined in (2.3) satisfies the following properties:

1. f̂ ∗ g = f̂ ĝ.

2. α(f ∗ g) = (αf) ∗ g = f ∗ (αg).
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3. Commutativity: f ∗ g = g ∗ f .

4. Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h.

5. Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).

The proofs of these properties are straightforward and some follow immediately

from Definition (2.3).

If we want to express the graph convolution as a vector then (2.3) is equivalent

to (f̂ � ĝ)Φ∗ where � is the pointwise multiplication operator (written as .* in

MATLAB). In MATLAB, (recalling that f̂ = Φ∗f) one would express the vector

f ∗ g as

Φ*((Φ′ *f).*(Φ′*g))

or equivalently

Φ*(diag(Φ′*f)*Φ′*g) or Φ*(diag(Φ′*g)*Φ′*f)

where the operation diag(a) takes a vector, a, and returns a square matrix with

vector a on the diagonal and zero elsewhere.

Example 2.2.2. In the classical Euclidean setting, convolution with the Dirac delta

function acts as the identity, i.e.,

f(x) = (f ∗ δ0)(x) =

∫
R
f(t− x)δ0(t) dt,

where

δc(x) =


1, if x = c

0, if x 6= c.
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The graph convolution also has a function that acts as the identity under the graph

convolution. Consider the function g0 : V → R by first defining it in the spectral

domain by ĝ0(λ`) = 1 for all l = 0, ..., N − 1. Then the values of g0 can be obtained

by taking the inverse Fourier transform (2.2) giving g0(n) =
∑N−1

l=0 ϕ`(n) (in vector

notation, g0 = Φ ∗ 1N×1, where 1N×1 is the N × 1 vector of all ones). Then as a

result of Proposition 2.2.1, we have

f(n) =
N−1∑
l=0

f̂(λ`)ϕ`(n) =
N−1∑
l=0

f̂(λ`)ĝ0(λ`)ϕ`(n) (2.4)

= f ∗ g0(n).

In other words, f ∗ g0 = f , so convolution with the function g0 is the identity.

2.3 Graph Modulation

Motivated by the fact that in Euclidean space, modulation of a function is

multiplication of a Laplacian eigenfunction, we define for any k = 0, 1, ..., N − 1 the

graph modulation operator Mk : RN → RN as

(Mkf)(n) =
√
Nf(n)ϕk(n). (2.5)

Notice that since ϕ0 ≡ 1√
N

then M0 is the identity operator.

An important remark is that in the classical case, modulation in the time

domain represents translation in the frequency domain, i.e., M̂ξf(ω) = f̂(ω − ξ),

see [6]. The graph modulation does not exhibit this property due to the discrete

nature of the spectral domain. However, it is worthy to notice the special case if
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ĝ(λ`) = δ0(λ`), i.e., g is a constant function, then

M̂kg(λ`) =
N∑
n=1

ϕ∗`(n)(Mkg)(n) =
N∑
n=1

ϕ∗`(n)
√
Nϕk(n)

1√
N

= δ`(k).

That is, modulation Mk sends the constant function to the k’th eigenvector, which,

in the spectral domain, translates ĝ = δ0 to M̂kg = δk.

We can express the operator Mk as a diagonal matrix

Mk =


ϕk(1) 0

. . .

0 ϕk(N)


and in the language of MATLAB we have

Mk=diag(Φ(:,k)).

2.4 Graph Translation

For signal f ∈ L2(R), the translation operator, Tu, which translates f by

vector u, can be thought of as a convolution with δu. Then in R, by exploiting (2.3)

we have

(Tuf)(t) = f(t− u) = (f ∗ δu)(t) =

∫
R
f̂(k)δ̂u(k)ϕk(t) dk =

∫
R
f̂(k)ϕ∗k(u)ϕk(t) dk

since δ̂u(k) =
∫
R δu(x)ϕ∗k(x) dx = ϕk(u).

Motivated by this example, for any f : V → R we can define the graph

translation operator, Ti : RN → RN via the graph convolution of the Dirac delta

centered at the i’th vertex:
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(Tif)(n) =
√
N(f ∗ δi)(n) =

√
N

N−1∑
k=0

f̂(λk)ϕ
∗
k(i)ϕk(n). (2.6)

We can express Tif in matrix notation as follows:

Tif =
√
N


ϕ∗0(i)ϕ0(1) ϕ∗1(i)ϕ1(1) · · · ϕ∗N−1(i)ϕN−1(1)

...
... · · · ...

ϕ∗0(i)ϕ0(N) ϕ∗1(i)ϕ1(N) · · · ϕ∗N−1(i)ϕN−1(N)




f̂(λ0)

...

f̂(λN−1)


=
√
NΦ �

(
ϕ∗0(i), · · · , ϕ∗N−1(i)

)
Φ∗f (2.7)

where we introduce the binary operation � to signify element-wise multiplication.

For example, if

A =

a11 a12

a21 a22

 , b = (b1, b2)

then A� b multiplies the row vector b component-wise with each row of A; that is

A� b =

a11b1 a12b2

a21b1 a22b2

 .

Similarly if b′ was instead a column vector, i.e.

A =

a11 a12

a21 a22

 , b′ =

b1
b2

 ,

then A� b′ multiplies the column vector b′ component-wise with each column of A;

that is

A� b′ =

a11b1 a12b1

a21b2 a22b2

 .

The MATLAB command for A � b is bsxfun(@times,A,b). Therefore for any

i = 1, ..., N the MATLAB command for the translation operator as
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Ti=sqrt(N)*bsxfun(@times,Φ,Φ(i,:))*Φ′.

The following results follow from the properties of the graph convolution from

Proposition 2.2.1:

Proposition 2.4.1. For any f, g : V → C and for any i, j ∈ {1, 2, ..., N} then

1. Ti(f ∗ g) = (Tif) ∗ g = f ∗ (Tig).

2. TiTjf = TjTif .

Proof. The proof of Property 1 follows from the definition of convolution (2.3). To

prove Property 2 observe that

TiTjf(n) =
√
N

N−1∑
k=0

(T̂jf)(λk)ϕ
∗
k(i)ϕk(n)

= N
N−1∑
k=0

N∑
m=1

(Tjf)(m)ϕ∗k(m)ϕ∗k(i)ϕk(n)

= N
N−1∑
k=0

N−1∑
`=0

N∑
m=1

f̂(λ`)ϕ
∗
`(j)ϕ

∗
k(i)ϕk(n)ϕ`(m)ϕ∗k(m)

= N
N−1∑
k=0

N−1∑
`=0

f̂(λ`)ϕ
∗
`(j)ϕ

∗
k(i)ϕk(n)δk(`)

= N

N−1∑
k=0

f̂(λk)ϕ
∗
k(j)ϕ

∗
k(i)ϕk(n)

= N
N−1∑
k=0

(f̂ ∗ δi)(λk)ϕ∗k(j)ϕk(n) =
√
NTj(f ∗ δi)(n) = TjTif(n).

The following result shows a reflexivity between the translation operator and

the vertex at which it is evaluated.
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Corollary 2.4.2. For any i, n ∈ {1, ..., N} and for any function g : V → C we have

Tig(n) = Tnḡ(i).

Proof. By definition (Tig)(n) =
√
N

N−1∑
k=0

ĝ(λk)ϕ
∗
k(i)ϕk(n). Hence,

Tig(n) =
√
N

N−1∑
k=0

ĝ(λk)ϕ∗k(i)ϕk(n)

=
√
N

N−1∑
k=0

̂̄g(λk)ϕk(i)ϕ
∗
k(n) = Tnḡ(i),

which proves the corollary.

Notice that, in particular, Corollary 2.4.2 asserts that if the eigenvectors

{ϕ`}N−1l=0 are entirely real-valued, then

Tig(n) = Tng(i).

Combining this with Proposition 2.4.1 gives the following result.

Theorem 2.4.3. Assume G is a graph with real-valued eigenvectors {ϕk}N−1k=0 . Let

α be a multiindex, i.e. α = (α1, α2, ..., αK) where αj ∈ {1, ..., N} for 1 ≤ j ≤ K

and let α0 ∈ {1, ..., N}. We let Tα denote the composition TαK
◦ · · ·Tα2 ◦ Tα1.

Then for any f : V → R, we have Tαf(α0) = Tβf(β0) where β = (β1, ..., βK) and

(β0, β1, β2, ..., βK) is any permutation of (α0, α1, ..., αK).

Proof. There exists a bijection between the collection of all possible Tαf(α0) for

|α| = K, 1 ≤ α0 ≤ N , and the space of (K + 1)-tuples with values in {1, ..., N}.

That is, the map that sends Tαf(α0) to (α0, α1, ...., αK) is a bijection. This enables us

to define an equivalence relation on the space {1, ..., N}K+1. We write (a0, ..., aK) ∼=

(b0, ..., bK) if and only if TaK ◦ · · · ◦ Ta1f(a0) = TbK ◦ · · · ◦ Tb1f(b0).
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By Corollary 2.4.2, (a0, a1..., aK) ∼= σ1(a0, a1..., aK) = (a1, a0..., aK), i.e., σ1 is

the permutation (1, 2). In general, we write σi to denote the permutation (i, i+ 1).

By Proposition 2.4.1 b, (a0, a1..., aK) ∼= σi(a0, a1..., aK) for any i = 2, 3, ..., K−

1.

We now have that any permutation σi for i = 1, ..., K−1 preserves equivalency.

This collection of K − 1 transpositions allow for any permutation, which proves the

corollary.

Proposition 2.4.1 and its corollaries conclude that the translation operator

is distributive with the convolution and that the translation operators commute

among themselves. However, the niceties end here; other properties of translation

on the real line do not carry over to the graph setting. For example, we do not

have the collection of graph translation operators forming a group, i.e., TiTj 6= Ti+j.

In fact, we cannot even assert that the translation operators form a semigroup, i.e.

TiTj = Ti•j for some semigroup operator • : {1, ..., N} × {1, ..., N} → {1, ..., N}.

The following theorem characterizes graphs which do exhibit a semigroup structure

of the translation operators.

Theorem 2.4.4. Consider the graph, G(V,E), with real-valued (resp. complex-

valued) eigenvector matrix Φ = [ϕ0 · · ·ϕN−1]. Graph translation on G is a semi-

group, i.e. TiTj = Ti•j for some semigroup operator • : {1, ..., N} × {1, ..., N} →

{1, ..., N}, only if Φ = (1/
√
N)H, where H is a real-valued (resp. complex-valued)

Hadamard matrix.

Proof. i. We first show that graph translation on G is a semigroup, i.e. TiTj = Ti•j
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for some semigroup operator • : {1, ..., N} × {1, ..., N} → {1, ..., N}, if and only if

√
Nϕk(i)ϕk(j) = ϕk(i • j) for all l = 0, ..., N − 1. By repeating the calculations in

the proof of Proposition 2.4.1, we have

TiTjf(n) = N

N−1∑
k=0

f̂(λk)ϕ
∗
k(j)ϕ

∗
k(i)ϕk(n)

and by definition

T`f(n) =
√
N

N−1∑
k=0

f̂(λk)ϕ
∗
k(`)ϕk(n).

Therefore, TiTjf = Ti•jf will hold for any function f : V → R if and only if

√
Nϕk(i)ϕk(j) = ϕk(i • j) for every k ∈ {0, ..., N − 1}.

ii. We show next that
√
Nϕk(i)ϕk(j) = ϕk(i • j) for all k = 0, ..., N − 1 only

if the eigenvectors are constant amplitude, namely 1/
√
N by the orthonormality of

the eigenvectors. Assume
√
Nϕk(i)ϕk(j) = ϕk(i • j), which, in particular, implies

√
Nϕk(i)ϕk(i) =

√
Nϕk(i)

2 = ϕk(i • i).

Suppose that |ϕk(a1)| < 1/
√
N for some a1 ∈ {1, ..., N} and for some k ∈

{0, ..., N − 1}. Then
√
Nϕk(a1)

2 < |ϕk(a1)| and so a1 • a1 = a2 for some a2 ∈

{1, ..., N} \ {a1}. Then since |ϕk(a2)| =
√
Nϕk(a1)

2 < |ϕk(a1)| < 1/
√
N we can

repeat the same argument to assert a2 • a2 = a3 for some a3 ∈ {1, ..., N} \ {a1, a2}.

This procedure can be repeated producing an infinite number of unique indices

{ai} on a graph, G, which contradicts the graph having only N < ∞ nodes. A

similar argument gives a contradiction if |ϕ(i)| > 1/
√
N for any l, i. Therefore,

the graph translation operators form a semigroup only if |ϕk(n)| = 1/
√
N for all

k = 0, 1, ..., N − 1 and n = 1, ..., N . Since Φ is an orthogonal matrix, i.e. ΦΦ∗ =

Φ∗Φ = I, then Φ = (1/
√
N)H, where H is a Hadamard matrix.
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Remark 2.4.5. a). The order of a Hadamard matrix must be 1, 2, or a multiple of

4. Hadamard’s conjecture proposes that there exists a Hadamard matrix of order

equal to every multiple of 4 and remains an open problem currently. See [36] for

other properties and constructions of Hadamard matrices.

b). Rearranging rows and columns of a Hadamard matrix does not change

its orthogonality nor its constant amplitude properties. Therefore, without loss of

generality, we may assume that the first column of H is the vector of all ones to

correspond with ϕ0 equaling the constant vector with entries 1/
√
N .

c). If we relax the constraint that Φ must be real-valued, we can obtain graphs

with constant-amplitude eigenfunctions that allow the translation operators to form

a (semi)group. For the cycle graph on N nodes, CN , one can choose Φ equal to the

discrete Fourier transform (DFT) matrix, where Φnm = e−2πi(n−1)(m−1)/N . Under

this construction, we have TiTj = Ti+j (mod N).

d). It is shown in [3, Theorem 5] that if Φ = (1/
√
N)H for Hadamard H, then

the spectrum of the Laplacian, σ(L), must consist entirely of even integers. The

authors of [27] explore graphs with integer spectrum but do not address the case of

a spectrum of only even integers.

e). The converse to Theorem 2.4.4 does not necessarily hold. That is, if the

eigenvector matrix Φ = 1/
√
NH, for a renormalized Hadamard matrix H, then the

translation operators on G need not form a semigroup. For example, consider the
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real Hadamard matrix, H, of order 12 given by

H =



1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 1 1 −1 −1 −1 1 −1

1 −1 −1 1 −1 1 1 1 −1 −1 −1 1

1 1 −1 −1 1 −1 1 1 1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 1 −1 −1

1 −1 −1 1 −1 −1 1 −1 1 1 1 −1

1 −1 −1 −1 1 −1 −1 1 −1 1 1 1

1 1 −1 −1 −1 1 −1 −1 1 −1 1 1

1 1 1 −1 −1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 1 −1 −1 1 −1

1 −1 1 1 1 −1 −1 −1 1 −1 −1 1

1 1 −1 1 1 1 −1 −1 −1 1 −1 −1



.

