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Air bubbles traveling upwards from within a liquid, burst at the free surface

and eject droplets into the air. The liquid droplets produced from the bursting of

air bubbles at the free surface of the ocean have long been considered as constitut-

ing a significant fraction of the marine aerosol production. This process plays an

important role in the transfer of mass and energy between the ocean and the atmo-

sphere. The droplets are generated by two distinct mechanisms which characterize

the drops as either jet droplets or film droplets. The goal of this study is to obtain

statistical data about the size of these droplets produced by air bubbles bursting

on a non-quiescent free surface and study effects of surfactant on the droplet dis-

tribution. Two different surface conditions are created by using clean water and

a 0.4% v/v aqueous solution of Triton X-100 surfactant. A bubble field is created

with air injected through an array of hypodermic needles arranged in a grid pattern

and five different bubble production rates are studied for each surface condition.

Measurements of the bubble diameters as they approach the free surface are ob-



tained with diffuse light shadowgraph images. A laser-light high-speed cinematic

shadowgraph system is employed to record and measure the diameters and motions

of the droplets. The movies are processed on a custom-built MATLAB code which

measures droplets as small as 100 µm to within 7% error. Droplets with diameters

between 50 µm and 100 µm are also measured, but with lower accuracy. The droplet

diameter distributions as a function of the bubble production rate and surfactant

conditions are reported. The results show a clear distinction between the droplet

distributions obtained in clean water and the surfactant solution. A bimodal droplet

distribution is observed for clean water with at least two dominating diameter peaks.

For the surfactant solution, a single distribution peak is seen.
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Chapter 1

Introduction

Figure 1.1: Schematic of drop production mechanisms in the ocean. Image from Lhuissier et

al. [14]

The formation of large droplet aerosols as result of bursting bubbles has been

an area of interest for a long time with studies dating back to 1954 [12]. The marine

sea-salt aerosol plays an important role in the transfer of heat, mass and various

contaminants between the oceans and the atmosphere [10]. It is a well-known fact

that breaking waves entrain air bubbles beneath the water surface. Most of the

material ejected into the atmosphere from the sea is thought to come from the

bursting of these entrained air bubbles. [1]. The efficiency of the transfer of mass
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Figure 1.2: Film drops created by rupturing of the bubble. Time between images is 1ms.

Images from Lhuissier et al. [14]

Figure 1.3: Schematic of the evolution of the drop generation process. Film drops are detected

after the onset of film breaking and jet drops are detected after the bubble cap rupture is

complete.
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and CO2 in this process, is a function of the size and ejection velocity of the drops

produced by the bursting of the entrained bubbles [10]. Another, interesting aspect

of this process is the transport of salt to the sea surface by bubbles. Studies in this

area have also been motivated by damages occurring to mammalian cell structure

due to bursting bubbles and droplet ejection at the cellular boundary.

The generation of aerosols is due to at least two distinct consecutive mecha-

nisms. The first droplets to emerge are created by the rupture of the bubble film

which separates the bubble’s interior from the air above. The rupture in the film

causes rapid acceleration of the puncture boundaries which create tiny droplets.

These are known as ‘film drops’ (Figure 1.2) The second mechanism takes place at

a somewhat later time as a consequence of the sudden reduction in pressure due

to the escape of the bubble gas. An upward unstable jet of liquid is formed at the

base of the busting bubble due to surface tension accelerating the surface in radially

opposing directions towards each other. This jet usually breaks up to produce what

are known as ‘jet drops’. A chronology of the drop generation events can be seen in

Figure 1.3.

In this study, the interest is in measuring an overall droplet distribution from

both jet and film drop processes. Previous studies have been focused on single bubble

bursting events which are isolated and take place on a quiescent surface. This study

is conducted on non-quiescent surface where a bubble field is created continuously

with air injected through an array of hypodermic needles. This system can mimic

a real world scenario with random bursting events. The bubble residence time at

surface is influenced by the surrounding bubbles and the drops are produced more

3



randomly ensuring data independence from the plane of recording. The experiments

are carried out in a glass tank with a bubble-maker at the bottom. The tank design

allows the water surface to be cleaned by skimming. The drop measurements are

made 10mm above the free surface.

This thesis is organized in six chapters. Chapter 2 contains a review of pre-

vious studies. Experimental setup and data collection techniques are described in

detail in Chapter 3. Chapter 4 discusses the instrument calibration and data pro-

cessing methodologies. Chapter 5 and 6 summarize the results and provides some

conclusions respectively.
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Chapter 2

Literature Review

2.1 Overview

The formation of jet drops was first identified by Jacobs [11]. Kientzler et. al.

studied the jet drops ejected from bubbles of sizes 200µm to 1800µm in diameter

bursting at a water surface. Their observations led them to conclude that the jet

drop diameter is roughly one-tenth of the bursting bubble diameter [12]. This has

been known in the literature as the “1-to-10 rule.” It was also reported that bubbles

diameters that are of a micron scale, never produces more than ten jet drops per

bubble [1]. Film drops concerning bubbles of the millimeter scale were identified by

Knelman et. al.. The disintegration of the thin bubble cap, produces hundreds of

film drops per bubble and this process has been studied in some detail by Blanchard

& Sysdek [4], Resch & Afeti [16] and Spiel [19]. Some of key literature is discussed

in detail in the next few sections.

5



2.2 Jet drops

The size distribution of the sea salt aerosol requires understanding of the size

and ejection height of both jet and film drops as a function of bubble diameter.

Blanchard [3] presented some data about the top (highest ejected) jet drop size as

a function of the bubble diameter from scattered sources. It was observed that the

1-to-10 rule which was put forward by Kientzler et. al. [12] holds in sea water for

bubbles with diameters less than 500 µm. As seen in the Figure 2.1, the data for this

study was obtained from 11 different bubble sizes that ranged from 100 µm to over

2000 µm in diameter. The temperature of the seawater was between 220C − 260C.

Also shown in the graph are data for the top jet drop diameter from seawater at

40C. The height to which the top jet drop is ejected increases with bubble size and

decreases with decreasing water temperature (Figure 2.2). The data suggests that

the slight differences in surface tension and viscosity between seawater and distilled

water at the same temperature are not enough to change the dynamics of jet drop

ejection. [3]

Spiel [21] presented the jet drop size distribution as a function of bubble

diameter ranging from 700 − 3000 µm for fresh and sea water. It was reported

that from the second jet drop onward, the diameter results are bimodal, although it

wasn’t clear why this is so. This can be seen in Figure 2.4. The plots show bimodality

for the first four jet drops after the top drop which doesn’t show a bimodal nature

in fresh water for different radii of bubbles. All of the results discussed here are

for fresh water at a temperature of 20 ± 30C. In Figure 2.3, histograms show the

6



Figure 2.1: Relationship between bubble diameter and the top jet drop diameter from bubbles

bursting in seawater at temperatures of 400C and 220 − 260C. [3]

Figure 2.2: Relationship between bubble diameter and height to which the top jet drop is

ejected from bubbles bursting in distilled water and seawater at various temperatures [3]
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number of the jet drops and radius in relation to the radius of the collapsing bubbles.

