

BROWSING LARGE ONLINE DATA USING

GENERALIZED QUERY PREVIEWS

Egemen Tanin, Doctor of Philosophy, 2001

Companies, government agencies, and other organizations are making their data

available to the world over the Internet. These organizations store their data in large

tables. These tables are usually kept in relational databases. Online access to such

databases is common. Users query these databases with different front-ends. These front-

ends use command languages, menus, or form fillin interfaces. Many of these interfaces

rarely give users information about the contents and distribution of the data. This leads

users to waste time and network resources posing queries that have zero-hit or mega-hit

results.

Generalized query previews forms a user interface architecture for efficient browsing

of large online data. Generalized query previews supplies distribution information to the

users. This provides an overview of the data. Generalized query previews gives

continuous feedback about the size of the results as the query is being formed. This

provides a preview of the results.

Generalized query previews allows users to visually browse all of the attributes of the

data. Users can select from these attributes to form a view. Views are used to display the

distribution information. Queries are incrementally and visually formed by selecting

items from numerous charts attached to these views. Users continuously get feedback on

the distribution information while they make their selections. Later, users fetch the

desired portions of the data by sending their queries over the network. As they make

informed queries, they can avoid submitting queries that will generate zero-hit or mega-

hit results.

Generalized query previews works on distributions. Distribution information tends to

be smaller than raw data. This aspect of generalized query previews also contributes to

better network performance.

This dissertation presents the development of generalized query previews, field

studies on various platforms, and experimental results. It also presents an architecture of

the algorithms and data structures for the generalized query previews.

There are three contributions of this dissertation. First, this work offers a general user

interface architecture for browsing large online data. Second, it presents field studies and

experimental work that define the application domain for generalized query previews.

Third, it contributes to the field of algorithms and data structures.

BROWSING LARGE ONLINE DATA USING
GENERALIZED QUERY PREVIEWS

by

Egemen Tanin

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2001

Advisory Committee:

 Professor Ben A. Shneiderman, Chair
 Assistant Professor Ben Bederson
 Associate Professor Kent L. Norman
 Associate Research Scientist Catherine Plaisant-Schwenn
 Associate Professor Amitabh Varshney

© Copyright by

Egemen Tanin

2001

 ii

To
NİŞVAN ERKAL

 iii

ACKNOWLEDGEMENTS

I first would like to thank Ben A. Shneiderman for being my advisor. He is a very

patient and inspirational advisor. He encouraged me for many years and helped me stay

on track. I learned many valuable things about research, science, and life from him.

I also would like to thank all of my dissertation members. They gave useful leads

through out this work. Their objectivity made this dissertation a better one.

I thank all the members of the Human-Computer Interaction Laboratory. I am very

happy to work with them. Specifically, thanks to Catherine Plaisant-Schwenn, Anne

Rose, Harry Hochheiser, Hyunmo Kang, Chris North, and Eser Kandoğan for their

inputs.

I also thank members of National Science Foundation, United States Census Bureau,

and National Aeronautics and Space Association for supporting this work. Without their

belief, I would not be at this point.

I finally would like to thank my family and friends for enduring me during these

years of research.

 iv

TABLE OF CONTENTS

LIST OF FIGURES ..vii

CHAPTER 1: INTRODUCTION .. 1
1.1 Problem ... 1
1.2 Generalized Query Previews... 4
1.3 Contents... 12

CHAPTER 2: RELATED WORK... 14
2.1 Field of Research... 14
2.2 Visual Data Mining and Information Visualization.. 15
2.3 Multi-dimensional Data Visualization .. 16
2.4 Online Data Visualization ... 28
2.5 Large Data Visualization... 31
2.6 Database Schema, Tables, Queries, and Results Visualization 37
2.7 Directions .. 44

CHAPTER 3: NASA EXPERIENCE AND EARLY WORK....................................... 45
3.1 Dynamic Queries with Large Online Data.. 45
3.2 Two-Phase Querying... 46

3.2.1 Query Previews... 47
3.2.2 Query Refinement... 48
3.2.3 Extensions and Recent Prototypes.. 53

3.3 Summary ... 56

CHAPTER 4: INITIAL USER STUDY .. 57
4.1 Motivation for a User Study.. 57
4.2 User Study Methods.. 57

4.2.1 Introduction to the Study .. 57
4.2.2 Hypothesis on Query Previews... 58
4.2.3 Independent and Dependent Variables ... 59
4.2.4 Tasks ... 59
4.2.5 Subjects... 59
4.2.6 Materials ... 59

4.2.6.1 Form Fillin Interface ... 60
4.2.6.2 Query Preview... 61
4.2.6.3 Task Examples .. 62
4.2.6.4 Subject Background Survey and Preference Questionnaire...... 64

4.3 User Study Design... 64
4.4 Procedure and Administration... 64
4.5 Results ... 65

4.5.1 Time for Completing Tasks .. 65
4.5.2 Subjective Satisfaction.. 65

4.6 Discussion on the Query Preview Study Results .. 67
4.6.1 Clearly Specified Tasks (T1) .. 67

 v

4.6.2 Unclearly Specified Tasks, with Partial Relevance of the Query Preview
Attributes (T2)... 68
4.6.3 Unclearly Specified Tasks, with Full Relevance of the Query Preview
Attributes (T3)... 68
4.6.4 Performance Improvement ... 69
4.6.5 Learning to Use a Query Preview... 71
4.6.6 Subjective Satisfaction.. 71

4.7 Summary ... 72

CHAPTER 5: GENERALIZED QUERY PREVIEWS... 73
5.1 Motivation for Generalizing the Query Previews ... 73
5.2 The First Generalization Attempt on Query Previews...................................... 73
5.3 The Next Step.. 76
5.4 Generalized Query Previews User Interface Architecture 76
5.5 Schema Component .. 78
5.6 Distribution Information Component.. 81
5.7 Raw Data Component ... 85
5.8 Summary ... 88

CHAPTER 6: SECOND USER STUDY... 89
6.1 Motivation for a Second Study ... 89
6.2 User Study Methods.. 89

6.2.1 Updates for the Second Study... 89
6.2.2 Hypothesis on Generalized Query Previews .. 90
6.2.3 Independent and Dependent Variables ... 90
6.2.4 Subjects... 90
6.2.5 Materials ... 90

6.2.5.1 Form Fillin Interface ... 91
6.2.5.2 The Sample Generalized Query Previews Interface 92
6.2.5.3 Task Examples .. 92
6.2.5.4 Subject Background Survey and Preference Questionnaire...... 93

6.3 The Second Study Design ... 93
6.4 Procedure and Administration... 94
6.5 Results ... 94

6.5.1 Time for Completing Tasks .. 94
6.5.2 Subjective Satisfaction.. 94
6.5.3 Query Submission Counts .. 96

6.6 Discussion on the Results.. 97
6.6.1 Clearly Specified Tasks (T1’)... 97
6.6.2 Unclearly Specified Tasks (T2’)... 97
6.6.3 Subjective Satisfaction.. 98
6.6.4 User Comments .. 98

6.7 Summary ... 99

CHAPTER 7: ALGORITHMS AND DATA STRUCTURES.................................... 101
7.1 Internal Architecture ... 101

7.1.1 Database Schema .. 102
7.1.2 Raw Data .. 103

 vi

7.1.3 Distribution Information... 104
7.2 Challenges of the Internal Architecture .. 108

7.2.1 Focusing on the Multi-valued Data Types.. 109
7.2.2 Ranges... 112
7.2.3 Generalized Multi-valued Data Types.. 115
7.2.4 Optimizations.. 117

7.3 Software Implementation Issues ... 119
7.4 Summary ... 121

CHAPTER 8: CONCLUSION... 123
8.1 Contributions and Benefits.. 123
8.2 Future Work .. 124
8.3 Summary ... 128

REFERENCES * .. 129

 vii

LIST OF FIGURES

Figure 1.1: A form fillin interface from the United States Census Bureau homepage........3

Figure 1.2: An example generalized query previews interface, ExpO, the schema for the

data is presented with a hierarchical browser (the panel on the left)...........................5

Figure 1.3: ExpO with a user-defined view of four attributes, this view is presented in a

separate panel as a hierarchical browser (the panel in the middle)6

Figure 1.4: ExpO with the data distribution information attached to the buckets of a

single attribute expanded in the user view. Two buckets are shown (total 3,252).7

Figure 1.5: ExpO with the data distribution information attached to the buckets of three

attributes expanded in the user view (tax, region, employee count)............................8

Figure 1.6: The distribution information is attached to the buckets of three attributes

expanded in a view and a selection is made on one of them, the ‘great_plains’

region. ..9

Figure 1.7: The data distribution information is attached to the buckets of three attributes

expanded in the user view and multiple selections are made on these buckets,

‘taxable’, ‘great_plains’, ‘northwest’, and ‘0 to 99’. ...10

Figure 1.8: ExpO with a result set to a query displayed in a panel that is on the right side

of the main frame, 273 hits ..11

Figure 2.1: Visage from Carnegie Mellon University, in snapshot ‘A’ user selects and

drags a list of values onto a map, in snapshot ‘B’ user views the values on the map17

 viii

Figure 2.2: Table Lens of Xerox PARC, four rows from a large spreadsheet are in focus

while the rest of the spreadsheet is represented by histograms and charts18

Figure 2.3: Magic Lens of Xerox PARC, the user is using two lenses on a city map, one

for highlighting the major roads and the other one for highlighting the water lines .19

Figure 2.4: XGobi shows multiple projections of a data set (e.g., histograms, scatter plots,

etc.) ..20

Figure 2.5: Attribute Explorer, with four interactive histograms21

Figure 2.6: Influence Explorer, with many histograms ...21

Figure 2.7: Parallel Coordinates, cars from a car database are represented by lines

crossing through six vertical axes representing the six dimensions of the data22

Figure 2.8: Worlds within Worlds, 3D projections of a multi-dimensional world............23

Figure 2.9: SDM from Carnegie Mellon University showing a landscape of data

distribution...24

Figure 2.10: InfoZoom (available from www.humanit.de) showing the overview of data

by size-coding and simple graphs on multiple bars representing the attributes of data

...24

Figure 2.11: The first dynamic query example, Home Finder, using a real estate data set

from Washington, D.C., users can adjust the widgets on the right to manipulate the

six different dimensions of the data, updates are immediate on the map25

Figure 2.12: The general dynamic query tool, Spotfire, from www.spotfire.com, showing

multiple views of a data set..26

Figure 2.13: Data Desk showing multiple linked views of a data set................................27

Figure 2.14: Beyond 20/20 showing a statistical data set with a bar chart........................27

 ix

Figure 2.15: WebTOC uses a hierarchical browser to show the contents, type, and the

size of a website. ..28

Figure 2.16: Butterfly Citation Search System displaying some citation search results ...29

Figure 2.17: Marmotta Iconic System where queries are formed using simple icons.......30

Figure 2.18: Envision, search results, authors are on the y-axis, years are on the x-axis..31

Figure 2.19: Volume rendering of relational data over three dimensions and color-coding

is used ..32

Figure 2.20: VisDB uses spirals and color-coding to show the relevance of results to the

query and gives multiple views of these results (e.g., parallel coordinates)..............33

Figure 2.21: Using aggregation in tandem with dynamic queries, users can see how much

of each type of an item exists in the data...34

Figure 2.22: The Visible Human Explorer of the University of Maryland where multiple

tightly coupled views of the data is available to the users...35

Figure 2.23: A sample DEVise display with multiple views, a scatter plot, a 2D chart

showing a function, and a series of images related to that data item.........................36

Figure 2.24: Tioga-2 display with data mapped onto the United States............................38

Figure 2.25: SeeData relational schema browser, each line is a relation and each pixel in a

line is an attribute (dimension) of that relation..38

Figure 2.26: Veerasamy and Navathe used histograms to rank results of a query............39

Figure 2.27: ADVIZOR shows a landscape visualization of a pivot table........................40

Figure 2.28: Brio shows query results graphically. ...41

Figure 2.29: dynaSight showing some portfolio analysis graphically...............................42

Figure 2.30: MineSet showing a hierarchy by using a 3D browser...................................42

 x

Figure 2.31: Cognos showing multiple interactive charts ...43

Figure 3.1: An example query preview interface developed at the Human-Computer

Interaction Laboratory of University of Maryland, for NASA’s Global Change

Master Directory. Topic, Year, and Area are the discriminating attributes for the

8431 scientific data items of the NASA archives. In this screen shot, the bars show

the overview of the data distribution. Recent versions of this interface are available

at the Global Change Master Directory (gcmd.nasa.gov). ..49

Figure 3.2: When users select the attribute values (e.g., here atmosphere for topics and

Europe for area), the bars are updated immediately to reflect the new distribution of

the data that satisfies the query. When users are satisfied with their initial query, the

results can be retrieved, or the query can be refined with additional attributes in the

second phase with another interface. In this case, atmospheric data for Europe

produces a set of 292 data items to be retrieved. ...50

Figure 3.3: The refinement phase, implemented as a dynamic query interface. In this

example, the time-span of the data items versus the data size (i.e., image size) are

shown on a scatter plot that is tightly coupled with a number of scrollable menus that

enable selections on the remaining attributes of the data. Color-coding is used to

present an attribute from the data (i.e., processing level of images). An interactive

geographical map is also available. ...51

Figure 3.4: Results presented as a hit list on the left, details are presented for a single item

in a frame on the right, and the query is displayed on the top as a conjunct of

disjuncts ...52

Figure 3.5: Binary previews, dark regions show locations where the data is available53

 xi

Figure 3.6: Range previews, the distribution of data is shown over years54

Figure 3.7: Continuing work with table previews, the 1990 United States Census Bureau

Income Survey Data is used for this example, 8,941 hits selected............................55

Figure 4.1: The form fillin interface used in the study. The rectangle on the right bottom

corner is used for displaying the result list to a query. The list of fields allows users

to enter values for the attributes of the data set. The three attributes on the left side

are the ones that are also available in the query preview...60

Figure 4.2: The query preview used in the study. The toggles on the left are used to

choose attribute values and form the query. The counts and bars show the

distribution of the result set for a query corresponding to the current settings of the

toggles. The larger bar at the bottom shows the total number of hits, here 168.......62

Figure 4.3: Average task completion times for T1, T2, and T3 (the rectangles show the

standard deviations and the vertical lines indicate the ranges)66

Figure 4.4: User preference for twelve users...66

Figure 4.5: Subject questionnaire results (number of users is twelve) for the interface with

the preview. Higher numbers indicate higher satisfaction with using the query

preview...67

Figure 5.1: A sample implementation of the generic query previews approach. A

hierarchical browser is used to display the data attributes and tables (51,785 hits) ..75

Figure 5.2: Interactions between the three generalized query previews components77

Figure 5.3: An example generalized query preview interface, ExpO, where the left panel

displays the table and attribute names of a relational database as an example

implementation of the schema component ..79

 xii

Figure 5.4: ExpO with a user-defined view after four attribute selections. The user-

defined view is also a hierarchical browser. ..80

Figure 5.5: ExpO with the data distribution information attached to the user-defined view

...82

Figure 5.7: A selection is made on one of the buckets, ‘great_plains’.84

Figure 5.8: Multiple selections are made, ‘taxable’, ‘great_plains’, ‘northwest’, and ‘0 to

99’. ...85

Figure 5.9: Other visual aids, such as a pie chart, may also be available to the users.......86

Figure 5.10: ExpO with a result set to a query displayed in a separate panel on the right,

273 hits are listed ...87

Figure 5.11: A result list is loaded to a local program, i.e., Excel.....................................88

Figure 6.1: The form fillin interface used in the study. The rectangle on the right is used

for displaying the result list to a query, four hits for this query.91

Figure 6.2: The ExpO System. The name of the system is hidden from the subjects to

avoid bias towards anyone of the systems until the end of the study92

Figure 6.3: Average task completion times where the rectangles show the standard

deviations and the vertical lines indicate the ranges. EO stands for the ExpO System

and FFN’ stands for the form fillin interface. The number of subjects used is sixteen.

...95

Figure 6.4: User preference for sixteen users ..95

Figure 6.5: Subject questionnaire results (number of users is sixteen). Higher numbers

indicate higher satisfaction for using the ExpO System. ...96

Figure 6.6: Number of queries submitted ..96

 xiii

Figure 7.1: The architecture for storing, computing, and transferring data internally in

generalized query previews, shown on the sample ExpO System...........................101

Figure 7.2: A sample database schema (in ExpO System) showing the table, the attribute

names of a database (left), and a sample internal representation of this schema as a

simple list (right)..103

Figure 7.3: A sample result set presented as a simple list. It is also represented as a simple

list internally. ...104

Figure 7.4: A sample two-dimensional array that represents the distribution information

for a certain combination of charts, i.e., tax status vs. number of employees106

Figure 7.5: A sample selection operation and a related update on the second chart107

Figure 7.6: A sample multi-dimensional array. Each of the dimensions of this array

represents an attribute. The counts give the number of records that map to the

associated values of the two attributes. An example range query is shown as a

colored rectangle, Q...110

Figure 7.7: A sample single-valued data set. Records 6 and 7 form the answer for the

range query shown in Figure 7.6 (colored rectangle Q). ...111

Figure 7.8: A sample multi-valued data set. Record 4 forms the only answer for the range

query presented in Figure 7.6 (colored rectangle Q). ..111

Figure 7.9: The counts in the colored boxes are the cardinalities of the intersections

between any two neighboring-boxes of the original array. The same query rectangle

Q from Figure 7.6 is used for this figure. The data is from Figure 7.8....................113

Figure 7.10: Representation of the approach formulated by using Euler's formula113

Figure 7.11: The prefix summed version of the data in Figure 7.10114

 xiv

Figure 7.12: The software implementation and integration for the ExpO System..........121

Figure 8.1: A two-dimensional widget for displaying and selecting data. In this example

white regions indicate the areas where there is not any available data. The gray

region indicates the area where the data is available. The dark gray box indicates a

sample user query that will not return zero-hits. ...125

Figure 8.2: A scatter plot is shown using three concave hulls presenting the borders of the

three main clusters of the underlying data. Multiple iso-surfaces are used in the large

cluster to display the data distribution information. The exact counts mapping to a

certain grid location are visible upon a user request..126

Figure 8.3: The i411.com web-site contains a keyword search mechanism that is

concatenated with a list of intermediate search result categories. The number of hits

is shown for each of these categories. Users can select a certain category in this

window that will confine the result set to a single category....................................127

 1

CHAPTER 1:
INTRODUCTION

1.1 Problem

Companies, government agencies, and other organizations are making more of their

data available over the Internet. International Business Machines Corporation (IBM)

hosts a collection of millions of patents (www.patents.ibm.com) accessible to the public

over the Internet. United States Census Bureau is a government agency hosting vast

collections of economic, geographic, and demographic data (e.g., ferret.bls.census.gov).

