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Abstract

We propose a new framework for supervisory control design for discrete event sys-
tems. Some of the features of the proposed approach are: (i) By associating control and
observation capabilities and limitations with the plant as well as the supervisor, it mod-
els reactive systems, and also treats plant and supervisory processes in a symmetric way.
(ii) By introducing a single general interconnection operation, called masked composition,
it permits open-loop as well as closed-loop control. (iii) By viewing the uncontrollability
of events as corresponding to a projection-type control mask, and considering more general
nonprojection-type control as well as observation masks, it treats the controllability and
observability of events in a unified way. (iv) It applies to both deterministic and nondeter-
ministic plant models and supervisory design. The sublanguages of a given language that are
realizable under control are closed under union. Hence, the supremal realizable sublanguage
always exists. In addition, it yields conditions under which existence of a nondeterministic
supervisor implies existence of a deterministic supervisor. (v) By encapsulating control and
observation masks with process logic to form process objects, and using a single type of in-
terconnection operator to build complex process objects out of simpler component process
objects, it provides a foundation for an object-oriented approach to discrete event control.

Keywords: discrete event system, supervisory control, nondeterministic systems, object-
oriented systems, partial observation






1 Introduction

The standard supervisory control framework is ill-suited for modeling reactive systems.
In traditional supervisory control [27, 20|, the plant generates all events. The plant is
a “closed system”; the only intervention that is possible is from the supervisor disabling
some controllable events. In models with “command events” [1] or “driven events” [10], the
supervisor can initiate some events, but the controlled system of the plant and supervisor is
again a closed system. In a reactive system, the controlled plant is not a closed system. It
interacts with an environment that can initiate events that may be observed by the plant,
and whose occurrence may or may not require the participation of the plant. For example,
the radar screen of a fighter aircraft may indicate the presence of another aircraft, but may
not be able to identify it as friend or foe. Thus, the plant-as opposed to the supervisor—
observes an event initiated by the environment. Furthermore, it has partial observation
since it cannot distinguish between the two events corresponding to friend and foe. To
model reactive systems, not only the supervisor, but the plant as well, must have control
and observation capabilities and limitations. This is one of the features of the proposed new
approach.

The standard supervisory control framework of Ramadge-Wonham [27] permits the con-
trol input from the supervisor to be changed only when an event is observed. In other
words, non-constant open-loop control is not permitted. Requiring the control input to be
constant between observed events is analogous to requiring that zero-order hold be used in
sampled data systems. However, it is more realistic in that setting since the sampling rate
can be chosen to be high. In general, the frequency of observable events is not a design
parameter. Consider the problem of allocating a shared communication channel between
two users under the assumption that the controller cannot observe the messages submitted
by the users. Suppose that the controller can disable the access of either user, and the
specification is that there be no interleaving of the messages from the two users. Since there
are no observable events, the Ramadge-Wonham framework would require that the control
input be forever constant. Consequently, one user would be permanently denied access to
the channel. In contrast, by introducing the interconnection operation called masked com-
position, our framework permits an “open-loop” transition in the supervisor that allows the
access to be changed from one process to the other. Masked composition generalizes many
of the interconnection operators including strict synchronous composition [12], prioritized
synchronous composition [10], etc., while maintaining the desired property of associativity.
It can also be used to model the suppression (“hiding”) of events.

In nearly all the work on supervisory control, the event set is partitioned into a set of
controllable events and a set of uncontrollable events. The supervisor can disable any subset
of controllable events. Equivalently, this can be viewed as having a projection-type control
mask. While Golaszewski-Ramadge [9] have introduced a framework in which arbitrary sets
of events may be disabled, only limited results can be obtained in this very general setting.
Similarly, in the work of Holloway-Krogh on controlled Petri nets [13], arbitrary control
patterns can be applied by appropriately selecting the connectivity between the control



input places and the transitions of the net. Although observation has been studied using
non-projection masks [3], the same has apparently not been done for control. Yet it is entirely
natural to have groups of events which must be simultaneously disabled or not disabled at
all. For example, a machine may perform two operations and be subject only to on-off
control. Thus, to disable one operation requires shutting the machine off, thereby disabling
the other operation. Also, in the work of Stiver-Antsaklis [33] on hybrid control systems, the
command from a discrete event supervisor to a discrete event plant (that has been extracted
out of a continuous-time plant by way of aggregation) is able to enable/disable a group of
events simultaneously. Our framework includes arbitrary control masks, as well as arbitrary
observation masks.

A discrete event plant can have unmodeled dynamics. Thus, knowledge of the current
state and next event may not uniquely determine the successor state. In addition, there
may be state transitions that occur without being accompanied by the occurrence of a
modeled event. Such plants can be modeled by nondeterministic state machines with e-
moves (NSM’s) [14]. If there are driven events-i.e., supervisor commands that are not always
executable by the plant—then control design based on language models is inadequate and
design based directly on the NSM models or on trajectory models is needed {10, 11]. In [31,
21, 22], necessary and sufficient conditions for the solution to the supervisory control problem
are obtained under the restrictions that (1) the control and observation masks are natural
projections and (2) either every controllable event is observable [31] or only deterministic
supervisors are permitted [22]. Using the new framework, we are able to solve the supervisory
control problem for nondeterministic plants without either of these restrictions. Moreover,
when the supervisor is not constrained to be deterministic, then the sublanguages of a given
language that are realizable as controlled behavior are closed under union; consequently, the
supremal realizable sublanguage always exists. In addition, we obtain conditions under which
the existence of a nondeterministic supervisor meeting a specification implies the existence
of a deterministic supervisor meeting the same specification.

It is highly desirable to develop an object-oriented approach to supervisory control of
discrete event systems. Such an approach would offer the promise of software reusability [4].
Efforts to develop such an approach for continuous variable control systems have already
begun [16]. The basic goal is to develop the capacity to build modules (objects) in which the
vast majority of the logic is standardized (inherited from its class), and which can be used
off-the-shelf and interconnected in different ways to control many different plants to meet
different possible specifications. For a particular application, a portion of the logic would be
configurable when defining an object as an instance of its class.

In our approach, each process object consists of a logic submodule encapsulated with an
input interface (observation mask) and output interface (control mask). The interfaces may
be modified to reflect new sensor or actuator capabilities without requiring any modification
in the logic submodule. When objects are interconnected by masked composition to build
complex systems or to impose control, there are no compatibility conditions (such as su-
pervisor completeness) that require off-the-shelf objects to be modified. In contrast to the
approach in [8, 7], our framework can accomodate specifications that limit concurrency, and



the associativity of masked composition makes our approach suitable for modular control.

The organization of the remainder of the paper is as follows: In §2, we describe the
encapsulation of systems together with their control and observation interfaces as process
objects. The special case of deterministic process objects is also examined. In §3, the oper-
ation of masked composition is defined. §4 contains the main results concerning supervisory
control theory in the framework of process objects and masked composition. The special
case of deterministic supervisors is also described. Finally, §5 contains several examples il-
lustrating the importance of both nondeterministic supervision and open-loop control, and
the application of the process object/masked composition paradigm to reactive systems and
object-oriented design.

Most of the results in this paper first appeared in abridged form in [32, 30].

2 Process Object Representation

A nondeterministic state machine (with e-moves) is represented by a four-tuple P :=
(Xp,X,6p, X2) where Xp denotes the state space of P, ¥ denotes the event set of P,
6p: Xp x & — 2XP  where T := £ U {e}, denotes the nondeterministic transition function
of P, and X% C Xp denotes the nonempty set of initial states of P. !

We use the symbol z for denoting a state, and o for denoting an event including the
hidden event denoted as e. Thus dp(z,0) denotes the set of states reachable from state z
executing the event ¢ € X. A triple (z,0,z') is called a transition if ' € dp(z,0); it is
said to be a silent transition if o = €. A deterministic state machine is a nondeterministic
state machine satisfying the following conditions: (i) X3 contains exactly one element; (ii)
6p(z,€) = 0, Vz; (iii) dp(z, o) is either empty or contains one element for each o € Z.

We use 0% to denote the extension of & from the set of events & to the set of strings
¥*. Symbols s, t, etc., are used for denoting strings, including the zero length string denoted
with a slight abuse of notation as e. Thus 65(z, s) denotes the set of states reachable from
state x executing the sequence of events in the string s possibly interleaved with e-events.
Define Xp(z) := {0 € Z|ép(x,0) # B}-i.e., the set of events (possibly including ¢) defined
in state z; and Yp(x) := Tp(z) U {e}. L(P) denotes the generated language of P-i..,
L(P) = {s € ¥ 3zg € X2 s.t. 0p(x0,8) # B}. Given a language K C ©*, K and prK
are used to denote its prefix-closure; K is said to be prefix-closed if K = K. The Nerode
equivalence class of s € X* relative to K is denoted by [s]k. If the language is obvious from
the context, we freely omit the subscript and use [s] to denote the Nerode class.

In the standard supervisory control framework [27], the plant P generates all events.
Those events that are observable are received by the supervisor S. Based on the current
string of observable events, the supervisor may disable any of the controllable events that the
plant could generate in its current state. Specification of the uncontrollable events describes

1'We permit the NSM P to have a nonempty set of initial states, rather than requiring that there be only
one initial state. This is important only if we constrain P to contain no e-transitions. A similar assumption
is made by Inan [15].



the limitations on the ability of the supervisor to control the plant, while specification of the
unobservable events describes the limitations on the ability of the supervisor to observe the
plant.

A simple method of implementing supervisory control is to interconnect the plant and
supervisor by strict synchronous composition (SSC) [19]. For future reference, it is useful to
view the interaction of the plant and supervisor via SSC as consisting of three steps:

1. The events enabled by the supervisor are those that it can execute in its current state.

2. If the event o is possible in the current state of the plant and is enabled by the
supervisor, then the plant can generate this event.

3. When the plant generates an event o, the supervisor responds by synchronously exe-
cuting it.

In the implementation of supervisory control by SSC, the control and observation limi-
tations on the supervisor associated with the specification of the sets of uncontrollable and
unobservable events are not explicitly modeled. Instead, they are reflected in constraints
on the logic (state machine structure) of the supervisor. The requirement that no uncon-
trollable events be disabled (so-called supervisor completeness) means that if execution of a
string s results in states z and y for P and S respectively, and if the uncontrollable event o is
possible in z for P, then it must be possible in y for §. The requirement that the supervisor
base its control action only on those events that are actually observed (so-called observation
compatibility) means that if the strings sq, s, contain the same sequence of observable events
and result in states x;,z5 for P and y;,ys for S, and if o is an event possible in z;, 22, ¥1,
then ¢ must also be possible in 5.