Then the second and third columns multiplied componentwise equals the vec-

tor

[1,−1, 1,−1,−1, 1, 1,−1, 1, 1,−1,−1]>,

which does not equal any of the columns of H.

What kinds of graphs have a Hadamard eigenvector matrix? The authors

of [3] prove that if N is a multiple of 4 for which a Hadamard matrix exists, then

the complete graph on N vertices, KN , is one such graph.

Theorem 2.4.6 ( [3, Observation 1]). Suppose H is a real Hadamard matrix of

order N ∈ 4Z. Then 1/
√
NH is an eigenvector matrix for the complete graph of N
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vertices, KN .

Proof. It is a standard result (see [17]) that the complete graph has Laplacian matrix

L = NI − J , where J is the matrix with all entries 1, with eigenvalues λ0 = 0 and

λi = N for i = 1, ..., N − 1. Let D be the diagonal matrix D(i, i) = λi−1.

We can write the N ×N matrix H as

H =
[
1|H̃

]
where 1 is the N × 1 vector of all ones and H̃ is the remaining N × (N − 1) matrix.

If the N ×N matrix, A = [a|B] where a is an N × 1 vector, then it is simple

to verify that

AA> = aa> +BB>.

This identity gives

NI = HH> = 11
> + H̃H̃>,

where the first equality holds from the property of H being Hadamard. Additionally,

one can compute HDH> = nH̃H̃>.

Thus we have

(
1√
N
H

)
D

(
1√
N
H

)−1
=

(
1

N

)
HDH> = NI − J = L,

which completes the proof.

Also unlike in the classical case in Rd, translation is not an isometric operation.

That is ‖Tif‖2 6= ‖f‖2. However, we do have the following estimates:
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Lemma 2.4.7 ( [59, Lemma 1]). For any f : V → R,

|f̂(0)| ≤ ‖Tif‖2 ≤
√
N max

k∈{0,1,...,N−1}
|ϕ`(i)| ‖f‖2 ≤

√
N max

k∈{0,1,...,N−1}
‖ϕ`‖∞ ‖f‖2

(2.8)

Proof. By definition

‖Tif‖22 = N
N∑
n=1

(
N−1∑
k=0

f̂(λk)ϕ
∗
k(i)ϕk(n)

)2

= N
N−1∑
k=0

N−1∑
k′=0

f̂(λk)f̂(λk′)ϕ
∗
k(i)ϕ

∗
k′(i)

N∑
n=1

ϕk(n)ϕk′(n)

= N
N−1∑
k=0

N−1∑
k′=0

f̂(λk)f̂(λk′)ϕ
∗
k(i)ϕ

∗
k′(i)

N∑
n=1

δ(k, k′)

where the last equality follows from the fact that {ϕk}N−1l=0 is an orthonormal basis

and we can a priori choose the eigenvectors to all be real-valued. Then we can

further simplify to obtain

‖Tif‖22 = N
N−1∑
k=0

|f̂(λk)|2|ϕ∗k(i)|2 ≤ N max
l=0,...,N−1

|ϕk(i)|2 ‖f‖22 ≤ N max
l∈{0,1,...,N−1}

‖ϕk‖2∞ ‖f‖
2
2 .

The lower bound comes from the fact that ϕ0(n) = 1/
√
N for all n and so

‖Tif‖22 = N

N−1∑
k=0

|f̂(λk)|2|ϕ∗k(i)|2 ≥ N |f̂(λ0)|2|ϕ0(i)|2 = N |f̂(0)|2
∣∣∣∣ 1√
N

∣∣∣∣2 = |f̂(0)|2

which proves the lemma.

It is worth noting that if the eigenvector matrix Φ has all constant-amplitude

entries, i.e., |Φij| = 1/
√
N , then graph translation is isometric. An example of

such a graph is the cycle graph on N vertices, CN , if we allow Φ to equal the

complex-valued DFT matrix. Then since |ϕk(n)| = 1/
√
N for all k = 0, ..., N − 1
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and n = 1, ..., N the calculation in the proof of Lemma 2.8 gives

‖Tif‖22 = N

N−1∑
k=0

|f̂(λk)|2|ϕ∗k(i)|2 =
N−1∑
k=0

|f̂(λk)|2 = ‖f‖22 ,

where the last equality follows from Parseval’s identity (Proposition 2.1.2).

Furthermore, unlike the Euclidean notion of translation, graph translation

need not be invertible. Theorem 2.4.8 characterizes all graphs for which the operator

Ti is not invertible.

Theorem 2.4.8. The graph translation operator Ti fails to be invertible if and only

if there exists some k = 1, ..., N − 1 for which ϕk(i) = 0. Furthermore, the nullspace

of Ti has a basis equal to those eigenvectors that vanish on the i’th vertex.

Proof. Assuming some ϕk(i) = 0, we prove that Ti is not invertible by calculating

its rank. By (2.7), the operator Ti can be written as the matrix

Ti =
√
N


ϕ∗0(i)ϕ0(1) ϕ∗1(i)ϕ1(1) · · · ϕ∗N−1(i)ϕN−1(1)

...
... · · · ...

ϕ∗0(i)ϕ0(N) ϕ∗1(i)ϕ1(N) · · · ϕ∗N−1(i)ϕN−1(N)

Φ∗

=:
√
NAiΦ

∗ (2.9)

We can compute T ∗i Ti = NΦA∗iAiΦ
∗. Since Φ is an N ×N matrix of full rank, we

can express the rank of Ti solely in terms of the matrix Ai, i.e.,

rank(Ti) = rank(T ∗i Ti) = rank(ΦA∗iAiΦ
∗) = rank(A∗iAi).
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We can explicitly compute for any indices n,m ∈ {1, ..., N},

(A∗iAi)(n,m) =
N∑
k=1

Ai(k, n)Ai(k,m) =
N−1∑
k=0

ϕ∗n(k)ϕn(i)ϕm(k)ϕ∗m(i)

= ϕn(i)ϕ∗m(i)
N−1∑
k=0

ϕ∗n(k)ϕm(k)

= ϕn(i)ϕ∗m(i)δn(m).

Hence, A∗iAi is a diagonal matrix with diagonal entries (A∗iAi)(n, n) = |ϕn(i)|2 and

therefore

rank(Ti) = |{k : ϕk(i) 6= 0}|.

Conversely, if Ti is not invertible then it must not be of full rank and therefore

at least one entry on the diagonal matrix A∗iAi must equal zero. This proves the

first part of the theorem.

To prove the second part of the theorem, suppose that ϕkj(i) = 0 for {kj}Kj=1 ⊆

{1, ..., N − 1} (hence, K ≤ N − 1). Then for each j ∈ {1, ..., K} and any n ∈

{1, ..., N} we have

Tiϕkj(n) =
√
N

N−1∑
k=0

ϕ̂kj(λk)ϕ
∗
k(i)ϕk(n) =

√
Nϕ∗kj(i)ϕkj(n) = 0.

Therefore, ϕkj is in the null space of Ti for every j = 1, ..., K. Moreover they are

{ϕkj}Kj=1 is a collection of K orthogonal unit-norm vectors in the null space which

has dimension N− rank(Ti) = K, hence they form an orthonormal basis for the null

space of Ti.

Corollary 2.4.9. If ϕk(i) 6= 0 for all k = 1, ..., N − 1, then the graph translation

34



operator Ti is invertible and its inverse is given by

T−1i =
1√
N

Φ


ϕ∗0(1)ϕ∗0(i)

−1 ϕ∗0(2)ϕ∗0(i)
−1 · · · ϕ∗0(N)ϕ∗0(i)

−1

...
... · · · ...

ϕ∗N−1(1)ϕ∗N−1(i)
−1 ϕ∗N−1(2)ϕ∗N−1(i)

−1 · · · ϕ∗N−1(N)ϕN−1(i)
−1

 .

Proof. We shall first prove that the inverse to the matrix Ai given in (2.9) is given

by

A−1i =


ϕ∗0(1)ϕ∗0(i)

−1 ϕ∗0(2)ϕ∗0(i)
−1 · · · ϕ∗0(N)ϕ∗0(i)

−1

...
... · · · ...

ϕ∗N−1(1)ϕ∗N−1(i)
−1 ϕ∗N−1(2)ϕ∗N−1(i)

−1 · · · ϕ∗N−1(N)ϕN−1(i)
−1

 .

We can then compute

AiA
−1
i (n,m) =

N∑
k=1

Ai(n, k)A−1i (k,m) =
N−1∑
k=0

ϕ∗k(i)ϕk(n)ϕ∗k(m)ϕ∗k(i)
−1

=
N−1∑
k=0

ϕk(n)ϕ∗k(m) = δn(m),

and similarly

A−1i Ai(n,m) =
N∑
k=1

A−1i (n, k)Ai(k,m) =
N∑
k=1

ϕ∗n−1(k)ϕ∗n−1(i)
−1ϕm−1(k)ϕ∗m−1(i)

= ϕ∗n−1(i)
−1ϕ∗m−1(i)

N∑
k=1

ϕ∗n−1(k)ϕm−1(k) = ϕ∗n−1(i)
−1ϕ∗m−1(i)δn(m),

which proves A−1i Ai = AiA
−1
i = IN .

Thus we can verify by the orthonormality of Φ that

TiT
−1
i = AiΦ

∗ΦA−1i = IN = ΦA−1i AiΦ
∗ = T−1i Ti.

35



Since the invertablility of the graph translation operators depends entirely on

when and where eigenvectors vanish, Chapter 3 is devoted to studying the support

of graph eigenvectors.

Remark 2.4.10. The results of Theorem 2.4.8 and its corollary are not applicable

solely to the graph translation operators. They can be generalized to a broader class

of operators on graphs, in particular, operators that act as Fourier operators. We

say that an operator A that acts on a function f is a Fourier multiplier if the Fourier

transform of Af can be written as the product

Âf(ξ) = â(ξ)f̂(ξ)

for some function a defined in the spectral domain.

Indeed graph translation is defined as a Fourier multiplier since it is defined

as

T̂if(λk) = ϕk(i)f̂(λk).

Hence, Theorem 2.4.8 and Corollary 2.4.9 can be generalized to Fourier multipliers

in the following way

Corollary 2.4.11. Let A be a Fourier multiplier whose action on f : V → C is

defined in the spectral domain Âf(λk) = â(λk)f̂(λk). Then A is invertible if and

only if â(λk) 6= 0 for all λ = 0, 1, ..., N − 1. Furthermore, its inverse A−1 will be

given by the Fourier multiplier

Â−1f(λk) = â(λk)
−1f̂(λk).
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Chapter 3

Support of eigenvectors on graphs

This chapter proves results about the support of Laplacian eigenvectors on

graphs. In particular, we characterize and describe the set on which eigenvectors

vanish. The Fiedler vector, ϕ1, has unique properties that enable us to prove our

main result, Theorem 3.1.10, that planar graphs cannot have large regions on which

ϕ1 vanishes. We then construct a family of (non-planar) graphs, called the barren

graphs, and prove in Theorem 3.1.13 that their Fiedler vectors do vanish on large

regions.

3.1 Support and the Characteristic set of the Fiedler Vector

A connected G(V,E, ω) graph on N vertices has Laplacian L with real spec-

trum 0 = λ0 < λ1 ≤ · · · ≤ λN−1 and corresponding real orthonormal eigenvectors

ϕ0, ϕ1, ..., ϕN−1. By Theorem 1.2.1, the first eigenfunction, ϕ0, will be the constant

vector 1/
√
N . The first nontrivial eigenvalue, λ1, is of particular importance. It is a

measure of how connected the graph G is, and as such it is known as the algebraic

connectivity of the graph G. The highest λ1 can be is N , which happens only for

the complete graph in which case the spectrum is {0, N, ..., N}.

An eigenvector corresponding to the algebraic connectivity of G is called

the Fiedler vector, ϕ1, satisfying Lϕ1 = λ1ϕ1, named after Czech mathematician
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Miroslav Fiedler and his contributions to this subject [29,30]. If λ1 has multiplicity

1, then the Fiedler vector is unique up to a sign. The Fiedler vector is used ex-

tensively in dimensionality reduction techniques [5, 19, 20, 22], data clustering [54],

image segmentation [28], and graph drawing [60]. As seen in Theorem 2.4.8, the

support of eigenvectors will influence the behavior of the graph translation opera-

tors defined in the emerging field of graph signal processing literature. The goal of

this chapter is to characterize where a Fiedler vector, and other eigenvectors of the

Laplacian, vanish on V .

Let ϕ1 denote a Fiedler vector for L on G. We can decompose the vertex set,

V , into three disjoint subsets, V = V+ ∪ V− ∪ V0, where V+ = {x ∈ V : ϕ1(x) > 0},

V− = {x ∈ V : ϕ1(x) < 0}, and V0 = {x ∈ V : ϕ1(x) = 0}. The set V0, the set

of vertices on which the Fiedler vector vanishes, is referred to in literature as the

characteristic set of the graph [2]. The characteristic set is sometimes referred to as

the nodal vertices of the graph in some literature. This vertex decomposition is not a

unique property to the graphG; any graph can allow multiple such decompositions of

the vertex set V . In the case that the algebraic connectivity has higher multiplicities,

i.e., λ1 = λ2 = · · · = λm for some 2 ≤ m ≤ N − 1, then each ϕs is a Fiedler vector

for 1 ≤ s ≤ m. Futhermore, any linear combination of {ϕs}ms=1 will also be a

Fiedler vector and yield a different vertex decomposition. Even in the case when

the algebraic connectivity of G is simple, then −ϕ1 is also a Fiedler vector for G.

In this case, V+ and V− can be interchanged but the set V0 is unique to G. It was

recently shown in [68] that the space of Hermitian matrices (which includes graph

Laplacians) with simple spectrum is open and dense in the space of all Hermitian

38



matrices.

We wish to describe and characterize the sets V+, V−, and V0 for graphs.

Fiedler proved in [30] that the subgraph induced on the vertices {v ∈ V : ϕ1(v) ≥

0} = V+ ∪ V0 forms a connected subgraph of G. Similarly, V− ∪ V0 form a connect

subgraph of G. Recently, it was proved in [69] that we can relax the statement and

show that the subgraphs on V+ and V− are connected subgraphs of G.

The following result guarantees that V+ and V− are always close in terms of

the shortest path graph distance.

Lemma 3.1.1. Let G(V,E, ω) with Fiedler vector ϕ1 inducing the partition of ver-

tices V = V+ ∪ V− ∪ V0. Then d(V+, V−) ≤ 2.