National Aeronautics and Space Association (NASA) is another government agency with

still larger collections of scientific and environmental data (e.g., eos.nasa.gov/eosdis).

The World Health Organization (WHO) is an international organization that shares

medical and population related information over the Internet (e.g.,

www.who.int/whosis/). These are only a few of the organizations that are making vast

data resources available to the public on the Internet.

Many organizations store their data in large tables. They typically use multiple tables

that are correlated to represent different aspects of the data. These tables can have many

attributes and rows. Typically, these tables are kept in relational databases. A table can be

a view or simply a relation of a database. Online access to many such databases is now

common.

Users all around the world can use their browsers to access online databases. People

of various ages, genders, and backgrounds are now forming the user domain for such

 2

databases. Some of these users have no background on these databases. They may also be

inexperienced with computers.

Users can access different types of user interfaces to work with such databases. The

user interfaces that serve as the database front-ends are typically command languages,

menus, or form fillin interfaces [SBC97]. Generally, these user interfaces are activated

within a browser.

Many of these interfaces, instead of giving users information about the contents of the

data, require users to fill lengthy electronic forms. The designers of such interfaces

assume that the users are informed about the data that they are working on or they can

directly submit known-item queries rather than probing the database. However, unguided

novice users may waste their time submitting queries that have zero-hit or mega-hit result

sets. Sometimes they assume that the users know or have the will to understand a

querying environment or fill a lengthy form. However, users of online databases

generally do not have the time or the will to learn a query language or they are annoyed

when they have to fill a lengthy form. In some other cases, they assume that users will

have the bandwidth or the time to access such large databases remotely. On the contrary,

users of a public online database have to access large amounts of data using a low

bandwidth congested network. A more effective, simple, and easy to learn approach for

defining queries is needed for public online databases.

Figure 1.1 shows a form fillin interface from the Unites States Census Bureau (i.e.,

www.ferret.bls.census.gov). This interface forms a good example for the database front-

ends that are currently available over the Internet. This is a lengthy form fillin interface.

There is some guidance about what values can be selected on some of the fields, but the

 3

data distribution information is not available. In this interface, users can easily generate

queries that will return zero-hit or mega-hit result sets. Mostly, the users that have enough

background on the data will be able to easily form useful queries. Other types of users

will simply probe the database until they find what they want or get tired of working with

this interface. Even when users find the parts of the data that they were looking for, most

of them would be annoyed with the experience of filling in a lengthy form and blindly

probing a remote database.

Figure 1.1: A form fillin interface from the United States Census Bureau homepage

 4

1.2 Generalized Query Previews

One approach to overcoming the hidden nature of data is to provide some form of

easily understood overview of the data. Generalized query previews forms such a user

interface architecture for efficient browsing of large online data. Generalized query

previews supplies data distribution information to the users. This is an overview of the

data. By looking at this overview users can immediately see what is in and what is not in

the data. Generalized query previews gives continuous feedback about the size of the

result set as the query is being formed. This is a preview of the result set. Queries that can

have zero-hit or mega-hit result sets will be visible to the user and they may be avoided

easily. This will increase the performance of the overall system.

An example generalized query preview interface, the ExpO System, is shown in

Figure 1.2. This interface is a sample implementation of the generalized query previews

user interface architecture and the paradigms behind it. The ExpO System is generated by

using a data set from the 1997 United States Economic Census collections. In this

example, the data contains information about hospitals located in each of the United

States Counties. This sample data contains about ten attributes and 3000 rows in its

universal relation. The data is stored as four different relations. Each relation represents a

single table. All the tables share a unique identifier, ‘report_id’, representing a unique

report from a county.

Generalized query previews allows users to visually browse all the attributes and

tables of the data. In the ExpO example, the schema for the data is presented with a

hierarchical browser (the panel on the left in Figure 1.2). The root of this panel is tagged

 5

with the name of the database, ‘hospital97’. The first level in the hierarchy displays the

tables. In this data, ‘loc’, ‘payroll’, ‘sale’, and ‘size’ are the tables. The second level

displays the attributes.

Figure 1.2: An example generalized query previews interface, ExpO, the schema for the

data is presented with a hierarchical browser (the panel on the left)

In generalized query previews, users can select some of the attributes of the data to

form a user view. In the ExpO example, this view is presented in a separate panel and is

also represented by a hierarchical browser (Figure 1.3). The panel in the middle depicts a

few user selections and a user-defined view of the data. The selected attributes are tagged

 6

with the name of the tables that they are selected from. For example, ‘tax’ attribute of the

‘sale’ table forms the tagged name of ‘sale_tax’. Joining the relations representing these

tables is automatically done in the background. Hence, only the tables with common

attributes can be joined to form a view. This example contains only four tables, each

represented by a single relation, all carrying the same identifier. Tables can be predefined

system views of the data and need not directly map to the relations of the database.

Figure 1.3: ExpO with a user-defined view of four attributes, this view is presented in a

separate panel as a hierarchical browser (the panel in the middle)

Views are used to display the distribution information. In the example from Figure

1.3, a special icon in the user view shows that one of the attributes of this view,

 7

‘sale_tax’, can be expanded. The same attribute can also be displayed with a different

marker or colored icon on the hierarchical browser of the database schema. Figure 1.4

shows the expansion. The attributes are expandable into buckets. The data distribution

information is attached to these buckets. Buckets are values where the data can be

aggregated over. The data distribution information is attached to these buckets as some

visual aids such as the bar charts of this example. Here, ‘taxable’ and ‘non_taxable’ are

the bucket names. Further expansions on other attributes are shown in Figure 1.5.

Figure 1.4: ExpO with the data distribution information attached to the buckets of a

single attribute expanded in the user view. Two buckets are shown (total 3,252).

 8

In generalized query previews, a preview of the results is displayed. In the ExpO

example, a separate bar on the top of the middle panel shows the total number of distinct

items mapping to all of the buckets. This is called the result bar (showing 3252 hits). It is

a preview for the result set and shows the size of it. Hence, users will be aware of the

consequences of their query submissions, i.e. whether they are submitting mega-hit or

zero-hit queries, or not. Thus, the result bar helps prevent useless query submissions.

Figure 1.5: ExpO with the data distribution information attached to the buckets of three

attributes expanded in the user view (tax, region, employee count)

In generalized query previews, queries are incrementally and visually formed by

selecting items from a set of charts attached to the user view. Users continuously get

 9

feedback on the data distribution as they continue their selections. For our example,

Figure 1.6 shows a selection. As soon as the selection is made, other charts and the result

set preview are updated to reflect the new data distribution satisfying this selection. This

is called tight coupling. Possible zero-hit queries immediately become visible to the

users. Users also see where data is and how it is distributed over different values even

before manipulating the bars. They can play with these interactive charts as long as they

want to investigate the contents of the data. Clicking on the visual aids, bars in this case,

selects or deselects them. Figure 1.7 shows some further selections on the charts.

Selections within a chart map to a disjunction operation. Selections between charts map

to a conjunction operation.

Figure 1.6: The distribution information is attached to the buckets of three attributes

expanded in a view and a selection is made on one of them, the ‘great_plains’ region.

 10

After the investigative selections, users can fetch the desired portions of the data by

sending their final selections over the network. As they make informed queries, getting

neither zero-hit nor mega-hit result sets is an issue. Hence, the problem of blind

formation of queries is solved.

Figure 1.7: The data distribution information is attached to the buckets of three attributes

expanded in the user view and multiple selections are made on these buckets, ‘taxable’,

‘great_plains’, ‘northwest’, and ‘0 to 99’.

For some other sample implementations, the designer of the system can even take

more drastic measures such as preventing the query submissions for zero-hit or mega-hit

 11

queries, by utilizing a threshold. It is important to note that the information given by the

charts is not the probabilistic distribution of data, but the real one.

Figure 1.8 shows a result set displayed on the right side of the ExpO frame as a

separate panel. Users can load this result set into a local tool for further analysis of this

portion of the data (e.g., Excel). The whole process of pruning and loading a portion of

the data can be repeated as long as the user desires. Generalized query previews can

enable access to the results in multiple ways. In our example, only the list is shown.

Figure 1.8: ExpO with a result set to a query displayed in a panel that is on the right side

of the main frame, 273 hits

 12

Generalized query previews works on data distributions. Expansions of charts

generate the requests for the distribution information from the server where the database

is kept. The distribution information can be updated periodically on the server.

Distribution information tends to be much smaller than the raw data and does not

scale up with the size of the raw data. This aspect of generalized query previews also

contributes to better network performance. Only metadata is downloaded from the

network until an informed query by the user is made. Raw data is loaded only at this final

stage of querying.

1.3 Contents

This dissertation presents the development of generalized query previews. The first

ideas started to develop in the Human-Computer Interaction Laboratory of University of

Maryland in 1995. Field studies on various platforms including real case applications for

NASA helped the development of the ideas. Experimental results showed the strong and

weak points of the architecture. As a result of this process generalized query previews has

evolved.

This dissertation also presents a detailed architecture of the algorithms and data

structures developed for generalized query previews. Development of generalized query

previews triggered research on algorithms and data structures. The presentation of the

algorithms and data structures is also required for the completeness of this dissertation.

There are three main contributions of this dissertation to the field of visual data

mining and information visualization and to the field of algorithms and data structures.

First, with this work a general architecture for browsing large online data is formed and

 13

presented. Generalized query previews is not a user interface, but actually an architecture

for efficient browsing of large online data. Storage of data distributions, accessing, and

viewing these distributions, defining a user view, the algorithms and data structures

running behind the scenes, all form this architecture. Different implementations of this

general architecture are possible (e.g., ExpO). Second, through field studies and

experimentation the application domain for generalized query previews is defined. This

dissertation presents not only the strong points of the architecture, but also the

shortcomings of it. Third, contributions to the field of algorithms and data structures are

made. These contributions are also covered in detail in this dissertation.

Chapter 2 is an introduction to the related work, mostly on the field of visual data

mining and information visualization. Chapter 3 presents the roots of generalized query

previews and initial implementations. Chapter 4 presents user feedback and the first

experimental findings on the initial implementations. Chapter 5 gives a more detailed

explanation of generalized query previews. Chapter 6 discusses the algorithms and data

structures that support the architecture. Chapter 7 gives the second experimental results.

Chapter 8 concludes with a summary of this work, its contributions, benefits, and some

possible future work.

 14

CHAPTER 2:
RELATED WORK

2.1 Field of Research

Visual data mining and information visualization researchers are working on effective

visual methods for browsing and manipulating abstract information spaces [CMS99]

[GE97] [Hear99] [Shn98]. Most of these methods rely on bar charts, scatter plots, and

other means of visual explanations [Ber83] [Tuf83] [Tuf90] [Tuf97]. Generalized query

previews is a part of this field of research.

This chapter presents a general introduction to the field of visual data mining and

information visualization (2.2). It provides an overview of some of the known

taxonomies and references to some of the key papers of this field. Then, since generalized

query previews deals mostly with multi-dimensional data, it focuses on browsing and

manipulating this type of data. Multi-dimensional data visualization started to form a

separate category of research under the field of visual data mining and information

visualization [BCS96] (2.3). Thus, papers of this category are discussed in a separate

section.

Finally, as generalized query previews relies on the following three pillars of

research, I present the papers that are relevant to each of these pillars under the related

sections (2.4, 2.5, 2.6), summarizing with a section on future directions (2.7):

• Online Data Visualization (2.4): Generalized query previews introduces an

architecture for browsing ‘online’ data,

 15

• Large Data Visualization (2.5): Generalized query previews helps users browse

‘large’ data,

• Database Schema, Tables, and Query Visualization (2.6): Generalized query

previews uses data stored as multiple tables of a ‘database’.

2.2 Visual Data Mining and Information Visualization

Visual data mining and information visualization researchers are interested in abstract

information spaces. Examples of such spaces are stock market data, document databases

(e.g., a patent database), a database of films, patient records from a hospital database,

computer logs, web logs, etc. Abstract information spaces cannot be easily mapped onto a

3D world coordinate system unlike other information spaces, such as the landscape of a

country, structure of a machine, or a 3D scan of a human brain. For example, a patent

database cannot use a reference coordinate system (like a map of a city) that makes it

easily comprehendible to the users. The non-abstract information spaces are generally

considered to fall within the research realm of the field of scientific visualization [Kau91]

or geographical information systems.

Visual data mining is a term that is commonly used to refer to the action of finding

something interesting in information spaces (e.g., as gaps, clusters, trends, or sometimes

just a single item). Information visualization is a term that is generally used to refer to the

methods utilized to help users see what these spaces look like.

Recent work at the University of Maryland and Xerox PARC introduced the first

taxonomies of the field of visual data mining and information visualization [Chi00]

[Shn96]. In these taxonomies researchers used data types, tasks, and data states to define

the different categories of the field. The first popular taxonomy by [Shn96] introduces the

 16

visualization categories of 1D, 2D, 3D (e.g., [ESS92] [Hear95] [RM93]), tree (e.g.,

[Fei88] [JS91] [KPS97] [LR96] [RMC91] [SFR00]), multi-D (multi-dimensional or

multi-variate) (e.g., [Rot00] [Shn94]), temporal (e.g., [PMR96]), and network (e.g.,

[BEW95] [Eic93]) visualizations. Some researchers also include workspaces as a

separate category (e.g., [CRM91] [KS98]). Among these categories, generalized query

previews falls under the category of multi-D (multi-dimensional) visualizations.

2.3 Multi-dimensional Data Visualization

Multi-dimensional data contains multiple equal weight attributes. Unlike temporal or

network data, the relation between attributes is not implicit and does not dominate the

organization of the data. Hence, many network and temporal data sets can also be

considered as multi-dimensional data sets by rearranging them depending on the

application domain.

Common tasks that can be performed with multi-dimensional data are understanding

or obtaining an overview of the whole or a part of the multi-dimensional data by finding

patterns, relationships, clusters, gaps, and outliers of the data or finding a specific item in

the data by zooming and filtering the data.

Generalized query previews uses data that is stored in multiple relations of a database.

Hence, the relation between the attributes of the data is explicit. Generalized query

previews uses the same methods for all the attributes of the data with no specific

precedence. Hence, all the attributes of the data are assumed to have equal weights.

Generalized query previews uses metadata to give an overview of the data (e.g., data

distributions). Metadata is used to understand the trends and patterns of the data. Data can

be filtered and portions of it can be downloaded. All of these aspects of generalized query

previews brings it closer to the research category of multi-dimensional data

visualizations.

The rest of this section will discuss some popular multi-dimensional data

visualization systems. Most of these systems assume that local access to data is available

and they work on random access memory rather than the secondary storage devices.

Hence, networked access to large data sets is not addressed by many of these systems.

Visage: Carnegie Mellon University developed this multi-dimensional data

visualization system in the early 1990’s [RLS96]. Visage aims to coordinate the

exploration of information across different types of visual aids regardless of the source

and type of the information. For example, as shown in Figure 2.1, users can drag and

drop the spreadsheet view of some geographical data onto a map to display its

distribution over the map.

Figure 2.1: Visage from Carn

drags a list of values onto a m

Table Lens: At the same time

Table Lens [RC94]. This multi-di

technique based on a fisheye view

A
 17

egie Mellon University, in snapshot ‘A’ u

ap, in snapshot ‘B’ user views the values

 Rao and Card of Xerox PARC were wor

mensional data visualization tool used a f

 of a spreadsheet, Figure 2.2. In this tech
B

ser selects and

 on the map

king on the

ocus+context

nique a group

 18

of rows and columns are in focus while the rest of the spreadsheet appears to be out of

focus. Yet the out of focus parts of the data give an overview of the data with the help of

histograms and color-coding.

Figure 2.2: Table Lens of Xerox PARC, four rows from a large spreadsheet are in

focus while the rest of the spreadsheet is represented by histograms and charts

Magic Lens: Again at the same time, Stone, Fishkin, and Bier of Xerox PARC

developed the Magic Lens [SFB94]. Magic Lens views the data using a tool that works

like a magnifying glass over a text or a graphical document. In Figure 2.3, the user views

a map with two separate lenses to identify two different portions of the map, major roads

and water canals.

 19

Figure 2.3: Magic Lens of Xerox PARC, the user is using two lenses on a city map,

one for highlighting the major roads and the other one for highlighting the water lines

XGobi: In 1990’s, Swayne, Cook, and Buja came up with the XGobi system

[SCB98]. XGobi shows various visualizations of the same data set simultaneously and

dynamically, Figure 2.4. It also takes various projections of a multi-dimensional data set

on some of the attributes of the data and then animates these projections.

 20

Figure 2.4: XGobi shows multiple projections of a data set (e.g., histograms, scatter

plots, etc.)

Attribute and Influence Explorers: In Imperial College, U.K., researchers developed

the Attribute and the Influence Explorers in mid 1990’s [TWS94] [TSD96]. The idea

behind both of these systems is to have interactive histograms to view the contents of the

data while, giving an overview about the contents, Figure 2.5 and 2.6. The selections on a

histogram immediately update others. A similar visual representation and feedback

mechanism is also used for the generalized query preview example implementation, the

ExpO system.

 21

Figure 2.5: Attribute Explorer, with four interactive histograms

Figure 2.6: Influence Explorer, with many histograms

Parallel Coordinates: Inselberg and Dimsdale, in late 1980’s, took a thoroughly

different approach to visualizing multi-dimensional data [ID89]. Instead of viewing data

using perpendicular multiple coordinate axis, they used a series of parallel axis, Figure

2.7.

 22

Figure 2.7: Parallel Coordinates, cars from a car database are represented by lines

crossing through six vertical axes representing the six dimensions of the data

Worlds within Worlds: Feiner and Besher of Columbia University developed this

system. The system is designed for the exploration of multi-dimensional coordinate

systems containing arbitrary functions using nested coordinate axis. They show users

parts of the whole world in a simple but effective manner [FB90], Figure 2.8.

 23

Figure 2.8: Worlds within Worlds, 3D projections of a multi-dimensional world

Data Visualization Sliders: Eick, in 1994, used sliders not only as a mechanism for

user input, but also as a means to show data distributions in the form of density plots

[Eic94].

Selective Dynamic Manipulation of Visualizations (SDM): SDM is also from

Carnegie Mellon University [CRM95]. SDM is actually a set of interactive techniques for

2D and 3D visualizations. Visualizations in SDM are linked, and real-time interactive

animation techniques are used. Figure 2.9 shows a popular view from SDM where a

multi-dimensional data set is displayed as a landscape of color-coded bars that are linked

together, indicating a certain relationship between certain groups of bars.

