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hi
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1 Introdu
tionBehavioral Synthesis refers to the task of 
onstru
ting an ar
hite
ture, binding and s
hedule for an algorithmthat has been des
ribed in terms of the behavior of its 
onstituent elements at a high level of abstra
tion.It is part of the broader �eld of high-level synthesis (HLS) and is often used to implement digital signalpro
essing (DSP) appli
ations. In behavioral synthesis for DSP, the algorithm is often represented as adata
ow graph whose verti
es represent fun
tions and edges represent 
ommuni
ation or dependen
ies. Tomap su
h a data
ow graph onto an ar
hite
ture (either hardware or software) eÆ
iently, we need to annotatethe appli
ation spe
i�
ation and ar
hite
ture with information about the exe
ution times of verti
es, and thearea utilization and power 
onsumption of pro
essing resour
es. The timing information is used to generatea set of 
onstraints related to the system that the a
tual implementation must satisfy.One of the most popular data
ow models (espe
ially for DSP appli
ations) is syn
hronous data
ow(SDF) [12℄. This is a pure data
ow model without 
ontrol 
ow 
onstru
ts. Though it is not Turing-
omplete, it is 
apable of representing a large 
lass of useful DSP systems. This model in
ludes the 
on
eptsof 
onsumption and produ
tion parameters, whi
h allow 
onvenient representation of multiple sample rates.The spe
ial 
ase when all sample rates are equal is referred to as the single sample-rate (SSR) 
ase. Asubgroup of this is the 
ase of homogeneous graphs, where produ
tion and 
onsumption parameters on alledges are equal. Systems where multiple sample rates exist in di�erent parts are referred to as multiratesystems. This model has been widely used to study DSP graphs and several te
hniques have been developedfor mapping graphs represented in this model to both hardware and software ar
hite
tures. Most analyti
alresults that are known for graph performan
e metri
s have been derived for homogeneous graphs. In ouranalysis, we �rst treat the homogeneous 
ase sin
e it is relatively simpler, and the results that we derive formultirate graphs will also apply to other SSR graphs that are not homogeneous.The 
onventional model for des
ribing timing in data
ow systems is derived from the method used in
ombinational logi
 analysis. Here ea
h vertex is assigned a \propagation delay" value that is treated as theexe
ution time of the asso
iated subsystem. That is, on
e all the inputs are provided to the system, thispropagation delay is the minimum amount of time after whi
h we are guaranteed that the outputs of thesystem have rea
hed their �nal stable values.One major disadvantage of this approa
h is that it does not allow a hierar
hi
al des
ription of thesystem timing when the system 
ontains delay elements (iterative systems). These delay elements roughly
orrespond to registers in a hardware implementation, but are more 
exible in that they do not impose therestri
tion that all the delay elements are a
tivated at the same instant of time [15, 14, 6℄. This allowan
e forvariable phase 
lo
king is an important way in whi
h HLS di�ers from 
ombinational logi
 implementation.The rephasing optimization in [15℄ provides a good example of how this 
an be used. Even in sequentiallogi
 synthesis, variable phase 
lo
king has been 
onsidered in su
h forms as 
lo
k skew optimization [7℄ andshimming delays [10℄, and has been re
ognized as a very useful tool, though it is diÆ
ult to implement inpra
ti
e.In multirate systems, the most 
ommon interpretation of exe
ution time is as follows: ea
h vertex isassumed to be enabled when suÆ
ient data
ow tokens have enqueued on its inputs. On
e it is enabledin this fashion, it 
an �re at any time, 
onsuming a number of tokens from ea
h input edge equal to the
onsumption parameter on that edge, and produ
ing a number of tokens on ea
h output edge equal to theprodu
tion parameter on that edge. The exe
ution time of the vertex is the time between the (instantaneous)
onsumption and produ
tion events.This model has been used in the 
ontext of SDF to derive several useful results regarding 
onsisten
y,liveness and throughput of graphs modeling DSP systems. However the treatment is quite di�erent fromthat for homogeneous graphs, and many analyti
al results for homogeneous systems 
annot be extended tomultirate systems.To the best of our knowledge, there does not appear to be any other timing model that addresses theissue of hierar
hi
al timing for data
ow-based DSP designs. Conventional models 
annot easily be used torepresent systems that are either hierar
hi
al or 
ontain multirate elements. Multirate systems are usuallyhandled by some te
hnique su
h as deriving the expanded homogeneous equivalent graph (whi
h 
an lead toan exponential in
rease in the graph size), while hierar
hi
al systems need to be 
ompletely 
attened, againresulting in possibly large in
reases in the size of the graph to be analyzed.1



In this paper, we propose a di�erent timing model that over
omes these diÆ
ulties for dedi
ated hardwareimplementations of the data
ow graph. By introdu
ing a slightly more 
omplex data stru
ture that allows formultiple input-output paths with di�ering numbers of delay elements, we are able to provide a single timingmodel that 
an des
ribe both purely 
ombinational and iterative systems (iterative systems are sequentialsystems with feedba
k, so that the exe
ution of the overall system repeats in�nitely over time). For purely
ombinational systems, the model redu
es to the existing 
ombinational logi
 timing model. For multiratesystems, the new model allows a treatment very similar to that for normal homogeneous systems, while stillallowing most important features of the multirate exe
ution to be represented. The model also allows severalanalyti
al results for homogeneous systems to be applied to multirate systems. As an example, we derive anexpression for the iteration period bound of a multirate graph.We have used our hierar
hi
al timing model to 
ompute timing parameters of the ISCAS ben
hmarks,whi
h are homogeneous systems. We have also used the model to 
ompute timing parameters of a numberof multirate graphs used in signal pro
essing appli
ations. The results show that the new model 
an resultin 
ompa
t representations of fairly large systems that 
an then be used as hierar
hi
al subsystems of largergraphs. These results show the large savings in 
omplexity that are possible with the new approa
h.In the next se
tion, we dis
uss the requirements that a timing model for data
ow systems must meet,and examine some of the short
omings of the 
onventional model. Se
tion 3 then presents a new modelthat over
omes these defe
ts. Se
tion 4 des
ribes a data stru
ture and eÆ
ient algorithms that 
an be usedto 
ompute the timing parameters a

