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a broad class of theories with gravity duals, and it is shown that at high tempera-

tures, the speed of sound squared is bounded from above by one-third of the speed

of light squared. It is conjectured that this may be a universal property of theories

with gravity duals. It is also shown that the temperature dependence of a number

of transport coefficients takes a universal form in the high-temperature limit. In

particular, in a high-temperature expansion, the power law of the leading correc-
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Chapter 1

QCD and Hydrodynamics

1.1 Introduction

General relativity and the Standard Model of particle physics are thought to

provide a description of almost all known phenomena in nature1. The Standard

Model is a relativistic quantum field theory that describes the properties and be-

havior of all of the known subatomic particles, while General Relativity is a classical

(that is, non-quantum) theory that describes gravity. These basic physics theories

underlie all of the rest of our scientific description of reality, in the sense that at

least in principle the properties of nuclear physics and chemistry can be calculated

from the Standard Model. Together with General Relativity, we can in principle

use the Standard Model explain everything from where the atoms making up the

earth came from, to the chemical properties of carbon, to the life cycles of living

things, stars and galaxies.

In practice, of course, trying to calculate the properties of (say) benzene di-

rectly from the Standard Model is completely impractical, since the even a carbon

nucleus is enormously complex on a subatomic level. It is not reasonable to expect

to explain the properties of very complex objects directly in terms of the most fun-

1The big exceptions are dark matter and dark energy, which are not explained by the Standard

Model.
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damental degrees of freedom which is the concern of the Standard Model. However,

it is nonetheless very useful to have successively deeper layers of understanding of

nature. For benzene, while it may not be useful to try to explain its properties

from the Standard Model of subatomic particles, it is very useful to understand the

properties of benzene in terms of the the bonding of atoms into molecules. In turn,

it is crucial for chemistry that there is a way to understand the bonding of atoms

in terms of the properties of electrons in the presence of atomic nuclei, and so on.

Unfortunately, there is an embarrassing gap in this matryoshka doll series of

descriptions, with each successive ‘effective theory’ (e.g. basic chemistry) having a

useful and calculable description in terms of a deeper, more fundamental description

(e.g., quantum electrodynamics, which describes the behavior of electrons around

atoms and thence atomic bonding.) Atomic nuclei are composed of protons and

neutrons, which are examples of a broad class of subatomic particles called hadrons.

Hadrons are in turn composed from particles called quarks and gluons. The theory

that describes the behavior of quarks and gluons is called quantum chromodynamics

(QCD), which is a part of the Standard Model. Unfortunately, while one can use

QCD to calculate the behavior of quarks and gluons to great precision under some

rather special circumstances (high energy collisions of various sorts), a detailed

understanding of the properties of even the simplest hadrons in terms of QCD

remains far out of reach without brute-force computer simulations.

The basic problem is that except in some special circumstances, QCD is a

strongly-interacting theory, with a coupling constant of order unity. As a result,

perturbation theory with the coupling as the expansion parameter, which is the
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calculational tool used throughout much of the rest of physics to great success,

cannot be used in the most interesting situations in QCD.

Thus, one of the major challenges of theoretical particle physics is the search

for calculational techniques that can be used to attack strongly coupled theories

such as QCD. Unfortunately, it is still not known how to calculate observables

in QCD without using perturbation theory (which is only possible in very special

circumstances) or brute-force numerical methods. The numerical approach that has

been successfully applied to QCD, lattice Monte Carlo simulations, can be used to

calculate a wide variety of properties of QCD, but unfortunately cannot be used for

a number of very interesting observables, in particular the ones that will be topic of

this work. Even when lattice calculations can be used, by their nature as large-scale

numerical methods, they do not give all of the insight into the strongly-interacting

dynamics of QCD that we may want.

Despite decades of effort, an analytical method to reliably calculate quantities

in QCD when it is strongly-coupled has not been found. However, a great deal of

progress has been made in the last ten years towards the development of calculational

tools for strongly coupled field theories which share a number of features with QCD,

but also have a number of important differences. The progress came from a rather

unexpected direction: string theory, which is a program to unify the Standard Model

with General Relativity in a single framework.

Insights from string theory have led to the very startling realization that some

gauge field theories (that are related to QCD, which is also a gauge theory, in a

way that will be discussed later) that describe physics in a four dimensional world
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(three space dimensions and one time dimension) actually have an equivalent but

very different description involving a quantum theory of gravity (string theory) in

ten dimensions. Even more remarkably, when these gauge theories are strongly

interacting, so that perturbation theory cannot be used, the equivalent ‘dual’ grav-

itational theory in ten dimensions becomes weakly interacting and classical, and

describable by General Relativity. As a result, one can determine the properties of

these strongly-interacting quantum fields theories by doing simple calculations in a

higher dimensional classical theory of gravity. This set of ideas and techniques goes

under the name of the gauge/string (or gauge/gravity) duality.