 24

Figure 2.9: SDM from Carnegie Mellon University showing a landscape of data

distribution

Figure 2.10: InfoZoom (available from www.humanit.de) showing the overview of

data by size-coding and simple graphs on multiple bars representing the attributes of data

 25

InfoZoom: This is a tool that also provides an overview of the data (Figure 2.10). Any

part of the data can be selected, filtered out, or zoomed in using highly interactive

controls. Queries can be captured and replayed. Results can be saved as charts or as

interactive objects.

Figure 2.11: The first dynamic query example, Home Finder, using a real estate data

set from Washington, D.C., users can adjust the widgets on the right to manipulate the six

different dimensions of the data, updates are immediate on the map

Dynamic Queries: Dynamic queries from the Human-Computer Interaction

Laboratory at the University of Maryland emerged in the early 1990’s. First, Williamson

and Shneiderman in 1992 developed a tool to explore some real estate data set [WS92],

Figure 2.11. Later, this idea evolved and triggered a product called Spotfire (available

from www.spotfire.com) [AS94] [AW95] [AWS92]. Spotfire is a more general tool to

 26

explore multi-dimensional data, Figure 2.12. In dynamic queries, users formulate queries

with graphical widgets, such as sliders. Users can see a graphical visualization of the data

and their search results. They can also filter and zoom into parts of the data. Actions are

easily reversible. Feedbacks on users’ selections are immediately available on all the

widgets and charts of the interface.

Figure 2.12: The general dynamic query tool, Spotfire, from www.spotfire.com,

showing multiple views of a data set

Data Desk: This is a statistical data analysis package available from

www.datadesk.com (Figure 2.13). Data Desk provides interactive tools for data analysis.

Visualizations are linked together and actions on a single view update the other views

immediately.

 27

Figure 2.13: Data Desk showing multiple linked views of a data set

Figure 2.14: Beyond 20/20 showing a statistical data set with a bar chart

 28

Beyond 20/20: This is another tool that can be used for statistical data analysis

(available from www.ivation.com), Figure 2.14. This tool is designed to be an advanced

spreadsheet (in comparison to the other tools, e.g., Data Desk).

2.4 Online Data Visualization

Online data has certain features that require a special treatment. It is distributed over a

network and cannot be immediately accessed at all times. The following are a few known

systems that work with online data (mostly text-based data):

Figure 2.15: WebTOC uses a hierarchical browser to show the contents, type, and the

size of a website.

 29

WebTOC: This system is developed in the Human-Computer Interaction Laboratory

of the University of Maryland. Nation, Plaisant, Marchionini, and Komlodi worked on

this system to visualize websites using a hierarchical table of contents browser [NPM97],

Figure 2.15. The ExpO System also uses the same method, but for visualizing the schema

of a relational data set.

Butterfly: The Butterfly System by Mackinlay, Rao, and Card [MRC95] is a system

for searching citation links across the Internet. Butterfly integrates the action of

searching, browsing, and access management. Visualization is used in displaying

retrieved information and combines the search and browsing tasks. Citations and links

between citations is displayed, Figure 2.16.

Figure 2.16: Butterfly Citation Search System displaying some citation search results

 30

Figure 2.17: Marmotta Iconic System where queries are formed using simple icons

Harvest: Bowman, Danzig, Hardy, Manber, and Schwartz introduced the Harvest

System in 1994 [BDH94]. Harvest works on the Internet and provides users with

customizable tools to collect information from different websites. However, Harvest uses

a very common querying technique for the Internet, the keyword searching technique.

Marmotta: Marmotta is a querying system for networks [CMP95]. It uses progressive

querying and works on the Internet. The main idea behind Marmotta is the formulation of

queries via simple icons representing actions and items, Figure 2.17.

Envision: Envision is a project from the Virginia Polytechnic Institute and State

University. The project developed a large digital library of computer science

publications. It is available over the Internet [Heat95], Figure 2.18. It has a highly

interactive results screen.

 31

Figure 2.18: Envision, search results, authors are on the y-axis, years are on the x-axis

SuperBook: SuperBook [ERG89] is an early hypertext browsing system. It precedes

many of the current web-based systems. It is designed to improve the usability of

conventional documents. Especially, the later versions of the SuperBook was

implemented to improve the search accuracy and speed.

2.5 Large Data Visualization

Visualization of large data sets forms a challenging field of research. Users requiring

highly interactive systems to explore large data sets face many difficulties. For example,

having a large data set causes several operations to be slow. Not only querying, storing,

and accessing these systems is difficult, but also visualizing cluttered information spaces

 32

becomes a cumbersome task. Many such data sets are stored in large relational databases

on secondary storage devices, where, in certain cases, loading even a part of the data into

the main memory of a personal computer may be problematic. A few example systems

that work with large data are:

Figure 2.19: Volume rendering of relational data over three dimensions and color-

coding is used

Volume Rendering: Volume rendering is a common method for displaying large

scientific data (e.g., computer aided tomography images of a human brain). In late

 33

1990’s, Becker applied this method to abstract information spaces [Bec97]. He rendered

volumetric abstract data stored in a relational database, Figure 2.19.

VisDB: Keim and Kriegel used a single pixel of the screen to represent a record from

a database [KK94]. Their system is called VisDB. VisDB colors and organizes the

database records with respect to the query result relevancies, e.g. spirals, Figure 2.20.

Figure 2.20: VisDB uses spirals and color-coding to show the relevance of results to

the query and gives multiple views of these results (e.g., parallel coordinates).

Aggregation and Dynamic Queries: Goldstein and Roth [GR94] used aggregation

with dynamic queries to help users with large data sets. They used a mechanism called

the Aggregate Manipulator and combined it with dynamic queries, Figure 2.21. The

 34

distribution of data is available to the users in this system. Generalized query previews

also uses aggregation to make large amounts of data explorable over a congested

network. This approach is very scalable, as the distribution information on data does not

drastically change with the data itself.

Figure 2.21: Using aggregation in tandem with dynamic queries, users can see how

much of each type of an item exists in the data

LinkWinds: Berkin and Orton developed LinkWinds as a visual data exploration tool

for large multi-dimensional multi-disciplinary data sets [BO94]. It is developed at the Jet

Propulsion Laboratory of NASA. Linking visualizations is also used with this system.

 35

Since users of this system mostly view large scientific data, this tool falls between the

fields of scientific visualization and abstract information visualization.

Figure 2.22: The Visible Human Explorer of the University of Maryland where

multiple tightly coupled views of the data is available to the users

Visible Human: North, Shneiderman, and Plaisant developed an image library

browser for a project known as the Visible Human Project [NSP96]. Researchers of this

project, in multiple organizations, worked on methods to visualize and analyze the human

 36

body represented by thousands of images. North, Shneiderman, and Plaisant worked on a

browser where tightly coupled views of the images help users browse a large image

library. Selections in the preview image of a human body are immediately reflected on

the other views, Figure 2.22.

Figure 2.23: A sample DEVise display with multiple views, a scatter plot, a 2D chart

showing a function, and a series of images related to that data item

 37

DEVise: DEVise is an exploration system where users can browse and share visual

presentations of large data [LRB97]. Multiple linked views are also available with this

system, Figure 2.23.

2.6 Database Schema, Tables, Queries, and Results Visualization

Visual Querying Systems (also known as VQSs) is a known research topic under the

field of databases. Many systems exist in this field. Most of these systems work for

relational databases and provide visualizations for the database schema, tables, queries,

and results. Catarci, Costabile, Levialdi, and Batini [CCL95], and Reisner [Rei91] did the

first surveys of this topic. They mention the main approaches and give an assessment of

various usages of these systems. Many of the systems discussed in this section can also

be mentioned under some of the previous sections, but certain database related features of

these systems make them more appropriate for this section. The following are a few

example database schema, tables, queries, and results visualization systems:

Tioga-2: Formerly known as DataSplash, Tioga-2 is a database visualization

environment from Berkeley [ACS96]. It provides users with a variety of display objects

to be used on canvases to explore the underlying database. Navigation between canvases

are provided by means of portals, Figure 2.24.

SeeData: SeeData is a system for displaying the relational schema of a database

[AEP96]. This is a visualization system that uses 2D visualizations of a database schema

where relationships between objects are shown via bar charts. SeeData can display large

database schemata containing over thousands of relations, Figure 2.25.

 38

Figure 2.24: Tioga-2 display with data mapped onto the United States

Figure 2.25: SeeData relational schema browser, each line is a relation and each pixel

in a line is an attribute (dimension) of that relation

 39

InfoCrystal: This is a tool used to visualize sub-results of a query and their relations

to the query terms. It helps users understand and form complex queries on a database

[Spo93].

Polaris: Polaris is a recent system from Stanford University [SH00]. It is a

visualization system for relational databases that extends the concept of pivot tables.

Visual querying is possible, and these visual specifications can be rapidly and

incrementally developed.

Giving Ranked Outputs: Veerasamy and Navathe [VN95] introduced a digital library

catalog browser in 1995. This interface gives ranked output information in the form of a

histogram. This system is for complex query formulation on a document database, Figure

2.26.

Figure 2.26: Veerasamy and Navathe used histograms to rank results of a query

RABBIT: RABBIT is the oldest of these systems [Wil84]. RABBIT presents a query

to the users and allows them to modify it by showing RABBIT what has to be changed in

it. It is one of the first systems where progressive querying is used on databases.

 40

Menu-driven information retrieval: Heppe, Edmondson, and Spence [HES85] also

introduced one of the first VQSs. They used volume previews in the database search

process. They also demonstrated some progressive querying capabilities in their systems.

ADVIZOR: This is a system available from www.visualinsights.com. ADVIZOR

presents the information that is stored as pivot tables of a database for online analytical

processing (OLAP) by using interactive charts and graphs (Figure 2.27).

Figure 2.27: ADVIZOR shows a landscape visualization of a pivot table.

 41

Figure 2.28: Brio shows query results graphically.

Brio: Brio is a database front-end that works efficiently over a network. It works with

OLAP servers and helps users generate online business analysis reports efficiently

(Figure 2.28). It is available from www.brio.com.

dynaSight: dynaSight is available from www.arcplan.com. It is also a database front-

end and works with OLAP servers to help the users generate business reports (Figure

2.29). It can connect to multiple types of servers.

 42

Figure 2.29: dynaSight showing some portfolio analysis graphically

Figure 2.30: MineSet showing a hierarchy by using a 3D browser

 43

MineSet: MineSet is available from www.mineset.sgi.com. It is another a database

front-end that can also work with OLAP servers (Figure 2.30). It has strong data-mining

capabilities through some classification and association rule generators. It can connect to

multiple types of database servers.

Figure 2.31: Cognos showing multiple interactive charts

Cognos: Cognos (available from www.cognos.com) implements interactive abstract

data visualization capabilities that help users gain insight about their data (Figure 2.31).

This system also works very efficiently on networked OLAP servers.

 44

2.7 Directions

Multi-dimensional data visualization continues to draw increasing interest from visual

data mining and information visualization researchers. Users of various data sets continue

to demand more elaborate methods to visually mine and manipulate their multi-

dimensional data. Search for these methods is becoming more challenging with the

increasing data set sizes, types, and complexity of access methods.

More varied types of data (e.g., images, sound, etc.) with larger data storage facilities

has become a reality. Methods to visualize large amounts of more varied data are

required.

Data sets are not confined to a single system or network anymore. It can easily be

stored and accessed over the Internet. Visualization of such data sets continues to be an

interesting research topic.

Data sets are not formed of simple text files or a simple list of items. Databases have

long become a common storage and maintenance facility for data. Databases can be

formed of many complex relations, objects, and attributes.

It is difficult to consider a direction of research for visual data mining researchers

without addressing most of these features of data sets (size, type, access methods).

Researchers should not only support large data sets but also support complex access

mechanisms through networks to complex data storage facilities (such as relational

database management systems). All of this should also be done in a transparent fashion to

the users.

Generalized query previews tries to address many of these new features of the data. It

claims success in browsing large online data stored in relational databases.

 45

CHAPTER 3:
NASA EXPERIENCE AND EARLY WORK

3.1 Dynamic Queries with Large Online Data

Dynamic queries [WS92] [AS94] [AW95] [AWS92] uses a direct manipulation

approach to facilitate query formulation on multi-dimensional data with a visual

representation of query components and results. Dynamic queries allows rapid,

incremental, and reversible control of the query. Results are presented visually.

Continuous feedback guides users in their query formulation process. Figure 2.11 shows

an example dynamic query interface.

The application of dynamic queries to large online data is an exciting idea.

Unfortunately, high system-resource demands make dynamic queries inapplicable to

large online data collections. Dynamic queries requires immediate access to data so that

continuous immediate feedback is always given to the user. Yet, large online data cannot

be immediately and continuously accessed.

In 1995, Human-Computer Interaction Laboratory of University of Maryland with

support from NASA’s Goddard Space and Flight Center started to work on NASA’s large

online data collections. These collections are stored in vast distributed data archive

centers and contain various types of data (e.g., documents, images, numerical values,

etc.). The attempt to apply dynamic queries to these collections required researchers to

look for solutions to make dynamic queries work with large online data.

Researchers of the laboratory decided to use overviews and previews to make

dynamic queries applicable to large online data. They were looking for methods to

 46

efficiently prune irrelevant data and help users focus and form their queries. At the same

time, algorithms and data structures that would enable dynamic queries to work with

large data collections were developed [TBS97].

The project led to the idea of query previews. Query previews forms the basis for this

dissertation. The paradigm of query previews is to give an overview of the data and a

preview of the queries to the users before the final queries are sent through the network or

details are visualized with an interface. Query previews works on a very few selected

attributes of the data. It divides the querying process into two steps to reduce the

resources needed to form the final query. Hence, a smaller and more interesting portion

of a larger data set can be downloaded to the local memory of a computer from the

network.

We applied the principles of this two-phase querying strategy (i.e. previews first then

refinements) for NASA’s Earth Observing System Data Information System [DPS96]

[DPS97]. This strategy is now available as an experimental interface [GTP99] for the

Global Change Master Directory (gcmd.nasa.gov) and is the basis for the Global Land

Cover Facility interfaces (glcf.umiacs.umd.edu), all part of NASA. This dissertation

carries query previews to another more general stage.

3.2 Two-Phase Querying

For the two-phase approach, the designer first has to choose a few discriminating

attributes of the data, usually the most commonly used, for the initial phase. This is the

query preview phase. The other attributes are kept for the second phase that will include

all of the attributes of the data for further querying. When the querying environment is

activated the query preview appears first. Users make some decisions on this first

 47

interface and then move to the second one, the refinement phase, to complete the query.

The first phase is used to prune irrelevant data while preventing the user from submitting

zero-hit and mega-hit queries. The second phase, the refinement, can be implemented as a

dynamic query interface to help users finish their querying sessions by guiding them in

further refining their query definitions.

3.2.1 Query Previews

Query previews shows the discriminating attributes of the data so that any selection

would lead to a smaller subset of the data. Commonly used attributes of the data are

selected to form a query preview. This is essential to address the needs of most of the

users. In order to guide users in the query formulation process, query previews provides

aggregate information about the data. Distribution of data over different attribute values

is shown graphically as bar charts. When users select a value on any of the attributes of

the interface, the rest of the interface is updated. Therefore, for each action users take,

feedback is given immediately. As users see the potential size of their query result before

refining the queries, they are less likely to submit queries that return zero or mega hits.

The system load will be reduced if users do not waste their time with zero-hit queries or

consume network resources in downloading useless results.

While dynamic queries requires attribute values of every record of the data to be

downloaded, query previews only needs aggregate information about the data. So

whatever the data size, only the distribution information of the data is needed to form a

query preview interface. However, this may have a disadvantage. Only the buckets of

data distributions will be available to the users, but not the details of a single item. The

details of the data can become visible only in the second phase.

 48

Figures 3.1 and 3.2 show a query preview interface formed using the three most

commonly used attributes of the Global Change Master Directory of NASA (topic, year,

and area). The distribution of data over these attributes is shown with bar charts and the

result set size is displayed in the result bar at the bottom.

3.2.2 Query Refinement

If needed, the query preview phase can be followed by a refinement phase, which can

be implemented as a dynamic query interface, to further change the query. At the

refinement phase, when a desired final result set size is obtained, the results can be

retrieved from a remote data collection. These can be images, values, etc. Other types of

interfaces for the refinement phase are also possible (e.g., form fillin, menus, etc).

Figure 3.3 shows a possible implementation for the refinement phase with dynamic

queries (implemented for the Earth Observing System Data Information System of

NASA). In this example, the time-span of the data items versus the size of the items (e.g.,

image size) are shown on a scatter plot that is tightly coupled with a number of scrollable

menus that enable selections on the remaining attributes of the data. Color-coding is used

to present an attribute from the data (i.e., processing level of images). An interactive

geographical map is also available. After the completion of the query, users can submit it

to access the final set of results. Figure 3.4 shows this as a list of items presented as a

web page. The option of skipping the refinement phase and directly jumping into the

query results is also a viable alternative for certain implementations.

 49

Figure 3.1: An example query preview interface developed at the Human-Computer

Interaction Laboratory of University of Maryland, for NASA’s Global Change Master

Directory. Topic, Year, and Area are the discriminating attributes for the 8431 scientific

data items of the NASA archives. In this screen shot, the bars show the overview of the

data distribution. Recent versions of this interface are available at the Global Change

Master Directory (gcmd.nasa.gov).

 50

Figure 3.2: When users select the attribute values (e.g., here atmosphere for topics and

Europe for area), the bars are updated immediately to reflect the new distribution of the

data that satisfies the query. When users are satisfied with their initial query, the results

can be retrieved, or the query can be refined with additional attributes in the second phase

with another interface. In this case, atmospheric data for Europe produces a set of 292

data items to be retrieved.

 51

Figure 3.3: The refinement phase, implemented as a dynamic query interface. In this

example, the time-span of the data items versus the data size (i.e., image size) are shown

on a scatter plot that is tightly coupled with a number of scrollable menus that enable

selections on the remaining attributes of the data. Color-coding is used to present an

attribute from the data (i.e., processing level of images). An interactive geographical map

is also available.

 52

Figure 3.4: Results presented as a hit list on the left, details are presented for a single item

in a frame on the right, and the query is displayed on the top as a conjunct of disjuncts

 53

3.2.3 Extensions and Recent Prototypes

The query previews work continued with implementations of new prototypes using

different types of previews and overviews. Figure 3.5 shows a query preview interface

where the overview of data is presented as a binary preview. In this example, the

availability of data, instead of the amount of data, is used to show the data distribution.

Figure 3.5: Binary previews, dark regions show locations where the data is available

 54

Figure 3.6 shows another query preview prototype. In this example, the data items

contain a special attribute, the time attribute (i.e., start and end dates of a certain event).