ording to our model. Se
tion 5 then des
ribes the requirements oftiming models for multirate systems, and shows how our model 
an be extended to these systems. Se
tion 6presents results of applying the model to several examples from signal pro
essing and the ISCAS ben
hmark
ir
uits. Finally, we present our 
on
lusions and some interesting dire
tions for further work.2 Requirements of a Timing Model for Hierar
hi
al SystemsIn order to understand the requirements that must be satis�ed by a timing model for des
ribing hierar
hi
alsystems, we �rst 
larify 
ertain assumptions that are often made in des
ribing simple 
ombinational systems.For su
h systems, the timing des
ription involves spe
ifying a single number that is the 
ombinationalpropagation delay from the input to the output of the system. In doing so, we make 
ertain assumptions:1. This value is the maximum delay between any input and output pair. This is required for the as-sumption that by waiting for this mu
h time after applying the inputs, we 
an safely assume that theoutputs have attained stable values.2. We 
on
entrate on Single-Input Single-Output (SISO) systems. For general Multiple-Input Multiple-Output (MIMO) systems, ea
h input/output pair 
an have di�erent path lengths resulting in di�erentvalues for the longest 
ombinational path between them. However, we 
ommonly assume a single valuefor the delay, whi
h is equivalent to assuming a single dummy input vertex and a dummy outputvertex, where all the inputs and outputs syn
hronize. More a

urate models a
tually do provide \bit-level timing" where they provide further information that spe
i�es the timing on input-output pairs,but these are used rarely. Note that in most 
ases, when we try to en
apsulate timing information for asystem, this system will usually have a small number of inputs and outputs with respe
t to the internal
omputational 
omplexity. In addition, buses are usually treated as single outputs rather than as 8 or16 separate outputs. It is worth emphasizing that this assumption is only made for 
onvenien
e. Ourmodel (as well as most 
onventional models) 
an handle MIMO systems by assigning separate timingvalues to ea
h input-output pair, resulting in some in
rease in 
omplexity. This results in a trade-o�between the amount of information stored and the a

ura
y of the representation.In analyzing most data
ow systems, we use essentially the same 
ombinational model that is des
ribedabove. One di�eren
e is that in several 
ases, instead of a propagation delay in, say, nanose
onds, thetiming now refers to a small integer number of 
lo
k 
y
les, whi
h agrees with the software model whereea
h fun
tional unit is assumed to be a primitive blo
k of software that takes a small number of pro
essor
y
les. Certain algorithms for s
heduling [14, 6℄ and 
omputing 
ir
uit parameters su
h as the maximum
y
le mean [13℄ a
tually use this fa
t to obtain more eÆ
ient algorithms.2
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Multi−phase clock: x1 = t1, x2 = t2, x3 = t3, ta >= (t1 + t2 + t3)Figure 1: Ripple e�e
ts with 
lo
k skew (multiple phase 
lo
ks)One major di�eren
e between the model used in data
ow s
heduling and in 
ir
uit level timing regardsthe treatment of delays on edges. In sequential 
ir
uits, the most 
ommon poli
y is to treat all delays as
ip-
ops that are triggered on a 
ommon 
lo
k edge. In general s
heduling, we assume no su
h restri
tion onthe timing of delays. We assume that ea
h fun
tional unit 
an be started at any time (possibly by providinga start signal). Be
ause of this, as shown in Fig. 1 a signal applied to a data
ow graph 
an ripple throughthe graph mu
h faster if appropriate phase shifts are used for triggering the 
ip-
ops on the edges. This isbe
ause, in general, the propagation times through di�erent elements 
an di�er quite a bit from one another,but a single-phase 
lo
k has to take into a