Unfortunately, the remarkable techniques of the gauge/gravity duality cannot

be applied directly to QCD, because it is not known how to construct a string dual

for QCD. Nonetheless, the gauge/gravity duality is an extremely rare case where

we have a set of tools to understand the strong-coupling behavior of a large class of

quantum field theories. Such calculable examples are very valuable for developing

some theoretical intuition about the generic behavior of strongly-interacting field

theories. If one is lucky, one might stumble across some universal properties of

strongly-interacting field theories, which might conceivably hold even outside the

class of theories in which one can currently use the gauge/gravity duality. The

search for universal properties of strongly-interacting field theories is the focus of

this thesis.

The regime we will be particularly interested in is the behavior of systems

governed by QCD when they are heated to very high temperatures. At high temper-

atures, it is thought that hadrons fall apart into their constituent particles, quarks
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and gluons, producing a quark-gluon plasma. Temperatures this high are not easily

reached, and they have only been accessed shortly after the Big Bang, since the uni-

verse was extremely hot when it was young, and in recent heavy atomic ion collision

experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory in the US. The transition between a gas of hadrons and quark-gluon

plasma (QGP) is called a deconfinement transition.2

In QCD, recent observations imply that this plasma is strongly interacting at

the temperatures where it can first be produced, but as the temperature is increased,

the interactions are expected to become weaker. As a result, at extremely high

temperatures, one can use perturbation theory to calculate the properties of the

quark-gluon plasma. At lower temperatures, however, such as those reached at

RHIC, the physics of the quark-gluon plasma is strongly interacting.

It turns out that the QGP produced at RHIC behaves like a fluid. But because

it is a strongly-coupled relativistic fluid described by QCD, there are essentially no

reliable tools to calculate its properties ab initio. Since we have essentially no other

experience with such strongly-coupled relativistic fluids, we do not even have much

theoretical intuition to build on in interpreting the experimental data.

As is mentioned above, the gauge/gravity duality can not be used to calculate

2The deconfinement transition may or may not be a phase transition. One can have first or

second order transitions between the two ‘phases’ depending on how many flavors of quarks are

active in the transitions (and their masses). In fact in real-world QCD with three colors, two light

quark flavors (up and down quarks) and one moderately heavy quark flavor (the strange quarks),

the deconfinement transition is thought to be a rapid crossover.
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anything about the QGP seen in the real world, at RHIC, since that fluid is de-

scribed by QCD and there is no known gravity dual for QCD. However, remarkably,

the duality does provide us with a wide theoretical class of strongly-interacting rel-

ativistic fluids for which we can calculate a great deal, and it turns out that such

strongly-coupled fluids have a number of apparently universal properties.

In particular, in this thesis it is shown that there is a universal bound on the

speed of sound in such fluids described by a broad class of theories with gravity

duals. Additionally, within this class of systems, it is shown that the temperature

dependence of transport coefficients - quantities like viscosities and diffusion coeffi-

cients - takes a certain universal form. Both of these strong-coupling results stand in

sharp contrast to what one sees in the same systems when they are weakly coupled,

since these universal results do not hold apply in that case.

Since QCD is not within the class of systems to which our calculations apply,

it is unclear whether the lessons one can draw from these interesting ‘universal’

behaviors apply to strongly-coupled fluids in the real world. Nonetheless, it is an

interesting demonstration that at least in principle, some rather unexpected phe-

nomena can occur at strong coupling that one would not have expected just from

experience with weakly-coupled systems. Thus, it seems worthwhile to continue us-

ing the gauge/gravity duality to explore the physics of the strongly-coupled systems

to which it applies.

In this chapter, we first review the most relevant features of QCD in Sec. 1.2.

Next, in Sec. 1.3, we discuss the large N limit of QCD, and preview some of the

issues that will arise in comparing QCD with theories with gravity duals. Finally,
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in Sec. 1.4, we review relativistic hydrodynamics.

Next, Chapter 2 of this thesis introduces the gauge/gravity duality, giving

some technical details about how it can be used to do calculations in some strongly-

coupled. Chapter 3 discusses the speed of sound in strongly-coupled systems with

gravity duals, and it is shown that in such systems there is a universal bound on

the speed of sound at high temperatures of 1/
√

3c, where c is the speed of light.

Chapter 4 applies the techniques that are developed in Chapter 3 to study other

properties of relativistic fluids described by gravity duals, and it is shown that the

temperature dependence of transport coefficients takes a certain universal form in

such theories in the high-temperature limit. Chapter 5 serves as a summary of our

results.