One of our goals is to provide a framework for object-oriented supervisory control design.
The constraints on supervisor logic associated with supervisor completeness and observation
compatibility make the SSC implementation ill-suited for this purpose. Suppose that we
wish to define an object class called “one-step supervisor.” It would have the object class
“supervisor” as superior class. A one-step supervisor would be a supervisor with two states
Y0, Y1 and transitions {(yo,0,91)|c € A}, where A C ¥ is a configurable parameter. The
creation of an instance of this object would require the specification of the parameter A. This
approach is not viable because the completeness and observation compatibility requirements
make the admissible set for the configurable parameter A dependent on the specific structure
of the plant object to which the supervisor will be connected.

The basic problem with the SSC approach is that the supervisor completeness and ob-
servation compatibility conditions represent control and observation limitations implicitly as
restrictions on the supervisor logic. Our solution is to separate the control and observa-
tion limitations from the logic and encapsulate them together with the logic to form process
objects that can be interconnected without compatibility constraints.

When SSC is viewed as a three-step procedure, the presence of a transition labeled by
o in the current state of a process serves three functions: (1) it enables the other process
to generate o if it can do so; (2) it can generate o if the other process enables it; (3) it can
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respond to the event o if it is generated by the other process. Masked composition (MC) is
a generalization of SSC in which the first function is filtered by the control mask and the
third function is filtered by the observation mask.

To be able to define masked composition in such a way as to be associative, it is necessary
to distinguish between two types of transitions in an NSM P. The real transitions are
transitions of the usual type; they can generate events, enable another process to generate
events, and respond by synchronously executing events generated by another process. In
contrast, virtual transitions can only enable and respond to events generated by another
process. They cannot generate (initiate) events on their own. (See Example 1.)

Definition 1 A process object consists of four components ((P, P), C, M), where

1. (P, P), the logic component, consists of an NSM P together with a sub-NSM P. The
transitions in P are referred to as the real transitions, while those in P — P are referred
to as the virtual transitions. (P, P) is referred to as a logic module.

2. C, the output (actuator) component, is an equivalence relation on ¥ representing a
control mask.

3. M, the input (sensor) component, is an equivalence relation on ¥ representing an
observation mask.

The generated language of the process object ((P,P),C, M ) is defined to be the generated

A

language L(P) of its real part.

Given 0 € T, we use C(o) and M(o) to denote the corresponding equivalence classes
containing 0. An event is said to be completely uncontrollable (respectively, completely
unobservable) if it belongs to the equivalence class of € of mask C (respectively, of mask
M). Two events are said to be control-equivalent (respectively, observation-equivalent or
indistinguishable) if they belong to the same equivalence class of C' (respectively, of M).
An event is said to be completely controllable (respectively, completely observable) if its C-
equivalence class (respectively, M-equivalence class) is a singleton. If every equivalence class
with the possible exception of the class of € is a singleton, then we refer to the mask as a
natural projection. For any A C X, we use 74 to denote the natural projection for which the
equivalence class of € is {e} U (X — A). If A =X, we use I in place of g and refer to it as
the identity mask.

To clarify why it is necessary to distinguish between real and virtual transitions in the
logic component of a process object, we give an informal “preview” of the interconnection
operator of masked composition; the formal definition together with an illustrative example
1s given in §3. Masked composition is a generalized synchronization of processes that interact
through their control and observation interfaces. Let ((P;, B;), C;, M;), i=1,...,n denote a
collection of process objects defined over a common event set ¥. Their masked composition

is a process object ((P, P), C, M). The real transitions—i.e., those in P—are determined by a
3-step synchronization protocol:



1. Enablement: Each constituent process P, broadcasts the set Xp, (z;) of events (to-
gether with the null event €) that are possible in its current state. This broadcast is
“filtered” by its control mask C;, so the environment of P; actually receives the set
C;(Zp,(x;)) consisting of all events that are either completely uncontrollable to the
process or are control-equivalent to an event that is possible in its current state. The

enabled event set ¥p(z), £ = (z1,...,,), for the composite process is the intersection
of these sets-i.e., N?, C;(Tp,(;)).

2. Generation: A constituent process P; can generate an event o provided o € p (@:)N
Yp(x)-i.e., o is enabled in P and P; can execute a real transition on ¢ in its current
state.

3. Response: An event o generated by P; is broadcast to each of the other constituent
processes P;. P; receives this broadcast filtered by its observation mask M;. If M;(o)N
Zp,(x;) # 0, P; responds by synchronously executing an event ¢’ from this set. If the
set contains more than one element, the choice of ¢’ is nondeterministic; if the set is
empty, P; does not participate in the transition. In any case, the transition in the

composite system is labeled only by the generated event o, not by the response event
o' ?

We can now justify the need for distinguishing between real and virtual transitions.

Example 1 Let ¥ = {a,a;,a5}. Let P, = P, i = 1,2 denote a deterministic process that
can execute a; and then deadlock. Suppose that C;(a;) = C;i(a), 7 = 1,2. Then the enabled
event set in the initial state of the masked composition of the two processes is

Ci1({a1}) 0 Co({as}) = {a}.

Since neither constituent process can generate the event a in its initial state, no events can
be generated in the initial state of the composite system—i.e., the composite system contains
no real transitions. However, if the two constituent processes are composed with a process
P, = P, that can execute a and deadlock, then the resulting composite system has a real
transition on a in its initial state generated by the constituent process P;. We need a virtual
transition on a in the composition of P, and P, to represent the fact that these processes can
enable a if interconnected to a process that is able to generate a. * Thus, even if we start
with constituent processes that have no virtual transitions-i.e., for which P, = Pi—virtual
transitions can arise when the processes are interconnected.

Next we define the augmentation of an NSM P. The purpose of augmentation is to
permit us to represent the masked composition operation in terms of the strict synchronous

ZThere is a subtle feature in the definition of masked composition that is omitted from this informal
description, namely that P; can execute a completely unobservable event possible in its current state as a
response event when no event has been generated by the remaining constituent processes. The interpretation
is that P; cannot distinguish such an event from the null event e.

3 Another way to view this is that without virtual transitions, masked composition could not be associative.
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composition (SSC) operation. In order to do this, it is necessary to add transitions to P in
each state to obtain a new NSM, denoted P®M, that satisfies the following properties:

P1: If o is defined in state z, then every event in C (o) must be defined in z.
P2: Every event in C(e) must be defined in every state z.

P3: If 0, and o, are defined in z and M (o) = M(02) # M(e), then o, and o3 must have
the same set of successor states.

P4: If o is defined in z and M (o) = M (e), then o and € must have the same set of successor
states, and there must be a self-loop on o.

Remark 1 P2 and P4 can be regarded as special cases of P1 and P3, respectively, provided
we agree by convention to regard there to be a self-loop on € defined in each state.

Definition 2 Given an NSM P and control and observation masks (C, M), the augmenta-
tion of P with respect to (C, M), denoted P°M | is obtained from P by adding for each state
z transitions as follows:

L. If (x,0,2') € P with z # z' and M(0) = M(e€), add transitions (z, 0, z) and (z, ¢, z').

2. If (z,01,21), (z,00,22) € P with 21 # x5 and M(01) = M(03) # M(e), add transitions
(z,01,22) and (z, 09, 71).

3. If 0 ¢ Tp(z), O(0) NEp(z) # 0 (ie., o is completely uncontrollable or control-
equivalent to an existing event), and M(o) NXp(z) = @ (i.e., o is neither completely
unobservable nor observation-equivalent to an existing event), add a self-loop transition
(z,0,z).

4. If 0 ¢ Tp(z), C(0) NTp(z) # 0, M(c) # M(e), and M(o) N Sp(x) # O (ie., ois
not completely unobservable and is observation-equivalent to an existing event), add
transitions {(z, 0,2')| 2’ € ép(z,0'), o’ € M(0) N Ep(z)}.

5. If o € Tp(z), C(0) NTp(z) # 0, M(c) = M(e), (ie., o is completely unobservable),
add the self-loop transition (z, g, ).

The construction in the proof of Lemma 2 requires the following modification of the
operation of augmentation.

Definition 3 Given an NSM P and control and observation masks (C, M), the modified
augmentation of P with respect to (C, M) is the NSM P’ obtained from P by applying
operations 1,2,4,5 in Definition 2 together with the following substitute for operation 3:

3. Add a “dump state” z; with self-loops in z; on every event in C(e). If o ¢ Tp(z),
C(o) NXp(z) #0, and M(c) NZp(z) =0, add a transition (z, 0, z4).



The definition of the augmentation of an NSM is extended in a trivial way to define the
augmentation of a logic module:

Definition 4 Given a logic module (P, }5), its augmentation with respect to the control and
observation masks (C, M) is the logic module

(P, P)°M .= (P°M P,

Example 2 Consider the process P shown in Figure 1. P is a deterministic process with
L(P) = pr{dd,ca,b}. Suppose that the C-equivalence classes are Ay = {¢,b}, A; =
{a,c}, A; = {d}, and the M-equivalence classes are By = {¢,c}, B; = {a,b,d}. The
augmented process P°M is also shown in Figure 1.

P PCM

Figure 1: Diagram illustrating Example 2

Remark 2 In general, P°M can be nondeterministic even if P is deterministic. If P is
deterministic, P°M will be deterministic if and only if every transition labeled by an event in
M (e) is a self-loop, and whenever M (o) = M(o') and ép(z, o), dp(x, o) are both nonempty,
then ép(z,0) = dp(z, d’).

Definition 5 Given an NSM P and control and observation masks (C, M), we say P is a
(C, M)-invariant process if P°M = P,

The following result is a straightforward consequence of Definitions 2 and 5.

Proposition 1 Given an NSM P and control and observation masks (C, M), P is a (C, M)-
invariant process if and only if it satisfies properties P1-P4.



We will obtain a characterization of the set of languages that can be generated by (C, M)-
invariant processes for given control and observation masks. This leads us to introduce the
notion of (C, M)-closed languages.

