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1 IntrodutionBehavioral Synthesis refers to the task of onstruting an arhiteture, binding and shedule for an algorithmthat has been desribed in terms of the behavior of its onstituent elements at a high level of abstration.It is part of the broader �eld of high-level synthesis (HLS) and is often used to implement digital signalproessing (DSP) appliations. In behavioral synthesis for DSP, the algorithm is often represented as adataow graph whose verties represent funtions and edges represent ommuniation or dependenies. Tomap suh a dataow graph onto an arhiteture (either hardware or software) eÆiently, we need to annotatethe appliation spei�ation and arhiteture with information about the exeution times of verties, and thearea utilization and power onsumption of proessing resoures. The timing information is used to generatea set of onstraints related to the system that the atual implementation must satisfy.One of the most popular dataow models (espeially for DSP appliations) is synhronous dataow(SDF) [12℄. This is a pure dataow model without ontrol ow onstruts. Though it is not Turing-omplete, it is apable of representing a large lass of useful DSP systems. This model inludes the oneptsof onsumption and prodution parameters, whih allow onvenient representation of multiple sample rates.The speial ase when all sample rates are equal is referred to as the single sample-rate (SSR) ase. Asubgroup of this is the ase of homogeneous graphs, where prodution and onsumption parameters on alledges are equal. Systems where multiple sample rates exist in di�erent parts are referred to as multiratesystems. This model has been widely used to study DSP graphs and several tehniques have been developedfor mapping graphs represented in this model to both hardware and software arhitetures. Most analytialresults that are known for graph performane metris have been derived for homogeneous graphs. In ouranalysis, we �rst treat the homogeneous ase sine it is relatively simpler, and the results that we derive formultirate graphs will also apply to other SSR graphs that are not homogeneous.The onventional model for desribing timing in dataow systems is derived from the method used inombinational logi analysis. Here eah vertex is assigned a \propagation delay" value that is treated as theexeution time of the assoiated subsystem. That is, one all the inputs are provided to the system, thispropagation delay is the minimum amount of time after whih we are guaranteed that the outputs of thesystem have reahed their �nal stable values.One major disadvantage of this approah is that it does not allow a hierarhial desription of thesystem timing when the system ontains delay elements (iterative systems). These delay elements roughlyorrespond to registers in a hardware implementation, but are more exible in that they do not impose therestrition that all the delay elements are ativated at the same instant of time [15, 14, 6℄. This allowane forvariable phase loking is an important way in whih HLS di�ers from ombinational logi implementation.The rephasing optimization in [15℄ provides a good example of how this an be used. Even in sequentiallogi synthesis, variable phase loking has been onsidered in suh forms as lok skew optimization [7℄ andshimming delays [10℄, and has been reognized as a very useful tool, though it is diÆult to implement inpratie.In multirate systems, the most ommon interpretation of exeution time is as follows: eah vertex isassumed to be enabled when suÆient dataow tokens have enqueued on its inputs. One it is enabledin this fashion, it an �re at any time, onsuming a number of tokens from eah input edge equal to theonsumption parameter on that edge, and produing a number of tokens on eah output edge equal to theprodution parameter on that edge. The exeution time of the vertex is the time between the (instantaneous)onsumption and prodution events.This model has been used in the ontext of SDF to derive several useful results regarding onsisteny,liveness and throughput of graphs modeling DSP systems. However the treatment is quite di�erent fromthat for homogeneous graphs, and many analytial results for homogeneous systems annot be extended tomultirate systems.To the best of our knowledge, there does not appear to be any other timing model that addresses theissue of hierarhial timing for dataow-based DSP designs. Conventional models annot easily be used torepresent systems that are either hierarhial or ontain multirate elements. Multirate systems are usuallyhandled by some tehnique suh as deriving the expanded homogeneous equivalent graph (whih an lead toan exponential inrease in the graph size), while hierarhial systems need to be ompletely attened, againresulting in possibly large inreases in the size of the graph to be analyzed.1



In this paper, we propose a di�erent timing model that overomes these diÆulties for dediated hardwareimplementations of the dataow graph. By introduing a slightly more omplex data struture that allows formultiple input-output paths with di�ering numbers of delay elements, we are able to provide a single timingmodel that an desribe both purely ombinational and iterative systems (iterative systems are sequentialsystems with feedbak, so that the exeution of the overall system repeats in�nitely over time). For purelyombinational systems, the model redues to the existing ombinational logi timing model. For multiratesystems, the new model allows a treatment very similar to that for normal homogeneous systems, while stillallowing most important features of the multirate exeution to be represented. The model also allows severalanalytial results for homogeneous systems to be applied to multirate systems. As an example, we derive anexpression for the iteration period bound of a multirate graph.We have used our hierarhial timing model to ompute timing parameters of the ISCAS benhmarks,whih are homogeneous systems. We have also used the model to ompute timing parameters of a numberof multirate graphs used in signal proessing appliations. The results show that the new model an resultin ompat representations of fairly large systems that an then be used as hierarhial subsystems of largergraphs. These results show the large savings in omplexity that are possible with the new approah.In the next setion, we disuss the requirements that a timing model for dataow systems must meet,and examine some of the shortomings of the onventional model. Setion 3 then presents a new modelthat overomes these defets. Setion 4 desribes a data struture and eÆient algorithms that an be usedto ompute the timing parameters aording to our model. Setion 5 then desribes the requirements oftiming models for multirate systems, and shows how our model an be extended to these systems. Setion 6presents results of applying the model to several examples from signal proessing and the ISCAS benhmarkiruits. Finally, we present our onlusions and some interesting diretions