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Companies, government agencies, and other organizations are making their data 

available to the world over the Internet. These organizations store their data in large 

tables. These tables are usually kept in relational databases. Online access to such 

databases is common. Users query these databases with different front-ends. These front-

ends use command languages, menus, or form fillin interfaces. Many of these interfaces 

rarely give users information about the contents and distribution of the data. This leads 

users to waste time and network resources posing queries that have zero-hit or mega-hit 

results.  

Generalized query previews forms a user interface architecture for efficient browsing 

of large online data. Generalized query previews supplies distribution information to the 

users.  This provides an overview of the data. Generalized query previews gives 

continuous feedback about the size of the results as the query is being formed. This 

provides a preview of the results.  

Generalized query previews allows users to visually browse all of the attributes of the 

data. Users can select from these attributes to form a view. Views are used to display the 

distribution information. Queries are incrementally and visually formed by selecting 

items from numerous charts attached to these views. Users continuously get feedback on 



 

the distribution information while they make their selections. Later, users fetch the 

desired portions of the data by sending their queries over the network. As they make 

informed queries, they can avoid submitting queries that will generate zero-hit or mega-

hit results.  

Generalized query previews works on distributions. Distribution information tends to 

be smaller than raw data. This aspect of generalized query previews also contributes to 

better network performance.  

This dissertation presents the development of generalized query previews, field 

studies on various platforms, and experimental results. It also presents an architecture of 

the algorithms and data structures for the generalized query previews. 

There are three contributions of this dissertation. First, this work offers a general user 

interface architecture for browsing large online data. Second, it presents field studies and 

experimental work that define the application domain for generalized query previews. 

Third, it contributes to the field of algorithms and data structures.  
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CHAPTER 1:  
INTRODUCTION 

 

 

1.1 Problem 

Companies, government agencies, and other organizations are making more of their 

data available over the Internet. International Business Machines Corporation (IBM) 

hosts a collection of millions of patents (www.patents.ibm.com) accessible to the public 

over the Internet. United States Census Bureau is a government agency hosting vast 

collections of economic, geographic, and demographic data (e.g., ferret.bls.census.gov). 

National Aeronautics and Space Association (NASA) is another government agency with 

still larger collections of scientific and environmental data (e.g., eos.nasa.gov/eosdis). 

The World Health Organization (WHO) is an international organization that shares 

medical and population related information over the Internet (e.g., 

www.who.int/whosis/). These are only a few of the organizations that are making vast 

data resources available to the public on the Internet.  

Many organizations store their data in large tables. They typically use multiple tables 

that are correlated to represent different aspects of the data. These tables can have many 

attributes and rows. Typically, these tables are kept in relational databases. A table can be 

a view or simply a relation of a database. Online access to many such databases is now 

common.  

Users all around the world can use their browsers to access online databases. People 

of various ages, genders, and backgrounds are now forming the user domain for such 
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databases. Some of these users have no background on these databases. They may also be 

inexperienced with computers. 

Users can access different types of user interfaces to work with such databases. The 

user interfaces that serve as the database front-ends are typically command languages, 

menus, or form fillin interfaces [SBC97]. Generally, these user interfaces are activated 

within a browser.  

Many of these interfaces, instead of giving users information about the contents of the 

data, require users to fill lengthy electronic forms. The designers of such interfaces 

assume that the users are informed about the data that they are working on or they can 

directly submit known-item queries rather than probing the database. However, unguided 

novice users may waste their time submitting queries that have zero-hit or mega-hit result 

sets. Sometimes they assume that the users know or have the will to understand a 

querying environment or fill a lengthy form. However, users of online databases 

generally do not have the time or the will to learn a query language or they are annoyed 

when they have to fill a lengthy form. In some other cases, they assume that users will 

have the bandwidth or the time to access such large databases remotely. On the contrary, 

users of a public online database have to access large amounts of data using a low 

bandwidth congested network. A more effective, simple, and easy to learn approach for 

defining queries is needed for public online databases. 

Figure 1.1 shows a form fillin interface from the Unites States Census Bureau (i.e., 

www.ferret.bls.census.gov). This interface forms a good example for the database front-

ends that are currently available over the Internet. This is a lengthy form fillin interface. 

There is some guidance about what values can be selected on some of the fields, but the 
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data distribution information is not available. In this interface, users can easily generate 

queries that will return zero-hit or mega-hit result sets. Mostly, the users that have enough 

background on the data will be able to easily form useful queries. Other types of users 

will simply probe the database until they find what they want or get tired of working with 

this interface. Even when users find the parts of the data that they were looking for, most 

of them would be annoyed with the experience of filling in a lengthy form and blindly 

probing a remote database. 

 

 

Figure 1.1: A form fillin interface from the United States Census Bureau homepage 
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1.2 Generalized Query Previews 

One approach to overcoming the hidden nature of data is to provide some form of 

easily understood overview of the data. Generalized query previews forms such a user 

interface architecture for efficient browsing of large online data. Generalized query 

previews supplies data distribution information to the users. This is an overview of the 

data. By looking at this overview users can immediately see what is in and what is not in 

the data. Generalized query previews gives continuous feedback about the size of the 

result set as the query is being formed. This is a preview of the result set. Queries that can 

have zero-hit or mega-hit result sets will be visible to the user and they may be avoided 

easily. This will increase the performance of the overall system. 

An example generalized query preview interface, the ExpO System, is shown in 

Figure 1.2. This interface is a sample implementation of the generalized query previews 

user interface architecture and the paradigms behind it. The ExpO System is generated by 

using a data set from the 1997 United States Economic Census collections. In this 

example, the data contains information about hospitals located in each of the United 

States Counties. This sample data contains about ten attributes and 3000 rows in its 

universal relation. The data is stored as four different relations. Each relation represents a 

single table. All the tables share a unique identifier, ‘report_id’, representing a unique 

report from a county.  

Generalized query previews allows users to visually browse all the attributes and 

tables of the data. In the ExpO example, the schema for the data is presented with a 

hierarchical browser (the panel on the left in Figure 1.2). The root of this panel is tagged 
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with the name of the database, ‘hospital97’. The first level in the hierarchy displays the 

tables. In this data, ‘loc’, ‘payroll’, ‘sale’, and ‘size’ are the tables. The second level 

displays the attributes. 

 

 

  
Figure 1.2: An example generalized query previews interface, ExpO, the schema for the 

data is presented with a hierarchical browser (the panel on the left) 

 

In generalized query previews, users can select some of the attributes of the data to 

form a user view. In the ExpO example, this view is presented in a separate panel and is 

also represented by a hierarchical browser (Figure 1.3). The panel in the middle depicts a 

few user selections and a user-defined view of the data. The selected attributes are tagged 
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with the name of the tables that they are selected from. For example, ‘tax’ attribute of the 

‘sale’ table forms the tagged name of  ‘sale_tax’. Joining the relations representing these 

tables is automatically done in the background. Hence, only the tables with common 

attributes can be joined to form a view. This example contains only four tables, each 

represented by a single relation, all carrying the same identifier. Tables can be predefined 

system views of the data and need not directly map to the relations of the database. 

 

 

  
Figure 1.3: ExpO with a user-defined view of four attributes, this view is presented in a 

separate panel as a hierarchical browser (the panel in the middle) 

  

Views are used to display the distribution information. In the example from Figure 

1.3, a special icon in the user view shows that one of the attributes of this view, 



 

 7 

‘sale_tax’, can be expanded. The same attribute can also be displayed with a different 

marker or colored icon on the hierarchical browser of the database schema.  Figure 1.4 

shows the expansion. The attributes are expandable into buckets. The data distribution 

information is attached to these buckets. Buckets are values where the data can be 

aggregated over. The data distribution information is attached to these buckets as some 

visual aids such as the bar charts of this example. Here, ‘taxable’ and ‘non_taxable’ are 

the bucket names. Further expansions on other attributes are shown in Figure 1.5.  

 

 

  
Figure 1.4: ExpO with the data distribution information attached to the buckets of a 

single attribute expanded in the user view. Two buckets are shown (total 3,252). 
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In generalized query previews, a preview of the results is displayed. In the ExpO 

example, a separate bar on the top of the middle panel shows the total number of distinct 

items mapping to all of the buckets. This is called the result bar (showing 3252 hits). It is 

a preview for the result set and shows the size of it. Hence, users will be aware of the 

consequences of their query submissions, i.e. whether they are submitting mega-hit or 

zero-hit queries, or not. Thus, the result bar helps prevent useless query submissions. 

 

 

  
Figure 1.5: ExpO with the data distribution information attached to the buckets of three 

attributes expanded in the user view (tax, region, employee count) 

 

In generalized query previews, queries are incrementally and visually formed by 

selecting items from a set of charts attached to the user view. Users continuously get 
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feedback on the data distribution as they continue their selections. For our example, 

Figure 1.6 shows a selection. As soon as the selection is made, other charts and the result 

set preview are updated to reflect the new data distribution satisfying this selection. This 

is called tight coupling. Possible zero-hit queries immediately become visible to the 

users. Users also see where data is and how it is distributed over different values even 

before manipulating the bars. They can play with these interactive charts as long as they 

want to investigate the contents of the data. Clicking on the visual aids, bars in this case, 

selects or deselects them. Figure 1.7 shows some further selections on the charts. 

Selections within a chart map to a disjunction operation. Selections between charts map 

to a conjunction operation. 

 

  

Figure 1.6: The distribution information is attached to the buckets of three attributes 

expanded in a view and a selection is made on one of them, the ‘great_plains’ region. 
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After the investigative selections, users can fetch the desired portions of the data by 

sending their final selections over the network. As they make informed queries, getting 

neither zero-hit nor mega-hit result sets is an issue. Hence, the problem of blind 

formation of queries is solved.  

 

 

 

Figure 1.7: The data distribution information is attached to the buckets of three attributes 

expanded in the user view and multiple selections are made on these buckets, ‘taxable’, 

‘great_plains’, ‘northwest’, and ‘0 to 99’. 

   

For some other sample implementations, the designer of the system can even take 

more drastic measures such as preventing the query submissions for zero-hit or mega-hit 
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queries, by utilizing a threshold. It is important to note that the information given by the 

charts is not the probabilistic distribution of data, but the real one. 

Figure 1.8 shows a result set displayed on the right side of the ExpO frame as a 

separate panel. Users can load this result set into a local tool for further analysis of this 

portion of the data (e.g., Excel). The whole process of pruning and loading a portion of 

the data can be repeated as long as the user desires. Generalized query previews can 

enable access to the results in multiple ways. In our example, only the list is shown.  

 

 

 

Figure 1.8: ExpO with a result set to a query displayed in a panel that is on the right side 

of the main frame, 273 hits 
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Generalized query previews works on data distributions. Expansions of charts 

generate the requests for the distribution information from the server where the database 

is kept. The distribution information can be updated periodically on the server.  

Distribution information tends to be much smaller than the raw data and does not 

scale up with the size of the raw data. This aspect of generalized query previews also 

contributes to better network performance. Only metadata is downloaded from the 

network until an informed query by the user is made. Raw data is loaded only at this final 

stage of querying. 

1.3 Contents 

This dissertation presents the development of generalized query previews. The first 

ideas started to develop in the Human-Computer Interaction Laboratory of University of 

Maryland in 1995. Field studies on various platforms including real case applications for 

NASA helped the development of the ideas. Experimental results showed the strong and 

weak points of the architecture. As a result of this process generalized query previews has 

evolved.  

This dissertation also presents a detailed architecture of the algorithms and data 

structures developed for generalized query previews. Development of generalized query 

previews triggered research on algorithms and data structures. The presentation of the 

algorithms and data structures is also required for the completeness of this dissertation. 

There are three main contributions of this dissertation to the field of visual data 

mining and information visualization and to the field of algorithms and data structures. 

First, with this work a general architecture for browsing large online data is formed and 
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presented. Generalized query previews is not a user interface, but actually an architecture 

for efficient browsing of large online data. Storage of data distributions, accessing, and 

viewing these distributions, defining a user view, the algorithms and data structures 

running behind the scenes, all form this architecture. Different implementations of this 

general architecture are possible (e.g., ExpO). Second, through field studies and 

experimentation the application domain for generalized query previews is defined. This 

dissertation presents not only the strong points of the architecture, but also the 

shortcomings of it. Third, contributions to the field of algorithms and data structures are 

made. These contributions are also covered in detail in this dissertation.  

Chapter 2 is an introduction to the related work, mostly on the field of visual data 

mining and information visualization. Chapter 3 presents the roots of generalized query 

previews and initial implementations. Chapter 4 presents user feedback and the first 

experimental findings on the initial implementations. Chapter 5 gives a more detailed 

explanation of generalized query previews. Chapter 6 discusses the algorithms and data 

structures that support the architecture. Chapter 7 gives the second experimental results. 

Chapter 8 concludes with a summary of this work, its contributions, benefits, and some 

possible future work.  
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CHAPTER 2:  
RELATED WORK 

 

 

2.1 Field of Research 

Visual data mining and information visualization researchers are working on effective 

visual methods for browsing and manipulating abstract information spaces [CMS99] 

[GE97] [Hear99] [Shn98]. Most of these methods rely on bar charts, scatter plots, and 

other means of visual explanations [Ber83] [Tuf83] [Tuf90] [Tuf97]. Generalized query 

previews is a part of this field of research.  

This chapter presents a general introduction to the field of visual data mining and 

information visualization (2.2). It provides an overview of some of the known 

taxonomies and references to some of the key papers of this field. Then, since generalized 

query previews deals mostly with multi-dimensional data, it focuses on browsing and 

manipulating this type of data. Multi-dimensional data visualization started to form a 

separate category of research under the field of visual data mining and information 

visualization [BCS96] (2.3). Thus, papers of this category are discussed in a separate 

section. 