Definition 6 Let K be a language over ¥ and let (C, M) be given control and observation
masks. We say that K is a (C, M)-closed language if the following conditions are satisfied:

CM1 If 0,0’ € T with ¢’ € C(0) and so € K, then so’' € K.

CM2 If 0,0’ € T with ¢’ € [C(€) UC(0)] N M(e) and sot € K, then s(o’)*0t C K.
CMS3 If 0,0’ € T with ¢’ € [C(e) UC(0)] N M (o) and sot € K, then so't € K.
Remark 3 A useful derived property of a (C, M)-closed language is the following:
CM4 If 0 € M(e) and sot € K, then so*t C K.

To obtain this, suppose o € M(e) and sat € K. Applying CM2 with ¢’ = o gives so*gt C K.
Applying CM3 with ¢’ = € gives st € K. So so*t C K.

Remark 4 The three defining properties of a (C, M)-closed language depend only on the
prefix-closure K of the language and can be restated in terms of Nerode equivalence classes
with respect to K [14, p. 65]. Given s € ¥, let [slz denote the Nerode equivalence class
of s; i.e., [s1]f = [s2]f provided that st € K & syt € K, Vt € £*. Let N(K) denote the
set of Nerode equivalence classes. We can define a partial order on N(K) by specifying that
[s1% < [salg © {t € =*| sit € K} C {t € £*| syt € K}. The poset N(K) has an infimal
element: . .

inf N(K) =%* - K.
Then the conditions for K to be a (C, M)-closed language are equivalent to the following:
CM1 ¢ € C(0) = [[so}z = inf N(K) & [so']x = inf N(K)]
CM2 o' € C(o) N M(e) = [solg < [sd'olx

CM3 o' € [C(e) UC(0)] N M(0) = [solz < [s0']%

The following lemma is an immediate consequence of the definitions of augmentation,
(C, M)-invariant process, and (C, M)-closed language.

Lemma 1 If P is a (C, M)-invariant process, then L(P) is a (C, M)-closed language.

Given a language K C ¥*, we use CM(K) to denote the collection of all prefix-closed
(C, M)-closed superlanguages of K. Then it is clear from Definition 6 that CM(K) is
nonempty and closed under arbitrary intersections and arbitrary unions. In particular, this
implies that it contains a unique infimal element which we denote by K°Y and refer to as
the (C, M)-closure of K.



Lemma 2 Given a nonempty language K and control and observation masks (C, M), there
exists a (C, M)-invariant process P such that L(P) = KM, If K is regular, then P can be
chosen to be finite-state, i.e., KM is also regular.

Proof: Let R be any NSM with the following property:
Vz € Xg, 0,0 €X: [0,0' € C(e)]Ao,0" € Zr(z)] = C(o) = C(d'). (1)

In other words, whenever two events that are not completely uncontrollable are defined in
the same state, they must be control-equivalent.

Let @@ be an NSM that satisfies (1). Let P be the modified augmentation of ) with
respect to (C, M). (See Definition 3.) We claim that

L(P) C [L(@)M. (2)

To establish this, suppose that a transition is added to @ via one of the five operations of
modified augmentation, and let @' be the resulting NSM. We claim that

L(@) S [L@)°™. (3)

For a type 1 operation, (3) follows from CM4. For a type 2 operation, (3) follows from CM3.
For a type 3' operation, (3) follows from CM1. For a type 4 operation, (3) follows from
CMS3. For a type 5 operation, (3) follows from CM2. Thus, (3) holds. Furthermore, Q' also
satisfies (1), so the argument can be repeated for the next transition added via modified
augmentation. Continuing in this way yields (2).

It is straightforward to verify that an NSM obtained by modified augmentation is a
(C, M)-invariant process. Hence, it follows from Lemma 1 that L(P) is a (C, M)-closed
language. Using this fact together with (2) yields

L(P) C [L@]™ < [L(P)]°M = L(P).

Thus, P is a (C, M)-invariant process with generated language [L(Q)]°M.

Now let K be a nonempty language. We define an NSM Q satisfying (1) with L(Q) = K as
follows: Let {4;}?, denote the C-equivalence classes of the elements of ¥, with e € Ay. Let
[s] denote the Nerode equivalence class of s € K induced by K. Let Z%(s) = {0 € &| so €
K}. For the state space of @), define X = {([s],0)| s € K}U{([s],7)| AinZx%(s) #0, i > 0}.%
For the set of initial states of Q, define X = {([e], %) € Xg| i > 0}. ® The transitions of Q
are as follows:

{(([s],4), 0, ([s9], )| ([s],9), (s0], 5) € Xq, o € A}
Clearly, L(Q) = K.

“For a given s € K, if there is some i > 0 such that the state ([s], 1) is defined, then the state ([s],0) can
be omitted.

SIf we require that there be a unique initial state :L'OQ, then simply augment Xqg by this state and define
e-transitions from mOQ to each state in X%.
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Letting P be the modified augmentation of Q gives a (C, M)-invariant process with
generated language KM, If K is regular, then Q is finite-state. Thus, P is finite-state, so
K€M s regular.

|

Example 3 Let K = {dd, ca,b}, and let C, M be as in Example 2. The strings in K form
four Nerode equivalence classes, namely [e], [d], [c], [dd] = [ca] = [b]. When the algorithm
described in the proof of Lemma 2 is applied, we obtain the (C, M)-invariant process P shown
in Figure 2. L(P) = c*(e + a)b* + (b + d)(e + d)b*, and it is easy to verify directly that this

£l.l
el ([e]0) é)([a],Z)
/ b,d

(1c1,0)O (Icl, 1) O ([d]2) O (1d1,0)
([b],0)

ab

Figure 2: Diagram illustrating Example 3

is the smallest prefix-closed superlanguage of K that satisfies the properties required of a
(C, M)-closed language.

Remark 5 From Lemma 2, it follows that if K = K is regular, then so is KM, In fact,
if the number of states in the minimal deterministic generator for K is n, then the number
of states in the generator for K°M as constructed in the proof of Lemma 2 is no more
than the number of control equivalence classes multiplied by n. Since the number of control
equivalence classes is bounded above by the size of the event set, it follows that the NSM
generator for KM has O(n) states. In order to test whether a given language K is (C, M)-
closed, it suffices to check whether KM C K, which is equivalent to checking whether
K®MNK*® = ( (where the superscript ‘c’ denotes complement). Since K has a deterministic
generator with n states, the acceptor for K* has n + 1, i.e., O(n) states. So the emptiness
condition can be verified in O(n?) time.

The results of Lemmas 1 and 2 can be combined to obtain the following representation
theorem that describes exactly the class of languages that can be generated by (C, M)-
invariant processes. It provides the foundation for the supervisory control results in §4.

11



Theorem 1 Let K be a nonempty prefix-closed language and let (C, M) be given control
and observation masks. There exists a (C, M)-invariant process P such that L(P) = K if
and only if K is a (C, M)-closed language. If in addition K is regular, then P can be chosen
to be finite-state.

We now consider the class of languages that can be generated by deterministic (C, M)-
invariant processes.

Definition 7 A process object ((P, P), C, M) is called a deterministic process object if P°M
is a deterministic state machine.

Definition 8 A language K is called a deterministic (C, M)-closed language if for each
s € ¥*, 0 € ¥ such that so € K|, it satisfies conditions CM1, CM2, CM3, and the following
additional condition:

CMDA1 If 0,0’ € T with ¢’ € M (o) and sot,so’ € K, then so't € K; i.e., so and so’ are
Nerode equivalent relative to K.

The following results relate the concept of deterministic (C, M)-closed language to con-
trollability and observability. Recall from [26] that given a prefix-closed language H, K is
said to be (H, C)-controllable if

so € K,0' € C(0),s0' € H= so' € K,

where the traditional definition of controllability has been naturally extended to include
nonprojection-type control masks. It follows that K is (X*,C) controllable if and only if
condition CM1 holds.

The equivalence relation M on % induces an equivalence relation M* on £* defined
inductively as follows:

o M*(0) = M(e)*M(c)M(e)*, Vo € T.
o M*(so) = M*(s)M* (o).
A second equivalence relation on ¥*, denoted by M, is derived from M* as follows®:
o M(o)={o}, Vo e T.
o M(so) = M*(s)o, Vo € .

In the sequel, we will suppress the superscript on M* and denote the M*-equivalence class
of a string s simply by M(s). K is said to be (H, M)-observable [24] if

so, 8 € K,M(s") = M(s),sc €c H=>soecK.

6In the case where the mask M is projection-type, M was introduced by Rudie-Wonham [28].
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Lemma 3 K is (£*, M)-observable if and only if it satisfies the condition CMDA4.

Proof: Suppose K is (£*, M)-observable. We show that CMD4 holds by induction on |¢|.
If |t| = 0, then CMD4 holds trivially. For the induction step, suppose t = . Then from
induction hypothesis so'f € K. Since sot = sot € K and M(sot) = M(so't), (*, M)
observability of K implies so'f7 = so't € K, completing the induction step.

Conversely, suppose CMD4 holds. In order to prove (2*, M)-observability of K, it suffices
to show that for s,s' € K with M(s) = M(s'), [s]z = [s'lz- We prove this by induction
on |s| + |s'|. If |s| + || = 0, then s = s’ = ¢ and the assertion trivially holds. For
the induction step, suppose s = 57 with M(s) = M(s'). Then we have two cases: (i)
M(@) = M(e). Then M(5) = M(s'). By induction hypothesis [s= = [s']z Also, since
T € M(e) and 5,5 = 57 € K, it follows from CMD4 that [s]z = [5lz. So [s]z = [s']z. (i)
M (@) # M(e). Then without loss of generality, we may assume s' = 3’5 with M(3) = M(3')
and M(5) = M(d’'). * By induction hypothesis, [}z = [3']z. Then

[slg = Bolg =Falg =7k = sl

where the second equality follows from the induction hypothesis and the third equality follows
from CMDA4. n

The result of Lemma 3 can be used to prove the following expected characterization of
deterministic (C, M)-closed languages.

Theorem 2 K is a deterministic (C, M)-closed language if and only if it is both (£*, C)-
controllable and (£*, M)-observable.

Proof: As mentioned above, condition CM1 is the same as (X*, C)-controllability, and by
Lemma 3, CMD4 is equivalent to (X*, M)-observability. So it suffices to show that CM1 and
CMD4 together imply CM2 and CM3.