1.2 QCD

Quantum Chromodynamics is the quantum field theory that describes the

strong nuclear force. It is a relativistic non-abelian gauge theory with gauge group

SU(3), coupled to Nf = 6 ‘flavors’ of fermions in the fundamental representation

of the gauge group SU(3)c. The rank of the gauge group is called the number of

colors Nc of the theory. The fermions are referred to as quarks, while the quanta

of the gauge field A are called gluons. The gauge field A is a Lorentz 4-vector,

and can be written as a matrix-valued field Aµ(xν) = Aaµ(xν)ta, where the ta with

a = 1, . . . N2
c − 1 are the generators of SU(Nc) in the fundamental representation

(defined in such a way that trtatb = 1
2
δa,b). In this notation Aµ is an Nc×Nc matrix.
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The lagrangian density of QCD can be written as

L =
−1

2g2
YM

trFµνF
µν +

Nf∑
i=1

ψ̄i( /D +mi)ψi (1.1)

where Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] is the field strength associated with the the

gauge field, /D ≡ ΓνDµ (the Γν are the Dirac gamma matrices), and Dµ = ∂µ + iAµ

is the covariant derivative in the fundamental representation, ψ̄ = ψ†γ0, i is a flavor

index, and we have suppressed the color indices on the quarks, which run from

1, . . . Nc, so that the quarks look like color-vectors.

The quark masses mi appearing in the Lagrangian are external parameters

from the point of view of QCD, and their values are determined by a different sector

of the Standard Model. There are six known quark flavors in nature, known as

the up, down, strange, charm, bottom, and top quarks in order of increasing mass.

The charm, bottom, and top quarks are very heavy compared to the up, down and

strange quarks, and more importantly to the underlying QCD scale. As a result,

the charm, bottom, and top quarks make very small contributions to the properties

of the lightest hadrons. The up and down quarks are very light, with a mass of less

than 10MeV , while the strange quark is somewhat heavier, with a mass of order

100MeV . For many purposes, it is actually a good approximation to treat the up

and down quarks as massless (and sometimes the strange quark as well).

Apart from quark masses, QCD has only one obvious parameter, the Yang-

Mills coupling constant gYM . There is actually another parameter in QCD which

is perhaps less obvious: the number of colors Nc, which is just 3 in QCD. As noted

by ’t Hooft[1], it turns out that some features of gauge theories like QCD simplify
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when Nc → ∞, so that one can try to do calculations with 1/Nc as the expansion

parameter. As noted by ’t Hooft, when taking the largeNc limit, consistency requires

one to keep the quantity

λ = g2
YMNc (1.2)

fixed to a value independent of Nc, and it is the ’t Hooft coupling λ that plays

the role of the coupling constant of the theory. For real-world QCD, the large Nc

expansion parameter is 1/3, so that it is not obvious whether the expansion would

always be phenomenologically useful. In fact, it turns out that the 1/Nc expansion

does make useful phenomenological predictions for Nc = 3 QCD, for some (but not

all) observables. This is discussed more in the next section.

The QCD coupling constant gYM is dimensionless, and its value controls when

the classical theory can be treated using perturbation theory. When gYM is small,

the theory can be treated perturbatively with gYM as the expansion parameter, since

for gYM = 0 the theory is free and can be solved exactly. When gYM is large, the

theory is far from free, and the perturbative expansion in gYM breaks down.

The situation is much more complicated when the theory is quantized. To get

from the classical lagrangian above to the quantum theory, let us define the path

integral Z as

Z ≡
∫
DAµDψ̄Dψ exp

(
−i
∫
d4xL[Aµ, ψ, ψ̄]

)
(1.3)

It is the path integral above that really defines QCD as a quantum field theory.

The observables in a quantum theory are encoded in correlation functions, which

can be obtained by taking functional determinants of Z with respect to sources[2].
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For instance, suppose we promote gYM to a function of spacetime as a (temporary)

formal trick. Then the connected two-point correlation function of the field strength

is given by

〈trF 2(x)trF 2(0)〉 ≡ δ

δg2
YM(x)

δ

δg2
YM(0)

logZ[g2
YM(x)]|g2

YM (x)=g2
YM

(1.4)

=
1

Z

∫
DAµDψ̄Dψ exp

(
−i
∫
d4xL[Aµ, ψ, ψ̄]

)
trF 2(x)trF 2(0)

(1.5)

The definition of the path integral is a very subtle business, and the definition

of the path integral measure DAµ necessarily involves some high-energy regulator,

such as a discretization of spacetime or some cutoff on the momenta. Of course, for

the theory to make sense it better be the case that the observables are independent

of the details of our choice of regulator as the regulator is removed. For example, if

the regulator was a discretization of spacetime, so that the path integral becomes

a very high-dimensional normal integral, the correlation functions should become

independent of the details of the discretization when the made more and more

fine-grained. It turns out that for this to work, the parameters of the lagrangian

density must themselves depend on the regulazation, with the regulator dependence

canceling in the observables.

Since the value of gYM is regulator-dependent, and thus not directly physical,

the question of when one can use perturbation theory is much more subtle in the

quantum theory than in the classical theory. It turns out that whether gYM is small

or not in QCD really depends on the questions one is trying to ask. For processes

involving large momentum transfers (high energy collisions between quarks, for in-
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stance), it turns out that gYM is small, while for lower energies gYM is large. The

fact that the coupling depends on the energy scale at which the theory is probed is

referred to as the coupling ‘running’.

