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Chapter 1: Introduction

1.1: Background and Motivation

Circulatory shock is a common condition for critically ill patients;
approximately one-third of patients in intensive care units (ICUs) are being treated for
one form of shock [1]. Circulatory shock is the result of either severe sepsis,
hypovolemia, cardiogenic factors, or obstruction [2]. Most patients treated for
circulatory shock experience more than one of these mechanisms. Treating
circulatory shock requires suitable hemodynamic (blood flow) support, in which a
patient’s blood pressure measurements are a typical metric used by clinicians to
determine the status of the patient.

For patients being treated for circulatory shock, there are a variety of methods
for supporting and healing the patient: ventilator support, fluid resuscitation, and
vasoactive agents. Vasopressor therapy is administered when the patient’s
experiences persistent and severe hypotension (low blood pressure) and the primary
therapies (i.e. ventilator support and fluid infusion) to not alleviate the critical state of
the patient. Vasopressors are effective in raising the blood pressure of patients
experiencing circulatory shock [3].

Current methods of treating severe hypotension in critically ill patients
through vasopressor therapy requires clinicians to repetitively monitor the patient’s
blood pressure, determine if the current state of the patient requires an adjustment in
vasopressor dose, and then control the proper adjustment of vasopressor infusion to

raise or lower the patient’s blood pressure accordingly. The first issue with this type



of treatment is that ICUs, in general, are short-staffed and the clinicians and nurses on
duty have many parallel responsibilities, which may result in a constrained bandwidth
for continuously monitoring the hemodynamic state of the patient. Secondly, the
current treatment method is generally reactive, rather than proactive. This passive
response to hypotension may reflect clinical inertia [4], a common phenomenon in
which appropriate, and sometimes necessary, clinical responses are delayed. Lastly,
with the technological advancements of autonomy and the increasing merger of
health and data, it is surprising that treating persistent hypotension in patients
experiencing circulatory shock is still primarily a reactive and manual treatment
strategy.

More recently, there have been brief studies on data-driven models for clinical
informatics systems that may aid in the detection and preventative treatment of severe
hypotension [5]-[8], but these studies have been limited with respect to the patient
sample size and generalizability. A generalizable approach to detect and assist in the
preventative treatment of severe hypotension would be ideal. A clinical informatics
system that minimizes the duration of hypotension experienced by the patient, via
proactive detection, would vastly improve efficiency in ICUs for clinicians and nurses

and improve the health and morbidity of the patient.

1.2: Research Goals

The objectives of this research are listed as the following:
1. Quantify current practices for the treatment of the critically ill patients
experiencing prolonged hypotension following circulatory shock by

investigating and analyzing the characteristics of episodes of sustained



hypotension of patients in the ICU and the clinical response and treatment to

the episodes

2. Show that there is an observable lack of care in ICUs and bright to light the
need for data-driven models for decision support in ICUs.

3. Develop and test various models (statistically-driven logistic regression and
time series autoregressive forecasting models) that detect and alert for future
episodes of sustained hypotension to show the implementation of clinical
informatics systems having practical use working with clinicians towards the
prevention of prolonged episodes of sustained hypotension

4. Benchmark various detection models against a simple estimate of adherence
to existing treatment guidelines to illustrate the general improvement that
these “proactive” models instill in patient care.

5. Validate the models on independent and separately sourced datasets to
demonstrate the patient-independent generalizability of these models, and
ultimately provide proof that population-trained models for hypotension
detection would be valuable in the clinical setting.

To achieve these research goals laid out above, an initial retrospective analysis
was performed to understand and quantify the existing problem. The next step
was to develop and produce the proposed models with the goal of detecting
hypotension in an anticipatory manner; with each model then benchmarked
against the other model and the threshold detector. Then, a final discussion on the
usefulness, limitations, and needed future work for implementing a clinical

informatics system for decision support for treating and preventing hypotension.



1.3: Literature Review

1.3.1: Circulatory Shock and Treatment Methods

In a review article by Jean-Louis Vincent and Daniel de Backer, circulatory
shock is defined as the failure of the body’s circulatory system to provide adequate
oxygen to the cells throughout the body [1]. The diagnosis of shock is determined by
three main parameters: systemic arterial hypotension, tissue hypoperfusion, and
hyperlactatemia. Arterial hypotension is typically when the patient’s systolic arterial
pressure (SAP) is less than 90 mmHg or their mean arterial pressure (MAP) is less
than 70 mmHg. Hypoperfusion is the lack of proper blood flow to the capillaries in
the tissues of the patient. Hyperlactatemia is when increased levels of lactate are
present in the blood. Treatment goals of circulatory shock are to avoid further
decreases in arterial pressure and cardiac output.

If the shock is severe, vasopressor agents are used to elevate arterial pressure
in patients. Compared to SAP and diastolic arterial pressure (DAP), MAP is a better
reflection of the patient’s arterial pressure-head and is commonly monitored when
administrating vasopressors. MAP thresholds of 60 — 65 mmHg have been commonly
used as goal values for vasopressor infusion [3]. Common vasopressor drugs:
dopamine, epinephrine, norepinephrine, and phenylephrine exhibit effective results in

raising MAP in patients experiencing shock.

1.3.2: Advancements in Data-Driven Methods for Hypotension Detection
Management of severe hypotension of critically-ill patients experiencing

shock is accomplished by manually monitoring a patient’s MAP and performing ad



hoc adjustments of vasopressor infusions; clinical informatics systems for detecting
the risk of hypotension in critically ill patients has have been sparsely studied.

The PhysioNet/Computers in Cardiology Challenge is an annual research
competition where research groups are tasked with creating solutions to a prescribed
problem using readily available clinical data gathered from a public research
database. For the 10™ Annual Challenge in 2009, the problem statement proposed to
the involved research teams was the following: develop methods for identifying ICU
patients at imminent risk of acute hypotensive episodes (AHE), with the goal of
improving care and mortality rates [5] The following paragraph briefly describes
various conference papers regarding the Challenge.

One team in this challenge developed a decision tree-based method of
classifying patients by level of risk for AHE in the ensuing hour by extracting
features of the patient’s blood pressure waveform over the previous 12 hours [6].
Specific significant features were then put through a decision tree algorithm to
determine the patient’s risk. Additionally, a research team investigated the
implementation of neural-network multi-models to forecast a patient’s arterial blood
pressure (ABP) to determine the risk of AHE [7]. Another method proposed a rule-
based approach that utilized the prior 20 minutes of a patient’s MAP signal to predict
AHE according to a series of “yes/no” criteria [8]. All three of these models
successfully detected the proper patients at risk for AHE. All of these methods
presented in the Challenge demonstrate that data-driven clinical systems for detecting
future hypotension are both possible and potentially beneficial in an ICU

environment. Though, these results were limited to a very small subset of patients and



hypotensive episodes. Therefore, more investigation must go into developing a
reliable system for detecting hypotension for critically ill patient care.

A team from Philips Healthcare (Philips Healthcare, Andover, MA) studied
the use of features from a patient’s vital signs to predict hemodynamic instability. The
team utilized features from various continuous vital sign readings, including heart rate
(HR), systolic arterial blood pressure (SAP), mean arterial blood pressure (MAP), and
diastolic arterial blood pressure (DAP) to construct an instability index that could
determine the increased likelihood of an adverse hemodynamic event [9]. The
investigation illustrated how their selected features deviated between stable and
unstable patients, as well as showed how the instability index provides early detection

prior to a clinical intervention for unstable patients.

1.3.3: Logistic Regression Modeling

Logistic regression provides a simple framework for modeling binary
classification given a set of feature parameters. For the case of hypotension detection,
we want to determine the likelihood that hypotension will occur in the near future (i.e.
Yes, or True) or if hypotension will not occur (i.e. No, or False); this presents itself as
a simple binary classification problem. Therefore, logistic regression modeling is an
obvious first step for our research purposes.

Regression techniques are a classical method for analyzing data when the goal
of the analysis is to develop a relationship between an output variable, or response,
and a set of independent, explanatory variables. Different scenarios or data types call
for different formats of regression analysis; simple linear regression models are useful

when the response and explanatory variables are continuous and linear over



sufficiently small regions [10]. Linear regression follows a simple format where the
explanatory variables, x;, can be linearly parametrized by a set of real coefficients, S;.

Y=Bog+P1x1 +B2x2+ -+ Ppx, +& (1.3.3.1)
The expected value of the response variable is equated to the sum the intercept, f3,,
the inner product of vectors f and X, which consist of the regression coefficients and
explanatory variables, respectively, and a residual term ¢.

In the case where the response variable is dichotomous (or binary) in nature, a
logistic regression model is more suitable [11]. For logistic regression, the response
variable is transformed using the logistic function transform. In general, the logistic
function transforms a continuous variable, t € [—oo, 0o] into a value between 0 and 1,
i.e. m(t) € [0,1]. Typically, the transformed value is interpreted as a probability. The

logistic function is defined as the following equation:

t

(13.3.2)

t) =
m(t) et+1

We can utilize the inverse of the logistic function, sometimes called the logit, to
transform a dichotomous response variable (i.e. 0 or 1) into a continuous response
variable. As an example, we assume t = [y + f1x1:

t= o+ B1x1

eBotB1x1
ePotB1x1 4+ 1 (1.3.3.3)

(x)
> g(m(x)) =1In (1f—::(x)

- n(x) =

>:ﬁ0+31x1



The logit, g(n(x)) is simply the function that transforms a dichotomous variable,

m(x), into a continuous variable, and then is regressed onto a set of explanatory

variables.

1.3.4: Time Series Modeling

Time series modeling is implemented when a set of data either has no suitable
set or an excessive set of dynamic equations to describe its behavior. Time series
models are also useful for data forecasting, a major tool for the detection of future
hypotension. Time series models are attractive for this research, as it can effectively
model a system’s dynamics and provide a framework for data forecasting.

Time series modeling and forecasting are being used in a wide spectrum of
applications, including economic and business planning (i.e. stock price forecasting),
production planning, inventory and production, and control and optimization of
industrial processes [12]. Time series models take discrete past measurements of a
desired output signal, {zy_1,Zx_2,..,Zx—n,} and (if any) input signals,
{up_1, Ug—2, ..., Ug_n, } to construct a discrete transfer function model that predicts
future values of the output signal for any lead time with accompanying probability
limits. A common time series model is the autoregressive process model. The most
generic form of the autoregressive process model is the Autoregressive Moving
Average with Exogenous Input Model (ARIMAX):

A(@)z(t) = g "B(q)u(t) + C(q)e(t)

q "*B(q) C(q) (134.1)

i O+ g5 e®

-2 = e



Where, q is the forward shift operator (i.e. g~ is the backward shift operator), A(q),
B(q), and C(q) are vectors of coefficients, and e(t) is a random white noise shock to
the system. For the purposes of our research, we will implement a simpler version of
the ARIMAX model, the Autoregressive Model (AR), which is a discrete transfer

function of the current and past output signal.



Chapter 2: Acquisition and Pre-Processing of Clinical Data

The first task for this work was to acquire useful data for a retrospective
analysis of patients and the clinical care provided to these patients in actual medical
environments. Therefore, collecting numerics data (i.e. vital signs) from real patients
admitted into ICUs and the corresponding clinician and nursing notes was
fundamental for this research. Large amounts of clinical data are difficult to come by,
since the processes for measuring, transferring, storing, and extracting are quite
laborious. Fortunately, there exist a handful of intensive care unit research databases
that contain numerics data and clinical notes that are available for public and
academic use [13]-[17].

The Multi-Parameter Intelligent Monitoring in Intensive Care II (MIMIC 1)
Database was the most comprehensive and useful research database for the goals of
this research. Other databases either had missing clinical notes [15], [17] or did not
contain high-resolution numerics data [14], [16]. The MIMIC II Database contained
both of the desired metrics for this research: minute-by-minute numerics data and
clinical notes. The process of downloading the numerics data and clinical notes from
MIMIC 11 is outlined in detail in Section 2.1.

Accompanying the data collected from MIMIC II, additional data was
extracted from Surgical ICUs (SICUs) at Massachusetts General Hospital (MGH).
Collecting and downloading the data from MGH utilized a different method than the

MIMIC II download, and is outlined subsequently in Section 2.2.
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Some elementary pre-processing was performed to remove undesired periods
or abnormal data from the MIMIC Il and MGH datasets. Pre-processing steps are

reported in Section 2.3.