Proof. First consider the case in which V0 = ∅. In this case, there necessarily exists

an edge e = (x, y) with x ∈ V+ and y ∈ V− and hence d(V+, V−) = 1.

Now consider the case in which V0 6= ∅. Since G is connected we are guaranteed

the existance of some x ∈ V0 and some y ∼ x with either y ∈ V+ or y ∈ V−. Since

x ∈ V0, we have

0 = λ1ϕ1(x) = Lϕ1(x) =
∑
z∼x

ϕ1(z)− ϕ1(x) =
∑
z∼x

ϕ1(z). (3.1)

We have established that at least one neighbor of x, namely y, satisfied ϕ1(y) 6= 0.

Then by (3.1), there must exist at least one other neighbor of x, call it y′, such

that ϕ1(y
′) has the opposite sign of ϕ1(y). Hence we have now constructed a path,

namely (y, x, y′) connecting V+ and V− and the lemma is proved.

Many graphs exhibit the property that eigenvectors ϕk for large values of k are

highly localized and vanish on large regions of the graph; see [37] for an experimental

39



Figure 3.1: A graph with arbitrarily large set V0(ϕ)

excursion on this phenomenon. It is perhaps a misconception that eigenvectors

corresponding to small eigenvalues, or in particular, the Fiedler vector of graphs

have full support. Indeed the Fiedler vector of the Minnesota graph never achieves

value zero. On the other hand the Fiedler vector of the the graph approximations to

the Sierpeinski gastet SGn can vanish but only along the small number of vertices

symmetrically in the center of the graph.

It was shown in [2], that the cardinality of V0 can be arbitrarily large. Figure

3.1 shows a family of graphs that yield sets V0 with arbitrarily large cardinality. The

family is a path graph PN on an odd number of vertices, except the middle vertex

and its edges are duplicated an arbitrarily large number of times. As evident from

Figure 3.1, the set V0 is not connected; in fact, no vertex in V0 is connected to any

other vertex of V0.

For the sake of thoroughness we introduce a family of graphs also with arbitrar-
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ily large V0 but that is also connected. We call the family of graphs the generalized

ladder graphs, denoted Ladder(n,m). The standard ladder graphs, Ladder(n, 2), is

simply the graph Cartesian product, see [39], of the path graph of length n, Pn, and

the path graph of length 1, P1. The graph Ladder(n, 2) resembles a ladder with

n rungs. The generalized ladder graphs, Ladder(n,m), are ladders with n rungs

and each rung contains m vertices. Provided that the number of rungs, n, is odd,

then V0 will be the middle rung and will clearly be connected. This gives |V0| = m.

Figure 3.2 shows a generalized ladder graph and its Fiedler vector.

3

2

132.82.62.42.221.81.61.41.21
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Figure 3.2: The generalized ladder graph, Ladder(3, 3). The set V0

consists of the three vertices making the middle rung of the ladder

and contains one ball of three vertices.

The generalized ladder graph provides an example of a graph with a connected

characteristic set. Observe in Figure 3.2 however, that each vertex in V0 is connected

to at most two vertices. We then pose the question as to whether or not there exist

graphs for which a vertex V0 has three or more neighbors all contained in V0. It is
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simpler to state this property using the definition of a graph ball, which is motivated

by the definition of a closed ball in general normed spaces.

Definition 3.1.2. Given any x ∈ V and any integer r ≥ 1, we define the ball of

radius r centered at x,

Br(x) = {y ∈ V : d(x, y) ≤ r},

where d(x, y) is the shorted path length from x to y in G.

The following proposition shows that the Fiedler vector cannot be constant-

valued on any balls within V+ and V−.

Proposition 3.1.3. Let ϕ1 be the Fiedler vector for the Laplcian on graph G and

suppose Br(x) ⊆ V+ or Br(x) ⊆ V− for r ≥ 1. Then ϕ1 cannot be constant-valued

on Br(x).

Proof. It suffices to prove the claim for r = 1. Without loss of generality, assume

B1(x) ⊆ V+ and suppose that ϕ1 is constant on B1(x). Then

Lϕ1(x) =
∑
y∼x

ωx,y(ϕ1(x)− ϕ1(y)) = 0,

since y ∼ x implies y ∈ B1(x) and ϕ1 is constant on that ball. However, Lϕ1(x) =

λ1ϕ1(x) > 0 since λ1 > 0 and ϕ1(x) > 0 on V+. This is a contradiction and the

proof is complete.

The result of Proposition 3.1.3 can be formulated in terms on any nonconstant

eigenvector of the Laplacian, not just a Fiedler vector.
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Corollary 3.1.4. Any nonconstant eigenvector of the Laplacian, ϕk, associated with

eigenvalue λk > 0 cannot be constant on any ball contained in the positive vertices

{i ∈ V : ϕk(i) > 0} or negative vertices {i ∈ V : ϕk(i) < 0} associated to that

eigenvector.

Proof. Suppose there existed a ball B1(x) ⊆ {i ∈ V : ϕk(i) > 0} on which ϕk was

constant. Then just as in the previous proof we could calculate

Lϕk(x) =
∑
y∼x

ωx,y(ϕk(x)− ϕk(y)) = 0,

which contradicts Lϕk(x) = λkϕk(x) > 0.

We wish to extend Proposition 3.1.3 to the set V0. However, as seen in gen-

eralized ladder graphs, Ladder(n,m) for n odd and m > 2, for which V0 contains a

ball of radius 1. This ball, however, contains 3 vertices (the center vertex and its

two neighbors). The next goal is to characterize graphs whose characteristic set V0

contains a ball of radius 1 containing at least four vertices. We prove that this is

impossible for planar graphs.

Definition 3.1.5. A planar graph is a graph whose vertices and edges can be em-

bedded in R2 with edges intersecting only at vertices.

In 1930, Kazimierz Kuratowski characterized all planar graphs in terms of

subdivisions.

Definition 3.1.6. A subdivision of a graphG(V,E), also referred to as an expansion,

is the graph H(Ṽ , Ẽ) where the vertex set is the original vertex set with an added
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vertex, w, and the edge set replaces an edge (u, v) with the two edges (u,w) and

(w, v). That is, Ṽ = V ∪ {w} and Ẽ = E \ {(u, v)} ∪ {(u,w), (w, v)}.

Theorem 3.1.7 (Kuratowski’s Theorem, [42]). A finite graph, G, is planar if and

only if it does not contain a subgraph that is a subdivision of K5 or K3,3, where K5

is the complete graph on 5 vertices and K3,3 is the complete bipartite graph on six

vertices (also known as the utility graph), see Figure 3.3.

A weaker fomulation of Kuratowski’s Theorem can be stated in terms of graph

minors.

Definition 3.1.8. Given an undirected graphG(V,E), consider edge e = (u, v) ∈ E.

Contracting the edge e entails deleting edge e and identifying u and v as the same

vertex. The resulting graph H(Ṽ , Ẽ) has one fewer edge and vertex as G.

An undirected graph is called a minor of G if it can be formed by contracting

edges of G.

Theorem 3.1.9 (Wagner’s Theorem, [71]). A finite graph is planar if and only if

it does not have K5 or K3,3 as a minor.

Because of the importance of K5 and K3,3 in identifying non-planar graphs,

there are refered to as forbidden minors.

One of the main results in this chapter shows that planar graphs cannot have

large balls contained in the characteristic set V0.

Theorem 3.1.10. Let G(V,E) be a planar graph with Fiedler vector ϕ1. Then the

zero set of ϕ1 contains no balls of radius r = 1 with more than three vertices.
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Figure 3.3: The forbidden minors. Left: The complete graph on five

vertices. Right: The complete bipartite graph on six vertices.

Proof. Suppose that V0 contains a ball, B1(x), centered at vertex x ∈ V0 and com-

prised of at least four vertices. Without loss of generality, we can assume that the

connected component of V0 containing x equals B1(x). If not, then contract edges

so that the connected component of V0 containing x equals a ball of radius 1. Since

|B1(x)| ≥ 4, then we have dx ≥ 3 and let {yi}dxi=1 denote the neighbors of x. Then

as constructed, B1(x) = {x, y1, y2, ..., ydx}.

By Lemma 3.1.1, for i = 1, 2, 3, each vertex yi has at least one neighbor in V+

and at least one in V−; pick one neighbor from each set and denote them pi and

ni, respectively. It is proved in [69] that V+ and V− are connected subgraphs of G.

Therefore, there is a path of edges that connect p1, p2, and p3 (if p1 = p2 = p3, then

this path is empty). We create a minor of G by contracting the path connecting

p1, p2, and p3 to create one vertex p ∈ V+. Similarly, since V− is connected, we can

contract the path connecting n1, n2, and n3, to create one vertex n ∈ V−.
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Consider the subgraph of the now minorized version of G consisting of vertices

{x, p, n, y1, y2, y3}. This subgraph is K3,3, the complete bipartite graph on six ver-

tices since the vertices {x, p, n} are all connected to {y1, y2, y3}. Thus by Wagner’s

Theorem, G is not a planar graph, which is a contradiction. This completes the

proof.

The result of Theorem 3.1.10 does not hold for general graphs. We construct

a family of (nonplanar) graphs for which V0 contains a ball with a large number of

vertices. Since the set of vertices for which the Fiedler vector vanishes is large, we

call this family of graphs the barren graphs. The barren graph with |V | = N + 7

and |V0| = N + 1 is denoted Barr(N).

3.1.1 Construction of the barren graph, Barr(N)

The barren graph will be constructed as a sum of smaller graphs.

Definition 3.1.11. Let G1(V,E1) and G2(V,E2) be two graphs. The sum of graphs

G1 and G2 is the graph G(V,E) where E = E1 ∪ E2.

The barren graph Barr(N) is defined as follows

Definition 3.1.12. Let K(Vi, Vj) denote the bipartite complete graph between ver-

tex sets Vi and Vj, that is, the graph with vertex set V = Vi ∪ Vj and edge set

E = {(x, y) : x ∈ Vi, y ∈ Vj}. For N ≥ 3 the barren graph, Barr(N), is a graph

with N + 7 vertices. Let {Vi}6i=1 denote distinct vertex sets with given cardinalities

{|Vi|}6i=1 = {N, 1, 2, 2, 1, 1}. Then the barren graph is the following graph sum of
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the 5 complete bipartite graphs

Barr(N) = K(V1, V2) +K(V1, V3) +K(V1, V4) +K(V3, V5) +K(V4, V6).

As constructed, Barr(N) itself is bipartite; all edges connect the sets V2∪V3∪V4

to V1 ∪ V5 ∪ V6. Figure 3.4 shows two examples of barren graphs.

We shall show that for any N , the Fiedler vector for Barr(N) vanishes on

V1 ∪ V2 which has cardinality N + 1. Hence, the Fiedler vector for Barr(N) has

support on exactly six vertices for any N ≥ 3. In order to prove this, we explicitly

derive the entire spectrum and all eigenvectors of the Laplacian.

Theorem 3.1.13. The barren graph, Barr(N), has the spectrum given in Table 3.1.

In particular, the Fiedler vector of Barr(N) vanishes on vertices V1 ∪ V2 and hence

| supp(ϕ1)| = 6 for any N .

Proof. Firstly, the graph Barr(N) is connected and so we have λ0 = 0 with ϕ0 ≡

(N + 7)−1/2. All other eigenvalues must be positive.

We will next show that the structure and support of the function shown in

Figure 3.5 is an eigenvector for two eigenvalues of Barr(N). One can check upon

inspection that the shown function ϕ is orthogonal to the constant function. Then,

if the function shown in Figure 3.5, call it ϕ, is an eigenvector, then the eigenvalue

equation, Lx = λx is satisfied at each vertex. It is easy to verify that Lϕ(x) = 0

for each x ∈ V1 ∪ V2. For x ∈ V5 or x ∈ V6 the eigenvalue equation becomes

Lϕ(x) = 2(b − a) = λb. Finally, for any x ∈ V3 or x ∈ V4, the eigenvalue equation

gives Lϕ(x) = Na + (a − b) = λa. Finally, we also impose that the condition that
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Figure 3.4: The barren graph Barr(4) (top) and Barr(6) (bottom).

The set V1 is denoted with N blue dots; the vertex set V2 is the black

vertex in the center; the sets V3 and V4 are denoted with red dots; the

sets V5 and V6 are denoted with green dots.
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λk value eigenvector

λ0 0 constant function

λ1
1
2

(
N + 3−

√
N2 − 2N + 9

)
Figure 3.5

λ2 y1 Figure 3.6

λ3 = · · · = λN+1 5 ON basis on V1

λN+2 y2 Figure 3.6

λN+3 = λN+4 N + 1 Figure 3.7

λN+5
1
2

(
N + 3 +

√
N2 − 2N + 9

)
Figure 3.5

λN+6 y3 Figure 3.6

Table 3.1: The spectrum of the barren graph, Barr(N). The values

y1, y2, y3 are the roots to the cubic polynomial (3.2).
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−a −a

−b

Figure 3.5: Support and function values for the eigenvectors associ-

ated with eigenvalues λ1 and λN+5.

the eigenvectors are normalized so that ‖ϕ‖ = 1. Therefore, the function ϕ shown

in Figure 3.5 is an eigenvector of L if and only if the following system of equations

has a nontrivial solution: 
4a2 + 2b2 = 1

2(b− a) = λb

Na+ (a− b) = λa.

The first equation is not linear, but we can still solve this system by hand with

substitution to obtain the following two solutions:
a = 1

2

√
N2−2N+9∓(N−1)

√
N2−2N+9

2(N2−2N+9)

b = 1
2

√
N2−2N+9±(N−1)

√
N2−2N+9

N2−2N+9

λ = 1
2

(
N + 3±

√
N2 − 2N + 9

)
.

This gives two orthogonal eigenvectors and their eigenvalues.

Consider now the vector shown in Figure 3.6 with full support, yet only taking

on four distinct values. Similar to the previous example, we obtian a system of
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d

c c

c c

d

b
a

a

a

a

Figure 3.6: Support and function values for the eigenvectors associ-

ated with eigenvalues λ2, λN+2, and λN+6.

equations by imposing the conditions ‖ϕ‖ = 1, 〈ϕ, 1〉 = 0, and from writing out the

eigenvalue equations at each vertex class from V1, V2, V3 and V5 which gives:

Na2 + b2 + 4c2 + 2d2 = 1 (‖ϕ‖2 = 1)

Na+ b+ 4c+ 2d = 0 (ϕ ⊥ 1)

4(a− c) + (a− b) = λa (Lϕ(x) = λϕ(x) : x ∈ V1)

N(b− 1) = λb (Lϕ(x) = λϕ(x) : x ∈ V2)

(c− d) +N(c− a) = λc (Lϕ(x) = λϕ(x) : x ∈ V3 ∪ V4)

2(d− c) = λd (Lϕ(x) = λϕ(x) : x ∈ V5 ∪ V6)

.