for further work.2 Requirements of a Timing Model for Hierarhial SystemsIn order to understand the requirements that must be satis�ed by a timing model for desribing hierarhialsystems, we �rst larify ertain assumptions that are often made in desribing simple ombinational systems.For suh systems, the timing desription involves speifying a single number that is the ombinationalpropagation delay from the input to the output of the system. In doing so, we make ertain assumptions:1. This value is the maximum delay between any input and output pair. This is required for the as-sumption that by waiting for this muh time after applying the inputs, we an safely assume that theoutputs have attained stable values.2. We onentrate on Single-Input Single-Output (SISO) systems. For general Multiple-Input Multiple-Output (MIMO) systems, eah input/output pair an have di�erent path lengths resulting in di�erentvalues for the longest ombinational path between them. However, we ommonly assume a single valuefor the delay, whih is equivalent to assuming a single dummy input vertex and a dummy outputvertex, where all the inputs and outputs synhronize. More aurate models atually do provide \bit-level timing" where they provide further information that spei�es the timing on input-output pairs,but these are used rarely. Note that in most ases, when we try to enapsulate timing information for asystem, this system will usually have a small number of inputs and outputs with respet to the internalomputational omplexity. In addition, buses are usually treated as single outputs rather than as 8 or16 separate outputs. It is worth emphasizing that this assumption is only made for onveniene. Ourmodel (as well as most onventional models) an handle MIMO systems by assigning separate timingvalues to eah input-output pair, resulting in some inrease in omplexity. This results in a trade-o�between the amount of information stored and the auray of the representation.In analyzing most dataow systems, we use essentially the same ombinational model that is desribedabove. One di�erene is that in several ases, instead of a propagation delay in, say, nanoseonds, thetiming now refers to a small integer number of lok yles, whih agrees with the software model whereeah funtional unit is assumed to be a primitive blok of software that takes a small number of proessoryles. Certain algorithms for sheduling [14, 6℄ and omputing iruit parameters suh as the maximumyle mean [13℄ atually use this fat to obtain more eÆient algorithms.2
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Multi−phase clock: x1 = t1, x2 = t2, x3 = t3, ta >= (t1 + t2 + t3)Figure 1: Ripple e�ets with lok skew (multiple phase loks)One major di�erene between the model used in dataow sheduling and in iruit level timing regardsthe treatment of delays on edges. In sequential iruits, the most ommon poliy is to treat all delays asip-ops that are triggered on a ommon lok edge. In general sheduling, we assume no suh restrition onthe timing of delays. We assume that eah funtional unit an be started at any time (possibly by providinga start signal). Beause of this, as shown in Fig. 1 a signal applied to a dataow graph an ripple throughthe graph muh faster if appropriate phase shifts are used for triggering the ip-ops on the edges. This isbeause, in general, the propagation times through di�erent elements an di�er quite a bit from one another,but a single-phase lok has to take into aount the worst ase value. As mentioned before, this assumptionis ommon in HLS, and has also been studied as a potentially useful tool in the ontext of general sequentialsynthesis.In the disussion that follows, we use the term blok to refer to a SDF system for whih we are trying toobtain equivalent timing data. Sine we are developing a model to desribe hierarhial SDF representation,our blok should itself be an SDF model. In partiular, we permit the blok to be omposed of any normalSDF ators. The ators omposing the blok an in themselves be hierarhial SDF bloks, but for thepresent we onsider them to be simple bloks (where the exeution time is a �xed onstant). As will be seenlater, this does not impose restritions on the generality of the result. In addition to this, we assume thatthe blok has a single input and a single output, as disussed above.The blok we are onsidering therefore onsists of a single input, single output, and internal simple bloks(omposed of ombinational units with onstant exeution times), and delays (registers) where the lok phaseis not �xed and an be adjusted for obtaining the best possible performane. The graph representing thisblok will, in general, be yli, but with the restrition that every yle must have at least one edge witha delay element on it (this is required for feasibility of the system). Now it is obvious that the propagationdelay through this system is not a onstant. This is beause there are multiple paths from the input to theoutput, eah of whih may ontain a di�erent number of delays. Beause of this, the overall delay throughthe network depends on the iteration period of the overall system of whih our blok is a part. Thus we ansee that the exeution time of the unit depends on the data rate on the inputs and outputs, and is not aonstant.We now try to larify what is implied when we say that two desriptions of a system are equivalent fortiming. Note that we are not trying to de�ne the equivalene of iruits in the general ase, as this is aonsiderably more omplex problem.The timing information assoiated with a blok is used primarily for the purpose of establishing on-straints on the earliest time that the blok an start operating (i.e., when its inputs are ready and stable).That is, sine the edges of the dataow graph denote dependenies that must be satis�ed by the verties,they imply the existene of onstraints on the earliest time that a given vertex an obtain all its inputs andstart exeuting its funtion.By using these onstraints, additional metris an be obtained relating to the throughput and lateny ofthe system. These onstraints are used for determining the feasibility of di�erent shedules of the system,where a shedule essentially onsists of an ordering of the verties on proessing resoures with requiredfuntionality. An important metri of this kind is the Iteration Period Bound [16℄, whih is the minimum3