2.1: MIMIC II Database

2.1.1: MIMIC II Database Virtual Environment

When navigating the MIMIC II Database, certain tools are utilized to
efficiently extract desired data. The goal of this subsection is to define the different
tools used for the process of downloading data from MIMICII.

Firstly, there are multiple subsets of the MIMIC II Database that are accessed
for data downloading. Within MIMIC 11, there is the MIMIC II Clinical Database; the
Clinical Database contains the notes and medical records of ICU patients (i.e. clinical
notes). A complementary subset is the MIMIC II Waveform Database, which contain
data of multiple types of signals for patients in the Clinical Database (i.e. waveforms
and numerics). The waveform data are recordings of multiple physiologic signals and
numerics data are time series of vital sign signals. For this research, only the numerics
data are downloaded.

Secondly, to query the data in the Clinical Database, one makes use of the
MIMIC 1T Explorer/Query Builder. The Explorer is a Structured Query Language
(SQL) interface that is used to query and export data from the Clinical Database. The
Explorer is restricted to exporting 1,000 rows of data per iteration. Therefore, the use
of the MIMIC II Virtual Machine, a pre-made virtual Ubuntu installation, was more

effective for our purposes. The Virtual Machine had no limit of data exporting.

11



Finally, the last tool is the PhysioBank ATM. The PhysioBank ATM

organizes and compiles the data found in the Waveform Database [18].

2.1.2: MIMIC II Summary

The MIMIC II Clinical Database contains 25,328 ICU stays from the medical
ICU, surgical ICU, cardiac recovery unit, and coronary care unit of the Beth Israel
Hospital in Boston, MA [13]. All ICU stays were de-identified in accordance with the
Health Insurance Portability and Accountability Act of 1996 [19]. Physiological data,
such as waveform and numerics, were collected via patient monitors located at each
ICU patient bed. Clinical notes were electronically recorded. With the assistance of
the beside monitoring system vendor (Philips Healthcare, Andover, MA), these data

were digitized, processed, converted, and uploaded to the MIMIC II Database [13].

2.1.3: Numerics Extraction
We limited our data search to patients who had data in both the Clinical and
Waveform Databases; labeled as the matched subset. Patients in this subset had two
types of files corresponding to their ICU stay: .dat files containing signals and
. hea header files. The header files were dated in order to match up the timing of raw
waveform and numerics data from the Waveform Database and the clinical notes
from the Clinical Database. Each header file had the form SUBJ ID-YYYY-MM-
DD-HH-mm. An example of the structure of numerics header files is shown below in

Figure 2.1.3.1.
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500292-3050-10-10-16-50n 14 0.0166666666667 /125 14 16:50:47.120 10/10/3050
3478507n.dat 16 10/bpm 16 0 0 0 0 HR

3478507n.dat 16 10/mmHg 16 0 0 O O ABPSys
3478507n.dat 16 10/mmHg 16 0 0 0 O ABPDias
3478507n.dat 16 10/mmHg 16 0 0 0 O ABPMean
3478507n.dat 16 10/mmHg 16 0 0 O O PAPSys
3478507n.dat 16 10/mmHg 16 0 0 O O PAPDias
3478507n.dat 16 10/mmHg 16 0 0 0 O PAPMean
3478507n.dat 16 10/mmHg 16 0 0 0 O CVP

3478507n.dat 16 10/bpm 16 0 0 0 O PULSE
3478507n.dat 16 10/pm 16 0 0 0 O RESP
3478507n.dat 16 10/% 16 0 0 0 0 Spo2
3478507n.dat 16 1/mmHg 16 0 -32768 0 O NBPSys
3478507n.dat 16 1/mmHg 16 0 -32768 0 O NBPDias
3478507n.dat 16 1/mmHg 16 0 -32768 0 O NBPMean
# <age>: 57 <sex>: F

Figure 2.1.3.1: Header file from MIMIC II

After gathering a list of all patients in the matched subset with available
numerics data in the Waveform Database (stored as a . txt file), a list of all patients
who received vasopressors (dopamine, epinephrine, norepinephrine, and

phenylephrine) was found by running an SQL code in the Virtual machine:

SELECT DISTINCT subject_id
FROM mimic2v26.medevents
WHERE (itemid = '43' or itemid = '44' or itemid = '47' or itemid = '127")

Figure 2.1.3.2: SQL code for downloading list of patients who received vasopressors

Using both of these lists, a MATLAB routine was ran to download the
numerics header files for all patients in the matched subset who also received
vasopressors during their ICU stay. In all, 1,332 header files were downloaded for
620 patients (some patients had multiple ICU stays). Within the header files, different
numerics signals are stored (e.g. Heart Rate (HR), SAP, DAP, and MAP. Any header
files not containing a signal for MAP were removed. Following this first round of

data removal, 867 header files from 411 patients remained.
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2.1.4: Clinical Notes Extraction

Following the extraction of numerics header files, the next step was to
download clinical notes from the Clinical Database corresponding to the 411 patients.
There were three types of data related to the clinical notes that were downloaded: the
dose, dose volume, and nursing notation. An SQL code was queried in the Virtual
Machine to download these three data for each patient. The data were downloaded as
.x1sx files and combined into single file for each patient using a simple MATLAB

routine.

SELECT subject id,itemid,charttime,dose

FROM mimic2v26.medevents

WHERE subject_id in (PASTE ENTIRE COMMA-SEPARATED SUBJECT LIST WITHIN
THESE PARENTHESIS)

AND (itemid = '43"' or itemid = '44' or itemid = '47' or itemid = '127")
ORDER BY subject id, itemid, charttime

SELECT a.poe_id, a.subject id, start dt,

stop dt,drug name,prod strength,dose val disp,dose unit disp

FROM mimic2v26.poe order a, mimic2v26.poe med b

WHERE a.subject id in (PASTE ENTIRE COMMA-SEPARATED SUBJECT LIST WITHIN
THESE PARENTHESIS)

AND a.poe id = b.poe id

ORDER BY subject id, start dt

SELECT subject id, charttime, category, title, text

FROM mimic2v26.noteevents

WHERE subjectiid in (PASTE ENTIRE COMMA-SEPARATED SUBJECT LIST WITHIN
THESE PARENTHESIS)

AND category in ('DISCHARGE SUMMARY', 'Nursing/Other')

ORDER BY subject id, charttime

Figure 2.1.4.1: SQL code for downloading clinical notes

Finally, with both numerics header files and clinical notes downloaded for
each patient, we determined which patients had numerics data available within the
timeframe of the clinical notes. If there were no numerics data within the timeframe,
the patient was removed. There were 336 patients with potentially relevant data.

Using the PhysioBank ATM, the numerics data for these patients were downloaded as
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.mat files. Furthermore, the vasopressor dose data from the clinical notes were
converted into .mat for convenience. Therefore, for each remaining patient, there
were now aligned numerics and dose data in .mat format. Both types of data have a

resolution of 1 measurement/recording per minute.

2.2: MGH Data

2.2.1: MGH Data Summary

The data collected from MGH was from patients admitted to the ICU and
administered vasopressors during 2015 — 2016. Waveform and numerics data were
collected via patient monitors located at each ICU patient bed. The data from these
monitors were then transferred and stored in data servers as .xml files using the
BedMasterEX system (Excel Medical, Jupiter, FL). Numerics data were sampled at a
rate of 0.5 Hz. Clinical notes were hand-written by nurses, and then retroactively
converted into electronic format (. x1sx). The files were anonymized in accordance
with the Health Insurance Portability and Accountability Act of 1996 [19]. The
process of extracting usable data form the MGH subset was simpler than the MIMIC
IT subset, since we preemptively selected patients who fit our inclusion criteria of

receiving vasopressor infusion and had matching numerics data and clinical notes.

2.2.2: Numerics Data Extraction

There were 1,507 numerics files for 102 patients from the MGH
BedMasterEX servers downloaded to be used for this research. Each numerics .xm1l
file was converted to .mat format using a Python routine provided by MGH, found

in Appendix A. Numerics files associated with the same patient were pieced together
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to form a single numerics signal and saved as a single file. The numerics data were
median down-sampled in order to have the identical one measurement per minute

format as the data from MIMIC I1.

2.2.3: Clinical Notes Extraction

Following the extraction of numerics data, the dose data from the clinical
notes .x1sx files were extracted as .mat files using MATLAB. Furthermore, we
determined which patients had numerics data available within the timeframe of the
clinical notes. If there were no numerics data within the timeframe, the patient was
removed. A MATLAB routine was implemented to automate this process. For each
remaining patient, there were now aligned numerics and dose data in .mat format.

Both types of data have a resolution of 1 measurement/recording per minute.

2.3: Data Pre-Processing

With both sets of data extracted from their respective sources, we further
limited the scope of patients and data for research purposes.

As stated previously in Section 2.1 and 2.2, we included only patients with
valid documentation of infusion of four vasopressor drugs: dopamine, epinephrine,
norepinephrine (drug name: Levophed), and phenylephrine (drug name:
Neosynephrine). Only patients who survived at least 48 hours after their discharge
from the ICU were included. Patients who passed within 48 hours may have been
receiving Comfort Measures Only (CMO). CMO refers to the medical treatment of a
dying person where the natural dying process is not inhibited and the only goal is to

ensure maximum comfort of the patient. We excluded these patients since this type of
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care provided is not representative of how typical critically ill patients in an ICU
would be treated.

We analyzed each individual patient record and excluded specific intervals of
data for one of the six following reasons. First, any interval lacking either MAP or
vasopressor dose data was removed. Intuitively, if not all of the desired data is
available; there is no need to include it at all. Second, any interval containing non-
physiological measurements was removed. For example, MAP measurements
exceeding above 300 mmHg, below 5 mmHg, or large jumps in measurements were
removed. Third, any interval during the first 30 minutes of a patient’s ICU stay was
excluded. The first 30 minutes of a patient’s ICU stay sometimes involved the
clinicians attempting to resuscitate the patient. Initial resuscitation practices may
deviate from nominal ICU care to stabilize the patient; additionally behavior of a
patient’s MAP could be abnormal during the period of initial resuscitation. Therefore,
this interval of data is excluded from analysis. Fourth, any interval exceeding
maximum vasopressor infusion rates was removed. Per standard hospital protocol, the
maximum vasopressor infusion rates are 20 mcg/kg/min, 1 meg/kg/min, 28 mcg/min,
and 290 mcg/min for dopamine, epinephrine, norepinephrine, and phenylephrine,
respectively. Periods of super-maximum vasopressor infusion could lead to abnormal
behavior of a patient’s MAP, and is probable cause that the current treatment is not
effective. Fifth, any interval containing infusions of two or more simultaneous
vasopressor drugs was removed. For this research, we were only interested in the
behavior of MAP during singular vasopressor infusion. Sixth, any interval where the

previous recording of vasopressor dose was more than 60 minutes into the past was
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excluded. We defined these occurrences as vasopressor dose recording inadequacies.
After 60 minutes of no dosage recording in the clinical notes, it is uncertain if the
patient is still receiving vasopressor infusion. With this uncertainty, we simply
excluded all data associated with these occurrences. Examples of these exclusion
criteria are illustrated in Figures 2.3.1 — 2.3.5.

The patient’s MAP data was treated with a low-pass filter, in the form of a 5-
minute median filter, to remove some of the measurement noise of the signal. Further,
intervals of absent MAP data were interpolated if the interval is for less than 15
minutes. Once all of the proper patients were selected, the undesired intervals of data
were removed, and the remaining data was filtered and interpolated, we were left with
paired MAP and dose data during vasopressor mono-therapy at sub-maximum

infusion rates.
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Figure 2.3.1: Zero vasopressor infusion rate example
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Figure 2.3.2: Non-physiological MAP and interpolation example
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Figure 2.3.3: Maximum vasopressor infusion example
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Figure 2.3.4: Multiple vasopressor infusion example
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Figure 2.3.5: Vasopressor dose inadequacy example
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Chapter 3: Retrospective Analysis of Critically Ill Patients

Receiving Vasopressor Infusion

3.1: Background and Motivation

Prior to any engineering or mathematical development, our first research goal
was to comprehensively understand the problem we were investigating. A
retrospective analysis of the data we acquired from the two medical centers was an
ideal way to understand the data we had and craft an eloquent problem statement we
found worthy of investigating. The remainder of this chapter details the process of
analyzing patient data from ICUs to quantify typical events experienced by patients
and the care they received by clinicians and nurses.