Finally, as generalized query previews relies on the following three pillars of 

research, I present the papers that are relevant to each of these pillars under the related 

sections (2.4, 2.5, 2.6), summarizing with a section on future directions (2.7): 

• Online Data Visualization (2.4): Generalized query previews introduces an 

architecture for browsing ‘online’ data, 
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• Large Data Visualization (2.5): Generalized query previews helps users browse 

‘large’ data, 

• Database Schema, Tables, and Query Visualization (2.6): Generalized query 

previews uses data stored as multiple tables of a ‘database’. 

2.2 Visual Data Mining and Information Visualization 

Visual data mining and information visualization researchers are interested in abstract 

information spaces. Examples of such spaces are stock market data, document databases 

(e.g., a patent database), a database of films, patient records from a hospital database, 

computer logs, web logs, etc. Abstract information spaces cannot be easily mapped onto a 

3D world coordinate system unlike other information spaces, such as the landscape of a 

country, structure of a machine, or a 3D scan of a human brain. For example, a patent 

database cannot use a reference coordinate system (like a map of a city) that makes it 

easily comprehendible to the users. The non-abstract information spaces are generally 

considered to fall within the research realm of the field of scientific visualization [Kau91] 

or geographical information systems. 

Visual data mining is a term that is commonly used to refer to the action of finding 

something interesting in information spaces (e.g., as gaps, clusters, trends, or sometimes 

just a single item). Information visualization is a term that is generally used to refer to the 

methods utilized to help users see what these spaces look like.  

Recent work at the University of Maryland and Xerox PARC introduced the first 

taxonomies of the field of visual data mining and information visualization [Chi00] 

[Shn96]. In these taxonomies researchers used data types, tasks, and data states to define 

the different categories of the field. The first popular taxonomy by [Shn96] introduces the 
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visualization categories of 1D, 2D, 3D (e.g., [ESS92] [Hear95] [RM93]), tree (e.g., 

[Fei88] [JS91] [KPS97] [LR96] [RMC91] [SFR00]), multi-D (multi-dimensional or 

multi-variate) (e.g., [Rot00] [Shn94]), temporal (e.g., [PMR96]), and network (e.g., 

[BEW95] [Eic93]) visualizations. Some researchers also include workspaces as a 

separate category (e.g., [CRM91] [KS98]).  Among these categories, generalized query 

previews falls under the category of multi-D (multi-dimensional) visualizations.  

2.3 Multi-dimensional Data Visualization 

Multi-dimensional data contains multiple equal weight attributes. Unlike temporal or 

network data, the relation between attributes is not implicit and does not dominate the 

organization of the data. Hence, many network and temporal data sets can also be 

considered as multi-dimensional data sets by rearranging them depending on the 

application domain.  

Common tasks that can be performed with multi-dimensional data are understanding 

or obtaining an overview of the whole or a part of the multi-dimensional data by finding 

patterns, relationships, clusters, gaps, and outliers of the data or finding a specific item in 

the data by zooming and filtering the data.  

Generalized query previews uses data that is stored in multiple relations of a database. 

Hence, the relation between the attributes of the data is explicit. Generalized query 

previews uses the same methods for all the attributes of the data with no specific 

precedence. Hence, all the attributes of the data are assumed to have equal weights. 

Generalized query previews uses metadata to give an overview of the data (e.g., data 

distributions). Metadata is used to understand the trends and patterns of the data. Data can 

be filtered and portions of it can be downloaded. All of these aspects of generalized query 



 

previews brings it closer to the research category of multi-dimensional data 

visualizations. 

The rest of this section will discuss some popular multi-dimensional data 

visualization systems. Most of these systems assume that local access to data is available 

and they work on random access memory rather than the secondary storage devices. 

Hence, networked access to large data sets is not addressed by many of these systems.  

Visage: Carnegie Mellon University developed this multi-dimensional data 

visualization system in the early 1990’s [RLS96]. Visage aims to coordinate the 

exploration of information across different types of visual aids regardless of the source 

and type of the information. For example, as shown in Figure 2.1, users can drag and 

drop the spreadsheet view of some geographical data onto a map to display its 

distribution over the map. 

 

Figure 2.1: Visage from Carn
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of rows and columns are in focus while the rest of the spreadsheet appears to be out of 

focus. Yet the out of focus parts of the data give an overview of the data with the help of 

histograms and color-coding. 

 

 

Figure 2.2: Table Lens of Xerox PARC, four rows from a large spreadsheet are in 

focus while the rest of the spreadsheet is represented by histograms and charts  

 
Magic Lens: Again at the same time, Stone, Fishkin, and Bier of Xerox PARC 

developed the Magic Lens [SFB94]. Magic Lens views the data using a tool that works 

like a magnifying glass over a text or a graphical document. In Figure 2.3, the user views 

a map with two separate lenses to identify two different portions of the map, major roads 

and water canals. 
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Figure 2.3: Magic Lens of Xerox PARC, the user is using two lenses on a city map, 

one for highlighting the major roads and the other one for highlighting the water lines 

 

XGobi: In 1990’s, Swayne, Cook, and Buja came up with the XGobi system 

[SCB98]. XGobi shows various visualizations of the same data set simultaneously and 

dynamically, Figure 2.4. It also takes various projections of a multi-dimensional data set 

on some of the attributes of the data and then animates these projections.  
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Figure 2.4: XGobi shows multiple projections of a data set (e.g., histograms, scatter 

plots, etc.) 

 

Attribute and Influence Explorers: In Imperial College, U.K., researchers developed 

the Attribute and the Influence Explorers in mid 1990’s [TWS94] [TSD96]. The idea 

behind both of these systems is to have interactive histograms to view the contents of the 

data while, giving an overview about the contents, Figure 2.5 and 2.6. The selections on a 

histogram immediately update others. A similar visual representation and feedback 

mechanism is also used for the generalized query preview example implementation, the 

ExpO system. 
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Figure 2.5: Attribute Explorer, with four interactive histograms  

 

   

Figure 2.6: Influence Explorer, with many histograms  

 
Parallel Coordinates: Inselberg and Dimsdale, in late 1980’s, took a thoroughly 

different approach to visualizing multi-dimensional data [ID89]. Instead of viewing data 

using perpendicular multiple coordinate axis, they used a series of parallel axis, Figure 

2.7.  
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Figure 2.7: Parallel Coordinates, cars from a car database are represented by lines 

crossing through six vertical axes representing the six dimensions of the data  

 
Worlds within Worlds: Feiner and Besher of Columbia University developed this 

system. The system is designed for the exploration of multi-dimensional coordinate 

systems containing arbitrary functions using nested coordinate axis. They show users 

parts of the whole world in a simple but effective manner [FB90], Figure 2.8.  
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Figure 2.8: Worlds within Worlds, 3D projections of a multi-dimensional world 

 
Data Visualization Sliders: Eick, in 1994, used sliders not only as a mechanism for 

user input, but also as a means to show data distributions in the form of density plots 

[Eic94]. 

Selective Dynamic Manipulation of Visualizations (SDM): SDM is also from 

Carnegie Mellon University [CRM95]. SDM is actually a set of interactive techniques for 

2D and 3D visualizations. Visualizations in SDM are linked, and real-time interactive 

animation techniques are used. Figure 2.9 shows a popular view from SDM where a 

multi-dimensional data set is displayed as a landscape of color-coded bars that are linked 

together, indicating a certain relationship between certain groups of bars. 
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Figure 2.9: SDM from Carnegie Mellon University showing a landscape of data 

distribution  

 

  

Figure 2.10: InfoZoom (available from www.humanit.de) showing the overview of 

data by size-coding and simple graphs on multiple bars representing the attributes of data 
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InfoZoom: This is a tool that also provides an overview of the data (Figure 2.10). Any 

part of the data can be selected, filtered out, or zoomed in using highly interactive 

controls. Queries can be captured and replayed. Results can be saved as charts or as 

interactive objects. 

 

  

Figure 2.11: The first dynamic query example, Home Finder, using a real estate data 

set from Washington, D.C., users can adjust the widgets on the right to manipulate the six 

different dimensions of the data, updates are immediate on the map 

 

Dynamic Queries: Dynamic queries from the Human-Computer Interaction 

Laboratory at the University of Maryland emerged in the early 1990’s. First, Williamson 

and Shneiderman in 1992 developed a tool to explore some real estate data set [WS92], 

Figure 2.11. Later, this idea evolved and triggered a product called Spotfire (available 

from www.spotfire.com) [AS94] [AW95] [AWS92]. Spotfire is a more general tool to 
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explore multi-dimensional data, Figure 2.12. In dynamic queries, users formulate queries 

with graphical widgets, such as sliders. Users can see a graphical visualization of the data 

and their search results. They can also filter and zoom into parts of the data. Actions are 

easily reversible. Feedbacks on users’ selections are immediately available on all the 

widgets and charts of the interface. 

 

  

Figure 2.12: The general dynamic query tool, Spotfire, from www.spotfire.com, 

showing multiple views of a data set 

 
Data Desk: This is a statistical data analysis package available from 

www.datadesk.com (Figure 2.13). Data Desk provides interactive tools for data analysis. 

Visualizations are linked together and actions on a single view update the other views 

immediately. 
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Figure 2.13: Data Desk showing multiple linked views of a data set 

 

  

Figure 2.14: Beyond 20/20 showing a statistical data set with a bar chart 
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Beyond 20/20: This is another tool that can be used for statistical data analysis 

(available from www.ivation.com), Figure 2.14. This tool is designed to be an advanced 

spreadsheet (in comparison to the other tools, e.g., Data Desk).  

2.4 Online Data Visualization 

Online data has certain features that require a special treatment. It is distributed over a 

network and cannot be immediately accessed at all times. The following are a few known 

systems that work with online data (mostly text-based data): 

 

  

Figure 2.15: WebTOC uses a hierarchical browser to show the contents, type, and the 

size of a website.  
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WebTOC: This system is developed in the Human-Computer Interaction Laboratory 

of the University of Maryland. Nation, Plaisant, Marchionini, and Komlodi worked on 

this system to visualize websites using a hierarchical table of contents browser [NPM97], 

Figure 2.15. The ExpO System also uses the same method, but for visualizing the schema 

of a relational data set. 

Butterfly: The Butterfly System by Mackinlay, Rao, and Card [MRC95] is a system 

for searching citation links across the Internet. Butterfly integrates the action of 

searching, browsing, and access management. Visualization is used in displaying 

retrieved information and combines the search and browsing tasks. Citations and links 

between citations is displayed, Figure 2.16. 

 

  

Figure 2.16: Butterfly Citation Search System displaying some citation search results 
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Figure 2.17: Marmotta Iconic System where queries are formed using simple icons 

 

Harvest: Bowman, Danzig, Hardy, Manber, and Schwartz introduced the Harvest 

System in 1994 [BDH94]. Harvest works on the Internet and provides users with 

customizable tools to collect information from different websites. However, Harvest uses 

a very common querying technique for the Internet, the keyword searching technique. 

Marmotta: Marmotta is a querying system for networks [CMP95]. It uses progressive 

querying and works on the Internet. The main idea behind Marmotta is the formulation of 

queries via simple icons representing actions and items, Figure 2.17. 

Envision: Envision is a project from the Virginia Polytechnic Institute and State 

University. The project developed a large digital library of computer science 

publications. It is available over the Internet [Heat95], Figure 2.18. It has a highly 

interactive results screen. 
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Figure 2.18: Envision, search results, authors are on the y-axis, years are on the x-axis 

 
 

SuperBook: SuperBook [ERG89] is an early hypertext browsing system. It precedes 

many of the current web-based systems. It is designed to improve the usability of 

conventional documents. Especially, the later versions of the SuperBook was 

implemented to improve the search accuracy and speed.  

2.5 Large Data Visualization 

Visualization of large data sets forms a challenging field of research. Users requiring 

highly interactive systems to explore large data sets face many difficulties. For example, 

having a large data set causes several operations to be slow. Not only querying, storing, 

and accessing these systems is difficult, but also visualizing cluttered information spaces 
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becomes a cumbersome task. Many such data sets are stored in large relational databases 

on secondary storage devices, where, in certain cases, loading even a part of the data into 

the main memory of a personal computer may be problematic. A few example systems 

that work with large data are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Volume rendering of relational data over three dimensions and color-

coding is used 

 
Volume Rendering: Volume rendering is a common method for displaying large 

scientific data (e.g., computer aided tomography images of a human brain). In late 
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1990’s, Becker applied this method to abstract information spaces [Bec97]. He rendered 

volumetric abstract data stored in a relational database, Figure 2.19. 

VisDB: Keim and Kriegel used a single pixel of the screen to represent a record from 

a database [KK94]. Their system is called VisDB. VisDB colors and organizes the 

database records with respect to the query result relevancies, e.g. spirals, Figure 2.20. 

 

 

Figure 2.20: VisDB uses spirals and color-coding to show the relevance of results to 

the query and gives multiple views of these results (e.g., parallel coordinates).  

 

Aggregation and Dynamic Queries: Goldstein and Roth [GR94] used aggregation 

with dynamic queries to help users with large data sets. They used a mechanism called 

the Aggregate Manipulator and combined it with dynamic queries, Figure 2.21. The 
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distribution of data is available to the users in this system. Generalized query previews 

also uses aggregation to make large amounts of data explorable over a congested 

network. This approach is very scalable, as the distribution information on data does not 

drastically change with the data itself. 

 

 

  

Figure 2.21: Using aggregation in tandem with dynamic queries, users can see how 

much of each type of an item exists in the data  

 

LinkWinds: Berkin and Orton developed LinkWinds as a visual data exploration tool 

for large multi-dimensional multi-disciplinary data sets [BO94]. It is developed at the Jet 

Propulsion Laboratory of NASA.  Linking visualizations is also used with this system. 
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Since users of this system mostly view large scientific data, this tool falls between the 

fields of scientific visualization and abstract information visualization. 

