Building Decision Support Systems
That Use Operations Research Models
as
Database Applications

by M.O. Ball, A. Datta, and R. Dahl

TECHNICAL
RESEARCH
REPORT

SYSTEMS

C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 92-109

Building Decision Support Systems
That Use Operations Research Models
as
Database Applications

Michael O. Ball
College of Business and Management
and Systems Research Center
University of Maryland
College Park, MD 20742
and
Department of Operations Research
University of North Carolina
CB#3180, 210 Smith Bldg.
Chapel Hill, NC 27516

Anindya Datta
College of Business and Management
and Systems Research Center

University of Maryland
College Park, MD 20742

Roy Dahl
DISTINCT Management Consultants
10705 Charter Dr., Ste. 440
Columbia, MD 21044

October 1, 1992

Abstract

In this paper we address the problem of building decision support systems that
make use of multiple operations research models as database applications. The
motivation for developing applications in a database environment is that, by
doing so, the development effort can be substantially reduced, while, at the
same time, the application inherits valuable database features. The paper con-
tains two main contributions. First, we present a set of modeling constructs
that should aid developers in structuring such applications and in carrying out
the development process. Included in this material is a fairly comprehensive
model for handling versions. Second, we discuss certain design alternatives and
evaluate performance tradeoffs associated with them. In addition, to evaluating
the differences among competing database designs, we provide evidence that
properly designed database applications, show little performance degradation
over file based applications.

1 Introduction

The aim of this paper is to propose and analyze a database environment for the
development of decision support systems that make use of multiple operations
research (OR) models. In many environments supported by OR models, the
solution approaches used involve multiple algorithmic steps. That is, an algo-
rithm generates an intermediate result which serves as the input to a second
algorithm the result of which is fed into a third and so on. For example, in the
vehicle routing problem, the generalized assignment approach [10] involves three
algorithmic steps: the first chooses a set of seed points, one for each vehicle; the
second assigns customers to vehicles; and the third generates delivery sequences
for each vehicle. Typical decision making in such environments involves assess-
ing the quality of intermediate solutions, making changes, rerunning algorithms
with altered parameters, etc. In the vehicle routing problem, once the customer
to vehicle assignment step is over, the user might desire to change a few as-
signments manually or, alternatively, rerun the the assignment algorithm with
different parameter settings. The ability to carry out such operations easily
and to keep track of the alternate solutions generated is an important system
requirement.

In many systems the user has the option of choosing between one of two al-
gorithms to generate a particular solution or of choosing between an algorithm
and a manually generated solution. Such systems should provide the user with
the ability to maintain alternate solutions and to compare such solutions. An-
other typical requirement, is the ability to break large problems into chunks and
then to solve a smaller problem over each chunk. In solving a vehicle routing
problem over a large geographic area it is quite conceivable that the user would
break the entire region into small subregions. This, of course mandates opera-
tions that can isolate chunks of data, perform consistency checks and prepare
it for use by the algorithm.

A careful perusal of the discussion above helps one identify certain basic
requirements of any system designed to support the environment outlined at
the outset. A common theme of these requirements is the manipulation of data
in several forms, namely modifications, insertions, consistency checking and so
on. A Database Management System (DBMS) offers an interface where such
operations are performed naturally and provides a platform where system de-
velopment can proceed unencumbered by data manipulation technicalities. It
is also worth mentioning at this point that a major factor which limits the
widespread use and acceptance of operations research models is the large over-
head associated with both the development of optimization algorithms and the
development of complete systems that provides users with flexible access to al-
gorithms. Clearly, an approach that has the potential for reducing this overhead
is the coupling of operations research models with DBMSs. This research aims
at studying the implications and issues concerning the problem of embedding
optimization algorithms in DBMSs.

Since their inception, DBMSs have been concerned with information stor-
age and retrieval and consequently one observes the growth and development of
Data Definition Languages (DDL) and Data Manipulation Languages (DML)
focussed around these issues. Most current research in database systems either
deal with better knowledge representation techniques, e.g. encapsulated data
objects, abstract data objects, etc., or with the confluence of knowledge and
databases, e.g. intelligent databases, etc. Qur view is that relatively little re-
search has addressed programming techniques, i.e. the areas of more efficient
use of existing operators and adding additional functionality through new op-
erators.

Classical problem solving techniques such as computing shortest paths, span-
ning trees and travelling salesmen’s routes still deal with data in terms of file
structures or at best, arrays and pointer structures. In contrast, DBMSs provide
a smooth and relatively transparent interface to the data enabling development
effort to proceed unencumbered by the complexities of structure manipulation.
We and others have developed systems with algorithms implemented in a pro-
gramming language such as C or FORTRAN interfacing with information stored
in DBMSs as opposed to data recorded in files. Qur experience indicates that
DBMSs usually provide slower data manipulation because of the prohibitive
maintenance overhead involved with DDLs and DMLs. However, the use the
DBMSs provide some very distinct advantages:

1. Algorithm development time is reduced substantially due to the ability to
use high level languages such as SQL to present data to the algorithm in
a streamlined form.

2. The resultant overall system has all the features provided by DBMSs,
including integrity preservation, security checking, ad hoc access to data,
etc.

3. The time required to develop an interactive system surrounding the al-
gorithms is reduced substantially, through the use of DBMS application
development tools.

In spite of these advantages it appears that few people are willing to im-
plement optimization based systems (or for that matter any update intensive
operation) on a database platform. It seems clear that the primary reason for
this is the supposed performance degradation. In the subsequent sections we
discuss certain issues associated with the process of building optimization based
decision making systems around DBMSs and approaches to solving them. One
result we present is that a properly designed database application can be highly
competitive, in terms of performance, with a file based application. The basic
concepts we discuss are general in that they could apply to any data model, e.g.
relational, object oriented, etc. However, most of our specific proposals, models
and examples apply to relational DBMSs.

1.1 Literature Review

Surprisingly, there is very little reported in the literature about interfacing
databases with OR models. The only paper we found that directly deals with the
issue is the paper by Dahl et. al. [7]. However the authors deal with a specific
application, transit vehicle and crew scheduling, and suggest a scheme to repre-
sent problem information in a DBMS, whereas our paper is concerned with the
much more general problem of embedding algorithms generically in a database
environment and issues concerning that. We note that the potential advantage of
using DBMSs in conjunction with OR models has been envisioned by Geoffrion
(12} in ais paper on structured modelling where he states, “Database systems
are natural adjuncts to data hungry MS/OR software. Data management and
flexible retrieval capacity are just as important for most MS/OR applications as
the functions performed by the solvers toward which the models are oriented”.

In spite of the paucity of reported research on the commonality of OR and
databases, the issues that we identify are not unique to OR problems and have
been dealt with, some more extensively than others, by researchers. In partic-
ular, the two issues of retrieval/insert and version management have received
widespread recognition as critical concerns in database design and have been
looked at by a several researchers. The groups that we most closely identify
with, in terms of analogous themes of research, are the CAD/CAM and engi-
neering database groups, who deal with issues very similar to ours.

Retrieval/insert problems are explored in the classic Aho and Ullman paper
[2]. Other works that deal with similar problems are Ghosh [13], Batory [5],
March [16]. However, these papers deal strictly from a database perspective,
the objective being “good database representation”. In our case however, the
primary purpose is to manipulate a DBMS to effectively integrate optimization
models and in the process we sometimes violate classical database design rules
in the interest of pragmatism and efficiency.

Techniques for handling version management receive excellent treatment in
Kim and Batory [15] which deals with model and storage techniques for ver-
sions for VLSI CAD objects. An excellent survey of existing versioning schemes
appears in [20]. The first papers to address database support for versions ap-
peared in the early 1980s. Since then numerous version management models
have been proposed [6, 15], “but comprehensive frameworks for undersianding
version semantics are still absent” [20]. Other research reports of versions may
be found in Plouffe et al [18], Bjornerstedt and Hulten [6].

Our primary orientation is to determine how to best make use of existing
database capabilities. Another more prevalent research point of view is to en-
hance RDBMSs’ support of innovative applications. Such database systems are
called extensible or extended databases. One of the first papers in this area
was by Abiteboul et. al. [1]. Other examples of currently ongoing research
in extensible databases are the STARBURST system being built at IBM and
GENESIS. A report on STARBURST is in [14]. The introductory GENESIS

paper is [13].

1.2 Sample Applications
In this section we describe three sample applications:
i. Vehicle Routing
ii. Transit Crew and Vehicle Scheduling
ii. Telecommunications Network Design

We have had experience with the development of optimization based systems
for all of these application areas. For i.) and iii.) we have developed systems
based on relational databases and for ii.) we have carried out a detailed design
for a system based on a relational database {7]. The detailed analysis presented
in the following sections applies specifically to the vehicle routing application.
Part of our objective in presenting this subsection is to illustrate the generality
of the this analysis to other application settings as well.