Many patients treated for circulatory shock receive hours or days of
vasopressor infusion to manage persistent hypotension. This practice is based in part
on classical physiology studies showing that central nervous system (CNS) auto-
regulation fails in healthy animals for MAP < 65 mmHg [20], [21], and once auto-
regulation fails, CNS hypoperfusion and potential ischemia occur. Clinical reports
have indeed observed an association between duration of hypotension and measures
of end-organ injury in critically-ill [22]-[24] and intraoperative [25] patient
populations; it is important to note that the true clinical consequences of hypotension
remain unknown, because observational studies do not distinguish between
hypotension as a direct cause of end-organ injury versus hypotension as a correlated

indicator of disease severity.

21



It is also reasonable to conjecture that MAP < 65 mmHg could be a causal
factor, via CNS ischemia, to the notable cognitive decline reported in some survivors
of septic shock [26]. Based on such evidence, the use of vasopressors to prevent
MAP < 65 mmHg for sepsis is a Class 1C recommendation according to the
consensus Surviving Sepsis guidelines [27], while Advanced Cardiac Life Support
(ACLS) advises vasopressor therapy for systolic blood pressure < 70 mmHg [28].
Rates of compliance with such guidelines are not well known. Accordingly, we
undertook a pilot analysis studying whether vasopressors were effectively used to

prevent hypotension.

3.2: Methods

3.2.1: Defining Regions of MAP

A patient’s blood pressure can be within one of three zones: hypertension, in-
range (often referred to as “normal”), and hypotension. Each zone has additional
subzones to describe the state of a patient, but for our retrospective analysis, we
simply defined these three zones.

Hypertension was defined as any interval of time when the patient’s MAP was
greater than 100 mmHg. Hypotension was defined as any interval of time when the
patient’s MAP less than 60 mmHg. The remaining intervals of time were defined as
in-range (i.e. 60 mmHg < MAP < 100 mmHg). Additionally, we further defined when
the patient’s MAP was less than 60 mmHg for continuous intervals of 15 minutes or
more, as an episode of sustained hypotension. All other intervals of hypotension were
considered transient hypotension. Episodes of sustained hypotension began upon the

first hypotensive MAP measurement and terminated with any subsequent in-range
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MAP measurement. For this retrospective analysis, when the termination of an
episode of sustained hypotension was followed within 30 minutes by the onset of
another episode, both were combined into a single combined episode of sustained
hypotension, called episode spans. Figure 3.2.1.1 illustrates the various regions of

blood pressure.
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Figure 3.2.1.1: In-range, transient hypotension, and sustained hypotension

3.2.2: Defining Patient Populations

We examined all patients from MIMIC II and MGH with at least 30 minutes
of vasopressor infusion. Focusing this retrospective analysis on the patients from
MIMIC 11, we broke the ICU stays of these patients down into three separate
categories. The first category contained all ICU stays where the patient experienced
no hypotension (this includes both transient and sustained hypotension). The second
category contained all ICU stays where the patient experienced hypotension that was
only transient. The final category contained all ICU stays where the patient
experienced at least one episode of sustained hypotension. For each ICU stay

category, demographic statistics were computed to generally understand any
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significant differences between these populations. For each category, we computed
the following statistics:

e Number of ICU stays

e Number of unique patients

o Age

e Gender

e Documented indication for vasopressor infusion

e Total duration of vasopressor infusion

e Time between vasopressor dose changes

e Median MAP measurements during vasopressor infusion

e Hourly standard deviation of MAP during vasopressor infusion

e Proportion of MAP measurements within the different MAP regions

e Episodes of sustained hypotension per 24 hours of vasopressor infusion

3.2.3: Analyzing Episodes of Sustained Hypotension

For the ICU stays with at least one episode of sustained hypotension, we
further analyzed patterns related to any vasopressor dose changes prior to the onset of
the episodes. We wanted to classify all episodes of sustained hypotension based on
patterns of care, with respect to vasopressor infusion. We defined four types of
episodes. Failed wean episodes were when the vasopressor dosage was decreased
within 30 minutes before the onset of the episode. This type of episode was most
likely due to a misdiagnosis, and therefore led to the improper weaning of
vasopressors, causing the patient’s MAP to fall below the 60 mmHg threshold. An

example of a failed wean episode is shown in Figure 3.2.3.1. Failed re-dose episodes
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were when the vasopressor dosage was increased within 30 minutes before the onset
of the episode, and was followed by either no change in vasopressor dose or a
decrease in vasopressor dose. Failed re-dose episodes occur when the clinician or
nurse attempted to prevent hypotension, but did not sufficiently raise the vasopressor
dose to accomplish that goal. An example of a failed re-dose episode is shown in
Figure 3.2.3.2. Drift-out episodes occur when there were no vasopressor dose changes
within 30 minutes before the onset of the episode. An example of a drift-out episode
is shown in Figure 3.2.3.3. Finally, continuation episodes are episodes of sustained
hypotension that follow within 30 minutes after the termination of a previous episode
(as described in Section 2.2). An example of a continuation episode is shown in
Figure 3.2.3.4. If there were missing MAP measurements within 30 minutes before

the onset of the episode, the episode was not included in this part of the analysis.
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Figure 3.2.3.1: Failed-wean episode of sustained hypotension

25



Patient's MAP

80 -
o) = In-Range
E 70 Transient Hypotension
£ == Sustained Hypotension
£ ol \ O Episode Onset =
<
=
50 | | | | | | |
620 630 640 650 660 670 680 690
Time [min]
10 Vasopressor Infusion Rates
ig 8 Al’ © Dopamine [mcg/kg/min] -
[\4 L Epinephrine [mcg/kg/min]
g 6 Norepinephrine [mcg/min]
» A Phenylephrine [mcg/min]
3 5 O Recorded time of vasopressor dose change
= L
0 I | I | I | )
620 630 640 650 660 670 680 690
Time [min]
Figure 3.2.3.2: Failed re-dose episode of sustained hypotension
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Figure 3.2.3.3: Drift-out episode of sustained hypotension
Patient's MAP
80
o) = |n-Range
% 70 Transient Hypotension
£ = Sustained Hypotension
— © Episode Onset v
Q60—
<
=
50 1 | | 1 | | 1 | |
1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240
Time [min]
10 Vasopressor Infusion Rates
L 3 Dopamine [mcg/kg/min]
& Epinephrine [mcg/kg/min]
g 6 Norepinephrine [mcg/min]
» 4 1 o Phenylephrine [mcg/min] e
= ) O ait O Recorded time of vasopressor dose change
= L
0 I 1 | I 1 1 I 1 1 |
1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240

Time [min]

Figure 3.2.3.4: Continuation episode of sustained hypotension
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3.2.4: Analyzing Clinical Response to Episodes of Sustained Hypotension

Next, after all episodes of sustained hypotension were categorized, we
analyzed the clinical response, in terms of change in vasopressor infusion rates,
following the onset of the episode. This analysis consisted of examining if and when
there was a change in vasopressor dose following the onset that led to the resolution
of the episode. We defined an episode resolution when the patient’s MAP passed
above the 60 mmHg hypotension threshold and was not followed by another episode
of sustained hypotension within 30 minutes. Our definition of an episode resolution
was the motive for combining continuation episodes with the previous episode, since
the hypotension was not truly resolved.

We derived two categories of episode resolution: Self-resolved and dose-
resolved. Intuitively, a self-resolved episode occurred when the episode terminated
due to the patient’s MAP passing above the 60 mmHg threshold without any increase
in vasopressor dose, while dose-resolved episodes occurred when the patient’s MAP
passed above the 60 mmHg threshold following within 30 minutes of an increase in
the vasopressor dose. If there were missing MAP measurements following the
resolution of the episode, it was not included in this part of the analysis. Below are

examples of both types of resolutions.
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Figure 3.2.4.1: Self-resolved episode of sustained hypotension
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Figure 3.2.4.2: Dose-resolved episode of sustained hypotension

3.3: Results

From MIMIC 11, a total of 216 total ICU stays from 176 distinct patients were
identified as receiving at least 30 minutes of vasopressor mono-therapy at sub-
maximum doses. From MGH, there were a total of 62 patients that were identified as
receiving at least 30 minutes of vasopressor mono-therapy at sub-maximum doses.
There were 109 ICU stays from MIMIC II, approximately 50%, with at least one

episode of sustained hypotension during vasopressor infusion. This population, along
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with the ICU stays with transient-only hypotension, ICU stays with no hypotension,

and the patients from MGH are characterized in Table 3.3.1 below.

Table 3.3.1: Characteristics of Intensive Care Unit Stays

Hospital 1° Hospital 2°
Stays w/ Stays w/ non-
Y3 ys W Stays w/o
sustained sustained . b | All Stays All Stays
. b . b | hypotension
hypotension hypotension
Demographics:
ICU stays, n (%) 109 (51) 52 (24) 55 (25) 216 (100) 62 (100)
Unique patients’, n (%) 93 (53) 49 (28) 53 (30) 176 (100) 62 (100)
Age, median (IQR) 76 (65 —83) 74 (64 — 82) 70 (58 —78) 74 (64 — 82) 69 (61 —78)
Female, proportion, % 52 47 51 49 45
Male, proportion, % 45 49 49 49 S
Undocumented g‘endeor, 3 4 0 2 0
proportion, %
Documented indication for vasopressor infusion‘:
Sepsis or possible ‘sep51os, 56 39 47 48 45
proportion, %
Cardlggenlc or p(')ss1bl}e 54 61 53 54 45
cardiogenic, proportion, %
Post—operatlv? caroe, 15 16 21 18 68
proportion, %
Other or unk.nowgl, 25 29 43 31 19
proportion, %
Characteristics of vasopressor infusion:
Total duration of vasopressor 24.2 13.9 43 14.0 38.3
infusion, median per stay,
(IQR), hr (10.7-48.1) (4.1-34.8) (1.6-11.5) (44-354) (22.4-55.9)
Time between vasopressor
dose changes, median per 90 (58 —139) 80 (35 -240) 60 (30 -98) 75 (49 — 139) 60 (42-110)

stay (IQR), min

* Hospital 1 includes patient data from the MIMIC II database and Hospital 2 includes patient data from a separate medical

center

® Hypotension is defined as MAP < 60 mmHg and sustained hypotension is defined as at least 15 continuous min of hypotension

¢ Some patients have multiple stays that are in different categories, therefore the number of unique patients for all stays is less

than the sum of the first three ¢

olumns

4 Patients may have more than one documented indication for vasopressor infusion

Table 3.3.1: Characteristics of intensive care unit stays
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Furthermore, for we computed the proportion of time that a patient’s MAP
was within our pre-defined regions of sustained hypotension, transient hypotension,
in-range, and hypertension for each type of patient. In Table 3.3.2, it shows the

breakdown of these regions for the patients.