 

  

Figure 2.22: The Visible Human Explorer of the University of Maryland where 

multiple tightly coupled views of the data is available to the users 

 
Visible Human: North, Shneiderman, and Plaisant developed an image library 

browser for a project known as the Visible Human Project [NSP96]. Researchers of this 

project, in multiple organizations, worked on methods to visualize and analyze the human 
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body represented by thousands of images. North, Shneiderman, and Plaisant worked on a 

browser where tightly coupled views of the images help users browse a large image 

library. Selections in the preview image of a human body are immediately reflected on 

the other views, Figure 2.22. 

 

  

Figure 2.23: A sample DEVise display with multiple views, a scatter plot, a 2D chart 

showing a function, and a series of images related to that data item   
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DEVise: DEVise is an exploration system where users can browse and share visual 

presentations of large data [LRB97]. Multiple linked views are also available with this 

system, Figure 2.23. 

2.6 Database Schema, Tables, Queries, and Results Visualization 

Visual Querying Systems (also known as VQSs) is a known research topic under the 

field of databases. Many systems exist in this field. Most of these systems work for 

relational databases and provide visualizations for the database schema, tables, queries, 

and results. Catarci, Costabile, Levialdi, and Batini [CCL95], and Reisner [Rei91] did the 

first surveys of this topic. They mention the main approaches and give an assessment of 

various usages of these systems. Many of the systems discussed in this section can also 

be mentioned under some of the previous sections, but certain database related features of 

these systems make them more appropriate for this section. The following are a few 

example database schema, tables, queries, and results visualization systems: 

Tioga-2: Formerly known as DataSplash, Tioga-2 is a database visualization 

environment from Berkeley [ACS96]. It provides users with a variety of display objects 

to be used on canvases to explore the underlying database. Navigation between canvases 

are provided by means of portals, Figure 2.24. 

SeeData: SeeData is a system for displaying the relational schema of a database 

[AEP96].  This is a visualization system that uses 2D visualizations of a database schema 

where relationships between objects are shown via bar charts. SeeData can display large 

database schemata containing over thousands of relations, Figure 2.25. 
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Figure 2.24: Tioga-2 display with data mapped onto the United States 

 

 

Figure 2.25: SeeData relational schema browser, each line is a relation and each pixel 

in a line is an attribute (dimension) of that relation 
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InfoCrystal: This is a tool used to visualize sub-results of a query and their relations 

to the query terms. It helps users understand and form complex queries on a database 

[Spo93].  

Polaris: Polaris is a recent system from Stanford University [SH00]. It is a 

visualization system for relational databases that extends the concept of pivot tables. 

Visual querying is possible, and these visual specifications can be rapidly and 

incrementally developed. 

Giving Ranked Outputs: Veerasamy and Navathe [VN95] introduced a digital library 

catalog browser in 1995. This interface gives ranked output information in the form of a 

histogram. This system is for complex query formulation on a document database, Figure 

2.26.  

 

  

Figure 2.26: Veerasamy and Navathe used histograms to rank results of a query 

 

RABBIT: RABBIT is the oldest of these systems [Wil84]. RABBIT presents a query 

to the users and allows them to modify it by showing RABBIT what has to be changed in 

it. It is one of the first systems where progressive querying is used on databases. 
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Menu-driven information retrieval: Heppe, Edmondson, and Spence [HES85] also 

introduced one of the first VQSs.  They used volume previews in the database search 

process. They also demonstrated some progressive querying capabilities in their systems. 

ADVIZOR: This is a system available from www.visualinsights.com. ADVIZOR 

presents the information that is stored as pivot tables of a database for online analytical 

processing (OLAP) by using interactive charts and graphs (Figure 2.27).    

 

 

Figure 2.27: ADVIZOR shows a landscape visualization of a pivot table. 
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Figure 2.28: Brio shows query results graphically. 

 

Brio: Brio is a database front-end that works efficiently over a network. It works with 

OLAP servers and helps users generate online business analysis reports efficiently 

(Figure 2.28). It is available from www.brio.com. 

dynaSight: dynaSight is available from www.arcplan.com. It is also a database front-

end and works with OLAP servers to help the users generate business reports (Figure 

2.29). It can connect to multiple types of servers. 
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Figure 2.29: dynaSight showing some portfolio analysis graphically 

 

  

Figure 2.30: MineSet showing a hierarchy by using a 3D browser 
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MineSet: MineSet is available from www.mineset.sgi.com. It is another a database 

front-end that can also work with OLAP servers (Figure 2.30). It has strong data-mining 

capabilities through some classification and association rule generators. It can connect to 

multiple types of database servers. 

 

  

Figure 2.31: Cognos showing multiple interactive charts 

 

Cognos: Cognos (available from www.cognos.com) implements interactive abstract 

data visualization capabilities that help users gain insight about their data (Figure 2.31). 

This system also works very efficiently on networked OLAP servers. 
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2.7 Directions 

Multi-dimensional data visualization continues to draw increasing interest from visual 

data mining and information visualization researchers. Users of various data sets continue 

to demand more elaborate methods to visually mine and manipulate their multi-

dimensional data. Search for these methods is becoming more challenging with the 

increasing data set sizes, types, and complexity of access methods.  

More varied types of data (e.g., images, sound, etc.) with larger data storage facilities 

has become a reality. Methods to visualize large amounts of more varied data are 

required. 

Data sets are not confined to a single system or network anymore. It can easily be 

stored and accessed over the Internet. Visualization of such data sets continues to be an 

interesting research topic. 

Data sets are not formed of simple text files or a simple list of items. Databases have 

long become a common storage and maintenance facility for data. Databases can be 

formed of many complex relations, objects, and attributes. 

It is difficult to consider a direction of research for visual data mining researchers 

without addressing most of these features of data sets (size, type, access methods). 

Researchers should not only support large data sets but also support complex access 

mechanisms through networks to complex data storage facilities (such as relational 

database management systems). All of this should also be done in a transparent fashion to 

the users. 

Generalized query previews tries to address many of these new features of the data. It 

claims success in browsing large online data stored in relational databases.   
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CHAPTER 3:  
NASA EXPERIENCE AND EARLY WORK 

 

 

3.1 Dynamic Queries with Large Online Data 

Dynamic queries [WS92] [AS94] [AW95] [AWS92] uses a direct manipulation 

approach to facilitate query formulation on multi-dimensional data with a visual 

representation of query components and results. Dynamic queries allows rapid, 

incremental, and reversible control of the query. Results are presented visually. 

Continuous feedback guides users in their query formulation process.  Figure 2.11 shows 

an example dynamic query interface.  

The application of dynamic queries to large online data is an exciting idea. 

Unfortunately, high system-resource demands make dynamic queries inapplicable to 

large online data collections. Dynamic queries requires immediate access to data so that 

continuous immediate feedback is always given to the user. Yet, large online data cannot 

be immediately and continuously accessed.  

In 1995, Human-Computer Interaction Laboratory of University of Maryland with 

support from NASA’s Goddard Space and Flight Center started to work on NASA’s large 

online data collections. These collections are stored in vast distributed data archive 

centers and contain various types of data (e.g., documents, images, numerical values, 

etc.). The attempt to apply dynamic queries to these collections required researchers to 

look for solutions to make dynamic queries work with large online data.  

Researchers of the laboratory decided to use overviews and previews to make 

dynamic queries applicable to large online data. They were looking for methods to 
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efficiently prune irrelevant data and help users focus and form their queries. At the same 

time, algorithms and data structures that would enable dynamic queries to work with 

large data collections were developed [TBS97].  

The project led to the idea of query previews. Query previews forms the basis for this 

dissertation. The paradigm of query previews is to give an overview of the data and a 

preview of the queries to the users before the final queries are sent through the network or 

details are visualized with an interface. Query previews works on a very few selected 

attributes of the data. It divides the querying process into two steps to reduce the 

resources needed to form the final query. Hence, a smaller and more interesting portion 

of a larger data set can be downloaded to the local memory of a computer from the 

network. 

We applied the principles of this two-phase querying strategy (i.e. previews first then 

refinements) for NASA’s Earth Observing System Data Information System [DPS96] 

[DPS97]. This strategy is now available as an experimental interface [GTP99] for the 

Global Change Master Directory (gcmd.nasa.gov) and is the basis for the Global Land 

Cover Facility interfaces (glcf.umiacs.umd.edu), all part of NASA. This dissertation 

carries query previews to another more general stage. 

3.2 Two-Phase Querying 

For the two-phase approach, the designer first has to choose a few discriminating 

attributes of the data, usually the most commonly used, for the initial phase. This is the 

query preview phase.  The other attributes are kept for the second phase that will include 

all of the attributes of the data for further querying. When the querying environment is 

activated the query preview appears first. Users make some decisions on this first 
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interface and then move to the second one, the refinement phase, to complete the query. 

The first phase is used to prune irrelevant data while preventing the user from submitting 

zero-hit and mega-hit queries. The second phase, the refinement, can be implemented as a 

dynamic query interface to help users finish their querying sessions by guiding them in 

further refining their query definitions. 

3.2.1 Query Previews 

Query previews shows the discriminating attributes of the data so that any selection 

would lead to a smaller subset of the data.  Commonly used attributes of the data are 

selected to form a query preview. This is essential to address the needs of most of the 

users. In order to guide users in the query formulation process, query previews provides 

aggregate information about the data. Distribution of data over different attribute values 

is shown graphically as bar charts. When users select a value on any of the attributes of 

the interface, the rest of the interface is updated. Therefore, for each action users take, 

feedback is given immediately. As users see the potential size of their query result before 

refining the queries, they are less likely to submit queries that return zero or mega hits. 

The system load will be reduced if users do not waste their time with zero-hit queries or 

consume network resources in downloading useless results.  

While dynamic queries requires attribute values of every record of the data to be 

downloaded, query previews only needs aggregate information about the data. So 

whatever the data size, only the distribution information of the data is needed to form a 

query preview interface. However, this may have a disadvantage. Only the buckets of 

data distributions will be available to the users, but not the details of a single item. The 

details of the data can become visible only in the second phase.  
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Figures 3.1 and 3.2 show a query preview interface formed using the three most 

commonly used attributes of the Global Change Master Directory of NASA (topic, year, 

and area). The distribution of data over these attributes is shown with bar charts and the 

result set size is displayed in the result bar at the bottom. 

3.2.2 Query Refinement 

If needed, the query preview phase can be followed by a refinement phase, which can 

be implemented as a dynamic query interface, to further change the query. At the 

refinement phase, when a desired final result set size is obtained, the results can be 

retrieved from a remote data collection. These can be images, values, etc. Other types of 

interfaces for the refinement phase are also possible (e.g., form fillin, menus, etc). 

Figure 3.3 shows a possible implementation for the refinement phase with dynamic 

queries (implemented for the Earth Observing System Data Information System of 

NASA). In this example, the time-span of the data items versus the size of the items (e.g., 

image size) are shown on a scatter plot that is tightly coupled with a number of scrollable 

menus that enable selections on the remaining attributes of the data. Color-coding is used 

to present an attribute from the data (i.e., processing level of images). An interactive 

geographical map is also available.  After the completion of the query, users can submit it 

to access the final set of results. Figure 3.4 shows this as a list of items presented as a 

web page. The option of skipping the refinement phase and directly jumping into the 

query results is also a viable alternative for certain implementations. 
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Figure 3.1: An example query preview interface developed at the Human-Computer 

Interaction Laboratory of University of Maryland, for NASA’s Global Change Master 

Directory. Topic, Year, and Area are the discriminating attributes for the 8431 scientific 

data items of the NASA archives. In this screen shot, the bars show the overview of the 

data distribution. Recent versions of this interface are available at the Global Change 

Master Directory (gcmd.nasa.gov). 
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Figure 3.2: When users select the attribute values (e.g., here atmosphere for topics and 

Europe for area), the bars are updated immediately to reflect the new distribution of the 

data that satisfies the query.  When users are satisfied with their initial query, the results 

can be retrieved, or the query can be refined with additional attributes in the second phase 

with another interface. In this case, atmospheric data for Europe produces a set of 292 

data items to be retrieved.  
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Figure 3.3: The refinement phase, implemented as a dynamic query interface. In this 

example, the time-span of the data items versus the data size (i.e., image size) are shown 

on a scatter plot that is tightly coupled with a number of scrollable menus that enable 

selections on the remaining attributes of the data. Color-coding is used to present an 

attribute from the data (i.e., processing level of images). An interactive geographical map 

is also available. 
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Figure 3.4: Results presented as a hit list on the left, details are presented for a single item 

in a frame on the right, and the query is displayed on the top as a conjunct of disjuncts 
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3.2.3 Extensions and Recent Prototypes 

The query previews work continued with implementations of new prototypes using 

different types of previews and overviews. Figure 3.5 shows a query preview interface 

where the overview of data is presented as a binary preview. In this example, the 

availability of data, instead of the amount of data, is used to show the data distribution. 

 

  

Figure 3.5: Binary previews, dark regions show locations where the data is available  
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Figure 3.6 shows another query preview prototype. In this example, the data items 

contain a special attribute, the time attribute (i.e., start and end dates of a certain event). 

This attribute contains ranges of values rather than points of values that require special 

attention. This new type of preview, range preview, must use special algorithms and data 

structures to calculate and display the distribution information as the data items may 

expand multiple dates. Overlaps can occur in counting these items in the bars.  