ount the worst 
ase value. As mentioned before, this assumptionis 
ommon in HLS, and has also been studied as a potentially useful tool in the 
ontext of general sequentialsynthesis.In the dis
ussion that follows, we use the term blo
k to refer to a SDF system for whi
h we are trying toobtain equivalent timing data. Sin
e we are developing a model to des
ribe hierar
hi
al SDF representation,our blo
k should itself be an SDF model. In parti
ular, we permit the blo
k to be 
omposed of any normalSDF a
tors. The a
tors 
omposing the blo
k 
an in themselves be hierar
hi
al SDF blo
ks, but for thepresent we 
onsider them to be simple blo
ks (where the exe
ution time is a �xed 
onstant). As will be seenlater, this does not impose restri
tions on the generality of the result. In addition to this, we assume thatthe blo
k has a single input and a single output, as dis
ussed above.The blo
k we are 
onsidering therefore 
onsists of a single input, single output, and internal simple blo
ks(
omposed of 
ombinational units with 
onstant exe
ution times), and delays (registers) where the 
lo
k phaseis not �xed and 
an be adjusted for obtaining the best possible performan
e. The graph representing thisblo
k will, in general, be 
y
li
, but with the restri
tion that every 
y
le must have at least one edge witha delay element on it (this is required for feasibility of the system). Now it is obvious that the propagationdelay through this system is not a 
onstant. This is be
ause there are multiple paths from the input to theoutput, ea
h of whi
h may 
ontain a di�erent number of delays. Be
ause of this, the overall delay throughthe network depends on the iteration period of the overall system of whi
h our blo
k is a part. Thus we 
ansee that the exe
ution time of the unit depends on the data rate on the inputs and outputs, and is not a
onstant.We now try to 
larify what is implied when we say that two des
riptions of a system are equivalent fortiming. Note that we are not trying to de�ne the equivalen
e of 
ir
uits in the general 
ase, as this is a
onsiderably more 
omplex problem.The timing information asso
iated with a blo
k is used primarily for the purpose of establishing 
on-straints on the earliest time that the blo
k 
an start operating (i.e., when its inputs are ready and stable).That is, sin
e the edges of the data
ow graph denote dependen
ies that must be satis�ed by the verti
es,they imply the existen
e of 
onstraints on the earliest time that a given vertex 
an obtain all its inputs andstart exe
uting its fun
tion.By using these 
onstraints, additional metri
s 
an be obtained relating to the throughput and laten
y ofthe system. These 
onstraints are used for determining the feasibility of di�erent s
hedules of the system,where a s
hedule essentially 
onsists of an ordering of the verti
es on pro
essing resour
es with requiredfun
tionality. An important metri
 of this kind is the Iteration Period Bound [16℄, whi
h is the minimum3
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Figure 2: Timing of 
omplex blo
kstime within whi
h the graph 
an 
omplete a full 
y
le of exe
ution (that is, exe
ute ea
h vertex as manytimes as ne
essary to return to a state it started from). For homogeneous SDF graphs, this bound is knownto be equal to the Maximum Cy
le Mean (MCM) of the graph (the maximum over all 
y
les of the sum ofexe
ution times of the verti
es divided by the total number of delays on the 
y
le). It is easily derived fromthe 
onstraints imposed by the edges of the graph: by 
on
atenating the 
onstraints around any dire
ted
y
le in the graph, we �nd that the result is a 
onstraint on the minimum value of the iteration bound (thiswill be seen in more detail in the next se
tion on
e we de�ne the 
on
ept of 
onstraint time).3 The Hierar
hi
al Timing Pair ModelHaving identi�ed the requirements of a timing model and the short
omings of the existing model, we 
annow use Fig. 2 to illustrate the ideas behind the new model for timing. In this �gure, we use ti to refer tothe propagation delay of blo
k i, and xi to refer to the start time of the blo
k. T is the iteration interval(
lo
k period for the delay elements).To provide timing information for a 
omplex blo
k, we should be able to emulate the timing 
hara
teristi
sthat this blo
k would imply between its input and output. To 
larify this idea, 
onsider the blo
k in Fig. 2.If we were to write the 
onstraints in terms of the internal blo
ks xi and xo, we would obtainxi � x1 � t1; (1)xo � xi � ti � 1� T; (2)x2 � xo � to: (3)Note that the se
ond 
onstraint equation in the list above has the term (�1 � T ) be
ause of the delayelement on the edge. Be
ause of this delay, the a
tor at the output of the edge a
tually has a dependen
yon the sample produ
ed in the previous iteration period rather than the 
urrent one. This fa
t is 
apturedby the 
onstraint as shown.Now we would like to 
ompute 
ertain information su
h that if we were to 
ombine the 
omplex blo
k Bunder the single start time xb, we would still be able to write down equations that would provide the same
onstraints to the environment outside the blo
k B. We see that this is a
hieved by the following 
onstraints:xb � x1 � t1; (4)x2 � xb � ti + to � 1� T: (5)In other words, if we assume that the exe
ution time of the blo
k B is given by the expression ti+ to�1�T ,we 
an put down 
onstraints that exa
tly simulate the e�e
t of the 
omplex blo
k B.In general, 
onsider a path from input vi = v1 to output vo = vk through verti
es fv1; : : : ; vkg given byp : v1!v2!� � �!vk, with edges ei : vi!vi+1. Let ti be the exe
ution time (propagation delay assuming itis a simple 
ombinational blo
k) of vi, and let dj be the number of delays on edge ej . Now we 
an de�nethe 
onstraint time of this path as t
(p) = kXi=1 ti � T � k�1Xj=1 dj : (6)4
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Figure 3: Se
ond order �lter se
tion [6℄.We use the term \
onstraint time" to refer to this quantity be
ause it is in some sense very similar tothe notion of the exe
ution time of the entire path, but at the same time is relevant only within the 
ontextof the 
onstraint system it is used to build. Also, we use the term 
p to refer to the sum Pki=1 ti, and mp torefer to the sum Pk�1j=1 dj . The ordered pair (mp; 
p) is referred to as a timing pair. The terms mp and 
pwere 
hosen be
ause they are 
ommonly used in mathemati
al literature to refer to the slope and inter
eptof a line, whi
h is the role they play here. That is, the 
onstraint time of a path varies as a straight line asthe iteration period T asso
iated with the system 
hanges. The slope of the line is given by mp and 
p isthe inter
ept 
orresponding to T = 0.We therefore see that by using the pair (mp; 
p) (in the example of Fig. 2, 
p = ti + to and mp = 1),we 
an derive the 
onstraints for the system without needing to know the internal 
onstru
tion of B. The
onstraint time asso
iated with the 
omplex blo
k B is now given byt
(B) = 
p �mp � T: (7)We 
an understand the 
onstraint time as follows: if we have a SISO system with an input data streamx(n) and an output data stream y(n) = 0:5� x(n � 1), the 
onstraint time through the system is the timedi�eren
e between the arrival of x(0) on the input edge and the appearan
e of y(0) on the 
orrespondingoutput edge. This is very similar to the de�nition of pairwise laten
ies in [15℄. It is obvious that y(0) 
anappear on its edge before x(0), sin
e y(0) depends only on x(�1) whi
h (if we assume that the periodi
ityof the data extends ba
kwards as well as forwards) would have appeared exa
tly T time-units before x(0).So the 
onstraint time through this system is (tm � T ), where tm is the propagation delay of the unit doingthe multipli
ation by 0:5 and T is the iteration period of the data on the system.We now need to extend the timing pair model to handle multiple input-output paths, as seen in Fig. 3,whi
h shows a se
ond-order �lter se
tion [6℄. Here P1 and P2 are distin
t I-O paths. Let the exe
ution timefor all multipliers be 2 time units and for adders be 1 time unit, ex
ept for A3 whi
h has an exe
ution timeof 2 time units. In this 
ase, for an iteration period (T ) between 3 and 4, P2 is the dominant path, while forT > 4, P1 is the dominant path. So we now need to store both these (mp; 
p) values. We therefore end upwith a list of timing pairs. The a
tual 
onstraint time of the overall system 
an then be readily 
omputedby traversing this list to �nd the maximum path 
onstraint time. The size of the list is bounded above bythe number of delays in the system (jDj).The 
onstraint time of a path 
an be negative, and in fa
t, depends on the value 
hosen for T . This isan important way in whi
h it di�ers from the simpler 
onventional 
on
ept of an exe
ution time. Sin
e anySDF graph 
an be looked at as a set of paths from the input to the output, it is possible to 
ompute timingpairs for ea
h of these paths, thereby making it possible to 
ompute the 
onstraint time of the whole SDFsystem represented by this graph easily. In this way, it is possible to use a hierar
hi
al representation of anSDF graph as a subsystem of a larger graph without having to 
atten the hierar
hy.Note that in addition to the timing pairs, we also need to spe
ify a minimum 
lo
k period for whi
h5



Condition Dominant path1. mp1 = mp2 , 
p1 < 
p2 P22. mp1 > mp2 , 
p1 > 
p2 T0 � T < 
p1�
p2mp1�mp2 : P1T � 
p1�
p2mp1�mp2 : P23. mp1 > mp2 , 
p1 < 
p2 P2Table 1: Tests for dominan
e of a path.the system is valid. That is, just spe
ifying the timing pairs 
ould result in the erroneous impression thatthe system 
an exe
ute at any 
lo
k period. In reality, the minimum period for the system depends onthe internal minimum iteration bound of the hierar
hi
al subsystem, or it 
ould be set even higher by thedesigner to take into a

ount safety margins or other 
onstraints that do not derive dire
tly from the data
owrepresentation.We now have a model where the timing pairs that we de�ned above 
an be used to 
ompute a 
onstrainttime on a system, whi
h 
an be used in pla
e of the exe
ution time of the system in any 
al
ulations. Thismodel is now 
apable of handling both 
ombinational and iterative systems, and 
an 
apture the hierar
hi
alnature of these systems easily. We therefore refer to it as the Hierar
hi
al Timing Pair (HTP) Model.This de�nition of 
onstraint time also results in a simple method for determining the iteration period ormaximum 
y
le mean of the graph. It is obvious that the 
onstraint time around a 
y
le must be negative toavoid unsatis�able dependen
ies. Also, note that for a �xed value of T , the 
onstraint time of ea
h subsystembe
omes a �xed number rather than a list of timing pairs. Be
ause of this, any algorithm that iterates overdi�erent values of T in order to determine the best value that is feasible for the graph will only have to dealwith the �nal 
onstraint time values and not the timing pair lists. Lawler's method [11℄ provides an eÆ
ientway of doing this. It performs a sequen
e of su

