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Abstract 

Equipment selection is one of the challenges faced during manufacturing system design.  Selecting the 

proper equipment is important to satisfying budget constraints, achieving required throughput, and reducing 

manufacturing cycle time and inventory. This paper formulates an equipment selection problem and 
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calculate the manufacturing cycle time.  The paper discusses the results of experiments conducted to 

evaluate the performance of the algorithms across a range of problem characteristics.   
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1. INTRODUCTION 

Equipment selection problems form a separate class of problems in the domain of 

manufacturing system design.  Equipment selection determines the type and quantity of 

the machine tools (or other equipment) that will be installed at each workstation in a 

manufacturing system. Bretthauer [1] addresses capacity planning in manufacturing 

systems by modeling them as a network of queues. Assuming a single server at each 

node, a branch-and-bound algorithm is presented to find a minimum cost selection of 

capacity levels from a discrete set of choices, given a constraint on the WIP. 

Swaminathan [2] provides an analytical model for procurement of tools for a wafer fab 

incorporating uncertainties in the demand forecasts. The problem is modeled as a 

stochastic integer programming with recourse, and the objective is to minimize the 

expected stock-out costs due to lost sales across all demand scenarios. Considering only 

one tool type per workstation, the first stage variables - the number of tools procured, are 

decided before the demand occurs. The second stage variables determine the allocation of 

different wafer types to different tools in each demand scenario, after the demand is 

realized. Connors, Feigin and Yao [3] perform tool planning for a wafer fab using a 

queueing model, based on a marginal allocation procedure to determine the number of 

tools needed to achieve a target cycle time with the objective of minimizing overall 

equipment cost. Assuming identical tools at each tool group, their model incorporates 

detailed analysis of scrap and rework to capture the effects of variable job sizes on the 

workload and on the utilization of tool groups, and careful treatment of “incapacitation” 

events that disrupt the normal process at tools.  
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A flexible flow shop is a manufacturing system that consists of a sequence of 

workstations.  Each workstation may have one or multiple resources (e.g., machine tools) 

working in parallel.  This paper addresses equipment selection when, for each 

workstation in the flexible flow shop, there exist multiple (functionally identical) tool 

types available to purchase.  The objective is to minimize the average manufacturing 

cycle time of jobs processed by the shop, subject to the constraints on the throughput and 

the budget available.  (Note that the terms “flow time” and “throughput time” are 

sometimes used instead of “manufacturing cycle time.”)  Due to the complexity of this 

discrete optimization problem, an exact solution cannot be found in reasonable time.  

Thus, we present two versions of a search algorithm that uses the M/M/m queueing 

system model to evaluate the average cycle time.  This paper presents the algorithms and 

discusses the results of experiments conducted to evaluate the algorithms’ performance 

across a wide range of problem instances.   

 

The paper is organized as follows. Section 2 formulates the equipment selection problem. 

Section 3 describes the two analytical algorithms. Section 4 describes the experimental 

architecture used to evaluate the algorithms and discusses the results we obtained. 

Section 5 summarizes the paper. 

 

2. PROBLEM FORMULATION 

 

In many industries, especially semiconductor manufacturing, constructing new 

manufacturing facilities has grown increasingly expensive, as more sophisticated 
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machine tools, cluster tools, and other equipment are required to produce high-quality 

goods.  During the design of a manufacturing system, it is common to budget funds for 

purchasing equipment.  In addition, the facility is built to achieve certain levels of 

production.  Thus the manufacturing system must have sufficient capacity.  The capacity 

of the workstations also strongly influences congestion and queueing during operation.  

Indeed, management would like to reduce manufacturing cycle time and work-in-process 

inventory as much as possible.  All of these objectives are affected by the number and 

type of tools that are purchased for the manufacturing system.   

 

This paper discusses the problem of selecting equipment (generically, tools) for a flexible 

flow shop.  The shop will have n workstations.  When the shop is operating, each job 

must visit all of the workstations in sequence, and the queue of jobs at each workstation 

will be first-in-first-out. 