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Figure 2: Timing of omplex blokstime within whih the graph an omplete a full yle of exeution (that is, exeute eah vertex as manytimes as neessary to return to a state it started from). For homogeneous SDF graphs, this bound is knownto be equal to the Maximum Cyle Mean (MCM) of the graph (the maximum over all yles of the sum ofexeution times of the verties divided by the total number of delays on the yle). It is easily derived fromthe onstraints imposed by the edges of the graph: by onatenating the onstraints around any diretedyle in the graph, we �nd that the result is a onstraint on the minimum value of the iteration bound (thiswill be seen in more detail in the next setion one we de�ne the onept of onstraint time).3 The Hierarhial Timing Pair ModelHaving identi�ed the requirements of a timing model and the shortomings of the existing model, we annow use Fig. 2 to illustrate the ideas behind the new model for timing. In this �gure, we use ti to refer tothe propagation delay of blok i, and xi to refer to the start time of the blok. T is the iteration interval(lok period for the delay elements).To provide timing information for a omplex blok, we should be able to emulate the timing haraterististhat this blok would imply between its input and output. To larify this idea, onsider the blok in Fig. 2.If we were to write the onstraints in terms of the internal bloks xi and xo, we would obtainxi � x1 � t1; (1)xo � xi � ti � 1� T; (2)x2 � xo � to: (3)Note that the seond onstraint equation in the list above has the term (�1 � T ) beause of the delayelement on the edge. Beause of this delay, the ator at the output of the edge atually has a dependenyon the sample produed in the previous iteration period rather than the urrent one. This fat is apturedby the onstraint as shown.Now we would like to ompute ertain information suh that if we were to ombine the omplex blok Bunder the single start time xb, we would still be able to write down equations that would provide the sameonstraints to the environment outside the blok B. We see that this is ahieved by the following onstraints:xb � x1 � t1; (4)x2 � xb � ti + to � 1� T: (5)In other words, if we assume that the exeution time of the blok B is given by the expression ti+ to�1�T ,we an put down onstraints that exatly simulate the e�et of the omplex blok B.In general, onsider a path from input vi = v1 to output vo = vk through verties fv1; : : : ; vkg given byp : v1!v2!� � �!vk, with edges ei : vi!vi+1. Let ti be the exeution time (propagation delay assuming itis a simple ombinational blok) of vi, and let dj be the number of delays on edge ej . Now we an de�nethe onstraint time of this path as t(p) = kXi=1 ti � T � k�1Xj=1 dj : (6)4
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Figure 3: Seond order �lter setion [6℄.We use the term \onstraint time" to refer to this quantity beause it is in some sense very similar tothe notion of the exeution time of the entire path, but at the same time is relevant only within the ontextof the onstraint system it is used to build. Also, we use the term p to refer to the sum Pki=1 ti, and mp torefer to the sum Pk�1j=1 dj . The ordered pair (mp; p) is referred to as a timing pair. The terms mp and pwere hosen beause they are ommonly used in mathematial literature to refer to the slope and intereptof a line, whih is the role they play here. That is, the onstraint time of a path varies as a straight line asthe iteration period T assoiated with the system hanges. The slope of the line is given by mp and p isthe interept orresponding to T = 0.We therefore see that by using the pair (mp; p) (in the example of Fig. 2, p = ti + to and mp = 1),we an derive the onstraints for the system without needing to know the internal onstrution of B. Theonstraint time assoiated with the omplex blok B is now given byt(B) = p �mp � T: (7)We an understand the onstraint time as follows: if we have a SISO system with an input data streamx(n) and an output data stream y(n) = 0:5� x(n � 1), the onstraint time through the system is the timedi�erene between the arrival of x(0) on the input edge and the appearane of y(0) on the orrespondingoutput edge. This is very similar to the de�nition of pairwise latenies in [15℄. It is obvious that y(0) anappear on its edge before x(0), sine y(0) depends only on x(�1) whih (if we assume that the periodiityof the data extends bakwards as well as forwards) would have appeared exatly T time-units before x(0).So the onstraint time through this system is (tm � T ), where tm is the propagation delay of the unit doingthe multipliation by 0:5 and T is the iteration period of the data on the system.We now need to extend the timing pair model to handle multiple input-output paths, as seen in Fig. 3,whih shows a seond-order �lter setion [6℄. Here P1 and P2 are distint I-O paths. Let the exeution timefor all multipliers be 2 time units and for adders be 1 time unit, exept for A3 whih has an exeution timeof 2 time units. In this ase, for an iteration period (T ) between 3 and 4, P2 is the dominant path, while forT > 4, P1 is the dominant path. So we now need to store both these (mp; p) values. We therefore end upwith a list of timing pairs. The atual onstraint time of the overall system an then be readily omputedby traversing this list to �nd the maximum path onstraint time. The size of the list is bounded above bythe number of delays in the system (jDj).The onstraint time of a path an be negative, and in fat, depends on the value hosen for T . This isan important way in whih it di�ers from the simpler onventional onept of an exeution time. Sine anySDF graph an be looked at as a set of paths from the input to the output, it is possible to ompute timingpairs for eah of these paths, thereby making it possible to ompute the onstraint time of the whole SDFsystem represented by this graph easily. In this way, it is possible to use a hierarhial representation of anSDF graph as a subsystem of a larger graph without having to atten the hierarhy.Note that in addition to the timing pairs, we also need to speify a minimum lok period for whih5



Condition Dominant path1. mp1 = mp2 , p1 < p2 P22. mp1 > mp2 , p1 > p2 T0 � T < p1�p2mp1�mp2 : P1T � p1�p2mp1�mp2 : P23. mp1 > mp2 , p1 < p2 P2Table 1: Tests for dominane of a path.the system is valid. That is, just speifying the timing pairs ould result in the erroneous impression thatthe system an exeute at any lok period. In reality, the minimum period for the system depends onthe internal minimum iteration bound of the hierarhial subsystem, or it ould be set even higher by thedesigner to take into aount safety margins or other onstraints that do not derive diretly from the dataowrepresentation.We now have a model where the timing pairs that we de�ned above an be used to ompute a onstrainttime on a system, whih an be used in plae of the exeution time of the system in any alulations. Thismodel is now apable of handling both ombinational and iterative systems, and an apture the hierarhialnature of these systems easily. We therefore refer to it as the Hierarhial Timing Pair (HTP) Model.This de�nition of onstraint time also results in a simple method for determining the iteration period ormaximum yle mean of the graph. It is obvious that the onstraint time around a yle must be negative toavoid unsatis�able dependenies. Also, note that for a �xed value of T , the onstraint time of eah subsystembeomes a �xed number rather than a list of timing pairs. Beause of this, any algorithm that iterates overdi�erent values of T in order to determine the best value that is feasible for