essive approximations to �nd a 
lose approximation to theiteration period T . Sin
e we have shown [4℄ the eÆ
ien
y of Lawler's algorithm on graphs of bounded degree,this algorithm provides an e�e
tive way of 
omputing the iteration period for graphs des
ribed using thehierar
hi
al model. It may be possible to �nd other algorithms that 
an operate dire
tly on the timing pairlists and 
ompute a 
losed-form analyti
al expression for the maximum 
y
le mean of the system. However,sin
e Lawler's method is already known to be eÆ
ient in pra
ti
e, this is not a very urgent requirement.4 Data Stru
ture and AlgorithmsWe now present an eÆ
ient algorithm to 
ompute the list of timing pairs asso
iated with a given data
owgraph. This algorithm returns a list of timing pairs su
h that no two have the same delay 
ount. In addition,it removes all redundant list elements. This is based on the following observation:Consider a system where there are two distin
t I-O paths P1 and P2, with 
orresponding timing pairs(
p1 ;mp1) and (
p2 ;mp2). Table 1 shows how the two paths 
an be treated based on their timing pair values.We have assumed without loss of generality that mp1 � mp2 . The minimum iteration interval allowed onthe system is denoted T0. This would normally be the iteration period bound of the 
ir
uit, but may be setto a higher positive value for design safety margins.The 
onditions from Table 1 
an be used to �nd whi
h timing pairs are ne
essary for a system and whi
h
an be safely ignored. For the example of Fig. 3, P1 has the timing pair (0; 3) while P2 has (1; 7) with timingas assumed in se
tion 3. Thus from 
ondition 2 above, P2 will dominate for 3 � T < 4, and P1 will dominatefor T � 4.The algorithm we use to 
ompute the timing pairs is based on the Bellman-Ford algorithm for shortestpaths in a graph. We have adapted it to 
ompute the longest path information we require, while simultane-ously maintaining information about multiple paths through the 
ir
uit 
orresponding to di�erent register
ounts.Subroutine 1 shows an overview of the algorithm used to 
he
k for whether a (m; 
) pair is to be addedto the list for a vertex. This 
omputation is performed in a

ordan
e with the rules of Table 1. By steppingthrough the di�erent elements of the sour
e list, the routines 
he
ks whether there exists at least one paththat results in a longer path to the sink vertex. The des
ription in algorithm 1 leaves out endpoints and6



Algorithm 1 Subroutine try add element.Input: list tl, new element to be added ta = (m; 
), minimum iteration period TminOutput: if ta 
an be added to tl in the valid range of T , does so and returns TRUE else returns FALSE1: start with k at beginning of list tl2: while k not at end of list tl do3: 
ompare ta to k and su

(k) using table 1 to see where the 
orresponding lines interse
t4: if interse
tion point su
h that ta dominates for some T then5: insert ta after k6: return TRUE7: else8: advan
e k9: end if10: end while11: return FALSE // rea
hed end of the list unsu

essfullyAlgorithm 2 Subroutine relax edge.Input: edge e : u! v in graph G; t(u) is the exe
ution time of sour
e vertex u, d(e) is the number of delays on edgee; list(u); list(v) are timing pair lists.Output: Use the 
onditions from Table 1 to modify list(v) using elements of list(u). Return TRUE if a modi�
ationwas made, else return FALSE1: RELAXED  FALSE2: for all timing pairs ta from list(u) do3: RELAXED  try add elt(ta,list(v))4: end for5: return RELAXEDspe
ial 
ases for simpli
ity. The a
tual algorithm would need to 
he
k for empty lists, insertion at thebeginning of the list, et
.Algorithm 2 implements the edge relaxation step of the Bellman-Ford algorithm [5, p.520℄. However,sin
e there are now multiple paths (with di�erent delay 
ounts) to keep tra
k of, the algorithm handles thisby iterating through the timing pair lists that are being 
onstru
ted for ea
h vertex. An important pointto note here is that the 
onstraint time around a 
y
le is always negative for feasible values of T , so therelax edge algorithm will not send the timing pair 
omputations into an endless loop.Algorithm 3 gives the 
omplete algorithm for 
omputing the timing information. Starting from the sour
evertex u0 of the system, it pro
eeds to \relax" outgoing edges and adding the target verti
es into a set ifne
essary. This pro
ess is an adaptation of the Bellman-Ford algorithm for shortest paths.As we have already shown, as long as we restri
t attention to T in the valid range (namely > Tmin), wewill not en
ounter positive weight 
y
les in the graph. Re
all that a positive 
onstraint time around a 
y
le
orresponds to an unsatis�able 
onstraint, whi
h in turn would 
orrespond to a 
hoi
e of T that is outsidethe feasible range for the system under 
onsideration.Using the above algorithm, the timing pairs for a single sample-rate graph are easily 
omputed. The
omplexity of the overall algorithm is O(jDjjV jjEj) where jDj is the number of delay elements in the graph(therefore a bound on the length of a timing pair list of a vertex), jV j is the number of verti
es, and jEj isthe number of edges in the graph. Note that jDj is quite a pessimisti
 estimate, sin
e it is very rare for allthe delays in a 
ir
uit to be on any single dominant path from input to output.5 Multirate SystemsIn this se
tion, we 
onsider some problems that arise in the treatment of multirate systems. We examinesome examples to see how these diÆ
ulties 
an be over
ome, and motivate new assumptions that make iteasier to handle these systems mathemati
ally.The 
onventional interpretation of SDF exe
ution semanti
s has been based on token 
ounts on edges.A vertex is enabled when ea
h of its input edges has a

umulated a number of tokens greater than or equal7



Algorithm 3 Algorithm 
ompute timing.Input: Dire
ted graph G 
orresponding to a single-input single-output systemOutput: Compute the timing lists for ea
h vertex in the graph; the list for the output vertex is the a
tual timingfor the overall system1: Q  sour
e vertex u02: while Q is not empty do3: u  pop element from Q4: for all edge e : u!v adja
ent from u do5: if relax edge(G) su