In order to establish CM2 and CM3, consider ¢’ € [C (o) U C(e)] and sot € K. Since
so € K and ¢’ € C(0) U C(e), it follows from CM1 that so’ € K. Suppose o' € M(o).
Then since sot € K, it follows from CMD4 that so’t € K, establishing CM3. On the other
hand, if o' € M(e), then M(s) = M(so'). So from CMD4, [s]&= = [so']%, which implies
[sl% = [s(0")7]5 for any j > 0. Since sot € K, this implies that s(¢')/ot € K for any j > 0,
proving CM2. [ ]

Lemma 4 If P is a deterministic (C, M)-invariant process, then L(P) is a deterministic
(C, M)-closed language.

Proof: Let K := L(P). By Lemma 1, K is a (C, M)-closed language. Thus, it suffices to
show that CMD4 holds. Pick ¢’ € M(0) and s such that so,so’ € K. Then both ¢ and o’
are defined in the (unique) state of P reached by execution of s. Since M(s) = M(o') and

"If the final event in s’ is in M(e), then by reversing the roles of s, s’ it reduces to case (i).
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P is a (C, M)-invariant process, the transitions on o and ¢’ lead to the same successor state.
This implies that [sol% = [so']%. m

Given a language K C ¥*, we use CM D(K) to denote the collection of all prefiz-closed
deterministic (C, M)-closed superlanguages of K. Since controllability and observability
of prefix-closed languages are preserved under arbitrary intersections, CM D(K) is closed
under arbitrary intersections. However, since observability of prefix-closed languages is not
preserved under arbitrary unions, it follows that CM D(K) is not closed under arbitrary
unions. This is in contrast to the (C, M)-closed languages. We use K°MP to denote the
infimal prefix-closed deterministic (C, M)-closed superlanguage of K, and refer to it as the
deterministic (C, M)-closure of K.

Lemma 5 Given a nonempty language K and control and observation masks (C, M), there
exists a deterministic (C, M)-invariant process P such that L(P) = K°MP_ If K is regular,
then P can be chosen to be finite-state, i.e., K°MP is also regular.

Proof: Let K := K°MP_ and let P be the deterministic state machine obtained by the
Nerode construction for K. By CML1 it follows that if C(¢) = C(0") and o is defined in state
(s], then ¢’ is defined in state [s];. Also it follows that each event in C(e) is defined in state
[s]z- By CMD4 it follows that if M(c) = M(e) and o is defined in [s]; then the transition
is a self-loop. It also follows that if M (o) = M(o'), and 0,0’ are both defined in [s]3, then
the corresponding transitions have the same successor states. Thus, P is a deterministic
(C, M)-invariant process with L(P) = K¢MP,

To complete the proof, we show that if K is regular, then K°MP ig regular, so P is
finite-state. First we claim that

KCMD — (KCID)IMD. (4)

In order to establish (4), it suffices to show that if N is prefix-closed and (X*, C)-controllable,
then N'MD ig (2* C)-controllable. Applying this assertion with N := K¢P implies that
(KCIP)IMD s a prefix-closed superlanguage of K that is both (Z*,C)-controllable and

(X*, M)-observable. Thus,
KCEMD C (fCID)IMD.

On the other hand, K°MP is a prefix-closed (3*, M)-observable superlanguage of K¢P | so
the reverse inclusion also holds.
It follows from [17, Theorem 3] that if N C X,

N™MD = [ L:={teS| M{t)NN # 0} (5)

where L denotes the supremal prefiz-closed sublanguage of a language L. It follows easily
from (5) that if N is prefix-closed and (X*, C)-controllable, then the same is true of N/MD
thereby establishing (4).
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If K is regular, it is obvious (and well-known) that K is regular. However, it follows
easily from (5) that if N is regular, then so is NP, (See [17, Remark 1].) From (4) we
conclude that K¢MP is regular. 8 n

The results of Lemmas 4 and 5 can be combined to obtain the following representation
theorem that describes exactly the class of languages that can be generated by deterministic
(C, M)-invariant processes. It provides the foundation for the deterministic supervisory
control results in §4.

Theorem 3 Let K be a nonempty prefix-closed language and let (C, M) be given control
and observation masks. There exists a deterministic (C, M)-invariant process P such that
L(P) = K if and only if K is a deterministic (C, M)-closed language. If in addition K is
regular, then P can be chosen to be finite-state.

Remark 6 Whenever the observation mask refines the control mask, i.e., M (o) C C(o) for
each 0 € T, then CM3 is equivalent to CMD4; consequently, every (C, M)-closed language
is also a deterministic (C, M)-closed language. In particular, this holds when both C and M
are projection-type masks and M(e) C C(e)-i.e., when every completely controllable event
is completely observable. While in general we have

cM CMD
K*Y CK ,
in this special case the two closures coincide.

Example 4 Let ¥ = {a,b, ¢, d}. Suppose the C-equivalence classes are {¢}, {a,b}, {c}, {d}
and the M-equivalence classes are {¢,a}, {bc}, {d}. Let K = acd +b. Clearly any
prefix-closed (C, M)-closed superlanguage of K must contain pr(a*cd + a*b). On the other
hand, the (C, M)-invariant process P depicted in Figure 3 generates this language. Thus,
KM = pr(a*cd + a*b). Since pr(a*cd + a*b) is not (I*, M)-observable, KM is a proper

aye/é;ga o

C d
P 0
Figure 3: Diagram illustrating Example 4

subset of KCMP Tt is easily verified that KMP = pr{a*(b+ c)d}. A deterministic (C, M)-
invariant process @) that generates K“MP is depicted in Figure 3.

8In the case where M is projection-type, the fact that the regularity of N implies the regularity of N/MD
was shown in [28].
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3 Masked Composition of Process Objects

This section defines the operation of masked composition which is the interconnection
mechanism of process objects that we use for achieving control as well as for interaction
among the components of a plant. We begin by defining a sychronous product of logic
modules.

Definition 9 Let (P;, P) (i = 1,2) be logic modules over & with B = (5, Xp,, dp,, X3),
and let 05 denote the transition function for the sub-NSM P,. The synchronous product of
the logic modules is denoted by

(P, P) = (P, P)|(Ps, P)
and is defined as follows:
e P := P,|P,, the standard strict synchronous composition (SSC) ° of Py, P;.
e The transition function of P is defined by
Vo € £:05((z1,%2),0) = [0p,(21,0) X 6p,(22,0)] U [0p, (21, 0) X 85, (22,0)]

[
615((1"1’ Ta),€) = [61’1 (z1,€) X {x2}] U [{:1:1} X 0p, (z2,€)] U
[6131 ('7"1’ 6) x 51"2(372»6)]

Proposition 2 The synchronous product of logic modules is associative:

(P, P2, BB, 1P5) = (P, PPy, o)) [(Ps, [ Py))

Proof: Straightforward. [ |

Definition 10 Given process objects ((Py, By), Co, Mo) and ((Py, P1), Cy, My), their masked
composition (MC), denoted (P, By), Co, My) || ((P1, P,), C1, My), is defined to be the process
object

((Po, Bo)oMo(Py, P)C1 M Cy ACh, My A M),

where | denotes the synchronous product of logic modules, and A denotes the conjunction
of equivalence relations-i.e., the equivalence relation whose equivalence classes are the inter-
sections of the equivalence classes from the original equivalence relations.

%In the SSC of NSM’s, an event o € ¥ is enabled in the current state provided it is enabled in the current
state of each constituent process. If this is the case and o occurs, it is synchronously executed by each
process. An e-transition is possible in the current state of the SSC provided it is possible in the current state
of at least one constituent process. If € is possible in the current state of only one process, it is executed by
only that constituent process; the state of the other constituent process remains unchanged. On the other
hand, if ¢ is possible in the current state of each process, then it may be executed either synchronously by
each process, or asynchronously by one of the processes.
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Thus the NSM P := PFoMo| peiMi of the composition is obtained by SSC of the augmen-
tations of the constituent processes. It contains both the real and virtual transitions and
represents the real transitions that would exist if the two constituent processes were intercon-
nected to a “universal event-generator”i.e., a process object whose logic component consists
of an NSM with a single state and real self-loops on every event in Y. The real transitions in
P-i.e., the transitions in P are those transitions in P that can actually be generated by real
transitions in the constituent processes. The real transitions can be interpreted as arising
via the 3-step synchronization protocol described in §2. Finally, the control and observation
equivalence relations of the composition are obtained by conjunction of the corresponding
equivalence relations of the constituent process objects.

Remark 7 It is clear that the definitions of augmentation and masked composition extend
in an obvious way to the more general situation where the control and observation masks

are allowed to be state-dependent.

Example 5 Let ¥ = {a,b}, and let Py = By, P, = P, be as shown in Figure 4. Suppose that

aQb

a b ab a b
a
Qv O
COMO PCIMI
A , P

Figure 4: Diagram illustrating Example 5

the Cy equivalence classes are {¢, b}, {a}; My = I; the C; equivalence classes are {¢, a}, {b};
the M; equivalence classes are {¢}, {a,b}. The augmented processes Py °™ PEM are shown
in Figure 4. From Definition 10, it is straightforward to verify that the logic component of
the masked composition of ((Py, Py), Co, My) and ((P1, P,), C1, M) is the NSM P depicted
in Figure 4, and that every transition in P is real-i.e., P = P. Note that if P, generates
a, then P, synchronously executes b since it cannot distinguish between a,b. On the other
hand, if P, generates b, there is no observation-equivalent event that P, can execute, so it
does not participate in this transition. Since P, remains in its initial state, it is then able to
generate the event a. Consequently, the trace ba can be executed by the composite system,
while the trace ab cannot be executed.

The next example illustrates a subtlety concerning the role of completely unobservable
events in masked composition. It also demonstrates important distinctions between the
roles of unmodeled transitions (i.e., e-transitions) and transitions labeled by completely
unobservable events.
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a ab b
b a b a,e O\ £ I3
€
c c c c c C
COMO CIMI 1] l;
P, A P P P P

Figure 5: Diagram illustrating Example 6

Example 6 Let ¥ = {a,b,c}, and let Py = Py, P, = P, be as shown in Figure 5. Suppose
that the Cy equivalence classes are {¢}, {a,b}, {c}; My = I;, C; = Cy; the M, equivalence
classes are {¢,a}, {b}, {c}. The augmented processes PC°M° PFMi are shown in Figure 5.
From Definition 10, it is straightforward to verify that the logic component of the masked
composition of ((Pp, Fy), Co, Mo) and ((P1, P1),C1, My) is the NSM P depicted in Figure 5,
and that every transition in P is real except for the self-loop on a in the initial state.