 

  

Figure 3.6: Range previews, the distribution of data is shown over years  
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Finally, the query previews work has been expanded to cover the task of analysis of 

statistical data. Figure 3.7 shows an example for this special type of query previews, table 

previews, where analysis of the distribution of data may be as important as or sometimes 

more important than retrieving the matching data items for the query. 

 

  

Figure 3.7: Continuing work with table previews, the 1990 United States Census Bureau 

Income Survey Data is used for this example, 8,941 hits selected 
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3.3 Summary 

Query previews shows the data distribution information on some of the commonly 

used discriminating attributes of the data so that any selection would lead to a smaller 

subset of interest. It helps users form informed queries preventing zero or mega hits. 

Distribution of data over different aggregated attribute values is shown graphically by 

using tightly coupled bar charts. 

Especially, the recent work with the Global Change Master Directory of NASA 

suggests that query previews forms a promising option for browsing operational large 

online data collections.  
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CHAPTER 4:  
INITIAL USER STUDY 

 

 

4.1 Motivation for a User Study 

Since query previews adds another phase to query formulation, there is a possibility 

that user performance would deteriorate and that users would be annoyed by a two-phase 

approach. Moreover, query previews focuses attention on only a few selected attributes 

that may not be useful in some queries. Therefore, there was a need for a user study to 

verify and quantify the benefits of query previews and measure the subjective user 

preferences.  

4.2 User Study Methods 

4.2.1 Introduction to the Study 

In this user study, we identified the task types that would put query previews into 

their best and worst situation so that we could quantify the maximum benefits and 

drawbacks of this technique [TLH00]. 

Clearly specified tasks have a straightforward and an accurate definition (known-item 

search), e.g. "List all the Maryland employees from the employee database". Query 

previews has no benefits for this task.  In this case, users want the complete list regardless 

of the outcome of the query. For this case and in general for clearly specified tasks, the 

relevance of the preview attributes to the query is not an influential factor since users are 

best served by going directly to the form fillin interface (tasks of this worst case scenario 

are called T1 tasks). 
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Unclearly specified tasks usually require a series of submissions. User’s constraints 

and preferences cannot be stated immediately.  Information gained from the query 

previews will influence their series of choices, so query previews should be very useful. 

However, the relevance of the attributes used in the query preview will impact the 

usefulness of the user interface. Suppose that a user is looking for some software 

engineers from the Washington, D.C. area using an employee database. If the query 

preview shows the number of employees per state and some other attribute values of the 

data such as the age distribution, then the preview is only partially relevant to the task 

(middle case scenario: T2). On the other hand, if the query preview shows the number of 

employees per state and their job types, then the query preview becomes fully relevant 

(best case scenario: T3). 

The three task types in the study varied in terms of their clarity of the specifications 

they have and in terms of their degree of relevance to the attributes they used to the query 

preview attributes. Six subjects performed a set of tasks, once by using an interface that 

included a query preview followed by a form fillin interface and once by only using a 

form fillin interface. Then, another set of six subjects worked in the opposite order. The 

task completion times and the subjective preferences of the subjects were measured. 

4.2.2 Hypothesis on Query Previews 

Our hypotheses were: (1) For clearly specified tasks (T1), adding the query preview 

step will lead to slower task performance, (2) for unclearly specified tasks (T2 and T3), 

the addition of a query preview step will lead to faster performance, and (3) users will 

always prefer query preview interfaces. 
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4.2.3 Independent and Dependent Variables 

 The independent variable was the user interface type and the treatments were: 

• Form fillin interface with a query preview. 

• Form fillin interface without a query preview. 

The dependent variables were the time to complete the tasks in each interface (not 

including setup times) and the subjective preferences of the users.  

4.2.4 Tasks 

We examined the two interfaces using the three types of tasks that are formally 

defined as: 

• T1: Clearly specified tasks in which the query preview attributes are not relevant 

to the task. 

• T2: Unclearly specified tasks in which some of the query preview attributes are 

relevant to the task. 

• T3: Unclearly specified tasks in which all of the query preview attributes are 

relevant to the task. 

4.2.5 Subjects 

Twelve computer science graduate students were used as subjects. All of them use 

computers almost every day and have at least five years of experience in using 

computers.  

4.2.6 Materials 

The materials include a form fillin interface for querying a film data set (including 

500 films), a query preview panel for the same data, a set of tasks to be performed by the 

subjects, a subject background survey, and a subjective preference questionnaire. 
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4.2.6.1 Form Fillin Interface 

A form fillin interface (Figure 4.1) was used to perform queries on a film data set. 

There are ten attributes for a film in our sample data set: category (horror, action, 

comedy, etc.), award winner (yes or no), rating (R, PG-13, PG, and G), year of 

production, length, popularity, lead actress, director, lead actor, and title. The output of a 

query is a list of films matching the specifications of the query. Vertical and horizontal 

scroll-bars can be used for scanning the list.  

  

Figure 4.1: The form fillin interface used in the study. The rectangle on the right bottom 

corner is used for displaying the result list to a query. The list of fields allows users to 

enter values for the attributes of the data set.  The three attributes on the left side are the 

ones that are also available in the query preview.  
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4.2.6.2 Query Preview 

In the query preview interface (Figure 4.2) users can select values for three attributes 

of the data set: the category (horror, action, comedy, etc.), whether the film won an award 

or not, and the rating (R, PG-13, PG, and G). Multiple selections are available for each of 

these attributes. The number of films for each attribute value is shown on a separate bar.  

Each bar consists of a frame and an internal rectangle (gauge). The length of the frame is 

proportional to the number of films in the data set that match this specific value of the 

corresponding attribute. The length of the gauge is proportional to the portion of the films 

that match the query specified (the number of matches appears to the left of the bar). 

Users formulate queries by selecting the attribute values. As each value is selected, the 

bars of the other attributes adjust to reflect the number of films available for that selected 

specific values. For example, users may be interested only in films that won awards. By 

selecting "Award Winners", the gauges of the bars of the selected categories and ratings 

change immediately to reflect only the films with awards. The query preview bar at the 

bottom of the screen changes its length to illustrate the total number of films that match 

the current conditions.  

When the "Refine" button is pressed, the query preview submits the specified partial 

query to the search engine and all the data about films that satisfy the query are 

downloaded for the refinement phase. The query preview is closed and the form fillin 

interface is loaded to refine the query (displaying initially all the films selected in the 

query preview in the result box). 
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Figure 4.2: The query preview used in the study. The toggles on the left are used to 

choose attribute values and form the query. The counts and bars show the distribution of 

the result set for a query corresponding to the current settings of the toggles.  The larger 

bar at the bottom shows the total number of hits, here 168. 

 

4.2.6.3 Task Examples 

The tasks given to the subjects were to find a film or a list of films in the database 

satisfying the constraints that is provided. Three types of tasks were used for this 

purpose:  

• T1: a clearly specified task in which none of the query preview attributes is 

relevant for the task, e.g. "Find the latest film by Alfred Hitchcock" (a known-

item search). For that type of task, users can typically find the answer by 

submitting a single form fillin query. The query preview has no specific 

advantage since its attributes are not relevant to the query. 
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• T2: desired films are vaguely specified. In this type of task, some of the query 

preview attributes are relevant, e.g. "Find a PG-13 musical which was produced 

between years 1990 and 1995, if no such film is available, find a war film from 

the same years with the same rating, if not, try a musical or a war film from 1970-

90, and as the last possibility, try a comedy from 1970-95". This type of task is 

typical when users have a complex set of acceptable results, with some 

preferences. To perform such a search in the form fillin interface users must issue 

several queries, i.e., when the preferred choice is not available in the data. In the 

preview, users can get some insight about what is available in the data and what is 

not and hence can make more informed queries. However, since not all the 

attributes in the specification appear in the query preview, the form fillin is 

required to refine the query. 

• T3: formed in a similar way to T2. A series of preferences for films are specified. 

In this case however, the query preview attributes are fully relevant to the task 

specifications. Example: "Find at least 30 films of the same category which are R 

rated and have no awards" (for example, in order to organize a film festival or 

make a collection). In the form fillin interface this task requires several queries to 

examine the number and rating of films in each category. The query preview on 

the other hand, gives an immediate picture of the relevant categories. The form 

fillin interface is required only to get an explicit list of the films.  

For each of the above task types, six example tasks were prepared (eighteen tasks in 

total). 
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4.2.6.4 Subject Background Survey and Preference Questionnaire 

The survey included eight questions that determined the experience level of the 

subjects with computers and with search engines. We also prepared a preference 

questionnaire. The subjective preference questionnaire included six questions that aimed 

to find out which of the two interfaces (a form fillin with or without a query preview) the 

subjects preferred and what their attitudes were toward adding query previews to the 

interface. 

4.3 User Study Design 

The study used a within subject counter-balanced design with twelve subjects. Each 

subject was tested on both of the interfaces, but the order of the interfaces was reversed 

for half of the users. A parallel set of tasks (similar but not the same set of tasks) was 

used on the second interface to reduce the chance of performance improvement. Each set 

of tasks included the three types of tasks (T1, T2, T3), with three tasks for each of these 

types. The order of the task types within a task set was also reversed (each of the six 

permutations was used twice). The order of the tasks within each task type was fixed.  

4.4 Procedure and Administration 

The subjects signed a consent form, filled out a background survey, received a brief 

demo of the form fillin interface and the query preview, and a ten minute training session 

during which they used the two interfaces (again similar to but not the same tasks with 

the actual tasks were used). During the study each subject performed eighteen tasks (nine 

in each of the interfaces). At the end of the study the subjects completed the preference 

questionnaire. The study took 50-60 minutes including the training and the 

questionnaires. 
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Two administrators were present. One of them administered the study, performed the 

demo, presented the tasks, and measured the task execution times. The other 

administrator recorded notes about the way subjects coped with the tasks and about 

problems that occurred during the study, and verified the procedures that were followed. 

The time that the subjects spent in using each of the interfaces was recorded (successful 

completion time of a task). These times did not include program startup time.  

4.5 Results 

4.5.1 Time for Completing Tasks 

Figure 4.3 summarizes the times for completing each of the task types for our 

subjects (clearly specified: T1, unclearly specified and partially relevant: T2, unclearly 

specified and fully relevant: T3) for each of the user interfaces (with and without a 

preview). For T1 tasks, the user interface with the query preview yielded slower 

performance than the user interface without the query preview (t(35) = 2.44, p < 0.05). 

For T2 and T3 tasks, the interface with the query preview yielded faster performance than 

the interface without the query preview (t(35) = 8.77, p < 0.05, and t(35) = 14.70, p < 

0.05, respectively). The statistical analysis used two-tailed paired two-sample t-test for 

means. Each task was considered separately leading to the degrees of freedom of 35. 

4.5.2 Subjective Satisfaction 

The subjects answered six questions about their preferences on a one to nine scale 

(with higher numbers indicating stronger preferences). The first question examined the 

general preference of subjects for using a form fillin interface with or without the query 

preview (Figure 4.4). The results show a statistically significant preference (t(11) = 2.82, 

p < 0.05) for the interface with the query preview over the interface without the query 
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preview. The rest of the questions asked what the subjects thought about the user 

interfaces. The results (average scores, standard deviations, minimums, and maximums) 

appear in detail in Figure 4.5. 
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Figure 4.3: Average task completion times for T1, T2, and T3 (the rectangles show the 

standard deviations and the vertical lines indicate the ranges) 
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Figure 4.4: User preference for twelve users   

 

The scores for all of the questions were statistically significantly above the mid-point 

scale value of five (t(11) = 3.86, 6.20, 7.71, 2.24, and 2.58 respectively, p < 0.05). 
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Results of the Questionnaire 
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Figure 4.5: Subject questionnaire results (number of users is twelve) for the interface with 

the preview. Higher numbers indicate higher satisfaction with using the query preview.   

 

4.6 Discussion on the Query Preview Study Results 

Our findings support the hypothesis that for unclearly specified tasks, the interface 

with the query preview yields better performance times than the interface without the 

query preview. For both types of the unclearly specified tasks the improvement in 

performance was significant (at the level of 0.05): 1.6 times faster for T2 tasks and 2.1 

times faster for T3 tasks. For the clearly specified tasks (T1), as expected, the form fillin 

only interface performed slightly better.  

4.6.1 Clearly Specified Tasks (T1) 

As expected, users of the form fillin interface for clearly specified tasks performed 

more rapidly since they were able to find the answer by submitting a single form fillin 

query. The query preview had no advantage since its attributes were not relevant to the 

query and users were performing known-item searches. However, users of the interface 

with the query preview performed only slightly worse (10% slower). The users spent 
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about two seconds in the query preview, identified that its attributes are not relevant for 

the task and continued to the refinement phase.  

4.6.2 Unclearly Specified Tasks, with Partial Relevance of the Query Preview 

Attributes (T2) 

Although not all the attributes in the task specification could be specified using the 

query preview, the insight gained from the query preview enabled users to eliminate 

some potential zero-hit queries in advance, concentrating in the refinement phase on a 

much smaller set of possible queries. The query preview enabled the users to reduce the 

search space significantly so that they could find the answer more quickly.  

4.6.3 Unclearly Specified Tasks, with Full Relevance of the Query Preview Attributes 

(T3) 

For unclearly specified tasks with full relevance of the query preview attributes, the 

full power of the query preview was utilized. The query preview enabled the users to see 

immediately which of the possible queries should be submitted. The users loaded the 

refinement phase only for submitting the query and viewing the results. The users 

performed the refinement phase with a high confidence that they would get the expected 

results. On the other hand, in the user interface without the query preview, the users had 

no clue about which of the possible queries will give the expected results. They had to try 

several possible queries, submitting five to six queries on average until they got a 

satisfactory answer. Although the response time for each such query was immediate 

(about one second), the time for filling in the right specifications of each query (five to 

ten seconds) caused significant differences in performance (even more than T2’s). 
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4.6.4 Performance Improvement 

Building models is a useful way to understand how the querying process works. 