eeds then6: insert v into Q7: end if8: end for9: end whileto the 
onsumption parameter on that edge. At any time after it is enabled, the vertex may �re, produ
inga number of tokens on ea
h output edge equal to the produ
tion parameter on that edge. In the followingdis
ussion, we use 
 to refer to the 
onsumption parameter on an edge, and p to refer to the produ
tionparameter. The edge in question will be understood from the 
ontext.This interpretation, though very useful in obtaining a stri
t mathemati
al analysis of the 
onsisten
yand throughput of su
h multirate systems, has some unsatisfa
tory features when we 
onsider dedi
atedhardware implementations. One su
h feature is the fa
t that it results in tokens being produ
ed in bursts ofp at a time on output edges and similarly 
onsumed in bursts of 
 at a time. This is not the 
onsumptionpattern implied in the design of DSP appli
ations, where tokens refer to data samples on edges, and as su
hwill usually be stri
tly periodi
 at the sample rate spe
i�ed for that edge. Moreover, in hardware designsat least, enfor
ing stri
t periodi
ity on the samples means that any bu�ering required 
an be built into the
onsuming unit and no spe
ial bu�ering needs to be provided for ea
h edge.A more important problem is with regard to the 
riterion used for �ring verti
es. Consider the exampleof the 3 : 5 rate 
hanger shown in Fig. 4. A

ording to the SDF interpretation, this vertex 
an only �re after5 tokens are queued on its input, and will then instantaneously produ
e 3 tokens on its output. However, areal rate 
hanger need not a
tually wait for 5 tokens before produ
ing its �rst output. In fa
t, in 
ases wheresu
h rate 
hangers form part of a 
y
le in the graph, the 
onventional interpretation 
an lead to deadlo
kedgraphs due to insuÆ
ient initial tokens on some edge, or even due to the distribution of tokens among edges.One real life example where this 
riterion shows this problem is with the DAT-to-CD data rate 
onverter(used to 
onvert between the data sample rates used in Digital Audio Tape (DAT) and Compa
t Dis
 audio(CD)). This is a sample rate 
onversion with a rate 
hange ratio of 147 : 160. The SDF model interpretsthis by saying that (when a DAT-CD 
onverter is represented as a single blo
k) 147 samples need to queueon the input before even a single output is produ
ed, and that all 160 
orresponding outputs are produ
edtogether. This is 
learly not how it is implemented in pra
ti
e, where a multiple stage 
onversion may beused, or even in 
ase of a dire
t 
onversion, the laten
y before produ
ing the �rst output does not need to beas high as indi
ated by the 
onventional SDF model. The Cy
lostati
 data
ow (CSDF) [2℄ model providesa way around this by introdu
ing the 
on
ept of exe
ution phases. We dis
uss the relation of our model tothe CSDF model in se
tion 5.2.Note that when the data
ow graph is used to synthesize a software implementation, the token 
owinterpretation is more useful than in a dedi
ated hardware implementation. The reason for this is that insoftware, sin
e a single pro
essor (or more generally, a number of pro
essors that is small 
ompared to thenumber of a
tors in the graph) typi
ally handles the exe
ution of all the 
ode, it is possible to 
onstru
tthe 
ode from blo
ks dire
tly following the SDF graph, using bu�ers between 
ode blo
ks to group the datafor eÆ
ien
y. Without bu�ers, and assuming that the token produ
tion and 
onsumption is periodi
, theeÆ
ien
y of the system would be greatly redu
ed. In hardware, however, ea
h blo
k 
ould be exe
uted bya separate dedi
ated resour
e, and sin
e this is happening 
on
urrently, the sample 
onsumption pattern isbasi
ally periodi
 as opposed to the bu�ered bursts that would be seen in software.Figure 4 illustrates the above ideas. This is an implementation of a 3 : 5 fra
tional rate 
onversionthat is implemented using an eÆ
ient multirate �ltering te
hnique (as used in the FIR �lter implementation8
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Figure 4: 3 : 5 sample rate 
hanger.provided with Ptolemy [3℄). We have assumed a 7-tap �lter (H(z)) used for the interpolation, whi
h resultsin the input-output dependen
ies as shown in the �gure. It is 
lear from the �lter length and interpolationrate that the �rst output in ea
h iteration (an iteration ends when the system returns to its original state)depends on the �rst 2 inputs only, the se
ond depends on inputs 2 to 4, and the third depends on inputs4 and 5. Therefore, the delay pattern shown in the �gure is valid as long as there is suÆ
ient time for the�lters to a
t on their 
orresponding inputs. In other words, it is not ne
essary to wait for 5 inputs to be
onsumed before starting to produ
e the outputs.It is 
lear that this implementation is more eÆ
ient in terms of number of multipli
ations. It 
an also berearranged for a power savings by noting that ea
h multipli
ation o

urs only on
e in every 5 inputs.One point to note here is the following: For a rate 
onversion as implemented above, the internal stru
tureis su
h that some input samples are swit
hed to di�erent polyphase 
omponents at di�erent time instants.Therefore when we 
onsider internal bran
hes, not all the bran
hes re
eive the same input stream. Be
auseof this, the algorithms we have des
ribed 
annot dire
tly be applied to them to 
ompute the timing pairs forthese systems. Instead, we need to use timing �gures as shown in Fig. 4 to 
ompute the timing. Fortunately,the multirate units for whi
h this is ne
essary 
an usually be treated as primitive subsystems of larger
ir
uits, and the examples in se
tion 6 show how we 
an use the data for a rate 
onverter to 
ompute timingfor several larger 
ir
uits. Note that even for these systems, it is possible to automate the 
omputationof the timing pair lists. We need to ensure that ea
h input-output pair is 
onsidered when 
omputing themaximum 
onstraint time. For simple systems su
h as the MR FIR �lter, inspe
tion shows that the timinglist is the same as that of an ordinary FIR �lter, possibly 
ombined with some extra 
onstant delay to takeinto a