For the database environment we envision that all relevant problem data is
stored in the database. Specifically, both the inputs to algorithms as well as
their outputs are stored in the database. We also are oriented to systems that
employ multiple algorithmic steps as well as user interaction. Fisher [9] gives a
good discussion of the structure and overall design philosophy of such systems.
A typical problem solving scenario might be:

1. user invokes algorithm 1;
2. user modifies solution generated by algorithm 1;
3. user invokes algorithm 2;

4. user modifies algorithm 2 parameters and invokes algorithm 2, overwriting
previous solution;

5. user invokes algorithm 3.

Some important characteristics of the above scenario are that the solution gener-
ated by an algorithm might be modified by the user, the input to one algorithm
might involve the output from another and an algorithm might be invoked mul-
tiple times.

1.2.1 Vehicle Routing

The databases we are concerned with contain a mixture of static and volatile
information. In vehicle routing schema, given in Figure 1, the database contains
static information about customers, such as customer location, which is stored
in the table customers and static information about vehicles, such as vehicle

customers (cust.id, cust_name, c.node.d, billing_add)
orders (order_id, cust.id, amount, veh_id, seq_no)
vehicles (veh_id, type, capacity, s_order_id)

nodes (node_id, coordinate)

arcs (arcdd, nodeidl, node_id2, tr_time)

Figure 1: Vehicle Routing Schema

capacity, which is stored in the vehicles table. A static transportation network
upon which all travel time calculations are based, is stored in the tables nodes
and arcs. An order is a specification of an amount that must be delivered to
a customer. Order information, which is volatile, e.g. it might change daily, is
stored in the orders table. The function of the optimization algorithms is to
generate vehicle routes that satisfy all orders. Since the routes depend on the
orders, route information is also volatile. The route information is stored in the
attributes orders.veh_id, orders.seqno and vehicles.seed. We should note that a
primary issue that we will analyze is how the output from algorithms should be
stored. Thus, the schema presented in Figure 1 is one of several alternatives that
we will analyze (primary keys in bold). The generalized assignment approach
as applied in this setting has the following steps:

a. Seed Point Selection: An order, called the seed, is associated with each
vehicle. The clustering step will use the seed as a geographic point of
attraction for the route. The result of this step is to insert values into the
vehicles.s_order.id attribute.

b. Order Clustering: This step assigns orders to vehicles. The assignment is
carried out considering vehicle capacity restrictions with the objective of
minimizing travel time deviation between each order and the seed associ-
ated with the vehicle to which it is assigned. The result of this step is to
insert values into the orders.veh.id attribute.

¢. Sequencing: This step determines a delivery sequence for each route. The
result of this step is to insert values into the orders.seq_no attribute.

Some typical intermediate user interactions might be to rerun the seed point
selection step with altered parameters to force the use of fewer vehicles or to
alter certain order-to-vehicle assignments after the order clustering step.

trips (trip.id, start_time, start_oc, end_time, end loc, blockd, seq-no)
blocks (block_id, tot_time)

pieces (piece.id, blockid, st.bkseq.no, st_trseqmno, end_bk.seqno,
end-tr_seq_no)

runs (piece_id, seqno, run.id)
Figure 2: Transit Crew and Vehicle Scheduling Schema

1.2.2 Transit Crew and Vehicle Scheduling

The fundamental entities associated with transit scheduling systems include i.
routes which specify the sequence of stops for each transit line, ii. timetables
which specify the times at which vehicles visit the stops on each line, iii. vehicle
blocks which describe the complete itinerary for vehicles over the course of a
day and iv. crew runs, which specify the complete itinerary for crews over
the course of a day. We now present a schema for a simplified version of the
transit crew and vehicle scheduling problem. This schema addresses the decision
making process that arises after routes and timetables have been specified, i.e.
the determination of vehicle blocks and crew runs. In order to address these
problems the route and timetable data is usually first summarized in terms of
a set of trips . Each trip represents a one-way traversal of a transit line. Each
trip is characterized by a start location and start time and an end location and
end time. A vehicle block is a set trips between one exit from and enfry to
the vehicle depot. Since the vehicle blocks may be longer in time than a single
driver can work, for the purposes of crew scheduling, they are broken in pieces
which represent a portion of a crew workday (most typically a piece is 1/2 of
a crew workday). Thus, a single crew workday (run) consists of one or more
pieces.

The partial schema given in Figure 2 uses trips as a starting point and
includes the data necessary to define the vehicle and crew schedules defined
based on the trips. A typical three step approach to generating crew and vehicle
schedules is (see Ball and Benoit [3]):

a. Block formation: Sequences of trips are combined into blocks so as to
minimize a combination of excess travel time and waiting time. The result
of this step is to insert rows into the blocks table and to assign values to
the attributes trips.block.id and trips.seq.no.

b. Piece Formation: Based on various work rules and crew pay consider-
ations, the blocks are broken into pieces. Pieces typically represent an
entire crew workday or 1/2 a crew workday. Each piece must start and

end at a feasible relief stop. The result of this step is to insert rows into
the pieces table.

¢. Run Generation: Pieces are combined into crew runs. The objective func-
tion of this step is to minimize total crew paid hours. The runs must
adhere to various crew work rule restrictions. The result of this step is to
insert rows into the runs table.

Many computer systems that support transit scheduling include graphics based
interactive modules that allow block modification after step a. Also, it is typical
for step b. to be rerun after viewing the results of step ¢. In fact, [3] describes
a formal feedback loop between steps b. and c.

1.2.3 Packet Network Design

The packet network design problem is to produce a telecommunications net-
work design which can transport projected traffic loads between a set of termi-
nals and host computers. The output must specify locations and configurations
for switching equipment as well as determine which switches should be directly
connected. Switches are connected by dedicated links that have a complex tar-
iff structure. There are many types of switching equipment, but for design
purposes they can be categorized into local and backbone switch types. Back-
bone switches are large expensive devices that are used to form the core of a
large network. Local switches, including concentrators, which technically are
not switches, form the basis of the local access network, which carries traffic
between the source terminal or host and the backbone network. The design
problem considers cost, delay, and reliability as the primary objectives. The
locations for switches are usually chosen from a limited number of possible lo-
cations.

An accurate schema for the complete packet network design problem is very
complex. A partial schema that captures important aspects of the problem is
given in Figure 3. Most practical approaches to this problem break the analysis
into two separate steps . These steps are local access and backbone network
design. However, these problems are not independent in that the local access
design does effect the volume of traffic on the backbone network as well as the
selection and number of backbone switch locations. Cheaper and more reliable
local access networks are possible with more backbone switch locations, but
more backbone switch locations involve more costly backbone network designs.
The important point is that trade-offs between the designs need to be analyzed.
See Monma and Sheng [17] and Gavish and Altinkemer [11] for descriptions of
optimization algorithms and related complete systems for the solutions of these
problems.

A typical multi-step approach for generating a network design, together with
related performance information is:

terms (term-id, loc)

term_traff (from_term, to_term, traffic)

concentrators (concen_id, num.switches, loc, cost, traff load, delay)
access_ links (from loc, toloc, size, traff_load, cost)

back_traff (from_node, tonode, traffic, delay)

backbones (backbone.id, num_switches, loc, size, cost)

back links (from loc, toloc, size, traff_load, cost)
Figure 3: Packet Network Design Schema

a. Backbone switch location: Based on either earlier local access designs or es-
timations derived from terminal traffic, a set of backbone switch locations
are selected. The result of this step is to insert rows into the backbones
table. Only the attributes backbones.backbone_id and backbones.loc are
given values at this time.

b. Local access link and concentrator swiich selection: This step locates con-
centrators and connects terminals to concentrators and concentrators to
backbone switch locations. The result of this step is to insert rows into
the concentrators and access_links tables. Only the attributes concentra-
tors.concentrator_id, concentrators.loc, access_ links.from_loc and access_links.toloc
are given values at this time.

c. Local access analysis and Configuration: This step determines the result-
ing traffic for the backbone network as well as calculating delay and other
statistics. The result of this step is to insert rows into the back_traff table
and to assign values backbones.traff load attribute and to all attributes
in the accesslink and concentrators tables that were not given values in
step b.

d. Backbone design: Based on the backbone locations selected in local ac-
cess design along with the resulting traffic this routine determines which
switches should be directly connected by dedicated links and the size of
each of the links. The major considerations include cost, connectivity,
reliability, and delay. The result of this step is to insert rows into the
back links table.

e. Backbone Analysis and Configuration: Based on traffic through switches,
the size, type and number of switches is determined for each backbone

node. To accomplish this a backbone traffic routing algorithm must be in-
voked. The result of this step is to update the values in the backbone.size,
backbone.num_switches and backbone.cost aitributes.