Again, this system cannot be solved with linear methods. However, by tedious

substitutions we can reduce the system (assuming each of the variables a, b, c, d, λ

are nonzero) to solving for the roots of the following cubic polynomial in λ:

λ3 + (−2N − 8)λ2 + (N2 + 10N + 15)λ+ (−2N2 − 14N) = 0 (3.2)

The cubic polyomial x3 + c2x
2 + c1x + c0 = 0 has three distinct real roots if its
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dicriminant, ∆ = 18c0c1c2 − 4c32c0 + c22c
2
1 − 4c31 − 27c20, is positive. The discriminant

of (3.2) is positive for all N > 0 and hence we let y1 < y2 < y3 denote the three

positive roots which make up λ2, λN+2, and λN+6, respectively. By substituting

back into the system of equations, one can obtain values for a, b, c, d for each of the

λ = y1, y2, y3.

The roots y1, y2, y3 monotonically increase in N . A simple calculation shows

that y1 = 2 for N = 3 and y1 > 2 for N > 3. Hence λ1 < λ2 = y1 for all N . Also

observe that y2 < 5 for N < 5, so the ordering of the eigenvalues in Table 3.1 can

vary but their values are accurate.

One can verify that the three eigenvectors obtained from Figure 3.6 are linearly

independent and orthogonal to each eigenvector derived so far.

a −a

b −b

a −a

−b b

Figure 3.7: Support and function values for the eigenvectors associ-

ated with eigenvalues λN+3 and λN+4.

Consider now the two functions shown in Figure 3.7. The eigenvalue equation

gives Lϕ(x) = 0 for every except for those x ∈ V3 ∪ V4 in which case we have
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Lϕ(x) = (N + 1)ϕ(x). The two functions shown in Figure 3.7 are orthogonal and

linearly independent to each other and every eigenvector derived thus far and hence

N + 1 is an eigenvalue of Barr(N) with multiplicity two.

Finally, we will construct eigenfunctions that are supported only on the N

vertices in V1. Observe that if a function, f , is supported on V1 then for any x ∈ V1,

the eigenvalue equation gives Lf(x) = 5f(x) since x neighbors five vertices on

which f vanishes. Therefore, Barr(N) has eigenvalue 5. To construct the corre-

sponding eigenbasis, one can choose any orthonormal basis for the subspace of the

N -dimensional vector space that is orthogonal to the constant vector. Any basis for

this (N − 1)-dimensional vector space will give an eigenbasis for on V1. Finally one

can verify by inspection that these N − 1 eigenvectors are orthogonal and linearly

independent to each eigenvector derived in this proof.

As such, we have now constructed an orthonormal, linearly independent eigen-

basis for Barr(N) corresponding to the eigenvalues given in Table 3.1.

As a remark, observe the behavior of the spectrum of Barr(N) as N → ∞.

For every natural number N , λ1 < 2 and limN→∞ λ1 = 2. Using a symbolic solver,

one can prove that limN→∞ λ2 = limN→∞ y1 = 2 as well. Furthermore, the other

two roots of the polynomial (3.2) tend to infinity as N →∞. Therefore, as N →∞,

Barr(N) has spectrum approaching 0 (with multiplicity 1), 2 (with multiplicity 2),

5 (with multiplicity N − 2), and the rest of the eigenvalues tending to ∞.
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3.1.2 Characteristic Vertices and graph adding

In this subsection, we prove results about eigenvectors and their characteristic

vertices for graph sums as defined in Definition 3.1.11. We borrow the following

notation from [69] for clarity.

Definition 3.1.14. For any function f , we make the following definitions,

i0(f) = {i ∈ V : f(i) = 0},

i+(f) = {i ∈ V : f(i) > 0},

i−(f) = {i ∈ V : f(i) < 0}.

Observe that the set V0 (resp. V+ and V−) from Section 3.1 is equal to i0(ϕ1)

(resp. i+(ϕ1) and i−(ϕ1)).

Theorem 3.1.15. Consider n ≥ 2 connected graphs, {Gj(Vj, Ej)}nj=1 and suppose

that all n graph Laplacians, Lj, share a common eigenvalue λ > 0 with corre-

sponding eigenvectors ϕ(j). Each graph’s vertex set, Vj, assumes a decomposition

Vj = i+(ϕ(j)) ∪ i−(ϕ(j)) ∪ i0(ϕ(j)) and suppose that i0(ϕ(j)) 6= ∅ for all j. Consider

the graph G(V,E) = G(∪nj=1Vj,∪nj=1Ej ∪ E0) where the edge set E0 = {(xi, yi)}Ki=1

for xi ∈ i0(ϕj), yi ∈ i0(ϕ`), and j 6= ` is nonempty. Define ϕ on G by ϕ(x) = ϕ(j)(x)

for x ∈ Vj. Then, λ is an eigenvalue of G and ϕ is a corresponding eigenvector.

Proof. We will verify that Lϕ(x) = λϕ(x) for every x ∈ V . Every x ∈ V lies in

exactly one Vj and every edge connecting to x must be in either Ej or E0. Suppose

x contains no edges from E0. Then Lϕ(x) = Ljϕ(j)(x) = λϕ(j)(x) = λϕ(x).
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Suppose instead that x does contain at least one edge from E0. Then by

construction of the set E0, we have ϕ(x) = 0 and ϕ(y) = 0 for all (x, y) ∈ E0. This

allows us to compute

Lϕ(x) =
∑
y∼x

(ϕ(x)− ϕ(y)) =
∑
y∼x

(x,y)∈Ej

(ϕ(x)− ϕ(y)) +
∑
y∼x

(x,y)∈E0

(ϕ(x)− ϕ(y))

= Ljϕ(j)(x) + 0 = λϕ(j)(x) = λϕ(x).

Hence for any vertex in V, the vector ϕ satisfies the eigenvalue equation and the

proof is complete.

We can prove a stronger statement in the specific case where the graphs share

algebraic connectivity, λ1.

Theorem 3.1.16. Consider the assumptions given in Theorem 3.1.15 with the

added assumption that the common eigenvalue λ > 0 is the algebraic connectiv-

ity, i.e., the lowest nonzero eigenvalue of the graphs Gj. Then λ is an eigenvalue of

G(V,E) = G(∪nj=1Vj,∪nj=1Ej ∪ E0) but not the lowest nonzero eigenvalue. Hence,

ϕ(x) as defined in Theorem 3.1.15 is an eigenvector of G but not its Fideler vector.

Proof. It suffices to prove the theorem for n = 2. Let G1(V1, E2) and G2(V2, E2)

have Fiedler vectors ϕ(1) and ϕ(2), respectively. We can decompose each vertex set

into it’s positive, negative, and zero sets, i.e., Vj = i+(ϕ(j)) ∪ i−(ϕ(j)) ∪ i0(ϕ(j)).

Furthermore, i+(ϕ(j)) and i−(ϕ(j)) are connected subgraphs of Gj.

Now consider the larger graph G(V,E). The function ϕ(x) := ϕ(j)(x) for

x ∈ Vj is an eigenfunction of G by Theorem 3.1.15. However, now, the sets i+(ϕ)

and i−(ϕ) are disconnected. Indeed, let x ∈ i+(ϕ(1)) and y ∈ i+(ϕ(2)). Then any
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path connecting x and y must contain an edge in E0 since all E0 contains all edges

connecting G1 to G2. And hence any path connect x to y will contain at least two

vertices in i0(ϕ).

Then by [69] since i+(ϕ) and i−(ϕ) are both disconnected, then ϕ cannot be

the Fiedler vector of G and λ is not the smallest nonzero eigenvalue.

We can state a generalization of Theorem 3.1.15 for eigenvectors supported on

subgraphs of G.

Theorem 3.1.17. Consider the graph G(V,E). Let S ⊆ V and let H(S,ES) be

the resulting subgraph defined by just the vertices of S. Suppose that ϕ(S) is an

eigenvector of LS, the Laplacian of subgraph H, with corresponding eigenvalue λ.

If E(S, V \ S) = E(i0(ϕ
(S)), V \ S), that is, if all edges connecting graph H to its

complement have a vertex in the zero-set of ϕ(S), then λ is an eigenvalue of G with

eigenvector

ϕ(x) =


ϕ(S)(x) x ∈ S

0 x /∈ S.

Proof. The proof is similar to the proof of Theorem 3.1.15 in that we will simply

verify that Lϕ(x) = λϕ(x) at every point x ∈ V . For any x ∈
∫

(S), then Lϕ(x) =

LSϕ
(S)(x) = λϕ(S)(x) = λϕ(x). For any x ∈

∫
(V \ S), then Lϕ(x) = 0 since ϕ

vanishes at x and all of its neighbors. For x ∈ δ(S) (recall δ(S) = {x ∈ S : (x, y) ∈

E and y ∈ V \ S}), we have

Lϕ(x) =
∑
y∼x

(ϕ(x)− ϕ(y)) =
∑
y∼x
y∈S

(ϕ(x)− ϕ(y)) +
∑
y∼x
y/∈S

(ϕ(x)− ϕ(y))

= LSϕ
(S)(x) + (0− 0) = λϕ(S)(x) = λϕ(x),
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where the term (0 − 0) arises from the fact that ϕ(y) = 0 since y /∈ S and since

(x, y) ∈ E then by assumption x ∈ i0(ϕ
(S)) and hence ϕ(x) = 0. The same logic

shows that Lϕ(x) = 0 for x ∈ δ(V \ S). Hence, we have shown that Lϕ(x) = λϕ(x)

for every possible vertex x ∈ V and the proof is complete.

Theorem 3.1.17 is interesting because it allows us to obtain eigenvalues and

eigenvectors of graphs by inspecing for certain subgraphs. Furthermore since the

eigenvector is supported on the subgraph, it is sparse and has a large nodal set.

Example 3.1.18. Consider the star graph SN(V,E) which is complete bipartite

graph between N vertices in one class (VA) and 1 vertex in the other (VB). Let S

be the subgraph formed by any two vertices in VA and the one vertex in VB. Then

the resulting subgraph on S is the path graph on 3 vertices, P3. It is known that

P3 has Fiedler vector ϕ(S) = (
√

2, 0,−
√

2) and eigenvalue λ = 1. Then by Theorem

3.1.17, the star graph SN has eigenvalue λ = 1 with eigenvector supported on two

vertices. In fact, SN contains exactly
(
N
2

)
path subgraphs all of which contain the

center vertex and have ϕ(S) as an eigenvector. However, only N − 1 of them will be

linearly independent. This method of recognizing subgraphs explains why SN has

eigenvalue 1 with multiplicity N − 1 and we have identified a set of basis vectors for

that eigenspace.
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Chapter 4

Spectral Graph Wavelets

In this chapter we create a generalization of the already established spectral

graph wavelets that we call vertex-dynamic spectral graph wavelets. We prove in

Theorem 4.3.1 that this generalization still forms a frame for the space of functions

on graphs. We present numerical results and end the chapter that both formulations

of spectral graph wavelets to not admit a multiresolution analysis unlike classical

wavelets.

4.1 Introduction to the spectral graph wavelet transform

Wavelets on graphs were first introduced in [35] using spectral graph theory

and Fourier analysis on graphs derived from [59]. The authors define the spectral

graph wavelet transform in terms of a kernel function g : R+ → R+ which acts as a

band-pass filter. In particular, it satisfies g(0) = 0 and limx→∞ g(x) = 0. One has

freedom in choosing the particular kernel g in implementation and some examples

are given in [35, Section 8].

With the spectral graph wavelet kernel g fixed, we define the wavelet operator

Tg = g(L) which acts on a function f as the following Fourier multiplier,

T̂gf(k) = g(λk)f̂(k).
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Hence, taking the inverse Fourier transform yields

(Tgf)(m) =
N−1∑
k=0

g(λk)f̂(k)ϕk(m).

The wavelet operator at scale t is defined by T tg = g(tL). Notice that even

the spatial/vertex domain is discrete as well as its frequency/spectral domain, i.e.,

σ(L) = {λk}N−1k=0 . However, since we define the spectral wavelet kernel, g, to be

defined on a continuum, we are able to define the wavelet operator at arbitrary

positive scales.

We define the spectral graph wavelets by applying the wavelet operator to the

indicator on a single vertex, 1n, denoted

ψt,n = T tg1n.

Recalling that 1̂n(k) = ϕ∗k(n), the wavelet can be expanded as

ψt,n(m) =
N−1∑
k=0

g(tλk)ϕ
∗
k(n)ϕk(m). (4.1)

The wavelet coefficients of a function f : V → R are then defined to be the inner

product of f with these wavelets, denoted by

Wf (t, n) = 〈f, ψt,n〉. (4.2)

By expanding (4.2) and using the definition of the Fourier transform of the real

function f , we can express the wavelet coefficients as

Wf (t, n) = (T tgf)(n) =
N−1∑
k=0

g(tλk)f̂(k)ϕk(n), (4.3)

where t and n are the scale and vertex/space parameters, respectively.
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By construction, we have that the spectral graph wavelets, ψt,n, are all orthog-

onal to the constant eigenfunction ϕ0. Furthermore, if the kernel g is continuous,

then the spectral graph wavelets are nearly orthogonal to ϕk for small values of λk.

One can see this by calculating

〈ϕk, ψt,n〉 =
N−1∑
`=0

g(tλ`)ϕ̂k(λ`)ϕ`(n) = g(tλk)ϕk(n).

So as long as λk is sufficiently small (dependent on continuity conditions on g) then

g(tλk), and hence |〈ϕk, ψt,n〉|, will be close to g(0) = 0.

By Corollary 2.4.11, the wavelet transform Tg is not invertible since for any

t > 0, g(tλ0) = g(0) = 0. It is, however, invertible if we restrict to the class

of functions with zero mean. If we hope to reconstruct any function f : V →

C from the wavelet decomposition, it is necessary to introduce a second class of

waveforms to represent the low-frequency content of the function f , analogous to

the lowpass residual scaling functions from classical wavelet analysis. These spectral

graph scaling functions are determined by a single function h : R+ → R satisfying

h(0) > 0 and limx→∞ h(x) = 0. Since h(0) > 0 (and recall g(0) = 0), then h retains

low-frequency information from f and acts as a low-pass filter. Just as was done for

the spectral graph wavelets, the scaling functions are given by φn = Th1n = h(L)1n,

and the scaling coefficients are denoted by

Sf (n) = 〈f, φn〉.
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4.2 Wavelets with univariate generating kernels

Both the spectral graph wavelet kernel, g, and spectral graph scaling function,

h, are univariate real functions defined on R+. Furthermore, both the spectral graph

wavelet and scaling functions both depend on the continuous scale parameter, t.