Table 3.3.2: Characteristics of MAP During Mono-Vasopressor Infusion

Hospital 1° Hospital
23,
Stays w/ Stays w/ non-
3 ys W Stays w/o All
sustained sustained . b All Stays
- b . b | hypotension Stays
hypotension hypotension
Statistics:
MAP during infusion, median per 68 75 80 73 75
stay (IQR), mmHg (64 -172) (71-178) (76 — 88) (67-179) (71 - 80)
MAP hourly standard deviation 42 3.4 33 3.8 3.7
during infusion, median per stay - - - -
(IQR), mmHg (2.6-5.9) 2.8-43) (2.4-5.8) (2.7-5.7) (3.0-5.0)
Proportion of 100 > MAP > 60 80 97 100 90 97
mmHg, median per stay (IQR), % (68 —90) (93 -99) (87 - 100) (77 -98) (92 - 99)
Proportion of MAP during 33 13 15 0.3
transient hypotension, median per a7 a 5.5) 0.7 B 3.5) n/a © 0;4 1
stay (IQR), % A 7=3 0-4. 0.0— 1.3)
Proportion of MAP during 1 0.6 0.0
sustained hypotension, median (3.9-23) n/a n/a 0.0 - )
per stay (IQR), % ' : (0.0-2.6)
Proportion of MAP during 02 0.0 02 0.1 1.0
hypertension®, median per stay 0.0 - 33 0.0 - 28 0 O'— 13 0.0 N 38
(I0R). % 0.0-3.3) (0.0-2.8) (0. ) 0.0-38) | (0.0-3.4)
Episodes of sustained hypotension 2.8 0.0 0.0
per 24 hours, median per 24 (12 s 0) n/a n/a 0.0 3 1
hours (IQR), n < 0-3. 0.0 1.2)

* Hospital 1 includes patient data from the MIMIC II database and Hospital 2 includes patient data from a separate medical
center

® Hypotension is defined as MAP < 60 mmHg and sustained hypotension is defined as > 15 min; see text for details

¢ Hypertension defined as MAP > 100 mmHg
Table 3.3.2: Characteristics of intensive care unit stays

There were 640 episodes of sustained hypotension from 109 ICU stays that we
analyzed from MIMIC II. Of the 640, 32 were categorized as failed wean episodes,

39 were categorized as failed re-dose episodes, 338 were categorized as drift-out
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episodes, and 231 were categorized as continuation episodes. A majority (53%) of
episodes were drift-out episodes, meaning that most episodes did not have a recent
change in vasopressor dose leading up to the onset of the episode. The same
breakdown of episodes was performed for the MGH ICU stays, and is shown in the
right-hand side chart in Figure 3.3.1. Note that there were only 30 episodes from the

MGH ICU stays to be analyzed.

Failed Wean,

%

Failed Re-Dose,
60/0

Failed Wean,

18%

Drift-Out,
37%

Drift-Out,
Continuation, 53%
36%

Failed Re-Dose,
18%

Continuation,
270/0

MIMIC Il MGH
patients patients

Figure 3.3.1: Breakdown of episode categories

There were 383 episode resolutions analyzed to determine clinical response,
in terms of vasopressor infusion. Of the 383, 353 were self-resolved episodes and
only 30 were dose-resolved episodes. For the 30 dose-resolved episodes, 25 episodes
(83%) were resolved with a single increase in vasopressor dosage; but the median
time until the first dose increase following the onset of the episode was 18.5 minutes.
The median duration of self-resolved episodes was 38 minutes, and 26 minutes for

dose-resolved episodes. We provided the same analysis results for the MGH patients;
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note that there were only 22 episode resolutions to be studied from the MGH patients.

Table 3.3.3 provides more detailed statistics on episode resolutions.

Table 3.3.3: Description of Sustained Hypotensive Episodes

Hospital 1°

Hospital 2°

Episode
resolved w/
increase of

Episode
resolved w/o
increase of

Episode
resolved w/
increase of

Episode
resolved w/o
increase of

vasopressor vasopressor vasopressor vasopressor
dose dose dose dose
Statistics:
Episodes, n (%) 48 (8) 562 (92) 7(25) 21(75)
Episode spans, n (%) 30 (8) 353 (92) 5(25) 15 (75)
Duration of episode, median 26 (19 — 45) 38 (22-73) 27 (21 - 30) 24 (18 - 70)

(IQR), min

Proportion of MAP < 60 mmHg
during episodeb, median (IQR),
%

100 (87 — 100)

100 (87 — 100)

100 (100 — 100)

100 (88 — 100)

Vasopressor dose chan

ges preceding episode onset:

Episode onsets with no preceding

dose change, proportion, % 70 84 80 40
Episode onsets with pref:edlr(l]g 23 63 20 27
dose decrease, proportion, %

Episode onsets with preceding
dose increase, proportion, % 7 97 0 33
Vasopressor dose changes during episode:
Eplsod'es with at least one doie 100 1 100 20
increase, proportion, %
Eplsod?s resolved with a'smgle 83 8.0 80 13
dose increase, proportion, %
Total number of dose increases
during episode, median (IQR), n 1(1-2) 000-1) 1(1-2) 00-1)
Time until first dose increase, 18.5 (8- 33) /a’ @2 n/ac) 13(11-22) w/a’ (75— n/ac)

median (IQR), min

* Hospital 1 includes patient data from the MIMIC II database and Hospital 2 includes patient data from a separate medical

center

® When the termination of an episode of sustained hypotension was followed within 30 min by the onset of another period of
sustained hypotension, the intervals were combined into a single episode of sustained hypotension, allowing (theoretically) for
MAP > 60 mmHg during a portion of the episode

¢ n/a signifies that there was no increase, at all, in vasopressor dose during the episode

Table 3.3.3: Episode resolution statistics
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3.4: Discussion

This investigation found that ICU patients receiving vasopressors commonly
experienced episodes of sustained hypotension in which the patient’s MAP remained
below the limits of CNS autoregulation for 30 minutes or longer. These findings arose
from a single institution (via the MIMIC II Database), so the generalizability is of this
finding is not known, but supplementary investigations of the MGH ICUs support this
finding. This provides a demonstration that patients treated with vasopressors may not
be receiving care consistent with treatment guidelines. Our findings are indeed
consistent with a recent report about patients with acute spinal cord injury: current
guidelines advise maintenance of MAP of 85 — 90 mmHg for the first week after
injury, while the investigators reported that MAP was below the guidelines in 42% of
the documented values [29].

In terms of clinical context for our findings, most episodes of sustained
hypotension occurred not because the vasopressor dose had been decreased in the
time preceding the episode (Failed wean episode), nor because there had been an
increase in vasopressor dose that was insufficiently large preceding the episode
(Failed re-dose episode). Rather, most episodes occurred in the absence of any
preceding vasopressor dose change. Typically, the patient’s MAP simply drifted out
of range.

Moreover, the typical clinical response after episodes of sustained
hypotension developed did not involve any vasopressor dose increase. It is notable
that, for the minority of episodes in which the vasopressor dose was in fact increased,

a reduced duration of sustained hypotension was observed (i.e. 38 minutes to 26
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minutes). The generally passive response to hypotension may reflect clinical inertia
[4], a common phenomenon in which appropriate clinical responses are delayed.
Furthermore, we speculate that one contributing factor might be that low-grade
hypotension is clinically indistinct: aside from the low MAP displayed on a monitor,
there are often no directly observable sequelae of low-grade hypotension, i.e. no
observable cyanosis, posturing, nor abnormal respirations. We did not investigate
other clinical responses to episodes of sustained hypotensive episodes, e.g. fluid bolus
or reduction in sedation, so it is possible that some ineffective interventions were
attempted during some of the episodes of sustained hypotension.

Another potential factor in the scarcity of dose increases before and after
episodes of sustained hypotension is that any harm from this practice has not been
clearly established, even though clinical guidelines advise vasopressors to avoid
hypotension [27]. Yet in animal models it has been shown that, below MAP of 65
mmHg, the CNS cannot effectively autoregulate perfusion, which means that CNS
ischemia is likely to occur [20], [21]. Therefore, low-grade sustained hypotension
could cause low-grade CNS ischemic injury. Indeed, there is ample evidence of major
cognitive injury caused by sepsis [26] and it is reasonable to speculate that sustained
hypotension could be directly causing some of the cognitive damage.

Studies of ICU patients have shown a correlation between hypotension and
poor clinical outcomes [22]-[24] but of course in retrospective studies, it is
impossible to distinguish causation versus correlation. In other words, it is possible

that hypotension directly causes bad outcomes, and it is also possible that
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hypotension is merely an indicator of disease severity and not the direct cause of the
poor outcomes.

The findings from our analysis arise primarily from a single medical center, so
it is unknown if this is a truly pervasive issue and warrants additional investigation.
As a matter of speculation, we suggest that an academic medical center that is so
forward thinking as to freely share ICU records with worldwide researchers to
advance clinical care [13] is unlikely to be a totally unique outlier in terms of clinical
practice. To some extent, this clinical problem is likely to exist in other medical
centers, and these findings are consistent with the findings of Hawryluk, et al. [29].
However, whether these findings are truly applicable to other ICUs cannot be

determined definitively without additional investigation.
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Chapter 4:  Statistics-Based Method for Hypotension
Detection

We developed a method for detecting episodes of sustained hypotension via
logistic regression. The logistic regression method quantifies the relationship, if any,
between a set of independent feature variables and a binary classifier variable.
Applying this type of model to hypotension, we defined the expectancy of sustained
hypotension at 15 minutes in the future as the binary classifier and defined
mathematical trends of a patient’s past vasopressor infusion, MAP, and HR as the
feature variables. The reason that 15 minutes was chosen as the forecast window was
that, based on clinical consensus, it is the approximate time delay for a change in
vasopressor to take effect. The following chapter discusses how a logistic regression
model was trained to provide reliable detection of sustained hypotension and the

subsequent testing, validation, and analysis of the model as a decision support system.

4.1: Methods

The structure of logistic regression is similar to that of linear regression, the
output variable, rather than being simply the dependent variable, is the inverse

logistic transform of the dependent variable.

E
Bo+ Bafs+ Bafz+ -+ Bpfy = n (=) (@.1.1)

The features, f;, are certain mathematical trends of past data from a patient’s
numerics and vasopressor dose information. The output, E, is the expectancy of
sustained hypotension occurring 15 minutes in the future (i.e. E = 1 if it is certainly

occurring, and E = 0 if it is certainly not occurring). The regression coefficients, f3;,
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are determined by data-driven model fitting techniques that will be described in more

detail in this section.

4.1.1: Feature Selection

Choosing the proper features is imperative to any type of model fitting
exercise. After our retrospective analysis of episodes of sustained hypotension
discussed in the previous chapter, we quantitatively showed that most episodes were
preceded by a gradual decline in patient’s MAP or by a previous episode.
Additionally, vasopressors are medications that act to elevate arterial blood pressure
in the critically ill when they suffer body-wide reduction in blood circulation.
Therefore, we believed it important to extract features from the trends in a patient’s
past MAP measurements and the infusion of vasopressor dose, in order to detect the
future state of a patient’s MAP. Furthermore, for the sake of study, we investigated
the usefulness of past HR measurements as a possible avenue for feature selection.

From these three feature sources, we chose to extract the comprehensive
behavior of past trends of vasopressor dose, MAP, and HR, via mathematical trends:
mean, least-squares linear slope, and standard deviation of various intervals of past
data. The intervals of interest were 5, 10, 20, 30, 45, and 60 minutes prior to the
present time. We speculated that analyzing up to 60 minutes of past MAP was
sufficient enough to make inferences regarding the future 15 minutes of MAP. In the
figure below, we show an example of the various features windows for this logistic

regression model.
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Figure 4.1.1.1: Intervals of past data for feature extraction

For an interval of past data of length, m, the following mathematical trends were

computed:

1 m
o = EZ MAP(t,
i=

—i+1)
(4.1.1.1)
m
1
> lm =) MAP,
i=1
m ) . 1\ om .
i=1[MAP(ty — i+ 1) — ] [(to —i+1)- (ﬁ) je1(to —Jj + 1)] (4.1.1.2)

m

m
i=

i 1(MAP(t0 -1+ 1) - ”m)z
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B, = e (MAP; — p,)(t; — py)
" Z1(MAP; — pu,,)?

m
1
= | > (MAP(ty— i+ 1) — )
i=1

(4.1.1.3)

1 m
> Om = | (MAP,— pty)?
i=1

Note that the above equations are for extracting mathematical trends from the
patient’s MAP data, but the same method was used for vasopressor dos and HR.

In total, we developed a list of 54 candidate mathematical features (i.e. 18
features per source) we suspected could be correlated to the expectancy of sustained

hypotension at 15 minutes in the future.

4.1.2: Model Training

We developed the logistic regression model using patient data from MIMIC 11
only. MGH patients would be used for further validation and blind testing of this
model. The patients from MIMIC II were separated into training and testing
subgroups. This process was completed at random until patients accounting for
approximately 75% of the total data were separated into the training subgroup. This
randomized process removed any sort of bias that could have stemmed from hand
selecting patients for the training and testing subgroups. In the end, patients
accounting for 132 ICU stays were grouped as training patients and the remaining

patients accounting for 99 ICU stays were put aside to be used as testing patients.

39



The first step for training the logistic regression model was to obtain segments
of data, similar to that shown in Figure 4.1.1.1, containing 75 minutes of continuously
available vasopressor dose, MAP, and HR. Each of the 132 ICU stays were scanned
for these data segments; each segment was offset by at least 5 minutes from a
previous segment to be considered.