the graph will only have to dealwith the �nal onstraint time values and not the timing pair lists. Lawler's method [11℄ provides an eÆientway of doing this. It performs a sequene of suessive approximations to �nd a lose approximation to theiteration period T . Sine we have shown [4℄ the eÆieny of Lawler's algorithm on graphs of bounded degree,this algorithm provides an e�etive way of omputing the iteration period for graphs desribed using thehierarhial model. It may be possible to �nd other algorithms that an operate diretly on the timing pairlists and ompute a losed-form analytial expression for the maximum yle mean of the system. However,sine Lawler's method is already known to be eÆient in pratie, this is not a very urgent requirement.4 Data Struture and AlgorithmsWe now present an eÆient algorithm to ompute the list of timing pairs assoiated with a given dataowgraph. This algorithm returns a list of timing pairs suh that no two have the same delay ount. In addition,it removes all redundant list elements. This is based on the following observation:Consider a system where there are two distint I-O paths P1 and P2, with orresponding timing pairs(p1 ;mp1) and (p2 ;mp2). Table 1 shows how the two paths an be treated based on their timing pair values.We have assumed without loss of generality that mp1 � mp2 . The minimum iteration interval allowed onthe system is denoted T0. This would normally be the iteration period bound of the iruit, but may be setto a higher positive value for design safety margins.The onditions from Table 1 an be used to �nd whih timing pairs are neessary for a system and whihan be safely ignored. For the example of Fig. 3, P1 has the timing pair (0; 3) while P2 has (1; 7) with timingas assumed in setion 3. Thus from ondition 2 above, P2 will dominate for 3 � T < 4, and P1 will dominatefor T � 4.The algorithm we use to ompute the timing pairs is based on the Bellman-Ford algorithm for shortestpaths in a graph. We have adapted it to ompute the longest path information we require, while simultane-ously maintaining information about multiple paths through the iruit orresponding to di�erent registerounts.Subroutine 1 shows an overview of the algorithm used to hek for whether a (m; ) pair is to be addedto the list for a vertex. This omputation is performed in aordane with the rules of Table 1. By steppingthrough the di�erent elements of the soure list, the routines heks whether there exists at least one paththat results in a longer path to the sink vertex. The desription in algorithm 1 leaves out endpoints and6



Algorithm 1 Subroutine try add element.Input: list tl, new element to be added ta = (m; ), minimum iteration period TminOutput: if ta an be added to tl in the valid range of T , does so and returns TRUE else returns FALSE1: start with k at beginning of list tl2: while k not at end of list tl do3: ompare ta to k and su(k) using table 1 to see where the orresponding lines interset4: if intersetion point suh that ta dominates for some T then5: insert ta after k6: return TRUE7: else8: advane k9: end if10: end while11: return FALSE // reahed end of the list unsuessfullyAlgorithm 2 Subroutine relax edge.Input: edge e : u! v in graph G; t(u) is the exeution time of soure vertex u, d(e) is the number of delays on edgee; list(u); list(v) are timing pair lists.Output: Use the onditions from Table 1 to modify list(v) using elements of list(u). Return TRUE if a modi�ationwas made, else return FALSE1: RELAXED  FALSE2: for all timing pairs ta from list(u) do3: RELAXED  try add elt(ta,list(v))4: end for5: return RELAXEDspeial ases for simpliity. The atual algorithm would need to hek for empty lists, insertion at thebeginning of the list, et.Algorithm 2 implements the edge relaxation step of the Bellman-Ford algorithm [5, p.520℄. However,sine there are now multiple paths (with di�erent delay ounts) to keep trak of, the algorithm handles thisby iterating through the timing pair lists that are being onstruted for eah vertex. An important pointto note here is that the onstraint time around a yle is always negative for feasible values of T , so therelax edge algorithm will not send the timing pair omputations into an endless loop.Algorithm 3 gives the omplete algorithm for omputing the timing information. Starting from the sourevertex u0 of the system, it proeeds to \relax" outgoing edges and adding the target verties into a set ifneessary. This proess is an adaptation of the Bellman-Ford algorithm for shortest paths.As we have already shown, as long as we restrit attention to T in the valid range (namely > Tmin), wewill not enounter positive weight yles in the graph. Reall that a positive onstraint time around a yleorresponds to an unsatis�able onstraint, whih in turn would orrespond to a hoie of T that is outsidethe feasible range for the system under onsideration.Using the above algorithm, the timing pairs for a single sample-rate graph are easily omputed. Theomplexity of the overall algorithm is O(jDjjV jjEj) where jDj is the number of delay elements in the graph(therefore a bound on the length of a timing pair list of a vertex), jV j is the number of verties, and jEj isthe number of edges in the graph. Note that jDj is quite a pessimisti estimate, sine it is very rare for allthe delays in a iruit to be on any single dominant path from input to output.5 Multirate SystemsIn this setion, we onsider some problems that arise in the treatment of multirate systems. We examinesome examples to see how these diÆulties an be overome, and motivate new assumptions that make iteasier to handle these systems mathematially.The onventional interpretation of SDF exeution semantis has been based on token ounts on edges.A vertex is enabled when eah of its input edges has aumulated a number of tokens greater than or equal7



Algorithm 3 Algorithm ompute timing.Input: Direted graph G orresponding to a single-input single-output systemOutput: Compute the timing lists for eah vertex in the graph; the list for the output vertex is the atual timingfor the overall system1: Q  soure vertex u02: while Q is not empty do3: u  pop element from Q4: for all edge e : u!v adjaent from u do5: if relax edge(G) sueeds then6: insert v into Q7: end if8: end for9: end whileto the onsumption parameter on that edge. At any time after it is enabled, the vertex may �re, produinga number of tokens on eah output edge equal to the prodution parameter on that edge. In the followingdisussion, we use  to refer to the onsumption parameter on an edge, and p to refer to the produtionparameter. The edge in question will be understood from the ontext.This interpretation, though very useful in obtaining a strit mathematial analysis of the onsistenyand throughput of suh multirate systems, has some unsatisfatory features when we onsider dediatedhardware implementations. One suh feature is the fat that it results in tokens being produed in bursts ofp at a time on output edges and similarly onsumed in bursts of  at a