One aspect of the problem solving setting just described that is different from
the previous two is the use of analysis routines. Here, by analysis routine we
mean a procedure that does not solve a decision problem, but rather generates
performance information. This information is typically taken into account by
the user in deciding whether to accept a proposed solution or to modify it by
rerunning algorithms or by making manual changes.

2 Problems and Solutions

In this section we describe some of the fundamental problems that motivated
our work and summarize the main contributions of this paper. The final section
of this paper describes additional problems that we feel are worthy of future
study.

2.1 Versioning and Algorithmic Flow Control

Conventional database systems work in terms of a single evolving logical state.
Transactions are used to alter the database from one consistent state to the
next. As soon as the transaction commits, the previous state is discarded for all
practical purposes. The system has no memory with respect to prior states of
the database. However, many application areas now, or in the future, supported
by DBMSs cannot be modelled adequately by representing only the present state
of the world. Instead it must be possible to model past and future states as well
as states existing in parallel with each other.

In designing optimization applications, the notion of versions takes on spe-
cial significance. Versions may be used for various purposes, e.g. to illustrate
the life cycle of a design object, to document the process of development or
to represent variants in the process of development. Some of the most obvi-
ous reasons motivating version control in a database supported optimization
application design environment are:

1. Often, there exist multiple algorithms or heuristics to solve a problem. It
is reasonable to assume therefore, that users would want to compare the
results of the application of different algorithms to the same data set by
comparing their outputs.

2. Often, users want to modify an automatically generated solution. The
user might achieve this by employing the system’s interactive features to
alter the solution. Alternatively, the user might rerun an algorithm using a
different parameter setting. Afterwards the user would typically examine

and compare all solutions generated prior to making a final decision on
one of them.

3. In a multi-user environment, it is quite possible that two users may gen-
erate alternate solutions to the same problem. These solutions could be
stored as versions and later analysis could be used to choose between the
two solutions.

Controlling the algorithmic flow is especially important in systems where multi-
ple steps are required to solve a problem, and where the various steps require the
application of different algorithms. In such environments, while providing the
user enough flexibility for problem solving, it is crucial to ensure that the user
does not perform operations that lead to erroneous results. The complexity in
achieving these goals arises from the need to provide the user with the ability to
interactively alter solutions and to rerun algorithms after changing parameters.
Also, it should be noted that the required input data for one algorithm may have
been put into place through the running of a different algorithm, or through the
application of a procedure that may have nothing to do with optimization. It is
quite conceivable that the user may wish to modify data or parameters that can
potentially render the information for the next algorithm run in an inconsistent
state. The system features required would:

1. generally keep the user apprised with respect to progress toward an overall
solution,

2. inform the user as to which algorithmic steps are currently feasible,

3. warn the user when certain actions will render the database in an infeasible
state.

Thus, proper handling of versions and flow control in algorithms are closely tied.
One of the major causes of incorrect flow is inadequate versioning methodolo-
gies. When a number of algorithms using the same set of input relations return
different versions of the same object (e.g. a number of different routes given
identical networks and customer requirements) each of those objects, typically
would be meant to be input into other algorithms. If the user, desiring to modify
object Qj, mistakenly updates Oi, a flow control problem has occurred because
all subsequent algorithm runs will be out of sync. However, it is precisely the
version control scheme that is supposed to oversee the prevention of such mis-
takes, and in the process, maintain feasibility of database states, insuring correct
flow.

2.2 Retrieval and Insert Problems

Viewed in its most elementary form, the relationship between the database and
an optimization or analysis algorithm is that the algorithm retrieves its input

10

nodes (node_id, coordinate)

arcs (arc_id, node_id1, node_id2, tr_time)

customers (cust_id, cust_name, c_node_id, billing_add)
orders (order-id, cust_id, amount)

vehicles (veh_id, type, capacity)

seeds (veh_id, s_order.id)

clusters (orderdd, veh_id)

routes (order_id, seqno)

Figure 4: Alternate Vehicle Routing Schema

data from the database, performs its required function and then inserts its
output into the database. It is our view that the principal impediment toward
more widespread use of databases for the delivery of OR models is the relative
ineficiency or perceived inefficiency of these retrieval and insert operations. We
have found that the efficiency of these operations has a heavy dependence on
both the logical and physical database design and the specific database operators
used.

For most commercial database systems alternatives exist for inserting records
into a database and for updating records in a database. Striking performance
differences exist between some of these alternatives. We have found that trans-
action logging can substantially slow down many operations. On the other hand,
in many situations the benefits of logging can be achieved by simple application
level controls. Omne general problem faced by applications designers is: which
operations should be logged and which should be non-logged and, directly re-
lated to this is which combination of database operators should be used for
certain operations.

A second issue relates to the logical database design. Figure 4, provides an
alternative to the VRP design given in Figure 1.

This alternative design effectively dedicates a table to the output of each
algorithmic step. Such designs have certain performance advantages which we
will explore later. However, they are less natural and may be more cumbersome
for the user to interact with.

11

2.3 Contributions of this Paper

The principal contributions of this paper can be viewed as solutions to the prob-
lems described above. In addition, we describe certain techniques that are of use
in the overall design process. Our intent is that the methods proposed in this
paper should be used by developers of decision support systems of the type we
have described. Such systems would make use of a commercial database product
such as ORACLE or Sybase, high level languages such as C or FORTRAN (pri-
marily for the optimization algorithms, but possibly also to develop parts of the
interactive interface) and application development tools, e.g. forms packages,
that usually are provided with database products. The specific contributions
we provide are:

Logical Design Constructs In Section 3.1 we propose logical design con-
structs to be used when designing decision support systems. Whereas
a classical database design would be embodied in a schema definition,
we propose augmenting the schema with Aggregated Objects, Algorithm
Input/Output Definitions and an Integrity Constraint Graph.

Specific Data Model for Versions Part of the design constructs include a
versioning scheme. In Section 3.2, we provide a specific data model for im-
plementing versions. Section 3.4 outlines certain alternatives for physical
implementation.

Interactive System Controls The interactive interface must insure that all
operations carried out by the user leave the database in a logically consis-
tent state. Section 3.3 provides controls that must be embedded into the
interface to accomplish this.

Logical and Physical Design Alternatives As was mentioned above the log-
ical and physical database design and the specific database operators used
to carry out certain functions can significantly impact overall system effi-
ciency. In Section 4, the results of computational experiments comparing
certain alternatives are presented. Included are results indicating that a
properly designed database system can provide performance competitive
with file based systems.

3 Logical System Design Constructs for Ver-
sion Control and Control of Algorithmic Flow

3.1 The Conceptual Level

In this section we introduce a general model for version control and control
of algorithmic flow. The model employs three constructs: aggregated objects
(AOs), algorithm input/output definitions and integrity constraint graphs. We

12

AGGREGATED OBJECT | CONSTITUENT TABLES
NETWORK nodes(node.id, coordinate)
arcs(arc_id, node.id1, node_id2, tr_time)
CUSTOMERS customers(cust_id, cust_name, cnode_id, billing_add)
ORDERS orders(orderd, cust_id, amount)
VEHICLES vehicles(veh_id, type, capacity)
SEEDS seed(veh_id, s_order_1d)
CLUSTERS clusters(order_id, veh_id)
ROUTES route(order_id, seq_no)

Table 1: Aggregated Objects

perceive two broad motivations for the use of aggregated objects. The first rea-
son is to provide a means for characterizing the input and output data for each
algorithm and the second is to provide a convenient way of grouping like data.
The set of aggregated objects should be defined so that they form a “vertical”
partition of the database. That is, each data element is a member of one and
only one aggregated object and all data elements of the same type are mem-
bers of the same aggregated object. In a relational database, each aggregated
object consists of one or more tables and in an object oriented database, each
aggregated object consists of one or more objects (usually one). Since there is
more than one set of algorithms one might use to solve a problem and since the
manner in which one might find it convenient to group data is subjective, in
general there will be more than one set of aggregated objects one could define
for a given database. An example of a set of aggregated objects for the vehicle
routing database based on the schema given in Figure 4 is given in Table 1.
Note that in forming the schema used in Table 1 and the associated AOs, a cer-
tain amount of “disaggregation” has been performed when compared with the
more natural schema given in Figure 1. Specifically, the tables orders, clusters
and routes could be combined into a single table as could the tables vehicles
and seeds. The reasons for doing this have to do with the manner in which the
algorithms interact with the database. As mentioned before, one of the major
motivations for the use of aggregated objects is to characterize algorithm inputs
and outputs. The AOs shown above have been defined to correspond to inputs
and outputs of algorithms e.g. the clustering algorithm accepts the AO SEEDS
as input and outputs the AO CLUSTERS. Later in this paper we will discuss
the possibility of combining some of these tables.