This attribute contains ranges of values rather than points of values that require special

attention. This new type of preview, range preview, must use special algorithms and data

structures to calculate and display the distribution information as the data items may

expand multiple dates. Overlaps can occur in counting these items in the bars.

Figure 3.6: Range previews, the distribution of data is shown over years

 55

Finally, the query previews work has been expanded to cover the task of analysis of

statistical data. Figure 3.7 shows an example for this special type of query previews, table

previews, where analysis of the distribution of data may be as important as or sometimes

more important than retrieving the matching data items for the query.

Figure 3.7: Continuing work with table previews, the 1990 United States Census Bureau

Income Survey Data is used for this example, 8,941 hits selected

 56

3.3 Summary

Query previews shows the data distribution information on some of the commonly

used discriminating attributes of the data so that any selection would lead to a smaller

subset of interest. It helps users form informed queries preventing zero or mega hits.

Distribution of data over different aggregated attribute values is shown graphically by

using tightly coupled bar charts.

Especially, the recent work with the Global Change Master Directory of NASA

suggests that query previews forms a promising option for browsing operational large

online data collections.

 57

CHAPTER 4:
INITIAL USER STUDY

4.1 Motivation for a User Study

Since query previews adds another phase to query formulation, there is a possibility

that user performance would deteriorate and that users would be annoyed by a two-phase

approach. Moreover, query previews focuses attention on only a few selected attributes

that may not be useful in some queries. Therefore, there was a need for a user study to

verify and quantify the benefits of query previews and measure the subjective user

preferences.

4.2 User Study Methods

4.2.1 Introduction to the Study

In this user study, we identified the task types that would put query previews into

their best and worst situation so that we could quantify the maximum benefits and

drawbacks of this technique [TLH00].

Clearly specified tasks have a straightforward and an accurate definition (known-item

search), e.g. "List all the Maryland employees from the employee database". Query

previews has no benefits for this task. In this case, users want the complete list regardless

of the outcome of the query. For this case and in general for clearly specified tasks, the

relevance of the preview attributes to the query is not an influential factor since users are

best served by going directly to the form fillin interface (tasks of this worst case scenario

are called T1 tasks).

 58

Unclearly specified tasks usually require a series of submissions. User’s constraints

and preferences cannot be stated immediately. Information gained from the query

previews will influence their series of choices, so query previews should be very useful.

However, the relevance of the attributes used in the query preview will impact the

usefulness of the user interface. Suppose that a user is looking for some software

engineers from the Washington, D.C. area using an employee database. If the query

preview shows the number of employees per state and some other attribute values of the

data such as the age distribution, then the preview is only partially relevant to the task

(middle case scenario: T2). On the other hand, if the query preview shows the number of

employees per state and their job types, then the query preview becomes fully relevant

(best case scenario: T3).

The three task types in the study varied in terms of their clarity of the specifications

they have and in terms of their degree of relevance to the attributes they used to the query

preview attributes. Six subjects performed a set of tasks, once by using an interface that

included a query preview followed by a form fillin interface and once by only using a

form fillin interface. Then, another set of six subjects worked in the opposite order. The

task completion times and the subjective preferences of the subjects were measured.

4.2.2 Hypothesis on Query Previews

Our hypotheses were: (1) For clearly specified tasks (T1), adding the query preview

step will lead to slower task performance, (2) for unclearly specified tasks (T2 and T3),

the addition of a query preview step will lead to faster performance, and (3) users will

always prefer query preview interfaces.

 59

4.2.3 Independent and Dependent Variables

 The independent variable was the user interface type and the treatments were:

• Form fillin interface with a query preview.

• Form fillin interface without a query preview.

The dependent variables were the time to complete the tasks in each interface (not

including setup times) and the subjective preferences of the users.

4.2.4 Tasks

We examined the two interfaces using the three types of tasks that are formally

defined as:

• T1: Clearly specified tasks in which the query preview attributes are not relevant

to the task.

• T2: Unclearly specified tasks in which some of the query preview attributes are

relevant to the task.

• T3: Unclearly specified tasks in which all of the query preview attributes are

relevant to the task.

4.2.5 Subjects

Twelve computer science graduate students were used as subjects. All of them use

computers almost every day and have at least five years of experience in using

computers.

4.2.6 Materials

The materials include a form fillin interface for querying a film data set (including

500 films), a query preview panel for the same data, a set of tasks to be performed by the

subjects, a subject background survey, and a subjective preference questionnaire.

 60

4.2.6.1 Form Fillin Interface

A form fillin interface (Figure 4.1) was used to perform queries on a film data set.

There are ten attributes for a film in our sample data set: category (horror, action,

comedy, etc.), award winner (yes or no), rating (R, PG-13, PG, and G), year of

production, length, popularity, lead actress, director, lead actor, and title. The output of a

query is a list of films matching the specifications of the query. Vertical and horizontal

scroll-bars can be used for scanning the list.

Figure 4.1: The form fillin interface used in the study. The rectangle on the right bottom

corner is used for displaying the result list to a query. The list of fields allows users to

enter values for the attributes of the data set. The three attributes on the left side are the

ones that are also available in the query preview.

 61

4.2.6.2 Query Preview

In the query preview interface (Figure 4.2) users can select values for three attributes

of the data set: the category (horror, action, comedy, etc.), whether the film won an award

or not, and the rating (R, PG-13, PG, and G). Multiple selections are available for each of

these attributes. The number of films for each attribute value is shown on a separate bar.

Each bar consists of a frame and an internal rectangle (gauge). The length of the frame is

proportional to the number of films in the data set that match this specific value of the

corresponding attribute. The length of the gauge is proportional to the portion of the films

that match the query specified (the number of matches appears to the left of the bar).

Users formulate queries by selecting the attribute values. As each value is selected, the

bars of the other attributes adjust to reflect the number of films available for that selected

specific values. For example, users may be interested only in films that won awards. By

selecting "Award Winners", the gauges of the bars of the selected categories and ratings

change immediately to reflect only the films with awards. The query preview bar at the

bottom of the screen changes its length to illustrate the total number of films that match

the current conditions.

When the "Refine" button is pressed, the query preview submits the specified partial

query to the search engine and all the data about films that satisfy the query are

downloaded for the refinement phase. The query preview is closed and the form fillin

interface is loaded to refine the query (displaying initially all the films selected in the

query preview in the result box).

 62

Figure 4.2: The query preview used in the study. The toggles on the left are used to

choose attribute values and form the query. The counts and bars show the distribution of

the result set for a query corresponding to the current settings of the toggles. The larger

bar at the bottom shows the total number of hits, here 168.

4.2.6.3 Task Examples

The tasks given to the subjects were to find a film or a list of films in the database

satisfying the constraints that is provided. Three types of tasks were used for this

purpose:

• T1: a clearly specified task in which none of the query preview attributes is

relevant for the task, e.g. "Find the latest film by Alfred Hitchcock" (a known-

item search). For that type of task, users can typically find the answer by

submitting a single form fillin query. The query preview has no specific

advantage since its attributes are not relevant to the query.

 63

• T2: desired films are vaguely specified. In this type of task, some of the query

preview attributes are relevant, e.g. "Find a PG-13 musical which was produced

between years 1990 and 1995, if no such film is available, find a war film from

the same years with the same rating, if not, try a musical or a war film from 1970-

90, and as the last possibility, try a comedy from 1970-95". This type of task is

typical when users have a complex set of acceptable results, with some

preferences. To perform such a search in the form fillin interface users must issue

several queries, i.e., when the preferred choice is not available in the data. In the

preview, users can get some insight about what is available in the data and what is

not and hence can make more informed queries. However, since not all the

attributes in the specification appear in the query preview, the form fillin is

required to refine the query.

• T3: formed in a similar way to T2. A series of preferences for films are specified.

In this case however, the query preview attributes are fully relevant to the task

specifications. Example: "Find at least 30 films of the same category which are R

rated and have no awards" (for example, in order to organize a film festival or

make a collection). In the form fillin interface this task requires several queries to

examine the number and rating of films in each category. The query preview on

the other hand, gives an immediate picture of the relevant categories. The form

fillin interface is required only to get an explicit list of the films.

For each of the above task types, six example tasks were prepared (eighteen tasks in

total).

 64

4.2.6.4 Subject Background Survey and Preference Questionnaire

The survey included eight questions that determined the experience level of the

subjects with computers and with search engines. We also prepared a preference

questionnaire. The subjective preference questionnaire included six questions that aimed

to find out which of the two interfaces (a form fillin with or without a query preview) the

subjects preferred and what their attitudes were toward adding query previews to the

interface.

4.3 User Study Design

The study used a within subject counter-balanced design with twelve subjects. Each

subject was tested on both of the interfaces, but the order of the interfaces was reversed

for half of the users. A parallel set of tasks (similar but not the same set of tasks) was

used on the second interface to reduce the chance of performance improvement. Each set

of tasks included the three types of tasks (T1, T2, T3), with three tasks for each of these

types. The order of the task types within a task set was also reversed (each of the six

permutations was used twice). The order of the tasks within each task type was fixed.

4.4 Procedure and Administration

The subjects signed a consent form, filled out a background survey, received a brief

demo of the form fillin interface and the query preview, and a ten minute training session

during which they used the two interfaces (again similar to but not the same tasks with

the actual tasks were used). During the study each subject performed eighteen tasks (nine

in each of the interfaces). At the end of the study the subjects completed the preference

questionnaire. The study took 50-60 minutes including the training and the

questionnaires.

 65

Two administrators were present. One of them administered the study, performed the

demo, presented the tasks, and measured the task execution times. The other

administrator recorded notes about the way subjects coped with the tasks and about

problems that occurred during the study, and verified the procedures that were followed.

The time that the subjects spent in using each of the interfaces was recorded (successful

completion time of a task). These times did not include program startup time.

4.5 Results

4.5.1 Time for Completing Tasks

Figure 4.3 summarizes the times for completing each of the task types for our

subjects (clearly specified: T1, unclearly specified and partially relevant: T2, unclearly

specified and fully relevant: T3) for each of the user interfaces (with and without a

preview). For T1 tasks, the user interface with the query preview yielded slower

performance than the user interface without the query preview (t(35) = 2.44, p < 0.05).

For T2 and T3 tasks, the interface with the query preview yielded faster performance than

the interface without the query preview (t(35) = 8.77, p < 0.05, and t(35) = 14.70, p <

0.05, respectively). The statistical analysis used two-tailed paired two-sample t-test for

means. Each task was considered separately leading to the degrees of freedom of 35.

4.5.2 Subjective Satisfaction

The subjects answered six questions about their preferences on a one to nine scale

(with higher numbers indicating stronger preferences). The first question examined the

general preference of subjects for using a form fillin interface with or without the query

preview (Figure 4.4). The results show a statistically significant preference (t(11) = 2.82,

p < 0.05) for the interface with the query preview over the interface without the query

 66

preview. The rest of the questions asked what the subjects thought about the user

interfaces. The results (average scores, standard deviations, minimums, and maximums)

appear in detail in Figure 4.5.

 Task Completion Times

51.2

33.0 29.9
36.2

57.5

24.4

0

20

40

60

80

With
Preview

Without
Preview

With
Preview

Without
Preview

With
Preview

Without
Preview

Times
(sec.)

T1 T2 T3
100

Figure 4.3: Average task completion times for T1, T2, and T3 (the rectangles show the

standard deviations and the vertical lines indicate the ranges)

User

Preference

7.1
5.2

1

 9

With
Preview

Without
Preview

Figure 4.4: User preference for twelve users

The scores for all of the questions were statistically significantly above the mid-point

scale value of five (t(11) = 3.86, 6.20, 7.71, 2.24, and 2.58 respectively, p < 0.05).

 67

Results of the Questionnaire

6.7 7.3 7.9 6.4 7.3 1
Helpful? Faster? Enlighten? Enjoyable? Use it again?

9

Figure 4.5: Subject questionnaire results (number of users is twelve) for the interface with

the preview. Higher numbers indicate higher satisfaction with using the query preview.

4.6 Discussion on the Query Preview Study Results

Our findings support the hypothesis that for unclearly specified tasks, the interface

with the query preview yields better performance times than the interface without the

query preview. For both types of the unclearly specified tasks the improvement in

performance was significant (at the level of 0.05): 1.6 times faster for T2 tasks and 2.1

times faster for T3 tasks. For the clearly specified tasks (T1), as expected, the form fillin

only interface performed slightly better.

4.6.1 Clearly Specified Tasks (T1)

As expected, users of the form fillin interface for clearly specified tasks performed

more rapidly since they were able to find the answer by submitting a single form fillin

query. The query preview had no advantage since its attributes were not relevant to the

query and users were performing known-item searches. However, users of the interface

with the query preview performed only slightly worse (10% slower). The users spent

 68

about two seconds in the query preview, identified that its attributes are not relevant for

the task and continued to the refinement phase.

4.6.2 Unclearly Specified Tasks, with Partial Relevance of the Query Preview

Attributes (T2)

Although not all the attributes in the task specification could be specified using the

query preview, the insight gained from the query preview enabled users to eliminate

some potential zero-hit queries in advance, concentrating in the refinement phase on a

much smaller set of possible queries. The query preview enabled the users to reduce the

search space significantly so that they could find the answer more quickly.

4.6.3 Unclearly Specified Tasks, with Full Relevance of the Query Preview Attributes

(T3)

For unclearly specified tasks with full relevance of the query preview attributes, the

full power of the query preview was utilized. The query preview enabled the users to see

immediately which of the possible queries should be submitted. The users loaded the

refinement phase only for submitting the query and viewing the results. The users

performed the refinement phase with a high confidence that they would get the expected

results. On the other hand, in the user interface without the query preview, the users had

no clue about which of the possible queries will give the expected results. They had to try

several possible queries, submitting five to six queries on average until they got a

satisfactory answer. Although the response time for each such query was immediate

(about one second), the time for filling in the right specifications of each query (five to

ten seconds) caused significant differences in performance (even more than T2’s).

 69

4.6.4 Performance Improvement

Building models is a useful way to understand how the querying process works.

Many different models exist in the database literature (i.e., for SQL and QBE) for this

purpose. Reisner [Rei91] lists many of these in a survey paper from a human-factors

point of view. The following simple model for performance times in the refinement stage

can be used to explain some of our results:

performance_time = no_of_queries × query_time

where:

 query_time = fillin_time + response_time + analysis_time

The fillin_time, response_time, and analysis_time are the average times for filling in a

query, getting a response, and analyzing the results, respectively. The response time is a

function of several parameters such as the complexity of the query, the size of the data,

the load on the server, the number of the retrieved entities, and the load on the network.

The time for analyzing the results is determined by the number of retrieved elements. In

our study the response time was short (about one second), the average analysis time was

also small (e.g., analysis of a zero hit is almost zero seconds, and analysis of a mega-hit is

only the time to decide to resubmit). Thus, the main factors were no_of_queries and

fillin_time. For the T3 and T2 tasks, the query preview achieved the performance

improvement by reducing the no_of_queries, yielding a situation in which:

preview_time + (no_of_queriesrefinement × query_time) <

no_of_queriesform_fillin × query_time

 70

In a more common situation where the access to the data would be through a network,

the response time would be typically much larger than one second and the performance

improvement that is achieved for T2 and T3 tasks would be even greater.

The results show that for different types of tasks the query preview achieves

different rates of performance improvement in comparison with the traditional form fillin

interface (from 0.1 times slower in T1 to 2.1 times faster in T3). The performance

improvement which follows from the reduction in the number of required queries

depends on several parameters. One parameter is the clarity of the task specifications. In

clearly specified tasks the number of queries required in a form fillin interface is small,

hence there is almost no potential for improvement. Another important parameter is the

relevance of the query preview attributes to the task. Two additional parameters are the

significance of the query preview attributes in pruning the search space and the resolution

of the attribute values.

For example, if rating R is used and almost all the films in the data are of rating R,

this attribute, although relevant, has insignificant contribution to the performance

improvement for some queries. When numeric attributes such as year of production or

length of the film are presented in a query preview, the possible values for these attributes

are presented using some pre-defined resolution (for example, a ten-year resolution).

Tasks that require higher resolution for an attribute than the one provided in the query

preview will benefit less from the query preview.

In the study, the query preview yielded more performance improvement for T3

tasks (full relevance of the query preview attributes) than for T2 tasks (partial relevance

of the query preview attributes). This result may support the assumption that better

 71

relevance of the query preview attributes to the task yields more performance

improvement.

During the study and in the pilot study we observed almost an order of magnitude

of difference between the number of queries submitted among the two interfaces.

Although the model uses number of submissions, we believe that the time to completion

for each task suggests a parallel and more reasonable comparison among the two

treatments.

4.6.5 Learning to Use a Query Preview

We found that it was easy for users, with experience in querying a database using a

form fillin interface, to learn the query preview interface and take advantage of the

information it supplies. However, some of the users, during training and, in a few cases,

during the study, continued with the refinement phase immediately, skipping the

examination of some of the relevant attributes. That happened when not all the task

attributes could be found in the query preview. For example, when performing a task

with conditions on rating (in the query preview), year (not in the query preview) and

category (in the query preview), the fact that the year could not be specified in the query

preview caused some of the subjects to continue to the refinement stage without

examining the information for the category attribute. This problem seemed to diminish

quickly with some experience.

4.6.6 Subjective Satisfaction

The users (statistically significantly) preferred the interface with the query preview, to

the interface without it. They stated that the query preview was helpful, enabling them to

search faster, and learn more about the data (scores for these questions were statistically

 72

significantly above the mid-point value). We believe that this subjective satisfaction

comes not only from the improvement in performance time which is experienced by the

subjects but also from gaining better control in performing the tasks.

The suggested improvements related to user interfaces are: supplying a way to clear a

group of related check boxes in one step, or easily resetting or setting all of them, a more

immediate refresh operation on the bars for visual accuracy when changing the attribute

values of the query preview panel, etc. The significant preference that subjects showed

for including query previews in their current systems (in addition to the objective

performance improvement for two of the task types) encourages further efforts in

understanding, improving, and developing query preview interfaces.

4.7 Summary

This study supports the claim from the field experiences that query previews forms a

realistic option for and can be extended to help users browse large online data collections.

Query previews is not suggested as a useful technique for all types of query interfaces

and all types of tasks but this first study confirms that the benefits of query previews exist

for several tasks.

 73

CHAPTER 5:
GENERALIZED QUERY PREVIEWS

5.1 Motivation for Generalizing the Query Previews

Query previews is a simple method to eliminate most of the zero-hit and mega-hit

queries and help users prune data efficiently. Unfortunately, query previews works only

on a few selected attributes of the data as a separate phase in a querying session. This

situation introduces a drawback on their applicability and performance. Many data sets

are formed of numerous attributes. The designer of the preview panel can select the most

frequently desired attributes of the data to form the preview panel. Yet, selecting only a

few frequently used attributes may not be a possible option for many of the data sets.