Let us interpret the real transitions of P (i.e., the transitions of 13) in its initial state in
terms of the 3-step synchronization protocol described in §2. Since a, b are control-equivalent
in each process, it follows that the enabled event set in the initial state of P is {a,b}. If P,
generates b, P; has no observation-equivalent event enabled, so the transition occurs solely
in Py. If P, generates a, P, has no observation-equivalent event enabled, so the transition
occurs solely in P;. The third possibility is that P; executes the completely unobservable
event a as a response transition to the null event € generated in its environment. This is
possible according to the synchronization protocol because a is observation-equivalent to ¢
for P;. This explains the e-transition in the initial state of P. This transition in P is labeled
by € (not by a) since a real transition in a masked composition is always labeled by the event
that generates it.

We see that the presence of a completely unobservable event in a constituent process
can lead to e-transitions when interconnected with another process via masked composition.
Nevertheless, there are important differences between the functions of e-transitions and those
of transitions labeled by completely unobservable events. To illustrate this, we modify P; to
obtain a new process P, = P! by replacing the transition on a by an e-transition. If P is
replaced by P, in the masked composition, we obtain the process P’ depicted in Figure 5.
P’ can only execute an e-transition and then deadlock, so it is drastically different from P.

Focusing on the initial states of P and P’ let us examine why this is the case. In the
original masked composition, the transition on a in P, plays 3 distinct roles corresponding
to the 3 steps in the synchronization protocol. (1) It enables the event b which can then be
generated by Py. (2) It can generate a transition on a. (3) It can be executed as a response
to the generated event e. When a is replaced by € to obtain Pj, the first two roles are lost.
This is why there is only a transition on € in the initial state of P’ while there are transitions
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on b, a, ¢ in the initial state of P. Thus, unobservable transitions resemble unmodeled (silent)
transitions only in their function as response transitions, but not in their functions in event
enablement and event generation.

In the following remark we note some of the generalities of the masked composition
operation.

Remark 8 We have defined masked composition using augmentation. It is useful to note
that augmentation can be described using masked composition as follows:

(P, P),C, M) || ((det(*),det(S*)),I,1) = ((P°M|det(*), P°M|det(*)), I, 1)
((PM, PM), 1, 1),

where det(¥X*) is any deterministic process with language X*.

Next we show that masked composition with a certain kind of process can be used to
obtain hiding of a given set of events. Given an NSM P and a set of events B C X, we define
the restriction of P to B (or “P hide ¥ — B”), denoted P|p, to be the NSM obtained from
P by replacing each label in ¥ — B by €. Then one can observe that

((P, P),I,p) || ((det(B"),det(B")),I,I) = ((P'"®|det(B*), P"2[det(B*)),1,])
= ((PlB’P|B))I’I)’

where det(B*) is any deterministic process with language B*. 1° Thus, restricting P to B is
equivalent to taking the masked composition with the deterministic process with language
B* and the events in ¥ — B regarded as completely unobservable to P.

Furthermore, the prioritized synchronous composition (PSC) [10, 31] of processes Py and
P, with priority sets A and B corresponds to the special case of masked composition where
My = I, My, = I-.e, in each process, every observation equivalence class is a singleton
(all events are completely observable to each process), and the control masks Cy, C; are
the natural projections w4, 7g respectively.!! The full synchronous composition operator in
concurrency theory [12, p. 68] corresponds to the special case of PSC in which the alphabet
(event set) of each process coincides with its priority set. The effect of the interleaving
operator [12, p. 119] can also be obtained using masked composition as illustrated in Example
7.

Finally, the traditional supervisory control model [26, 24, 3] corresponds to the special
case where Cy = M, = I (all events are completely controllable and completely observable
to the plant), Cy = 7y, and M; = 7s,, where X, ¥, denote the set of controllable events
and set of observable events respectively.

10 Actually, determinism is not essential here.

11 Actually, there is a subtle difference between PSC and this special case of MC. In PSC, it is not possible
for one process to execute an event o by itself when the other process is in a state where o is possible after
first executing an e-transition. In MC, this is entirely possible.
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Example 7 In this example, we demonstrate how interleaving composition [12, p. 119]
can be modeled using masked composition. Suppose Py = P, is a process that can execute
ab and deadlock, while P, = ]31 is a process that can execute a and deadlock. We first
subscript each event with the index of the process in which it occurs to obtain the modified
processes Py, P{ which have disjoint alphabets ¥y = {ao,bo}, £; = {a;}. Now take the
masked composition using C; = M; = my,. The resulting process P = P has generated
language L(P) = pr{aoboa1, agaibo, ajaobe} and hence represents pure interleaving of the
constituent processes. If we do not want to distinguish events that differ only in their
subscripts when we compose with other processes, we simply arrange for the masks of the
other processes to identify such events. (See also Example 11.)

The next theorem establishes the associativity of masked composition; it follows from
associativity of synchronous product and intersection.

Theorem 4 Masked composition is associative:

[((Po, Po), Co, M) || ((PI,P}),C'I,MI)] I ((Pz,Pg),CmMﬂ = )
((Po, Po),Co, Mo) || [((Py, Pr), Cr, M) || (P2, P2), Ca, My)).

Proof:

[((Po, B), Co, Mo) || (P, Pr), Cy, M) || ((Pa, By), Ca, M)

= ((Po, o) M| (Py, P1)OM, Cy A Cy, My A M) || (P, By), Cay M)

= ((Py, By) oMo (Py, Py)C1M1)CoNCL MoAMy (P, PYCMz (Cy A Cy) A Ca, (Mo A Mi) A My)
= (((Po, Bo) M) (Py, P1)OM)|(Py, Py)OM2, (Co A C1) A Gy, (Mo A My) A M) (6)

where the final equality is a consequence of the fact that Cy A C; refines both Cy, C; and
My A M, refines both My, M,;. Since both the synchronous product of logic modules and the
conjunction of equivalence relations are associative, the associativity of masked composition
follows immediately. n

The next result describes conditions under which a masked composition contains no
virtual transitions. A sufficient condition is that for each event o, there is some process for
which o is completely controllable and completely observable, and for which every transition
labeled by o is real.

Theorem 5 Let ((P;, P),C;, M;) (i =0,...,n) be process objects, and let ((P, P),C, M) :=
((Po, Po), Co, Mo) || -+« || ((Pr, Pn),Cy, My,). Suppose that Vo € ¥ : there exists  such that

e [Ci(o) = {o}] A [Mi(0) = {a}].
e Every transition on o in P, is also a transition in Pi.

Then P = P = P{OMo|... | PCnMn
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Proof: From Definitions 9 and 10, it follows that the every e-transition in P is a transition
in P. Let o € ¥. Without loss of generality, suppose that Cy(c) = {0} and My(o) = {0},
and that every transition on o in P, is a transition in P,. Then the transitions labeled by ¢
in PCMo are precisely those labeled by ¢ in B,. 1t follows from Definitions 9 and 10 that

dp((zoy ..., 2n),0)

Sp, (70, 0) X 5P101M1 (T1,0) X ... X 6pcastn (Tn, o)

6P000M0 (%o, 0) % (5131011\41 (z1,0) X ... % 8 pOnMn (%, 0)

= (Sp(.’l?o, .. .,.’L‘n),O')

[ |

A consequence of Theorem 5 is the following corollary which states that if a system is
obtained by interconnecting a finite collection of process objects, then the language of the
system can be obtained by intersecting the languages of the augmented processes provided
each event is completely controllable and completely observable to at least one process which
has no virtual transitions labeled by that event. This corollary can be regarded as a gener-
alization of the language intersection result for the PSC of two processes when each event
belongs to the priority set of at least one process [31, Proposition 4].

Corollary 1 Under the hypotheses of Theorem 5 the generated language of the composed
system is given by L(P) = L(P) =N, L(PiC':,Mi).

Remark 9 The result of Theorem 5 can be specialized to the situation in the Ramadge-
Wonham theory [27]. In that framework, every event is generated by the plant and hence
is completely controllable and completely observable to the plant-i.e., if we let the process
object with index zero represent the plant, the process object with index one the supervisor,
and the composed process object the controlled system, then Cy = I and M, = I. Also,
if ((P,P),C,M) = ((Po,P()),I,I) || ((PI)PI)aclaMl)y then C = I, M = I, and P =P =
P,|PE*M: | In particular, L(P) = L(By) N L(PF*M),

4 Supervisory Control

Given a process object ((Po, Py), Co, My) representing a plant, control and observation
masks (C;, M;) for a supervisor to be constructed, and a language K, we begin by finding
necessary and sufficient conditions for there to exist a process object ((Py, P;), Cy, M;) (rep-
resenting a supervisor) such that the generated language of the masked composition of plant
and supervisor is equal to K. Let ((P, 13), C, M) denote the process object representing the
composed system. Then the requirement is that L(P) = K. We focus on the special case
where each event is assumed to be both completely controllable and completely observable
to either the plant or the supervisor so that the language intersection result of Corollary 1
holds. Thus under this assumption, the synthesis problem is to construct P; such that

L(PfeMoy n L(POM) = K. (7)
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Hence only sublangnages of L(P°™°) can be obtained as the generated language of the
controlled system.

Definition 11 Given a plant ((FPy, Pp), Co, Mp), control and observation masks (C;, M),
and a language K C L(PF°Mo), K is said to be ((Py, By), Co, My)-relatively (Cy, My)-closed
if it satisfies the following condition:

L(PfoMoyn KOM =K, (8)

When the plant process object is clear from the context, we will simply refer to such a
language as being relatively (Cl’_ M;y)-closed. 1t is clear from this definition that K is relatively
(Cy, My)-closed if and only if K is relatively (Cj, M;)-closed.

Theorem 6 Consider a plant ((Py, Py), Co, My), control and observation masks (Ci, M),
and a language K C L(Py°M0). Suppose

Vo € X: [Colo) = {o} A My(c) = {o}] V[Ci(o) = {o} A M;(0) = {c}].

Then there exists an NSM P, such that the generated language of the controlled system is
K if and only if K = K #  is relatively (C;, M;)-closed. If in addition K is regular, then
P, can be chosen to be finite-state.