The interaction between each algorithm and the database is characterized
in terms of AQOs, using the algorithm input/output definition. Specifically, each
algorithm has an associated set of input AOs an associated set of output AOs.
There are two types of AOs: base AOs and derived AOs. Base AOs contain ba-
sic input data which must be entered into the system from an exogenous source.
Each derived AO contains data which is output by a single algorithm. All de-

13

ALGORITHM INPUT AO OUTPUT AO
Seed Generation | NETWORK, CUSTOMERS, | SEED
ORDERS, VEHICLES
Clustering NETWORK, CUSTOMERS, | CLUSTERS
ORDERS, VEHICLES
SEED

Route Generation | NETWORK, CUSTOMERS | ROUTE
ORDERS, CLUSTERS

Table 2: Algorithm Input/Output Definitions

rived AOs are initially null. An example of a set of algorithm input/output
definitions for the vehicle routing database is given Table 2. Thus, in this case,
the base AOs are NETWORK, CUSTOMERS, ORDERS, and VEHICLES. Be-
fore the decision processes could proceed it would be necessary that all of the
constituent tables contain data. The tables in the other (derived) aggregated
objects would initially be empty. Although in this example each algorithm out-
puts a single AO this need not always be the case. However, it must always be
the case that each derived AQ is the output of a unique algorithm.

Note that there is a strict precedence that must be observed in the execution
of the algorithms. Specifically, the overall process must start with seed genera-
tion, then proceed to clustering, since seeds are a required input to clustering,
and then end with route generation, since clusters are a required input to route
generation. The fact that the algorithms must proceed in this manner is a con-
sequence of certain fundamental properties of the data. In particular, there are
certain integrity constraints that must be observed for the data to be valid. The
following is one possible set for the vehicle routing example.

Integrity Constraints:

e For each cust_d that appears in the orders table there must be a corre-
sponding cust.id in the customers table.

o For each s_order_id that appears in the seed table there must be a corre-
sponding order_id in the orders table.

e A given s_order_id can appear at most once in the seed table.

o For each veh.id that appears in the seed table there should be a corre-
sponding veh_id in the vehicles table.

o There should be a one to one correspondence between order-id’s in the
clusters table and order.id’s in the orders table.

e For each veh_.d that appears in the clusters table there should be a cor-
responding veh_id in the vehicles table.

14

e There should be a one to one correspondence between order_id’s in the
route table and orderid’s in the orders table.

¢ No two rows in the route table that have order.id’s with the same veh.id
in the clusters table should have the same value of seq_no (one may wish
to impose a stronger condition that the seqno’s include 1,2,3,... up to the
number of orders with that veh.d).

For nearly all derived AQs, there will some integrity constraint that implies that
the data in the derived AO must be consistent with the data in one or more
base AOs. In particular, there must be meaningful data in certain base AOs
for it to be possible to create the derived AO. We use the integrity constraint
graph to characterize the general structure of the integrity constraints.

Integrity Constraint Graph Definition: There is a one-fo-one correspon-
dence between nodes of the integrity constraint graph and AOs. A directed arc
(A1, Az), from AO Ay to AQ A, is included in the integrity constraint graph if
there is an integrity consiraint involving Ay and As. Furthermore, the integrily
constraint should be such that data cannot be placed into A9 unless there is cor-
responding meaningful data in Ay, i.e. if Ay is null then Ay must be null.

The reverse implication will not hold, i.e. it is possible for A3 to be null but not
A1. The integrity constraint graph for the vehicle routing database is given in
Figure 5.

Note that there must be consistency between the algorithm input/output
definitions and the integrity constraint graph.

Integrity Constraint Graph/Algorithm Consistency Requirement: If
As is an output of some algorithm and Ay 1s an input then there cannot exist a
directed path in the integrity consiraint graph from A, to Ay.

The reason for this requirement is that the algorithm in question both gen-
erates data to be placed in Ag, and requires A; or a derivative of it as an input.
Thus, it would be impossible for A; to depend on A;. Note in Figure 5 that
there is no arc from SEEDS to CLUSTERS, even though SEEDS is an input
to clustering and CLUSTERS is an output. This situation occurs because the
clustering algorithms requires a set of seeds as input, but once the clusters are
formed they can be modified completely independently of the seeds to the extent
that they could bear no resemblance to the seeds.

The complete conceptual level definition needed to initiate application devel-
opment would consist of: a standard database schema together with definitions
of AQs, the algorithm input/output definitions, the integrity constraints and
the integrity constraint graph. In the next sections we show how these are used
as the basis for controlling algorithmic flow and for versioning.

15

Figure 5: Integrity Constraint Graph for Vehicle Routing Schema

3.2 The Data Level

The AQ serves as the basic unit for version control. Specifically, the underiy-
ing control system should support the ability to create and maintain multiple
versions of each AQ. For example, if the user wished to determine the result of
modifying the set of clusters output by the clustering algorithm then the user
might manually modify the clusters and store the result of this process as a
second version of CLUSTERS while still maintaining the original version. At
least for conceptual purposes, it should be assumed that each new version is
represented by a completely new physical copy of all data. However, it certainly
would be possible to use more sophisticated methods for maintaining versions
that are more efficient both with respect to storage space and processing effi-
ciency. This will be discussed later in the paper.

We can consider a particular version of an AQ as an instance of that AO so
that at any time, zero to several instances of each AQ might exist. To maintain
the overall integrity /organization of the data we must also maintain “instances”
of the arcs in the integrity constraint graph. That is, we must keep track of the
correspondence between the various AQ versions. This is done using the version

graph.
Version Graph Definition: There is a one-to-one correspondence between

nodes of the version graph and AQ versions. Let A be an AO and (B, A) an arc
in the integrity consiraint graph. Then, for each version of A, Alf], there must

16

Gusovess(D
“\ CoroemsisD)

Govest D Gavestzd ouest]

Figure 6: Sample Version Graph

ezist a corresponding version of B, B{j] and an arc of the form (B[j], Ali]) in
the version graph.

For example, when a new version of CLUSTERS is created then arcs must
be added which point into the CLUSTERS version node from the related VE-
HICLES version node and ORDERS version node. An example of a version
graph is given in Figure 6.

The version graph allows us to put together complete versions of the en-
tire database from individual versions of each AQ. For example, Figure 7 has
highlighted in bold a single complete database version. Thus, the version graph
captures in a succint manner the information necessary to recover consistent
database states.

One might also be interested in information related to how versions were
derived and/or what “optimality” properties they might have. We propose to
keep a record of the process that generates each derived object. Essentially such
a record is an instance of the algorithm input/output definition. Every time an
algorithm is executed an algorithm execution identifier is created and data is
recorded indicating the AO versions that were input to the algorithm and appro-
priate algorithmic information, e.g. time and date of execution and parameter
settings. The algorithm execution id is stored with each AO version output
by the algorithm. It is common to modify a solution output by ome algorithm
either 1.) manually using interactive system features or ii.) automatically vsing

@ErondD CrrassiiD

S E L "‘V‘\—\

Cl x_y:.E:e':{

Figure 7: Version Graph with Complete Database Version Highlighted

an improvement algorithm. Since it would be very cumbersome to store the
exact sequence of interactive moves the decision maker used in i.) we propose
simply to store a record of the algorithmic process that originally generated the
solution together with a mark indicating that the solution had been modified.
Case ii.) can be treated as any other algorithimic process, while recognizing
that there will be input and output AQ versions of the same type. An example
of this information for the vehicle routing scenario is given in Tables 3 and 4.
Table 3 contains an example of the Algorithm Execution Table, which keeps a
record of each execution of all algorithms. Table 4 exhibits a Version Derivation
Table which indicates which process generated each version. In this example
CLUSTERS(2] was generated by manual modification of CLUSTERS{1]. This
fact is indicated by the * in the Version Derivation Table. Note that CL-2
and CL-3 have the same input AO set. However, the clustering algorithm’s
parameter settings could be different, which in general would result in different
outputs (CLUSTERS(3] and CLUSTERS(4]). The last row in Table 3 represents
the execution of a ‘route improvement’ algorithm. Improvement algorithms are
procedures whose inputs and outputs are of the same type. In this case the
input and output consists of a set of routes. The purpose of the algorithm is to

improve the quality (objective function value) of the routes.