If we view the regulator as being something like an energy cutoff at the energy

µ, as µ is varied gYM responds as

µ
dg2

YM(µ)

dµ
= β(g2

YM(µ) (1.6)

When g2
YM(µ) is small, one can show that

β(g2
YM(µ) = −

(
11

3
Nc −

2

3
Nf

)
g4
YM

2π
(1.7)

This means that when g2
YM(µ) is small,

g2
YM =

[
1

2π

(
11

3
Nc −

2

3
Nf

)
log(

µ

ΛQCD

)

]−1

(1.8)

ΛQCD is at this point an integration constant, and its relation to observable quan-

tities is regulator scheme dependent. It is nonetheless a very important parameter,

since it tells us the scale at which QCD becomes strongly coupled. When µ ∼ ΛQCD,

the coupling blows up, while when µ � ΛQCD the coupling gets very small. The

property that a theory becomes weakly interacting at high energy scales is referred

to asymptotic freedom, and it is one of the most important properties of QCD.

Another important property of QCD is that quarks and gluons are never ob-

served in isolation: quarks and gluons are never found as free particles in the ‘vac-

uum’, at temperatures small compared to ΛQCD. What is observed instead are the

hadrons (for instance, the baryons, which are the constituents of atomic nuclei),

which are bound states of quarks of quarks and gluons. This property of QCD is
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known as confinement. The scale of the masses of hadrons is set by ΛQCD, with the

typical hadronic scale being of order ∼ 700MeV .

Confinement and asymptotic freedom lead to a rather embarrassing situation

for QCD. QCD can be used to predict what happens in very high energy collisions

involving hadrons, because the effective coupling constant in such collisions is small,

and one can do calculations using perturbation theory. However, in many ways

the most interesting situations are those involving low interaction energies, and

perturbation theory is useless there. For instance, despite more than 30 years of

intense effort, no one knows how to calculate the mass of any hadron from QCD

analytically, and the low-energy interactions of hadrons, which are what is important

for nuclear physics, remain out of theoretical reach.

As mentioned in the introduction, even when the temperature is high enough

that the system goes through the deconfinement transition and a quark-plasma

is formed (rather than a hadronic fluid), the QGP remains relatively strongly-

interacting for T ∼ ΛQCD. In the strongly-coupled QGP (sQGP) phase, the hy-

drodynamic properties of the fluid are some of the basic observables of interest.

Unfortunately, these properties of the sQGP are not calculable directly from QCD

because of the inapplicability of perturbation theory and severe technical difficulties

in numerical studies.

In fact, the only known general way to calculate non-perturbative quantities

such as hadron masses directly from QCD is lattice QCD, a brute-force — if ele-

gant — numerical method. For lattice QCD, one works with the path integral in

Euclidean space (so that time is treated as an imaginary number), and regulates
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the path integral by discretizing spacetime on a lattice. This turns the evaluation

of correlation functions into the problem of doing an enormous number of integrals

numerically using Monte Carlo methods with the exponential of the classical Eu-

clidean action as a statistical weight. Such calculations require state of the art

supercomputers, and are very expensive. Also, since they are numerical techniques,

they provide only a limited insight into the dynamics that gives the hadrons their

mass.

A critical problem is that not all observables are calculable using lattice Monte

Carlo methods. For instance, some observables cannot easily be extracted from Eu-

clidean correlation functions, which is what can be calculated on the lattice, while

for other observables (involving the properties of QCD at finite baryon density, for

example) the Euclidean action becomes complex and Monte Carlo methods cease to

be useful. Of particular relevance here is that transport coefficients, which are the

observables relevant for the hydrodynamics of the sQGP, can only be reliably cal-

culated from real-time correlation functions, and are extremely difficult to calculate

using lattice Monte-Carlo methods.

The situation is not as grim in some theories that are theoretical cousins of

QCD, thanks the to the gauge-gravity duality, which relates some field theories to

gravity theories living in higher-dimensional spacetimes. Consider N = 4 super

Yang-Mills (SYM) theory, which is a gauge theory with gauge group SU(Nc), four

flavors of adjoint Majorana quarks, and six flavors of real adjoint scalars, with the

interactions of the ‘matter’ in the theory uniquely determined by the symmetries

of the theory. When Nc � 1 and λ ≡ g2
YMNc � 1, so that the theory is strongly-
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coupled, N = 4 SYM has a simple weakly-coupled gravity dual description. Using

the gravity dual, it turns out to be possible to calculate the hydrodynamic transport

coefficients for the N = 4 SYM ‘QGP’. The technology for doing this is discussed

in the next chapter.

1.3 Large N QCD

In the previous section, we briefly mentioned that some aspects of QCD sim-

plify in the large Nc limit. In the following it will be useful to mention some of the

features of large Nc QCD, and to compare and contrast it with the properties of the

theories for which gravity duals are known to exist.