Proof: Suppose there exists P; such that L(PCeM)NL(PC*Mt) = K. Then clearly, K = K #
0. So it suffices to show that L(PFoM) N KC:M: = K| or equivalently, L(P{M0) n K€M C
K. From hypothesis, it follows that L(PC*™!) is a superlanguage of K. Also, since it is
prefix-closed, and since PP*M! is a (Cy, M;)-invariant process, it follows from Theorem 1
that L(PC*M) € O M (K), ie., K&M C L(PA*M). So we obtain L(P{°M) n K&1M C
L(PEMoyn L(PF*MY) = K, as desired.

Conversely, suppose that (8) holds and K = K # 0. Since K is nonempty, by Theorem
1, there exists P, such that L(PZ*Mt) = L(P,) = K¢M:, Then it follows from the fact that
K is relatively (Cy, M;)-closed that the supervisor (P}, P;),Ci, M;) gives K = K as the
generated language of the controlled system. Finally, if K is regular, then by Theorem 1, P
can be chosen to be finite-state. |

Remark 10 It follows from Theorem 6 that the existence of a supervisor for achieving
a desired generated language K C L(PC°M°) requires that the relative (Cy, M,)-closure
condition be verified. Since K = K is a sublanguage of L(PC"MO) the condition of relative
(Cy, My)-closure is equivalent to the forward containment L(Py°M0) n K€M C K, which is
equivalent to the emptiness of the language L(PFM) N KM N K*, where K¢ := ¥* — K
is the complement of K. Let m be the number of states in the plant, and n be the number
of states in the minimal deterministic generator for K. Then by definition of augmentation,
the number of states in the augmented plant is still m. Also, by the construction given in
the proof of Lemma 2, the number of states in the nondeterministic generator for K< M
is O(n). Finally, the number of states in the generator for K° is n + 1. So by considering
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the SSC of the augmented plant NSM, the nondeterministic generator of K™, and the
deterministic recognizer of K¢, and testing the emptiness of its recognized language, relative
(C1, My)-closure can be tested in O(mn?) time. Furthermore, whenever K is relatively
(Cy, M;)-closed, the required supervisor can be chosen to be the nondeterministic generator
of KM which has O(n) states. This is in contrast to the traditional supervisory control
where the synthesis of the (deterministic) supervisor when it exists is known to be an NP-
complete problem [34].

In the next remark we discuss some special cases of the result obtained in Theorem 6.

Remark 11 First, in order to investigate controllability alone, consider the case of complete
observation, i.e., the case when the observation mask of the supervisor is the identity mask
(M; = I). It follows from Definition 6 that every string in KM is of the form s10’s,,
where there exists o € C(¢’) such that s;0 € K and s, € C(e)*. It follows easily from this
that the realizability condition (8) is equivalent to the condition

eVoeX, o el :s0 €K, sa’ € L(PEM), C(o) =C(0') = so' € K.

This represents the generalization of standard controllability [27] to the case where the
control mask of the supervisor is not a natural projection and the plant itself has control
and observation masks.

Next, in order to investigate observability alone, consider the case when the control mask
of the supervisor is the identity mask, i.e., C; = I. In this case, the realizability condition
(8) reduces to the following:

e Any string ¢t € L(PF*M0) that can be obtained from a string s € K by replacing each
completely unobservable event o by an arbitrary power ¢’ (5 > 0) must itself be in K.

This condition is significantly weaker than standard observability [27] with respect to the
language of the augmented plant. It is interesting to note that the presence of pairs of events
that are indistinguishable from each other but not completely unobservable has no bearing
on realizability under the assumption that C; = I.

Finally, consider the case of standard supervisory control formulation, i.e., where C;
and M, are each natural projections corresponding to the controllable event set ¥, and the
observable event set 3,. Then the conditions in Definition 6 reduce to language closure with
respect to the following operations:

e appending a string of uncontrollable events
e replacing an unobservable event by a nonnegative power of that event

e inserting an event that is both uncontrollable and unobservable at an arbitrary place
in the string

In this case, the realizability condition (8) reduces to standard controllability of K with
respect to the language of the augmented plant together the following:
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e Any string t € L(Py°™°) that can be obtained from a string s € K by replacing each
completely unobservable event o by an arbitrary power o7 (j > 0) and inserting events
that are both uncontrollable and unobservable must itself be in K.

This condition is weaker than the condition of weak controllability and observability used by
Inan [15] in the case where Cy = My = I and P, is not allowed to have e-transitions.

Now we consider the situation where the given specification language K does not satisfy
the relative (Cy, Mj)-closure condition (8). Given a plant (P, By), Co, My), masks (Cy, M),
and a language K, let PyCoMyC1 M, (K) denote the collection of all relatively (C;, M;)-closed
sublanguages of K.

Lemma 6 PyCpoMCyM;(K) is nonempty and closed under union; consequently, it contains
a unique supremal element.

Proof: §) € P,CoMyCiM;(K), so PyCoMoCiM1(K) is nonempty. Suppose that Hy, Hs are
relatively (Cy, M;)-closed sublanguages of K. Then

L(PCOM()) N (HICLMI U HZCIMI) :FI Uﬁz = Hl U HQ-

Hence, it suffices to show that (Hy U H,)CtM = HEM y HEM1| This follows easily from
the closure of (Cy, M;)-languages under union. []

When Py, Cy, My, Cy, M are clear from the context, we use the symbol K™ to denote the
supremal element of PyCoMpCi M;(K). Since K is relatively (C1, M;)-closed if and only if
the same is true of K, it follows that K" is prefix-closed whenever K is prefix-closed. The
result of the following corollary follows from Theorem 6:

Corollary 2 Consider a plant ((P,, P;), Cy, My), control and observation masks (Cy, M),
and a nonempty and prefix-closed language K C L(POC"M"). Suppose

Vo € X: [Co(o) = {0} A My(a) = {o}] V[Ci(0) = {6} A Mi(0) = {o}].

Then there exists a supervisor ((P;, P1),C1, M1) such that the generated language of the
controlled system is contained in K if and only if K™ # 0.

In the remainder of this section, we consider supervisory control under the additional
restriction that the supervisor process object be deterministic. This means that PE*™ must
be a deterministic state machine. We continue to assume that each event is both completely
controllable and completely observable to either the plant or the supervisor.

Definition 12 Given a plant ((Py, Py), Co, Mp), control and observation masks (Cy, M),
and a language K C L(PF°M°), K is said to be a ((Pp, Po), Co, My)-relatively deterministic
(C1, My)-closed language if it satisfies the following condition:

L(PPoMoy N KOMD ¢, (9)
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When the plant process object is clear from the context, we will simply refer to such a
language as being relatively deterministic (Cy, My)-closed. It is clear from this definition
that K is relatively deterministic (Cy, M;)-closed if and only if K is relatively deterministic
(C1, M;)-closed. The following theorem states that relatively deterministic (C;, M, )-closure
is necessary and sufficient for the existence of a supervisor achieving a desired closed-loop
language, and relates relatively deterministic (C;, Mi)-closure to controllability and observ-
ability with respect to the language of the augmented plant.

Theorem 7 Consider a plant ((Po, Pp), Co, Mp), control and observation masks (Cy, M),

and a nonempty prefix-closed language K C L(POC °M°). Suppose

Vo € ¥:[Co(o) = {o} A Mo(o) ={o}] V[Ci(o) = {o} A Mi(0) = {c}].
Then the following are equivalent:

1. There exists a deterministic supervisor ((P;, P;),C;, M;) such that the closed-loop
generated language is K.

2. K is a relatively deterministic (Cy, M;)-closed language.
3. K is (L(PF*M0), C))-controllable and (L(PL°M0), My)-observable.

If in addition K is regular, then P, can be chosen to be finite-state.

Proof: The proof of the equivalence of parts 1 and 2, and the assertion that regularity of
K implies P, can be chosen to be finite-state is analogous to the proof of Theorem 6. We
establish the equivalence of parts 2 and 3 below.

Suppose K is relatively deterministic (C;, M;)-closed. We need to show that K is
(L(PFoM°), Cy)-controllable and (L(PF°M°), My)-observable. By Theorem 2, K™D g
(2*, Cy)-controllable and (X*, M,)-observable. It follows that KC1MD n L(PfeMe) = K
is (L(PLF*M0), C1)-controllable and (L(PL*M0), M;)-observable.

Conversely, suppose K is (L(PF°™°), Cy)-controllable and (L(PS M), M;)-observable.
We need to show that L(PFM)NKCMD C K. Clearly, this holds when K = . Otherwise,
we prove by induction on |s| that if s € L(P{°M) N KC1MiD then s € K. If |s| = 0, then
the assertion trivially holds. For the induction step, let s = 30 € L(P{oM0) n KG:MiD By
induction hypothesis, 3 € K. Since KC1M1P is the infimal prefix-closed (£*, C;)-controllable
and (X*, M;)-observable superlanguage of K, this implies that one of the following two
conditions must hold:

1. There exists o’ € X with C)(o) = C;(¢’) such that 50’ € K.
2. There exists ¢ € K with M;(f) = M,(3) such that Toc € K.

In the first case, the (L(PF°M0), Cy)-controllability of K implies that 5o € K. In the sec-
ond case, the (L(PF°M0), My)-observability of K implies that 3¢ € K. This completes the
induction step. [ |
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Remark 12 Since the class of deterministic (C, M)-closed languages is not generally closed
under union, there need not be a supremal relatively deterministic (C;, M;)-closed sub-

language of a given language K. Consequently, for deterministic supervision, there is no
analogue of Corollary 2.

The next result shows that under certain conditions, the existence of a supervisor achiev-
ing a prescribed generated language for the controlled system is equivalent to the existence

of a deterministic supervisor giving that language, and it follows from Theorems 6, 7 and
Remark 6.

Theorem 8 Consider a plant ((FPy, Py), Co, Mp), control and observation masks (Cy, My),
and a nonempty prefix-closed language K C L(PF*M). Suppose

Vo€ 2: [Colo) ={o} AMy(o) ={c}]VI[Ci(o) = {o} A Mi(0) = {o}].

If M(c) C C(o) for each o € T, then there exists a supervisor ((Pi, P;), C1, M;) such that
the closed-loop generated language is K if and only if there exists a deterministic supervisor
((P1, P1), C1, My) such that the generated language of the controlled system is K.