 

For workstation i, there are zi types of tools available. The decision variables Xij are the 

number of tools of type j purchased for each workstation i; i = 1, ..., n and j = 1, ..., zi. Xij 

must be a non-negative integer.  The cost of one tool of type j at workstation i is Cij 

(dollars) and the capacity of one such tool is ij (jobs per unit time).  The total number of 

discrete decision variables is p, where 

 
∑

=

=
n

i
izp

1  
In practice, it is common to purchase identical tools for a workstation, which reduces 

training and maintenance costs.  Thus, there are actually two decision variables for each 

workstation: which type of tool to purchase, and how many to purchase. 
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The objective is to minimize CT, the average manufacturing cycle time that jobs spend in 

the shop.   (To evaluate the manufacturing cycle time, we use standard queueing system 

models, see, for example, [6].)  The decision-maker has a fixed budget of M (dollars) for 

purchasing tools, which can be expressed in the following constraint: 

 
MCX

n

i

z

j
ijij

i
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Also, the manufacturing system must achieve a throughput of  (jobs per unit time). Let i 

denote the capacity at workstation i. 

 ∑ =
= iz

j ijiji X
1
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Since i must be greater than , then, for i = 1, …, n,  

 
λµ >∑

=
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j
ijijX

1  

Note that for n = 1, this problem is equivalent to the integer knapsack problem, which has 

been shown to be NP-complete [5]. 

3. SOLUTION APPROACH 

In general, the complexity of designing manufacturing systems arises due to the 

constraints on the system and the stochastic nature of the dynamics in the system.  

Simulation modeling can be an effective tool to model and evaluate such systems, 

especially when it is impossible (or difficult) to evaluate the objective function 

analytically.  Simulation optimization techniques use simulation to solve stochastic 

optimization problems.  However, simulation-based approaches require a large amount of 
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computational effort.  Thus, it is worth exploring analytical approaches in these 

situations.   

 

The budget constraint and throughput constraints bound the set of feasible solutions. 

Purchasing too few tools will give insufficient capacity.  Purchasing too many tools will 

violate the budget constraint.  

 

Because the problem is NP-complete, we choose to pursue search algorithms that can 

explore the solution space and find near-optimal solutions.  The first algorithm selects, 

for each workstation, the tools with the highest capacity.  The second algorithm selects 

those tools that have the highest ratio of capacity to cost.  Both algorithms proceed by 

creating an initial, feasible solution and then incrementally adding tools until either the 

budget constraint is tight or the improvement in solution quality is insignificant. 

3.1 Notation 

The notation used is as follows: 

 desired throughput 
M budget available 
n  number of workstations 
zi total number of different  tool types at workstation i; i = 1, ..., n  
Tij tool of type j at workstation i; j = 1, ..., zi 

ij capacity of Tij tool 
Cij cost of Tij tool 
Uij capacity per unit cost of Tij tool = 
k iteration number 
 greatest integer less than or equal to x 
 smallest integer greater than or equal to x  
Ti selected tool type at workstation i   
Xi number of tools for workstation i 

Ti and Xi are the decision variables.  If Ti = j, Ci = Cij and i = ij. 

 x
 x

ij

ijC

µ
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 the number of tools: {X1, X2, …, Xn} 
f( k) the manufacturing cycle time of the system given a solution k  
 {X11, X12, …, X1,z1

; …; Xn1, Xn2, …, Xn,zn
}  

3.2 Description 

The two search algorithms are called Algorithm I (A-I) and Algorithm II (A-II). The only 

difference in the algorithms is the selection of Ti. 

 

For Algorithm I (A-I), let Ti = j, such that ij > ik for all k  zi and k  j. If ij = ik, then 

choose the tool type with lower cost. Set Ci = Cij; i = ij. 

 

For Algorithm II (A-II), let Ti = j, such that Uij > Uik for all k  zi and k  j. If Uij = Uik, then 

choose the tool type with higher capacity. Set Ci = Cij; i = ij. 

 

After Ti are selected, each algorithm proceeds as follows: 

Step 1: Check feasibility 

For i = 1, ..., n: 

 
i

i

X
λ
µ

 
=  

   

 

1

n

i i
i

B M X C
=

= −∑
 

If B < 0, then return the solution as infeasible. 