time. This is not the onsumptionpattern implied in the design of DSP appliations, where tokens refer to data samples on edges, and as suhwill usually be stritly periodi at the sample rate spei�ed for that edge. Moreover, in hardware designsat least, enforing strit periodiity on the samples means that any bu�ering required an be built into theonsuming unit and no speial bu�ering needs to be provided for eah edge.A more important problem is with regard to the riterion used for �ring verties. Consider the exampleof the 3 : 5 rate hanger shown in Fig. 4. Aording to the SDF interpretation, this vertex an only �re after5 tokens are queued on its input, and will then instantaneously produe 3 tokens on its output. However, areal rate hanger need not atually wait for 5 tokens before produing its �rst output. In fat, in ases wheresuh rate hangers form part of a yle in the graph, the onventional interpretation an lead to deadlokedgraphs due to insuÆient initial tokens on some edge, or even due to the distribution of tokens among edges.One real life example where this riterion shows this problem is with the DAT-to-CD data rate onverter(used to onvert between the data sample rates used in Digital Audio Tape (DAT) and Compat Dis audio(CD)). This is a sample rate onversion with a rate hange ratio of 147 : 160. The SDF model interpretsthis by saying that (when a DAT-CD onverter is represented as a single blok) 147 samples need to queueon the input before even a single output is produed, and that all 160 orresponding outputs are produedtogether. This is learly not how it is implemented in pratie, where a multiple stage onversion may beused, or even in ase of a diret onversion, the lateny before produing the �rst output does not need to beas high as indiated by the onventional SDF model. The Cylostati dataow (CSDF) [2℄ model providesa way around this by introduing the onept of exeution phases. We disuss the relation of our model tothe CSDF model in setion 5.2.Note that when the dataow graph is used to synthesize a software implementation, the token owinterpretation is more useful than in a dediated hardware implementation. The reason for this is that insoftware, sine a single proessor (or more generally, a number of proessors that is small ompared to thenumber of ators in the graph) typially handles the exeution of all the ode, it is possible to onstrutthe ode from bloks diretly following the SDF graph, using bu�ers between ode bloks to group the datafor eÆieny. Without bu�ers, and assuming that the token prodution and onsumption is periodi, theeÆieny of the system would be greatly redued. In hardware, however, eah blok ould be exeuted bya separate dediated resoure, and sine this is happening onurrently, the sample onsumption pattern isbasially periodi as opposed to the bu�ered bursts that would be seen in software.Figure 4 illustrates the above ideas. This is an implementation of a 3 : 5 frational rate onversionthat is implemented using an eÆient multirate �ltering tehnique (as used in the FIR �lter implementation8
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Figure 4: 3 : 5 sample rate hanger.provided with Ptolemy [3℄). We have assumed a 7-tap �lter (H(z)) used for the interpolation, whih resultsin the input-output dependenies as shown in the �gure. It is lear from the �lter length and interpolationrate that the �rst output in eah iteration (an iteration ends when the system returns to its original state)depends on the �rst 2 inputs only, the seond depends on inputs 2 to 4, and the third depends on inputs4 and 5. Therefore, the delay pattern shown in the �gure is valid as long as there is suÆient time for the�lters to at on their orresponding inputs. In other words, it is not neessary to wait for 5 inputs to beonsumed before starting to produe the outputs.It is lear that this implementation is more eÆient in terms of number of multipliations. It an also berearranged for a power savings by noting that eah multipliation ours only one in every 5 inputs.One point to note here is the following: For a rate onversion as implemented above, the internal strutureis suh that some input samples are swithed to di�erent polyphase omponents at di�erent time instants.Therefore when we onsider internal branhes, not all the branhes reeive the same input stream. Beauseof this, the algorithms we have desribed annot diretly be applied to them to ompute the timing pairs forthese systems. Instead, we need to use timing �gures as shown in Fig. 4 to ompute the timing. Fortunately,the multirate units for whih this is neessary an usually be treated as primitive subsystems of largeriruits, and the examples in setion 6 show how we an use the data for a rate onverter to ompute timingfor several larger iruits. Note that even for these systems, it is possible to automate the omputationof the timing pair lists. We need to ensure that eah input-output pair is onsidered when omputing themaximum onstraint time. For simple systems suh as the MR FIR �lter, inspetion shows that the timinglist is the same as that of an ordinary FIR �lter, possibly ombined with some extra onstant delay to takeinto aount the o�set required for mathing up the I-O for all the polyphase omponents.The implementation we onsidered avoids unneessary omputations, so it is possible to save power byeither turning o� the �lters when they are not needed (using the lok inputs), or by using an appropriatebu�ering and delayed multipliation that will allow the multipliers to operate at 15 th of the rate of theinput stream, using the observation that only one of the polyphase omponents [18℄ needs to operate foreah output sample. This tradeo� would depend on whether we are onsidering an implementation withdediated multipliers for eah oeÆient or shared multipliers. Real hardware implementations of multiratesystems must resort to suh eÆient realizations as the performane penalties an otherwise be large.The interpretation we use for exeution of SDF graphs is therefore as follows: eah node reeives itsinputs in a perfetly periodi stream, and an start omputing its outputs some time after the �rst inputbeomes available (this time would depend on internal features suh as the number of taps in the �lter inthe above example). The outputs are also generated in a periodi stream at the appropriate rate requiredfor onsisteny of the system.An important e�et of this alternate interpretation is that it hanges the riteria for deadlok in a graph.Under normal SDF semantis, the graph in Fig. 5 would be deadloked if the edge AB has less than 10delays on it. On the other hand, 6 delays are suÆient on edge BC, while 16 delays are required on edge CAin order to prevent deadlok. The CSDF interpretation mentioned in se. 5.2 tries to avoid these diÆultiesby presribing di�erent token onsumption and prodution phases, but introdues further omplexity and9