First, so long as Nc � Nf , it is clear that QCD remains asymptotically free in

the large Nc limit. Since asymptotic freedom (and corresponding infrared slavery)

are at the heart of the difficulties of QCD, it may not be obvious whether the

large Nc limit really buys one anything. In fact, despite decades of intense effort,

large Nc QCD has not been solved, in the sense of (for instance) obtaining analytic

expressions for the meson masses in terms of λ = g2
YMNc.

However, QCD does become simpler in the large Nc limit. In the large Nc

limit, meson decays and scattering amplitudes become suppressed by powers of Nc,

while baryons become very heavy, with masses of order Nc. As a result, the light

particles of the theory (the mesons) form a non-interacting gas of stable particles,

with masses of order ΛQCD. If one turns up the temperature of such a gas, there must

be a phase transition at T ∼ ΛQCD to a quark-gluon plasma. The deconfinement
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phase transition becomes first order in the large Nc limit. Since the mesons are

colorless, the meson gas has an energy density of order N0
c . On the other hand,

the quark-gluon plasma has an energy density that scales as N2
c , since the gluons

have ∼ N2
c color labels. Since the energy density must go from order N0

c to N2
c in

a region of temperature that does not scale with Nc, a phase transition exists, and

turns out to be first order, with a latent heat proportional to N2
c .

While at lower temperatures QCD is a weakly interacting gas of hadrons in

the large Nc limit, it is important to note that there is no reason to expect that the

large Nc QGP will be weakly interacting at temperatures of the order of the phase

transition, and it is expected that the quark-gluon plasma would remain strongly

interacting at moderate temperatures in the large Nc limit.

This can be compared to the theories that have known gravity duals. All

of these theories are gauge theories that share a number of features of QCD, with

Nc → ∞. The big difference is that all of the theories that have known duals also

have a large tunable ’t Hooft coupling λ. In some of these, this is a meaninful

concept because these theories are conformal at the classical and quantum levels, so

that λ does not run. In the others, conformal symmetry is broken and λ may run,

but has a strong-coupling UV fixed point.

The tractability of the gravity dual theories requires the Nc →∞ and λ→∞

limits: moving away from these limits requires quantum gravity calculations in the

dual theory. The dual theories only reduce to classical gravitational systems in the

large N and strong coupling limits.

The large N limit has a direct counterpart in QCD. The theories with gravity
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duals do in fact share many of the properties of large N QCD: phase transitions in

such theories are first order, with latent heats scaling with N2
c ; some of the theories

have analogues of mesons that behave in the same way that mesons do in large Nc

QCD, and so on. However, the large λ limit has no counterpart in QCD, where λ

runs, and has a weak-coupling UV fixed point. This means that theories that have

classical gravity duals are very different in at least one critical way than even large

Nc QCD.

Nonetheless, thanks to the gauge/gravity duality we have a window that gives

us a clear look at the strong-coupling behavior of a wide class of gauge theories. This

is very valuable, since it can be used as a theoretical playground for exploring strong-

coupling physics, and for trying to answer questions of principle about strongly-

coupled gauge theory dynamics. In particular, one may be able to get important

general insights about the behavior of strongly-coupled theories.

1.4 Relativistic Hydrodynamics

In this section, we briefly review relativistic hydrodynamics. The material in

this section is standard, and can be found in a number of textbookd and review

articles, for instance Refs. [3, 4]. Our development follows the exposition in Ref. [4].

Hydrodynamics is essentially an effective field theory describing the behavior

of systems in local thermal equilibrium on length and time scales that are large

compared to the microscopic scales of the system, for instance the mean free path

of the particles making up the fluid. Hydrodynamics charaterizes fluid flow in terms
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of the evolution of the conserved quantities associated with the fluid.

Relativistic fluids always have a conserved stress-energy tensor T µν , and may

also have other conserved vector currents jµ. Since hydrodynamics is supposed

to describe the long-distance (i.e. low-wavelength) physics of a fluid, one makes

a derivative expansion of T µν . The hydrodynamics of the systems will then be

determined by the conservation equations applied to the derivative expansion of the

conserved quantities of the system.

If the fluid is in local thermal equilibrium, it can be characterized by the

temperature T (x) which can depend on position x, and the local four-velocity of

the fluid uµ, which satisfies uµuµ = −1. Then at lowest order in the derivative

expansion it can be shown that the stress-energy tensor takes the form

T µν = (ε+ P )uµuν − gµνP (1.9)

where ε is the energy density and P is the pressure exerted by the fluid in its local

rest frame. When the fluid is at rest so that uµ = (1, 0, 0, 0), this reduces to

T µν =



ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P


(1.10)

The motion of the fluid is determined by

∂µT
µν = 0 (1.11)

with ∂µ replaced by the appropriate covariant derivative in curved space-times. At

this order, the fluid motion is adiabatic. To see this, consider the ‘longitudinal’ part

17



of the above equation of motion, obtained by contracting it with uν :

uµ∂µε+ (ε+ P )∂µu
µ = 0. (1.12)

Using the fact that ε+P = Ts, dε = Tds and dP = sdT , where T is the temperature

and s is the entropy density, the above equation reduces to

∂µ(suu) = 0 (1.13)

This shows that the entropy current

sµ = suµ (1.14)

is conserved.