For any practical computation or numerical implementation, the scale parameter,

t, must be sampled into a finite number of scales {tj}Jj=1. This will produce a

family of NJ wavelets ψtj ,n and N scaling functions φn (since the scaling function

is independent of the scale parameter).

One of the reasons why wavelet decompositions are widely used in classical

analysis is that they efficiently represent functions and form frame. We present the

following theorem which states under what conditions the spectral graph wavelets

and scaling functions form a frame.

Theorem 4.2.1. [35, Theorem 5.8] Given a finite sample of scales {tj}Jj=1, the set

F = {φn}Nn=1 ∪ {ψtj ,n}
J,N
j=1,n=1 forms a frame with bounds A,B given by

A = min
λ∈[0,λN−1]

G(λ),

B = max
λ∈[0,λN−1]

G(λ),

where

G(λ) = h2(λ) +
J∑
j=1

g(tjλ)2.

Proof. Fix a function f . Using the expansion (4.3) and the orthonormality of the
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eigenvectors of the Laplacian, we have

N∑
n=1

|Wf (t, n)|2 =
N∑
n=1

N−1∑
k=0

g(tλk)ϕk(n)f̂(k)
N−1∑
k′=0

g(tλk′)ϕk′(n)f̂(k′)

=
N−1∑
k=0

N−1∑
k′=0

g(tλk)g(tλk′)f̂(k)f̂(k′)
N∑
n=1

ϕk(n)ϕk′(n)

=
N−1∑
k=0

N−1∑
k′=0

g(tλk)g(tλk′)f̂(k)f̂(k′)δ(k, k′)

=
N−1∑
k=0

|g(tλk)|2|f̂(k)|2.

A similar computation reveals

N∑
n=1

|Sf (n)|2 =
N−1∑
k=0

|h(λk)|2|f̂(k)|2.

Let Q denote the sum of the squares of inner products of f with each of the

elements of F , i.e.,

Q =
J∑
j=1

N∑
n=1

|〈f, ψtj ,n〉|2 +
N∑
n=1

|〈f, φn〉|2.

Then the previous computations give

Q =
N−1∑
k=0

(
|h(λk)|2 +

J∑
j=1

|g(tjλk)|2
)
|f̂(k)|2 =

N−1∑
k=0

G(λk)|f̂(λk)|2.

By definition of A and B above, we have

A
N−1∑
k=0

|f̂(λk)|2 ≤ Q ≤ B

N−1∑
k=0

f̂(λk)|2.

Finally, Parseval’s identity ‖f‖2 =
∑
|f̂(k)|2 shows the desired frame inequality.

In wavelet analysis, it is not enough to merely compute the wavelet coefficients

of a signal; often one is required to reconstruct a signal from its collection of wavelet
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coefficients. In [35], the authors discuss that the spectral graph wavelet transform

is an overcomplete transform. Among the wavelets ψtj ,n, and scaling functions,

φn, the wavelet frame consists of N(J + 1) coefficients (where J is the number of

scaling parameters sampled). If we write the coeffients as the N(J + 1) vector

c = Wf then it is well known that W has an infinite number of left-inverses M so

that MWf = f . However, the authors discuss that a natural choice among these

inverses is the pseudoinverse M = (W ∗W )−1W ∗. The pseudoinverse satisfies the

minimum-norm property

Mc = arg min
f∈RN

‖c−Wf‖2 .

4.3 Vertex-dynamic spectral graph wavelets

We now extend the theory from [35] to create spectral graph wavelets whose

wavelet kernel g not only depends on scale and frequency, but also vertex location.

The spectral graph wavelet transform (4.2) depends on a scale parameter, t, and a

translation parameter, n. However, in the expansion (4.3), the wavelet kernel term

g(tλk) does not depend on the translation paramenter, n. We extend the theory

to define wavlets using a bivariate wavelet kernel g(n, tλk) which both depends on

scale and translation parameters. This will provides the user more freedom when

performing wavelet analysis on data graphs. The user has the freedom to widen the

support of wavelets at regions where higher redundancy is desired or, conversely, to

narrow the support of the kernel at regions where overrepresentation of a function

is less necessary. Because of this added vertex-dependency of the wavelet kernel,
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we shall call the wavelets developed in this subsection vetex-dynamic spectral graph

wavelets.

Following the setup in (4.1), we shall define the vertex-dynamic spectral graph

wavelets by

ψt,n(m) =
N−1∑
k=0

g(n, tλk)ϕ
∗
k(n)ϕk(m),

the only difference now, being the fact that g : V × R+ → R+ is bivariate. We use

the bold-face notation denote the bivariate spectral graph wavelet kernel and the

wavelet functions it generates. We still impose that g act as a high-pass filter, i.e.,

the kernel satisfies g(n, 0) = 0 for all n and limt→∞ g(n, t) = 0 for all n.

Similarly to what was done in Section 4.1, we can define a vertex-dynamic

scaling function

φn(m) =
N−1∑
k=0

h(n, λk)ϕ
∗
k(n)ϕk(m), (4.4)

where the scaling function h : V × R+ → R is now bivariate. It still acts as a

low-pass filter and satisfies h(n, 0) > 0 for all n and limt→∞ h(n, t) = 0 for all n.

With the wavelet and scaling functions, we define the vertex-dynamic wavelet

and scaling coefficients by

Wf (t, n) = 〈f,ψt,n〉, Sf (n) = 〈f,φn〉.

Theorem 4.3.1. Given a finite sample of scales {tj}Jj=1, the set F = {φn}Nn=1 ∪

{ψtj ,n}
J,N
j=1,n=1 forms a frame with bounds A,B given by

A =

 min
n=1,...,N
k=0,...,N−1

h(n, λk)
2 +

J∑
j=1

min
n=1,...,N
k=0,...,N−1

g(n, tjλk)
2

 ,
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B =

 max
n=1,...,N
k=0,...,N−1

h(n, λk)
2 +

J∑
j=1

max
n=1,...,N
k=0,...,N−1

g(n, tjλk)
2

 .

Proof. For a given scale t ∈ R+, we can compute

N∑
n=1

|Wf (t, n)|2 =
N∑
n=1

N−1∑
k=0

f̂(k)g(n, tλk)ϕk(n)
N−1∑
k′=0

f̂(k′)g(n, tλk′)ϕk′(n)

=

∥∥∥∥∥
N−1∑
k=0

f̂(k)g(·, tλk)ϕk(·)

∥∥∥∥∥
2

≥ min
n=1,...,N
k=0,...,N−1

g(n, tλk)
2

∥∥∥∥∥
N−1∑
k=0

f̂(k)ϕk(·)

∥∥∥∥∥
2

= min
n=1,...,N
k=0,...,N−1

g(n, tλk)
2 ‖f‖2 ,

where the last inequality follows from the definition of the inverse Fourier transform.

Similarly we can compute

N∑
n=1

|Wf (t, n)|2 ≤ max
n=1,...,N
k=0,...,N−1

g(n, tλk)
2 ‖f‖2 ,

and

min
n=1,...,N
k=0,...,N−1

h(n, λk)
2 ‖f‖2 ≤

N∑
n=1

|Sf (n)|2 ≤ max
n=1,...,N
k=0,...,N−1

h(n, λk)
2 ‖f‖2 .

Let Q denote the sum of the squares of inner products of f with each of the

elements of F , i.e.,

Q =
J∑
j=1

N∑
n=1

|〈f,ψtj ,n〉|2 +
N∑
n=1

|〈f,φn〉|2.

Then we have the estimate

A ‖f‖2 ≤ Q ≤ B ‖f‖2

as desired.
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Corollary 4.3.2. Consider a finite sample of scales {tj}Jj=1 ⊆ R+ listed in increas-

ing order. Suppose 0 < mh ≤ h(·, λ) ≤Mh on λ ∈ [0, λ1] and 0 < mg ≤ g(·, λ) ≤Mg

for all λ ∈ [t1λ1, tJλN−1]. Then the set F = {φn}Nn=1 ∪{ψtj ,n}
J,N
j=1,n=1 forms a frame

with frame inequality

(
m2
h + Jm2

g

)
‖f‖2 ≤ Q ≤

(
M2

h + JM2
g

)
‖f‖ ,

where Q denotes the sum of the squares of inner products of f with each of the

elements of F , i.e.,

Q =
J∑
j=1

N∑
n=1

|〈f,ψtj ,n〉|2 +
N∑
n=1

|〈f,φn〉|2.

4.4 Numerical Implementation

We devote this subsection to illustrating numerical implementations of the

spectral graph wavelets. In all of the following figures, wavelets were created for the

Minnesota graph from [23] which is a graph of 2640 vertices and 3302 edges.

The spectral graph wavelet kernel used is the one proposed in Section 8.1

of [35],

g(λ) =


x−α1 λα for λ < x1

s(λ) for x1 ≤ λ ≤ x2

xβ2λ
−β for λ > x2.

(4.5)

One can choose the positive parameters x1, x2, α, β and any smooth s(λ) that makes

g continuous. For our numerical simulations, we chose x1 = 1, x2 = 2, α = β = 1

and s(λ) = −5 + 11λ− 6λ2 + λ3. Our kernel, g, is shown in Figure 4.1.
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Figure 4.1: One choice of the spectral graph wavelet kernel, g(λ).

Figure 4.2 shows plots of the wavelet functions ψt,n for three different choices

of vertices, n, and four scales, t.

We also generate examples of spectral graph wavelets with bivariate wavelet

kernels. Both Figures 4.5 and 4.6 show twelve wavelets ψt,n on the Minnesota graph

just as was done in Figure 4.2, except they are generated from a bivariate wavelet

kernel g(n, t).

First, Figure 4.5 shows wavelets using the kernel g1(n, t) = g(ty(n)) (see Figure

4.3), where y(n) is the vertical coordinate of the n’th node in the given data map

and g(·) is the univariate wavelet kernel from (4.5). With this choice of g1, we

effectively scale the kernel for higher northern modes more than we do for more

southern nodes. This causes northern modes to have a larger support than those

wavelets shown in Figure 4.2 while the southern-most nodes stay well-localized.

Secondly, Figure 4.6 shows wavelets using the kernel g2(n, t) = g(tR(1786, n))

(see Figure 4.3), where recall from Definition 1.2.2 that R(1786, n) is the effective
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ψt,n n = 100 n = 1000 n = 2500

t = 1

t = 10

t = 100

t = 600

Figure 4.2: Twelve wavelet functions ψt,n on the Minnesota graph at

three different vertecies n = 100, 1000, 2500 and four different scales

t = 1, 10, 100, 600.
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resistance between node n and node 1786. The node 1786 was chosen because it

is the vertex that minimizes the sum of effective resistances among all other nodes,

that is, 1786 = arg minj
∑N

i=1R(i, j). It is the vertex with the smallest average

resistance among all other nodes. This gives a notion of “centrality” on the graph

and it does experimentally coincide with a vertex near the geometric center of the

graph, see Figure 4.4.
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Figure 4.3: Plot of the bivariate kernel functions g1(n, t) = g(ty(n))

(left) and g2(n, t) = g(tR(1786, n)) (right) used to generate the

wavelets shown in Figures 4.5 and 4.6, respectively. Here, y(n) de-

notes the vertical coordinate of the n’th node in the date graph, and

R represents the effective resistance between nodes. Each row in the

above image corresponds to a differently scaled version of the univari-

ate kernel function g given in (4.5).

As is illustrated by Figure 4.6 the wavelets centered near vertex 1786 (i.e.

ψt,1000) have support and behavior very similar to the univariate wavelets shown in

Figure 4.2. However, the wavelets further from the center of the graph (i.e., ψt,100
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Figure 4.4: Three notions of centrality using the effective re-

sistance on a graph. For the Minnesota graph we mark x1 =

arg minj
∑N

i=1R(i, j) (red) and x2 = arg minj
∑N

i=1R(i, j)2 (green).

Furthermore, we mark x0 = arg minj maxiR(i, j) (blue) which has

the shortest longest path in terms of effective resistance.

and ψt,2500) have much wider support than the corresponding univariate wavelets

shown in Figure 4.2.

4.5 Lack of Multiresolution Analysis

We devote this subsection to present that the graph wavelets presented in this

section do not exhibit a multiresolution structure that makes wavelets in Euclidean

space such a versitile tool.

First let us recall the definition of a multiresolution analysis for the simple

case of L2(R).

Definition 4.5.1 ( [66]). A multiresolution analysis (MRA) is an increasing se-
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t = 1
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Figure 4.5: Twelve wavelet functions ψt,n on the Minnesota graph at

three different vertecies n = 100, 1000, 2500 and four different scales

t = 1, 10, 100, 600 using the bivariate spectral graph wavelet kernel

g1(n, t) = g(ty(n)), where g is the univariate kernel given in (4.5) and

y(n) is the vertical coordinate of the n’th node in the map.
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ψt,n n = 100 n = 1000 n = 2500

t = 1

t = 10

t = 100
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Figure 4.6: Twelve wavelet functions ψt,n on the Minnesota graph at

three different vertecies n = 100, 1000, 2500 and four different scales

t = 1, 10, 100, 600 using the bivariate spectral graph wavelet kernel

g2(n, t) = g(tR(1786, n)), where g is the univariate kernel given in

(4.5) and R is the effective resistance between vertices.
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quence of subspaces of L2(R), · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · , with a scaling function ϕ

that satisfy:

(i) (Density) ∪jVj is dense in L2(R),

(ii) (Separation) ∩jVj = {0},

(iii) (Scaling) f(x) ∈ Vj iff f(2−jx) ∈ V0,

(iv) (Orthonormality) {ϕ(x− γ)}γ∈Z is an orthonormal basis for V0.

The classic example of a multiresolution analysis on L2(R) uses the indicator

function ϕ(x) = 1[0,1](x). Let V0 denote the linear span of integer translates of

ϕ. Then, {ϕ(x − γ)}γ∈Z forms an orthonormal basis for V0, which is the space of

all square-integrable functions that are piecewise constant on intervals with integer

endpoints. That {ϕ(x − γ)}γ∈Z is an orthonormal set can easily be verified since

each ϕ(·− γ) is supported on a distinct interval in R. Further, one can observe that

ϕ(x−γ) = ϕ(2x−2γ)+ψ(2x−2γ−1) which gives the relation V0 ⊆ V1 and the scaling

property of Defintion 4.5.1. In general, simply by dilating by factors of 2−j construct

the other function spaces Vj. The Haar system (i.e., functions that are piecewise

constant on ∪jVj) is dense in the space of simple functions and by [7, Theorem

5.5.3] simple functions are dense in L2(R) which proves the density property from

Definition 4.5.1. Finally, it is elementary to show that only the zero function is

square-integrable and piecewise constant on dyadic intervals [2−jk, 2−j(k + 1)] for

any j ∈ Z, which gives the separation property of Definition 4.5.1. Hence, we have
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shown that the function spaces {Vj} and the scaling function ϕ form an MRA for

L2(R).