Else 

Initialize k = 0 

k = {X1, X2, …, Xn} 



 8

For i = 1, ..., n, 
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Output CostI = X1C1 + … + XnCn and Cycle TimeI = f( k) 

Step 2: Perform the search 

Let f( k-1) = . 

Let  be a small positive number (in our experiments,  = 0.01 hours). 

Define P(B) = {i: Ci  B} as the set of workstations with “affordable” tools (that is, the 

cost of a tool at any of these workstations is not greater than the unspent budget). 

While P(B) is not empty and f( k)  f( k-1) - , repeat the following loop: 

Let i be the workstation in P(B) that currently has the least capacity (the smallest 

value of Xi i). 

Update Xi, B, and k as follows: Xi = Xi +1; B = B – Ci; k = k + 1. 

k = {X1, X2, …, Xn}. 

Calculate f( k). 

Update P(B). 

If f( k) > f( k-1) - , then revise Xi, B, and k as follows: Xi = Xi - 1; B = B + Ci; k = k - 1. 

Construct the solution  from k as follows: 

for all i and j, Xij = Xi if Ti = j, and 0 otherwise. 
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Output CostF = X1C1 + … + XnCn and Cycle TimeF = f( k). 

4. EXPERIMENTS 

The purpose of the experiments is to compare the two algorithms over a range of problem 

instances and determine how the characteristics of the problem instances affect the 

algorithms’ performance. Thus, these instances are not based on any specific problems 

from industrial applications.  The data sets can be found on the World-Wide Web at the 

following website: http://www.isr.umd.edu/Labs/CIM/projects/mfgsys/index.html 

4.1 Experimental Design 

The experiments were run on 16 data sets with 10 instances per data set.  Hence there are 

160 problem instances.  In all of the instances, the flexible flow shop has five 

workstations.  The desired throughput equals four jobs per hour.  That is, the mean  job 

interarrival time equals 0.25 hours.  The job interarrival times and the job processing 

times are exponentially distributed.  The mean processing time on a tool of type j at 

workstation i is 1/ ij.  The tool capacity includes any detractors due to setups, rework, or 

failures.  Travel times are ignored (in practice, these will be determined by the layout of 

the shop, which is not considered here).   

 

To generate the data sets, we used the following parameter values: 

 P = cost factor for tool types = $1000 
  = desired throughput = 4 jobs per hour 
 n = number of workstations = 5 
 r = expected number of tools per workstation = 2 or 10 
 zi = number of tool types per workstation = 2 or 5 
 e = shape of correlation = 0.5 or 1 
   = lower bound of cost range = 0.5 
   = multiplier for budget = 1 or 3 
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The parameters r, zi, e and  can take two values. Each combination of these values forms 

one of the sixteen data sets.  Each instance in a data set was generated as follows: 

M = nrP 

For i = 1, …, n, 

For j = 1, …, zi, 

Choose bij randomly from a uniform distribution over the range [ , 1]. 

aij = 2(bij)
e 

ij = aij( /r) 

Cij = bijP 

4.2 Experimental Results 

Each search algorithm (A-I and A-II) was run on each instance.  The output of each run 

included five performance measures.  The performance measures of the initial solution 

are CostI and Cycle TimeI. The performance measures of the final solution are CostF and 

Cycle TimeF.  Since each data set is different, we normalized these statistics by 

comparing the cost performance to the total budget for that data set and comparing the 

cycle time performance to the expected total processing time of that data set.  If b has a 

uniform distribution over [l,u], then the expected value of b0.5 can be calculated as 

follows: 

1.5 1.5
0.5 2

[ ] ( )
3

u l
E b

u l

−=
−

 

From these statistics, the following performance metrics are calculated to estimate the 

performance of each algorithm on each instance: 

Cost MetricI = CostI/M.  Cost MetricF = CostF/M. 
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Cycle Time MetricI = Cycle TimeI/1.450 and Cycle Time MetricF = Cycle TimeF/1.450 

if e = 0.5 and r = 2 (Data sets 1, 2, 9, and 10).   