Even when it is possible, it may not be enough to satisfy some of the users with only a

restricted number of attributes. Hence, a generalization to relax this restriction is needed.

5.2 The First Generalization Attempt on Query Previews

The first generalization attempt led to a new family of query previews [TPS00]. We

called this new family of query previews the generic query previews. We combined the

query previews approach with a method to present all of the attributes of the data to let

users manipulate these attributes simultaneously. With this generalization, all of the

appropriate attributes can be used to display the data distribution information. This new

generalized approach could be used as a standalone query formulation mechanism, or like

the query previews, it can be used as a preceding interface to another query formulation

interface.

 74

Figure 5.1 presents a sample implementation of this generalization. For this

implementation a hierarchical browser is used to display all of the attributes and tables of

the data. In this sample prototype, we used the Environmental Protection Agency’s (EPA)

Toxic Release Inventory as our sample data set. It contains approximately 400,000

reports of toxic material releases to the environment from various facilities in the United

States. There are four tables in this data. They are Contact Info, Release Info, Chemical

Info, and Facility Info tables. Each table contains a few attributes. For example, the

Contact Info table contains Contact Phone and Contact Name as its attributes.

The root of our browser is tagged with the name of the data set. Each table is

represented by a separate branch. Each branch may also have leaves representing

different attributes of that branch. The result bar is visible on top of the panel showing the

total number of hits in the result set for the current query definition. At any time, the

users can fetch these results by simply pressing the fetch button to the left of the result

bar.

We attached the distribution information next to the related branch of an attribute.

Some of the attributes do not have the distribution information attached to them. For

example, Contact Name of the Contact Info table of Figure 5.1 does not have anything

attached to it. The nature of the Contact Name attribute does not allow a useful

representation. There are almost as many names in the data set as the number of data

points. In this work, we focused on other types of attributes, e.g., gender and age. These

have useful representations.

Figure 5.1 shows some selections and updates on the bars showing the distribution

information. Selections are visible in textual form below the result bar. The session can

 75

continue as long as the users want to explore the data. When users need to see the results

for their query, they can fetch the desired hits from the server matching their selections

and they can view this result set as a simple list, or they can continue querying on it using

some other local tools (e.g., Excel, Access, etc).

Figure 5.1: A sample implementation of the generic query previews approach. A

hierarchical browser is used to display the data attributes and tables (51,785 hits)

 76

5.3 The Next Step

After the first generalization attempt, we realized that there was also a need in our

designs to give users the ability to define their personalized views of the data (i.e., a

group of attributes of interest to the user). In query previews and later in generic query

previews users could only fetch their results projected on all of the attributes of the data.

This is a redundant activity if the users want only a portion of the data in terms of the

number of attributes they fetch from the server. For example, in Figure 5.1 the users may

only want the contact information related attributes of the data, but not the other ones.

Therefore users should have the capability to define their desired-attributes list, formally

their views of the data.

Hence after our early work, field experience, initial user study, user observations, and

some generalization attempts, we decided to define a general user interface architecture

to form a high level mechanism for efficient browsing of large online data. The result was

the generalized query previews user interface architecture.

5.4 Generalized Query Previews User Interface Architecture

The generalized query previews user interface architecture has the following three

components:

• A presentation component for the data table and attribute names augmented with a

mechanism for selecting a user view, the schema component,

• A manipulation component for displaying and selecting the data distribution

information, the distribution information component,

• A presentation component for displaying or analyzing the results, the raw data

component.

 77

Figure 5.2 shows how these components are attached to each other. First, users can

see the database table and attribute names. Then, they can define their view by choosing

some attributes. Later, using the distribution information attached to the view, they can

analyze the overview of the data and make their selections. Finally, they can fetch the

mapping results, and if desired, forward it to another program. The session can continue

in a cyclic manner as long as the users want.

Figure 5.2: Interactions between the three generalized query previews components

To demonstrate and later to experiment with the generalized query previews user

interface architecture, I have implemented a sample program called the ExpO System.

The ExpO System is implemented on a data set from the 1997 United States Economic

Census collections. The collection contains information about hospitals located in each of

the United States Counties. It has about ten attributes and approximately 3000 rows. The

Schema Component

Distribution
Information Component

Raw Data Component

End

Start

 78

data is stored in four different relations on a networked relational database management

system. Each relation represents a single table. All the tables share a unique identifier,

‘report_id’, representing a unique report from a county. The remaining sections of this

chapter analyze each component of the generalized query previews user interface

architecture by using the ExpO System as the sample implementation.

5.5 Schema Component

Users need to visually browse all the attribute and table names to begin understanding

the data. The schema component of the generalized query previews user interface

architecture serves to this purpose. For simple data sets, a simple list of attributes would

generally suffice to show the attribute names. In more complex environments, such as

large relational databases, more scalable approaches may be needed. SeeData [AEP96]

proposes such an approach to visualize attributes and tables from a large database.

For our ExpO example, I have used a hierarchical browser, the panel on the left in

Figure 5.3, to present the attribute and the table names. The root of this panel is tagged

with the name of the database, ‘hospital97’. The first level in the hierarchy displays the

table names. In this data, ‘loc’, ‘payroll’, ‘sale’, and ‘size’ are the four tables that share a

common identifier. The second level displays the attribute names.

The schema component should be implemented after a careful analysis of the

database schema size, user needs, and the relations between the schema entities. For

small schemata, it may be unnecessary to implement and moreover can become annoying

to use a complex visualization. However, large databases may need scalable approaches.

Although in some cases the database schema may be large, the information that needs to

be displayed to the users may be relatively small. In addition to these, relations between

 79

database tables may be important for the presentation. In some applications, only a few

tables sharing a set of common attributes may be of interest to the user. In others, many

clusters containing such attributes may exist. Viewing these clusters in an organized

manner may be important. Designers should consider all of these issues before starting to

work on the schema component.

Figure 5.3: An example generalized query preview interface, ExpO, where the left panel

displays the table and attribute names of a relational database as an example

implementation of the schema component

 80

In generalized query previews, users should be able to select some of the attributes of

the data to form a view. The schema component also plays the role of a selector for this

purpose. Again, different implementations are possible, depending on the user needs,

possible view sizes, and the database schema layout. For example, in certain applications

where there does not exist a single universal relation, selections of two attributes from

two disjoint tables without any common attributes should be prevented. Otherwise, this

can cause conflicts in implicit join operations during query processing.

Figure 5.4: ExpO with a user-defined view after four attribute selections. The user-

defined view is also a hierarchical browser.

 81

In the ExpO example, users can select the attributes that they want to define their

queries on. This action triggers the insertion operation of that selected attribute to the user

view. This view is presented in a separate panel and it is also represented by a

hierarchical browser (Figure 5.4). The panel in the middle depicts a few user selections

and a user-defined view of the data. The selected attributes are tagged with the name of

the tables that they are selected from. For example, ‘tax’ attribute of the ‘sale’ table forms

the tagged name of ‘sale_tax’. Joining the relations representing these tables is

automatically done in the background. Hence, only the tables with common attributes can

be joined to form a view. The example shown contains only four tables, each represented

by a single relation. Tables can be predefined views from the data, and need not directly

map to the relations of the underlying database.

5.6 Distribution Information Component

At the core of the generalized query previews architecture, distribution information

plays an important role. The distribution information component of the architecture is a

means to see an overview of the data and to define queries on it. User views are used to

attach the distribution information. In the example from Figure 5.4, a special icon in the

user view shows that one of the attributes of this view, ‘sale_tax’, can be expanded to

show the distribution of data on this attribute. The same attribute may also be displayed

with a different icon on the hierarchical browser of the database attribute and table

names.

Figure 5.5 shows the expansion. The attributes are expandable into buckets. The data

distribution information is attached to these buckets. Buckets are values where the data

can be aggregated over. The data distribution information is attached to these buckets as

 82

some visual aids, such as the bar charts of this example. Here, ‘taxable’ and

‘non_taxable’ are the bucket names for that attribute. Further expansions on other

attributes are shown in Figure 5.6. Forming these buckets is the duty of the designer of

the system who should gather information about the details of the data and the user needs.

Figure 5.5: ExpO with the data distribution information attached to the user-defined view

An important feature of the generalized query previews is the capability of visualizing

a preview of the results. In the ExpO example, a separate bar on the top of the middle

panel shows the total number of distinct items mapping a query. This is called the result

bar (showing 3252 hits in Figure 5.6). It is a preview for the result set and shows the size

 83

of it. Hence, users will be aware of the consequences of their query submissions, i.e.

whether they are submitting mega-hit or zero-hit queries. Thus, the result bar helps

prevent useless query submissions.

Figure 5.6: ExpO with the data distribution information attached to the buckets of three

attributes expanded in the user view

In generalized query previews, queries are incrementally and visually formed by

selecting items from a set of charts attached to the user view. Users continuously get

feedback on the data distribution information as they continue their selections. For our

example, Figure 5.7 shows an example selection. As soon as the selection is made, other

 84

charts and the preview of results are updated to reflect the new data distribution satisfying

this selection. This is called tight coupling. Possible zero-hit queries immediately become

visible to the users. Users also see where the data is and how it is distributed over

different values even before manipulating the bars. They can play with these interactive

charts as long as they want to investigate the contents of the data. Clicking on the visual

aids, bars in this case, selects or deselects them. Figure 5.8 shows some further selections

on different charts. Selections within a chart map to a disjunction operation. Selections

between charts map to a conjunction operation. Other types of implementations and

interpretations are also possible.

Figure 5.7: A selection is made on one of the buckets, ‘great_plains’.

 85

Figure 5.8: Multiple selections are made, ‘taxable’, ‘great_plains’, ‘northwest’, and ‘0 to

99’.

It is possible to display the distribution information on different types of visual aids.

Figure 5.9 shows another snapshot of the ExpO system where a pie chart version of a

corresponding bar chart and a series of bars mapping to another bar chart are shown.

Other representations, such as a color-coded stack of bars instead of a single bar, can be

implemented for different applications.

5.7 Raw Data Component

After the investigative selections, users can fetch the desired portions of the data by

sending their final selections over the network. As they make informed queries, getting

 86

neither zero-hit nor mega-hit result sets is an issue. Hence, the problem of blind

formation of queries is solved.

Figure 5.9: Other visual aids, such as a pie chart, may also be available to the users.

 For some implementations, the designer of the system can take some drastic

measures, such as preventing the query submissions for zero-hit or mega-hit queries by

utilizing a threshold. It is important to note that the information given by the charts is not

the probabilistic distribution of data, but the real one.

 87

Figure 5.10 shows a result set displayed on the right side of the ExpO frame as a

separate panel. Users can load this result set into a local tool for further analysis of this

portion of the data (Figure 5.11, e.g., Excel). The whole process of pruning and loading a

portion of the data can be repeated as long as the user desires. Generalized query

previews can enable access to the results in multiple ways. In our example, only a list is

shown.

Figure 5.10: ExpO with a result set to a query displayed in a separate panel on the right,

273 hits are listed

 88

5.8 Summary

Although query previews form a simple and effective way to prune large online data,

a more general method is needed. The generalized query previews user interface

architecture is designed for this purpose. This new user interface architecture consists of

three components. A presentation component exists for displaying data table and attribute

names augmented with a mechanism for selecting a user view, the schema component. A

manipulation component exists for displaying and selecting the data distribution

information, the distribution information component. Finally, another presentation

component exists for displaying or analyzing the results, the raw data component.

Figure 5.11: A result list is loaded to a local program, i.e., Excel

 89

CHAPTER 6:
SECOND USER STUDY

6.1 Motivation for a Second Study

Generalized query previews is hopefully a forward step from the query previews

approach. Although it is a more general architecture, it also introduces some overhead

such as defining a view and explicit expansions of charts. Hence, there is a possibility

that user performance could be disturbed and that users could be annoyed by the

generalization. Therefore, there is a need for a second user study to verify and quantify

the benefits of generalized query previews and measure the subjective user preferences.

6.2 User Study Methods

6.2.1 Updates for the Second Study

In this new user study, I identified the task types that would put generalized query

previews into their best and worst situations, as was the case for the first user study.

Clearly specified tasks and unclearly specified tasks were again used. However, for

the new study, only full relevance of query attributes was an issue. There was only a

single-phase querying session. Hence, there were only two task types. These two task

types varied in terms of the clarity of the specifications they have. Eight subjects

performed a set of tasks, once by using a sample generalized query preview interface

(i.e., ExpO System) and once by only using a form fillin interface. Another set of eight

subjects worked in the opposite order. The task completion times, the number of query

submissions, and the subjective preferences of the subjects were measured.

 90

6.2.2 Hypothesis on Generalized Query Previews

Our hypotheses were: (1) For clearly specified tasks (T1’) generalized query previews

will lead to slower task performance, but with the same amount of query submissions, (2)

for unclearly specified tasks (T2’), generalized query previews will lead to faster

performance and fewer query submissions, and (3) users will always prefer generalized

query previews.

6.2.3 Independent and Dependent Variables

The independent variable is the user interface type and the treatments are:

• A form fillin interface (FFN’) and

• A sample generalized query preview interface, the ExpO System (EO).

The dependent variables are the time to complete the tasks in each interface (not

including setup times), the number of query submissions by the users, and the subjective

preferences of the users.

6.2.4 Subjects

Sixteen computer science graduate students were used as subjects. All of them use

computers almost every day and have at least five years of experience in using

computers. Hence, the user type is similar to the previous study.

6.2.5 Materials

The materials include a form fillin interface (FFN’) for querying a United States

Census Bureau data set (including information on approximately 3000 counties), a

sample generalized query preview interface (i.e., ExpO System: EO) for the same data, a

set of tasks to be performed by the subjects, a subject background survey, and a

subjective preference questionnaire.

 91

6.2.5.1 Form Fillin Interface

The form fillin interface in Figure 6.1 was used to perform queries on a United States

Census Bureau data set. There are more than ten attributes in this sample data set. They

are listed by using a hierarchical browser. Attributes are selected by marking the toggles

near them. This action also triggers the display of editable fields attached to these

attributes. The output of a query is a list of hits matching the specifications of the query.

Scroll-bars can be used for scanning the list.

Figure 6.1: The form fillin interface used in the study. The rectangle on the right is used

for displaying the result list to a query, four hits for this query.

 92

6.2.5.2 The Sample Generalized Query Previews Interface

The ExpO System is the sample generalized query preview interface (Figure 6.2).

Figure 6.2: The ExpO System. The name of the system is hidden from the subjects to

avoid bias towards anyone of the systems until the end of the study

6.2.5.3 Task Examples

The tasks given to the subjects were to find a list of the counties in the database

satisfying the constraints that were provided. Two types of tasks were used for this

purpose:

 93

• T1’: a clearly specified task, e.g. "Please get a list of all the counties that are in

the northwest region and have less than 100 employees working in taxable

hospitals" (a known-item search). For that type of task, users can typically find

the answer by submitting a single form fillin query. The ExpO System has no

specific advantage.

• T2’: More vague query definitions were used, e.g. "Please get a list of all the

counties from the region that has the smallest number of counties with less than

100 employees working in taxable hospitals".

For each of the above task types, four example tasks were prepared.

6.2.5.4 Subject Background Survey and Preference Questionnaire

The survey included six questions that determined the experience level of the subjects

with computers. I also prepared a subjective preference questionnaire. This questionnaire

included six questions that aimed to find out which of the two interfaces the subjects

preferred. Similar questions to the ones in the first user study were used.

6.3 The Second Study Design

The study used a within subject counter-balanced design with sixteen subjects. Each

subject was tested on both of the interfaces, but the order of the interfaces was reversed

for half of the users. A parallel set of tasks (similar but not the same set of tasks) was

used on the second interface to reduce the chance of performance improvement. Each set

of tasks included the two types of tasks (T1’, T2’), with two tasks for each of these types.

The order of the task types within a task set, the order of the tasks within each task type,

and the task set orders were all reversed, leading to sixteen different compositions.

 94

6.4 Procedure and Administration

The subjects signed a consent form, filled out a background survey, received a brief

demo of the interfaces, and a ten-minute training session during which they used the two

interfaces (similar to but not the same tasks with the actual tasks were used). During the

study each subject performed eight tasks (four in each of the interfaces). At the end of the

study the subjects completed the preference questionnaire. The study took 30 minutes,

including the training and the questionnaires.

The time that the subjects spent in using each interface was recorded (successful

completion time of a task) along with the number of queries submitted per task. The

times did not include program startup times.

6.5 Results

6.5.1 Time for Completing Tasks

Figure 6.3 summarizes the times for completing each of the task types for our

subjects (clearly specified: T1’, unclearly specified T2’) for each of the user interfaces.

For T1’ tasks, the ExpO System yielded slower performance than the form fillin interface

(t(31) = 2.17, p < 0.05). For T2’, the ExpO System yielded faster performance than the

form fillin interface (t(31) = 9.46, p < 0.05). The statistical analysis used two-tailed

paired two-sample t-test for means. Each task was considered separately leading to a

degrees of freedom of 31.

6.5.2 Subjective Satisfaction

The subjects answered six questions about their preferences on a 1 to 9 scale (with

higher numbers indicating stronger preferences). The first question addressed the general

preference of subjects for using either of the interfaces (Figure 6.4). The results show a

 95

statistically significance preference (t(15) = 6.37, p < 0.05) for the ExpO System over the

form fillin interface. The rest of the questions asked what the subjects thought about the

user interfaces. The results (average scores, standard deviations, minimums, and

maximums) appear in detail in Figure 6.5.

Task Completion Times

19.3 16.9 26.3
47.5

0
25
50
75

100

Ti
m

es
 (s

ec
.)

T1' T2'

EO FFN' FFN'EO

Figure 6.3: Average task completion times where the rectangles show the standard

deviations and the vertical lines indicate the ranges. EO stands for the ExpO System and

FFN’ stands for the form fillin interface. The number of subjects used is sixteen.

User
Preference

7.6 4.5

1

9

EO FFN'

Figure 6.4: User preference for sixteen users

 96

The scores for all of the questions were statistically significantly above the mid-point

scale value of five (t(15) = 16.43, 5.84, 5.33, 13.49, and 9.30 respectively, p < 0.05).

Results of the Questionnaire

8.0
7.1 7.2 7.8

7.8
1

9

Help ful? Faster? Enlighten? Enjoyab le? Use it aga in?

Figure 6.5: Subject questionnaire results (number of users is sixteen). Higher numbers

indicate higher satisfaction for using the ExpO System.