The numbers 1 to 6 in these plots represent the drops observed sequentially after

the bubble popping with 1 representing the first drop (top drop) seen. In this

thesis, results of similar nature are seen for “clean” water conditions with a similar

temperature of the water but with continuous bubble production unlike Spiel’s work

where bubbles were made one at a time on demand. [21]
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Figure 2.3: Histograms of jet drops by. rb= Bubble radius. The numbers 1 to 6 in these plots

represent the drop observed sequentially after the bubble collapse with 1 representing the first

drop (top drop) seen. [21]
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Figure 2.4: Plots of the average jet drops in fresh water as a function of bubble radius for drop

numbers up to five. The dotted line is the curve rd = rb/10, where rd= Drop radius and rb=

Bubble radius. Drops 2 to 5 are the drops observed sequentially after the top jet drop and are

bimodal. The circles in the plot for the top drop are from Blanchard [3]. [21]
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2.3 Film drops

Spiel [19] presented a study on film drop production and the upper limit on the

film drop diameter for a given bubble diameter for seawater. The author suggests

that the film drops are of two kinds, ‘primary’ and ‘secondary.’ The primary film

drops are those that are produced from the direct rupture of the bubble cap. Sec-

ondary drops are created when the surface tension is insufficient to keep bits of the

rapidly advancing toroid(bubble cap) from tearing loose and horizontal droplets im-

pact the water’s surface with sufficient force, to create the vertical cloud of droplets.

Results presented by the author include the drop size, speed of launch and spatial

distribution of the bubbles. The bubbles diameters ranged from from 2.94 mm to

12.57 mm. Film drops recorded were 10 µm to 400 µm in diameter keeping in

mind that 10 µm was the precision limit of the setup. The author observed no film

drops for bubbles less than 2400 µm in diameter. In Figure 2.5, the film drop size

distribution is given for eight bubble diameters ranging from 2.94 mm to 12.57 mm.

From this data, the author proposed an equation for predicating the diameter

of film drops for a given bubbles radius.

Dd = 2× 3.57{2γRo(1− cos(31.3))/(S2
fρπ sin(31.3))} (2.1)

Dd : Initial drop diameter γ : Surface tension Ro : Bubble cap radius of curvature

Sf : Film speed [19]

Lhuissier et al. [14] presented a detailed paper on bubble bursting aerosols. The

authors present theoretical expression for bubbles deflation time. They measured film

drop size distribution and compare it with a theoretical expression for number of drops

11



Figure 2.5: Distributions of film drop diameters for eight bubble diameters for seawater. The

smallest bin width was 10± 5µm. [19]
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Figure 2.6: Number N of drops produced per bubble versus prediction of equation given by

[14]. The line is y = 102x.

Figure 2.7: (a) Original data and (b) Normalized drop diameter distribution (dots) and fit by a

Gamma distribution [14]

N ∼ (R/a)2(R/hb)
7/8 where R is the cap radius of the bubble, a is the capillary length

and hb is the film thickness. [14] The performance of this expression in comparison to the

experimental data is shown in Figure 2.6. Bubbles 12 mm in radius were burst using a

hydrophobic sand-coated needle to ensure the same bubble size every time and the film

drop distribution data is represented with a gamma distribution shown in Figure 2.7. The

data represents almost 2000 drops.
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2.4 Bubble bursting and surface life

Research has also been conducted in studying the surface residence time for bubbles

prior to bursting. This residence time becomes important when dealing with surfactants.

Struthwolf et. al. [22] studied the surface residence time of air bubbles from 50 µm to

400 µm in diameter. The authors observed that for distilled water, air bubbles greater

than 200 µm in diameter, the bubble surface life is less than 0.05s while for air bubbles

less than 200 µm in diameter, the bubble surface life is greater than 0.05s. The results

were opposite for sea water.

Dey et. al. [9] presented a study of surfactant effects on the bubble bursting phe-

nomenon. The study was motivated by the bubble bursting at a cellular boundary and

investigating the role of surfactant in possibly reducing cellular damage. The authors

presented the change in height with time of the liquid jet created after bubbles of 200 µm

in diameter are burst at the free surface. The liquid jet breaks up to produce jet drops.

The authors measured surface tension and viscosity effects on bursting bubbles. The

experimental technique had continuous bubble production from a single needle with no

interaction between subsequent bubbles. A numerical model is also put forward and the

results of this model show some discrepancy with the experimental results.
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2.5 Current work

In this thesis, data is presented towards understanding the role of surfactant in

droplet production on non-quiescent surface conditions which has not yet been reported

in published material in detail. Measurements are made for drops ranging from 100 µm

to 3000 µm in diameter to within 7% error in diameter. The drops smaller than 100 µm

are also observed and noted although the error in measurement is higher than 7%. High

speed (1000 fps) cinematic shadowgraphs are recorded and discrete frames containing the

drops of interest are processed with a custom built MATLAB code. Initial conclusions are

drawn on the data for clean water and surfactant solution cases with five bubble diameters

for both cases.
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Chapter 3

Experimental Setup and Technique

3.1 Experimental Setup

3.1.1 Tank Construction

The experiments are performed in a glass water tank equipped with an acrylic

bubble-maker at its bottom (Figure 3.1).

Figure 3.1: Drawing of the water tank and bubblemaker assembly.

The glass water tank is 0.91 meters(m) in length, 0.61 m high and 0.46 m wide. The

thickness of the glass is 0.01 m. The tank has 2 vertical partitions which run parallel to

16



Figure 3.2: Drawing of the water tank with dimensions in meters.

the width and are 0.5 m high and located 0.11 m from the either edge along the length

(Figure 3.2). These are referred to as skimmer walls. Since their height is less than the

tank edges, water flows over them and the surface can be skimmed when desired. A 0.05 m

diameter hole is provided at the bottom, in-between either skimmer wall and the edges of

the tank. These holes have bulkhead fittings on them and the skimmed water is taken out

of the tank from here via PVC pipes. The tank sits on a wooden base which is atop a 0.91

m high metal table from the ground. The wooden base rests on four adjustable legs which

are used to level the tank to keep similar flow rates over both skimmer walls. A Styrofoam

sheet is placed between the tank the base for cushioning. A tank-frame is constructed out

of 80/20 R© modular aluminium framing, around the glass tank. The frame is attached on

to the metal table with C-clamps. This frame is used to mount various peripherals and

optics as needed. A separate frame is built to mount the camera and is clamped on the

table. A photograph of the setup can be seen in Figure 3.3.

17



Figure 3.3: Photograph of the experimental setup.
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Figure 3.4: Schematic drawing of the bubble-maker (Dimensions in mm).

Figure 3.5: Hypodermic needle & Luer lock (Dimensions in mm).
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3.1.2 Bubble-maker Construction

The bubble-maker is a 5 sided open rectangular box made by fusing 12.7 mm thick

acrylic plates with Methylene Chloride (Figure 3.4). It is placed at the bottom of the glass

tank and is held in position by two vertical aluminium pieces attached to the tank-frame

and in contact with the top surface of the box.1. These two pieces exert a downward force

on the box preventing it from rising due to buoyancy when the water tank is full. The

box is 546.1 mm in length, 177.80 mm high and 406.40 mm wide.