For each of these segments, the mathematical features and dependent variable
(i.e. expectancy of sustained hypotension 15 minutes in the future) were extracted in
order to fit the logistic regression model to this data. Treating each segment like a
real-time snapshot of data, the 60" data point in each segment was considered the
“current” time. Therefore, the features were extracted from the various intervals by
using the data from the 1% to 60™ data point. The dependent variable was then
extracted by examining the 75" data point from the segment, which in the framework
of the real-time snapshot, is 15 minutes in the future. Examining the 75" data point, if
that data point corresponded to a MAP value within an episode of sustained
hypotension, the dependent variable was given a value of 1 for that segment, and
otherwise it was assigned a 0. Note that the only value the dependent variable could
take during the model training is 0 or 1, but that was not the necessarily the case
during model testing.

After extracting the features and expectancy value from all segments, we
organized the features into an nxp matrix and the expectancy value into an nx1
vector, where n was the number of segments and p was the number of features

extracted from each observation.
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In the matrix, F, the vectors ﬁ contain the p features extracted from all N segments;
in the vector Y, the values E; are the binary variable for the expectancy of sustained
hypotension 15 minutes in the future (i.e. 0 or 1). Since the features extracted were
measures mean, slope, and standard deviation of pressure (MAP), flow rate
(vasopressor dose), and frequency (HR), the features were normalized in order for
proper comparisons to be made. The features were normalized using the standard

score method: each feature, f, is standardized using its corresponding mean value, py,
and standard deviation, oy:

f—llf
Of

f= (4.1.2.1)

The model was then fitted utilizing the MATLAB routine, g/mfit, and a simple
greedy backward elimination algorithm. The MATLAB routine, glmfit, is a method of
generalized linear model regression that estimates the coefficients for a linear
regression model based on the input of a matrix of predictors (i.e. features) and a
corresponding response vector. Within the options of gi/mfit, the routine can be
implemented to fit a logistic regression model. The greedy backward algorithm is a
method of eliminating insignificant regressors from a particular model. We
implemented this model by iterating the g/mfit routine in MATLAB, and after

iteration, removed the column vector of features that were insignificant, according to

its P-value (0.05 significance level).
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Figure 4.1.2.1: Greedy backward algorithm for logistic regression fitting

Using this algorithm, we derived two logistic regression models. The first
model was trained using only features extracted from the patient’s MAP data, and the
second was trained using all features, from the patient’s vasopressor dose, MAP, and
HR data. Both of these models, when given the previous 60 minutes of a patient’s
vasopressor dose, MAP, and HR measurements, would output a value from 0 to 1 that
was equated to the model’s prediction of the expectancy of sustained hypotension

occurring 15 minutes in the future.

4.1.3: Model Testing

We tested the performance of the logistic regression models by simulating the
model in real-time with the 99 ICU stays from the testing patients. Starting at the
beginning of each stay’s data, the model would extract the necessary features from
the patient’s past data and compute an expectancy value corresponding to that time
step. Iterating over the entire stay, a discrete series of expectancy values were created.
When the model was unable to produce an output due to lack of available past data,
the expectancy value was simply assigned to 0. The figure below shows an example

of the discrete series of expectancy values matching up with a patient’s MAP data.
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Figure 4.1.3.1: Example of the discrete expectancy values from logistic regression

To utilize this logistic regression model output as a method of detecting
sustained hypotension, the discrete series of expectancy values were compared to a
value, defined as the alert threshold. Any instance where the expectancy value went
above the alert threshold was defined as an alert. These alerts were divided into two
categories: true and false alerts.

To categorize alerts properly, we examined the expectancy values from 30
minutes before the onset of episodes of sustained hypotension to 15 minutes after the
onset of the episodes. If at any point the expectancy value series passed above the
threshold and stayed above the alert threshold until at least 15 minutes after the onset
of the episode, it would be categorized as a true alert. Additionally, at any other time
the expectancy value series passed above the alert threshold not in proximity to
episodes of sustained hypotension, it would be defined as a false alert. The figures
below provide examples of true and false alerts. The alert threshold value was
determined by finding the threshold that maximized the performance of the model for

the training patient subset; model performance is based on three metrics: number of
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episodes that have no corresponding alert, the time between the onset of a true alert

and the onset of the corresponding episode, and the frequency of false alerts.
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Figure 4.1.3.2: True alert example
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Figure 4.1.3.3: False alert example

The model performance was quantified by three values: Missed Episodes,
Advance Warning Time, and False Alert Frequency. A Missed Episode is a false
negative, or any instance that the model is unable to detect and alert for an episode of
sustained hypotension. The Missed Episodes performance metric was the most
important, since the goal was to develop a detection model that has the ability to

detect all types of episodes of sustained hypotension. Advance Warning Time is the
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duration of time between the onset of a true alert, when the expectancy value passes
above the alert threshold, and the onset of the episode of sustained hypotension. False
Alert Frequency is the number of false alerts that occur per 24 hours of vasopressor
infusion.

To benchmark our logistic regression model against current caregiver
practices, we created a separate “model”, the threshold detector, which best represents
the current practices clinicians should follow, based on consensus guidelines [27],
[28]. Simply, If the patient’s MAP read from the bedside monitor falls below 60
mmHg (i.e. the threshold for hypotension), the threshold detector will output an
expectancy value of 1, otherwise the expectancy value will be 0. The threshold
detector is similar to a simplistic system that alerts whenever the MAP signal sourced
from the patient monitor falls below 60 mmHg. The same performance metrics were

computed for the threshold detector.

4.1.4: Model Blinded Testing

The model was tested using the testing patients from MIMIC II, but both the
training and testing patients came from the same source. We found it in our research’s
best interest to include additional testing that was completely independent from our
training and testing patient subgroups and blinded from our model development. We
took the logistic regression models developed with our training patients and testing on
our testing patients, and implemented that hypotension detection model to the patient
data we gathered from MGH. Identical performance metrics were computed for the

MGH subset.
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4.2: Results
The first configuration of our logistic regression model contained only MAP
features, by design. The features that were significant based on the 0.05 significance
level following the greedy backwards algorithm were:
e 5S-minute MAP slope

10-minute MAP mean

e 10-minute MAP slope

e 10-minute MAP standard deviation

e 45-minute MAP slope

e 60-minute MAP standard deviation
There were no significant features from the 20-minute or 30-minute windows of past
data. The distribution of feature values corresponding to an expectancy value of 1
versus an expectancy value of 0 from the training segments are compared in the

figure below.
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Figure 4.2.1: Training features’ distributions
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The logistic regression model configuration with vasopressor dose and HR features
included in the training (along with MAP features) fitted identical MAP features and
only a single additional feature, 5-minute vasopressor dose slope. The table below
summarizes the logistic regression coefficients found through g/mfit and the greedy

backwards algorithm. Left out of the table is the constant coefficient, 5, = —5.58.
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Table 4.2.1: Significant Features® for
Logistic Regression
Model w/
MO%Z;:ZQ\S/IAP MAP and dose
features
5-minute window features
MAP mean -- -
MAP slope -0.65 -0.66
MAP std. dev. -- --
Dose mean - -
Dose slope - 0.041
Dose std. dev. -- -
10-minute window features
MAP mean -7.95 -7.95
MAP slope -0.16 -0.16
MAP std. dev. 0.51 0.51
Dose mean - -
Dose slope - --
Dose std. dev. - --
45-minute window features
MAP mean -- -
MAP slope 0.72 0.72
MAP std. dev. -- --
Dose mean -- -
Dose slope - --
Dose std. dev. - --
60-minute window features
MAP mean -- -
MAP slope -- -
MAP std. dev. 0.44 0.44
Dose mean - -
Dose slope -- -
Dose std. dev. -- -

 Features are normalized

Table 4.2.1: Significant Features for Logistic Regression

We are not evaluating our model on single detection events, rather we are
examining how well our model can detect an episode of sustained hypotension in

advance; initially we can examine the Receiver Operating Characteristic (ROC) curve
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to study the model’s ability to properly detect at individual instants in time. The ROC
curve is a tool used to illustrate the performance of a detection system (i.e. binary

classifier system) [30].

Receiver Operating Characteristic Curve
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Figure 4.2.2: Receiver operating characteristic curve

Figure 4.2.2 shows the ROC curve for the 99 ICU stays, plotting the true positive
(correctly identifying the state of patient’s MAP 15 minutes in the future) and false
positive rates. The average Area Under Curve (AUC) value for the ICU stays’ ROC
curve is 0.92; A perfect AUC score is 1.00. But, it is important to note that this AUC
value is not indicative of the model’s true performance; as it is skewed by the typical
patient’s ratio of in-range MAP versus hypotensive MAP. Referring to our
retrospective analysis, and specifically Table 3.3.2, the median patient’s MAP is in-
range 90% of the time, and for most cases the model easily detects that there will be
no sustained hypotension 15 minutes in the future if the patient’s MAP is easily in-
range. Therefore, we rely heavily, and solely, on our performance metrics Missed
Episodes, Advance Warning Time, and False Alert Rate, rather than the model’s

ROC curve.
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The model’s alert threshold was chosen that enabled the best performance
metrics for the model when simulated on the training patients; the alert threshold
value was E; = 0.1. At this alert threshold for the testing patients, all 290 episodes of
sustained hypotension had a corresponding true alert (i.e. 0 Missed Episodes). For the
median episode, the Advance warning was 13 minutes. And for the median ICU stay,
the model produced 5.3 false alerts per 24 hours of vasopressor infusion. The table
below shows complete performance metrics for both logistic regression models and
the threshold detector model.

The model’s performance was tested also on the MGH patients as a form of
blind testing/validation. For this subset of patients, the episode sample size was much
smaller so these results need to be expanded with more patients that experienced
episodes of sustained hypotension. For the MGH patient subset, all 29 episodes of
sustained hypotension were detected by the model; and for the median episode, the
advance warning was 22 minutes. The model produced 1.9 false alerts per 24 hours of
vasopressor infusion. Figure 4.2.3 shows an example of the model’s outputted
expectancy value passing above the alert threshold and detecting an episode of

sustained hypotension.
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Table 4.2.2: Performance of the Logistic Regression Model

Hospital 1 Hospital 2
Model w/ Model w/
Model w/ Threshold Threshold
MAP and MAP
MAP features Detector Detector
dose features features
Statistics:
Number of episodes, n 290 290 290 29 29
Proportion of episodes that
were undetected, % 0 0 0 o 0
Advance warning time,
median (I0R) 13 (0 - 30) 11 (-1 - 30) 0(0-0) 22 (3 - 30) 0(0-0)
Number of false alerts per
24 hours, median per stay 53(1.0-100) | 70(3.6-11.7) | 14(62-23) | 1.9(0.0-6.1) | 3.5(0.3-8.3)
(IQR)

* Hospital 1 includes patient data from the MIMIC II database and Hospital 2 includes patient data from a separate medical

center

Table 4.2.2: Performance of the Logistic Regression Model
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Logistic Regression Model Detecting Episode Of Sustained Hypotension
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Figure 4.2.3: Logistic regression detection example

4.3: Discussion

We created a logistic regression model that uses a simple collection of
mathematical trends of a patient’s prior MAP data to infer the expectancy of an
imminent episode of sustained hypotension. Proper selection of the features that
correlate to this expectancy was imperative to the model’s performance. Our model
typically alerted for episodes of sustained episodes prior to its onset, and infrequently

produced false alerts
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We investigated vasopressor dose infusion features and their effectiveness in
the logistic regression model for characterizing the dependency of the occurrence of
near-term future episodes of sustained hypotension on these features. The only
significant vasopressor dose feature was the 5-minute dose infusion slope, with a
regression coefficient of f = 0.042. A hypothesis for the lack of significant dose
infusion features is that that MAP features may imbed the effect of past dose infusion
trends, therefore eliminating the need for redundant features. The inherent
relationship between dose infusion and blood pressure supports this reason [31]. This
result-driven hypothesis is not suggesting that dose infusion is not correlated to the
future state of a patient’s MAP, or that dose infusion information is not potentially
relevant for blood pressure prediction.