The other equations characterizing the fluid flow are contained in the projec-

tion of the equation of motion on the directions transverse to the fluid flow, using

P µν = gµν + uµuν (1.15)

as a projection operator. P µν satisfies uµP
µν = 0 and P µ

µ = 0. Applying this

projection operator the the equation of motion yields the relativistic Euler equation:

Pρν∂µT
µν = −∂ρP + uρu

µ∂µP + (ε+ P )uµ∂µuρ = 0 (1.16)

At the next order in the derivative expansion, we add a new term that has

extra derivatives of uµ. One now writes

T µν = (ε+ P )uµuν − gµνP − σµν (1.17)

where σµν is a new term which turns out to contribute to dissipation. The σµν term

has a trace-free and trace-full part:

σµν = P µαP νβ

[
η

(
∂αuβ + ∂βuα −

2

3
gαβ∂λu

λ

)
+ ζgαβ∂λu

λ

]
. (1.18)
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The coefficients ζ and η are known as the shear and bulk viscosities respectively

and are examples of hydrodynamic transport coefficients, and fluids with η = 0 and

ζ = 0 are known as ‘ideal’. The shear viscosity essentially characterizes the ‘friction’

experienced by a fluid under shear, while the bulk viscosity ζ characterizes the dis-

sipative effects in a fluid under compression. When a non-ideal fluid is compressed,

the pressure temporarily rises by more than is predicted by the equation of state,

and ζ characterizes the time scale over which the system remains out of equilibrium.

1.4.1 Hydrodynamic dispersion relations

To better understand the role of the viscosities, it is helpful to consider the

normal modes of the hydrodynamic equations. Before proceeding to a discussion of

the normal modes associated with the stress tensor, it will be useful to consider the

simple dispersion relation that arises when the system of interest has a conserved

current jµ. This current will play a role in the hydrodynamic equations, with the

equation of motion ∂µj
µ = 0. Its derivative expansion can be written to the leading

dissipative order as

jµ = ρuµ +DP µα∂αρ (1.19)

where ρ is the charge density in the fluid rest frame, and D is a constant that turns

out to be the diffusion constant.

To find the (quasi-)normal modes associated with jµ and T µν , suppose (with-

out loss of generality) that the fluid moves in the z direction, so that the time and

z dependence of the solutions of the equation of motion is exp (−iωt+ kz). The
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equation of motion for jµ reduces to

∂tρ−D∇2ρ = 0 (1.20)

giving the dispersion relation

ω = −iDk2. (1.21)

This is the diffusion equation. Thus, as promised, D has the interpretation of a

charge diffusion constant, and is associated with dissipation.

Now let us turn to the normal modes associated with the stress-energy tensor.

It is not hard to see that there are two sets of normal modes, those associated with

shear, and those associated with ‘bulk’ modes.

Let us first discuss the shear modes. These are obtained from fluctuations of

T 0a and T za, where a = x, y. Then Eq. 1.18 reduces to

Tza = −η∂zuaT0a = (ε+ P )ua (1.22)

so that

Tza = − η

ε+ P
∂zT0a (1.23)

On the other hand, the equation of motion is ∂µTµν = 0, so

−∂tT0a + ∂zTza = 0 (1.24)

Taking into account the t, z dependence of T0a, Tza, we finally learn that

ω = −i η

ε+ P
k2 (1.25)

for the shear mode. This is clearly a dissipative mode: note the i factor. This has

the form of a diffusion dispersion relation for transverse momentum, so that one can

20



define the transverse momentum diffusion coefficient

Dη =
η

ε+ P
(1.26)

The other mode is called the sound mode, which involves the fluctuations of

T00, Tzz, and T0z. The derivation of the dispersion relation for the sound mode is a

bit more algebraically involved than for the shear mode, but the result is[4]

ω = csk −
i

2

4
3
η + ζ

ε+ P
k2 (1.27)

where cs is the speed of sound of the fluid, defined as c2
s = dP/dε. Note again that

the viscosities appear in the dissipative imaginary term in the dispersion relation,

supporting our identification of the σµν term in the hydrodynamic expansion as

being associated with the appearance of dissipation.