18

ALG EXEC ID | ALGORITHM | INPUT AO VERSIONS OTHER INFO
SE-1 seed generator | ORDERS[1], VEHBICLES[1], |
NETWORK(1], CUSTOMERS1]
SE-2 seed generator | ORDERS|[2|, VEHICLES[1], |
NETWORK]/1}, CUSTOMERS(1]
CL1 clustering ORDERS[], NETWORK[], | .
SEEDS{1], CUSTOMERS]1],
VEHICLES[1]
CL2 clustering ORDERS[I], NETWORK[Z], |
SEEDS(2], CUSTOMERS(1],
VEHICLES[1]
CL-1 clustering ORDERS(1], NETWORK][1], |
SEEDS[1], CUSTOMERS{1],
VEHICLES[1]
RG-1 route generator | CLUSTERS[1], NETWORK[1], |
CUSTOMERS(1], ORDERS{]]
RG-1 route generator | CLUSTERS{3], NETWORKI1], |
CUSTOMERS(1}, ORDERS[2]
RI-1 route improve | ROUTES[1], CLUSTERS[1] |
NETWORK]1], CUSTOMERSI[1]
ORDERS[1]
Table 3: Algorithm Execution Table
AO VERSION | GENERATING PROCESS
SEEDS(1 SG-1
SEEDS|1 SG-2
CLUSTERS[1] | CL-1
CLUSTERS[2] | CL-1*
CLUSTERS(3] | CL-2
CLUSTERS[4] | CL-3
ROUTES|[1 RG-1
ROUTES{2 RG-2
ROUTES[3 RI-3

Table 4: AO Version Dertvation Table

19

NETWORK{ 1] @

¥
@ @ ROUTES{2]

Figure 8: Version Graph with Current Version of ROUTES null

3.3 Controlling System Execution

Although the system will potentially maintain multiple versions of many differ-
ent AQs, there will always be a single current version of the database presented
to the user. This database version will consist of a single version of each AQ,
allowing the possibilities of null versions. The collections of AO versions must
be consistent relative to the version graph. In Figures 8, 7 and 9 three possi-
ble current database versions are marked in bold. Note that Figures 8 and
9 certain AQs are null. Some of the fundamental interactions that the sys-
tem must support include: interactively browsing through data (either in text
form or graphically), executing an algorithm, interactively modifying data and
changing the current version.

3.3.1 Interactively Browsing through Data

The only unusual aspect in supporting this function would be to insure that
appropriate (current) AQ versions were always referenced. For example, if the
user was viewing CLUSTERS[2], the current CLUSTERS version, and the user
wished to access related ORDERS information, then the system must insure
that ORDERS(1] was referenced.

20

CROERS{ 3]

Figure 9: Version Graph with Current Versions of SEEDS, CLUSTERS and
ROUTES null

3.3.2 Executing an Algorithm

One of the major system control requirements is the control of algorithmic data
flow. Specifically, the system must answer the question, “When can an algo-
rithm be executed?”. Also, in the presence of multiple versions the system must
determine where to place new algorithm output and how to switch among var-
ious versions.

System Control I: Suppose that the user attempts to invoke an algorithm
that generates a particular AO version say A[i]. Suppose that Bi,...,Bp are
the input AOs required by the algorithm and suppose that B [k],...,Bn[k,] ate
the current versions of each of these AOs. Then the system implements the
following controls.

1. If any of By[ki],...,Bnlkn] contain null (or invalid) data then the system
will not allow the process to be invoked.

2. If Af7] is null then the algorithm is invoked and the results are placed in
Afi].

3. If A[3] contains non-nuil data then the system presents the following op-
tions to the user:

21

Gusrouers(iD
L= w
ORDERS{3]

<= @ AN
cLusters(z]) (CLUSTERS(3] @.

) 4
CEDICED R CED R

Figure 10: New Version of ROUTES created based on application of control I-2

(a) Als] and all its descendents in the version graph are made null, i.e.
the data in all of these AQ versions is dropped; the algorithm’s results
are placed in a new verion of A, say Afi],

(b) A new version of A, say Aliy] is created; Aff] and all of its current
descendants are made non-current; Afés] is made current and all of
its (new) current descendants are nuil.

Suppose that the current database version was as illustrated in Figure 8 and that
the user wished to invoke route generation. Then control ii.) would apply since
the current version of ROUTES is null. The output of the algorithm would be
placed in a new version of ROUTES and the new current database version would
be as illustrated in Figure 10. Suppose that the current database version was as
illustrated in Figure 7 and the user wished to invoke clustering. Then since the
current version of CLUSTERS is non-null control I-3 would apply and the user
would be offered two options. If option I-3(a) were chosen then the result would
be as in Figure 11, i.e. CLUSTERS[1], ROUTES(1] and ROUTES(3] would be
dropped and a new CLUSTERS version created. If option I-3(b) were chosen
then the result would be as in Figure 12, i.e. a new CLUSTERS version would
be created and CLUSTERS({1] and ROUTES(1] would be made non-current.

Suppose that the current database version was as illustrated in Figure 9 and
the user wished to invoke route generation. Then control i.) would apply since
the current version of CLUSTERS is null. Thus, the user would be prevented
from executing the algorithm.

22

CrondD CEresiD =
GroesD GroesiD

: oroERS[3]
ED e L A

@ @ CLUSTERS(3] @

Figure 11: CLUSTERS(5] is created and CLUSTERS(1], ROUTES{l] and
ROUTES(3] have been dropped based on application of control I-3(a)

Gustouers(D
SN
T TR N
@ @’ @ CLUSTERS(3] @E_ERSM

Figure 12: CLUSTERS[5] is created and CLUSTERS[1] and ROUTES(1] have
been made non-current based on application of control I-3(b)

ORDERS{2] ORODERS{Z]

d
/

23

3.3.3 Imnteractively Modifying Data

The second important class of system control requirement relates to the use of
interactive data modifications.

System Control II: Suppose that the user invokes interactive system features
that results in the modification of a particular AO version say A[z]. Suppose
that By[k1),...,Bn[kn] are the set of AO versions such that there exist arcs of the
form (B;[k;],A[]) in the version graph.

1. Any interactive changes to A[i] must be carried out in such a way that
consistency with By[k;],...,Bn[kn] is maintained.

2. If A[i] contains any non-null data then the system presents the following
options to the user:

(a) 1-3(a)
(b) I-3(b)
(c) Let C[j] be a version of any AO that is a descendant of Afi]. Then

a set of procedures can be invoked which check consistency between
Ali] and C[j] and alter C[j] when necessary.

The two examples related to Figures 10 and 11 both apply to this case where the
user is attempting to manually modify CLUSTERS rather than trying to invoke
an algorithm to generate a new version. In addition, under control II-2(c), if
CLUSTERS[1] were manually modified then the user would be given the option
of invoking a procedure which would change ROUTES[1] and ROUTES(3] in
such a way that they remain consistent with the modified CLUSTERS[1].

3.3.4 Changing the Current Version

The interactive system will typically present to the user the current version of a
single AO or a subset of all AOs. Thus, when the user requests a current version
change the system must, at least implicitly, change to the appropriate, consis-
tent new version of the entire database. For example, suppose the user was
interacting with CLUSTERS(2] and the current database version was as is illus-
trated in Figure 7. Suppose further that the user requested to change the version
of CLUSTERS to CLUSTERS(3]. Then the explicit change the user would see
would be that the CLUSTERS{2] data was replaced with the CLUSTERS(3]
data. However, the current version of ORDERS would have to be changed form
ORDERSJ1} to ORDERS[2]. This change could, in a certain sense, be implicit
since the user might not immediately see any ORDERS data. The appropriate
implementation of version changes is actually part of the implementation of the
interactive browsing features mentioned in section 3.3.1.

24

3.4 Physical Storage of Versions

The physical storage of versions could form a research area by itself. We deal
with the issue extensively in [8]. Below we provide a brief discussion of possible
ways to implement versions in a relational scenario.

3.4.1 Direct Strategies

The basic question being addressed in this section is as follows: how should
distinct versions of AOs be stored so that they may be casily retrieved and ma-
nipulated? First note that since each table is completely contained in a single
AQ, we can store a version of an AQO by storing a version of each of the tables
that make it up. There are two obvious direct ways to store versions of given ta-
ble. The first is to create a different table each time a new version is generated.
This option has two noticeable disadvantages:

o Given that algorithms are run often this will result in a proliferation of
tables, affecting the efficiency of retrieving versions.

o Making a particular version the current version would involve either set-
ting a referencing pointer to the appropriate table or moving the contents
of the previously non-current table to a designated current table. Both
of these approaches are very cumbersome due to the limitations of rela-
tional database systems in general and SQL in particular with respect to
dynamic manipulation of tables, e.g. SQL does not support the use of
variable table names.