Many physiological trends were investigated for their correlation to the
expectancy of imminent episodes of sustained hypotension; but there was a distinct
grouping of near-term (5-10 minute) and far-term (45-60 minute) MAP features that,
when combined, provided the best correlation to future episodes in a logistic
regression format. Although MAP and HR are related physiologically, when features
extracted from a patient’s HR (e.g. mean, slope, and standard deviation) were used to
train the model, all were insignificantly correlated to the existent of imminent
episodes. Further, MAP features extracted from the middle-term (20-30 minute)
windows were also insignificantly correlated. Similar to the hypothesis regarding the
lack of dose features, the effect of middle-term MAP features and HR features were

encapsulated in near- and far-term MAP features.
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The significant MAP features derived were also intuitive in nature, making
this model transparent to an outside perspective. Mean and slope features have a
negative correlation (i.e. lower value leads to higher expectancy) and the standard
deviation features have a positive correlation (i.e. higher value leads to higher
expectancy). The only exception to this nature was the 45 min MAP slope feature,
which is positively correlated. We believe that this occurred due to the fact that many
episodes of sustained hypotension are preceded in close proximity by the termination
of other episodes.

We compared the logistic regression model against a simple threshold alert.
We chose the simple threshold detection scheme as a benchmark as it represents
clinicians reacting as soon as the patient’s MAP falls below the hypotensive
threshold, 60 mmHg. The logistic regression model provides better detection than the
simple threshold detector; 13 minutes of advance warning for versus a no predictive
warning of 0 minutes for the threshold detector for the testing patients of Hospital 2.
The threshold detector has no prediction capability. Further, the logistic regression
model produces less false alerts per 24 hours than the threshold detector; 5.3 false
alerts versus 14 false alerts for the testing patients of Hospital 1. These results suggest
that the logistic regression model could provide valuable insight and alerts for
clinicians to improve critically ill patient care.

In addition to testing on MIMIC II patients, we also tested the model further
with patients from the MGH dataset. The model produces much less false alerts for
the MGH patients than the MIMIC 1I patients; this is due to the higher level of

median MAP for the MGH patient subset. Since the most significant feature of the
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logistic regression model is the 10-minute MAP mean, it is the main contributor to
false alerts (i.e. patients with low levels of MAP will experience higher rate of false
alerts); therefore, the MGH patients will have lower rates of false alerts.

In terms of computational efficiency, the logistic regression model computes
an output after every 5 minutes of real time, regardless if features can be extracted.
The computational time step was chosen arbitrarily to reduce, and perhaps higher
resolution of hypotension expectancies can be achieved by increasing the frequency
of model iterations. This change could be implemented when introduced into ICUs

for high-resolution outputs of this system.
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Chapter 5: Time Series Analysis Forecasting Method for
Hypotension Detection

We developed a method for forecasting a patient’s MAP future measurements
to infer the likelihood of a future episode of sustained hypotension. Autoregressive
models exploit only past measurements of a time series signal in order to compute
forecasted values of that same time series signal. This model structure fit well with
the purposes of MAP forecasting, as exhibited from our logistic regression modeling
discussed in the previous chapter, features extracted from only MAP were found to be
extremely useful in determining the likelihood of oncoming episodes of sustained

hypotension.

5.1: Methods

Discussed in the first chapter, the generalized form of a time series model is
the ARMAX model. The ARMAX model is a function of a signal’s past
measurements, as well as past input and system shock measurements. We simplified
the ARMAX model for our purposes to a solely autoregressive (AR) model into the
difference equation form:

A(@)MAP (k) = e(k)

- MAP(k) = Z a;MAP(k — i) + e(k) 5.1.1)
i=1

— MAP(k) = aiMAP(k— 1)+ -+ a,MAP(k — n) + e(k)
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The current value of MAP, MAP (k) can be expressed as the finite weighted sum of
previous values of MAP and a residual term associated with the current value of
MAP. We will use this structure of the AR model to develop our MAP forecasting

scheme for computing the likelihood of episodes of sustained hypotension.

5.1.1: Model Forecasting and Structure

This subsection will briefly explain how the AR model forecasts future values
of MAP using only previous values of MAP. As mentioned previously, the difference
equation form of the AR model is:

MAP(k) = aMAP(k — 1) + -+ a,MAP(k — n) + e(k) (5.1.1.1)

In some cases, an AR model is used to perform one-step ahead prediction; for
example, using the measurements from time step k —1 to k —n to predict the
measurement at time step k. An AR model can be optimized for one-step ahead
prediction via least squares analysis since there is only one unknown variable, the
measurement at time step k.

This structure can be manipulated into a form that predicts the next step
ahead, i.e. k + 1 measurement of MAP, i.e. MAP (k + 1). Further, since the model is
predicting a step ahead, the value of e(k + 1) has an expected value of 0, as it is a

white noise approximation.

n
MAP(k + 1) = Z a;MAP(k + 1 — i) (5.1.12)
i=1

For our purposes, we wanted to develop an AR model that can forecast MAP
measurements up to 15 minutes. If we employed an AR model optimized for one-step

ahead prediction, we would have to sample the patient’s MAP at 1 measurement
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every 15 minutes; this is not ideal. Rather, we look to employ a model for multiple-
step ahead prediction, or pure prediction.

As an example, assume we sample the patient’s MAP at 1 measurement every
s minutes. We then have the following AR model forecasting structure:

Base Equation: MAP(k) = a;MAP(k — 1) + -+ a,MAP(k — n) + e(k) (5.1.1.1)

Forecasting Equations at time step k:
k + 1 Forecast » MAP(k + 1) = a;MAP (k) + -+ a,MAP(k + 1 — n)
k + 2 Forecast - MAP(k + 2)
= a;MAP(k + 1) + a,MAP (k) + ---
+a,MAP(k +2 —n) (5.1.1.3)
k + 3 Forecast » MAP(k + 3)
= a,MAP(k + 2) + a,MAP(k + 1) + azMAP (k) + -
+a,MAP(k+3 —n)
Andsoon..

The forecast at k + | relies on the forecast from k + [ — 1, and so on. The final
forecast, MAP (k + 1), corresponds to the forecasted value at 15 minutes in the future.

With this forecasting structure, for example, if a patient’s MAP is sampled at
1 measurement every 1 minute (the native sampling rate of the data), the number of
forecasts required to forecast 15 minutes is 15. We explore different sampling rates
for the AR model to establish a comprehensive analysis: the sample rates investigated
are 1 measurement per 1 minute, 3 minutes, and 5 minutes.

Further, the number of previous MAP measurements in the AR difference
equation can be adjusted as well; the number of previous measurements, or regressor

values, is known as the model order of the system. We vary the model order of the
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system from 2 to 15, depending on the sampling rate of the AR model. In the Table

5.1.1, the various model orders and sampling rates are tabulated.

Table 5.1.1: AR Model Structure Variants

Sampling 1 pt./ 1 min 1 pt. / 3 min 1 pt./ 5 min
Rate:

Model

Order:
2 n=2,s=1min n=2,s=3min | n=2,s=5min
8 n=28,s=1min n=8,s=3min | n=28,s=5min
9 n=9,s=1min n=9,s=3min | n=9,s=5min
10 n=10,s=1min | n=10,s=3 min N/A
11 n=11,s=1min N/A N/A
15 n=15,s=1min N/A N/A

Table 5.1.1: AR Model Structure Variants

5.1.2: Model Training Cost Function and Optimization

The goal of the AR model was to forecast a desired amount of patient’s MAP.
Therefore, it was appropriate to train the AR model to minimize the total error in
these forecasts. For our AR model training, we developed cost functions that focus on
the minimization of multiple forecast errors. For all models, the goal was to forecast
the subsequent 15 minutes of a patient’s MAP. Incorporating the variants of the
model shown in the previous section, and the fact that the forecast goal is 15 minutes,
the following cost function structure was developed.

Batch data segments (at least N = 50,000 segments from the MIMIC II

training subpopulation) were used to compute forecasts of a patient’s MAP signal to
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train the model. The cost function compares the model’s forecasted value with actual
values of [ future time steps of a patient’s MAP signal within a segment. The i*" step
ahead forecast from the j* segment, the forecast residual is calculated and stored in a
vector, e;, corresponding to the time step ahead of the forecast. These error vectors
contain N entries. Finally, the 2-norm of these vectors are computed, summed, and
normalized by the total number of time step ahead forecasts, [, to compute the cost

function.

l
. )1 _
min 7Znein2 (5.1.2.1)
i=1

s.t.
MAP(k + 1) = aMAP(k) + -+ a,MAP(k + 1 — n)

MAP(k + 2) = a,MAP(k + 1) + a,MAP (k) + -+ a,MAP(k + 2 — n)

(5.1.1.3)
MAP(k + 3) = a; MAP(k + 2) + a,MAP(k + 1) + agMAP (k) + -+
+a,MAP(k+3 —n)
e;; = MAP(k + i) — MAP(k + i) for the j*" training segment (5.1.2.2)
e = [ei,l' €2, ---'ei,N]T (5'1'2'3)
I8, = (5.1.2.4)

The AR model was trained using the identical set of training patient data as
described in section 4.1.2. First, segments of data were extracted from the patients’
data that contained the necessary amount of continuously available MAP
measurements; note that the “necessary amount” of measurements varies depending
on model order and sample rate, for example, a 4™ order model with a sampling rate

of 1 measurement every 5 minutes required 15 minutes of the most recent MAP
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signal for past MAP values and 15 minutes of the subsequent MAP signal to compare
forecasted MAP values with the true values per segment. Figure 5.1.2.1 shows an

example of a single segment for this example AR model.

Patient's MAP
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MAP Time Series Signal
Sampled Future MAP
Pure Forecasted MAP
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Figure 5.1.2.1: Autoregressive regressors, future values, and forecasted values

The model’s autoregressive coefficients, A, were optimized to minimize the
cost function described above. The fimincon routine in MATLAB finds the optimal
coefficients when supplied with a cost function and an initial condition. The initial
condition for the coefficients is the initial “guess” for the values of the coefficients. A
good starting point was the least squares solution to the simple one-step prediction
problem summarized previously. Given the past values of MAP, i.e.
MAP(k), MAP(k — 1), etc. and the single step ahead future value of MAP,
MAP (k + 1), the value of the coefficients A could be found that minimize the sum of
the square of errors for the single step ahead prediction. Coefficients were computed

using the equation below.

AlC = [XTx]"1xTy (5.1.2.5)
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Where X is the matrix of previous values of MAP, each row representing a separate
observation (or segment of data) and y is the vector of the corresponding single step
ahead future value of MAP for each observation.

We used the least square solution as a starting point for the optimization for
fmincon. Additionally, we perturbed the coefficients of the initial condition by a
factor of 10 to encompass a large proportion of the coefficient vector space; this is to
ensure that the true minimum, rather than a local minimum, was found for the
optimization. The optimization routine was iterated for each of these perturbations,
and the optimal autoregressive coefficients were the coefficients that correspond to
the iteration with the minimal cost function value. This optimization was computed

for all of the model variants discussed in the previous section.

5.1.3: Model Forecast Envelop

It was not expected that the AR model would be completely accurate in its
forecasting, rather, the goal of time series forecasting is to develop probabilistic
forecast of the time series trend. Therefore, in addition to simply forecasting future
values of a patient’s MAP signal, a forecast envelop accompanies the forecasted
values to suggest probability limits for the forecasted values. Similar to the forecast
envelop that one may see on a weather broadcast for projecting the path of a
hurricane, our forecast envelop was put in place to accomplish a similar task: display
the highest likelihood projection of a patient’s future MAP signal.

To compute probability limits for forecasts computed by AR models, the

difference equation derived above needed to be transformed into an infinite series
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weighted sum of current and past shock measurements (i.e. model errors) [12]. The

form of this time series model looks like the following:

MAP (k) = z wie(k — i) (5.13.1)
i=0

To transform the difference equation form into the infinite weighted sum of shocks,
the following relationship is used [12]:

A(Q)y(q) = 0(q) (5.1.3.2)
Where 6(q) is the set of coefficients corresponding to the error terms of the AR
difference equation model. For this case, our model contains only the error term e(k),
therefore 6(q) = 1. Also, A(q) corresponds to the AR coefficients of the model
corresponding to the recent MAP values MAP(k), MAP(k — 1), etc. The equation

can be expressed as the following.