ount the o�set required for mat
hing up the I-O for all the polyphase 
omponents.The implementation we 
onsidered avoids unne
essary 
omputations, so it is possible to save power byeither turning o� the �lters when they are not needed (using the 
lo
k inputs), or by using an appropriatebu�ering and delayed multipli
ation that will allow the multipliers to operate at 15 th of the rate of theinput stream, using the observation that only one of the polyphase 
omponents [18℄ needs to operate forea
h output sample. This tradeo� would depend on whether we are 
onsidering an implementation withdedi
ated multipliers for ea
h 
oeÆ
ient or shared multipliers. Real hardware implementations of multiratesystems must resort to su
h eÆ
ient realizations as the performan
e penalties 
an otherwise be large.The interpretation we use for exe
ution of SDF graphs is therefore as follows: ea
h node re
eives itsinputs in a perfe
tly periodi
 stream, and 
an start 
omputing its outputs some time after the �rst inputbe
omes available (this time would depend on internal features su
h as the number of taps in the �lter inthe above example). The outputs are also generated in a periodi
 stream at the appropriate rate requiredfor 
onsisten
y of the system.An important e�e
t of this alternate interpretation is that it 
hanges the 
riteria for deadlo
k in a graph.Under normal SDF semanti
s, the graph in Fig. 5 would be deadlo
ked if the edge AB has less than 10delays on it. On the other hand, 6 delays are suÆ
ient on edge BC, while 16 delays are required on edge CAin order to prevent deadlo
k. The CSDF interpretation mentioned in se
. 5.2 tries to avoid these diÆ
ultiesby pres
ribing di�erent token 
onsumption and produ
tion phases, but introdu
es further 
omplexity and9
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Figure 5: Deadlo
k in an SDF system: if n < 10 the graph deadlo
ks.does not provide a 
omplete solution to the timing problem. However, under our new interpretation, as longas ea
h 
y
le in the graph 
ontains at least one token, deadlo
k is broken and the system 
an exe
ute. Thisis the same 
ondition that applies to homogeneous graphs.It is important to understand that this interpretation of multirate SDF exe
ution is useful be
ausededi
ated hardware implementations of real multirate DSP systems rarely require the interpretation interms of token 
onsumption of the 
onventional SDF model. Typi
al multirate blo
ks in DSP appli
ationsare de
imators and interpolators (rate 
hangers), multirate �lters (very similar to rate 
hangers), serial-to-parallel 
onverters and vi
e versa, blo
k 
oders and de
oders, et
. A notable feature of these appli
ations isthat few of the appli
ations a
tually require a 
onsumption of 
 tokens before starting to produ
e p tokens.In the 
ase of blo
k 
oders, in most implementations, for inter-operating with the rest of the system, the dataare produ
ed in a periodi
 stream at a 
onstant sample rate, rather than in large bursts. For serial-to-parallel
onverters, even though the 
onsumption of all inputs takes pla
e in one burst, the data are still stri
tlyperiodi
, and by using an appropriate value for the delay through the system, we 
an a

urately modelthe 
onverter's operation. As a result, the alternative interpretation of SDF exe
ution suggested above isa

eptable in most 
ases, espe
ially when targeting �xed hardware ar
hite
tures.5.1 HTP Model for Multirate SystemsWe now spe
ify how the HTP model 
an be applied to the analysis of multirate systems. We assume that themultirate system is spe
i�ed in the SDF formulation. For the exe
ution semanti
s, we use the assumptionsmentioned above: the data on ea
h edge is periodi
 with a relative sample rate determined by the SDFparameters, and the unit 
an begin exe
ution after the �rst input is re
eived, instead of having to wait for
 tokens. As mentioned above, this \ba
k-end" assumption is more useful for hardware realizations.Note that the se
ond assumption 
an 
oexist with the 
onventional SDF semanti
s. It is always possibleto spe
ify a timing delay for the unit that is greater than the time required for 
 tokens to queue on the inputedge. With this exe
ution time, we 
an be sure that the system will now satisfy traditional SDF semanti
sin exe
ution. However, in several 
ases, as pointed out previously, this is a pessimisti
 requirement, and itis possible to 
hoose a smaller delay that still provides enough time for suÆ
ient samples to be enqueuedand for the appropriate 
omputation to o

ur. As long as we 
hoose the timing delay su
h that for oneperiod of the samples there is suÆ
ient time between 
onsumption of input and produ
tion of the output,the periodi
ity of the system will ensure that this 
onstraint is met for all su

essive periods.For simpli
ity, we assume that the unit to be modeled is a SISO system and that the propagationdelay through sub-units is 
onstant. The model 
an be extended to handle more 
ompli
ated units using amodi�
ation of the algorithms detailed for homogeneous systems in se
. 4.Given a multirate system represented as an SDF graph, we follow the usual te
hnique [12℄ to 
omputethe repetitions ve
tor for the graph. The balan
e equation on ea
h edge e : u!v in the graph is given bype � qu = 
e � qv; (8)where pe is the produ
tion parameter on e, 
e is the 
onsumption parameter, and qu and qv are the repetition10




ounts for the sour
e and sink of the edge. Let T denote the overall iteration period of the graph. This isthe time required for ea
h a
tor x to exe
ute qx times (qx is the repetition 
ount of the a
tor). Therefore,the sample period on edge e is given by Te = Tqu � pe = Tqv � 
e : (9)Now extending the analogy of the homogeneous 
ase, we de�ne the 
onstraint time on a path ast
(p) = kXi=1 ti � k�1Xj=1 (dj � Tj); (10)where Tj is the sample period on edge j. By noting that the e�e
t of a delay on any edge (in both thehomogeneous and multirate 
ases) is to give an o�set of �Te to the 
onstraint time of any path through thatedge, we 
an see that this gives the 
orre
t set of 
onstraints. Also, the values of the starting times for thedi�erent verti
es that are obtained as a solution to the set of 
onstraints will give a valid s
hedule for themultirate system.It is possible to view the 
onstraint times in terms of \normalized delays". Here the delays on ea
h edgeare normalized to a value of dn(e) = dequ � pe = deqv � 
e : (11)In terms of the normalized delays, the expression for 
onstraint time be
omes the same as that for thehomogeneous 
ase.For homogeneous graphs, the minimum iteration period that 
an be attained by the system is known asthe iteration period bound and is known to be equal to the maximum 
y
le-mean (MCM) [16, 9℄. So far,no su
h tight bound is known for multirate SDF graphs that does not require the 
ostly 
onversion to anexpanded homogeneous equivalent graph. However, some good approximations for multirate graphs havebeen proposed [17℄. Under our model, it is easy to determine an exa
t bound that is similar to the bound forhomogeneous graphs, but does not require the 
onversion to a homogeneous equivalent expanded graph. By
onsidering the 
umulative 
onstraints around a loop for the single sample-rate 
ase, we 
an easily obtainthe iteration period bound [16℄ Tmin = max
2C P
 tuP
 de ; (12)where C is the set of all dire
ted 
y
les in the graph.Similarly, for the multirate 
ase, we 
an obtain the resultTmin = max
2C P
 tuP
 dn(e) ; (13)where Tmin is the minimum admissible iteration period of the overall system as dis
ussed above. In addition,the start times for ea
h operation are dire
tly obtained as a solution to the 
onstraint system that is set upusing the timing information.One fa
tor here is that, unlike the homogeneous 
ase, the number of timing pairs in the list for a pathis not bounded by the number of delay elements. The denominator in a normalized delay is obtained asthe produ
t of a repetition 
ount of an a
tor and the 
onsumption or produ
tion parameter for the edgewith the delay. As a result, on any path, the total normalized delay is the sum of several terms with su
hdenominators. The number of distin
t su
h terms is therefore bounded by the least 
ommon multiple of allthese possible denominators. However, in pra
ti
e, it is rare for several su
h terms to exist in the timingpair list, so this limit is very pessimisti
. One reason for this is that if we 
onsider two paths between a pairof verti
es su
h that one is dominated by the other, then for all paths that pass through these two verti
es,only the dominant path 
an 
ontribute to the timing pairs. Therefore, several paths are eliminated fromthe possibility of 
ontributing to a timing pair, and the size of the �nal timing list is quite small. This isobserved in the examples we have 
onsidered as well.11