Cycle Time MetricI = Cycle TimeI/7.246 and Cycle Time MetricF = Cycle TimeF/7.246 

if e = 0.5 and r = 10 (Data sets 5, 6, 13, and 14).   

Cycle Time MetricI = Cycle TimeI/1.667 and Cycle Time MetricF = Cycle TimeF/1.667 

if e = 1.0 and r = 2 (Data sets 3, 4, 11, and 12).   

Cycle Time MetricI = Cycle TimeI/8.333 and Cycle Time MetricF = Cycle TimeF/8.333 

if e = 1.0 and r = 10 (Data sets 7, 8, 15, and 16).   

The fifth performance measure was the number of iterations that the algorithm performed 

before stopping.  All of the metrics were averaged over all ten problem instances. Table 1 

shows the results for each algorithm on each data set.  Figures 1 and 2 also display the 

cost and cycle time metrics.  A larger cost metric implies that more of the budget was 

spent purchasing tools.  A larger cycle time metric implies that jobs spent more time in 

the system. 

4.3 Summary of Results 

The last two columns in Table 1 show that the number of iterations for both algorithms is 

approximately the same in most data sets.  A-II does require more iterations in some data 

sets.  The most significant increases occur in data sets 9 and 11 because A-I selects, in 

general, more expensive tools and spends the budget more quickly than A-II. 

 

As shown in Table 1 and Figures 1 and 2, A-I constructs initial solutions that have, in 

general, a larger cost metric and a smaller cycle time metric than the initial solutions that 

A-II constructs.  This results from A-I’s selection of large capacity tools, which are 
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expensive.  But the initial solution is likely to have more than enough capacity, which 

reduces congestion and cycle time.  A-II selects, in general, smaller tools, so the capacity 

of the initial solution will exceed the throughput constraint by a smaller margin.  Higher 

utilization will lead to larger cycle times. 

 

At the end of the search, A-I finds solutions that have a larger cost metric than the final 

solutions that A-II finds, but the performance on the cycle time metric is very close.  

Compared to the initial solutions, the final solutions found have much larger cost metrics 

and much smaller cycle time metrics.  Thus, it is clear that the search algorithms are 

useful for finding feasible, high-quality solutions.  

 

The impact of the budget constraint is significant.  Figure 1 shows that, in odd-numbered 

data sets (where  = 1), both search algorithms spend most of the budget by the time the 

search ends.  However, in even-numbered data sets (where  = 3), the search algorithms 

leave much of the budget unspent.  
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Figure 1: Average cost metric 
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Figure 2: Average cycle time metric 
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5. SUMMARY AND CONCLUSIONS 

This paper presented an equipment selection problem that seeks to minimize the average 

manufacturing cycle time subject to two constraints: the amount of funds available to 

purchase equipment is limited, and the capacity of the manufacturing system must be 

larger than the desired throughput.  Similar to Cochran et al. [7], this paper emphasizes 

that equipment selection should be done by examining how various solutions affect 

manufacturing system performance, not just per unit cost of the operation.  This paper 

presented two search algorithms for the problem and presented results of experiments 

designed to show how they perform across a wide range of problem instances. 

 

It is worth noting that the equipment selection problem we considered has a special 

structure to it. It seems intuitive that given a choice between a variety of tools, the 

addition of a higher capacity tool will serve to reduce the cycle time more. Moreover, an 

even distribution of the capacity of workstations tends to avoid serious bottlenecks that 

occur when the capacity distribution is skewed.  The search algorithms presented here 

exploit this special structure.  However, it may be inappropriate for more complex 

manufacturing systems such as job shops where different workstations have different 

throughput requirements.  If the interarrival and processing times have other probability 

distributions, a more general GI/G/m approximation would be required to estimate 

manufacturing cycle times. See Herrmann and Chincholkar [8] for instance. 
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It will require more effort to extend this approach to equipment selection in more 

complex job shops and to systems that will use kanban or CONWIP production control 

mechanisms.  In such systems, open queueing networks (which presume a push 

production control philosophy) are not appropriate.  Existing analytical models become 

less accurate and the need for discrete-event simulation grows.  For example, Kumar [4] 

developed simulation-based optimization algorithms that could be extended to other 

settings. 
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