A+a g +a,q7%2+ -+ a, g ™A+ Piq + P72 + g3 + ) =1 (5 1 33)

Solving for the weights, we get the following.

YPo=1
Y1 =—-a4
Y, = —a1YP1 —a,

(5.1.3.4)
Y3 =—a1Y, —ayp; — a3

Yj=-—a1; —ap; - —a;,j<n
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Thus, to calculate the expected variance of MAP(k + ), we used infinite sum series

with the computed ¥; values to derive the equation for forecast variance:

-1
Varlk + 1] = Zzp,? o2 (5.13.5)
=0

Where ¢ is the variance of the shocks e(t) of the model. The value for g2 was
approximated by calculating the variance of the one-step ahead forecast error of
previous forecasts. This approximation could be performed in two manners: using the
variance from the model training optimization (¢ is static), and using the variance
from one step ahead forecast error of previous forecasts of the last 15 minutes, 30
minutes, 60 minutes, and 120 minutes (62 is dynamic). Using the above equations to
calculate forecast variance, an accompanying forecast envelop was calculated for

each forecast.

5.1.4: Hypotension Detection from Forecasting

The forecasted MAP signal and forecast envelop produced by the model
might provide potential insight for clinicians monitoring the patient’s state, though it
does not directly determine the likelihood of an episode of sustained hypotension. In
order to transform the AR model’s output into a method for hypotension detection,
the forecast and forecast envelop must be further exploited.

Using the forecast envelop and the threshold for hypotension (< 60 mmHg)
we constructed a metric that was crudely associated with the likelihood of sustained
hypotension. To compute this metric, we simply calculation of the proportion of the

amount of the forecast envelop that was below the hypotension threshold (< 60
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mmHg) to the total forecast envelop. See Figure 5.1.5 and the equation below for

more details.

0 MAP data
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Figure 5.1.5: Forecast envelop and p-metric

60 mmHg — (m(k + 0D -6k + 1))
26(k + 1)

p(k+1) = (5.1.4.1)

Similar to the model output of the logistic regression model, E, the p-metric could
approximate the expectancy of future episodes of sustained hypotension.
Additionally, we can determine an optimal threshold value for the p-metric that will
trigger an alert when the AR model produces a p-metric value that passes above it.
This exploitation of the AR model and its forecast transforms the remainder of the

analysis into the identical process performed for the logistic regression model.

5.1.5: Model Testing and Blind Testing

We tested the performance of the AR models by simulating the model in real-
time with the 99 ICU stays from the MIMIC II testing patients. Starting at the
beginning of each stay’s data, the model would extract the necessary past values of a
patient’s MAP and iteratively compute an [-step ahead forecast with accompanying
forecast envelop at each time step (similarly to the logistic regression model testing,
the computation time step was 5 minutes). For each forecast, the p-metric was

computed by analyzing the last forecasted step and its forecast envelop. This results
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in a discrete series of p-metric values that were treated as expectancy values for
sustained hypotension.

The AR model performance was quantified by the same performance metrics
as the logistic regression model. See Subsection 4.1.3 for details. Additionally, blind

testing was performed on the entire MGH dataset, see Subsection 4.1.4 for details.

5.2: Results

The model was optimized according to the prescribed cost function for
various model orders and sample rates. The one-step prediction forecast residuals
were computed for each model as well as the Akaike Information Criterion (AIC).
The AIC is a metric that scores a model based on its accuracy and complexity. Table

5.2.1 is a summary of the optimization results.
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Table 5.2.1: AR Model Training Results

One-Step
Cost Function Prediction Akaike
Sample Rate Model Order Value Residual Information
[mmHg] Variance Criterion
[mmHg’]
2 1671 67 -13
3 1606 63 -11
4 1555 61 -9
5 min 5 1511 60 -7
6 1473 58 -5
7 1444 56 -3
8 1419 55 -1
9 1395 55 1
2 1646 46 -14
3 1612 48 -12
4 1580 46 -10
5 1528 42 -8
3 min 6 1518 46 -6
7 1474 41 -4
8 1463 44 -2
9 1444 42 0
10 1420 41 2
2 14733 1077 -20
3 1577 11 -14
4 1549 12 -12
5 1*10" 281 -36
6 1773 200 -8
7 2183 38 -7
| min 8 1848 411 -4
9 1765 28 -2
10 1448 10 0
11 1439 8 2
12 1444 10 4
13 1441 10 6
14 1431 11 8
15 1399 9 10

Increasing model order led to a lower cost function value for the optimized

Table 5.2.1: AR Model Training Results
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model, since there were additional parameters to minimize the cost function of the
model. Further, for most cases, the one-step prediction residual variance also

decreased. Although the model got marginally better in terms of forecast residual




value and variance, the AIC score suggests that higher model orders do not
significantly improve the models at the cost of complexity.

The p-metric threshold was determined by examining the performance metrics
of the model when simulated through the training patient subset. For each model
order and sample rate, we calculated the performance metrics across the entire
spectrum of p-metric values. Below are the results from the models with a 5-minute

sampling rate. An identical analysis was performed for each sampling rate variant.

-
o

Missed Episodes [Episodes]

Advanced Warning [min]

False Alert Rate [FA/24hrs]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Alert Threshold

Figure 5.2.1: Performance metric trend visualization
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We chose the optimal p-metric threshold after narrowing down the bounds to
cases where the model missed zero episodes, the advance warning greater than 10
minutes, and the false alert rate less than 6 false alerts per 24 hours. Ultimately, the
best autoregressive model was the fourth order AR model with a p-metric threshold
of 0.35. For AR models with a sample rate of 3 minutes, the best model was a 6th
order AR model with a p-metric threshold of 0.38. And for AR models with a sample
rate of 1 minute, the best configuration was a 14" order model with a p-metric
threshold of 0.40.

The figure below shows an example of the model’s outputted forecast and the
corresponding p-value passing above the alert threshold (0.35 for 5 min sample rate)

and detecting an episode of sustained hypotension approximately 18 minutes before

its onset.

Forecast at t = 1820

Forecast at t = 1805 Forecastatt = 1810 Forecastatt =1815

—— Past MAP Values 95
e MAP Values

casted Future MAP Values
e MAP Trend

—— Past MAP Values
e Episode of Sustained Hypotension

rend
isode of Sustained Hypotension

MAP [mmHg]
MAP [mmHg]

MAP [mmHg]
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50 50 50 50
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Time [min] Time [min] Time [min] Time [min]

p =0.09 p=0.17 p =0.25 p =0.35

Figure 5.2.2: AR model forecasting and detecting episode of sustained hypotension
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Table 5.2.2: Performance of AR Models with Static Forecast Envelop

5 min sample rate 4™ order

3 min sample rate 6™ order

1 min sample rate 14" order

AR Model AR Model AR model
Statistics:
Optimal p-metric threshold 0.35 0.38 0.40
Number of episodes, n 290 290 290

Proportion of episodes that
were undetected, %

0.4 (1 episode)

0.4 (1 episode)

0.4 (1 episode)

Advance warning time,

median (IQR) 11 (-2 -30) 11 (-2-30) 9(-1-30)
Number of false alerts per 24
hours, median per stay 4.2 (0-8.6) 4.5(0-28.7) 4.6 (0-9.6)

(IQR)

Table 5.2.2: Performance of AR Models with Static Forecast Envelop

The AR model results above are for the AR model forecasting detection

system with a forecast envelop derived from the assumption that the variance of the

model shock, o2, is static. Note that the 1 min sample rate AR model produced

unintuitive results due to the order of forecasting needed (15-step prediction is

unreasonable). Taking the “best” AR model from the table above (5 min sample rate

4™ order model), we then compare how the model performs while varying the

derivation of the forecast envelop. We compared the models where the model shock

was assumed to be constant, and approximated by the previous 15 minutes, 60

minutes, and 120 minutes of forecasts. The table below summarizes the results we

found.
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Table 5.2.3: Performance of AR Models with Different Forecast Envelops

5 min sample rate

5 min sample rate

5 min sample rate

5 min sample rate

th
4™ order AR Model 4™ order AR Model 4" order AR Model 4" order AR Model
(constant variance (15-minute variance (60-minute variance (132;::12?6
approximation) approximation) approximation) approximation)

Statistics:
Optimal p-metric 0.35 0.20 0.23 0.28
threshold i ) : ’
Number of episodes, n 290 290 290 290
Proportion of episodes
that were undetected, 0.4 (1 episode) 0.4 (1 episode) 0 0
%
Advance warning time, 11 (-2 - 30) 2(-3-24) 11 (-2 - 30) 10 (-2 — 30)
median (IQR)
Number of false alerts
per 24 hours, median 4.2 (0-8.6) 7.0 (3.3-11.7) 55(1.6-9.4) 51(0.5-17.9)

per stay (IQR)

Table 5.2.3: Performance of AR Models with Different Forecast Envelops

Based on the results from Table 5.2.2 and Table 5.2.3, we chose to further

study the 4™ order AR model with a static forecast variance approximation and

benchmarked this model against the previously studied logistic regression and

threshold detection models. The AR model had similar Advance Warning time and a

lower False Alert Rate compared to the logistic regression model. Both AR and

logistic regression models had lower False Alert Rates compared to the threshold

detector when tested on the MIMIC testing patients, but higher False Alert Rates

when tested on the MGH patients. The table below summarizes comprehensive

benchmarking of the models.
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Table 5.2.4: Performance of the AR Model

Hospital 1 Hospital 2

4™ Order Logistic Threshold 4™ Order Logistic Threshold

AR Model Regression Detector AR Model Regression Detector
Statistics:
Number of episodes, n 290 290 290 29 29 29
Proportion of episodes that
were undetected, % 0.4 0 0 0 0 0
Advance warning time, 11 13.(0-30) 00-0) 14 223 30) 0(0-0)
median (IQR) (2 -30) (-1 -30)
Number of false alerts per 24
hours, median per stay 4.2 (0 53 (1.0- 14 (6.2 -23) 1.6 (0 1.9 (0.0 -6.1) 3.5(0.3-
(IQR) 10.0) 10.0) 4.9) 8.3)

* Hospital 1 includes patient data from the MIMIC II database and Hospital 2 includes patient data from a separate medical
center

Table 5.2.4: Performance of the AR, Logistic Regression, and Threshold Detector
Models

The fourth order autoregressive model alerted for all but one episode for the
testing subset of patients from MIMIC II; note, we examined the missed episode and
it appears that the episode is an artifact or a result of non-physiological behavior. For
the 289 episodes the model did detect, the median advance warning time was 11
minutes. For the median ICU stay, the model produced 4.2 false alerts per 24 hours of
vasopressor infusion.

The model’s performance was also tested on the MGH patients as a form of
blind testing/validation, identical to the process gone through with the logistic
regression model. For the MGH patient subset, the model detected all 29 episodes of
sustained hypotension with a median advance warning time of 14 minutes. For the
median ICU stay of the MGH patient subset, the model produced 1.6 false alerts per

24 hours of vasopressor infusion.
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5.3: Discussion

We developed a model with an underlying autoregressive structure that
computes forecasted values of the time series signal of a patient’s MAP and
determines the expectancy of future episodes of sustained hypotension. Variations of
the model were studied to ensure that the best configuration of the model was derived
for the goal of hypotension detection. This method of hypotension detection was
comparable to the logistic regression model we previously studied, but can allow for
much more flexibility.