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Figure 5: Deadlok in an SDF system: if n < 10 the graph deadloks.does not provide a omplete solution to the timing problem. However, under our new interpretation, as longas eah yle in the graph ontains at least one token, deadlok is broken and the system an exeute. Thisis the same ondition that applies to homogeneous graphs.It is important to understand that this interpretation of multirate SDF exeution is useful beausedediated hardware implementations of real multirate DSP systems rarely require the interpretation interms of token onsumption of the onventional SDF model. Typial multirate bloks in DSP appliationsare deimators and interpolators (rate hangers), multirate �lters (very similar to rate hangers), serial-to-parallel onverters and vie versa, blok oders and deoders, et. A notable feature of these appliations isthat few of the appliations atually require a onsumption of  tokens before starting to produe p tokens.In the ase of blok oders, in most implementations, for inter-operating with the rest of the system, the dataare produed in a periodi stream at a onstant sample rate, rather than in large bursts. For serial-to-parallelonverters, even though the onsumption of all inputs takes plae in one burst, the data are still stritlyperiodi, and by using an appropriate value for the delay through the system, we an aurately modelthe onverter's operation. As a result, the alternative interpretation of SDF exeution suggested above isaeptable in most ases, espeially when targeting �xed hardware arhitetures.5.1 HTP Model for Multirate SystemsWe now speify how the HTP model an be applied to the analysis of multirate systems. We assume that themultirate system is spei�ed in the SDF formulation. For the exeution semantis, we use the assumptionsmentioned above: the data on eah edge is periodi with a relative sample rate determined by the SDFparameters, and the unit an begin exeution after the �rst input is reeived, instead of having to wait for tokens. As mentioned above, this \bak-end" assumption is more useful for hardware realizations.Note that the seond assumption an oexist with the onventional SDF semantis. It is always possibleto speify a timing delay for the unit that is greater than the time required for  tokens to queue on the inputedge. With this exeution time, we an be sure that the system will now satisfy traditional SDF semantisin exeution. However, in several ases, as pointed out previously, this is a pessimisti requirement, and itis possible to hoose a smaller delay that still provides enough time for suÆient samples to be enqueuedand for the appropriate omputation to our. As long as we hoose the timing delay suh that for oneperiod of the samples there is suÆient time between onsumption of input and prodution of the output,the periodiity of the system will ensure that this onstraint is met for all suessive periods.For simpliity, we assume that the unit to be modeled is a SISO system and that the propagationdelay through sub-units is onstant. The model an be extended to handle more ompliated units using amodi�ation of the algorithms detailed for homogeneous systems in se. 4.Given a multirate system represented as an SDF graph, we follow the usual tehnique [12℄ to omputethe repetitions vetor for the graph. The balane equation on eah edge e : u!v in the graph is given bype � qu = e � qv; (8)where pe is the prodution parameter on e, e is the onsumption parameter, and qu and qv are the repetition10



ounts for the soure and sink of the edge. Let T denote the overall iteration period of the graph. This isthe time required for eah ator x to exeute qx times (qx is the repetition ount of the ator). Therefore,the sample period on edge e is given by Te = Tqu � pe = Tqv � e : (9)Now extending the analogy of the homogeneous ase, we de�ne the onstraint time on a path ast(p) = kXi=1 ti � k�1Xj=1 (dj � Tj); (10)where Tj is the sample period on edge j. By noting that the e�et of a delay on any edge (in both thehomogeneous and multirate ases) is to give an o�set of �Te to the onstraint time of any path through thatedge, we an see that this gives the orret set of onstraints. Also, the values of the starting times for thedi�erent verties that are obtained as a solution to the set of onstraints will give a valid shedule for themultirate system.It is possible to view the onstraint times in terms of \normalized delays". Here the delays on eah edgeare normalized to a value of dn(e) = dequ � pe = deqv � e : (11)In terms of the normalized delays, the expression for onstraint time beomes the same as that for thehomogeneous ase.For homogeneous graphs, the minimum iteration period that an be attained by the system is known asthe iteration period bound and is known to be equal to the maximum yle-mean (MCM) [16, 9℄. So far,no suh tight bound is known for multirate SDF graphs that does not require the ostly onversion to anexpanded homogeneous equivalent graph. However, some good approximations for multirate graphs havebeen proposed [17℄. Under our model, it is easy to determine an exat bound that is similar to the bound forhomogeneous graphs, but does not require the onversion to a homogeneous equivalent expanded graph. Byonsidering the umulative onstraints around a loop for the single sample-rate ase, we an easily obtainthe iteration period bound [16℄ Tmin = max2C P tuP de ; (12)where C is the set of all direted yles in the graph.Similarly, for the multirate ase, we an obtain the resultTmin = max2C P tuP dn(e) ; (13)where Tmin is the minimum admissible iteration period of the overall system as disussed above. In addition,the start times for eah operation are diretly obtained as a solution to the onstraint system that is set upusing the timing information.One fator here is that, unlike the homogeneous ase, the number of timing pairs in the list for a pathis not bounded by the number of delay elements. The denominator in a normalized delay is obtained asthe produt of a repetition ount of an ator and the onsumption or prodution parameter for the edgewith the delay. As a result, on any path, the total normalized delay is the sum of several terms with suhdenominators. The number of distint suh terms is therefore bounded by the least ommon multiple of allthese possible denominators. However, in pratie, it is rare for several suh terms to exist in the timingpair list, so this limit is very pessimisti. One reason for this is that if we onsider two paths between a pairof verties suh that one is dominated by the other, then for all paths that pass through these two verties,only the dominant path an ontribute to the timing pairs. Therefore, several paths are eliminated fromthe possibility of ontributing to a timing pair, and the size of the �nal timing list is quite small. This isobserved in the examples we have onsidered as well.11