Figure 3.6: Needle pattern: The needle locations are shown by blue circles (Dimensions in mm).

On the top surface of the box, 180 needles are mounted vertically on an array of

holes to allow air to allow air in the acrylic box to escape through the needles. The needles

have unbeveled blunt tips and are made out of stainless steel with nickel-plated brass luer

lock hubs. The hub locks on to the top of a polypropylene quick-turn luer lock coupling

which has a male thread 1/4′′− 28 at its bottom (Figure 3.5). These threaded section are

then screwed on to the top of the box and sealed with a temporary silicone sealant. The

1The words ‘box’ and ‘bubble-maker’ are used interchangeably
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needles are organized in an equilateral triangle pattern with side length 25.4 mm. The

length 25.4 mm is chosen such that there is intermingling of the bubbles as they rise to

the free surface. The pattern can be seen in Figure 3.6. The arrangement occupies an

area just under 304.8 mm × 304.8 mm on the box. One end of a 6.35 mm diameter air

hose is taped on to the underside of the bubble-maker and the other end is connected

to a compressor. A vertically oriented 6′′ 2 ruler is glued on one side of the box to note

the height of the air-water interface in the box. As the air flow rate from the compressor

is increased, the height increases, the air-water interface moves down and the bubbles

produced per unit time increase. In this experiment, droplet production is studied for 5

different positions of the air-water interface. (i.e. 5 different rates of bubble production)

(Figure 3.7). The change in the bubble production rate is also accompanied with a change

in the bubble diameter.

3.1.3 Camera and Lens

In all the experiments conducted, the data is collected in the form of high speed

movies and the primary recording device is a Phantom v640 high-speed camera from

Vision Research. The camera is capable of a frame rate up to 1500 frames per second with

a full resolution of 2560× 1600 pixels. The minimum exposure time is rated at 1µs. The

camera is used with a Nikon 200 mm microfocal lens with magnification of one to one at

the minimum focal distance.

2This height of the meniscus will always be expressed in English units (inches for convenience)
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Figure 3.7: Photograph of the bubble-maker inside the tank.
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3.1.4 Laser

A 75W pulsed Nd:YLF laser from Photonics Industries is used to create a narrow

beam of light roughly 31.75 mm in diameter which illuminates the sensor of the v640

camera. The laser is rated for pulse energy of 50 mJ@ 1 kHz with a pulse width of

130 ns@ 1 kHz. The laser output wavelength is 527 nm(Green).

3.1.5 Water Quality

In order to ensure repeatability, it is very important to have good control on the

surfactant concentration. In the following sub-sections, water treatment is discussed for

two surfactant cases. The evolution of surface tension with time can be seen in Figure 3.8.

Clean Water

The start of each experiment begins with an empty tank which is filled with tap

water passed through a 0.5 µm filter. As the tank fills up, water flows over the skimmer

walls. The filling flow-rate is then slowed down and the surface is skimmed for half an

hour. Skimming is stopped and to neutralize the organic matter in the water, hypochlorite

is added at a concentration of 10 p.p.m. The water is now ready for the first run of

experiments and the bubble-maker is turned on. A ‘run’ constitutes five different air

bubble production rates corresponding to air heights starting at 1′′ and going up to 5′′ of

air in increments of 1′′. During a run, the water gets skimmed over the skimmer walls as

the amount of air in the bubble-maker is increased which displaces the water. After the

completion of the run, tap water is added through the same filtration unit,the hypochlorite

concentration is restored to 10 p.p.m and next run is made.

23



Prior to starting the first run,the temperature of the water is recorded and the

static surface tension is measured with a Wilhelmy plate tensiometer from NIMA. The

temperature of the water is in the range 160C − 200C. The surface tension settles to 72.8

mN/m for the clean water condition.

Water with surfactant

The preparation for surfactant laden water is similar to clean water in terms of

skimming and chlorination. After the initial treatment, 80 ml of a 0.4% v/v solution

of Triton X-100 surfactant is added to the tank. This drops the surface tension to 59.9

mN/m. At the end of the day, the surface tension is measured again for verification. The

surface tension of the Triton X-100 solution at the critical micelle concentration (CMC)

is 30.5 mN/m. [15]

3.1.6 Air Quality

Air is supplied to the bubble-maker from a Craftsman (6 hp, 33 gallons) compressor

which gives upto about 243.5 liters/min at 275.80 kPa. It is connected to a two-stage

fine particle and oil removal air filter. Stage one removes particles down to 1 micron and

oil droplets down to 0.5 ppm; stage two removes particles down to 0.01 microns and oil

droplets down to 0.01 ppm. the filter is coupled straight to an inline flow meter with a

regulator valve which is rated for a max flow 5 lpm. The air is supplied to the bubble

maker from here with a quarter inch diameter air hose.
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Figure 3.8: Time evolution of surface tension for clean and Triton X-100 surfactant solution.

25



3.1.7 Needle Size Selection

A fixed size needle is used for all the experiments. The size of the needle was

decided after making trials with different sizes with inner diameters (I.D) ranging from

1.19 mm (16 gauge) to 0.254 mm (26 gauge). The I.D for the needles increases with

decreasing gauge size. The criteria for needle selection was the bubble size at the free

surface. In order to estimate the bubble size, the bubble-maker was fitted with one needle

only and the high speed movies were recorded with the lens focused at the tip of the

needle. In Figure 3.9, we can see the air bubbles as they leave the tip of the different size

needles for 1′′ and 5′′ of air heights in the bubble-maker. The behavior of the air flow

at the tip of the needle was examined for the presence of bubble-like structures which

are released in a discrete fashion. A few candidate needle sizes were chosen for a more

detailed analysis. Measurements of the bubble size just below the free surface were made

and the size 23 gauge with I.D. 0.33 mm and length 50.8 mm is chosen (Figure 3.5). This

size provided the most consistent bubble-like structures for all air flow-rates and was not

prone to clogging. The bubble size estimation set-up is discussed in detail section 3.2.1

and the image processing technique in section 4.1.

26



Figure 3.9: Bubble shapes at needle tip for clean water for 1 inch and 5 inches of air heights in

the bubble-maker
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Figure 3.10: Bubble size estimation setup: A schematic showing an end view of the tank with

camera and white light lamp. Single needle is used in this setup.
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3.2 Experimental Technique

3.2.1 Bubble Size Estimation

In order to have a quantitative estimate of the bubble size near the free surface,

high speed movies of the rising bubbles are recorded just underneath the free surface.