Many different models exist in the database literature (i.e., for SQL and QBE) for this 

purpose. Reisner [Rei91] lists many of these in a survey paper from a human-factors 

point of view. The following simple model for performance times in the refinement stage 

can be used to explain some of our results: 

performance_time = no_of_queries × query_time 

where: 

 query_time = fillin_time + response_time + analysis_time 

The fillin_time, response_time, and analysis_time are the average times for filling in a 

query, getting a response, and analyzing the results, respectively. The response time is a 

function of several parameters such as the complexity of the query, the size of the data, 

the load on the server, the number of the retrieved entities, and the load on the network. 

The time for analyzing the results is determined by the number of retrieved elements. In 

our study the response time was short (about one second), the average analysis time was 

also small (e.g., analysis of a zero hit is almost zero seconds, and analysis of a mega-hit is 

only the time to decide to resubmit). Thus, the main factors were no_of_queries and 

fillin_time. For the T3 and T2 tasks, the query preview achieved the performance 

improvement by reducing the no_of_queries, yielding a situation in which: 

preview_time + (no_of_queriesrefinement × query_time)  <  

no_of_queriesform_fillin × query_time 
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In a more common situation where the access to the data would be through a network, 

the response time would be typically much larger than one second and the performance 

improvement that is achieved for T2 and T3 tasks would be even greater.  

The results show that for different types of tasks the query preview achieves 

different rates of performance improvement in comparison with the traditional form fillin 

interface (from 0.1 times slower in T1 to 2.1 times faster in T3). The performance 

improvement which follows from the reduction in the number of required queries 

depends on several parameters. One parameter is the clarity of the task specifications. In 

clearly specified tasks the number of queries required in a form fillin interface is small, 

hence there is almost no potential for improvement. Another important parameter is the 

relevance of the query preview attributes to the task. Two additional parameters are the 

significance of the query preview attributes in pruning the search space and the resolution 

of the attribute values.  

For example, if rating R is used and almost all the films in the data are of rating R, 

this attribute, although relevant, has insignificant contribution to the performance 

improvement for some queries. When numeric attributes such as year of production or 

length of the film are presented in a query preview, the possible values for these attributes 

are presented using some pre-defined resolution (for example, a ten-year resolution). 

Tasks that require higher resolution for an attribute than the one provided in the query 

preview will benefit less from the query preview. 

In the study, the query preview yielded more performance improvement for T3 

tasks (full relevance of the query preview attributes) than for T2 tasks (partial relevance 

of the query preview attributes). This result may support the assumption that better 
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relevance of the query preview attributes to the task yields more performance 

improvement. 

During the study and in the pilot study we observed almost an order of magnitude 

of difference between the number of queries submitted among the two interfaces. 

Although the model uses number of submissions, we believe that the time to completion 

for each task suggests a parallel and more reasonable comparison among the two 

treatments.  

4.6.5 Learning to Use a Query Preview 

We found that it was easy for users, with experience in querying a database using a 

form fillin interface, to learn the query preview interface and take advantage of the 

information it supplies. However, some of the users, during training and, in a few cases, 

during the study, continued with the refinement phase immediately, skipping the 

examination of some of the relevant attributes. That happened when not all the task 

attributes could be found in the query preview.  For example, when performing a task 

with conditions on rating (in the query preview), year (not in the query preview) and 

category (in the query preview), the fact that the year could not be specified in the query 

preview caused some of the subjects to continue to the refinement stage without 

examining the information for the category attribute. This problem seemed to diminish 

quickly with some experience. 

4.6.6 Subjective Satisfaction 

The users (statistically significantly) preferred the interface with the query preview, to 

the interface without it. They stated that the query preview was helpful, enabling them to 

search faster, and learn more about the data (scores for these questions were statistically 
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significantly above the mid-point value). We believe that this subjective satisfaction 

comes not only from the improvement in performance time which is experienced by the 

subjects but also from gaining better control in performing the tasks.  

The suggested improvements related to user interfaces are: supplying a way to clear a 

group of related check boxes in one step, or easily resetting or setting all of them, a more 

immediate refresh operation on the bars for visual accuracy when changing the attribute 

values of the query preview panel, etc. The significant preference that subjects showed 

for including query previews in their current systems (in addition to the objective 

performance improvement for two of the task types) encourages further efforts in 

understanding, improving, and developing query preview interfaces. 

4.7 Summary 

This study supports the claim from the field experiences that query previews forms a 

realistic option for and can be extended to help users browse large online data collections. 

Query previews is not suggested as a useful technique for all types of query interfaces 

and all types of tasks but this first study confirms that the benefits of query previews exist 

for several tasks. 
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CHAPTER 5:  
GENERALIZED QUERY PREVIEWS 

 

 

5.1 Motivation for Generalizing the Query Previews 

Query previews is a simple method to eliminate most of the zero-hit and mega-hit 

queries and help users prune data efficiently. Unfortunately, query previews works only 

on a few selected attributes of the data as a separate phase in a querying session. This 

situation introduces a drawback on their applicability and performance. Many data sets 

are formed of numerous attributes. The designer of the preview panel can select the most 

frequently desired attributes of the data to form the preview panel. Yet, selecting only a 

few frequently used attributes may not be a possible option for many of the data sets. 

Even when it is possible, it may not be enough to satisfy some of the users with only a 

restricted number of attributes. Hence, a generalization to relax this restriction is needed. 

5.2 The First Generalization Attempt on Query Previews 

The first generalization attempt led to a new family of query previews [TPS00]. We 

called this new family of query previews the generic query previews. We combined the 

query previews approach with a method to present all of the attributes of the data to let 

users manipulate these attributes simultaneously. With this generalization, all of the 

appropriate attributes can be used to display the data distribution information. This new 

generalized approach could be used as a standalone query formulation mechanism, or like 

the query previews, it can be used as a preceding interface to another query formulation 

interface.  
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Figure 5.1 presents a sample implementation of this generalization. For this 

implementation a hierarchical browser is used to display all of the attributes and tables of 

the data. In this sample prototype, we used the Environmental Protection Agency’s (EPA) 

Toxic Release Inventory as our sample data set. It contains approximately 400,000 

reports of toxic material releases to the environment from various facilities in the United 

States. There are four tables in this data. They are Contact Info, Release Info, Chemical 

Info, and Facility Info tables. Each table contains a few attributes. For example, the 

Contact Info table contains Contact Phone and Contact Name as its attributes.  

The root of our browser is tagged with the name of the data set. Each table is 

represented by a separate branch. Each branch may also have leaves representing 

different attributes of that branch. The result bar is visible on top of the panel showing the 

total number of hits in the result set for the current query definition. At any time, the 

users can fetch these results by simply pressing the fetch button to the left of the result 

bar.  

We attached the distribution information next to the related branch of an attribute. 

Some of the attributes do not have the distribution information attached to them. For 

example, Contact Name of the Contact Info table of Figure 5.1 does not have anything 

attached to it. The nature of the Contact Name attribute does not allow a useful 

representation. There are almost as many names in the data set as the number of data 

points. In this work, we focused on other types of attributes, e.g., gender and age. These 

have useful representations.  

Figure 5.1 shows some selections and updates on the bars showing the distribution 

information. Selections are visible in textual form below the result bar. The session can 
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continue as long as the users want to explore the data. When users need to see the results 

for their query, they can fetch the desired hits from the server matching their selections 

and they can view this result set as a simple list, or they can continue querying on it using 

some other local tools (e.g., Excel, Access, etc). 

 

  

Figure 5.1: A sample implementation of the generic query previews approach. A 

hierarchical browser is used to display the data attributes and tables (51,785 hits) 
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5.3 The Next Step 

After the first generalization attempt, we realized that there was also a need in our 

designs to give users the ability to define their personalized views of the data (i.e., a 

group of attributes of interest to the user). In query previews and later in generic query 

previews users could only fetch their results projected on all of the attributes of the data. 

This is a redundant activity if the users want only a portion of the data in terms of the 

number of attributes they fetch from the server. For example, in Figure 5.1 the users may 

only want the contact information related attributes of the data, but not the other ones. 

Therefore users should have the capability to define their desired-attributes list, formally 

their views of the data. 

Hence after our early work, field experience, initial user study, user observations, and 

some generalization attempts, we decided to define a general user interface architecture 

to form a high level mechanism for efficient browsing of large online data. The result was 

the generalized query previews user interface architecture.  

5.4 Generalized Query Previews User Interface Architecture 

The generalized query previews user interface architecture has the following three 

components: 

• A presentation component for the data table and attribute names augmented with a 

mechanism for selecting a user view, the schema component, 

• A manipulation component for displaying and selecting the data distribution 

information, the distribution information component,  

• A presentation component for displaying or analyzing the results, the raw data 

component. 
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Figure 5.2 shows how these components are attached to each other. First, users can 

see the database table and attribute names. Then, they can define their view by choosing 

some attributes. Later, using the distribution information attached to the view, they can 

analyze the overview of the data and make their selections. Finally, they can fetch the 

mapping results, and if desired, forward it to another program. The session can continue 

in a cyclic manner as long as the users want.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Interactions between the three generalized query previews components   

 

To demonstrate and later to experiment with the generalized query previews user 

interface architecture, I have implemented a sample program called the ExpO System. 

The ExpO System is implemented on a data set from the 1997 United States Economic 

Census collections. The collection contains information about hospitals located in each of 

the United States Counties. It has about ten attributes and approximately 3000 rows. The 
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data is stored in four different relations on a networked relational database management 

system. Each relation represents a single table. All the tables share a unique identifier, 

‘report_id’, representing a unique report from a county. The remaining sections of this 

chapter analyze each component of the generalized query previews user interface 

architecture by using the ExpO System as the sample implementation. 

5.5 Schema Component 

Users need to visually browse all the attribute and table names to begin understanding 

the data. The schema component of the generalized query previews user interface 

architecture serves to this purpose. For simple data sets, a simple list of attributes would 

generally suffice to show the attribute names. In more complex environments, such as 

large relational databases, more scalable approaches may be needed. SeeData [AEP96] 

proposes such an approach to visualize attributes and tables from a large database. 

For our ExpO example, I have used a hierarchical browser, the panel on the left in 

Figure 5.3, to present the attribute and the table names. The root of this panel is tagged 

with the name of the database, ‘hospital97’. The first level in the hierarchy displays the 

table names. In this data, ‘loc’, ‘payroll’, ‘sale’, and ‘size’ are the four tables that share a 

common identifier. The second level displays the attribute names. 

The schema component should be implemented after a careful analysis of the 

database schema size, user needs, and the relations between the schema entities. For 

small schemata, it may be unnecessary to implement and moreover can become annoying 

to use a complex visualization. However, large databases may need scalable approaches. 

Although in some cases the database schema may be large, the information that needs to 

be displayed to the users may be relatively small. In addition to these, relations between 
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database tables may be important for the presentation. In some applications, only a few 

tables sharing a set of common attributes may be of interest to the user. In others, many 

clusters containing such attributes may exist. Viewing these clusters in an organized 

manner may be important. Designers should consider all of these issues before starting to 

work on the schema component. 

 

 

  
Figure 5.3: An example generalized query preview interface, ExpO, where the left panel 

displays the table and attribute names of a relational database as an example 

implementation of the schema component 
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In generalized query previews, users should be able to select some of the attributes of 

the data to form a view. The schema component also plays the role of a selector for this 

purpose. Again, different implementations are possible, depending on the user needs, 

possible view sizes, and the database schema layout. For example, in certain applications 

where there does not exist a single universal relation, selections of two attributes from 

two disjoint tables without any common attributes should be prevented. Otherwise, this 

can cause conflicts in implicit join operations during query processing.  

 

 

 

Figure 5.4: ExpO with a user-defined view after four attribute selections. The user-

defined view is also a hierarchical browser. 
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In the ExpO example, users can select the attributes that they want to define their 

queries on. This action triggers the insertion operation of that selected attribute to the user 

view. This view is presented in a separate panel and it is also represented by a 

hierarchical browser (Figure 5.4). The panel in the middle depicts a few user selections 

and a user-defined view of the data. The selected attributes are tagged with the name of 

the tables that they are selected from. For example, ‘tax’ attribute of the ‘sale’ table forms 

the tagged name of  ‘sale_tax’. Joining the relations representing these tables is 

automatically done in the background. Hence, only the tables with common attributes can 

be joined to form a view. The example shown contains only four tables, each represented 

by a single relation. Tables can be predefined views from the data, and need not directly 

map to the relations of the underlying database. 

5.6 Distribution Information Component 

At the core of the generalized query previews architecture, distribution information 

plays an important role. The distribution information component of the architecture is a 

means to see an overview of the data and to define queries on it. User views are used to 

attach the distribution information. In the example from Figure 5.4, a special icon in the 

user view shows that one of the attributes of this view, ‘sale_tax’, can be expanded to 

show the distribution of data on this attribute. The same attribute may also be displayed 

with a different icon on the hierarchical browser of the database attribute and table 

names.   

Figure 5.5 shows the expansion. The attributes are expandable into buckets. The data 

distribution information is attached to these buckets. Buckets are values where the data 

can be aggregated over. The data distribution information is attached to these buckets as 
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some visual aids, such as the bar charts of this example. Here, ‘taxable’ and 

‘non_taxable’ are the bucket names for that attribute. Further expansions on other 

attributes are shown in Figure 5.6. Forming these buckets is the duty of the designer of 

the system who should gather information about the details of the data and the user needs. 