6.5.3 Query Submission Counts

An extra piece of data that was collected in the second study was the number

of queries submitted for each task (Figure 6.6). The results show a statistically

significant difference (t(31) = 22.39, p < 0.05) for the ExpO System with the T2’

tasks. For T1’, the difference was not significant (t(31) = 1.44, p < 0.05).

Figure 6.6: Number of queries submitted

Submission Counts

7.3
1.01.21.1

0
4
8

12
T1' T2'

EO FFN' FFN'EO

 97

6.6 Discussion on the Results

Our findings support the hypothesis that for unclearly specified tasks, the generalized

query previews yields better performance times and counts than the form fillin interface.

For the unclearly specified tasks the improvement in performance was significant (at the

level of 0.05): 1.8 times faster. The counts were also more than 7 times better. For the

clearly specified tasks (T1’), as expected, the form fillin interface performed slightly

better in performance time, but no statistically significant difference was observed for the

submission counts.

6.6.1 Clearly Specified Tasks (T1’)

As expected, users of the form fillin interface for clearly specified tasks performed

more rapidly since they were able to find the answer by submitting a single form fillin

query. The generalized query previews had no advantage as users were performing

known-item searches and they did not require an overview of the data. However, users of

the sample ExpO System performed only slightly worse (14% slower). In addition to this,

the number of queries submitted did not change.

6.6.2 Unclearly Specified Tasks (T2’)

The generalized query previews enabled the users to see immediately which of the

possible queries should be used. On the other hand, in the form fillin interface, the users

had no clue about which of the possible queries will give the expected results. They had

to try several possible queries, submitting many queries (on average 7 times more) until

they got a satisfactory answer. Although the response time for each such query was

immediate, the time for filling in the right specifications of each query caused significant

differences in performance.

 98

6.6.3 Subjective Satisfaction

The users (statistically significantly) preferred the generalized query previews to the

form fillin interface. They stated that the generalized query previews was helpful,

enabling them to search faster and learn more about the data (scores for these questions

were statistically significantly above the mid-point value). I believe that this subjective

satisfaction comes not only from the improvement in performance time which is

experienced by the subjects but also from gaining better control in performing the tasks.

Yet, many of the users experienced some problems understanding the concept of a view

and adopting to the bar expansions when they first started using the ExpO System. These

problems seem to diminish quickly with user experience.

6.6.4 User Comments

Users specifically stated that the ExpO System:

• Made them feel more familiar with the data,

• Gave them more information about the data,

• Let them define queries in a more interactive fashion,

• Is a better candidate for long term usage, especially on categorical data, but

• Can get confusing and burdensome to use for simple (know-item) queries,

• Can get confusing if there are many selections on many attributes, and

• Can get difficult to use for defining general (SQL like) queries.

The users also stated that the form fillin interface they used in the study:

• Was a simple to use but boring interface,

• Required them to understand and remember the data and their actions,

• Made them probe data blindly, and

 99

• Could only be used if you know what you are looking for.

6.7 Summary

This study supports the claim that benefits of generalized query previews exceed the

overhead of the generalizations. The benefits will amplify on real-life situations where

congested networks over long distances are used. However, an overhead due to the

generalizations still exists. The first study showed up to 2.1 times performance

improvement while this study showed 1.8 times improvement for similar tasks. Hence,

we can claim that there is some degradation in the user performance in the second study

due to the generalizations. Yet, the performance improvement remained to be significant.

Implementers of generalized query previews interfaces should continue to be cautious

about their application domain in terms of the query types. Generalized query previews

was not meant to attack the issues that may appear in known-item searches or efficient

formulation of general SQL queries. Although the number of query submissions did not

change in the worst-case, the time to analyze an overview panel should still be considered

before implementing an application.

In this study, we observed almost an order of magnitude of difference between the

number of queries submitted among the two interfaces for some tasks. This was also

observed during the first study without any statistical analysis. The second study shows

that this difference is in fact statistically significant. This result also confirms the notions

of the predictive model from our first study. The number of query submissions is crucial

and can be reduced by using overviews and previews.

 100

The major limitation of both of the user studies remains to be the lack of variety of

the task types. More varied tasks should be used in the future studies to investigate and

quantify the relationship between task types and the performance time improvements.

 101

CHAPTER 7:
ALGORITHMS AND DATA STRUCTURES

7.1 Internal Architecture

The generalized query previews user interface architecture utilizes a client-server

approach for storing, computing, and transferring data (Figure 7.1). It works with three

different types of data within this approach. The first type is the database schema. This is

a hierarchy of database table and attribute names. It is requested from the server as soon

as the program starts on the client. The second type is the distribution information. This is

requested only when needed, i.e., during the chart expansions. The third one is the raw

data that is fetched up on a user query submission.

Figure 7.1: The architecture for storing, computing, and transferring data internally in

generalized query previews, shown on the sample ExpO System

Database Schema

Distribution Information

Raw Data

Client Server

Schema is
sent at
startup time.
Distribution
is sent when
needed.
Data is sent
when a query
is submitted.

 102

7.1.1 Database Schema

As soon as the generalized query previews implementation (e.g., ExpO) starts

working on the client, a request for the database schema is sent to the server. Unless there

is a connection error this information is sent back to the client instantaneously from the

server. The size of the schema is generally very small and delays during this connection

are unnoticeable by the user. The database schema is brought only once and stored on the

client through out the session.

Generalized query previews uses only a part of the database schema. The database

schema is a shallow tree for a generalized query preview implementation. The root is

tagged with the name of the database. The first level represents a list of the names of the

database tables and the second level represents a list of the names of the attributes

forming these tables. The schema also contains the tags for tracking various types of

other information, i.e., whether an attribute is a primary key for that table or not, whether

any distribution information for that attribute exists or not, etc. A sample schema is

shown in Figure 7.2 from a generalized query preview implementation (i.e., ExpO) point

of view. The internal representation for the schema is a table containing a hierarchy of

database table and attribute names, stored as a list (also shown in Figure 7.2).

Updates on the database schema are not visible to the client during an open session.

The updates can only be viewed when the user restarts the program and hence the

connection to the server. Assuming that the database schema is a fairly stable entity of the

database, updating it rarely should not cause major consistency problems for the users.

Like all the other data communications with the server, the database schema is just a

read-only entity and cannot be altered by the users. Security is maintained by an internal

 103

password mechanism triggered at the startup time. This is a transparent operation for the

user.

Figure 7.2: A sample database schema (in ExpO System) showing the table, the attribute

names of a database (left), and a sample internal representation of this schema as a simple

list (right)

7.1.2 Raw Data

When the user decides to obtain the raw data for a query, the fetch button can be used

to trigger a parsing operation. This is virtually transparent to the user. The operation is

performed on the user-defined view where the chart selections are made. The query is

immediately converted to an SQL query and then sent to the server. Depending on the

size of the result set, complexity of the query, and the network workload, the result set is

returned (Figure 7.3). Some special case handling may be required at this stage to avoid

unnecessary network problems and loading delays depending on the application. For

example, queries requesting more than a certain maximum size of the result set may be

 104

avoided, or results can be truncated after the submission. Multi-threaded implementations

may be needed.

The result set is a user-defined view of the database. It is presented as a simple list of

hits mapping to the most recent query. Later on, if desired, it can be forwarded to a local

program such as a spreadsheet, visualization tool, etc. Updates on the raw data are visible

from one query submission to another.

Figure 7.3: A sample result set presented as a simple list. It is also represented as a simple

list internally.

7.1.3 Distribution Information

Distribution information forms the core of the data transfers for the generalized query

previews. Although the size of the distribution information is generally negligible in

 105

comparison to the size of the raw data (and hence more efficient to transfer), it plays a

dominant role in the network connections and during the query formulation process of

generalized query previews.

 The database should automatically maintain this information via some triggers and

batch processes. Recent database research led to the creation of a new generation of

databases, data warehouses. Data warehouses enable users perform online analytical

processing (OLAP) of large amounts of data. These use similar types of aggregate

metadata (e.g., sums, maximums, minimums, etc.) to the distribution information of the

generalized query previews. They maintain the aggregates regularly and efficiently via

specialized methods [BS96] [CD97] [Gra97] [Rou97]. Hence, creation and maintenance

of aggregates has become easier and more efficient with these advanced methods.

The distribution information is required to compute and update the charts that are

attached to the user-defined views. Views can be formed of numerous attributes. These

attributes can only come from tables that have some common attributes (i.e., identifiers).

The common attributes allow the tables to be joined to form a user-defined view. This

operation is thoroughly transparent to the users.

Distribution information is stored as multi-dimensional arrays on the server. For each

chart combination, there may be a separate multi-dimensional array and this array may be

requested from the server when that certain set of charts is expanded. Figure 7.4 displays

a sample combination and its related multi-dimensional array using a snapshot from the

ExpO System. These arrays are highly scalable. As the size of the database increases only

the count information changes, but the sizes of the multi-dimensional arrays does not

increase. During my field experience with NASA, I observed that increases in the raw

 106

data could lead to large differences between the sizes of the multi-dimensional arrays and

the raw data. For example, all of my prototypes for NASA used arrays of size 100Kbytes

or less where the raw data ranged from a few megabytes to many tens of megabytes. This

experience increased my confidence on the applicability and scalability of the multi-

dimensional arrays.

Figure 7.4: A sample two-dimensional array that represents the distribution information

for a certain combination of charts, i.e., tax status vs. number of employees

Yet, the size of the multi-dimensional arrays can change in size with the number of

dimensions used in these arrays and buckets used in each of these dimensions. For

example, the array in Figure 7.4 has two dimensions. It also has four buckets for the

number of employees dimension and two buckets for the tax status dimension. Hence, the

T ax S ta tu s /
N u m b er o f
E m p loyees

0

to

99

100

 to

 999

1000

 to

 9999

10000

 an d

A b ove

N on T axab le 22 5 121 24

T axab le 5 70 1645 727 138

 107

size of this particular multi-dimensional array will be the storage size of eight integers.

The increase in any one of these dimensions in terms of the number of buckets they

require will cause a linear increase in the size of the multi-dimensional array. If we were

to increase the number buckets for the number of employees from four to five, the new

size of the array will increase by two integers (for the two new tax status counts).

Unfortunately, adding a new dimension creates a more dramatic change in the size of the

multi-dimensional array. If we were to add another dimension to the array of Figure 7.4

that contains four new buckets, then the array size will quadruple immediately.

Figure 7.5: A sample selection operation and a related update on the second chart

Selections on a chart trigger the updates on the other charts. The multi-dimensional

array is traversed to find the mapping slices of distribution information to these

T ax S ta tu s /
N u m b er o f
E m p loyees

0

to

99

100

 to

 999

100 0

 to

 99 99

10000

 an d

A b ove

N on T axab le 22 5 121 24

T axa b le 570 1645 727 138

Slice

 108

selections. These are continuously printed on the screen as the users continue their

selections. Figure 7.5 shows such an update.

7.2 Challenges of the Internal Architecture

The challenges of the internal client-server architecture can be divided into two

categories:

• Manipulation challenges,

• Representation challenges.

The manipulation challenges are observed when the user wants to make selections on

more than a few attributes of the database at the same time. Not only tracking the updates

on multiple charts, but also maintaining the distribution information for these charts

becomes difficult.

Experience shows that, users are not comfortable in tracking the updates on four or

more charts. Hence, users need to collapse some of the charts to continue their queries on

the other attributes.

In addition to this, arrays of four or more dimensions can easily become cumbersome

to transfer over the network. This problem can be bypassed by downloading the raw data

itself after the first few selections. This brings a solution to the number of dimensions

manipulated simultaneously without downloading large amounts of raw data. The initial

selections are generally selective enough to prune the data down to a manageable size.

This approach should be implemented as a transparent operation to the user.

The representation challenges are more difficult to handle. The multi-dimensional

array representation for the distribution information is effective for many of the data

 109

types. On the other hand, some of the data types cannot be handled easily with the multi-

dimensional array approach.

The multi-valued data types have the most generalized version of these challenges.

Temporal data forms a good example to show it. A record covering a range of dates in a

temporal database is a record that contains a multi-valued attribute. This may result in the

duplication of the same record in the multi-dimensional array. It is counted once for each

date it spans. Hence, the distribution information represented with the array is no longer

the same information represented with the actual data set itself.

Similar situations are observed with the NASA prototypes of the query previews,

where a satellite picture maps onto multiple regions of earth and not to a single longitude

and latitude (i.e., a geographical point). The situation is more dramatic when large and

multiple ranges of values are used in a database. This may result in more erroneous

representations of the data with high levels of duplication. Therefore, to accommodate

multi-valued data types and hence attack the representation challenges, the multi-

dimensional array approach must be extended.

7.2.1 Focusing on the Multi-valued Data Types

Multi-dimensional arrays are fundamental for storing the distribution information.

Figure 7.6 shows a sample array used for this purpose. This sample will be used

throughout this section to traverse the multi-valued data type challenges in depth.

 110

Figure 7.6: A sample multi-dimensional array. Each of the dimensions of this array

represents an attribute. The counts give the number of records that map to the associated

values of the two attributes. An example range query is shown as a colored rectangle, Q.

The distribution information shown with these arrays do not thoroughly represent the

multi-valued attributes. For example, the array presented in Figure 7.6 could be used to

accurately display the seven records given in Figure 7.7, but not the ones given in Figure

7.8. The reason for this is that we lose track of some of the overlapping information in the

second data set. We can never know whether the last four items of the multi-dimensional

array has come from a single record that has some range values (Figure 7.8) or from four

separate records (Figure 7.7). The intersection information is lost in the conversion.

The range query shown in Figure 7.6 matches to two separate records of the single-

valued data set shown in Figure 7.7. However, there is only one record that actually maps

to both of the data points when the multi-valued data from Figure 7.8 is used.

0 1 2 0

0 0 1 1

0 0 1 1

0 0 0 0

W

X

Y

Z

K L M N Attribute #1

Attribute #2 Q

 111

Figure 7.7: A sample single-valued data set. Records 6 and 7 form the answer for the

range query shown in Figure 7.6 (colored rectangle Q).

Figure 7.8: A sample multi-valued data set. Record 4 forms the only answer for the

range query presented in Figure 7.6 (colored rectangle Q).

We can always duplicate the multi-valued record of Figure 7.8 into multiple separate

records. However, this may increase the data size without adding much useful

information. Similar problems were also observed for the data structures presented by

[TBS97] for dynamic queries.

7 N Y

1 L W

2 M W

3 M W

4 M X

5 N X

6 M Y

Id Attribute #1 Attribute #2

Q

1 L W

2 M W

3 M W

4 M - N X - Y

Id Attribute #1 Attribute #2

Q

 112

7.2.2 Ranges

Our research on multi-valued data types revealed some solutions for some of the

subsets of the multi-valued data types [BT98]. If the data is range data consisting of

single intervals and if the queries are range queries consisting of continuous single

ranges, then some modifications on the multi-dimensional arrays may solve the problems.

For range queries that are defined in two dimensions and for range data with two

attributes, Figure 7.9 gives such a modification on the multi-dimensional arrays to form a

new data structure. This approach can make the arrays work without transferring the

actual data over the network and without drastically increasing the querying times. It is

also generalizable to any number of dimensions.

Using Euler's well-known formula as a basis for this approach, the changes can be

explained more easily from a geometrical point of view, as presented in Figure 7.10. This

also gives an insight for the generalization of the approach to multi-dimensions. F

represents the faces, V represents the vertices, and E represents the edges. F is equal to 2

for our example query in Figure 7.9. Similarly, E is 1 and V is 0. Therefore, the answer is

2 - 1 = 1, as it is the case in Figure 7.6 where we only have a single multi-valued record

as an answer to our range query.

The idea in this new approach is to keep the counts for the intersecting boxes along

with the actual duplicated counts of the data. Note that, we can only find the non-

duplicated cardinality for a query using these intersections, if the record is continuously

covering a single region and similarly the query contains a single continuous interval.

 113

Figure 7.9: The counts in the colored boxes are the cardinalities of the intersections

between any two neighboring-boxes of the original array. The same query rectangle Q

from Figure 7.6 is used for this figure. The data is from Figure 7.8.

Figure 7.10: Representation of the approach formulated by using Euler's formula

Additions and subtractions for a small array may not be very costly. On the other

hand, large arrays should be preprocessed using a prefix sum approach, shown in Figure

7.11. Then, the results for any range query could be found more efficiently per query.

Result = F + V - E

F = Sum of all face counts inside the query

E = Sum of all edge counts inside the query
V = Sum of all vertex counts inside the query

 K L M N

0 1 2 0

0 0 1 1

0 0 1 1

0 0 0 0

X

Y

Z

W

Attribute #2

Attribute #1

 Q

0

0

0

0

0

0

0 0

1 1

0 0

0 0 0

0 0 1

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

Vertex

Edge

Face

 114

Figure 7.11: The prefix summed version of the data in Figure 7.10

Prefix sums are taken from left to right and then from top to bottom using the counts

on the faces, edges, and vertices, of the boxes in Figure 7.10. Q denotes the range query

region. This is the same region with Figure 7.6. The answer to the query is computed

using the formula given for Q in Figure 7.11. The prefix summed counts on the right

bottom corner box of each rectangle of Figure 7.11 should be used for the calculation of

the answer for Q. If the same data from Figure 7.8 is used, then A is 1, B is 3, C is 1, and

D is 4. Hence, 4 - 3 - 1 + 1 = 1. This is the right answer to our query Q. Note that this

value is equal to the value found using the formula derived by using the Euler's formula.

A batch process can compute the prefix sums. Hence, at querying time, the server

needs to process only the single addition and the two subtraction operations to find the

answer.

D

Q = D – B – C + A

Attribute #1

B

0

1

2

0

0

0

1

1

0

0

1

1

0

0

0

0

K L M N

X

Y

Z

W

Attribute #2

0

0

0

0

0

0

0 0

1 1

0 0

0 0 0

0 0 1

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

C

A

 115

The alterations have changed the size of the multi-dimensional arrays. However, this

increase is only by a small factor and will not dramatically effect the transfer times for

the arrays.

7.2.3 Generalized Multi-valued Data Types

The alterations for single ranges can easily be generalized to any number of

dimensions. Unfortunately, any number of ranges with any number of dimensions is a

much harder problem to solve.

By using exhaustive tables for all possible intersections between the multi-

dimensional array cells, the problem with any number of ranges can be solved in a less

scalable manner than the single ranges.

In this section, a formal definition of the multi-valued data type issues will be

presented. For detailed proofs and generalizations please refer to [BT98].