One possible soure of misunderstanding in this ontext is the use of frational normalized delays in theomputation. It may appear at �rst sight that the HTP model allows frational delays to be used in thegraph even though suh delays have no physial meaning in the ontext of signal proessing. In this ontext,it is important to remember that the HTP model only spei�es information about the timing parametersof the graph. The funtional orretness of the graph must be veri�ed by other means. In partiular, anyfrational normalized delays only refer to the fat that the resulting timing shift is a fration of an iterationperiod interval, and does not indiate the use of atual frational delays in a logial sense.5.2 Relation of the HTP Multirate Model to other ModelsIt is worth taking note of how the HTP model for multirate dataow graphs di�ers from some other modelsthat have been proposed to deal with the diÆulties posed by the SDF exeution semantis.An important point to keep in mind with regard to our model is that it is targeted towards desribingthe timing details in an atual hardware implementation of the graph. As disussed in [1℄, there is adistintion between the implementation dependent physial time onsumption, and the implementationindependent logial synhronization. Models suh as the synhronous reative systems desribed in [1℄ andthe CSDF model disussed below are in general more onerned with the implementation independent logialsynhronization and in verifying the funtional orretness of the system. The model we are proposing, onthe other hand, is aimed at the \bak-end" of the synthesis proess, that deals with the atual mapping tohardware and therefore is onerned with implementation dependent timing parameters. In other words, ourmodel an be used in omputing the atual performane metris and the implementation dependent issuesafter the funtional orretness of the graph has been veri�ed by other means suh as the SDF model.Cylostati Dataow (CSDF) [2℄ is an extension of SDF that introdues the onept of \exeution phases".In this model, eah edge has several exeution phases assoiated with it. In eah phase, the sink vertex willonsume a ertain number of tokens as spei�ed by the onsumption parameter of that phase for that edge(similarly for the prodution on the soure vertex of the edge). Over a omplete iteration, all phases of theedges are ompleted, and the system returns to its original state. This is therefore a generalization of theSDF exeution model. It has been shown [2℄ that this model an avoid some of the deadlok issues thata�et the SDF model (suh as in the example of �g. 5), by speifying the phases at whih the samples areonsumed an produed.The CSDF model is an exeution model, not a timing model. As a result, it leaves the exat time ofexeution of verties free, and this is determined by other means, suh as run-time resolution of onstraints,or onstrution of a stati shedule. The HTP model, on the other hand, is a timing model, and results instati resolution of the times of exeution. It also allows the omputation of exat values for performanemetris like the iteration period bound. In this sense, the HTP model an in fat be used to omplement theCSDF model, by making the assumption that the di�erent phases of exeution our periodially. However,this is ompliated a little by the fat that in the CSDF semantis, it is possible for data oming out of avertex to ativate only some of its neighboring verties in ertain phases and others in other phases. Beauseof this, the simple path based onstraint omputation that we used to derive the timing pairs in the SDFmodel may not be enough for CSDF. For example, in the example of the multirate FIR �lter (�g. 6), thedi�erent polyphase omponents do not reeive the same data in an eÆient implementation (redundantomputations are avoided). Furthermore, the polyphase �lter omponents reeive their inputs at di�erentphases of the input lok. As a result, a time onstraint that satis�es the relation between the �rst outputand its orresponding inputs may not satisfy the onstraint between the seond output and its orrespondinginputs. We an handle this situation by inspetion, and we an ompute the timing pairs of the MR-FIR�lter by hand, and use this as a module in other systems suh as �lter banks. It is also possible to automatethis proess to hek all output phases and ensure that the time delay is suÆient to satisfy all the timingonstraints. The basi ideas of timing pairs and timing pair lists that underly the HTP model still hold.Another model for timing of multirate hardware has been proposed by Horstmannho�, Gr�otker andMeyr [8℄. They onsider an alternative timing model in whih the samples oupy di�erent phases of amaster lok, and provide interfae iruitry to adjust the relative phases when samples are made availableon the edges. This requirement of a master lok means that the throughput is already onstrained andlargely determined beforehand. The interfae iruitry an also be quite omplex. The model we propose12
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Figure 7: Binary tree strutured QMF bank [18℄.tries to avoid these problems by not restriting itself to yle based timing. By enforing periodiity on thedata, it eliminates the need for interfae adjustments. An additional bene�t of our model is that it allowsthe iteration period of the system to be adjusted independently of any lok required for yle-based timing,and also gives an analytial solution for the best iteration period that the system an attain.6 Examples and ResultsWe have applied the HTP model to the SDF graphs representing typial multirate signal proessing appli-ations. The examples we have taken are from the Ptolemy system [3℄ (CD-DAT, DAT-CD onverters and2 hannel non-uniform �lter bank) and from [18, p.256℄ (tree-strutured QMF bank).The basi unit in several of these examples if the multirate FIR �lter that is apable of performing rateonversion as desribed in setion 5. As noted there, this must be treated as a primitive element of multiratesystems. As shown in Fig. 6, the implementation uses a ertain number of internal �lters orresponding tothe polyphase deomposition of the interpolating �lter. We assume that these are implemented in a mannersimilar to the �lter shown on the left of Fig. 6, and that the overall rate onverting �lter also therefore hassimilar timing parameters. In partiular, we assume for the sake of the other multirate examples that anyrate onversion is performed using a �lter that has the timing parameters f(1; 5); (0; 4)g.The rate onversions result in several I-O paths with di�erent numbers of delays at di�erent rates. Theresulting timing pairs that are obtained for these systems are summarized in Table 2.13