This portion of the study was conducted prior to assembling the needle array on the

bubble-maker. At this stage, only one needle is assembled on to the bubble-maker. This

helps in finding out the number of bubbles per unit time from a single needle and the size

of the bubbles for different heights of the air-water interface in the bubble-maker. The

experiment is conducted for both clean and surfactant-laden water. A schematic diagram

of the setup can be seen in Figure 3.10. The camera is mounted on a tripod and it is

focused on to the bubbles just underneath the free surface. The resolution for the camera

is set to 2560× 1280. The field of view of the camera is 62.7 mm × 31.3 mm. The movies

are shot at 1500 fps. A translucent sheet is stuck on the side of the glass tank close to a

light source. White back-light illumination is used for this experiment. The sequence of

bubbles coming to the free surface can be seen in Figure 3.11. The bubbles are darker in

comparison to the background and are visualized very clearly in the focal plane.
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Figure 3.11: Bubble rise sequence: Two bubbles in clean water rising to the free surface

location where previously accumulated bubbles can be seen. Time increases sequentially from

image 1 to 4 clockwise. The time interval between image 1 and image 4 is 63.32 ms.
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The experiment is started by opening the valve on the compressor which allows

air to flow in to the bubble-maker and turn on the bubble production. The water in

the bubble-maker will start getting displaced with the air. This will result in the free

surface of the water rising and causing a flow over the skimmer walls. The air flow rate

is adjusted to push the meniscus of the air-water interface in the bubble-maker down at

a steady rate. The position of the meniscus is monitored with the ruler on the bubble-

maker. As the meniscus reaches the 1′′ mark on the ruler, the air flow is slowed down

considerably and the camera is triggered. The recording length of the movie is about 1

second. This duration is very small compared to the time it takes for the meniscus to

move a small distance of 1/16′′. The free surface is hence considered stationary while the

data is collected. This is also verified by the stopping of water overflow past the skimmer

walls. Once the recording is complete, the air flow is increased which causes the meniscus

to move down past the 1′′ mark and skimming more water from the top. The process

is then repeated for meniscus position from 2′′ to 5′′. Using this technique, it is ensured

that the water surface is skimmed for every air flow condition and a consistent surface

condition is maintained. It is interesting to note that the bubbles appera to be ellipsoidal

in shape. They rise to the free surface by following a helical path. The calibration and

measurement technique is discussed in Chapter 4.
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3.2.2 Cinematic Shadowgraph System

The cinematic shadowgraph system is used to measure the droplet distribution. The

schematic diagram of the experimental setup can be seen in Figure 3.12. The system uses

an expanded laser beam (38.1 mm diameter) from a pulsed Nd:YLF laser (50 mJ/pulse).

The laser sits on an optical table which is on top of the instrument carriage of a wave

tank, 2.4 m from the ground. The wave tank is located beside the droplet experiment.

The arrangement is so because the laser is shared with another experimental setup. The

laser optical system is shown in Figure 3.13. Light emitted from the laser cavity is passed

through a half wave plate and a polarizing beam splitter and once more through another

set of the same arrangement. This is done to control the beam intensity. The light is

then passed through a set of spherical lenses which focus the beam on to a pin hole with

a 200 µm diameter. The pin hole serves as a spatial filter. After the pinhole, the light

goes through a concave lens and thereafter a convex lens which expands the beam to the

required diameter. The beam is turned by high energy mirrors (M1-M5) as and when

needed. The beam is parallel and 10 mm above the free surface of the water in the tank.

The beam alignment is fine tuned and it is projected on to the sensor of the Phantom

v640 high speed camera equipped with a Nikon 200 mm microscope lens. The lens has

magnification of one to one at minimum focal distance. The dimensions of the frame built

to mount the camera is governed by the need to have this minimum focal distance in the

middle of the tank. This gives a symmetric depth of field which will be discussed in more

detail in the section 4.2. The aperture of the lens is fully open with f -stop at minimum

(f/4).

The operation of the bubble-maker and the surface skimming system is identical to

the process described in section 3.2.1 but with all the 180 needles attached. Once the
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Figure 3.12: Cinematic shadowgraph system: (a) End view of the tank. (b) Top view of the

tank.
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Figure 3.13: Laser optical system: Devices used to create the expanded parallel beam of light.
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bubble-maker is turned on, the drops ejected at the free surface in all directions tend

to be deposited on the inside glass surface of the tank. This splatter adds noise to the

measurements. The issue is overcome using the arrangement shown in Figure 3.14. Two

127 mm long sections of 38.1 mm inner diameter PVC pipes are mounted just above the

free surface. The laser beam passes through the pipes. The pipes are in contact with the

glass surface and hence keep the recording area of the glass clean.

Figure 3.14: Drop splatter: Shadowgraph images showing splattered and clean regions.

To operate the measurement system, the camera and the laser need to be synced and

triggered simultaneously. A triggering signal (TTL pulse) is sent by a function generator

to a delay box using BNC cables. The delay box has two output signals, one goes to the

external trigger of the camera while the other to the trigger input of the laser. This allows

to time delay, the pulse from the function generator so that the light pulse occurs in each

image when the aperture is open. The time delay between the two pulses is typically 5
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ms. The camera is setup to record at 1000 fps. The frame rate is chosen to be as fast as

possible, so that the tiny fast moving film drops may be seen. The camera memory hold

1282 frames and this restricts the recording time to 1.282 seconds. The need for a high

spatial resolution (2560× 1600) for data processing also restricts a higher frame rate.

Figure 3.15: Sample shadowgraph image of droplets: 2560× 1600 pixels.

The field of view of the shadowgraph image is 25.6 mm × 16 mm, which is the

same as the size of the camera sensor. Since a 1:1 magnification is used, a resolution of

10 µm/pixel is achieved at the focal plane, at a distance of 482.6 mm from the lens (Figure

3.15). This is an important number when it comes to data processing as it restricts the

size of the smallest drop that can be accurately measured using this system.
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Chapter 4

Measurement Techniques

4.1 Bubble measurement

In this section, the image processing technique for estimating the bubble size is

discussed. Measurements for the bubble are made when it is just below the free surface.

In order to measure the bubbles, a calibration image is required (Figure 4.1). The field of

view for the images is 62.7 mm × 31.3 mm. This corresponds to a magnification of 4.79 : 1.

The plane of recording is approximately 1.21 m from the lens. The apparent change in

size of the bubble due to this magnification is not a concern since the calibration image of

ruler is also at the same magnification. Hence, the true size of the bubble can be measured

using this system. The calculated resolution is 24.5 µm/pixel. The data is collected in

the form of high speed movies. Discrete frames from these movies are selected and stored

in a 8-bit .bmp file format. These images are then imported in to MATLAB.

The processing code fits an ellipse to the bubble in the least square sense. The

Figure 4.1: Bubble size calibration: Image of the ruler with the free surface meniscus indicated

by the horizontal line. The camera resolution is 2560× 1280.
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Figure 4.2: Oblate spheroid and bubble: Oblate spheroid is formed by rotating the ellipse

about its minor axis.

bubble is basically assumed to be an oblate spheroid formed by rotating the ellipse about

its minor axis (Figure 4.2). The code uses a boundary tracing function to detect the edge

(perimeter) of the ellipse by using a set threshold for the gray level to distinguish between

the background and the bubble. This is done more efficiently by inverting the black and

white pixels(Figure 4.3). The general quadratic form of a curve is given by

ax2 + 2bxy + cy2 + 2dx+ 2fy + g = 0

2b′xy + c′y2 + 2d′x+ 2f ′y + g′ = −x2 (4.1)

where b′ = b/a, c′ = c/a, d′ = d/a, f ′ = f/a g′ = g/a.

This equation is then solved for the coefficients in a matrix form by passing the

perimeter values for x & y as inputs. The measurements for the ellipse, semi-major axis

and semi-minor axis are extracted. Based on these measurements, the volume of the

oblate spheroid is calculated and converted to an equivalent spherical bubble volume with

a diameter (dbubble).