Formally, lets say a record from some data set with d attributes creates a d-

dimensional multi-valued attribute problem when all of the attributes are of multi-valued

data types. And lets define:

• N = {0,1,…}, the set of natural numbers,

• Nd is the set of all d-dimensional lattice points in the 1st quadrant,

• An interval is a set {a,a + 1,…,b} of consecutive natural numbers,

• A generalized interval is a subset of N,

• A rectangle in Nd is a cross-product I1 x … x Id of d intervals I1 , … , Id ,

• A generalized rectangle in Nd is a cross-product I1 x … x Id of d generalized

intervals I1 , … , Id .

So the two main problems of interest are:

 116

• Rectangle Intersection Problem:

o Data to be preprocessed: A list of D rectangles in Nd,

o Problem Instance: A single rectangle Q in Nd,

o Question: How many elements of D intersect Q ?

• Generalized Rectangle Intersection Problem:

o Data to be preprocessed: A list of D generalized rectangles in Nd,

o Problem Instance: A single generalized rectangle Q in Nd,

o Question: How many elements of D intersect Q ?

Hence, formally, the Generalized Rectangle Intersection Problem maps to our general

multi-valued data type problem on a d-dimensional space, and the Rectangle Intersection

Problem maps to the single range version of it.

Now, consider the worst-case scenario. Let R denote a fixed rectangle in Nd that

contains each element of D and with the intersection alterations we are trying to solve:

• The Rectangle Intersection Problem with O(ρ) preprocessing time per element of

D, using tables of size ρ, in time O(d2d) per query,

• And similarly, the Generalized Rectangle Intersection Problem with exhaustive

tables of size 2n
12n

2…2n
d for all possible intersections.

Where:

• ρ = (2n1-1)…(2nd-1) < 2d |R | and

• R is an n1 x … x nd rectangle.

Therefore, we can observe that the Rectangle Intersection Problem scales much better

than the generalized one.

 117

For each d-dimensional cube c, let #(c) denote the number of rectangles r in the list D

such that the interior r intersects the interior of c. In particular, the answer to the query Q

is #(Q). We have:

#(Q) = Σ0 ≤ k ≤ d (-1)d – k Σ c is a k-dimensional unit cube in the interior of Q #(c)

Why? Because each rectangle in D that does not intersect Q contributes ‘0’ to the

sum, and each rectangle in D that intersects Q contributes ‘1’ to the sum. The derivation

of this general formula for any number of dimensions using Euler’s theorem is in [BT98].

Let dim(r) denote the dimension of a rectangle. If we stored (-1) d – dim(c) #(c) for each

unit cube c, then we could compute the sum specified in #(Q) by summing over each unit

cube contained in Q. Better yet, if we stored d-dimensional prefix sums, we can evaluate

that sum in constant time. For each unit cube a we store Σ b ≤ a (-1) d – dim(b) #(b), where the

inequality must hold on every coordinate. Given such a table, the sum specified in #(Q)

may be obtained with 2d – 2 additions and subtractions, by the principle of inclusion and

exclusion. The total storage needed is the number of unit cubes interior to R whose

dimension is d or less, which is exactly ρ.

7.2.4 Optimizations

Different data types may require different versions and sizes of multi-dimensional

arrays to be used for representing the distribution information. Although the sizes of these

arrays do not change with the updates on the raw data, some of these arrays can get

considerably large with the increasing number of dimensions, buckets, etc. There are

various methods to optimize the access mechanisms and sizes of such arrays:

• Materialization of frequently asked queries is a standard database optimization

technique. Similarly, only a subset of the large arrays can be sent over a network

 118

to optimize the transfer times. Portions of the array that are known to be used with

high frequency and queries that are common on such portions of the arrays can be

used to materialize some of the answers for the distribution update queries on the

server.

• Another method is to reduce the number of buckets used per attribute for some of

the less frequently used dimensions of the arrays.

• One method is to restrict the number of selections and selection patterns over an

attribute. This may reduce the number of the intersection counts kept for a multi-

valued data set.

• Analyzing the data for the intersecting array cells may be used to restrict the need

for a large set of exhaustive tables. Sparse data sets may contain fewer

intersections or only a few clusters of intersections that can lead to compressed

representations of the multi-dimensional arrays.

• Restricting the number of attributes manipulated simultaneously is another simple

but effective method.

• Cases where the availability of data, instead of the exact distribution of data is

needed can lead to other optimization methods. The size of the tables can be

reduced dramatically by compressing the information kept in these arrays. For

example, using the similar methods to the ones presented in 3.2.3, i.e., binary

previews, only the boolean representations of the distribution information can be

considered. Bitmaps can be used instead of integer arrays.

These methods can be combined to obtain more optimal solutions than a single

method would provide.

 119

7.3 Software Implementation Issues

The generalized query previews user interface architecture requires the following

modules to be implemented, installed, and maintained for a sample application:

• A client module that contains the database schema related communication

protocols and implements the presentation and manipulation code for the schema

component of the generalized query previews user interface architecture,

• A client module that contains the raw data related communication protocols and

implements the presentation and the transportation (to a local program) code for

the raw data component of the generalized query previews user interface

architecture,

• A client module that contains the distribution information related communication

protocols and implements the presentation and query formulation code for the

distribution information component of the generalized query previews user

interface architecture,

• A client module that integrates all the client modules and transports information

from one module to another,

• A database management system and a series of database server programs that will

create and update the related parts of the schema and the distribution information.

In the context of my sample implementation, the ExpO System, the following

modules were implemented in Java (using JDK-1.2) that are integrated as an applet

(Figure 7.12):

• A client module was implemented to obtain the database schema information such

as the table and attributes names and some distribution information tags from the

 120

database server. This module uses simple general SQL queries to obtain the

information from a relational database server. It uses a hierarchical representation

to present and let users manipulate the information,

• A client module was implemented to download the raw data, i.e., results of a

query and present them as a list. The results can be forwarded to a spreadsheet,

• A client module that help users form queries using the distribution information. It

displays and helps users manipulate:

o A user-defined view with a hierarchical browser. This structure is formed

of attribute names and buckets for different attribute values,

o A series of charts attached to the user-defined view. These are

implemented by using Java-Swing. This modular implementation enables

a simple path for future advancements. Different types of charts can easily

be implemented and plugged into the current system with minor changes,

o A result bar showing a preview for a query,

o A sub-module to maintain the current user query and download the

distribution information when needed,

• A client module to integrate the three components of the applet, reset them when

needed, and pass information between them such as the results of a user query.

The client program connects to a Postgres Relational Database Server installed on a

Sun Ultra-1 workstation. Querying is always done by using the simple general principles

of the SQL querying language. This makes the implementation easily convertible to

another database/client-applet pair when needed. The distribution information is created

 121

by some simple batch queries. It is assumed to be static for the current database and the

applet implementation.

Three versions of the applet were implemented (about 5,000 lines of code excluding

the comments). The coding effort for query previews is not included in these versions.

Figure 7.12: The software implementation and integration for the ExpO System

7.4 Summary

In this chapter, the internal architecture for generalized query previews and some

software implementation issues are described. The internal architecture is a client-server

Postgres Server

Batch Programs

Sun Ultra-1 Station

Storage
Applet Integration Module

Client Computer

User I/O

Schema

Raw Data

User View

Result Bar

Distributions

Charts

Local Spreadsheet

SQL

 122

architecture, where the database schema, the raw data, and the distribution of data form

the basis of all the communications.

The challenges for manipulating and representing multi-dimensional arrays are

presented for the internal architecture. Some approaches for attacking these challenges

are introduced.

Multi-valued data types form the root for most of the challenges. This dissertation

contributes to the field of algorithms and data structures by introducing a method for

partially solving the problems introduced by the multi-valued data types.

 123

CHAPTER 8:
CONCLUSION

8.1 Contributions and Benefits

There are three main contributions of this dissertation to the field of visual data

mining and information visualization and to the field of algorithms and data structures.

First, the generalized query previews work introduces a general user interface

architecture for browsing large online data sets. Using metadata (i.e., the distribution of

data) for browsing and pruning raw data is an intriguing idea. Especially, when the data is

stored in a remote location, accessing only the metadata can be very efficient. Metadata

also does not grow with the size of the raw data. Only the distribution information, but

not the size of the distribution information is updated. Showing the results set size before

accessing the results is another intriguing idea. Users can immediately see what they

should expect from their query submissions. Also, simple hierarchical display and

creation of a user-defined view is a very intuitive idea for defining queries. In summary,

using overviews and previews enables efficient and intuitive browsing of large online

data and is often a dramatically faster alternative to traditional approaches for accessing

such types of data.

 Second, field studies and experimentation clarified the application domain for

generalized query previews and led to a cognitive model that predicts user performance

with a range of tasks. Generalized query previews is especially useful when users need to

probe the data. The approach helps users refine their queries and guides them in the query

formulation process. Situations where users know what they want from the data are not

 124

the strong cases for generalized query previews. Identifying these strengths and

weaknesses will make the generalized query previews more applicable to real-life

situations.

Third, this dissertation makes contributions to the field of algorithms and data

structures. Usage of multi-dimensional arrays for storing data distributions is a common

approach and especially multi-valued data tends to weaken it. New data structures and

algorithms will be useful in strengthening the applicability of generalized query previews

and other such approaches.

8.2 Future Work

Many avenues can be investigated as future work on generalized query previews.

First, working on multiple views rather than a single user view can be considered. In

many cases, users may want to form two separate queries simultaneously.

Second, using a hierarchy of charts rather than a single level of charts can be

investigated. This may help users to drill-down into the data (e.g., from years to months,

months to weeks, etc).

Third, using more varied approaches for displaying the data distribution may be

worth exploring. For example, scatter plots may be more useful for some types of data in

comparison to other visual aids such as the bar charts. Shneiderman in [Shn94] mentions

the need for a scatter plot widget for certain types of applications, Figure 8.1. Figure 8.2

shows another similar scatter plot. Hence, utilizing a variety of visualizations may be

helpful in understanding and querying different types of data.

Fourth, working with user-defined buckets rather than the predefined ones may form

a promising idea. Users may want to set the border values for the buckets rather than

 125

using the predefined ones. Unfortunately, some types of attributes, like the gender of a

person, may not be suitable for this idea. Plus, creation of such buckets can take time.

Figure 8.1: A two-dimensional widget for displaying and selecting data. In this

example white regions indicate the areas where there is not any available data. The gray

region indicates the area where the data is available. The dark gray box indicates a

sample user query that will not return zero-hits.

Fifth, a wide avenue of ideas can be investigated for creating methods to efficiently

manage some of the server functions (e.g., distribution information creation and design,

efficient online updates with dynamic data, etc).

Sixth, creating a history keeping mechanism for generalized query previews is a

useful idea. Users may want to look at their previous queries and results (not only within

a session, but also between sessions). They may want to compare them to the current

ones since this may show them some insight about the trends in data.

 126

Figure 8.2: A scatter plot is shown using three concave hulls presenting the borders of

the three main clusters of the underlying data. Multiple iso-surfaces are used in the large

cluster to display the data distribution information. The exact counts mapping to a certain

grid location are visible upon a user request.

Finally, applications on web-page searches can also be considered as a separate

research direction. Internet with a large collection of web-pages forms an unstructured

large online database. Using the distribution information in tandem with the classical

keyword search mechanisms can be useful for the users of the Internet search engines.

Similar ideas have already started to appear as prototype applications for certain subsets

of the Internet. Figure 8.3 shows such an application for displaying the results of a search

operation.

 127

Figure 8.3: The i411.com web-site contains a keyword search mechanism that is

concatenated with a list of intermediate search result categories. The number of hits is

shown for each of these categories. Users can select a certain category in this window

that will confine the result set to a single category.

 128

8.3 Summary

Generalized query previews forms a user interface architecture for efficient browsing

of large online data. It supplies data distribution information to the users. It also gives

continuous immediate feedback about the size of the result set as the query is being

formed. Generalized query previews works on metadata that is generally much smaller

than the raw data. As users make informed queries by seeing this metadata, they can

easily avoid submitting zero-hit and mega-hit queries over a network. Users can find and

see what they want in the data and how it is organized. Hence, the problem of blind

formation of queries is solved in an efficient and simple manner.

Field experience and controlled experimentation also supports this claim that

generalized query previews form a promising architecture for efficient browsing of large

online data. Except for the cases of known-item searches the idea has merits in

investigative querying. In all cases, users are happy to see the overview of the data.

Future implementations and the research of visual data mining and information

visualization for browsing large online data will hopefully benefit from this work.

Software engineers can use the generalized query previews architecture to improve their

tools. Researchers can work on the suggested future work to enhance the underlying

ideas.

 129

REFERENCES *

[AS94] Ahlberg, C. and Shneiderman, B., “Visual Information Seeking: Tight
Coupling of Dynamic Query Filters with Starfield Displays”, Proceedings of
the ACM CHI’94 Conference, pp. 313-317, (1994).

[AWS92] Ahlberg, C., Williamson, C., and Shneiderman, B., “Dynamic Queries for

Information Exploration: An Implementation and Evaluation”, Proceedings of
the ACM CHI’92 Conference, pp. 619-626, (1992).

[AW95] Ahlberg, C. and Wistrand, E., “IVEE: An Information Visualization and

Exploration Environment”, Proceedings of the IEEE Information
Visualization Symposium, pp. 66-73, (1995).

[ACS96] Aiken, A., Chen, J., Stonebraker, M., and Woodruff, A., “Tioga-2

(DataSplash): A Direct Manipulation Database Visualization Environment”,
Proceedings of the 12th International Conference on Data Engineering, pp.
208-217, (1996).

[AEP96] Antis, J., Eick, S. G., and Pyrce, J., “Visualizing the Structure of Relational

Databases”, IEEE Software, 13(1), pp. 72-79, (1996).

[Bec97] Becker, B. G., “Volume Rendering for Relational Data”, Proceedings of the

IEEE Information Visualization Symposium, pp. 87-90, (1997).

[BEW95] Becker, R. A., Eick , S. G., and Wilks, A. R., “Visualizing Network Data”,

IEEE Transactions on Visualization and Computer Graphics, 1(1), pp. 16-28,
(March 1995).

[BT98] Beigel, R. and Tanin, E., “The Geometry of Browsing”, Proceedings of the

Third Latin American Conference on Theoretical Informatics, pp. 331-340,
(1998).

[BO94] Berkin, A. L. and Orton, M. N., “LinkWinds: Interactive Scientific Data

Analysis and Visualization”, Communications of the ACM, 37(4), pp. 42-52,
(1994).

[Ber83] Bertin, J., “Semiology of Graphics”, University of Wisconsin Press, Madison,

Wisconsin, (1983).

 130

[BDH94] Bowman, C. M., Danzig, P. B., Hardy, D. R., Manber, U., and Schwartz, M.
F., “The Harvest Information Discovery and Access System”, Proceedings of
the Second International Conference on the World Wide Web, pp. 763-771,
(1994).

[BCS96] Buja, A., Cook, D., and Swayne, D., “Interactive High-Dimensional Data

Visualization”, Journal of Computational and Graphical Statistics, 5(1), pp.
78-99, (1996).

[BS96] Byard J. and Schneider, D., “The Ins and Outs (and everything in between) of

Data Warehousing”, Proceedings of the ACM SIGMOD’96, (1996).

[CMP95] Capobianco, F., Mosconi, M., and Pagnin, L., “Progressive HTTP-Based

Querying of Remote Databases within the Marmotta Iconic VQS”,
Proceedings of the IEEE Information Visualization Symposium, pp. 122-125,
(1995).

[CMS99] Card, S., Mackinlay, J. D., Shneiderman, B., “Readings in Information

Visualization Using Vision to Think”, Morgan Kaufmann, San Francisco
(1999).

[CRM91] Card, S., Robertson, G., and Mackinlay, J. D., “The Information Visualizer,

An Information Workspace Information Visualization”, Proceedings of the
ACM CHI’91 Conference, pp. 181-188, (1991).

[CCL95] Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C., "Visual Query

Systems for Databases: A Survey", Technical Report, SI/RR-95/17,
Dipartimento di Scienze dell'Informazione, Universita' di Roma La Sapienza,
(1995).

[CD97] Chaudhuri, S. and Dayal, U., “An Overview of Data Warehousing and OLAP

Technology”, ACM SIGMOD Record, 26(1), (1997).

[Chi00] Chi, E. H., “A Taxonomy of Visualization Techniques using the Data State

Reference Model”, Proceedings of the IEEE Information Visualization
Symposium, pp. 69-75, (2000).

[CRM95] Chuah, M. C., Roth, S. F., Mattis, J., and Kolojejchick, J., “SDM: Selective

Dynamic Manipulation of Visualizations”, Proceedings of the ACM UIST’95
Conference, pp. 61-70, (1995).

[DPS96] Doan, K., Plaisant, C., and Shneiderman, B., “Query Previews in Networked

Information Systems”, Proceedings of the Forum on Advances in Digital
Libraries, IEEE Society Press, pp. 120-129, (1996).

 131

[DPS97] Doan, K., Plaisant, C., Shneiderman, B., and Bruns, T., “Query Previews in
Networked Information Systems: A Case Study with NASA Environmental
Data”, ACM SIGMOD Record, 26(1), pp. 75-81, (1997).

[ERG89] Egan, D. E., Remde, J. R., Gomez, L. M., Landauer, T. K., Eberhardt, J., and

Lochbaum, C. C., “Formative Design Evaluation of Superbook”, ACM
Transactions on Information Systems, 7(1), pp. 30-57, (1989).

[Eic94] Eick, S. G., “Data Visualization Sliders”, Proceedings of the ACM UIST’94

Conference, pp. 119-120, (1994).

[ESS92] Eick, S. G., Steffen, J. L., and Sumner, E. E., "SeeSoft - A Tool For

Visualizing Line Oriented Software Statistics", IEEE Transactions on
Software Engineering, 18(11), pp. 957-968, (1992).

[Eic93] Eick, S. G. and Willis, G. J., “Navigating Large Networks with Hierarchies”,

Proceedings of the IEEE Visualization’93 Conference, San Jose, California,
pp. 204-210, (1993).

[Fei88] Feiner, S., “Seeing the Forest for the Trees: Hierarchical Displays of

Hypertext Structures”, Proceedings of the ACM Office Information Systems
Conference, pp. 205-212, (1988).

[FB90] Feiner, S. and Beshers, C., “Worlds within Worlds: Metaphors for Exploring

n-Dimensional Virtual Worlds”, Proceedings of the ACM UIST’90
Conference, pp. 76-83, (1990).

[GE97] Gershon, N. and Eick, S. G., “Information Visualization”, IEEE Computer

Graphics and Applications, (August 1997).

[GR94] Goldstein, J. and Roth, S. F., “Using Aggregation and Dynamic Queries for

Exploring Large Data Sets”, Proceedings of the ACM CHI’94 Conference, pp.
23-29, (1994).

 [Gra97] Gray, J., “Data Cube: A Relational Aggregation Operator Generalizing

Group-by, Cross-Tab, and Sub-Totals”, Data Mining and Knowledge
Discovery Journal, 1(1), pp. 29-53, (1997).