However, while we have an orthonormal basis for each Vj, we cannot simply

take the union of these bases as an orthonormal basis for all of L2(R). Indeed,

although Vj ⊆ Vj+1 the orthornomal basis {2j/2ϕ(2jx−γ)} for Vj is not contained in

the orthonormal basis {2(j+1)/2ϕ(2j+1x−k)} for Vj+1. We remedy this by introducing

the orthogonal complement of V0 in V1, call it W0. We write in terms of the Hilbert

space direct sum V1 = V0 ⊕W0. We wish to obtain a function, ψ, whose integer

translates form an orthonormal basis for the function space W0. Enter the Haar

wavelet, ψ(x), defined by

ψ(x) =


1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 otherwise.

The Haar wavelet is contained in the space V1 since it is piecewise constant on in-

tervals of length 1/2 and it is orthogonal to all of V0. One can also verify that the

integer translates of the Haar wavelet forms an orthonormal basis for W0. Now, we

can dilate both Vj and Wj to obtain the relation Vj+1 = Vj ⊕Wj. Combining these

results gives L2(R) = ⊕∞j=−∞Wj and since each of the spaces Wj are all mutually

orthogonal, we now have an orthonormal basis {2j/2ψ(2jx − γ)}j∈Z,γ∈Z for L2(R),

known has the Haar wavelet basis. To summarize, once we obtained a multiresolu-

tion analysis for with a scaling function, ϕ, we were then able to take orthogonal

complements to obtain a mother wavelet, whose translations and dilations form an

orthonormal basis for the whole function space.
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We will demonstrate that the spectral graph wavelets developed in this section

do not exhibit the nice multiresolution analysis on the real line.

We have defined the scaling function, φn, on graphs by (4.4), which is defined

in terms of a low-pass kernel h(n, t). The translates of the graph scaling function

{φn}n∈V does not form an orthogonal family. Indeed, for any two distinct vertices

n, p ∈ V , then

〈φn,φp〉 =
N∑
m=1

N−1∑
k=0

h(n, λk)ϕ
∗
k(n)ϕk(m)

N−1∑
`=0

h(p, λ`)ϕ`(p)ϕ
∗
`(m)

=
N−1∑
k=0

N−1∑
`=0

h(n, λk)h(p, λ`)ϕ
∗
k(n)ϕ`(p)

N∑
m=1

ϕk(m)ϕ∗`(m)

=
N−1∑
k=0

N−1∑
`=0

h(n, λk)h(p, λ`)ϕ
∗
k(n)ϕ`(p)δ(k, `)

=
N−1∑
k=0

h(n, λk)h(p, λk)ϕ
∗
k(n)ϕk(p). (4.6)

We can assert that
∑N−1

k=0 ϕ
∗
k(n)ϕk(p) = 0 for n 6= p since ΦΦ∗ = Φ∗Φ = IN .

However by including the positive factors h(n, λk)h(p, λk), we cannot ensure that

〈φn,φm〉 = 0. In fact, we prove that the univariate graph scaling function will not

form an orthogonal family in Theorem 4.5.4.

Lemma 4.5.2. The Hermitian matrix A = [ai,j]
N
i,j=1 is diagonal if and only if its

eigenvector matrix is a row permutation of the identity matrix.

Proof. One can easily compute that for any i = 1, ..., N , we have Aei = ai,i ·ei which

proves that the sufficiency claim to the lemma. In this case, the eigenvalues of A

are precisely the entries along its diagonal.

The necessary condition also follows simply. Since A is Hermitian, the spectral

theorem gaurantees that A = V DV ∗ for a unitary matrix V and a diagonal D. Our
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assumption is that V is some row permutation of the identity matrix. The spectral

theorem is invariant to row permutations and so without loss of generality, we may

assume that V equals the identity which gives A = D which proves the lemma.

Lemma 4.5.3. The undirected graph G can have Laplacian eigenvector matrix Φ

equal to a row permutation of the identity matrix if and only if G has no edges

between distinct vertices. If G is simple, then this is precisely the empty graph.

Proof. Let L denote the Laplacian matrix of G and let ei enote the indicator vector

with a 1 in the i’th coordinate and zeros elsewhere. Then for any i = 1, ..., N ,

we can compute Lei = [Li,1, Li,2, · · · , Li,N ]>, which equals a multiple of ei if and

only if Li,j = λiδ(i, j) for some real λi and δ is the Kronecker delta. We have

Li,j = δ(i, j) if and only if the vertex i has either no edges or only self loops. In

either case the eigenvalue associated to ei, equals the degree di, which is zero for

simple graphs. Thus we have shown that {ei}Ni=1 is the eigenbasis of L which makes

Φ some permutation of the identity, if and only if G has at most self-loops or is

empty.

Theorem 4.5.4. The graph wavelet scaling function φ will be orthogonal among its

translations if and only if the graph is empty or contains only self-loops.

Proof. By repeating the calculation in (4.6), but replacing the bivariate scaling

kernel h(·, λ) with its univariate counterpart h(λ), we get

〈φn, φp〉 =
N−1∑
k=0

h(λk)
2ϕ∗k(n)ϕk(p),

which we can write as

〈φn, φp〉 = ΦHΦ∗,
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where H is the diagonal matrix with entries h(λk)
2 along the diagonal. To have

the scaling function φ orthogonal among its translations is equivalent to the matrix

ΦHΦ∗ being diagonal. In other words, Φ, the eigenvector matrix of the graph

Laplacian L, must also be the eigenvector matrix of ΦHΦ∗ which is not necessarily

equal to L. By Lemma 4.5.2, ΦHΦ∗ is diagonal if and only if Φ is the identity

matrix (up to permutation). By Lemma 4.5.3, this is possible if and only if G has

no edges between vertices.

In the real case, the wavelet spaces Wj were all mutually orthogonal. This

cannot happen for the spectral graph wavelets; that is, there are no scalings, t, s ∈

(0,∞) so that 〈ψt,n,ψs,n〉 = 0 since

〈ψt,n,ψs,n〉 =
N∑
m=1

N−1∑
k=0

g(n, tλk)ϕ
∗
k(n)ϕk(m)

N−1∑
`=0

g(n, sλ`)ϕ`(n)ϕ∗`(m)

=
N−1∑
k=0

N−1∑
`=0

g(n, tλk)g(n, sλ`)ϕ
∗
k(n)ϕ`(n)

N∑
m=1

ϕk(m)ϕ∗`(m)

=
N−1∑
k=0

N−1∑
`=0

g(n, tλk)g(n, sλ`)ϕ
∗
k(n)ϕ`(n)δ(k, `)

=
N−1∑
k=0

g(n, tλk)g(n, sλk)|ϕk(n)|2 > 0,

since g is defined to be positive on all of V ×R+. One can get 〈ψt,n,ψs,n〉 arbitrarily

close to zero by sending scales t and s to either 0 or ∞ (since g(n, ·) vanishes in

those limits) but there exists no nontrivial orthogonal scaling as exhibited in the

classical Euclidean wavelets.

We note that the authors of [33] and [58] attempt to define an MRA for graphs.

However, they only do so for a very particular family of tree graphs and do not use

any of the notions of translation and dilation as introduced in this section motivated
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by spectral graph theory.

We conclude this section by remarking that for the same reasons that the

spectral graph wavelets do not admit a multiresolution analysis, they likewise do

not admit the mroe generalized frame multiresolution analysis introduced in [8].

Frame multiresolution analysis (FMRA) is equivalent to the multiresolution analysis

definition in Definition 4.5.1 except the orthonormality condition is replaced with

the condition that the collection of functions form a frame. The scaling condition in

Definition 4.5.1 failing to hold prohibits these spectral graph wavelets from satisfying

the conditions to be a FMRA.
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Chapter 5

Spectral Graph Sparsification

This chapter presents Spielman’s twice Ramanujan graph sparsification results

and proves in Theorem 5.1.3 that the algorithm that he presents cannot exceed

sparsification that is conjectured to be optimal.

Daniel Spielman and his collaborators have taken on the task of sparsifiying

large graphs to efficiently speed up large computations on graphs. The sparsifica-

tion involves deleting edges of a graph in such a way to best preserve the spectral

structure of the graph’s Laplacian. The three, now-famous, Spielman-Teng papers

that studying this problem of sparsifying and solving linear systems in nearly-linear

time are [62–64]. These papers an the sparsification results that follow have ignited

a push for near-linear sparsification solvers [46, 47,70]

In [61], Spielman and Srivastava present an algorithm that uses graph effec-

tive resistances to sparsify probabilistic algorithm that will satisfactorily sparsify a

graph with probability at least 1/2. One would prefer a deterministic rather than

probabilistic algorithm to efficiently sparsify a graph and finally Spielman, Batson,

and Srivistava provide such an algorithm producing Twice-Ramanujan sparsifiers

in [4]. These results turned out to be more than just a result in graph theory; the

methods used in [4] were used in [49] and [50] to prove the then Kadison-Singer con-

jecture, now known as the Marcus-Spielman-Srivastava theorem; see also [51] and
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see [11, 14] for connections between the Kadison-Singer problem and frame theory.

5.1 Optimality of Spielman’s Twice-Ramanujan Sparsification

In [4], Spielman et al. present an algorithm that sparsifies a weighted finite

graph, G, while preserving the spectral properties of the graph Laplacian, LG. Given

a weighted graph G = (V,E, ω), we say that H is a κ-(spectral) approximation of

G if there exist constants 0 < a ≤ b with b/a = κ such that for all x ∈ RV , we have

a · x>LGx ≤ x>LHx ≤ b · x>LGx,

which we write as

aLG � LH � bLG.

That is, A � B means that B − A is a positive semidefinite matrix.

The main result of [4] is the following:

Theorem 5.1.1 ( [4, Theorem 3.1]). For every ε ∈ (0, 1), every undirected weighted

graph G = (V,E, ω) on |V | = n verticies contains a weighted subgraph, H =

(V, F, ω̃), with d(n− 1)/ε2e edges that satisfies

(1− ε)2LG � LH � (1 + ε)2LG,

where LG, LH are the unnormalized Laplacian matrices for G and H, respectively.

Theorem 5.1.1 can be proved with a change of bases and the following theorem:

Theorem 5.1.2. Suppose d > 1 and v1, ..., vm are vectors in Rn with

m∑
i=1

viv
>
i = I,
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then there exist scalars si ≥ 0 with |{i : si 6= 0}| ≤ ddne such that

(
1− 1√

d

)2

I �
m∑
i=1

siviv
>
i �

(
1 +

1√
d

)2

I. (5.1)

Spielman et al. simultaneously prove Theorem 5.1.2 and present the sparsifi-

cation algorithm. The algorithm is iterative and starts by setting each scalar si = 0

and at each iteration, the algorithm chooses one si and replaces it with a nonzero

quantity. This process is repeated ddne times. It is shown in [4] that so long as

there exist positive constants, δU , δL, εU , εL satisfying

0 ≤ 1/δU + εU ≤ 1/δL − εL, (5.2)

then after ddne iterations, the algorithm will always produce a matrixA =
∑m

i=1 siviv
>
i

satisfying

λmax(A) ≤ n/εU + dnδU , λmin(A) ≥ −n/εL + dnδL.

This is significant because then the matrix produced, A, will be a κ-approximation

of the identity for

κ ≥ n/εU + dnδU
−n/εL + dnδL

=
λmax(A)

λmin(A)
, (5.3)

where λmax(A) is the largest eigenvalue of A and λmin(A) denotes the smallest

nonzero eigenvalue of A. Spielman et. al. conclude the the proof by choosing

δL = 1, δU =

√
d1√

d− 1
, εL =

1√
d
, εU =

√
d− 1

d+
√
d
,

and hence, with this choice of constants, the approximation condition number equals

κ =
d+ 2

√
d+ 1

d− 2
√
d+ 1

=

(
1 + 1/

√
d

1− 1/
√
d

)2

=: κd. (5.4)
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While we don’t necessarily have(
1− 1√

d

)2

≤ λmin(A) ≤ λmax(A) ≤
(

1 +
1√
d

)2

, (5.5)

multiplying A by the appropriate scalar will achieve this distribution of eigenvalues.

Without loss of generality, we assume A to be properly normalized so that (5.5)

holds.

We will represent the sparsifying algorithm in [4] by RamanujanSparsify.

Given a graph G = (V,E, ω) with Laplacian LG, and admissible scalars d, κ >

1, the algorithm will produce a sparsified graph, H = (V, Ẽ, ω̃), with Laplacian

LH =RamanujanSparsify(LG, d, κ) and at most ddne edges. A natural question is,

given the linear scalar d > 1, what is the smallest κ that for which RamanujanSparsify

will yield a graph H that is a κ-approximation of G? The answer, amazingly enough,

is precisely the Ramanujan constant κd. The proof is elementary, yet rather tedious.

Theorem 5.1.3. Given a graph G = (V,E, ω) with |V | = n and associated Lapla-

cian matrix LG, and scalar d > 1, then the algorithm RamanujanSparsify (LG, d, κ)

will yield the Laplacian matrix LH for a graph H with at most ddne edges that is a

κ-approximation of G provided that

κ ≥

(
1 + 1/

√
d

1− 1/
√
d

)2

.

Proof. In order for RamanujanSparsify to run successfully, one just needs to select

positive constants, δU , δL, εU , εL that simultaneously satisfy (5.2) and (5.3). Notice

that if δU , δL, εU , εL simultaneously satisfy (5.2) and (5.3), then cδU , cδL, εU/c, εL/c

will also satisfy (5.2) and (5.3) for any c > 0. Hence, without loss of generality, we

can select δU = 1.
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After simplifying the common factor n in (5.3) we have to find positive solu-

tions to the following inequality,

1/εU + d

−1/εL + dδL
≤ κ.

Without loss of generality, one can choose εU so that the right-hand side of

(5.2) holds with equality. Substituting this gives the above inequality in terms of

only two variables, εL and δL, and we to solve

d(1− εLδL)− (d− 1)δL
(1− εLδL − δL)(−1/εL + dδL)

≤ κ,

over the domain εL ∈ (0,∞), δL ∈ (0, (1 + εL)−1). We have to restrict the domain

of δL to satisfy (5.2).

We can solve the above expression with equality for δL (in terms of εL) and

obtain

δL =
κ− εL + dεL + (d+ 1)κεL + dε2L ±

√
hd,κ(εL)

2dκεL(1 + εL)
, (5.6)

where hd,κ(εL) is the discriminant,

hd,κ(εL) = (εL(dεL + d− 1) + κ(1 + (d+ 1)εL))2 − 4dκεL(1 + εL)(k + dεL).