Voblate =
4

3
πa2b =

4

3
π

(
dbubble

2

)3

= Vbubble (4.2)
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Figure 4.3: Pixel position of the ellipse fit to bubble perimeter on the image.

where a = semi−major axis, b = semi−minor axis &

dbubble = equivalent bubble diameter.

The measured bubble diameters for clean water at various air flow conditions can

be seen in Figure 4.7. For the surfactant laden water, the bubbles are more spherical in

shape (Figure 4.4). A least squares linear polynomial robust fit is applied to the data. The

outliers are removed from the data-set by using standard deviation as a benchmark. It is

important to note that the bubble diameters calculated are considered estimates because
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the technique doesn’t take in to account the sharpness(focus) of the bubbles based on the

intensity. The only measure of focus is by human eye which results in the noisy nature of

the data observed on the plots. The focusing issue also causes reduction in usable data

which results in the fit not being very close to the data-set. Nevertheless, this technique

does help in calculating a mean bubble diameter for an amount of air in the bubble-maker

and the corresponding bubble production rate. It may be concluded that the bubbles

diameters for surfactant solution is on an average smaller than that for clean water at the

same bubble production rate. The results for the average diameter values and the bubble

rate and the volumetric air flow-rate can be seen in Table 4.1 and Table4.2. The total

bubble rate is calculated by studying the single needle and then multiplying the results

with the number of needles on the bubble-maker.

Figure 4.4: Bubble in surfactant solution: The bubbles appear to be more spherical in shape

compared to clean water.
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Figure 4.5: Bubble diameter variation for clean water: The mean value is indicated by the

black line and the red line represents the fit for (a) 1 inch, (b) 2 inches, (c) 3 inches, (d) 4 inches

of air heights in the bubble-maker. The noisy nature is attributed to the lack of focus(sharpness)
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Figure 4.6: Bubble diameter versus volumetric air flow rate for clean water cases: Data points

are indicated by the red circles and blue line is the linear fit.
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Figure 4.7: Bubble diameter variation for surfactant solution: The mean value is indicated by

the black line and red line represents the fit for (a) 1 inch, (b) 2 inches, (c) 3 inches, (d) 4 inches,

(e) 5 inches of air heights in the bubble-maker
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Figure 4.8: Bubble diameter versus volumetric air flow rate for surfactant solution cases: Data

points are indicated by the red circles and blue line is the linear fit.
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From the data shown in Tables 4.1 and 4.2 and plots in Figure 4.6 and Figure

4.8, it is inferred that the volumetric air flow rate increases linearly as the height of air

in the bubble-maker is increased. The assumption made in this experiment is that the

clean and surfactant solution have the same bubble production rate (Bubbles/sec column

in the Tables). Two anomalies are observed. Firstly, the bubble production rate is the

same (5400 bubbles/sec) for 2 and 3 inches of air heights in the bubble-maker. This is

most likely due to the bubble-structures coalescing (observed in the high speed movies)

at the tip of the needle right after they come out. As a result, there is no change in the

bubbles/sec data but there is a change in the bubble diameter. The second anomaly is

the measured equivalent spherical diameter of 2.676 mm for the surfactant condition case

with 4 inch air height in the bubble-maker 4.2, which is less than the diameter measured

for the 3 inch case. The reason could be a combination of two things; first, the measured

bubbles could be marginally outside the focal plane of camera which causes a error in

the detection of the edges of the bubble by the Matlab code and second, the bubble flow

behavior near the needle maybe affecting the size of the bubble.
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4.2 Shadowgraph instrument calibration

To accurately measure the droplets, it is important to be able to quantify the mea-

sure of focus of the drop. When a drop is outside of the focal plane, it’s measured diameter

will be different from the actual because the edges will be fuzzy. In this section, we discuss

a calibration technique to correct this fuzziness and also discuss the processing routine

and the determination of the measurement volume.

The idea behind calibration is imaging circular targets of known diameter in and out-

of-focal plane. The apparent diameter in the image is computed at known distances from

the focal plane and the results are compared with the actual diameter. The calibration

setup can be seen in Figure 4.9. The target used is a Patterson Globe Microscope Reticle.

It is basically a transparent glass slide with 14 opaque black dots etched on it. The dot

diameters vary from 30 µm to 3000 µm. The target is attached to a motorized linear

traverser system (NEAT 310M Programmable Stepping Motor Controller) and placed in

the span-wise center of the tank in the camera’s field of view.1 The target is moved until

it is sharply in focus. This position of the target on the traverser is noted as the focal

plane. The target is then moved in finite steps both, towards and away from the camera

using the traverser, which is controlled by a Labview code. At each step, an image of the

target is taken (Figure 4.10). The initial step-size is as small as 0.005 mm to get a large

data set for the smallest dots which are in focus only for a very short distance from the

focal plane. As the target moves out of the focal plane, the sharp black dots fade to more

of a grayish color with fuzzy edges. The step-size is increased when the smallest dots can

no longer be imaged. Fresnel intensity patterns are also observed in the images. Sample

calibration images of the target in and out of the focal plane can be seen in Figure 4.10.

1The words ‘reticle’ and ‘target’ are used interchangeably.
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Figure 4.9: Shadowgraph instrument calibration: (a) Schematic for depth of field calibration,

(b) Picture of the setup, (c) Image of the reticle at focal plane with resolution 2560× 1600. Dot

diameter range from 3000 µm to 30 µm.
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Figure 4.10: Calibration images of reticle at various distances from focal plane: Notice the

fuzzy edges as the distance from focal plane increases.

The diameter and the intensity of the dots are determined using an axisymmetric two-

dimensional hyperbolic tangent function fit to the image intensity pattern. The function

is of the form

F = A0(1− tanh(A1

(√
(x− x0)2 + (y − y0)2

)
−A2)) +A3 (4.3)

The position parameters x0, y0 and parameters An are determined by a non-linear

least squares method to fit the image intensity data. The fitting error minimization

technique is used to obtain a best fit to the image data. The An parameters are:

A0 = Intensity of the dot A1 = Sharpness A2 = Radius

A3 = Intensity of the background

The average intensity of the background (A3) is calculated by excluding the black

areas in the image. A sample image showing the areas used to determine the background
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Figure 4.11: Average background intensity calculated from the areas enclosed by the rectangles.

intensity can be seen in Figure 4.11. This average value varies marginally from shot to

shot and it lies in a range of 3850 to 4000 which is considered stable. These image intensity

values are the non-inverted values, hence the larger values represent a whiter background.

Later on, for processing, the image intensity is inverted.

The plot for the average inverted intensity of each dot versus the distance from the

focal plane is shown in Figure 4.12. The average intensity is given by 4095 − Ĩ where Ĩ

is the gray level (intensity) ranging from 0 to 4095 for a 12-bit depth .TIFF image. The

average flipped intensities for all the dots decrease as the reticle is moved out of the focal

plane in either direction. The slope is steeper for smaller dots. This means that that

smaller dots become blurred faster than the bigger dots. Figure 4.13 shows the computed

normalized diameters Dm
Df

versus distance from the focal plane, where Dm is the computed

diameter at a distance from the focal plane and Df is the computed diameter at the focal

plane. Hence at the focal plane, this ratio is 1. Its is observed that as the reticle is moved
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Figure 4.12: Average intensity of the images of the various dots on a Patterson globe reticle as

a function of distance of the reticle from the focal plane of the lens. The horizontal red line

represents an average intensity cutoff threshold of 3946 which restricts the diameter measurement

error to 7%.

out of focal plane, Dm
Df

increases for all except the 100µm dot. This is most likely due to

skweness of the reticle relative to the line of sight of the camera. For the smaller dots, the

ratio increases more rapidly than the bigger dots.