The second approach is to maintain two tables: a current table which contains
the current version and an “archival” table that contains all non-current ver-
sions. The archival table would include an additional attribute called version_id
which distinguishes each version instance. Whenever currency has to be changed
(e.g. when a new version is generated or when the user wishes to make an
archived version current) the current version is moved to the current table and
the contens of the current table are written to the archival relation. We have
used this approach in practice as it is fairly easy to implement. However it
has some clear performance limitations. If the user makes minor changes to an
existing version, or if very similar instances are output by algorithms, complete
new versions with a large number of identical rows would have to be created
for each instance. Relatively large amounts of computing time could be spent
moving identical rows in and out of tables. Thus, this approach is reasonable for
relatively small tables but can have significant performance problems for large
tables.

For these reasons we propose another strategy that stores versions of AOs
using hierarchical viewcaches (HVCs) and manipulates them using a lazy up-
date strategy. Below we briefly discuss this scheme and illustrate it using the

25

vehicle routing example. For a complete treatment of the procedure the reader
is encouraged to consult [8].

3.4.2 Versioning Using Relational Viewcaches

In a relational database system, a database is basically a collection of base and
derived relations. A derived relation may be a view or a snapshot [19]. Views do
not contain any data tuples but are abstract representation of real data which
is precomputed at invokation time. The purpose of defining multiple views is
to provide different users or different applications with their own customized
picture of the database. The Hierarchical View Cache (HVC) [21] is a method
for maintaining views based on pointers. In HVC, the view is represented as
a collection of virtual tuples. For views defined by unary operations, such as
selection or projection a virtual tuple is simply a pointer to a candidate tuple
in a base relation. For views defined by binary operations like join or union,
a virtual tuple is a pair of pointers to two tuples in the defining view or base
relations. In HVC a view is materialized whenever an instance of the view is
needed. In other words, the real data tuples referenced to by the abstract view
extension are fetched from the underlying base relations or views and processed
to yield the fully materialized view extension. In [8], we propose to store versions
using HVC.

To manipulate versions (e.g. update the HVCs when new versions are gen-
erated through algorithmic process or manual intervention) we propose to use a
lazy or deferred update strategy. This tremendously improves the efficiency of
our versioning mechanism. The basic idea behind our lazy update strategy is as
follows: let us assume a new version of an AQ is generated. To record this ver-
sion pointers have to shuffled in viewcaches, such that they point to the newly
created data tuples. In one extreme of this process the new version is going
to contain all new data tuples (in the case where the version is created by the
run of the algorithm) while in the other extreme the new version is basically the
same as an old version, excepting a few modified tuples (in the case where a user
modifies an old version). In the first case a whole new set of pointers would have
to be referenced towards the new tuples while in the second case a few pointers
would have to be referenced towards the modified tuples. If, as in conventional
DBMS views, this was done as soon as the view is defined, the process would
be cumbersome as constant pointer de-refencing and re-referencing would have
to be maintained. In our case we propose to do the pointer manipulation when
an updated view is invoked by the user and not as soon as the new or modified
data tuples are created. This can be accomplished by maintaining a log of the
insertion, deletion and modification to existing data tuples together with time
stamps. Thus in our scheme, if a new version is created, but never invoked all
the pointer manipulation overhead required in materializing that version would
be saved.

To implement our storage scheme the following information needs to be

26

maintained:

a. A relation containing the most current version of the decision object, e.g.
route(order_id, seq-no,time_stamp).

b. A relation containing all alternatives of that object — it should be noted
that this relation is augmented when changes occur in the current relation,
i.e. whenever the current relation accepts a new version, the old informa-
tion is deleted from the current relation and written to this relation. In
other words this relation together with the current relation contain all
data necessary to generate any version of the object. An example of this
relation may be: route_alt(order.id, seqno,time_stamp).

c. Viewcaches containing version identifiers (vers_id), tuple pointers (tid) and
time stamps. The subset of rows with the same version_ids will contain
tuple pointers for all tuples in the appropriate version. The tuple ids
store access paths to the appropriate data. The time stamps are nec-
essary to determine which modifications have already been incorporated
into the viewchache and which have not, e.g. route_version{vers_d, tid,
time_stamp).

d. A log of all modifications to a. and b. including time stamps of such
modifications — the time stamping is for the same reasons as in c., e.g.
route_blog(operation_id, tid_old, tid_new, time_stamp)

In 8], we describe how these structures can be used to maintain versions in a
highly efficient manner. To make best use of these ideas the database system
itself should provide internal support for these operations. Ideally, the user
should only be aware of the current version. All other tables (b,c,d) should be
system controlled and hidden from the user. Alternatively, these ideas could be
implemented on top of a commercial database system. By building appropriate
application controls, the support tables (b,c,d) could be hidden from the user.
However, since the application programmer would only have limited control
over physical storage structures and limited access to physical storage location
pointers (the tuple ids) a less efficient system would result.

3.5 Comparison to CAD Versioning

A large amount of work in the versioning area has been pursued in the field of
Computer Aided Design (CAD) and we have drawn some ideas from that work.
However our model diverges widely from the CAD versioning model and the
purpose of this section is to briefly clarify that divergence.

To start out with, our model is simpler than the versioning schemes to sup-
port engineering design functions as we have to support fewer complexities. For
example, a factor that makes our scenario much easier to handle is the fact that
our system is designed to operate in a single user mode - the decision making

27

is perceived to be localized. Thus our system does not have to worry about
concurrency control and consequently, does not have to support requirements
like check-in/check-out, dynamic configurations etc. A second difference is that
CAD version schemes typically maintain “is-derived-from” relationships. That
is, if the user modified object version O1 to produce object version O2 then an
“js-derived-from” pointer from O1 to O2 is maintained. While this would be
of some interest in our applications we do not feel that the overhead warrents
it. For example, if the user used the route generation algorithm to generate
ROUTES(1] and then manually modified ROUTES(1] to generate ROUTES[2],
we would not store a pointer from ROUTES[1] to ROUTES[2]. Rather, we
would store the relationship between ROUTES(2] and the corresponding ver-
sion of CLUSTERS. The Algorithm Execution Table and the AO Derivation
Table would indicate the ROUTES[2] was generated by manually modifying a
set of routes output by a particular run of the route generation algorithm. How-
ever, there would not be an indication that ROUTES(2] was generated directly
from ROUTES[1] (there could have been intermediate versions). In addition,
there would be nothing that prevented the user from deleting ROUTES(1), while
still maintaing ROUTES(2].

The most fundamental difference between our approach and the CAD ap-
proach lies in the way we see the entities that need to be versioned — what we
call aggregated objects (AOs). The objects in a CAD model are defined hier-
archically, in many cases strict component hierarchies are defined. The basic
reason for doing this is to facilitate top down design — specifying the detailed
makeup of individual components after having described the inter-relationship
among higher level components. The motivation for AOs is quite different from
the motivation for CAD objects. The major purpose of CAD object definitions
is encapsulation; the major purpose of AOs is to capture the algorithmic in-
put/output process. As a matter of fact CAD applications are not constrained
as we are by a strict algorithmic flow — in designing automobiles, the design of
the interior is independent to a large degree of the design of camshafts while in
the vehicle routing application, routes may not be generated without clusters
which in turn may not be generated without seeds. In other words, CAD sys-
tems are built to allow the user a high degree of freedom in generating designs
having a multitude of structures. Our system imposes a strict structure on the
context for user problem solving.

4 Analysis of Design and Operator Alterna-
tives

In this section we consider the computational efficiency of the types of ap-

plications we have been proposing. Two specific questions are addressed: how
efficient are systems built in a database environment when compared to systems

28

based on a simpler file environment and how do certain logical and physical de-
sign alternatives affect the efficiency of the resultant applications. To address
these questions we consider two simple generic schema alternatives. There is
a single table, input_table(id, attrl, attr2,...), which contains input data used
by the algorithm. The algorithm’s output can be written as a set of attributes,
soln_attrl, soln_attr2,..., of the input table. The alternative designs are:

Design 1: input_table(id, attrl, attr2,...,soln_attrl, soln_attr2,...)
Design 2: input_table(id, attrl, attr2,...) soln_table(id, soln_attrl, soln_attr2,...)

The philosophy behind these alternatives is that in Design 1, a single table
holds both algorithm inputs and outputs and that single table is both read and
updated. In Design 2, input_table is treated as a “read only” table and the
algorithm outputs are stored in soln_table using insert operations. A Design 1
approach would lead to the vehicle routing schema given in Figure 1. A Design
2 approach would lead to a vehicle routing schema given in Figure 4. Design
1 is more natural and is generally more efficient and convenient with respect
to the creation of output reports, forms and database queries. Design 2 is
generally more efficient relative to the storage of algorithmic results and version
manipulation.
The particular schemas we used for our experiments were:

Design 1: customers(customer_d, customer_name, cust_node_d, cust-address)
orders(order_id, cust.id, amount, veh_id, seq_no)

Design 2: customers(customer.id, customer_name, cust_node_id, cust_address)
orders(order_id, cust_id, amount)
routes(order_id, veh_id, seq_no)

In this case, orders corresponds to input.table and route to soln._table. The
solution atiributes are veh.id and seq.no. The table customers is a secondary
input table. It is read in together with orders prior to the execution of any
algorithm and is involved in the ad hoc query.