In order for δL to be well-defined, the discriminant, hd,κ, must be nonnegative.

We can characterize the regions that hd,κ is nonnegative by locating its roots which

we present in two cases.

Case 1: hd,κ has two zeros: 0 < x1 < x2 Consider the case that hd,κ has two posi-

tive zeros: 0 < x1 < x2. Since hd,κ is a 4th-degree polynomial in εL with

nonnegative coefficient, namely d2, on the ε4L term, and hd,κ(0) = κ2 > 1, we
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can conclude that hd,κ(εL) is nonnegative on εL ∈ (0, x1]∪ [x2,∞) and negative

on εL ∈ (x1, x2). See Figure 5.1.

Case 2: hd,κ has three or four zeros: 0 < x1 < x3 ≤ x4 < x2 By the same arguments

above, we must have hd,κ(εL) is nonnegative on εL ∈ (0, x1]∪ [x3, x4]∪ [x2,∞)

and negative on εL ∈ (x1, x3). See Figure 5.1.

Figure 5.1: Plots of hd,κ. The left plot illustrates Case 1 above,

where hd,κ has only two roots (and hence d, κ are not an admissible

pair for RamanujanSparsify), while the right plot illustrates Case 2

where hd,κ has more than two roots (and hence d, κ are admissible).

One can solve for x1, x2, x3, x4 (when they exist):

x1 =
1

2d

[
1 + 2

√
dκ− κ+ dκ− d−

√
(d− 1)(κ− 1)(1 + d(κ− 1) + 4

√
dκ− κ)

]
,

x2 =
1

2d

[
1 + 2

√
dκ− κ+ dκ− d+

√
(d− 1)(κ− 1)(1 + d(κ− 1) + 4

√
dκ− κ)

]
,

x3 =
1

2d

[
1− 2

√
dκ− κ+ dκ− d−

√
(d− 1)(κ− 1)(1 + d(κ− 1)− 4

√
dκ− κ)

]
,

x4 =
1

2d

[
1− 2

√
dκ− κ+ dκ− d+

√
(d− 1)(κ− 1)(1 + d(κ− 1)− 4

√
dκ− κ)

]
.

In both Case 1 and Case 2, one can check that substituting εL < x1 or εL > x2

into (5.6) both yield δL > (1+εL)−1 which is not permitted to satisfy (5.3). Referring

to Figure 5.2, selecting εL < x1 results in (εL, δL) contained in the left-most convex
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region while selecting εL > x2 results in (εL, δL) contained in the right-most convex

region, both of which lie above the line δL = (1 + εL)−1.

However, one can check that if x3 ≤ x4 exist, then substituting x3 ≤ εL ≤ x4

into (5.6) will indeed yield δL < (1 + εL)−1 This corresponds to the point (εL, δL)

lying in the center convex region illustrated in Figure 5.2. Hence, Case 2 is the only

possible case to choose parameters that satisfy (5.2) and (5.3) simultaneously.

Figure 5.2: The horizontal axis represents the variable εL and the

vertical axis represents δL. The dashed line is δL = (1 + εL)−1. There

are three convex regions that determine the pair (εL, δL) by (5.6).

The outer two lie above the dashed line and are hence not admissible.

Therefore, the choice of (εL, δL) must come from the center region,

when it exits.

For a fixed d > 1, if κ > 1 is too small, then hd,κ is in Case 1, but one eventually

enters Case 2 as κ gets sufficiently large. The breaking point, in other words, the

smallest possible κ that enables admissible coefficients, will occur precisely when

the local maximum of Figure 5.1 reaches height zero. This happens precisely when
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x3 = x4 which occurs if and only if

1 + d(κ− 1)− 4
√
dκ− κ = 0.

This equation has solution

κ = κd =

(
1 + 1/

√
d

1− 1/
√
d

)2

.

Remark 5.1.4. Notice that the optimal κ is independent of n. The sparsification

algorithm depends not on the size of the graph and only the proportion of edges

that will remain in H.

Remark 5.1.5. In numerical implementation of RamanujanSparsify, the sparsified

Laplacian, LH , often has a tighter spectral approximation than κd. But choosing

κ < κd will result in RamanujanSparsify(LG, d, κ) to not run.

Remark 5.1.6. Recall that a d-regular graph, R, is a Ramanujan graph if

λmax(R)

λmin(R)
= κd =

(
1 + 1/

√
d

1− 1/
√
d

)2

.

We remark here that RamanujanSparsify does not produce a Ramanujan graph;

the sparsified graphs produced need not be d-regular. But since they are graphs of

dn edges on n vertices, the graph has an average degree of d and achieves the same

condition number as the Ramanujan graphs.

It is proved in [55] that any d-regular unweighted graph cannot κ-approximate

a complete graph for κ asymptotically better than κd. Spielman et. al in [4] con-

jecture that the same bound holds for weighted graphs with average degree d. This
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conjecture remains open. However, Theorem 5.1.3 proves that RamanujanSparsify

cannot produce a weighted d-average degree graph that κ-approximates the com-

plete graph asymptotically better than κd. Showing this result for arbitrary graphs

of this nature will require a more graph-theoretic argument.

We prove that any κ-approximation of a connected graph will necessarily also

be connected.

Corollary 5.1.7. If G is a connected graph and H is a κ-approximation of G for

0 < κ <∞, then H is also a connected graph.

Proof. We know that λ
(G)
0 = λ

(H)
0 = 0 and that λ

(G)
1 > 0. Suppose that λ

(H)
1 =

0. Then λ
(H)
1 /λ

(G)
1 = 0, but since H is a κ-approximation of G, then for any k,

λ
(H)
k /λ

(G)
k > 1/κ, which contradicts the supposition that λ

(H)
1 = 0. Hence H has

exactly one zero eigenvalue and therefore has only one connected component.
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Chapter 6

Graph Conditioning and Optimization

6.1 Condition number and scalable frames

In [4] and works following, Spielman et al. prove how to take a frame {fi}

with frame bounds A and B, and rescale it with real nonnegative weights si with a

large number of the scale equal to zero so that the resulting frame {sifi} has frame

bounds A(1− ε) and B(1 + ε).

We now ask a similar yet fundamentally different question. Given a frame {fi}

with frame bounds A < B, is it possible to rescale the frame (with no restriction

on the support of the weights) so that the resulting frame {sifi} is a tight frame?

Without loss of generality, the tight frame can then be renormalized to form a

Parseval frame. Frames that allow such a scaling are called scalable frames

Definition 6.1.1 ( [45, Definition 2.1]). A frame {fi}mi=1 in some Hilbert space H

is called a scalable frame if there exist nonnegative numbers s1, ..., sm such that

{sifi}mi=1 is a Parseval frame for H.

There exists a wealth of literature on classifying scalable frames and measuring

how close to tight a frame can be scaled [10,43,44]. If a frame is not scalable, then

one can measure how “not scalable” the frame is by measuring

min
si≥0

∥∥∥∥∥IN −
m∑
i=1

sifif
∗
i

∥∥∥∥∥
F

,
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as done in [16], where ‖·‖F denotes the Frobenius norm of a matrix.

Recently, the problem of scalable was stated in terms of condition number of

the frame.

Definition 6.1.2. The condition number of a matrix A, denoted κ(A), is defined

as the ratio of the largest singular value and the smallest singular value of A, i.e.,

κ(A) = σmax(A)/σmin(A). For a frame in a Hilbert space {fi}mi=1 ⊆ H with optimal

frame bounds A and B, we define the condition number of the frame to be the

condition number of its associated frame operator κ({fi}) := κ(S) = B/A.

In the specific case where X is a symmetric, positive semidefinite, square

matrix, we use the definition of condition number from [52] which is consistent with

Definition 6.1.2 but is worth explicitly stating here.

Definition 6.1.3. If X is a symmetric positive semidefinite matrix, then the con-

dition number is defined as

κ(X) =


λmax(X)/λmin(X) if λmin(X) > 0,

∞ if λmin(X) = 0 and λmax(X) > 0,

0 if X ≡ 0.

It is proved in [13, Theorem 1.5] that the optimal lower frame bound, A,

coincides with the lowest eigenvalue of the frame operator while the optimal upper

frame bound, B, equals the largest eigenvalue of the frame operator.

Condition numbers are potentially usefull because a frame is Parseval if and

only if its condition number equals 1. Therefore, if a frame {fi}mi=1 is scalable, there

89



exist scalars si ≥ 0 so that

κ

(
m∑
i=1

sifif
∗
i

)
= 1.

In [12], the authors show that the problem of minimizing the condition number of

a frame,

min
si≥0

κ

(
m∑
i=1

sifif
∗
i

)
= 1,

is equivalent to solving the minimization problem

min
si≥0

∥∥∥∥∥IN −
m∑
i=1

cifif
∗
i

∥∥∥∥∥
2

,

where ‖·‖2 is the operator norm of a matrix.

The task of minimizing the condition number of a matrix is not immediately

simple. There is a wealth of literature and algorithms devoted to fast solving of

convex programs, see [9] and references therein. In a convex optimization problem,

one wants to solve for x∗ = arg minx f(x) with for a real convex function f : X → R

defined on a convex set X. Convexity of f and X are important because they ensure

the following:

1. If x∗ is a local minimum of f , then it is a global minimum.

2. The set of all (global) minima is convex.

3. If f is a strictly convex function and a minimum exists, then the minimum is

unique.

In addition, the convexity of f and X allows the use of convex analysis to produce

fast, efficient algorithmic solvers.
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Unfortunately, the condition number function, κ, is not convex. It is however,

a quasiconvex function (see [1, Theorem 13.6] for a proof), meaning that it’s lower

level sets form convex sets; that is, the set {X : κ(X) < a} forms a covex set for

any real a ≥ 0. See [26] and references therein for a survey on some algorithms that

can numerically solve certain quasiconvex problems.

While κ is not a convex function, the authors of [48] show that the problem of

minimizing condition number is equivalent to solving another problem with convex

programming.

Theorem 6.1.4 ( [48], Theorem 3.1). Let Ω ⊆ SN be some nonempty closed convex

subset of SN , the space of N × N symmetric matrices and let SN+ be the space of

symmetric positive semidefinite N ×N matrices. Then the problem of solving

κ∗ = inf{κ(X) : X ∈ SN+ ∩ Ω}

is equivalent to the problem of solving

λ∗ = inf{λmax(X) : X ∈ tΩ, t ≥ 0, X � I}, (6.1)

that is, λ∗ = κ∗.

Theoreom 6.1.4 has an intuitive interpretation. Suppose κ(X) = κ∗. Then

rescaling X by a positive scalar, t, will also scale its eigenvalues by the same factor

1/t, thus leaving its condition number, κ(X/t), unchanged. Therefore, without loss

of generality, we can assume that X is rescaled so that λmin(X/t) ≥ 1 which is

imposed in the last condition of (6.1). Once we know that λmin(X/t) is at least 1

then minimizing the condition number of X/t is equivalent to minimizing λmax(X/t)

so long as X/t ∈ Ω which is guaranteed by the first condition in (6.1).
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6.2 Minimizing condition number of graphs

Consider the complete graph KN . The complete graph is the only graph that

has all nonzero eigenvalues equal, i.e., λ0 = 0 and λ1 = λ2 = · · · = λN−1 = N − 1.

It assumes the highest possible for λ1, the algebraic connectivity, of a graph on N

vertices. The complete graph is the most connected a graph on N vertices can be;

the radius of the complete graph is 1 since the distance between any two points,

d(x, y), is equal to one.

Recall that for a general graph, the Laplacian can be written as the sum of

rank-one matrices L =
∑m

i=1 viv
∗
i where vi is the i’th column in the incidence matrix

B associated to the i’th edge in the graph. The problem of Section 6.1 stated in the

context of graphs is as follows: How does one find real scalars si ≥ 0 so that the

reweighted graph Laplacian L̃ =
∑m

i=1 siviv
∗
i minimizes the ratio λN−1/λ1. This is

in a sense, reweighting the graph edges so that the resulting graph is most like the

complete graph spectrally.

There is the issue of λ0 = 0. Any connected graph will have Laplacian eigen-

value λ0 = 0 and hence κ(L) = ∞. We avoid this problem by restricting L to the

(N − 1)-dimensional space that is the image of L.

Lemma 6.2.1. Let G be a connected graph with eigenvalues {λk}N−1k=0 and eigenvec-

tors {ϕk}N−1k=0 of the graph Laplacian L. Let Φ̃ = [ϕ1 ϕ2 · · · ϕN−1] be the N×(N−1)

matrix of eigenvectors excluding the constant vector ϕ0. Then the (N −1)× (N −1)

matrix

L0 = Φ̃∗LΦ̃ (6.2)
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has eigenvalues {λk}N−1k=1 and associated orthonormal eigenvectors {Φ̃∗ϕk}N−1k=1 .

Proof. We first show that {Φ̃∗ϕk}N−1k=1 are eigenvectors to L0 with eigenvalues λk.

For any k = 1, ..., N − 1 we have

L0Φ̃
∗ϕk = Φ̃∗LΦ̃Φ̃∗ϕk.

Since Φ̃ is an orthonormal basis for the eigenspace that its vectors span, then Φ̃Φ̃∗

is simply the orthogonal projection onto the eigenspace spanned by {ϕ1, ..., ϕN−1}.

That is, for any vector f , we have Φ̃Φ̃∗f = f−〈f, ϕ0〉ϕ0, which is simply the function

f minus its mean value. For each k = 1, ..., N − 1, the eigenvectors ϕk have zero

mean, i.e., 〈ϕk, ϕ0〉 = 0. Hence Φ̃Φ̃∗ϕk = ϕk and therefore

L0Φ̃
∗ϕk = Φ̃∗Lϕk = Φ̃∗(λkϕk) = λkΦ̃

∗ϕk.

The orthonormality of the eigenvectors {Φ̃∗ϕk}N−1k=1 follows directly from the

orthonormality of {ϕk}N−1k=0 and the computation

〈Φ̃∗ϕk, Φ̃∗ϕj〉 = (Φ̃∗ϕk)
∗Φ̃∗ϕj = ϕ∗kΦ̃Φ̃∗ϕj = ϕ∗kϕj = δ(k, j).

Unlike the Laplacian, the operator in (6.2) is full rank and its rank equals the

rank of the Laplacian. We denote it L0 because it behaves as the Laplacian after

the projection of the function onto the zero’th eigenspace is removed.