From the two plots, it is inferred that the maximum error increases with decreasing

intensity threshold. After careful analysis of the intensity plots, the limiting value of 3946 is

chosen for the average intensity. This average intensity cutoff value restricts the maximum

error in diameter measurement to 7%. All the drops images with average intensity less

than 3946 are rejected as the error will be greater than 7%. The horizontal lines in the

Figure4.13 and Figure4.12 represent the cutoff threshold for the diameter (7% error) and

average intensity (3946) respectively.
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Figure 4.13: Normalized diameter of the images of the dots on the Patterson globe reticle as a

function of the distance of the reticle from the focal plane. For all the data points below the

horizontal red line (intensity value of 3946), the error in the diameter measurement was less than

7%.
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Figure 4.14: Depth of field (DOF) versus drop diameter.

It is observed from Figure 4.12 that range of distance from the focal plane for which

the dot intensity values are above the limiting threshold increases with increasing dot

diameter. This range is called the depth of field (DOF). A plot of depth of field versus

dot (drop) diameter can be seen in Figure 4.5. The measurement volume for each dot size

can be calculated by using the depth of field and the field of view for the camera.

Measurement V olume = DOF × Field of view (4.4)
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4.3 Shadowgraph droplet measurement

A sample shadowgraph image used for drop measurement is shown in Figure 4.16.

The black dots correspond to the drops. Such images are extracted from the shadowgraph

movie file and processed using the Matlab two-dimensional function fit program. The

drops which are above the threshold intensity can be seen with red circles and the ones

with blue circles are below the threshold and hence neglected. To extract these images,

the movies are visually inspected and only the frames in which there are drops that are

going up or across the screen are selected. Drops which are observed moving down in the

movie are neglected. This is done to ensure that no drop is measured twice. Based on

observation, almost all of the drop images are circular in shape indicating that the drops

themselves are spherical in shape. The concentric circles seen in the background are noted

as the interference patterns due to the coherent laser light.

In Figure 4.17, the plots for measured intensity of a drop close to the focal plane

and the non-linear surface fit can be seen. The value of 4095 corresponds to completely

black (drop) while 0 represents white (background). The sides of the plot are very steep

and the top is a flat-plateau like form. When the fit and raw data are superimposed, there

is marginal disagreement. Such a result indicated that the drop is sharply in focus. In

Figure 4.18, a similar plot is shown for a drop with fuzzy edge. The edge of the fit in this

case aren’t as steep as in Figure 4.17 and the average intensity is also lower. This indicates

that the drop is not in focus. Since the drop diameter and intensity are computed using

the fit given in equation 4.3, these plots are important reference points and validate the

applicability of the fit at varying focal depths and drop diameters.

The measurement volume for each droplet diameter is the field of view of the cam-

era/lens time the depth of field for that droplet diameter. For raw uncorrected measure-
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Figure 4.15: Intensity versus Drop Diameter: Data from 1 run with 5 inches of air in the

bubble-maker for clean water. Drops which are above the horizontal line indicate intensity>3946

and everything below the line has intensity<3946.

Figure 4.16: Sample image used for drop processing: Useful data is in red circles with drop

intensity>3946 and discarded drops are in blue with intensity<3946.
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Figure 4.17: Intensity graph of a sample drop positioned close to the focal plane: (a) Raw data

from the image, (b) Drop image (c) Fitting function, (d) Data and fit super-imposed.
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Figure 4.18: Intensity graph of a sample drop away from the focal plane: (a) Raw data from

the image, (b) Drop image (c) Fitting function, (d) Data and fit super-imposed.
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Figure 4.19: Measurement Volume

ments, the measurement volume is given by equation 4.4. This volume varies with the

drop diameter as the DOF changes (Figure 4.19). The number of droplets Ni measured for

a specific diameter di are adjusted by the depth-of-field calibration in order to determine

the adjusted number of droplets Nadj(di) in a common measurement volume:

Nadj(di) = Ni(di)× ni (4.5)

where ni = Av×Wt
Av×zi , Av = Field of view of the camera, Wt = Depth of field for the largest

drop = 190mm for this experiment, zi = Depth of field for droplet di.
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4.4 Experimental test matrix

In this experiment, the optical shadowgraph technique is employed to measure the

drop distribution from bubbles rising and popping at the free surface. Measurements are

made for two different water surface conditions, clean water and water with a 0.4% v/v

solution of Triton X-100 surfactant. A continuous bubble field is created with the help of

the bubble-maker. Five different bubble sizes and bubble production rates are studied for

each water condition. The bubble size measurements discussed in section 4.1 are made

for the two different water conditions and for 1 to 5 inches of air in increments of 1 inch

in the bubble-maker. The five heights of the air in the bubble-maker result in the five

different bubble size/ bubble production rate combinations which are used as experimental

conditions for the drop measurements. The experimental conditions are summarized in

Table 4.3. The different conditions are labeled “Case 1” through “Case 5” with the number

always indicating the height of air in inches in the bubble-maker. The Cases will be used

in conjunction with the water condition i.e. clean water or surfactant solution to reference

the experimental condition while stating the results.
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Mean diameter of the bursting bubble (mm)

Case Inches of Air Bubbles/second(180 needles) Clean Surfactant

Case 1 1 4320 2.885 2.369

Case 2 2 5400 2.891 2.706

Case 3 3 5400 2.955 2.879

Case 4 4 7200 3.210 2.676

Case 5 5 7560 3.301 a 3.014

Table 4.3: Experimental test matrix indicating the bubbles production rates and bubble sizes for

clean water and surfactant solution.

aEstimation: Refer Appendix A
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Chapter 5

Results

5.1 Drop distributions

The raw and the depth of field calibrated distribution of droplets diameters averaged

over nine runs for each bubble production rate for clean water can be seen in Figure 5.1 to