One possible sour
e of misunderstanding in this 
ontext is the use of fra
tional normalized delays in the
omputation. It may appear at �rst sight that the HTP model allows fra
tional delays to be used in thegraph even though su
h delays have no physi
al meaning in the 
ontext of signal pro
essing. In this 
ontext,it is important to remember that the HTP model only spe
i�es information about the timing parametersof the graph. The fun
tional 
orre
tness of the graph must be veri�ed by other means. In parti
ular, anyfra
tional normalized delays only refer to the fa
t that the resulting timing shift is a fra
tion of an iterationperiod interval, and does not indi
ate the use of a
tual fra
tional delays in a logi
al sense.5.2 Relation of the HTP Multirate Model to other ModelsIt is worth taking note of how the HTP model for multirate data
ow graphs di�ers from some other modelsthat have been proposed to deal with the diÆ
ulties posed by the SDF exe
ution semanti
s.An important point to keep in mind with regard to our model is that it is targeted towards des
ribingthe timing details in an a
tual hardware implementation of the graph. As dis
ussed in [1℄, there is adistin
tion between the implementation dependent physi
al time 
onsumption, and the implementationindependent logi
al syn
hronization. Models su
h as the syn
hronous rea
tive systems des
ribed in [1℄ andthe CSDF model dis
ussed below are in general more 
on
erned with the implementation independent logi
alsyn
hronization and in verifying the fun
tional 
orre
tness of the system. The model we are proposing, onthe other hand, is aimed at the \ba
k-end" of the synthesis pro
ess, that deals with the a
tual mapping tohardware and therefore is 
on
erned with implementation dependent timing parameters. In other words, ourmodel 
an be used in 
omputing the a
tual performan
e metri
s and the implementation dependent issuesafter the fun
tional 
orre
tness of the graph has been veri�ed by other means su
h as the SDF model.Cy
lostati
 Data
ow (CSDF) [2℄ is an extension of SDF that introdu
es the 
on
ept of \exe
ution phases".In this model, ea
h edge has several exe
ution phases asso
iated with it. In ea
h phase, the sink vertex will
onsume a 
ertain number of tokens as spe
i�ed by the 
onsumption parameter of that phase for that edge(similarly for the produ
tion on the sour
e vertex of the edge). Over a 
omplete iteration, all phases of theedges are 
ompleted, and the system returns to its original state. This is therefore a generalization of theSDF exe
ution model. It has been shown [2℄ that this model 
an avoid some of the deadlo
k issues thata�e
t the SDF model (su
h as in the example of �g. 5), by spe
ifying the phases at whi
h the samples are
onsumed an produ
ed.The CSDF model is an exe
ution model, not a timing model. As a result, it leaves the exa
t time ofexe
ution of verti
es free, and this is determined by other means, su
h as run-time resolution of 
onstraints,or 
onstru
tion of a stati
 s
hedule. The HTP model, on the other hand, is a timing model, and results instati
 resolution of the times of exe
ution. It also allows the 
omputation of exa
t values for performan
emetri
s like the iteration period bound. In this sense, the HTP model 
an in fa
t be used to 
omplement theCSDF model, by making the assumption that the di�erent phases of exe
ution o

ur periodi
ally. However,this is 
ompli
ated a little by the fa
t that in the CSDF semanti
s, it is possible for data 
oming out of avertex to a
tivate only some of its neighboring verti
es in 
ertain phases and others in other phases. Be
auseof this, the simple path based 
onstraint 
omputation that we used to derive the timing pairs in the SDFmodel may not be enough for CSDF. For example, in the example of the multirate FIR �lter (�g. 6), thedi�erent polyphase 
omponents do not re
eive the same data in an eÆ
ient implementation (redundant
omputations are avoided). Furthermore, the polyphase �lter 
omponents re
eive their inputs at di�erentphases of the input 
lo
k. As a result, a time 
onstraint that satis�es the relation between the �rst outputand its 
orresponding inputs may not satisfy the 
onstraint between the se
ond output and its 
orrespondinginputs. We 
an handle this situation by inspe
tion, and we 
an 
ompute the timing pairs of the MR-FIR�lter by hand, and use this as a module in other systems su
h as �lter banks. It is also possible to automatethis pro
ess to 
he
k all output phases and ensure that the time delay is suÆ
ient to satisfy all the timing
onstraints. The basi
 ideas of timing pairs and timing pair lists that underly the HTP model still hold.Another model for timing of multirate hardware has been proposed by Horstmannho�, Gr�otker andMeyr [8℄. They 
onsider an alternative timing model in whi
h the samples o

upy di�erent phases of amaster 
lo
k, and provide interfa
e 
ir
uitry to adjust the relative phases when samples are made availableon the edges. This requirement of a master 
lo
k means that the throughput is already 
onstrained andlargely determined beforehand. The interfa
e 
ir
uitry 
an also be quite 
omplex. The model we propose12
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tured QMF bank [18℄.tries to avoid these problems by not restri
ting itself to 
y
le based timing. By enfor
ing periodi
ity on thedata, it eliminates the need for interfa
e adjustments. An additional bene�t of our model is that it allowsthe iteration period of the system to be adjusted independently of any 
lo
k required for 
y
le-based timing,and also gives an analyti
al solution for the best iteration period that the system 
an attain.6 Examples and ResultsWe have applied the HTP model to the SDF graphs representing typi
al multirate signal pro
essing appli-
ations. The examples we have taken are from the Ptolemy system [3℄ (CD-DAT, DAT-CD 
onverters and2 
hannel non-uniform �lter bank) and from [18, p.256℄ (tree-stru
tured QMF bank).The basi
 unit in several of these examples if the multirate FIR �lter that is 
apable of performing rate
onversion as des
ribed in se
tion 5. As noted there, this must be treated as a primitive element of multiratesystems. As shown in Fig. 6, the implementation uses a 
ertain number of internal �lters 
orresponding tothe polyphase de
omposition of the interpolating �lter. We assume that these are implemented in a mannersimilar to the �lter shown on the left of Fig. 6, and that the overall rate 
onverting �lter also therefore hassimilar timing parameters. In parti
ular, we assume for the sake of the other multirate examples that anyrate 
onversion is performed using a �lter that has the timing parameters f(1; 5); (0; 4)g.The rate 
onversions result in several I-O paths with di�erent numbers of delays at di�erent rates. Theresulting timing pairs that are obtained for these systems are summarized in Table 2.13