[GTP99] Greene, S., Tanin, E., Plaisant, C., Shneiderman, B., Olsen, L., Major, G., and

Johns, S., “The End of Zero-Hit Queries: Query Previews for NASA’s Global
Change Master Directory”, International Journal of Digital Libraries, 2(2),
pp. 79-90, (1999).

[Heat95] Heath, L., “Envision: A User Centered Database of the Computer Science

Literature”, Communications of the ACM, pp. 52-53, (1995).

 132

[Hear95] Hearst, M., “Tilebars: Visualization of Term Distribution Information in Full
Text Information Access”, Proceedings of the ACM CHI’95 Conference, pp.
59-66, (1995).

[Hear99] Hearst, M., “User Interfaces and Visualization”, Modern Information

Retrieval, ACM Press, Ricardo Baeza-Yates and Berthier Ribeiro-Neto, pp.
257-323, (1999).

[HES85] Heppe, D., Edmondson, W. S., and Spence, R., “Helping both the Novice and

Advanced User in Menu-driven Information Retrieval Systems”, Proceedings
of the HCI ’85 Conference, British Computer Society Press, pp. 92-101,
(1985).

[ID89] Inselberg, A. and Dimsdale, B., “Visualizing Multi-Variate Relations with

Parallel Coordinates”, Proceedings of the Third International Conference on
Human-Computer Interaction, pp. 460-467, (1989).

[JS91] Johnson, B. and Shneiderman, B., “Tree-maps: A Space-filling Approach to

the Visualization of Hierarchical Information Structures”, Proceedings of the
IEEE Visualization’91 Conference, pp. 284-291, (1991).

[KS98] Kandogan, E. and Shneiderman, B., “Elastic Windows: Design,

Implementation, and Evaluation of Multi-Window Operations”, Software
Practice & Experience, 28(3), pp. 225-248, (1998).

[Kau91] Kaufman, A., "Introduction to Volume Visualization", Volume Visualization,

IEEE Computer Society Press, Los Alamitos, California, pp. 1-18, (1991).

[KK94] Keim, D. A. and Kriegel, H. P., “VisDB: Database Explorations Using

Multidimensional Visualization”, IEEE Computer Graphics and Applications,
pp. 40-49, (1994).

[KPS97] Kumar, H., Plaisant, C., and Shneiderman, B., “Browsing Hierarchical Data

with Multi-Level Dynamic Queries and Pruning”, International Journal of
Human Computer Studies, 46, pp. 103-124, (1997).

[LR96] Lamping, J. and Rao, R., “The Hyperbolic Browser: A Focus + Context

Technique for Visualizing Large Hierarchies”, Journal of Visual Languages
and Computing, 7(1), pp. 33-55, (1996).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D.,

Lawande, S., Myllymaki, J., and Wenger, K., “DEVise: Integrated Querying
and Visual Exploration of Large Datasets”, Proceedings of the ACM
SIGMOD’97, (1997).

 133

[MRC95] Mackinlay, J. D., Rao, R., and Card, S. K., “An Organic User Interface for
Searching Citation Links”, Proceedings of the ACM CHI’95 Conference, pp.
67-73, (1995).

[NPM97] Nation, D. A., Plaisant, C., Marchionini, G. and Komlodi, A., “Visualizing

Websites Using a Hierarchical Table of Contents Browser: WebTOC”,
Proceedings of the Third Conference on the Human Factors and the Web,
http://www.uswest.com/webconference/proceedings/nation.html, (1997).

[NSP96] North, C., Shneiderman, B., and Plaisant, C., “User Controlled Overviews of

an Image Library: A Case Study of the Visible Human”, Proceedings of the
First ACM International Conference on Digital Libraries, pp. 74-82, (1996).

[PBD99] Plaisant, C., Bruns, T., Doan, K., and Shneiderman, B., “Interface and Data

Architecture for Query Previews in Networked Information Systems”, ACM
Transactions on Information Systems, 17(3), pp. 320-341, (1999).

[PMR96] Plaisant, C., Milash, B., Rose, A., Widoff, S., and Shneiderman, B.

“LifeLines: Visualizing Personal Histories”, Proceedings of the ACM CHI’96
Conference, pp. 221-227, (1996).

[RC94] Rao, R. and Card, S., “The Table Lens: Merging Graphical and Symbolic

Representations in an Interactive Focus+Context Visualization for Tabular
Information”, Proceedings of the ACM CHI’94 Conference, pp. 318-322,
(1994).

[Rei91] Reisner, P., “Human Factors Studies of Database Query Languages: A Survey

and Assessment”, ACM Computing Surveys, 13(1), (1991).

[RMC91] Robertson, G., Mackinlay, J. D., and Card, S., “Cone Trees: Animated 3D

Visualizations of Hierarchical Information”, Proceedings of the ACM CHI’91
Conference, pp. 189-194, (1991).

[RM93] Robertson, G. and Mackinlay, J. D., “The Document Lens”, Proceedings of

the ACM UIST’93 Conference, pp. 101-108, (1993).

[Rot00] Roth, S.F., “The SAGE Project”,

http://www.cs.cmu.edu/Web/Groups/sage/sage.html

[RLS96] Roth, S. F., Lucas, P., Senn, J. A., Gomberg, C. C., Burks, M. B., Stroffolino,

P. J., Kolojejchick, J. A., and Dunmire, C., “Visage: A User Interface
Environment for Exploring Information”, Proceedings of the IEEE
Information Visualization Symposium, pp. 3-12, (1996).

 134

[Rou97] Roussopoulos, N., Kotidis, Y., and Roussopoulos, M., “Cubetree:
Organization of and Bulk Incremental Updates on the Data Cube”,
Proceedings of the ACM SIGMOD’97, pp. 89-100, (1997).

[Shn94] Shneiderman, B., “Dynamic Queries for Visual Information Seeking”, IEEE

Software, 11(6), pp. 70-77, (1994).

[Shn96] Shneiderman, B., “The Eyes Have It: A Task by Data Type Taxonomy of

Information Visualizations”, Proceedings of the IEEE Symposium on Visual
Languages’96, pp. 336-343, (1996).

[Shn98] Shneiderman, B., “Designing the User Interface: Strategies for Effective

Human-Computer Interaction”, Addison Wesley, (1998).

[SBC97] Shneiderman, B., Byrd, D., and Croft, W.B., “Clarifying Search: A User-

Interface Framework for Text Searches”, D-Lib Magazine,
http://www.dlib.org/dlib/january97/ retrieval, (January 1997).

[SFR00] Shneiderman, B., Feldman, D., Rose, A., and Ferre Grau, X., “Visualizing

Digital Library Search Results with Categorical and Hierarchical Axes”,
Proceedings of the 5th ACM International Conference on Digital Libraries,
pp. 57-66, (2000).

[Spo93] Spoerri, A., “InfoCrystal: A Visual Tool for Information Retrieval”,

Proceedings of the IEEE Visualization’93 Conference, pp. 150-157, (1993).

[SH00] Stolte, C. and Hanrahan, P., “Polaris: A System for Query, Analysis, and

Visualization of Multi-Dimensional Relational Databases”, Proceedings of the
IEEE Information Visualization Symposium, (2000).

[SFB94] Stone, M. C., Fishkin, K., and Bier, E. A., “The Movable Filter as a User

Interface Tool”, Proceedings of the ACM CHI’94 Conference, pp. 306-312,
(1994).

[SCB98] Swayne, D. F., Cook, D., and Buja, A., “XGobi: Interactive Dynamic

Visualization in the X Window System”, Journal of Computational and
Graphical Statistics, 7, pp. 113-130, (1998).

[TBS97] Tanin, E., Beigel, R., and Shneiderman, B., “Design and Evaluation of

Incremental Data Structures and Algorithms for Dynamic Query Interfaces”,
Proceedings of the IEEE Information Visualization Symposium, pp. 81-86,
(1997).

 135

[TLH00] Tanin, E., Lotem, A., Haddadin, I., Shneiderman, B., Plaisant, C., and
Slaughter, L., “Facilitating Data Exploration with Query Previews: A Study of
User Performance and Preference”, Behaviour & Information Technology,
19(6), pp. 393-403, (2000).

[TPS00] Tanin, E., Plaisant, C., and Shneiderman, B., “Browsing Large Online

Databases with Query Previews”, Proceedings of the Symposium on New
Paradigms in Information Visualization and Manipulation (CIKM), available
from ACM, New York, (2000).

[Tuf83] Tufte, E., “The Visual Display of Quantitative Information”, Graphics Press,

Cheshire, Connecticut, (1983).

[Tuf90] Tufte, E., “Envisioning Information”, Graphics Press, Cheshire, Connecticut

(1990).

[Tuf97] Tufte, E., “Visual Explanations: Images and Quantities, Evidence and

Narrative”, Graphics Press, Cheshire, Connecticut, (1997).

[TSW94] Tweedie, L., Spence, R., Williams, D., and Bhogal, R., “The Attribute

Explorer”, Video Proceedings of ACM CHI’94 Conference, pp.435-436,
(1994).

[TSD96] Tweedie, L., Spence, R., Dawkes, H., and Su, H., “Externalising Abstract

Mathematical Models”, Proceedings of the ACM CHI’96 Conference, pp.
406-412, (1996).

[VN95] Veerasamy, A. and Navathe, S., “Querying, Navigating and Visualizing a

Digital Library Catalog”, Proceedings of the Second International Conference
on the Theory and Practice of Digital Libraries, http://www.csdl.tamu.edu/
DL95, (1995).

[Wil84] Williams, M. D., “What Makes RABBIT Run”, International Journal of Man-

Machine Studies, 21(4), pp. 333-352, (1984).

[WS92] Williamson, C. and Shneiderman, B., “The Dynamic Home Finder:

Evaluating Dynamic Queries in a Real-Estate Information Exploration
System”, Proceedings of the ACM SIGIR’92 Conference, pp. 338-346, (1992).

	INTRODUCTION
	Problem
	Generalized Query Previews
	Contents

	RELATED WORK
	Field of Research
	Visual Data Mining and Information Visualization

	Visual data mining and information visualization researchers are interested in abstract information spaces. Examples of such spaces are stock market data, document databases (e.g., a patent database), a database of films, patient records from a hospital
	Visual data mining is a term that is commonly used to refer to the action of finding something interesting in information spaces (e.g., as gaps, clusters, trends, or sometimes just a single item). Information visualization is a term that is generally use
	Recent work at the University of Maryland and Xerox PARC introduced the first taxonomies of the field of visual data mining and information visualization [Chi00] [Shn96]. In these taxonomies researchers used data types, tasks, and data states to define t
	Multi-dimensional Data Visualization

	Data Desk: This is a statistical data analysis package available from www.datadesk.com (Figure 2.13). Data Desk provides interactive tools for data analysis. Visualizations are linked together and actions on a single view update the other views immediate
	Online Data Visualization
	Large Data Visualization
	Database Schema, Tables, Queries, and Results Visualization
	Directions

	Data sets are not confined to a single system or network anymore. It can easily be stored and accessed over the Internet. Visualization of such data sets continues to be an interesting research topic.
	NASA EXPERIENCE AND EARLY WORK
	Dynamic Queries with Large Online Data

	The project led to the idea of query previews. Query previews forms the basis for this dissertation. The paradigm of query previews is to give an overview of the data and a preview of the queries to the users before the final queries are sent through the
	Two-Phase Querying
	Query Previews
	Query Refinement
	Extensions and Recent Prototypes

	Summary

	INITIAL USER STUDY
	Motivation for a User Study

	Since query previews adds another phase to query formulation, there is a possibility that user performance would deteriorate and that users would be annoyed by a two-phase approach. Moreover, query previews focuses attention on only a few selected attrib
	User Study Methods
	Introduction to the Study
	Hypothesis on Query Previews
	Independent and Dependent Variables
	Tasks
	Subjects
	Materials
	Form Fillin Interface
	Query Preview

	When the "Refine" button is pressed, the query preview submits the specified partial query to the search engine and all the data about films that satisfy the query are downloaded for the refinement phase. The query preview is closed and the form fillin i
	
	
	Task Examples

	The tasks given to the subjects were to find a film or a list of films in the database satisfying the constraints that is provided. Three types of tasks were used for this purpose:
	
	
	Subject Background Survey and Preference Questionnaire

	User Study Design
	Procedure and Administration
	Results
	Time for Completing Tasks
	Subjective Satisfaction

	The scores for all of the questions were statistically significantly above the mid-point scale value of five (t(11) = 3.86, 6.20, 7.71, 2.24, and 2.58 respectively, p < 0.05).
	Discussion on the Query Preview Study Results
	Clearly Specified Tasks (T1)

	As expected, users of the form fillin interface for clearly specified tasks performed more rapidly since they were able to find the answer by submitting a single form fillin query. The query preview had no advantage since its attributes were not relevant
	
	Unclearly Specified Tasks, with Partial Relevance of the Query Preview Attributes (T2)

	Although not all the attributes in the task specification could be specified using the query preview, the insight gained from the query preview enabled users to eliminate some potential zero-hit queries in advance, concentrating in the refinement phase o
	
	Unclearly Specified Tasks, with Full Relevance of the Query Preview Attributes (T3)

	For unclearly specified tasks with full relevance of the query preview attributes, the full power of the query preview was utilized. The query preview enabled the users to see immediately which of the possible queries should be submitted. The users loade
	
	Performance Improvement

	Building models is a useful way to understand how the querying process works. Many different models exist in the database literature (i.e., for SQL and QBE) for this purpose. Reisner [Rei91] lists many of these in a survey paper from a human-factors poin
	
	Learning to Use a Query Preview
	Subjective Satisfaction

	The suggested improvements related to user interfaces are: supplying a way to clear a group of related check boxes in one step, or easily resetting or setting all of them, a more immediate refresh operation on the bars for visual accuracy when changing t
	Summary

	GENERALIZED QUERY PREVIEWS
	Motivation for Generalizing the Query Previews
	The First Generalization Attempt on Query Previews

	The first generalization attempt led to a new family of query previews [TPS00]. We called this new family of query previews the generic query previews. We combined the query previews approach with a method to present all of the attributes of the data to
	The Next Step

	After the first generalization attempt, we realized that there was also a need in our designs to give users the ability to define their personalized views of the data (i.e., a group of attributes of interest to the user). In query previews and later in g
	Hence after our early work, field experience, initial user study, user observations, and some generalization attempts, we decided to define a general user interface architecture to form a high level mechanism for efficient browsing of large online data.
	Generalized Query Previews User Interface Architecture

	The generalized query previews user interface architecture has the following three components:
	A presentation component for the data table and attribute names augmented with a mechanism for selecting a user view, the schema component,
	A manipulation component for displaying and selecting the data distribution information, the distribution information component,
	A presentation component for displaying or analyzing the results, the raw data component.
	Figure 5.2 shows how these components are attached to each other. First, users can see the database table and attribute names. Then, they can define their view by choosing some attributes. Later, using the distribution information attached to the view, t
	To demonstrate and later to experiment with the generalized query previews user interface architecture, I have implemented a sample program called the ExpO System. The ExpO System is implemented on a data set from the 1997 United States Economic Census c
	Schema Component
	Distribution Information Component
	Raw Data Component
	Summary

	SECOND USER STUDY
	Motivation for a Second Study

	Generalized query previews is hopefully a forward step from the query previews approach. Although it is a more general architecture, it also introduces some overhead such as defining a view and explicit expansions of charts. Hence, there is a possibility
	User Study Methods
	Updates for the Second Study
	Hypothesis on Generalized Query Previews
	Independent and Dependent Variables
	Subjects
	Materials
	Form Fillin Interface
	The Sample Generalized Query Previews Interface
	Task Examples

	The tasks given to the subjects were to find a list of the counties in the database satisfying the constraints that were provided. Two types of tasks were used for this purpose:
	
	
	Subject Background Survey and Preference Questionnaire

	The Second Study Design
	Procedure and Administration
	Results
	Time for Completing Tasks
	Subjective Satisfaction

	The scores for all of the questions were statistically significantly above the mid-point scale value of five (t(15) = 16.43, 5.84, 5.33, 13.49, and 9.30 respectively, p < 0.05).
	
	Query Submission Counts

	Discussion on the Results
	Clearly Specified Tasks (T1’)

	As expected, users of the form fillin interface for clearly specified tasks performed more rapidly since they were able to find the answer by submitting a single form fillin query. The generalized query previews had no advantage as users were performing
	
	Unclearly Specified Tasks (T2’)
	Subjective Satisfaction
	User Comments

	Summary

	ALGORITHMS AND DATA STRUCTURES
	Internal Architecture
	Database Schema
	Raw Data
	Distribution Information

	Distribution information forms the core of the data transfers for the generalized query previews. Although the size of the distribution information is generally negligible in comparison to the size of the raw data (and hence more efficient to transfer),
	The distribution information is required to compute and update the charts that are attached to the user-defined views. Views can be formed of numerous attributes. These attributes can only come from tables that have some common attributes (i.e., identifi
	Distribution information is stored as multi-dimensional arrays on the server. For each chart combination, there may be a separate multi-dimensional array and this array may be requested from the server when that certain set of charts is expanded. Figure
	Yet, the size of the multi-dimensional arrays can change in size with the number of dimensions used in these arrays and buckets used in each of these dimensions. For example, the array in Figure 7.4 has two dimensions. It also has four buckets for the nu
	Challenges of the Internal Architecture
	Focusing on the Multi-valued Data Types
	Ranges

	Additions and subtractions for a small array may not be very costly. On the other hand, large arrays should be preprocessed using a prefix sum approach, shown in Figure 7.11. Then, the results for any range query could be found more efficiently per query
	Prefix sums are taken from left to right and then from top to bottom using the counts on the faces, edges, and vertices, of the boxes in Figure 7.10. Q denotes the range query region. This is the same region with Figure 7.6. The answer to the query is co
	
	Generalized Multi-valued Data Types

	The alterations for single ranges can easily be generalized to any number of dimensions. Unfortunately, any number of ranges with any number of dimensions is a much harder problem to solve.
	By using exhaustive tables for all possible intersections between the multi-dimensional array cells, the problem with any number of ranges can be solved in a less scalable manner than the single ranges.
	In this section, a formal definition of the multi-valued data type issues will be presented. For detailed proofs and generalizations please refer to [BT98].
	Formally, lets say a record from some data set with d attributes creates a d-dimensional multi-valued attribute problem when all of the attributes are of multi-valued data types. And lets define:
	So the two main problems of interest are:
	
	Optimizations

	Software Implementation Issues
	Summary

	CONCLUSION
	Contributions and Benefits
	Future Work
	Summary

	REFERENCES *