Benhmark Timing pairsMultirate FIR f(1; 5); (0; 4)gQMF bank (input to y3) f(7; 15); (3; 14); (1; 13); (0; 12)gCD-DAT (160:147) f(93=32; 20); (0; 16)gDAT-CD (147:160) f(15=7; 15); (0; 12)g2 h. Non.Unif. FB f(5=2; 10); (1; 9); (0; 8)gTable 2: Timing pairs for multirate systems.# timing pairs 1 2 3 4 5# iruits 21 13 5 4 1Table 3: Number of dominant timing pairs omputed for ISCAS benhmark iruits.To illustrate the bene�t obtained by using the HTP model for hierarhial systems, we have omputedtiming parameters of a number of homogeneous systems, sine even these bene�t from the ability of themethod to model subsystems.The HTP model provides a replaement for using the entire subsystem in the timing analysis of a largersystem of whih the iruit is a part. If we employ onventional models, we would be fored to use the entiregraph of the iruit within the larger system. An algorithm suh as omputing longest input-output pathstakes time proportional to O(jV jjEj) where jV j is the total number of verties in the larger system. Forexample, in a iruit that has 10 bloks onneted to eah other by 2 edges eah, with eah blok ontaining10 verties and 20 edges, a onventional model would require omputation on the order of 100� 200, whilethe HTP model would require on the order of 10 � 20 � jDj, whih is generally a substantial saving sinethe number of delay elements jDj in a subsystem is usually muh less than the number of verties in thesubsystem (in this ase 10).We have run the algorithm desribed in setion 4 on the ISCAS 89/93 benhmarks. A total of 44benhmark graphs were onsidered. For this set, the average number of verties is 3649.86, and the averagenumber of output verties in these iruits is 39.36.First we onsider the ase where synhronizing nodes were used to onvert the iruit into an SISOsystem. We are interested in the number of elements that the �nal timing list ontains, sine this is theamount of information that needs to be stored. Table 3 shows the breakup of the number of list elements.We �nd that the average number of list elements is 1.89.Next, instead of assuming omplete synhronization, we onsidered the ase where inputs are synhro-nized, and measured the number of list elements at eah output. The number of distint values obtained forthis was an average of 14.73. If we make an additional assumption that if two list elements have the same mpthey are the same, this number drops to 3.68. This assumption makes sense when we onsider that severaloutputs in a iruit pass through essentially the same path strutures and delays, but may have one or twoadditional gates in their path that reates a slight and usually ignore-able di�erene in the path length. Forexample, the iruit s386 has 6 outputs. When we ompute the timing pairs, we �nd that 3 have an elementwith 1 delay, and the orresponding pairs are (1; 53); (1; 53); (1; 57). Thus instead of 3 pairs, it is reasonableto ombine the outputs into 1 with the timing pair (1; 57) orresponding to the longest path.In order to ompare these results, note that if we did not use this ondensed information struture, wewould need to inlude information about eah vertex in the graph. In other words, if we aept the (in mostases justi�able) penalty for synhronizing inputs and outputs, we need to store an average of 1.89 termsinstead of 3649.86.We have not onsidered the ase of relaxing the assumptions on the inputs as well. This would obviouslyinrease the amount of data to be stored, but as we have argued, our assumption of synhronized inputs andoutputs has a very strong ase in its favor.We have also omputed the timing parameters for HLS benhmarks suh as the ellipti �lter and 16-point FIR �lter from [6℄. These are naturally SISO systems, whih makes the synhronizing assumptionsunneessary. If we allow the exeution times of adders and multipliers to vary randomly, we �nd that theFIR �lter has a number of di�erent paths whih an dominate at di�erent times. The ellipti �lter tends tohave a single dominant path, but even this information is useful sine it an still be used to represent the14



�lter as a single blok.A general observation we an make about the timing model is that systems that have delay elementsin the feed-forward setion, suh as FIR �lters and �lters with both forward and bakward delays, tend tohave more timing pairs than systems where the delay elements are restrited to a relatively small amount offeedbak. This is beause feedbak delay elements must neessarily exist in a loop that has a total negativeonstraint time, whih means they will not ontribute towards a dominant onstraint time in the forwarddiretion.7 Conlusions and Future DiretionsWe have presented a timing model for dataow graphs (the Hierarhial Timing Pair model), and assoiateddata strutures and algorithms to provide timing information for use in the analysis and sheduling ofdataow graphs.For homogeneous graphs, the HTP model allows hierarhial representations of graphs. This resultsin reduing the amount of information to be proessed in analyzing a graph. Alternately, by using thishierarhial representation, the size of the graph that an be analyzed with a given amount of omputingpower is greatly inreased.The HTPmodel is able to eÆiently store information about multirate graphs, and allows the omputationof important system parameters suh as the iteration period bound easily. Exat shedules for multiratesystems an also be obtained as a solution to the onstraints that an be set up using this model. We haveshown that the HTP model overomes many limitations of the onventional timing models, while inurringa negligible omplexity inrease.We have onsidered several typial multirate DSP appliations and omputed timing pairs for thesemodels. The results demonstrate the power of our approah. We have also onsidered several homogeneousgraphs and shown that the hierarhial aspets of the model an be used to obtain large redutions in theamount of information about the iruit that we need to store in order to use its timing information in theontext of a larger system.The model as it exists now requires the ability to hoose the start times of operations (variable phaseloking). We are urrently examining ways of extending the model to more general kinds of iruits, whihinlude some �xed phase registers along with other nodes where the delay an be adjusted.Referenes[1℄ A. Benveniste and G. Berry, \The synhronous approah to reative and real-time systems," Proeedingsof the IEEE, vol. 79, no. 9, pp. 1270{1282, Sep 1991.[2℄ G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, \Cylo-stati dataow," IEEE Transationson Signal Proessing, vol. 44, no. 2, pp. 397{408, 1996.[3℄ J. T. Buk, S. Ha, E. A. Lee, and D. G. Messershmitt, \Ptolemy: A framework for simulating andprototyping heterogeneous systems," Int. Jour. Computer Simulation, vol. 4, pp. 155{182, Apr 1994.[4℄ N. Chandrahoodan, S. S. Bhattaharyya, and K. J. R. Liu, \Negative yle detetion in dynamigraphs," Teh. Rep. UMIACS-TR-99-59, University of Maryland Institute for Advaned ComputerStudies, September 1999, http://www.s.umd.edu/TRs/TRumias.html.[5℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introdution to Algorithms, MIT Press, Cambridge,MA, 1990.[6℄ S. M. H. de Groot, S. H. Gerez, and O. E. Herrmann, \Range-hart-guided iterative data-ow graphsheduling," IEEE Transations on Ciruits and Systems - I, vol. 39, no. 5, pp. 351{364, May 1992.[7℄ J. P. Fishburn, \Clok skew optimization," IEEE Transations on Computers, vol. 39, no. 7, pp.945{951, Jul 1990. 15
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