 

 

  
Figure 5.5: ExpO with the data distribution information attached to the user-defined view 

 

An important feature of the generalized query previews is the capability of visualizing 

a preview of the results. In the ExpO example, a separate bar on the top of the middle 

panel shows the total number of distinct items mapping a query. This is called the result 

bar (showing 3252 hits in Figure 5.6). It is a preview for the result set and shows the size 
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of it. Hence, users will be aware of the consequences of their query submissions, i.e. 

whether they are submitting mega-hit or zero-hit queries. Thus, the result bar helps 

prevent useless query submissions. 

 

 

Figure 5.6: ExpO with the data distribution information attached to the buckets of three 

attributes expanded in the user view 

 

In generalized query previews, queries are incrementally and visually formed by 

selecting items from a set of charts attached to the user view. Users continuously get 

feedback on the data distribution information as they continue their selections. For our 

example, Figure 5.7 shows an example selection. As soon as the selection is made, other 
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charts and the preview of results are updated to reflect the new data distribution satisfying 

this selection. This is called tight coupling. Possible zero-hit queries immediately become 

visible to the users. Users also see where the data is and how it is distributed over 

different values even before manipulating the bars. They can play with these interactive 

charts as long as they want to investigate the contents of the data. Clicking on the visual 

aids, bars in this case, selects or deselects them. Figure 5.8 shows some further selections 

on different charts. Selections within a chart map to a disjunction operation. Selections 

between charts map to a conjunction operation. Other types of implementations and 

interpretations are also possible. 

 

 

  

Figure 5.7: A selection is made on one of the buckets, ‘great_plains’. 
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Figure 5.8: Multiple selections are made, ‘taxable’, ‘great_plains’, ‘northwest’, and ‘0 to 

99’. 

 

It is possible to display the distribution information on different types of visual aids. 

Figure 5.9 shows another snapshot of the ExpO system where a pie chart version of a 

corresponding bar chart and a series of bars mapping to another bar chart are shown. 

Other representations, such as a color-coded stack of bars instead of a single bar, can be 

implemented for different applications.   

5.7 Raw Data Component 

After the investigative selections, users can fetch the desired portions of the data by 

sending their final selections over the network. As they make informed queries, getting 
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neither zero-hit nor mega-hit result sets is an issue. Hence, the problem of blind 

formation of queries is solved. 

 

 

  

Figure 5.9: Other visual aids, such as a pie chart, may also be available to the users. 

 

 For some implementations, the designer of the system can take some drastic 

measures, such as preventing the query submissions for zero-hit or mega-hit queries by 

utilizing a threshold. It is important to note that the information given by the charts is not 

the probabilistic distribution of data, but the real one. 
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Figure 5.10 shows a result set displayed on the right side of the ExpO frame as a 

separate panel. Users can load this result set into a local tool for further analysis of this 

portion of the data (Figure 5.11, e.g., Excel). The whole process of pruning and loading a 

portion of the data can be repeated as long as the user desires. Generalized query 

previews can enable access to the results in multiple ways. In our example, only a list is 

shown. 

 

 

 

Figure 5.10: ExpO with a result set to a query displayed in a separate panel on the right, 

273 hits are listed 
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5.8 Summary 

Although query previews form a simple and effective way to prune large online data, 

a more general method is needed. The generalized query previews user interface 

architecture is designed for this purpose. This new user interface architecture consists of 

three components. A presentation component exists for displaying data table and attribute 

names augmented with a mechanism for selecting a user view, the schema component. A 

manipulation component exists for displaying and selecting the data distribution 

information, the distribution information component. Finally, another presentation 

component exists for displaying or analyzing the results, the raw data component. 

 

  

Figure 5.11: A result list is loaded to a local program, i.e., Excel  
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CHAPTER 6:  
SECOND USER STUDY 

 

 

6.1 Motivation for a Second Study 

Generalized query previews is hopefully a forward step from the query previews 

approach. Although it is a more general architecture, it also introduces some overhead 

such as defining a view and explicit expansions of charts. Hence, there is a possibility 

that user performance could be disturbed and that users could be annoyed by the 

generalization. Therefore, there is a need for a second user study to verify and quantify 

the benefits of generalized query previews and measure the subjective user preferences.  

6.2 User Study Methods 

6.2.1 Updates for the Second Study 

In this new user study, I identified the task types that would put generalized query 

previews into their best and worst situations, as was the case for the first user study.  

Clearly specified tasks and unclearly specified tasks were again used. However, for 

the new study, only full relevance of query attributes was an issue. There was only a 

single-phase querying session. Hence, there were only two task types. These two task 

types varied in terms of the clarity of the specifications they have. Eight subjects 

performed a set of tasks, once by using a sample generalized query preview interface 

(i.e., ExpO System) and once by only using a form fillin interface. Another set of eight 

subjects worked in the opposite order. The task completion times, the number of query 

submissions, and the subjective preferences of the subjects were measured. 
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6.2.2 Hypothesis on Generalized Query Previews 

Our hypotheses were: (1) For clearly specified tasks (T1’) generalized query previews 

will lead to slower task performance, but with the same amount of query submissions, (2) 

for unclearly specified tasks (T2’), generalized query previews will lead to faster 

performance and fewer query submissions, and (3) users will always prefer generalized 

query previews.  

6.2.3 Independent and Dependent Variables 

The independent variable is the user interface type and the treatments are: 

• A form fillin interface (FFN’) and  

• A sample generalized query preview interface, the ExpO System (EO). 

The dependent variables are the time to complete the tasks in each interface (not 

including setup times), the number of query submissions by the users, and the subjective 

preferences of the users.  

6.2.4 Subjects 

Sixteen computer science graduate students were used as subjects. All of them use 

computers almost every day and have at least five years of experience in using 

computers. Hence, the user type is similar to the previous study. 

6.2.5 Materials 

The materials include a form fillin interface (FFN’) for querying a United States 

Census Bureau data set (including information on approximately 3000 counties), a 

sample generalized query preview interface (i.e., ExpO System: EO) for the same data, a 

set of tasks to be performed by the subjects, a subject background survey, and a 

subjective preference questionnaire. 
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6.2.5.1 Form Fillin Interface 

The form fillin interface in Figure 6.1 was used to perform queries on a United States 

Census Bureau data set. There are more than ten attributes in this sample data set. They 

are listed by using a hierarchical browser. Attributes are selected by marking the toggles 

near them. This action also triggers the display of editable fields attached to these 

attributes. The output of a query is a list of hits matching the specifications of the query. 

Scroll-bars can be used for scanning the list.  

 

  

Figure 6.1: The form fillin interface used in the study. The rectangle on the right is used 

for displaying the result list to a query, four hits for this query.  

 



 

 92

6.2.5.2 The Sample Generalized Query Previews Interface 

The ExpO System is the sample generalized query preview interface (Figure 6.2).  

 

  

Figure 6.2: The ExpO System. The name of the system is hidden from the subjects to 

avoid bias towards anyone of the systems until the end of the study 

 

6.2.5.3 Task Examples 

The tasks given to the subjects were to find a list of the counties in the database 

satisfying the constraints that were provided. Two types of tasks were used for this 

purpose:  
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• T1’: a clearly specified task, e.g. "Please get a list of all the counties that are in 

the northwest region and have less than 100 employees working in taxable 

hospitals" (a known-item search). For that type of task, users can typically find 

the answer by submitting a single form fillin query. The ExpO System has no 

specific advantage. 

• T2’: More vague query definitions were used, e.g. "Please get a list of all the 

counties from the region that has the smallest number of counties with less than 

100 employees working in taxable hospitals".  

For each of the above task types, four example tasks were prepared. 

6.2.5.4 Subject Background Survey and Preference Questionnaire 

The survey included six questions that determined the experience level of the subjects 

with computers. I also prepared a subjective preference questionnaire. This questionnaire 

included six questions that aimed to find out which of the two interfaces the subjects 

preferred. Similar questions to the ones in the first user study were used. 

6.3 The Second Study Design 

The study used a within subject counter-balanced design with sixteen subjects. Each 

subject was tested on both of the interfaces, but the order of the interfaces was reversed 

for half of the users. A parallel set of tasks (similar but not the same set of tasks) was 

used on the second interface to reduce the chance of performance improvement. Each set 

of tasks included the two types of tasks (T1’, T2’), with two tasks for each of these types. 

The order of the task types within a task set, the order of the tasks within each task type, 

and the task set orders were all reversed, leading to sixteen different compositions.  
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6.4 Procedure and Administration 

The subjects signed a consent form, filled out a background survey, received a brief 

demo of the interfaces, and a ten-minute training session during which they used the two 

interfaces (similar to but not the same tasks with the actual tasks were used). During the 

study each subject performed eight tasks (four in each of the interfaces). At the end of the 

study the subjects completed the preference questionnaire. The study took 30 minutes, 

including the training and the questionnaires. 

The time that the subjects spent in using each interface was recorded (successful 

completion time of a task) along with the number of queries submitted per task. The 

times did not include program startup times.  

6.5 Results 

6.5.1 Time for Completing Tasks 

Figure 6.3 summarizes the times for completing each of the task types for our 

subjects (clearly specified: T1’, unclearly specified T2’) for each of the user interfaces. 

For T1’ tasks, the ExpO System yielded slower performance than the form fillin interface 

(t(31) = 2.17, p < 0.05). For T2’, the ExpO System yielded faster performance than the 

form fillin interface (t(31) = 9.46, p < 0.05). The statistical analysis used two-tailed 

paired two-sample t-test for means. Each task was considered separately leading to a 

degrees of freedom of 31. 

6.5.2 Subjective Satisfaction 

The subjects answered six questions about their preferences on a 1 to 9 scale (with 

higher numbers indicating stronger preferences). The first question addressed the general 

preference of subjects for using either of the interfaces (Figure 6.4). The results show a 



 

 95

statistically significance preference (t(15) = 6.37, p < 0.05) for the ExpO System over the 

form fillin interface. The rest of the questions asked what the subjects thought about the 

user interfaces. The results (average scores, standard deviations, minimums, and 

maximums) appear in detail in Figure 6.5. 

Task Completion Times
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Figure 6.3: Average task completion times where the rectangles show the standard 

deviations and the vertical lines indicate the ranges. EO stands for the ExpO System and 

FFN’ stands for the form fillin interface. The number of subjects used is sixteen. 
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Figure 6.4: User preference for sixteen users   
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The scores for all of the questions were statistically significantly above the mid-point 

scale value of five (t(15) = 16.43, 5.84, 5.33, 13.49, and 9.30 respectively, p < 0.05). 

Results of the Questionnaire
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Figure 6.5: Subject questionnaire results (number of users is sixteen). Higher numbers 

indicate higher satisfaction for using the ExpO System.   

 

6.5.3 Query Submission Counts 

An extra piece of data that was collected in the second study was the number 

of queries submitted for each task (Figure 6.6). The results show a statistically 

significant difference (t(31) = 22.39, p < 0.05) for the ExpO System with the T2’ 

tasks. For T1’, the difference was not significant (t(31) = 1.44, p < 0.05). 

Figure 6.6: Number of queries submitted   
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6.6 Discussion on the Results 

Our findings support the hypothesis that for unclearly specified tasks, the generalized 

query previews yields better performance times and counts than the form fillin interface. 

For the unclearly specified tasks the improvement in performance was significant (at the 

level of 0.05): 1.8 times faster. The counts were also more than 7 times better. For the 

clearly specified tasks (T1’), as expected, the form fillin interface performed slightly 

better in performance time, but no statistically significant difference was observed for the 

submission counts.  

6.6.1 Clearly Specified Tasks (T1’) 

As expected, users of the form fillin interface for clearly specified tasks performed 

more rapidly since they were able to find the answer by submitting a single form fillin 

query. The generalized query previews had no advantage as users were performing 

known-item searches and they did not require an overview of the data. However, users of 

the sample ExpO System performed only slightly worse (14% slower). In addition to this, 

the number of queries submitted did not change. 

6.6.2 Unclearly Specified Tasks (T2’) 

The generalized query previews enabled the users to see immediately which of the 

possible queries should be used. On the other hand, in the form fillin interface, the users 

had no clue about which of the possible queries will give the expected results. They had 

to try several possible queries, submitting many queries (on average 7 times more) until 

they got a satisfactory answer. Although the response time for each such query was 

immediate, the time for filling in the right specifications of each query caused significant 

differences in performance.  
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6.6.3 Subjective Satisfaction 

The users (statistically significantly) preferred the generalized query previews to the 

form fillin interface. They stated that the generalized query previews was helpful, 

enabling them to search faster and learn more about the data (scores for these questions 

were statistically significantly above the mid-point value). I believe that this subjective 

satisfaction comes not only from the improvement in performance time which is 

experienced by the subjects but also from gaining better control in performing the tasks. 

Yet, many of the users experienced some problems understanding the concept of a view 

and adopting to the bar expansions when they first started using the ExpO System. These 

problems seem to diminish quickly with user experience.  

6.6.4 User Comments 

Users specifically stated that the ExpO System: 

• Made them feel more familiar with the data, 

• Gave them more information about the data, 

• Let them define queries in a more interactive fashion,  

• Is a better candidate for long term usage, especially on categorical data, but 

• Can get confusing and burdensome to use for simple (know-item) queries, 

• Can get confusing if there are many selections on many attributes, and 

• Can get difficult to use for defining general (SQL like) queries. 

The users also stated that the form fillin interface they used in the study: 

• Was a simple to use but boring interface, 

• Required them to understand and remember the data and their actions, 

• Made them probe data blindly, and 
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• Could only be used if you know what you are looking for. 

6.7 Summary 

This study supports the claim that benefits of generalized query previews exceed the 

overhead of the generalizations. The benefits will amplify on real-life situations where 

congested networks over long distances are used. However, an overhead due to the 

generalizations still exists. The first study showed up to 2.1 times performance 

improvement while this study showed 1.8 times improvement for similar tasks. Hence, 

we can claim that there is some degradation in the user performance in the second study 

due to the generalizations. Yet, the performance improvement remained to be significant.   