Figure 5.5. Figures 5.1(a) to 5.5(a) show the drops directly measured from the images to

within 7% error based on the diameter(Figure 4.13) and intensity(Figure 4.12) calibration

curves. In these plots, the measurement volume is equal to field of view times the depth

of field corresponding to that drop diameter which is found using Figure 4.5. This causes

the change in the measurement volume based on the measured drop diameter. To obtain

the drop distribution for a common measurement volume for all drop sizes, the data is

then corrected using the depth of field calibration given by equation 4.5. This gives the

adjusted number of drops in a measurement volume common to all the drop sizes. From

the depth of field curve in Figure 4.5, it is inferred that the probability density distribution

for the smaller drops will increase in comparison to the larger drops due to this volume

correction. For the clean water data represented in Figure 5.1 through Figure 5.5, it can

be noticed that for almost all the cases there are two distinct peaks, i.e. bimodal in nature

with two sizes dominating. Spiel [21] observed similar bimodality for drops measured after

the top jet drop measured from single bursting bubbles. For that study, the bubble size

ranged from 698− 2958 µm in diameter and study was conducted in fresh water. In this

thesis, the bubble sizes range from 2885− 3210 µm for clean water. The data shows one
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Figure 5.1: (a) Directly measured and (b) Depth of field corrected drop distribution for clean

water Case 1 corresponding to bubble diameter of 2.885 mm. Bimodal peaks observed at 160 µm

and 480 µm
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Figure 5.2: (a) Directly measured and (b) Depth of field corrected drop distribution for clean

water Case 2 corresponding to bubble diameter of 2.891 mm. Bimodal peaks observed at 160 µm

and 480 µm
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Figure 5.3: (a) Directly measured and (b) Depth of field corrected drop distribution for clean

water Case 3 corresponding to bubble diameter of 2.955 mm. Bimodal peaks observed at 120 µm

and 560 µm
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Figure 5.4: (a) Directly measured and (b) Depth of field corrected drop distribution for clean

water and Case 4 corresponding to bubble diameter of 3.210 mm. Bimodal peaks observed at

120µm and 480 µm
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Figure 5.5: (a) Directly measured and (b) Depth of field corrected drop distribution for clean

water Case 5 corresponding to bubble diameter of 3.301 mm. Bimodal peak observed at 120 µm

and somewhat diminished peak 520 µm
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Figure 5.6: Bubble rafts for surfactant condition

constant peak in the 480 − 560 µm range for all bubble production rates. The second

peak represents a diameter range of 120 − 160µm (Figure 5.1(b) to Figure 5.5(b)). It is

clear that the clean water drops are affected by the bubble size and the bubble production

rate. Looking at the corrected data in these plots for clean water, it appears that the

probability density function for this peak remains at 21% for Case 11 and Case 2 and

increases to 32% for Case 5. This indicates that there could be potentially a lot more

drops in the sub-100 µm range if the bubble diameter increases past the 3000 µm. This

remains yet to be investigated as current study is limited to the 100 µm diameter with a

known error of less than 7%. The cause of the bimodality maybe embedded in the mode of

drop production as to whether the drop is a jet drop or a film drop. Figure 5.12 shows the

bimodality of the spectral peaks for a given bubble diameter. The smallest drop observed

drop diameter for clean water condition is 81.13 µm and the largest is 1308.83 µm.

1Refer Table 4.3 for definition of Cases.
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The bubble diameter for surfactant solution is in the range of 2369 − 3014 µm

(Table.4.1). For the surfactant case, many more drops are observed. Figure 5.6 shows

accumulation of bubbles at the free surface for the surfactant water condition. The bubbles

appear to be more uniform in size accumulating and creating rafts that travel and burst.

These accumulating, bursting bubble rafts create the possibility of observing a lot more

drops in fewer runs as compared to the clean water condition. The data presented in

Figure 5.7 to Figure 5.11 is obtained from five runs for each bubble production rate.

Unlike, the clean water, the surfactant solution data doesn’t show any apparent distinct

bimodality in the raw data. Since the data looks evenly distributed, it seems reasonable

to conclude that there is one dominant peak with gradual decrease on either side. Going

from Case 1 to Case 2 for surfactant solution, the peak remains constant 240 µm size

range. According, to Spiel [19], no film drops are observed for bubbles less than 2400 µm

in diameter in seawater. If that is holds true for the surfactant case investigated in this

thesis, all the drops observed in Figure 5.7 for 1 inch of air in the bubble-maker may be

considered as jet drops. For 2 to 3 inches of air in the bubble-maker, the drop distribution

peaks at 120 µm. In Figure 5.10(a), we observe in the raw data, population of the sub-

100 µm drops for Case 3 corresponding to a bubble diameter of 2.879 mm (Tab.4.1).

Spiel’s observations were similar for seawater and data shown in Figure 2.5 indicates a

dense population of sub-100 µm film drops corresponding to a comparable bubble diameter

of 2.94 mm. However, more investigation is needed to check for similarities if any in drop

production between the seawater and surfactant solution. For Case 5, which corresponds

to a bubble diameter of 3.014 mm, the distribution in the raw data peaks at 360−480 µm

and drops smaller than 100 µm can also be seen in Figure 5.11(a). The raw data for

this case looks more like a normal distribution. Figure 5.13 shows the spectral peak drop
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diameter versus the bubble diameter. The data suggests that for the investigated bubble

sizes and bubble production rates going from Case 1 to Case 5 seems to have little effect on

the size of the drops produced for surfactant solution. Perhaps a larger variation in bubble

sizes might highlight the surfactant effects more. The smallest observed drop diameter for

surfactant condition is 38.26 µm which is seen in the case where the bubble production

rate corresponds to Case 4. The largest observed drop is 740.71 µm in diameter.

In each of the probability density function plots, the number of drops measured (N)

in the data set and the bin width used in the histograms is reported. The number of bins

is initially estimated using Sturge’s formula. After a few trials, a bin width of 40 µm is

found to represent the data well. It can be noticed that in Figure 5.9(a) N = 283 while

in Figure 5.9(b) which represents the same data after volume correction has N = 282.

This is because the sub-100 µm drops are removed from the corrected data data-set as the

DOF for that drop diameter has not been calibrated to 7% error. This maybe improved

upon in the future.

Figure 5.14 and Figure 5.15 show the the Sauter mean diameters versus the bubble

size for the different cases studied. Sauter mean diameter (d32) is defined as the diameter

of the drop whose ratio of volume to surface area is same as that of the entire spray. It is

given by:

d32 =

∑
NiD

3
i∑

NiD2
i

(5.1)

i : Size range considered Ni : Number of drops in the size range i

Di : Middle diameter in the size range i

From the water conditions studied, it can be inferred that the distribution of drop

due to bursting bubbles depends to on the surface tension of the water, bubble size and

bubble production rate.
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Figure 5.7: (a) Directly measured and (b) Depth of field corrected drop distribution for

surfactant solution Case 1 corresponding to bubble diameter of 2.369 mm. Peak observed at

240µm
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Figure 5.8: (a) Directly measured droplets and (b) Depth of field corrected drop distribution

for surfactant solution Case 2 corresponding to bubble diameter of 2.706 mm. Peak observed at

240µm
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Figure 5.9: (a) Directly measured and (b) Depth of field corrected drop distribution for

surfactant solution Case 3 corresponding to bubble diameter of 2.879 mm. Peak observed at

120µm
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Figure 5.10: (a) Directly measured and (b) Depth of field corrected drop distribution for

surfactant solution Case 4 corresponding to bubble diameter of 2.676 mm. Peak observed at

120µm
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Figure 5.11: (a) Directly measured and (b) Depth of field corrected drop distribution for

surfactant solution Case 5 corresponding to bubble diameter of 3.014 mm. Peak observed at

200µm
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Figure 5.12: Spectral peaks versus bubble diameter for clean water cases: Two different

bimodal peaks are represented by asterisks and circles.