We compared six different options, three based on Design 1 and three based
on Design 2. We constructed these options in order to evaluate the effects of
different designs, to evaluate different approaches to logging and to compare a
database solution with a file solution. The first Design 1 alternative, which we
call logged update, used the following process for database retrieval and insert.

Step 1: Read all rows from customers into arrays cidfj], ciallj], ia2[j],...; read
all rows from orders into arrays oid[i], oiali], oia2[i],...

Step 2: Calculate values of solution values and place in salfi] and sa2(i].

Step 3: For i=1 to number of rows: update orders, set veh_id=sal[i] and
seqno=sa2[i] where orders.order_id=oid(i}.

29

The second Design 1 alternative, which we call non-logged drop/insert, used
Steps 1 and 2 from the update alternative and replaced Step 3 with:

Step 3a: Drop orders.
Step 3b: Create orders.

Step 3b: For i=1 to number of rows: insert oid[i], oial[i], 0ia2(i],...,sal{i], sa2{i]
into orders.

The third Design 1 alternative, which we call file, is essentially equivalent to
non-logged drop/insert except that files are used in place of tables.

The principle advantage of Design 2 is that we can maintain logging and
use table inserts rather than table updates. The first Design 2 option is called
logged insert. For the database retrieval and insert we used Steps 1 and 2 from
the Design 1 update alternative together with the following Step 3.

Step 3: For i=1 to number of rows, insert oid[i], sal[i], sa2[i] into routes.

The second Design 2 alternative, which we call non-logged insert, used a non-
logged version of the Step 3 given for logged insert. The particular set of opera-
tors necessary to carry out a non-logged insert may differ from database system
to database system. For INGRES we could accomplish a non-logged insert with
the following version of Step 3.

Step 3a: For i=1 to number of rows: insert id[i], sali], sa2(i] temp_file.

Step 3b: Copy temp. file into routes through a non-logged bulk loading proce-
dure.

The third Design 2 alternative, which we call file, is essentially equivalent to
logged insert except that files are used rather than relational tables.

To determine representative ad hoc query processing times the following
query was run: Get all customer names, amounts of their orders and the vehicles
that supply them. This query was not run for the file system alternative since
file environments do not support the solution of complex ad hoc queries.

Tables 5, 6 and 7 give the results of our computational experiments. The
computing environment consisted of a SUN SPARC3 platform running INGRES.
The algorithms were implemented in C with embedded INGRES-C function
calls. Table 5 shows run times for Design 1, Table 6 shows the run times for
Design 2 and Table 7 gives the query run times.

These computational results provide insight into several different logical and
physical design issues.

Logged Database vs. Flat Files: It is clear that the insert/update perfor-
mance of a file based approach is significantly better than performance of
logged database solutions, sometimes by as much as 2 orders of magnitude.

30

of tuples Operations File | Logged Update | Non-logged
Drop/Insert

5000 read customers | 1.93 2.12 3.1
read orders 2.26 1.34 2.12
insert/update 4.0 1154.71 7.31
total time 8.19 1158.17 12.53

10000 read customers | 3.11 4.21 4.27
read orders 7.92 3.21 3.58
insert/update | 7.12 5909.41 12.0
total time 18.15 5916.837 19.85

15000 read customers | 5.46 6.32 6.67
read orders 16.11 5.7T1 5.02
insert/update | 11.18 8723.14 18.12
total time 33.75 8735.17 29.81

20000 read customers | 6.33 9.22 7.73
read orders 18.17 6.23 6.45
insert/update | 11.89 11948.54 20.01
total time 36.29 11963.99 34.19

25000 read customers | 8.92 8.51
read orders 21.11 6.43
insert/update | 13.19 23.04
total time 43.22 37.97

Table 5: Running Times for Algorithm I/O for Design 1 Alternatives (CPU
time required to calculate solution not included)

31

of tuples Operations File | Logged Insert | Non-logged Insert

5000 read customers | 2.26 3.21 2.92
read orders 2.34 1.29 1.29
insert/update | 1.93 273.26 5.21

total time 6.53 277.76 9.42

10000 read customers | 3.79 5.21 5.27
read orders 5.69 2.46 2.12
insert/update | 1.21 602.31 6.32

total time 10.69 609.98 13.71

15000 read customers | 5.91 6.19 6.71
read orders 6.02 5.31 4.03
insert/update | 3.41 870.21 8.07

total time 14.0 881.71 18.81

20000 read customers | 6.84 7.75 9.11
read orders 9.74 4.21 4.34
insert/update | 3.21 1167.45 10.0

total time 19.79 1179.41 23.45

25000 read customers 8.0 8.12 8.12
read orders 11.44 5.54 5.78
insert/update | 4.76 1394.25 12.87

total time 24.20 1407.91 26.77

Table 6: Running Times for Algorithm I/O for Design 2 Alternatives (CPU
time required to calculate solution not included)

of tuples | Design 1 | Design 2
5000 5.32 25.12
10000 10.21 32.45
15000 17.37 46.82
20000 28.91 60.76
25000 33.04 70.58

Table 7: Query processing times

32

Non-logged Database vs. Flat Files: The non-logged database approaches
are very competitive with the file approach for the insert/update opera-
tions. This leads one to consider very carefully the value of logging for the
operations in question.

Design 1 vs. Design 2: The Design 2 performance is better than Design 1
for the non-logged and file system approaches. However, the difference
is never more than a factor of 2. More importantly, the Design 2 logged
insert alternative is better than the Design 1 logged update alternative by
a factor of 6 to 10. It was an anticipated performance gain in this area
that originally motivated consideration of Design 2. Of course, Design
2 does have poorer performance than Design 1 for query processing. It
should be noted however, that the query times are substantially less than
the insert /update times.

Several related issues should be considered together with the performance
issues just mentioned.
The Importance of Logging: Logging allows a database to recover from
system crashes that occur during update operations. A fransaction is a collec-
tion of atomic updates that form a single logical unit. By grouping a set of
updates together into a transaction the system designer is specifying that either
all or none of the constituent updates should be carried out. That is, if some,
but not all, of the constituent updates are executed then an inconsistent/illegal
database state could result. The only transaction definition that makes sense
in the context of storing the output of an algorithm is that all the updates or
inserts needed to store the algorithm’s results should be grouped into a single
transaction. When compared to more typical database applications these are
rather large transactions. The impact of logging would be that if a crash oc-
curred in the middle of processing of the algorithm’s results then the database
would be rolled back to its state prior to the execution of the algorithm. With-
out logging it is possible that the database would be left in a state where the
updates or inserts had only been carried out in part.
The Non-Logged Design 2 Solution: If a crash occurred during the insert
operation of Design 2 then soln_table might not contain a complete set of rows.
To rectify this situation the algorithm would have to be rerun. Such a situation
can be identified and appropriate notice given to the user with relatively simple
application level programming. We suggest the creation of a status relation of
the following form: status_table(soln_table_id, flag). This relation would con-
tain one row for each solution table. Flag would take on values ‘good’, indicating
that the contents of the solution table was valid, and ‘bad’, indicating that the
contents of the solution table was possibly invalid. Just before commencing the
storage of results into soln_table the corresponding flag attribute would be set of
‘bad’. After completion of the inserts into soln_table it would be set to ‘good’.
If a crash occurred during the insertion process then the flag value would be
‘bad’; otherwise, it would be ‘good’. Subsequently, when an access to soln_table

33

was attempted, a ‘bad’ flag value would be interpreted as equivalent to the table
containing null data.

The Non-Logged Design 1 Solution: The effect of using non-logged op-
erators for Design 1 is more severe than for Design 2. The reason is that in
the Design 1 solution input.table is dropped temporarily. Thus, a crash dur-
ing the execution of the algorithm/insert process could potentially result in the
loss of the original input data. Application level recovery procedures could be
implemented using the ideas presented above but they would be more complex.
Specifically, backup versions of the input attributes would have to be main-
tained. An alternative approach would be to store the results in a second table,
e.g. input_table2 and to delay dropping input_table until after the completion
of the process. Afterwards, input_table2 itself would be used or it would be
copied into a newly created ipnut_table. A further, related exposure is that
errors in the procedures could result in the corruption of the input attributes
which might be hard to detect. While all of the problems mentioned can be
solved, they put a significant burden on the application programmer for recov-
ery and integrity control. For these reasons we generally do not recommend the
non-logged Design 1 solution.