Remark 13 Theorem 8 generalizes a previous result of Shayman-Kumar [31, Theorem 5].
Although stated using trajectory models rather than NSM’s, the earlier result is essentially
the special case of Theorem 8 in which all masks are natural projections and the observation
mask of the plant is trivial-i.e., My = I.

5 Applications and Examples

In this section, we present several examples that illustrate the generality of the process
object/masked composition paradigm for modeling and control synthesis.

5.1 Nondeterministic Supervisors for Minimax Control

In most systems of practical interest, both hard and soft constraints are present. Hard
constraints must be satisfied or the performance is deemed unacceptable; safety requirements
are typically in the form of hard constraints. Traditional supervisory control theory [27]
applies only to problems with hard constraints; a legal language is given, and a supervisor
must be synthesized so the closed-loop generated language is contained in the legal language.

Lafortune-Lin [23] represent soft and hard constraints in terms of desirable and tolerable
behaviors and study the supervisory control problem in that setting. Since satisfaction of
soft constraints is desirable but not essential, an alternative way to represent soft constraints
would be to impose a penalty that is finite whenever such a constraint is violated. On the
other hand, hard constraints can be represented by penalties that are infinite. Optimization
is a natural tool for control design in the presence of soft constraints. It is not our intention
to explore optimal control of discrete event systems in detail; rather we simply present an
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example to illustrate the need for nondeterministic supervisors. For discussion of optimal
control theory for discrete event systems, see e.g., [25, 29, 18, 2]

When both hard and soft constraints are present, it is natural to consider a hierarchical
synthesis procedure. In the first step, supervisory control theory is used to construct a
maximally permissive supervisor enforcing the hard constraints. In the second step, the
controller is refined using optimization techniques in order to best take into account the soft
constraints. Thus, supervisory control theory is essentially used to compute a feasible set
for an optimization problem.

Since a language may be relatively (Cy, M;)-closed without being relatively deterministic
(C1, My)-closed, a restriction to deterministic supervisor objects in the first step can signif-
icantly reduce the size of the feasible set for the second step optimization problem. The
following example shows that when the optimization problem is of the minimaz type, this
restriction can result in a substantially higher value for the cost function.

Example 8 Consider the plant P, depicted in Figure 6, where the double-circles represent
final (marked) states.

/b \
ab a, c

d e d e d e O ®
e d e d e f
abcdf abcef abcdf

F ki

Figure 6: Diagram illustrating Example 8

Suppose that the control and observation masks of the plant are (I, 1), and the control
and observation masks (C;, M;) of the supervisor are such that

® a,b,c, f are completely uncontrollable.
e a and b are observation-equivalent but not completely unobservable.
e d and e are completely unobservable.

Suppose that the hard constraints are represented by the legal language specified by K,
where
K = {ad, ae, bd, be, cd, ce}.
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It is also required that the controlled system be nonblocking in the sense that every generated
string should be extendable to a string which results in a marked state for the plant-i.e.,
to a string in K. Suppose that the soft constraints are represented by positive costs of 7,
and 7, associated with the strings ae and bd, respectively. All other strings in K have cost
0. We assume that if M, (a) = M;(b) is observed, there is probability g (respectively, 1 — q)
that the plant executed the event a (respectively, b), but that the parameter g is unknown to
the control designer. Then a natural design approach would be to construct a nonblocking
supervisory controller that ensures that the generated language of the controlled system is
contained in K, and then refine the controller to minimize the maximum cost associated
with the soft constraints.

First suppose that the supervisor process object is required to be deterministic. Since the
plant has identity masks, it follows from Theorem 7 that a nonempty prefix-closed language
L C L(F,) can be deterministically realized as the closed-loop generated language if and only
if L is (L(Fp), C1)-controllable and (L(FP,), M;)-observable. Two maximal such languages are

K, := pr{ad, bd, cd}, K, := pr{ae, be, cd}.

If either K or K, is imposed, the worst-case cost incurred is either 75 or r; corresponding
to the strings bd and ae respectively.

Now suppose that the requirement that the supervisor process object be deterministic is
dropped. It is not difficult to show that the supremal relatively (C;, M;)-closed sublanguage
of K is given by

K= pr{ad, ae, bd, be, cd}.

A process P, for which the generated language of the controlled system is given by
L(PSMy  L(PEMY) = (RN L(P) = K"

is depicted in Figure 6. In its initial state, this supervisor enables a, b, c, f. If a process in its
environment executes either a or b, P, makes a nondeterministic choice between two possible
successor states. If we postulate that this choice is made based on a single Bernoulli trial
with parameter p, then the worst-case expected cost is

J(p) = max (¢(1 — p)r1 + (1 — q)pra).

0<¢<1
This quantity is minimized by choosing p = 713+, resulting in optimal (minimax) expected
2 2
cost J(p) = T—(ITZ%')TT’ Note that if 1 = ry := r, the deterministic controllers each give

worst-case cost 7, while the optimal nondeterministic controller (i.e., optimal randomized
strategy) gives an expected cost of r/2.
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5.2 Open-Loop Control

In a given state x, a supervisor process presents the plant with an enabled event set
that consists of every event that is completely uncontrollable (to the supervisor) together
with every event that is control-equivalent to an event defined in z. In our framework,
the supervisor may be constructed so there is an e-transition from z to a new state z’.
Consequently, the set of events enabled by the supervisor can change without the requirement
that the supervisor observe an event executed by the plant. This can also occur when the
supervisor has a transition labeled by a completely unobservable event. Thus, the control
input from the supervisor to the plant can evolve in an open-loop, as well as a closed-loop
mode. In contrast, the control input in traditional supervisory control must be constant
between observed events, so it is strictly closed-loop. The following example demonstrates
that open-loop control may be required to meet a given specification.

Example 9 Consider a system that serves customers of two types A and B. See Figure
7. The events a,b indicate service of customers of types A, B respectively. If a type B

’oo ’oo *O_’O 6 = ;o"

Figure 7: Diagram illustrating Example 9

customer has been served, the server will jam (event j) if a type A customer is served prior
to the performance of a maintenance function (event m). We assume that a supervisor
cannot observe the servicing of customers but is able to prevent either type of customer from
entering service. Thus, a, b are completely unobservable while j is completely uncontrollable
to the supervisor. We assume that every event is completely controllable and observable
to the plant-i.e., the control and observation masks of the plant are identity masks. The
generated language of the plant is

L(Py) = pr(a*bb*m)*a*bb* aj. (10)

Suppose that the specification is that the plant never jam. Then the specification lan-

guage is given by
K = pr(a*bb*m)*a*bb*a.

First note that K is not relatively (C1, M)-closed. For example, if we let s = ba, 0 =¢, 0’ =
j, then so € K, o' € Cy(e), s’ € L(P{ ™), but so’ ¢ K.

Next, we claim that the supremal relatively (C;, M;)-closed sublanguage K% of K is given
by

K; := pr(a*bb*m)*.
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It is easy to see that any relatively (Cy, M;)-closed sublanguage of K must be a sublanguage
of K, so it suffices to show that K is itself relatively (Cy, M;)-closed. Let P; be as depicted
in Figure 7. Then PlclMl is obtained from P; by adding self-loops labeled by ;7 in each
state. The strict synchronous composition P := PFeMe[PP1Mt is depicted in Figure 7. Since
L(P) = K, it follows from Theorem 6 that K is indeed relatively (Cy, M;)-closed.

If we choose the supervisor process object to be ((Pi, Py),Ci, M), then we obtain K
as the generated language of the closed-loop system. Initially, the supervisor only permits
service to customers of type A, and then changes its control in an open-loop manner to
only permit service to customers of type B. The control is switched back to its initial value
upon occurrence of the maintenance event. This controller permits access to the system by
both types of customers while preventing jamming by ensuring that maintence is performed
before a type A customer can follow a type B customer. Note that the supervisor exercises
open-loop (as well as closed-loop) control by changing states on an e-transition-i.e., without
observing any event in the plant.

Now let us examine the possibility of using purely closed-loop supervisory control. To
meet the requirement that j never occur, the supervisor must disable either a or b initially.
If b is disabled, then no observable event can ever occur, so the control input from the
supervisor cannot change. Thus, type B customers are permanently barred from the system.
Suppose instead that a is disabled initially. There are two possibilities when m is observed:
(1) If the control input is changed to permit a and disable b, then type B customers will
be barred from that time on. (2) If the control input is not changed, type A customers are
barred from the system. Thus, purely closed-loop control gives an unsatisfactory controlled
system in which one type of customer is eventually barred.

Finally, we note that a purely closed-loop supervisor could impose the specification and
permit service of both types of customers provided a time-out event was included in the
model of the plant. Then the controller could change access from A to B in response to the
time-out event rather than on an e-transition. However, the inclusion of such an event in
the plant model represents ad hoc design of a portion of the controller that is incorporated
as part of the plant. This is contrary to the philosophy of supervisory control theory that
control design should be accomplished by following systematic algorithms rather than by ad
hoc methods.

5.3 Reactive Systems

A reactive system is a system that interacts with an environment that includes more than
just the controller. Using an example, we will illustrate how the feature of plant masks, as
opposed to supervisor masks, permits application of our framework to such systems.

Example 10 We consider a simple model for fire control radar on a fighter aircraft. In its
initial state, a blip can appear on the radar screen indicating the presence of another aircraft.
The events a, b indicate blips corresponding to a friend and foe respectively. Following the
occurrence of either blip, the screen may clear, represented by the event ¢. In addition, the
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occurrence of b may be followed by the firing of a missile at the foe, represented by the
event f. After the missile is fired, the screen is cleared. The transitions labeled by a and
b are regarded as virtual transitions since they cannot be generated by the fighter plane;
rather they can only be tracked by the the fighter plane if generated by another process in
its environment. This describes the logic module (P, P,). Figure 8 depicts P, together with
the sub-NSM F; obtained by deleting the virtual transitions. In the nominal model of the
plant, every event is completely controllable and completely observable-i.e., Cy = I, My = I.
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Figure 8: Diagram illustrating Example 10

We assume that the fighter is operating in an environment that can generate both a and
b. Since we do not have a detailed model of the environment, we simply represent it by an
“event generator” process consisting of a single state with self-loops on a and b representing
real transitions. Since the purpose of this process is to generate events rather than to restrict
or track events generated by other processes, we use the trivial masks for which every event
is completely uncontrollable and completely unobservable.