Implementers of generalized query previews interfaces should continue to be cautious 

about their application domain in terms of the query types. Generalized query previews 

was not meant to attack the issues that may appear in known-item searches or efficient 

formulation of general SQL queries. Although the number of query submissions did not 

change in the worst-case, the time to analyze an overview panel should still be considered 

before implementing an application. 

In this study, we observed almost an order of magnitude of difference between the 

number of queries submitted among the two interfaces for some tasks. This was also 

observed during the first study without any statistical analysis. The second study shows 

that this difference is in fact statistically significant. This result also confirms the notions 

of the predictive model from our first study. The number of query submissions is crucial 

and can be reduced by using overviews and previews. 
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The major limitation of both of the user studies remains to be the lack of variety of 

the task types. More varied tasks should be used in the future studies to investigate and 

quantify the relationship between task types and the performance time improvements.  
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CHAPTER 7:  
ALGORITHMS AND DATA STRUCTURES 

 

 

7.1 Internal Architecture 

The generalized query previews user interface architecture utilizes a client-server 

approach for storing, computing, and transferring data (Figure 7.1). It works with three 

different types of data within this approach. The first type is the database schema. This is 

a hierarchy of database table and attribute names. It is requested from the server as soon 

as the program starts on the client. The second type is the distribution information. This is 

requested only when needed, i.e., during the chart expansions. The third one is the raw 

data that is fetched up on a user query submission. 

 

 

 

 

 

 

  

 

Figure 7.1: The architecture for storing, computing, and transferring data internally in 

generalized query previews, shown on the sample ExpO System   
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7.1.1 Database Schema 

As soon as the generalized query previews implementation (e.g., ExpO) starts 

working on the client, a request for the database schema is sent to the server. Unless there 

is a connection error this information is sent back to the client instantaneously from the 

server. The size of the schema is generally very small and delays during this connection 

are unnoticeable by the user. The database schema is brought only once and stored on the 

client through out the session. 

Generalized query previews uses only a part of the database schema. The database 

schema is a shallow tree for a generalized query preview implementation. The root is 

tagged with the name of the database. The first level represents a list of the names of the 

database tables and the second level represents a list of the names of the attributes 

forming these tables. The schema also contains the tags for tracking various types of 

other information, i.e., whether an attribute is a primary key for that table or not, whether 

any distribution information for that attribute exists or not, etc. A sample schema is 

shown in Figure 7.2 from a generalized query preview implementation (i.e., ExpO) point 

of view. The internal representation for the schema is a table containing a hierarchy of 

database table and attribute names, stored as a list (also shown in Figure 7.2). 

Updates on the database schema are not visible to the client during an open session. 

The updates can only be viewed when the user restarts the program and hence the 

connection to the server. Assuming that the database schema is a fairly stable entity of the 

database, updating it rarely should not cause major consistency problems for the users.  

Like all the other data communications with the server, the database schema is just a 

read-only entity and cannot be altered by the users. Security is maintained by an internal 
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password mechanism triggered at the startup time. This is a transparent operation for the 

user.    

 

Figure 7.2: A sample database schema (in ExpO System) showing the table, the attribute 

names of a database (left), and a sample internal representation of this schema as a simple 

list (right) 

 

7.1.2 Raw Data 

When the user decides to obtain the raw data for a query, the fetch button can be used 

to trigger a parsing operation. This is virtually transparent to the user. The operation is 

performed on the user-defined view where the chart selections are made. The query is 

immediately converted to an SQL query and then sent to the server. Depending on the 

size of the result set, complexity of the query, and the network workload, the result set is 

returned (Figure 7.3). Some special case handling may be required at this stage to avoid 

unnecessary network problems and loading delays depending on the application. For 

example, queries requesting more than a certain maximum size of the result set may be 
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avoided, or results can be truncated after the submission. Multi-threaded implementations 

may be needed. 

The result set is a user-defined view of the database. It is presented as a simple list of 

hits mapping to the most recent query. Later on, if desired, it can be forwarded to a local 

program such as a spreadsheet, visualization tool, etc. Updates on the raw data are visible 

from one query submission to another.    

 

Figure 7.3: A sample result set presented as a simple list. It is also represented as a simple 

list internally.     

7.1.3 Distribution Information 

Distribution information forms the core of the data transfers for the generalized query 

previews. Although the size of the distribution information is generally negligible in 
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comparison to the size of the raw data (and hence more efficient to transfer), it plays a 

dominant role in the network connections and during the query formulation process of 

generalized query previews. 

 The database should automatically maintain this information via some triggers and 

batch processes. Recent database research led to the creation of a new generation of 

databases, data warehouses. Data warehouses enable users perform online analytical 

processing (OLAP) of large amounts of data. These use similar types of aggregate 

metadata (e.g., sums, maximums, minimums, etc.) to the distribution information of the 

generalized query previews. They maintain the aggregates regularly and efficiently via 

specialized methods [BS96] [CD97] [Gra97] [Rou97]. Hence, creation and maintenance 

of aggregates has become easier and more efficient with these advanced methods.  

The distribution information is required to compute and update the charts that are 

attached to the user-defined views. Views can be formed of numerous attributes. These 

attributes can only come from tables that have some common attributes (i.e., identifiers). 

The common attributes allow the tables to be joined to form a user-defined view. This 

operation is thoroughly transparent to the users.  

Distribution information is stored as multi-dimensional arrays on the server. For each 

chart combination, there may be a separate multi-dimensional array and this array may be 

requested from the server when that certain set of charts is expanded. Figure 7.4 displays 

a sample combination and its related multi-dimensional array using a snapshot from the 

ExpO System. These arrays are highly scalable. As the size of the database increases only 

the count information changes, but the sizes of the multi-dimensional arrays does not 

increase. During my field experience with NASA, I observed that increases in the raw 
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data could lead to large differences between the sizes of the multi-dimensional arrays and 

the raw data. For example, all of my prototypes for NASA used arrays of size 100Kbytes 

or less where the raw data ranged from a few megabytes to many tens of megabytes. This 

experience increased my confidence on the applicability and scalability of the multi-

dimensional arrays.   

 

Figure 7.4: A sample two-dimensional array that represents the distribution information 

for a certain combination of charts, i.e., tax status vs. number of employees  

 

Yet, the size of the multi-dimensional arrays can change in size with the number of 

dimensions used in these arrays and buckets used in each of these dimensions. For 

example, the array in Figure 7.4 has two dimensions. It also has four buckets for the 

number of employees dimension and two buckets for the tax status dimension. Hence, the 
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size of this particular multi-dimensional array will be the storage size of eight integers. 

The increase in any one of these dimensions in terms of the number of buckets they 

require will cause a linear increase in the size of the multi-dimensional array. If we were 

to increase the number buckets for the number of employees from four to five, the new 

size of the array will increase by two integers (for the two new tax status counts). 

Unfortunately, adding a new dimension creates a more dramatic change in the size of the 

multi-dimensional array. If we were to add another dimension to the array of Figure 7.4 

that contains four new buckets, then the array size will quadruple immediately. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: A sample selection operation and a related update on the second chart  

 

Selections on a chart trigger the updates on the other charts. The multi-dimensional 

array is traversed to find the mapping slices of distribution information to these 
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selections. These are continuously printed on the screen as the users continue their 

selections. Figure 7.5 shows such an update. 

7.2 Challenges of the Internal Architecture 

The challenges of the internal client-server architecture can be divided into two 

categories: 

• Manipulation challenges, 

• Representation challenges. 

The manipulation challenges are observed when the user wants to make selections on 

more than a few attributes of the database at the same time. Not only tracking the updates 

on multiple charts, but also maintaining the distribution information for these charts 

becomes difficult.  

Experience shows that, users are not comfortable in tracking the updates on four or 

more charts. Hence, users need to collapse some of the charts to continue their queries on 

the other attributes.  

In addition to this, arrays of four or more dimensions can easily become cumbersome 

to transfer over the network. This problem can be bypassed by downloading the raw data 

itself after the first few selections. This brings a solution to the number of dimensions 

manipulated simultaneously without downloading large amounts of raw data. The initial 

selections are generally selective enough to prune the data down to a manageable size. 

This approach should be implemented as a transparent operation to the user.    

The representation challenges are more difficult to handle. The multi-dimensional 

array representation for the distribution information is effective for many of the data 
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types. On the other hand, some of the data types cannot be handled easily with the multi-

dimensional array approach.  

The multi-valued data types have the most generalized version of these challenges. 

Temporal data forms a good example to show it. A record covering a range of dates in a 

temporal database is a record that contains a multi-valued attribute. This may result in the 

duplication of the same record in the multi-dimensional array. It is counted once for each 

date it spans. Hence, the distribution information represented with the array is no longer 

the same information represented with the actual data set itself.   

Similar situations are observed with the NASA prototypes of the query previews, 

where a satellite picture maps onto multiple regions of earth and not to a single longitude 

and latitude (i.e., a geographical point). The situation is more dramatic when large and 

multiple ranges of values are used in a database. This may result in more erroneous 

representations of the data with high levels of duplication. Therefore, to accommodate 

multi-valued data types and hence attack the representation challenges, the multi-

dimensional array approach must be extended.  

7.2.1 Focusing on the Multi-valued Data Types 

Multi-dimensional arrays are fundamental for storing the distribution information. 

Figure 7.6 shows a sample array used for this purpose. This sample will be used 

throughout this section to traverse the multi-valued data type challenges in depth. 
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Figure 7.6: A sample multi-dimensional array. Each of the dimensions of this array 

represents an attribute. The counts give the number of records that map to the associated 

values of the two attributes. An example range query is shown as a colored rectangle, Q. 

 

The distribution information shown with these arrays do not thoroughly represent the 

multi-valued attributes.  For example, the array presented in Figure 7.6 could be used to 

accurately display the seven records given in Figure 7.7, but not the ones given in Figure 

7.8. The reason for this is that we lose track of some of the overlapping information in the 

second data set. We can never know whether the last four items of the multi-dimensional 

array has come from a single record that has some range values (Figure 7.8) or from four 

separate records (Figure 7.7). The intersection information is lost in the conversion.  

The range query shown in Figure 7.6 matches to two separate records of the single-

valued data set shown in Figure 7.7. However, there is only one record that actually maps 

to both of the data points when the multi-valued data from Figure 7.8 is used. 

0 1 2 0 

0 0 1 1 

0 0 1 1 

0 0 0 0 

W

X 

Y 

Z

K L M N Attribute #1 

Attribute #2 Q 



 

 111 

 

Figure 7.7: A sample single-valued data set. Records 6 and 7 form the answer for the 

range query shown in Figure 7.6 (colored rectangle Q). 

 

Figure 7.8: A sample multi-valued data set. Record 4 forms the only answer for the 

range query presented in Figure 7.6 (colored rectangle Q). 

 

We can always duplicate the multi-valued record of Figure 7.8 into multiple separate 

records. However, this may increase the data size without adding much useful 

information. Similar problems were also observed for the data structures presented by 

[TBS97] for dynamic queries.   
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7.2.2 Ranges 

Our research on multi-valued data types revealed some solutions for some of the 

subsets of the multi-valued data types [BT98]. If the data is range data consisting of 

single intervals and if the queries are range queries consisting of continuous single 

ranges, then some modifications on the multi-dimensional arrays may solve the problems. 

For range queries that are defined in two dimensions and for range data with two 

attributes, Figure 7.9 gives such a modification on the multi-dimensional arrays to form a 

new data structure. This approach can make the arrays work without transferring the 

actual data over the network and without drastically increasing the querying times. It is 

also generalizable to any number of dimensions.  

Using Euler's well-known formula as a basis for this approach, the changes can be 

explained more easily from a geometrical point of view, as presented in Figure 7.10. This 

also gives an insight for the generalization of the approach to multi-dimensions. F 

represents the faces, V represents the vertices, and E represents the edges. F is equal to 2 

for our example query in Figure 7.9. Similarly, E is 1 and V is 0. Therefore, the answer is 

2 - 1 = 1, as it is the case in Figure 7.6 where we only have a single multi-valued record 

as an answer to our range query.  

The idea in this new approach is to keep the counts for the intersecting boxes along 

with the actual duplicated counts of the data. Note that, we can only find the non-

duplicated cardinality for a query using these intersections, if the record is continuously 

covering a single region and similarly the query contains a single continuous interval.   
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Figure 7.9: The counts in the colored boxes are the cardinalities of the intersections 

between any two neighboring-boxes of the original array. The same query rectangle Q 

from Figure 7.6 is used for this figure. The data is from Figure 7.8. 

 

 

Figure 7.10: Representation of the approach formulated by using Euler's formula  

 

Additions and subtractions for a small array may not be very costly. On the other 

hand, large arrays should be preprocessed using a prefix sum approach, shown in Figure 

7.11. Then, the results for any range query could be found more efficiently per query. 

 
Result = F + V - E 

F = Sum of all face counts inside the query 

E = Sum of all edge counts inside the query 
V = Sum of all vertex counts inside the query 
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Figure 7.11: The prefix summed version of the data in Figure 7.10  

 

Prefix sums are taken from left to right and then from top to bottom using the counts 

on the faces, edges, and vertices, of the boxes in Figure 7.10. Q denotes the range query 

region. This is the same region with Figure 7.6. The answer to the query is computed 

using the formula given for Q in Figure 7.11. The prefix summed counts on the right 

bottom corner box of each rectangle of Figure 7.11 should be used for the calculation of 

the answer for Q. If the same data from Figure 7.8 is used, then A is 1, B is 3, C is 1, and 

D is 4. Hence, 4 - 3 - 1 + 1 = 1. This is the right answer to our query Q. Note that this 

value is equal to the value found using the formula derived by using the Euler's formula. 