We can write the Laplacian in terms of the incidence matrix L = BB∗, where

recall from Section 1.2.1, B = [v1, ..., vm] where m is the number of edges in the

graph and each v` = ei − ej for some (i, j) ∈ E. Therefore the operator L0 can
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also be written as one matrix multiplication L0 = (Φ̃∗B)(Φ̃∗B)∗. As an abuse of

language, even though it is not of the particular form defined in Section 1.2.1, we

can view the “incidence matrix” of L0 as Φ̃∗B which can also be thought of as

the synthesis operator for a full-rank frame in RN−1. We seek scalars si ≥ 1 so

that the rescaled frame {√siΦ̃∗vi}mi=1 is tight or as close to tight as possible. In

terms of matrices, we seek a nonnegative diagonal matrix X = diag(
√
si) so that

L̃0 := Φ̃∗BX2B∗Φ̃ has minimal condition number. The resulting graph Laplacian,

denoted L̃κ = BX2B∗, is the operator with minimal condition number, L̃0, without

the projection onto (N − 1) eigenspaces, thus acting on the entire N -dimensional

space.

We present the pseudocode for the algorithm, GraphCondition, that produces

L̃κ, the Laplacian of the graph that minimizes the condition number of L. In our

numerical implementation minimizing condition number, we used the CVX toolbox

in MATLAB [21] which is a solver for convex optimization problems.
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Lκ=GraphCondition(L,Φ, B)

where L is the Laplacian matrix of the graph G,

Φ is the N ×N eigenvector matrix of L

B is the incidence matrix of L.

1. Set Φ̃ = Φ(:, 2 : N).

2. Use cvx to solve for X that minimizes λmax(Φ̃
∗BX2B∗Φ̃).

subject to: X � 0 is diagonal, trace(X) ≥ t ≥ 0, and Φ̃∗BX2B∗Φ̃ � I.

3. Renormalize and create Lκ = C · BX2B∗ where C is a scalar chosen so that

trace(Lκ) = trace(L).

Example 6.2.2. We consider the graph G which consists of two complete graphs

on 5 vertices that are connected by exactly one edge. The Laplacian for G has

eigenvalues λ1 ≈ 0.2984 and λ9 ≈ 6.7016, thus giving a condition number of κ(G) ≈

22.45. We rescale the edges via the GraphCondition algoritihm and obtained a

rescaled weighted graph G̃κ which has eigenvalues λ1 ≈ 0.3900 and λ10 ≈ 6.991,

thus giving a condition number κ(G̃κ) ≈ 17.9443.

Both graphs, G and G̃κ, are shown in Figure 6.1. The edge bridging the two

complete clusters is assigned the highest weight of 1.8473. All other edges eminating

from those two vertices are assigned the smallest weights of 0.7389. All other edges

not connected to either of the two “bridge” vertices are assigned a weight of 1.1019.

Example 6.2.3. We present condition the graph of the level-5 approximation of

the Sierpinski gasket which contains N = 366 nodes. The unweighted Laplacian, L,
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Figure 6.1: Top: The graph G of two complete graphs connected by

one edge. Bottom: The condiitoned graph with rescaled weights that

minimizes the condition number. The width of the edges are drawn

to be proportional to the weight assigned to that edge.
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Figure 6.2: Top to bottom: The barren graph, Barr(6), its condi-

tioned version, The path graph P5, and its conditioned version.The

width of the edges are drawn to be proportional to the weight assigned

to that edge.
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has a spectrum with λ1 ≈ 0.0057 and λN−1 = 6, thus κ(SG5) ≈ 1044.9. Figure 6.3

shows SG5 and its conditioned version.

We then condition the L using the GraphCondition algorithm to obtain a

rescaled Laplacian L̃κ with eigenvalues λ1 ≈ 0.0065 and λN−1 ≈ 6.7036 giving

κ(S̃G5,κ) ≈ 1027.6. Observe that the condition number is only slightly improved by

about 1.66%.

Figure 6.3: Left: The unweighted SG5 where each edge has a weight

of 1 and hence the edges are depicted to be of all the same width.

Right: The rescaled and conditioned graph that minimizes condition

number. The width of the edges are drawn to be proportional to the

weight assigned to that edge.

We show in the following example that the scaling coefficients {si}mi=1 that

minimize the condition number of a graph are not necessarily unique.

Example 6.2.4. Consider the graph G complete graph on four nodes with the

edge (3, 4) removed. Then G was rescaled and conditioned via GraphCondition;
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both graphs are shown in Figure 6.4. The orignal Laplacian, L, and the rescaled

conditioned Laplacian, L̃κ, produced by the GraphCondition algorithm are given

as

L =



3 −1 −1 −1

−1 3 −1 −1

−1 −1 2 0

−1 −1 0 2


, L̃κ ≈



2.8406 −0.6812 −1.0797 −1.0797

−0.6812 2.8406 −1.0797 −1.0797

−1.0797 −1.0797 2.1594 0

−1.0797 −1.0797 0 2.1594


,

with spectra

σ(L) = {0, 2, 4, 4}, σ(L̃κ) = {0, 2.1594, 3.5218, 4.3188}.

Both Laplacians have a condition number κ(L) = κ(L̃κ) = 2 which shows that the

scaling of edges that minimize condition number are not necessarily unique.

Figure 6.4: The unweighted graph G (left) and its rescaled version

G̃κ (right) yet both graphs have a condition number equal to 2.

We prove, similar to the result in Corollary 5.1.7, that the GraphCondition

algorithm will not disconnect a connected graph.
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Proposition 6.2.5. Let G = G(V,E, ω) be a connected graph and let G̃κ = G̃κ(V, Ẽ, ω̃)

be the rescaled version of G that minimizes graph condition number. Then G̃κ is

also a connected graph.

Proof. Let κ0 := κ(G) ≥ 1 and suppose that G̃κ is disconnected. This implies

that G̃κ has eigenvalue 0 with multiplicity at least 2 (one for each of its connected

components). This violates the condition Φ̃∗BX2B∗Φ̃ � I in the GraphCondition

algorithm, which yields the unique minimizer.

6.3 Other methods of rescaling graphs

We present in this section other minimization criteria, besides condition num-

ber, in which we rescale graphs in order to make the spectrum of the graph closer

to the identity.

The first alternative we consider is minimizing the spectral gap of the graph.

The spectral gap is defined as λmax − λmin, or the length of the smallest interval

supporting all nonzero eigenvalues of the Laplacian. The function λmax(X) is con-

vex over the space of symmetric matrices, see [9], and λmin(X) is concave. Hence

the spectral gap, λmax(X) − λmin(X), is a convex function and we can numerically

minimize it via convex programming. We denote the rescaled graph that minimizes

the spectral gap by G̃g.

Minimizing the spectral gap of a graph was proposed because it provides equiv-

alent way to characterize scalable frames. A frame is scalable, hence has κ(X) = 1,

if and only if its spectral gap λmax − λmin = 0. When the frame is not scalable,
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i.e., κ(L̃κ) > 1, it is not clear that the scaling that minimizes condition number will

necessarily minimize the spectral gap of that frame. In numerical experiments, these

minimizers are indeed different and so we consider minimizing condition number as

a distinct problem than minimizing condition number as was done in Section 6.2.

The next optimization problems considered are the distance of the rescaled

Laplacian to the Laplacian of the complete graph under the Frobenius norm. This

problem is again motivated by the idea of rescaling edge weights so that the resulting

graph Laplacian is closest to that of the complete graph.

Suppose we were able to rescale the graph G on N vertices to equal a com-

plete graph. Then every vertex on that complete graph must have degree d̄ =

trace(LG/N). Recall in Section 6.2 that for a connected graph’s Laplacian, L, we

can consider the operator, L0 acting as the Laplacian restricted to the (N − 1)-

dimensional space excluding the zero eigenspace. For the complete graph, KN , it’s

restricted Laplacian is equivalent to d̄IN−1. Therefore, in numerical implementation,

the objective function that we minimize is
∥∥L0 − d̄IN−1

∥∥ under the Frobenius norm.

Minimization of a norm is a convex problem and can also be solved using existing

convex programs. We let G̃F denote the rescaled graph that minimizes the objective

function with the Frobenius norm.

Example 6.3.1. We present numerical results of each of the graph rescaling tech-

niques for the double cluster graph shown in Figure 6.1. Each of the rescaled graphs

are pictured in Figure 6.5 and numerical data is summarized in Table 6.1.

We remark that the graph condition number of G̃κ is reduced by only about
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Figure 6.5: From top to bottom: G̃κ, G̃g, G̃F , which minimize

the condition number, spectral gap, and the Frobenius distance to

identity, respectively.
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G G̃κ G̃g G̃F

κ 22.4555 17.9443 22.8786 24.6280

λN−1 − λ1 6.4031 6.6091 5.1509 5.6526

∥∥L0 − d̄IN−1
∥∥
F

12.2246 12.3098 13.0895 12.1791

Table 6.1: Comparison of condition number, spectral gap, and

Frobenius distance to identity of the cluster graph, G, shown in Figure

6.1 and its rescaled versions, respectively.

20%. A source of future work would be to quantify lower bounds on rescaled graphs.

Example 6.3.2. We repeat the simulation shown in Example 6.2.2 for the level-5

graph approximation to the Sierpinski gasket, SG5 and present the results in Figure

6.6 and Table 6.2. We observe that the condition number minimizer reduces the

condition number by less than 2%.

Figures 6.7 and 6.8 illustrate the comparison of these rescaling methods for the

path graph P5 and the barren graph, Barr(6), that was introduced in Section 3.1.1.

The interpretation of the resulting numerical implementation of these algorithms

still requires development. The data suggests that graph conditioning (minimizing

the condition number) produces the best approximation to the complete graph, and

we will discuss this interpretation further in Section 6.4. Meanwhile, minimizing

the spectral gap and Frobenius distance to KN does not appear to provide good

approximations to the complete graph. One can observe in Figures 6.5, 6.6, and
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Figure 6.6: Left to right: G̃κ, G̃g, G̃F , which minimize the condition

number, spectral gap, and Frobenius distance to identity, respectively.

G G̃κ G̃g G̃F

κ 1044.9 1027.6 1045.0 1048.4

λN−1 − λ1 5.9943 6.6971 5.9737 6.0000

∥∥L0 − d̄IN−1
∥∥
F

85.3112 87.9702 85.7364 85.2882

Table 6.2: Comparison of condition number, spectral gap, and

Frobenius distance to identity of the level-5 graph approximation to

the Sierpinski gasket, SG5, and its rescaled versions, respectively.
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6.7 that these two methods assign high weights to the edges that are furthest away

from the rest of the graph. And yet, as previously discussed, there are situations in

which both optimization methods give the same optimal edge weights. Then, there

are graphs with high symmetries, such as the barren graph in Figure 6.8 whose

rescaled versions are nearly indistiguishable yet their Laplacians do have nuances

and fundamental differences. Interpreting these results and developing theory to

explain the numerics is a source of future work that we hope to settle.

Figure 6.7: Left to right: The path graph on 5 vertices, G = P5,

and its rescaled versions G̃κ, G̃g, and G̃f .

6.4 Interpretation of graph conditioning

As discussed in the motivation of this section, reducing the condition number

of a graph makes the graph more “complete”, that is, more like the complete graph

in terms of its spectrum. Since the algebraic connectivity λ1 is as great as possible,

it is the only graph for which λ1 = λN−1, the graph is the most connected a graph

can possibly be, and as such the distance between any two points is minimal. As

105



Figure 6.8: Left to right: The barren graph of 13 vertices,

G =Barr(6), and its rescaled versions G̃κ, G̃g, and G̃f .
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previously discussed, the effective resistance is a natrual metric on graphs and one

can compute that for any two distinct vertices, i and j, on the complete graph on

N vertices we have

R(i, j) =
N−1∑
k=1

1

λk
(ϕk(i)− ϕk(j))2 =

1

N

N−1∑
k=1

(ϕk(i)− ϕk(j))2

=
1

N
(ei − ej)∗ΦΦ∗(ei − ej) =

1

N
(ei − ej)∗(ei − ej)

=
1

N
‖ei − ej‖2 =

2

N
.

Conjecture 6.4.1. The process of conditioning a graph reduces the average resis-

tance between any two vertices on the graph.

The intuition behind Conjecture 6.4.1 can be motivated by studying the quan-

tity
∑N−1

k=1 1/λk. Consider a sequence of positive numbers {ak}Nk=1 with average

ā = 1/N
∑N

k=1 ak. Then since the function h(t) = 1/t is continous and convex on

the set of positive numbers, it is also midpoint convex on that set, i.e.,

N

ā
= Nh(ā) ≤

N∑
k=1

h(ak) =
N∑
k=1

1

ak
.

With this fact, let {λk}N−1k=1 denote the eigenvalues of connected graphG and {λ̃k}N−1k=0

denote the eigenvalues of the conditioned graph G̃κ, both satisfying λ̄ = 1/N
∑N−1

k=1 λk =

1/N
∑N−1

k=1 λ̃k. Since G̃κ is better conditioned than G, then
∥∥∥∑N−1

k=1 λ̃k − λ̄
∥∥∥ ≤∥∥∥∑N−1

k=1 λk − λ̄
∥∥∥. In other words, the eigenvalues {λ̃k}N−1k=1 are closer to the aver-

age λ̄ than the eigenvaleus {λk}N−1k=1 are. Hence

N−1∑
k=1

1

λ̃k
≤

N−1∑
k=1

1

λk
. (6.3)

Equation (6.3) resembles the effective resistanceR(i, j) =
∑N−1

k=1 1/λk(ϕk(i)−ϕk(j))2

except for the term (ϕk(i)−ϕk(j))2. This term will be difficult to account for since
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little is known about the eigenvectors of G̃κ. Analysis of eigenvectors of perturbed

matrices is a widely open area of research and results are very limited, see [18, 40,

65,68].

We remark that Conjecture 6.4.1 claims that condiitoning a graph will reduce

the average effective resistance between points; it is not true that the resistance

between all points will be reduced. If the weight on edge (i, j) is reduced, then

its effective resistance between points i and j is increased. Since we impose that

the trace of the Laplacians be preserved, if any edge weights are increased, then by

conservation at least one other edge’s weight must be decreased. The vertex pairs

for those edges will then have an increased effective resistance between them.

While we lack the theoretical justification, numerical simulations support Con-

jecture 6.4.1. Figure 6.9 shows the effective resistance matrix for SG5 and its condi-

tioned counterpart, both shown in Figure 6.3. To emphasize their relation, Figure

6.9 also shows the difference R− R̃κ which has mostly positive values. The average

value of R− R̃κ is approximately 1.0575.

The authors of [34] approach a similar way. They propose using convex opti-

mization to minimize the total effective resistance of the graph,

Rtot =
N∑

i,j=1

R(i, j).

They show that the optimization problem is related to the problem of reweighting

edges to maximize the algebraic connectivity λ1.
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Figure 6.9: The effective resistance matrix, R, for SG5 (left) and

the effective resistance matrix, R̃κ, for its conditioned counterpart

(bottom). The right image shows the difference R − R̃κ for which

most values are positive.
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