The process object ((Py, P}),Ch, M) representing the fighter plane operating in this
environment is obtained by taking the masked composition of ((Py, By), I, I) with the event
generator. From Definition 10 it follows that (P}, Py), Ch, M}) = ((Po, Py), 1,1). Thus, the
only effect of the presence of the event generator is to make the transitions on a, b real rather
than virtual.

Suppose that the specification is that a missile should never be fired following the ap-
pearance of a blip representing a friend—i.e., there should be no string containing af. Since
this condition is satisfied by every string in L(P}) = L(P,), the nominal plant satisfies the
specification without the need for any additional controller. However, suppose we require a
control design that is robust with respect to sensor degradation that makes a, b indistinguish-
able to the plant. This corresponds to replacing the mask M, = I with an observation mask
M} that identifies a and b. Let ((PY, PY), I, M!') represent the fighter plane operating in the
environment under the degraded sensor capabilities. In this case, it follows from Definition
10 that P! = B? = P;™ which is shown in Figure 8. Since af € L(PY), the perturbed
system does not satisfy the specification, so an additional supervisor must be designed.

We assume that the supervisor is implemented via an air traffic controller that can track
the positions of friendly aircraft and can communicate a command to the fighter aircraft
which effectively disables the event f. We model these capabilities via supervisor masks
C1, M, relative to which a, ¢ are completely uncontrollable and completely observable, b is
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completely uncontrollable and completely unobservable, and f is completely controllable and
observable. A possible choice for the supervisor logic module is given by the process P, = P,
depicted in Figure 8. Let ((P, f’), C, M) denote the process object representing the controlled
system when ((Py, PY'), I, M) is connected to ((Py, P,), Cy, M) by masked composition. It
is straightforward to verify that the resulting logic module satisfies P = P = P,. Thus,
the controlled behavior of the perturbed plant is identical to the uncontrolled behavior of
the nominal plant. Consequently, under the control of the given supervisor, the controlled
system meets the specifications regardless of whether sensor degradation has occurred.

5.4 Object-Oriented Design

Object-oriented design is desirable because it offers the possibility of developing reusable
software modules [4]. Efforts to develop such an approach for continuous variable control
systems have already begun [16]. Object-oriented methodologies for modeling discrete event
systems are described in [5, 6].

In [8, 7], an object-oriented approach to supervisory control design for discrete event
resource-user systems is proposed. The software reusability emanates from the fact that the
resources (e.g., machining devices) are described by their general behavior on an abstract
level. Application-specific details are suppressed in the resource model so that its software is
independent of the number and type of users (e.g., parts). Specification processes describing
the requirements of each user (e.g., the sequence of machines a part must visit) are composed
by pure interleaving to obtain an overall specification for the requirements of the set of users
sharing the resources. This specification is then composed with the process modeling the
resources by full synchronization—i.e., synchronization of those events in the intersection of
the alphabets. The supervisor obtained from this procedure may fail to be complete-i.e.,
it may disable uncontrollable events. If this is the case, customization of the supervisor is
required which depends on the resource model and set of uncontrollable events at hand.

In [8, 7], a machining operation is labeled without reference to specific application not
only in the resource model, but also in the specifications. For example, consider a factory
that concurrently processes two types of parts. A drill operation would be represented by
a generic drill event d in the resource model, and by the same label d in the specification
models for each part. Consequently, in the modeling approach proposed in [8, 7], there
is no way to represent specifications that are intended to restrict the concurrency in the
processing of the two parts. For example, it is impossible to express a requirement that part
1 be drilled before part 2 since both drilling operations are represented by the same label d
used in the resource model. Concurrency specifications are common in manufacturing and
in other applications such as database management.

The process object/masked composition paradigm yields a different approach to object-
oriented modeling and control design for discrete event systems. For concreteness, we de-
scribe it in the context of the manufacturing example above. The resource model would be
represented by a process object ((Py, By), Co, M,). If there are a maximum of n parts that
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can be processed concurrently by the factory, the specification for the sequence of machines
part 4 must visit would be given by a process object ((P;, P),Ci, M;) (i = 1,...,n). If
there is to be no interaction between the distinct parts as they traverse the factory, then the
event labels in P; and P; are distinct. Thus, a drill operation on part ¢ would be labeled
by an event d; in P;, while a drill operation on part j would be labeled by an event d; in
P;. We choose the control and observation masks so that d; is completely uncontrollable
and completely unobservable to P; and vice-versa. Consequently, in the masked composi-
tion of the two process objects, the drill operations d;, d; purely interleave. On the other
hand, we choose the control and observation masks Cy, My of the resource process to be
such that Cy(d;) = Co(d;) := d and My(d;) = Mo(d;) := d. This has the effect of mak-
ing the drill operation part-independent in the resource model, thereby permitting software
reusability, while retaining the individual identities of d; and d; in the part specifications,
thereby accomodating concurrency control specifications. This is illustrated by the following
example.

Example 11 Suppose the resource process models the continuous independent operation
of two machines A and B. It is represented by the process object ((Pp, Py), Co, My) where
Py = P, consists of a single state with self-loops labeled by a, b, and where Cy(a;) :=
a, Co(b;) := b, My(a;) := a, My(b;) := b, Vi. Suppose there are two parts to be machined.
Part 1 requires two successive operations on machine A while part 2 requires an operation
on A followed by an operation on B. The specification for part 4 is represented by a process
object ((P;, B;),Ci, M;) where P, = P, and a;,b; € Ci(e) N Mi(e) if i # j (4,5 = 1,2).
The events aj, b; represent the operations of part j on A and B respectively. The NSM’s
Py, P, P; are depicted in Figure 9.
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Figure 9: Diagram illustrating Example 11

Now suppose we decide to impose the plausible requirement that the two consecutive
operations of part 1 on machine A not be interrupted by the operation of part 2 on machine
A. This is a restriction on possible concurrency. It can be represented by a process object
((Ps, Ps), Cs, M) where Py is null, b; € Cs(e) N Mj(e), and the NSM P; is depicted in Figure
9. 2 Note that since the concurrency restriction does not involve operations on machine B,

12A process object that models a passive constraint does not generate events and hence has a real part
that is null.
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such operations are completely uncontrollable and completely unobservable to the process
that models this restriction. Let ((P, P), C, M) denote the masked composition of the process
objects {((P;, B;),C;, M;)| i =0,...,3}. It is straightforward to verify that

A

P = P = I]?:O'PiCle’
where the NSM P is depicted in Figure 9. As required,
L(P) = pr{aja;asb;, a3by010y, 0201016, aga;by04}.

In addition to its ability to accomodate concurrency specifications, the process ob-
ject/masked composition approach to object-oriented design has two other advantages. (1)
Since masked composition is associative, it is well-suited to modular design. In contrast, an
approach based on the operators of full synchronous composition and interleaving composi-
tion is not amenable to modular design since full synchronous composition does not distribute
over interleaving composition. (2) Since control and observation properties are encapsulated
in process objects as submodules that are completely independent of the logic submodule,
the software encoding the logic need never be modified to take into account new actuator or
sensor limitations. This is in contrast to the situation in [8, 7] where such limitations (e.g.,
the uncontrollability of certain events) require customization of the logic to ensure that the
logic is compatible with these limitations (e.g., no uncontrollable events are disabled). In
our approach, a change in actuator/sensor capabilities simply requires changing the masks
in the process object; no change in the NSM is required since there are no compatibility
conditions such as supervisor completeness. !3

6 Conclusion

In this paper, we have introduced a new framework for the modeling and supervisory
control of discrete event systems. This framework is based on the paradigm of process objects
and masked composition. Process objects encapsulate control and observation interfaces
with nondeterministic state machines that describe the process logic. In order to permit the
interconnection operation of masked composition to be associative, the NSM must include
virtual, as well as real, transitions.

Masked composition is a binary operation on process objects which can be used both
to build complex plant models from simple components, and to interconnect plant and
supervisor process objects in order to impose control. Most of the usual parallel composition
operators may be viewed as special cases of masked composition. Since it is associative,
masked composition is suitable for layered control synthesis and modular design.

In order to characterize the languages that are realizable under control, the concepts of
(C, M)-closed language and (C, M )-invariant process have been introduced. The (nonempty)

130f course, a change in actuator/sensor capabilities can affect whether a particular supervisor process
object yields a controlled system that meets the specifications. (See Example 10.)
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prefix-closed (C, M)-closed languages are precisely the languages that can be generated by
(C, M)-invariant processes. In standard automata theory, any language that can be gener-
ated by a finite-state nondeterministic state machine (with e-transitions) can be generated
by a finite-state deterministic state machine. This fact is largely responsible for the lim-
ited modeling role of NSM’s in the traditional theory. When process logic is encapsulated
with control and observation interfaces, the situation is different. In general, the class of
languages that can be generated by (C, M)-invariant processes is strictly larger than the
class of languages that can be generated by deterministic (C, M)-invariant processes. This
is responsible for the fact that nondeterministic supervision can achieve controlled behavior
that is not attainable under deterministic supervision. However, in the special case where
the observation mask of the supervisor refines the control mask, any behavior obtainable via
nondeterministic supervision is also obtainable via deterministic supervision.

We have derived necessary and sufficient conditions for a given language to be obtainable
as the generated language of the controlled system. The key requirement is that the lan-
guage be (C1, M;)-closed relative to the plant process object. This condition is polynomially
testable, and whenever it holds, a (nondeterministic) supervisor of polynomial size can be
synthesized. This is in contrast to the traditional supervisory control where the synthesis of
the (deterministic) supervisor when it exists is known to be an NP-complete problem [34].
In the case of nondeterministic supervision, the class of languages that are realizable as the
generated language of the controlled system is closed under union. Consequently, given a
specification language, a supremal realizable sublanguage always exists. This circumvents
the problems in conventional supervisory control related to the “misbehavior” of observabil-
ity relative to unions. We have also derived analogous necessary and sufficient conditions for
a given language to be obtainable as the generated language of the controlled system under
the restriction that the supervisor process object be deterministic.

The new framework permits the synthesis of supervisors for reactive systems, as well as
object-oriented control design for systems such as database and manufacturing systems that
have specifications restricting possible concurrency. By allowing nondeterministic supervi-
sion as well as open-loop control, successful control design can be accomplished for systems
that cannot be adequately controlled using the traditional approach to supervisory control.
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