A batch process can compute the prefix sums. Hence, at querying time, the server 

needs to process only the single addition and the two subtraction operations to find the 

answer.  
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The alterations have changed the size of the multi-dimensional arrays. However, this 

increase is only by a small factor and will not dramatically effect the transfer times for 

the arrays.    

7.2.3 Generalized Multi-valued Data Types 

The alterations for single ranges can easily be generalized to any number of 

dimensions. Unfortunately, any number of ranges with any number of dimensions is a 

much harder problem to solve.  

By using exhaustive tables for all possible intersections between the multi-

dimensional array cells, the problem with any number of ranges can be solved in a less 

scalable manner than the single ranges.  

In this section, a formal definition of the multi-valued data type issues will be 

presented. For detailed proofs and generalizations please refer to [BT98].  

Formally, lets say a record from some data set with d attributes creates a d-

dimensional multi-valued attribute problem when all of the attributes are of multi-valued 

data types. And lets define: 

• N = {0,1,…}, the set of natural numbers, 

• Nd is the set of all d-dimensional lattice points in the 1st quadrant, 

• An interval is a set {a,a + 1,…,b} of consecutive natural numbers, 

• A generalized interval is a subset of N, 

• A rectangle in Nd is a cross-product I1 x … x Id of d intervals I1 , … , Id , 

• A generalized rectangle in Nd is a cross-product I1 x … x Id of d generalized 

intervals I1 , … , Id . 

So the two main problems of interest are: 
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• Rectangle Intersection Problem: 

o Data to be preprocessed: A list of D rectangles in Nd, 

o Problem Instance: A single rectangle Q in Nd, 

o Question: How many elements of D intersect Q ? 

• Generalized Rectangle Intersection Problem: 

o Data to be preprocessed: A list of D generalized rectangles in Nd, 

o Problem Instance: A single generalized rectangle Q in Nd, 

o Question: How many elements of D intersect Q ? 

Hence, formally, the Generalized Rectangle Intersection Problem maps to our general 

multi-valued data type problem on a d-dimensional space, and the Rectangle Intersection 

Problem maps to the single range version of it.  

Now, consider the worst-case scenario. Let R denote a fixed rectangle in Nd that 

contains each element of D and with the intersection alterations we are trying to solve: 

• The Rectangle Intersection Problem with O(ρ) preprocessing time per element of 

D, using tables of size ρ, in time O(d2d) per query, 

• And similarly, the Generalized Rectangle Intersection Problem with exhaustive 

tables of size 2n
12n

2…2n
d for all possible intersections. 

Where:  

• ρ = (2n1-1)…(2nd-1) < 2d |R | and 

• R is an n1 x … x nd rectangle. 

Therefore, we can observe that the Rectangle Intersection Problem scales much better 

than the generalized one. 
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For each d-dimensional cube c, let #(c) denote the number of rectangles r in the list D 

such that the interior r intersects the interior of c. In particular, the answer to the query Q 

is #(Q). We have: 

#(Q) = Σ0 ≤ k ≤ d (-1)d – k Σ c is a k-dimensional unit cube in the interior of Q #(c) 

Why? Because each rectangle in D that does not intersect Q contributes ‘0’ to the 

sum, and each rectangle in D that intersects Q contributes ‘1’ to the sum. The derivation 

of this general formula for any number of dimensions using Euler’s theorem is in [BT98]. 

Let dim(r) denote the dimension of a rectangle. If we stored (-1) d – dim(c) #(c) for each 

unit cube c, then we could compute the sum specified in #(Q) by summing over each unit 

cube contained in Q. Better yet, if we stored d-dimensional prefix sums, we can evaluate 

that sum in constant time. For each unit cube a we store Σ b ≤ a (-1) d – dim(b) #(b), where the 

inequality must hold on every coordinate. Given such a table, the sum specified in #(Q) 

may be obtained with 2d – 2 additions and subtractions, by the principle of inclusion and 

exclusion. The total storage needed is the number of unit cubes interior to R whose 

dimension is d or less, which is exactly ρ.     

7.2.4 Optimizations 

Different data types may require different versions and sizes of multi-dimensional 

arrays to be used for representing the distribution information. Although the sizes of these 

arrays do not change with the updates on the raw data, some of these arrays can get 

considerably large with the increasing number of dimensions, buckets, etc. There are 

various methods to optimize the access mechanisms and sizes of such arrays: 

• Materialization of frequently asked queries is a standard database optimization 

technique. Similarly, only a subset of the large arrays can be sent over a network 
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to optimize the transfer times. Portions of the array that are known to be used with 

high frequency and queries that are common on such portions of the arrays can be 

used to materialize some of the answers for the distribution update queries on the 

server. 

• Another method is to reduce the number of buckets used per attribute for some of 

the less frequently used dimensions of the arrays.  

• One method is to restrict the number of selections and selection patterns over an 

attribute. This may reduce the number of the intersection counts kept for a multi-

valued data set.  

• Analyzing the data for the intersecting array cells may be used to restrict the need 

for a large set of exhaustive tables. Sparse data sets may contain fewer 

intersections or only a few clusters of intersections that can lead to compressed 

representations of the multi-dimensional arrays. 

• Restricting the number of attributes manipulated simultaneously is another simple 

but effective method. 

• Cases where the availability of data, instead of the exact distribution of data is 

needed can lead to other optimization methods. The size of the tables can be 

reduced dramatically by compressing the information kept in these arrays. For 

example, using the similar methods to the ones presented in 3.2.3, i.e., binary 

previews, only the boolean representations of the distribution information can be 

considered. Bitmaps can be used instead of integer arrays. 

These methods can be combined to obtain more optimal solutions than a single 

method would provide.  
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7.3 Software Implementation Issues 

The generalized query previews user interface architecture requires the following 

modules to be implemented, installed, and maintained for a sample application: 

• A client module that contains the database schema related communication 

protocols and implements the presentation and manipulation code for the schema 

component of the generalized query previews user interface architecture, 

• A client module that contains the raw data related communication protocols and 

implements the presentation and the transportation (to a local program) code for 

the raw data component of the generalized query previews user interface 

architecture, 

• A client module that contains the distribution information related communication 

protocols and implements the presentation and query formulation code for the 

distribution information component of the generalized query previews user 

interface architecture, 

• A client module that integrates all the client modules and transports information 

from one module to another, 

• A database management system and a series of database server programs that will 

create and update the related parts of the schema and the distribution information. 

In the context of my sample implementation, the ExpO System, the following 

modules were implemented in Java (using JDK-1.2) that are integrated as an applet 

(Figure 7.12): 

• A client module was implemented to obtain the database schema information such 

as the table and attributes names and some distribution information tags from the 
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database server. This module uses simple general SQL queries to obtain the 

information from a relational database server. It uses a hierarchical representation 

to present and let users manipulate the information, 

• A client module was implemented to download the raw data, i.e., results of a 

query and present them as a list. The results can be forwarded to a spreadsheet, 

• A client module that help users form queries using the distribution information. It 

displays and helps users manipulate: 

o A user-defined view with a hierarchical browser. This structure is formed 

of attribute names and buckets for different attribute values, 

o A series of charts attached to the user-defined view. These are 

implemented by using Java-Swing. This modular implementation enables 

a simple path for future advancements. Different types of charts can easily 

be implemented and plugged into the current system with minor changes, 

o A result bar showing a preview for a query, 

o A sub-module to maintain the current user query and download the 

distribution information when needed, 

• A client module to integrate the three components of the applet, reset them when 

needed, and pass information between them such as the results of a user query. 

The client program connects to a Postgres Relational Database Server installed on a 

Sun Ultra-1 workstation. Querying is always done by using the simple general principles 

of the SQL querying language. This makes the implementation easily convertible to 

another database/client-applet pair when needed. The distribution information is created 
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by some simple batch queries. It is assumed to be static for the current database and the 

applet implementation.  

Three versions of the applet were implemented (about 5,000 lines of code excluding 

the comments). The coding effort for query previews is not included in these versions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: The software implementation and integration for the ExpO System 

 

7.4 Summary 
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architecture, where the database schema, the raw data, and the distribution of data form 

the basis of all the communications.   

The challenges for manipulating and representing multi-dimensional arrays are 

presented for the internal architecture. Some approaches for attacking these challenges 

are introduced.  

Multi-valued data types form the root for most of the challenges. This dissertation 

contributes to the field of algorithms and data structures by introducing a method for 

partially solving the problems introduced by the multi-valued data types.    
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CHAPTER 8:  
CONCLUSION 

 

 

8.1 Contributions and Benefits 

There are three main contributions of this dissertation to the field of visual data 

mining and information visualization and to the field of algorithms and data structures. 

First, the generalized query previews work introduces a general user interface 

architecture for browsing large online data sets. Using metadata (i.e., the distribution of 

data) for browsing and pruning raw data is an intriguing idea. Especially, when the data is 

stored in a remote location, accessing only the metadata can be very efficient. Metadata 

also does not grow with the size of the raw data. Only the distribution information, but 

not the size of the distribution information is updated. Showing the results set size before 

accessing the results is another intriguing idea. Users can immediately see what they 

should expect from their query submissions. Also, simple hierarchical display and 

creation of a user-defined view is a very intuitive idea for defining queries. In summary, 

using overviews and previews enables efficient and intuitive browsing of large online 

data and is often a dramatically faster alternative to traditional approaches for accessing 

such types of data.  

 Second, field studies and experimentation clarified the application domain for 

generalized query previews and led to a cognitive model that predicts user performance 

with a range of tasks. Generalized query previews is especially useful when users need to 

probe the data. The approach helps users refine their queries and guides them in the query 

formulation process. Situations where users know what they want from the data are not 
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the strong cases for generalized query previews. Identifying these strengths and 

weaknesses will make the generalized query previews more applicable to real-life 

situations. 

Third, this dissertation makes contributions to the field of algorithms and data 

structures. Usage of multi-dimensional arrays for storing data distributions is a common 

approach and especially multi-valued data tends to weaken it. New data structures and 

algorithms will be useful in strengthening the applicability of generalized query previews 

and other such approaches.  

8.2 Future Work 

Many avenues can be investigated as future work on generalized query previews. 

First, working on multiple views rather than a single user view can be considered. In 

many cases, users may want to form two separate queries simultaneously.  

Second, using a hierarchy of charts rather than a single level of charts can be 

investigated. This may help users to drill-down into the data (e.g., from years to months, 

months to weeks, etc).  

Third, using more varied approaches for displaying the data distribution may be 

worth exploring. For example, scatter plots may be more useful for some types of data in 

comparison to other visual aids such as the bar charts. Shneiderman in [Shn94] mentions 

the need for a scatter plot widget for certain types of applications, Figure 8.1. Figure 8.2 

shows another similar scatter plot. Hence, utilizing a variety of visualizations may be 

helpful in understanding and querying different types of data.  

Fourth, working with user-defined buckets rather than the predefined ones may form 

a promising idea. Users may want to set the border values for the buckets rather than 
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using the predefined ones. Unfortunately, some types of attributes, like the gender of a 

person, may not be suitable for this idea. Plus, creation of such buckets can take time. 

 

 

 

 

 

 

 

 

Figure 8.1: A two-dimensional widget for displaying and selecting data. In this 

example white regions indicate the areas where there is not any available data. The gray 

region indicates the area where the data is available. The dark gray box indicates a 

sample user query that will not return zero-hits.    

 

Fifth, a wide avenue of ideas can be investigated for creating methods to efficiently 

manage some of the server functions (e.g., distribution information creation and design, 

efficient online updates with dynamic data, etc).  

Sixth, creating a history keeping mechanism for generalized query previews is a 

useful idea. Users may want to look at their previous queries and results (not only within 

a session, but also between sessions). They may want to compare them to the current 

ones since this may show them some insight about the trends in data. 
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Figure 8.2: A scatter plot is shown using three concave hulls presenting the borders of 

the three main clusters of the underlying data. Multiple iso-surfaces are used in the large 

cluster to display the data distribution information. The exact counts mapping to a certain 

grid location are visible upon a user request.    

 

Finally, applications on web-page searches can also be considered as a separate 

research direction. Internet with a large collection of web-pages forms an unstructured 

large online database.  Using the distribution information in tandem with the classical 

keyword search mechanisms can be useful for the users of the Internet search engines. 

Similar ideas have already started to appear as prototype applications for certain subsets 

of the Internet. Figure 8.3 shows such an application for displaying the results of a search 

operation. 
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Figure 8.3: The i411.com web-site contains a keyword search mechanism that is 

concatenated with a list of intermediate search result categories. The number of hits is 

shown for each of these categories. Users can select a certain category in this window 

that will confine the result set to a single category.    
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8.3 Summary 

Generalized query previews forms a user interface architecture for efficient browsing 

of large online data. It supplies data distribution information to the users.  It also gives 

continuous immediate feedback about the size of the result set as the query is being 

formed. Generalized query previews works on metadata that is generally much smaller 

than the raw data. As users make informed queries by seeing this metadata, they can 

easily avoid submitting zero-hit and mega-hit queries over a network. Users can find and 

see what they want in the data and how it is organized. Hence, the problem of blind 

formation of queries is solved in an efficient and simple manner.  

Field experience and controlled experimentation also supports this claim that 

generalized query previews form a promising architecture for efficient browsing of large 

online data. Except for the cases of known-item searches the idea has merits in 

investigative querying. In all cases, users are happy to see the overview of the data.  

Future implementations and the research of visual data mining and information 

visualization for browsing large online data will hopefully benefit from this work. 

Software engineers can use the generalized query previews architecture to improve their 

tools. Researchers can work on the suggested future work to enhance the underlying 

ideas.    
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