76



Figure 5.13: Spectral peaks versus bubble diameter for surfactant solution cases
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Figure 5.14: Sauter mean drop diameter versus bubble diameter for clean water cases: Two

different bimodal Sauter mean drop diameter are represented by asterisks and circles.
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Figure 5.15: Sauter mean drop diameter versus bubble diameter for surfactant solution cases
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It must be noted that, peak diameters that are reported in this thesis are the

observable peaks. If there are peaks due to drops below a 100 µm in diameter, which

is strongly suspected then they won’t be visible in this data-set. From literature [19],

it has been suggested that there is a population of film drops is in the range of 10 µm

to 150 µm for our investigated bubble diameter range. In this study for the clean water

cases, the bimodality that is observed may stem from the fact that, both jet and film

drops are measured together and the peaks possibly represent the two different generation

mechanisms. Another reason might be the inherent bimodality reported in the literature

for jet drops with spectral peaks at 40 µm and 200 µm [21] from bursting bubbles around

3000 µm in diameter. For the surfactant case in this study, the bimodality is not observed.

However, careful assessments must be made before concluding that the surfactant case has

no bimodality. It is possible that, bimodal peak for the surfactant case may have been

shifted below 100 µm and is not observable in our data-set. It is also possible that the

peaks over-lap. To investigate if this is true, a much larger data-set is desirable i.e. more

drops. This may help to identify, closely spaced bimodal peaks that may be obscured by

the presence of spectral noise created by the present small data set. Perhaps, a segregation

between jet and film drops might be useful in confirming a single peak for a given mode of

drop generation. This could be possible if the field of view of the cinematic shadowgraph

system is moved closer to the free surface of the water to detect the onset of bubble

bursting and measure the subsequent film and jet drop production.
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Chapter 6

Conclusion and Future work

In this thesis,the effects of surfactants on drop production by bubbles rising to a free

surface and bursting was studied experimentally using a cinematic shadowgraph technique.

The technique uses a high speed camera and a Nd:YLF laser. A detailed explanation

of the experimental setup and the instrument calibration was provided. The technique

allowed to measure droplets as small as 100 µm to within 7% error. Drops between

50 µm and 100 µm are also noted but with an error larger than 7%. The experiments

were conducted for two water conditions,clean and water laden with a 0.4% v/v solution

of Triton X-100 surfactant. Five different bubble diameters and bubble production rates

were studied for each water condition. This experiment differs from others becuase air

bubbles are produced continuously with an array of hypodermic needles arranged in a

specific orientation allowing bubbles to interact and create random popping events on a

non-quiescent free surface much like the real world. The bubbles rising to the free surface

are oblate spheroids and estimates of the bubble diameter just below the free surface are

provided. Raw data for the drop distribution and data calibrated to a fixed measurement

volume was provided. Data-set presented comprised of a total of 1436 drops, processed

using a custom built MATLAB code which calculates drop diameter using an axisymmetric

two-dimensional hyperbolic tangent function fit. It was noticed that the clean water

bubbles produced drops in two distinct diameter ranges exhibiting bimodality whereas

the surfactant laden water, bubbles produce a more normal sort of drop distribution. For

the surfactant water condition, bubble rafts were observed at the free surface. These rafts
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add a new dynamic in the drop size produced. In summary, the drop distribution for clean

and surfatant water are different, which emphasizes the role surface tension plays in the

jet and film drop production from bursting bubbles. The intermingling of bubbles on the

non-quiescent free surface plays an important role in the drop distribution observed.

This thesis has brought a few more interesting questions about the bubble bursting

and drop production processes. Following areas can be considered for future work on this

project:

• The surface tension can be lowered further by increasing the concentration of the Triton

X-100 surfactant. This should provide more insight on how the bubble rafts affect

the drop production.

• The salinity of the water can be changed to collect some data to enhance understanding

about marine aerosol production.

• The size of the needles on the bubble-maker can be changed to create different size

bubbles. The drop measurement technique can be applied for bubble measurements

also and this should provide more accuracy for bubble sie measurements.

• The data collected in this thesis can be used to provide measurements of the horizon-

tal and vertical ejection velocities of the drops. A processing routine needs to be

developed.

• With a higher than 7% allowable error, the current measurement technique is capable

of measuring drops up to 30 µm in diameter which are 3 pixels in size. Another

technique for data processing is discussed in [24], which could help in reducing error

for sub-100 µm drops.
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• To find the sub-30 µm drops, a Phase Doppler Particle Analyzer (PDPA) may be

employed.

• A distinction between jet and film drops can be useful in understanding the overall drop

distribution.
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Appendix A

Estimation of bubble size for Case 5 with clean water

The data for bubble diameter measurement for clean water Case 5 with 5 inches of

air in the bubble-maker was not readable due to a bad sector on the hard drive on which

it was stored. After unsuccessful attempts to recover the data, it was decided to estimate

the bubble size for this particular case by fitting a second degree polynomial curve to

the data of bubble production rate versus bubble diameter for clean water case and then

extrapolating the diameter required for the known bubble production rate.

In Figure A.1, we can see the fit to the data for the production rate from a single

needle versus bubble diameter. The goodness of fit for the curve is R2 = 0.9708. A bubble

diameter of 3.301 mm corresponding to a single needle flow rate of 42 bubbles/second is

estimated for the clean water Case 5. The diameter obtained is larger than the comparable

Case 5 of the surfactant solution (3.014 mm), which is consistent with the observations

for this data-set.
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Figure A.1: Bubble production rate versus bubble diameter for clean water Case 5 with 5

inches of air in the bubble-maker. The data points are represented by red circles and the

extrapolated value is indicated by red asterisk.

85



Bibliography

[1] D. Blanchard. The electrification of the atmosphere by particles from bubbles
in the sea. PhD thesis, Woods Hole Oceanographic Institution., 1963.

[2] Duncan C. Blanchard. Surface-active monolayers, bubbles and jet drops. Tellus,
42B:200–205, 1990.

[3] D. C. Blanchard. The size and height to which jet drops are ejected from
bursting bubbles in sea water. J. Geophys. Res., 94:10,999–11,002, 1989.

[4] L. D. Blanchard, D. C. & Sysdek. Film drop production as a function of bubble
size. J. Geophys. Res., 93 (C4):3649–3654, 1988.

[5] Duncan C. Blanchard and Lawrence D. Syzdek. Water-to-air transfer and en-
richment of bacteria in drops from bursting bubbles. Appl. Environ. Microbiol.,
43(5):1001–1005, 1982.

[6] Duncan C. Blanchard and Lawrence D. Syzdek. Seven problems in bubble and
jet drop research. Limnol. Oceanogr, 23,(3):389–400, 1978.

[7] D. C. Blanchard and A. H. Woodcock. Bubble formation and modification
in the sea and its meteorological significance. Tellus, A quartesly Journal of
Geophysics, 9(2), 1957.

[8] Scott R Burger and Duncan C. Blanchard. The persistence of air bubbles at a
seawater surface. J. Geophys. Res., 88:7724–7726, 1983.

[9] J. M. Boulton-Stone A.N. Emery Dey, D and J.R. Blake. Experimental com-
parisons with a numerical model of surfactant effects on the burst of a single
bubble. Chemical Engineering Science, 52:2769–2783, 1997.
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