Ben
hmark Timing pairsMultirate FIR f(1; 5); (0; 4)gQMF bank (input to y3) f(7; 15); (3; 14); (1; 13); (0; 12)gCD-DAT (160:147) f(93=32; 20); (0; 16)gDAT-CD (147:160) f(15=7; 15); (0; 12)g2 
h. Non.Unif. FB f(5=2; 10); (1; 9); (0; 8)gTable 2: Timing pairs for multirate systems.# timing pairs 1 2 3 4 5# 
ir
uits 21 13 5 4 1Table 3: Number of dominant timing pairs 
omputed for ISCAS ben
hmark 
ir
uits.To illustrate the bene�t obtained by using the HTP model for hierar
hi
al systems, we have 
omputedtiming parameters of a number of homogeneous systems, sin
e even these bene�t from the ability of themethod to model subsystems.The HTP model provides a repla
ement for using the entire subsystem in the timing analysis of a largersystem of whi
h the 
ir
uit is a part. If we employ 
onventional models, we would be for
ed to use the entiregraph of the 
ir
uit within the larger system. An algorithm su
h as 
omputing longest input-output pathstakes time proportional to O(jV jjEj) where jV j is the total number of verti
es in the larger system. Forexample, in a 
ir
uit that has 10 blo
ks 
onne
ted to ea
h other by 2 edges ea
h, with ea
h blo
k 
ontaining10 verti
es and 20 edges, a 
onventional model would require 
omputation on the order of 100� 200, whilethe HTP model would require on the order of 10 � 20 � jDj, whi
h is generally a substantial saving sin
ethe number of delay elements jDj in a subsystem is usually mu
h less than the number of verti
es in thesubsystem (in this 
ase 10).We have run the algorithm des
ribed in se
tion 4 on the ISCAS 89/93 ben
hmarks. A total of 44ben
hmark graphs were 
onsidered. For this set, the average number of verti
es is 3649.86, and the averagenumber of output verti
es in these 
ir
uits is 39.36.First we 
onsider the 
ase where syn
hronizing nodes were used to 
onvert the 
ir
uit into an SISOsystem. We are interested in the number of elements that the �nal timing list 
ontains, sin
e this is theamount of information that needs to be stored. Table 3 shows the breakup of the number of list elements.We �nd that the average number of list elements is 1.89.Next, instead of assuming 
omplete syn
hronization, we 
onsidered the 
ase where inputs are syn
hro-nized, and measured the number of list elements at ea
h output. The number of distin
t values obtained forthis was an average of 14.73. If we make an additional assumption that if two list elements have the same mpthey are the same, this number drops to 3.68. This assumption makes sense when we 
onsider that severaloutputs in a 
ir
uit pass through essentially the same path stru
tures and delays, but may have one or twoadditional gates in their path that 
reates a slight and usually ignore-able di�eren
e in the path length. Forexample, the 
ir
uit s386 has 6 outputs. When we 
ompute the timing pairs, we �nd that 3 have an elementwith 1 delay, and the 
orresponding pairs are (1; 53); (1; 53); (1; 57). Thus instead of 3 pairs, it is reasonableto 
ombine the outputs into 1 with the timing pair (1; 57) 
orresponding to the longest path.In order to 
ompare these results, note that if we did not use this 
ondensed information stru
ture, wewould need to in
lude information about ea
h vertex in the graph. In other words, if we a

ept the (in most
ases justi�able) penalty for syn
hronizing inputs and outputs, we need to store an average of 1.89 termsinstead of 3649.86.We have not 
onsidered the 
ase of relaxing the assumptions on the inputs as well. This would obviouslyin
rease the amount of data to be stored, but as we have argued, our assumption of syn
hronized inputs andoutputs has a very strong 
ase in its favor.We have also 
omputed the timing parameters for HLS ben
hmarks su
h as the ellipti
 �lter and 16-point FIR �lter from [6℄. These are naturally SISO systems, whi
h makes the syn
hronizing assumptionsunne
essary. If we allow the exe
ution times of adders and multipliers to vary randomly, we �nd that theFIR �lter has a number of di�erent paths whi
h 
an dominate at di�erent times. The ellipti
 �lter tends tohave a single dominant path, but even this information is useful sin
e it 
an still be used to represent the14



�lter as a single blo
k.A general observation we 
an make about the timing model is that systems that have delay elementsin the feed-forward se
tion, su
h as FIR �lters and �lters with both forward and ba
kward delays, tend tohave more timing pairs than systems where the delay elements are restri
ted to a relatively small amount offeedba
k. This is be
ause feedba
k delay elements must ne
essarily exist in a loop that has a total negative
onstraint time, whi
h means they will not 
ontribute towards a dominant 
onstraint time in the forwarddire
tion.7 Con
lusions and Future Dire
tionsWe have presented a timing model for data
ow graphs (the Hierar
hi
al Timing Pair model), and asso
iateddata stru
tures and algorithms to provide timing information for use in the analysis and s
heduling ofdata
ow graphs.For homogeneous graphs, the HTP model allows hierar
hi
al representations of graphs. This resultsin redu
ing the amount of information to be pro
essed in analyzing a graph. Alternately, by using thishierar
hi
al representation, the size of the graph that 
an be analyzed with a given amount of 
omputingpower is greatly in
reased.The HTPmodel is able to eÆ
iently store information about multirate graphs, and allows the 
omputationof important system parameters su
h as the iteration period bound easily. Exa
t s
hedules for multiratesystems 
an also be obtained as a solution to the 
onstraints that 
an be set up using this model. We haveshown that the HTP model over
omes many limitations of the 
onventional timing models, while in
urringa negligible 
omplexity in
rease.We have 
onsidered several typi
al multirate DSP appli
ations and 
omputed timing pairs for thesemodels. The results demonstrate the power of our approa
h. We have also 
onsidered several homogeneousgraphs and shown that the hierar
hi
al aspe
ts of the model 
an be used to obtain large redu
tions in theamount of information about the 
ir
uit that we need to store in order to use its timing information in the
ontext of a larger system.The model as it exists now requires the ability to 
hoose the start times of operations (variable phase
lo
king). We are 
urrently examining ways of extending the model to more general kinds of 
ir
uits, whi
hin
lude some �xed phase registers along with other nodes where the delay 
an be adjusted.Referen
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