Efficiency of Versioning: Most of the analysis given in Section 3 is based
on a Design 2 approach. Consequently, if one wishes to make use of all of the
constructs from Section 3 and to achieve the best versioning efficiency then
Design 2 should be used. However, we should note that it is possible to use
hybrid approaches and/or to use a Design 2 schema to organize system design,
versioning and algorithmic flow while using a Design 1 schema for the actual
implementation. As an example of a hybrid approach, in the schema given
in Table 4 tables Clusters and Routes could be combined into a single table,
rte_clust(order.id, veh.id, seq-no). Then, for versioning, one might only store
versions of table of rte_clust or, alternatively, use the original clusters and routes
tables to store versions. This would in turn require a more complicated process
for storing and retrieving versions.

Our recommended strategy is to start with a logged Design 2 approach.
Specifically, a Design 2 schema should be constructed and a complete appli-
cation designed based upon it, as is outlined in Section 3. Once this is done
modifications to the design should be considered to achieve certain objectives.
For examples, to achieve performance improvements in the storing algorithmic
results one would make use of non-logged operators. To achieve better appli-
cation aesthetics and/or improve query processing times one would consider a
Design 1 approach to the entire schema or portions of it. Whenever the Design
2 approach was used one would have to redesign the method for implementing
versioning. Alternatively, one might not require versioning for the entire schema
or portions of it.

We feel that the preceding analysis quantifies very definitively several im-
portant tradeoffs and can be used by application developers as a guide during
the design process. A very important second result is that by using non-logged

34

operators one suffers very little in terms of recoverability while at the same time
achieving performance competitive with file systems.

5 Conclusion

In this paper, we discussed approaches to two of the most significant problems
that arise when embedding OR models within database environments. We now
conclude with a list of additional problem areas that we view a starting points
for additional research in this area.

5.1 The Sequence Number Problem

The solution to many types of problems involve sequences in one form or the
other. For example, solution to a vehicle routing problem includes the order
in which a vehicle visits nodes (warehouses, depots) in a network, solution to
a machine scheduling problem involves an ordering of jobs on machines and so
on. This problem can be broadly stated through the following questions:

e How does one store a sequence?

e Having stored a sequence, how does one manipulate related information?
Three obvious alternatives for storing a sequence are:

1. by using consecutive sequence numbers,

2. by using non-consecutive sequence numbers,

3. by using predecessors.

Performance and logical design tradeoffs exists when deciding among these al-
ternatives.

5.2 The Partitioning Problem

As we mentioned at the outset, it is often desirable to solve pieces of a problern,
as opposed to solving the entire problem at one time. This may be because
the user wishes to focus on a specific subproblem, or because of algorithmic
reasons as outlined before. Whatever the reason, a number of data management
functions are required in a system that supports partitioning. A partial list of
required functions are:

1. Managing the integrity of the overall process: the system must insure that
the decision variables associated with each partition do not overlap and
that each decision variable from the global problem is contained in some
subproblem.

35

2. Providing flexible partition manipulation functions: the user will very
often wish to manipulate partitions in a variety of ways. For example,
after an initial solution is obtained the user might wish to combine three
partitions and from these generate two new ones. Alternatively, the user
might wish to take a small portion of a solution from one partition and
merge it into the solution from an adjacent partition.

3. The ability to create a global solution from the solutions on each partition:
in the end the solutions over each partition will typically be merged into
a single global solution.

5.3 The Numbering Problem

To illustrate the problem under consideration, let us assume that our relational
database contains information about customers. In nearly all practical situa-
tions, these customers would be identified by character names. The algorithms
would typically treat customer information in some kind of sequential numerical
form to be read into arrays, vectors etc. Thus, a mapping between character
identifiers stored in tables and numerical array indices is required. This mapping
is crucial at two distinct stages:

a. A transformation must be achieved when reading the data in,

b. a consistent retransformation must be affected when inserting new infor-
mation back into the database.

What this requires is maintaining some kind of mapping representation while
the algorithm is running. The questions that arise therefore are:

1. Should the mapping be represented as a temporary relation in the database,
which involves frequent updates because the mapping could potentially
change with every run of the algorithm or,

2. Should the mapping be maintained in some kind of RAM representation
while the algorithm is running which involves programming jugglery and
some lost main memory?

We note that these issues are complicated by the fact that it is rare that problems
are solved over all entities in a table. For example, a vehicle routing problem
is typically solved over a sometimes small subset of the entries in the customer
table. Thus, any solution must take into account the requirement that the set
of customers will be redefined for each algorithm run.

6 Acknowledgements

The work of the first two authors was supported by National Science Foundation
grant number NSFD CDR-8803012.

36

References

(1}

2

(3]

[
[10]

[11]

S. Abiteboul, M. Scholl, G. Gardarin and E. Simon, Towards DBMSs for
supporting new applications, Procs. of the 12th Intl. Conf. on VLDB (Kyoto,
August 1986), pp. 423-435.

A. Aho and J. Ullman, Optimal partial-match reirieval when fields are in-
dependently specified, ACM Transactions on Database Systems, 4, 168-179
(1979)

M. Ball and H. Benoit, A Langranian Relazation Based Heuristic for the
Urban Transit Crew Scheduling Problem, Computer Aided Scheduling of
Public Transport: Proceeding of the Fourth International Workshop on
Computed-Aided Scheduling of Public Transport, J. Daduna and A. Wren,
eds., Springer-Verlag Lecture Notes in Economic and Mathematical Sys-
tems #308, Heidelberg, (1988) pp. 54-67.

D. Batory, Genesis: A project to develop an eztensible database manage-
ment system, Procs. 1986 Intl. Workshop on Object oriented Database sys-
tems, Sept. 1986

D. Batory, Physical storage and implementation issues, A Qtly. Bulletin of
the IEEE Computer Society Technical Committee on Database Engineer-
ing, 7, 49-52 (1984)

A. Bjornerstedt and C. Hulten, Version control in an object ortented archi-
tecture, in Object Oriented Concepts, Databases and Applications, ACM
press, 1991, pp 451-485

R. Dahl, J. Greenberg, J. Sanborn, C. Skiskim, M. Ball and L. Bodin,
A Relational database approach to vehicle and crew scheduling in urban
mass transit systems, in Computer Scheduling of Public Transport, North
Holland, 1985, pp 327-342

A. Datta, Using Relational Viewcaches to Implement Versions in Deci-
sion Support Systems that use Optimization Models, College of Business
and Management, University of Maryland at College Park, Working Paper
#MS/S-92-015, 1992

M. Fisher, Interactive Optimization, Annals of Operations Research, 4,
541-556 (1985).

M. Fisher and R. Jaikumar, A Generalized Assignment Heuristic for Vehi-
cle Routing, Networks, 11, 109-124 (1981).

B. Gavish and K. Altinkemer, Backbone Network Design Tools with Eco-
nomic Tradeoffs, ORSA Journal on Computing, 2, 236-252 (1990)

37

[12] A. Geoffrion, An introduction to structured modelling, Management Sci-
ence, 33, 547-588 (1987)

[13] S. Ghosh, Data Base Organization for Data management, Academic Press,
NY, 1977

[14] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms et al, Starburst
Mid-Flight: As the dust clears, IBM Research Report: RI7278, IBM Al-
maden Research Center

[15] W. Kim and D. Batory, A model and storage technique for versions of
VLSI CAD objects, Foundations of Data Organization, Plenum Publishing
Corporation, NY, 1985, pp 427-439

{16] S. March, Techniques for structuring database records, ACM Computing
Surveys, 15, 45-80 (1982)

[17] C. Monma and D. Sheng, Backbone Network Design and Performance Anal-
ysts: & Methodolgy for Packet Switching Networks, IEEE Journal on Se-
lected Areas in Communications, SAC-4, 946-965 (1986).

[18] W. Plouffe, W. Kim, R. Lorie and D. McNabb, Versions in an Engineering
Database system, IBM Research Report: RJ4085, IBM Almaden Research

Center

{19] M.E. Adiba and B.G. Lindsay, Database Snapshots, Proc. of the 6th Int’l
Conf. on VLDB, 1980 pp. 86 - 91.

[20] R.H. Katz, Toward a Unified Framework for Version Modeling in Engi-
neering Databases, ACM Computing Surveys, December 1990 pp. 375 -
407.

[21] N. Roussopoulos, View Indezing in Relational Databases, ACM TODS 7,
(1982)

[22] M. Stonebraker, Implementation of Integrily constraints and Views by
Query Modification, Proc. ACM-SIGMOD, June 1975, pp 65 - 78.

[23] K. Terplan, Communication Networks management (Prentice Hall, New
Jersey, 1992).

[24] P. Valduriez, Join Indices, ACM TODS 12, (1987)

38