The AR models we formulated in the previous sections were identified via
population-based batch training methods. Similar to the logistic regression modeling,
the AR model was trained using a large batch of segments from patient data to fit
various AR models to the time series data. Observing the behavior of the population-
trained AR model, it is noticeably similar in behavior to a moving average filter. By
example, examining the pole-zero mapping of the 4™ order AR model extensively
studied and a 4™ order moving average filter, the pole locations of each filter are in

close proximity.
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Figure 5.3.1: Pole-Zero map of AR model and moving average filter

This behavior was also noticeable in the model’s forecasts. In the example
illustrated in Figure 5.2.2, the forecasted values appear to closely resemble the near-
term average of the patient’s MAP signal. This was an important finding for this
autoregressive study, as it corroborated our findings from the logistic regression
feature selection: the most significant feature for detecting future episodes was the
mean value of the previous 10 minutes of a patient’s MAP (intuitively). We have
found from both analyses that episodes of sustained hypotension are preceded by very

low levels of MAP, rather than sudden drops in the value of MAP.
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Additionally, investigating variants of the model, with respect to sampling rate
of the data and the calculation of the forecast envelop, yielded the conclusion that a
4™ order AR model with a 1 measurement per 5-minute sampling rate and a static
forecast envelop approximation was the best formulation for detecting episodes of
sustained hypotension. The 5-minute sample interval was able to encompass more
information about the past state of the patient’s MAP, compared to the 3-minute and
I-minute sampling interval. For the smaller sampling intervals, the model was being
fit to the changes in a patient’s MAP between a few minutes, or a single minute;
Ultimately, the model was attempting to fit to noise, as the changes in the
measurements from minute to minute were most likely physiological noise or
measurement noise. Therefore, a broader time step between measurements was
deemed best for the AR model structure. For the forecast envelop approximation, a
static approximation generated relatively better results than the updating
approximations. The updating approximations, especially the 15-minute variety, only
took into account the very near term past forecasts. In our retrospective study, we
observed that most episodes of sustained hypotension were preceded by a gradual
drift out of MAP. Therefore, most likely, the variance of the forecast errors preceding
most episodes would be small, since the patient’s MAP was not highly variable. This
results in a very small forecast envelop, and in turn a smaller p-metric if the patient’s
MAP is not in proximity to the 60 mmHg threshold. That is why a static
approximation, accounting for the general variability of MAP is a more useful tool for

this model.
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This AR model was compared to the logistic regression model as well as the
simple threshold alert. The AR model provides comparable detection for episodes of
sustained hypotension (11 min vs. 13 min Advance Warning Time for MIMIC II
patients), The AR model also has comparable rates of false alerts per 24 hours (4.2 vs
5.3 False Alerts per 24 hours). The AR model, like the logistic regression model,
provides valuable insight for clinicians that may improve the care of the critically ill.

Further, with the performance of the AR model and logistic regression model
being very comparable, it was important to understand the differentiation between
these models. The one major improvement that the AR model provided was its
flexibility and more comprehensive insight for hypotension detection.

The AR model is trained to minimize forecast residuals of a patient’s future
MAP. Since the training is not dependent on the threshold of hypotension (i.e. MAP <
60 mmHg for our case), the AR model does not need re-training to be implemented to
detect a different definition of hypotension (such as from the Surviving Sepsis
Campaign [27]). Since the model’s structure is a simple forecasting model, rather
than a correlation model to a specific definition of hypotension, the AR model is a
much more attractive method for hypotension detection.

The AR model derived in this chapter has proven to be comparable to the
logistic regression with respect to our predefined performance metrics, but this new

time series forecasting model allows for greater flexibility for real-world application.
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Chapter 6: Conclusions

6.1: Conclusions

6.1.1: Retrospective Analysis Conclusions

During vasopressor therapy, episodes of sustained hypotension were common
and typically without associated vasopressor dose increases. Since the likelihood is
that sustained hypotension causes CNS and other end-organ injury, methods of
mitigating episodes of sustained hypotension would be worthy of investigation. This
retrospective analysis has shown that most episodes of sustained hypotension that
were resolved with a change in vasopressor dosage only required a single adjustment;
therefore, the prevalence of these episodes of sustained hypotension may not be due
to lack of know-how of the clinician or nurse, but rather the lack of availability of the
clinician or nurse to actively monitor the patient’s MAP.

The results of this investigation have shown that most episodes of sustained
hypotension go undetected by the clinician or nurse. This void in clinical care of the
critically ill provides an opportunity to investigate the merit of clinical informatics
systems that could support clinicians and nurses with the detection and prompt

treatment of sustained hypotension.

6.1.2: Hypotension Detection Methods Conclusions

Both logistic regression and AR models could be useful in real-world
application as a clinical informatics system to aid in the care of critically ill patients
experiencing severe hypotension. In comparison to current methods of treating

chronic hypotension, which are mostly reactive approaches, these models proactively
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detect and alert for episodes of sustained hypotension that provide clinicians and
nurses ample time to assess and treat the patient with an adjustment in vasopressor
dose.

Although the performance and structure of the logistic regression model are
enlightening, there are drawbacks that limit its generalizability for practical use. The
most obvious limitation is that the model is trained to a specific definition of
sustained hypotension (MAP < 60 mmHg for at least 15 consecutive minutes). If this
model was to be implemented to aid clinicians, it would need to be retrained if
clinicians followed different guidelines, such as Surviving Sepsis (MAP > 65 mmHg)
or Advanced Cardia Life Support (systolic blood pressure (SBP) > 70 mmHg)[27],
[28].

The AR model attempts to alleviate the constrained nature of the logistic
regression model by taking a different approach to episode detection. The AR model
is trained to forecast values of a patient’s MAP, rather than correlating features prior
to an episode’s onset; therefore, the AR model does not rely on the definition of an
episode. The AR model could be a reasonable system that could be tested for real-
time efficacy in a clinical environment. The AR model provides insight regarding the
future trend of a patient’s blood pressure, a rough estimation for the expectancy of
future sustained hypotension, and an alerting system that could aid clinicians in the

prevention of hypotension in the critically ill.

6.2: Contributions

The contributions that were made by this research are listed as the following:
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An in-depth analysis of the chronic problem of hypotension management of
the critically ill in intensive care units

Demonstrated the importance of implementing a clinical informatics system to
aid in the prevention of reoccurring hypotension by examining adherence to
current prevention guidelines

Developed a statistically-driven model utilizing a simple collection of
mathematical trends of a patient’s prior MAP signal to detect and alert for
future episodes of sustained hypotension

Developed a time series autoregressive model to forecast a patient’s future
MAP signal to detect and alert for future episode of sustained hypotension
Two proof-of-concept solutions that provides over 10 minutes of advance
warning for clinicians in intensive care units to provide necessary treatment
towards the prevention of sustained hypotension

Theoretically demonstrated that the developed models can improve proactive
treatment and management of reoccurring sustained hypotension while not
compromising rates of false alerts.

Demonstrated how data-driven systems may improve proactivity in managing

and treating reoccurring hypotension of the critically ill

6.3: Future Work

This section briefly details ideas for the next steps of the work pertaining to

this research. These proposals stem from the discussion of results from this research

and the original goals set for the development of an ideal clinical informatics system

for the treatment of hypotension.
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6.3.1: Testing flexibility of AR models

Developing time series models for hypotension detection arose from the
limitation of the logistic regression model: the models fixation to the pre-determined
definition of sustained hypotension. The AR model structure was investigated to
improve the flexibility of detecting hypotension. In our first investigation we
analyzed the AR model to detect episodes of sustained hypotension using our pre-
defined definition of sustained hypotension (i.e. MAP < 60 mmHg for at least 15
minutes). We kept this definition initially to compare the AR model with the logistic
regression model we previously developed. Though, to truly understand the
performance of our AR model, it flexibility must also be studied. Therefore, it would
be beneficial to test the AR model against different definitions of sustained
hypotension (e.g. MAP < 70 mmHg for at least 30 minutes). With a deeper

knowledge of the AR model’s flexibility, its advantage would be more concrete.

6.3.2: Individualized time series modeling

In both the logistic regression and AR models, a population-driven training
procedure was used to fit these models to the patients’ data. It is well known that
across patients, the physiological state is different; additionally, across different
periods of time of a single patient, the physiological state of that patient will change.
Therefore, having dynamic (or updating) models may prove to be favorable. Simply,
creating a routine to periodically update parameters from both models that embody
various underlying physiological changes to the patient could improve the model’s

ability to reliably detect future episodes of sustained hypotension. Benchmarking
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these updating models against the static population-trained models would ultimately

show the best scheme for this type of clinical system.

6.3.3: Clinical application testing

Finally, with any tool or application to be used in the ICU, testing in real-time
clinical environments must be done to prove both the model’s performance and
patient and caregiver safety. A system with the necessary hardware and software to
mimic these derived models should be prepared that provide the necessary test bed

for studying these systems in a real clinical environment for clinical trials and testing.
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Appendix A: MGH Python Code for Converting .xml files to
.mat Format

Code.py:

T

Code to iterate through all XML files
Usage: python XML2MAT.py file.xml

T

import glob

path = 'C:\\Users\\Bryce Yapps\\Desktop\\XML2MAT\\*xml'
for fname in glob.glob (path):

import subprocess

proc = subprocess.Popen (['python', 'XML2MAT.py', fnamel])
import time

print ('start saving')

print (fname)

XML2MAT.py:

Code to convert BedMaster XML files to MAT files
Usage: python XML2MAT.py file.xml

creates a .mat file in the same folder with same name as xml file
T

from datetime import datetime

from xml.etree.ElementTree import fromstring, ElementTree
import sys

import xml.etree.ElementTree as ET

import scipy.io as sio

from numpy import array

from datetime import datetime, timedelta

startTime = datetime.now()

FHA A R A R R R
# function to create datenum format object in matlab
# it takes datetime object as input and provides output as the datenum float
def datetimeZmatlabdn (dt) :
ord = dt.toordinal ()
mdn = dt + timedelta(days = 366
frac = (dt-datetime (dt.year,dt.month,dt.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0)
return mdn.toordinal () + frac
FHE A R A R R R R R
inFilename=sys.argv[1l]
outFilename=inFilename[:-4]+'.mat"'

#outFilename="'test.mat"'

def getmatlabTime (string) :

wv_year mon=string.split (" ")

wv_year mon_spl=wv_year mon[0].split ("/")

al=wv_year mon_spl[0]+" "+wv_year mon_spl[l]+" "+wv_year mon_spl[2]+"
"+wv_year mon[l]+wv_year mon[2]

dateobject=datetime.strptime (al, 'sm %d Y $I:%M:%S%p')

date time num=datetimeZ2matlabdn (dateobject)

return date_time num

WV_dict={)
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wv_time dict={}
VS dict={}
VS time dict={}

def processChunk (bufferl):
tree = ElementTree (fromstring (bufferl)
#print bufferl
root=tree.getroot ()
#print root.tag
wv_time=(root.attrib['Time'])
strl='"'.join(wv_time)
date time numl=getmatlabTime (strl)
for subchilds in root:
wave_tag= subchilds.attrib['Channel']
wave_info=subchilds.text
#print wave info
for 1 in wave_info.split(','):

i=float (i)
if wave tag!="":
try:

WV_dict[wave tag].append (i)

wv_time dict[wave_ tag].append(date time numl)
except KeyError:

WV_dict[wave tagl=[i]

wv_time dict[wave tag]=[date time numl]

## process the vitalsigns part or the CML chnk

def processChunkl (bufferl):
tree = ElementTree (fromstring (bufferl)
#print bufferl
root=tree.getroot ()
#print root.tag
wv_time=(root.attrib['Time'])
strl='"'.join(wv_time)
date time numl=getmatlabTime (strl)
for subchilds in root:
Par V,Value V,AlarmLimitLow V,AlarmLimitHigh v= "-" "-m mn-m m_u

#print wave info
for scl in subchilds:

if scl.tag == "Par":
Par V=scl.text
if scl.tag == "Value":
Value V = float (scl.text)
if scl.tag == "AlarmLimitLow V":
AlarmLimitLow_V=scl.text
if scl.tag == "AlarmLimitHigh V":
AlarmLimitHigh V=subnodes2.text
if Value V != "-":
Par V= Par V.replace("-","")
#print Par V
try:

VS_dict[Par V] .append (Value V)

VS_time dict[Par V].append(date time numl)
except KeyError:

VS dict[Par V]=[Value V]

VS_time dict[Par V]=[date time numl]

inputbuffer=""
with open (inFilename) as inputFile:
append=True
for line in inputFile:
#print line
#print '----- !
if '<Waveforms' in line:
inputbuffer=line
append=True
elif '<VitalSigns' in line:
inputbuffer=line
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append=True

elif '</VitalSigns>' in line:
inputbuffer +=line
append=False
processChunkl (inputbuffer)
inputbuffer=None
del inputbuffer

elif '</Waveforms>' in line:
inputbuffer +=line
append=False
processChunk (inputbuffer)
inputbuffer=None
del inputbuffer

elif append:
inputbuffer +=line

sio.savemat (outFilename, {'vs': VS dict, 'vs_time'

print ('Saved!")
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