1.4.2 Example: Weakly-interacting relativistic gas

A possibly counterintuitive feature of shear viscosity is that the shear viscosity

of an ideal gas is infinite, not zero as one might have naively thought. Thus an ideal

gas is not an ideal fluid. To see how this works, consider the shear viscosity in a dilute

gas of weakly-interacting particles at a temperature T and density n ∼ T 3, with a

dimensionless coupling constant λ. The interparticle separation is n1/3 ∼ 1/T , while

the mean free path can be estimated as

lmfp = (nσv)−1 (1.28)

where v ∼ 1 is the particle velocity, and σ ∼ λ2T−2 is the interaction cross-section,

so that in the λ → 0 limit the mean free path of the particles is much larger than
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the interparticle separation:

1

λ2T
� 1

T
⇒ lmfp � n1/3 (1.29)

A simple way to estimate the shear viscosity is to consider the behavior of

diffusion coefficients in dilute weakly-interacting gasses[5]. In this regime, diffusion

can be thought of as a random walk, so that one can estimate the diffusion coefficient

D as

D ∼ lmfpv (1.30)

For simple charge diffusion, this yields the estimate

D ∼ 1

λ2T
(1.31)

However, for momentum diffusion, we have the relation

Dη =
η

ε+ P
(1.32)

Thus we get an estimate for η:

η ∼ lmfp(ε+ P )v, (1.33)

and since ε ∼ T 4, P ∼ T 4, this means that

η ∼ T 3

λ2
. (1.34)

Clearly, this diverges as λ→ 0. The divergence is easy to trace to the divergence of

the mean free path as the interaction strength goes to zero.

This behavior of the shear viscosity in the weak coupling limit may seem coun-

terintuitive. However, it is important to recall that hydrodynamics - and thus η -
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makes sense on distance scales much larger than the microscopic scales characteriz-

ing the system, which in this case are the interparticle separation and the mean free

path. As the coupling is sent to zero, the mean free path diverges, and one must

do experiments on larger and larger length scales to measure η to stay in the hy-

drodynamic limit. The shear viscosity can be viewed as a proportionality constant

relating the amount of force dF experienced by a fluid area element dA due to a

transverse velocity gradient dv/dy:

dF = η
dv

dy
dA (1.35)

Suppose that we fix the force dF experienced by the area element dA, and imagine

sending λ → 0. To remain in the hydrodynamic limit, we must increase y as λ

decreases. It is then not hard to convince oneself that this implies that η diverges

as λ→ 0.

1.4.3 Transport coefficients from Green’s functions

Suppose one has a microscopic theory describing a fluid in which we are inter-

ested. Since hydrodynamics describes the low-frequency physics of the theory, we

should be able to connect the parameters entering the hydrodynamic equations to

the correlation functions of the microscopic theory. Such a relation must obviously

relate transport coefficients to the low-frequency behavior of the retarded Green’s

functions of the theory.

As sketched in Section 1.2 above, the correlation functions can be calculated by

introducing a source J(x) coupled to the operator O(x) of interest. The correlation
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functions are affected by the presence of the source, and the expectation values of

O becomes non-zero, assuming that O has zero vacuum expectation value. Linear

response theory then implies that if the sources are small, the expectation value of

O shifts from its vacuum value to

〈O(x)〉J = −
∫
d4yGR(x− y)J(y) (1.36)

For the application to hydrodynamics, O = T µν , so we need to couple a source

to T µν . The source for the stress-energy tensor is simply the metric tensor gµν , and

turning on a small source just means introducing a small metric perturbation hµν

around flat space gµν = ηµν + hµν . We can use this to derive formulas for η and ζ

in terms of the retarded correlation functions.

Following Ref. [4], let us take hµν to be of the form

gij = δij + hij(t) (1.37)

g00 = 0, g0i = 0. (1.38)

and work in the rest frame of the fluid, so that uµ = (1, 0, 0, 0). To analyze the effect

of hµν , we need the curved-space generalization of Eq. 1.18, which can be obtained

simply by promoting the partial derivatives to covariant derivatives. With the form

of hµν and uµ we have chosen above, we get only contributions to the traceless part

of σµν , coming from the Christoffel symbols in the covariant derivatives:

σxy = 2ηΓ0
xy = η∂0hxy(t) = iηωhxy (1.39)

where we took the time-depedence of the perturbation to be hxy(t) = eiωthxy.

But from the linear-response relation above, this can be connected to the retarded
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Green’s function of Txy, so that we can write

η = − lim
ω→0

1

ω
ImGR

xy,xy(ω, 0) (1.40)

where

GR
xy,xy(ω, 0) ≡

∫
dtdxeiωtθ(t)〈[Txy(t, x), Txy(0, 0)]〉. (1.41)

This is known as the Kubo formula for the shear viscosity. Very similar arguments

(as shown for instance in Ref. [6]) can be used to derive a Kubo formula for the bulk

viscosity:

ζ = −4

9
lim
ω→0

1

ω
ImGR

tr(ω, 0) (1.42)

where

GR
tr(ω, k) ≡

∫
dtdxeiωtθ(t)〈[1

2
T ii (t, x),

1

2
T ii (0, 0)]〉 (1.43)

While the Kubo formulas give a simple relation between the microscopic

physics in a fluid and its hydrodynamic properties, actual calculations of trans-

port coefficients directly from the microscopic theory are very involved even when

the microscopic theory is weakly coupled[5]. Thus, in a generic field theory it seems

entirely hopeless to calculate the transport coefficients analytically from first prin-

ciples. Moreover, since the Kubo formulas involve retarded correlation functions,

the calculation of transport coefficients necessitates doing calculations in real time,

rather than imaginary time (which suffices for many observables). Lattice Monte

Carlo methods can only yield imaginary-time correlation functions, since Monte

Carlo methods require a real probability measure, which only appears in path inte-

grals after rotation to imaginary time. Thus, one cannot calculate transport co-

efficients using lattice Monte Carlo without attempting to analytically continue
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Euclidean correlations functions back to Minkowski space. This turns out to be

extremely difficult, because in lattice calculations one always works with a finite-

volume Euclidean spacetime, which amounts to working with the theory at finite

temperature, with Matsubara frequencies ω = 2πn/T . Hydrodynamics comes from

the ω → 0 limit of the correlation functions, and accessing this region on the lattice

requires sending T ∼ 0, which corresponds to having an arbitrarily large lattice.

This is impractical, and so hydrodynamic transport coefficients for most field theo-

ries remain out of theoretical reach, resisting attacks by both analytic and numerical

methods.

Remarkably, as we will see, for some very strongly coupled theories, one can

calculate transport coefficients analytically using the gauge gravity duality. The

strong-coupling calculations actually turn out to be much easier than calculating

the transport coefficients in the same theories at weak coupling.
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Chapter 2

Gauge/Gravity Duality

In this chapter we discuss the aspects of the gauge/gravity duality that we use

in the rest of this dissertation. Gauge/gravity duality is a feature of string theory.

String theory is a theory of relativistic strings and their interactions, and while it was

originally invented in an attempt to describe the strong nuclear interaction, it was

quickly recognized that it is really a more fundamental theory that includes quan-

tum gravity instead. The requirement of self-consistency turns out to be extremely

restrictive for a relativistic quantum theory of fundamental strings[7, 8, 9, 10], and

string theory turns out to be consistent only in 10 spacetime dimensions. Further-

more, it is thought that one must make the strings theory supersymmetric to obtain

a consistent theory. (Supersymmetry is a symmetry relating fermions such as quarks

with bosons such as gluons.)

In this chapter, we first simply give a quick ‘user’s guide’ to the duality, and

discuss the dictionary relating gauge theory quantities to gravity theory quantities.

We first show how the duality can be used to calculate Euclidean correlation func-

tions of some strong-coupled field theories. We then briefly discuss how the duality

can be used to calculate real-time correlation functions, which is essential for the

calculation of hydrodynamic transport coefficients. Finally, we give a brief discus-

sion of how the duality arises in string theory. This last discussion is not essential
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for following the rest of the dissertation.

2.1 The gauge/gravity duality dictionary

In this section we present the gauge/gravity duality dictionary. The simplest

form of the duality is called the AdS/CFT correspondence, and the dictionary re-

lating gauge theory quantities to gravity quantities was developed in this context.

The AdS/CFT correspondence states that N = 4 SU(N) super-Yang-Mills (SYM)

theory is equivalent to type IIB superstring theory on an AdS5×S5 background[11].

Let us unpack this statement.

On the ‘CFT’ side of the correspondence, we have the field theory: N = 4

SYM theory, which we sometimes refer to as ‘SYM’ for short. This a Yang-Mills

theory with gauge group SU(N), and the glue part of the theory is the same as

glue sector of QCD. In addition to gluons, SYM theory has fermions that couple

to the gluons, as does QCD. In contrast to QCD, in SYM the fermions transform

in the adjoint representation of the gauge group, just like the gluons. SYM also

has fundamental scalar fields coupling to the gluons, transforming in the adjoint

representation of color; this feature has no analogue in QCD. In QCD, we can adjust

the matter content of the theory (the number of quark flavors and their masses)

without necessarily changing the qualitative features of the theory, confinement and

asymptotic freedom. In contrast, SYM has very specific matter content: Nf = 4

flavors of masslesss Majorana adjoint fermions in SYM, and Nf = 6 flavors of

massless adjoint real scalar fields.
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The matter contents of SYM, as well as the interactions of the fermions and

scalars in the theory, are fixed by the requirement of N = 4 supersymmetry[9, 10].

For us, the important implication of the special symmetries of N = 4 SYM gauge

theory is that SYM theory is a conformal field theory, a CFT. This means that the

theory does not have any mass scales, even after quantization. The matter content

and interactions are chosen so that all of the contributions to the β function cancel

exactly. Thus there is no ΛQCD in SYM. The essential feature of SYM is that there is

no intrinsic scale in the theory on which the dimensionless coupling can depend, the

accordingly coupling g2
YM in SYM does not run. The large amount of supersymmetry

available in SYM theory allows one to show that the above statements remain true

even non-perturbatively.

Thus, in contrast to QCD, the coupling gYM of N = 4 SYM theory an ad-

justable parameter of the theory, and we can tune it to be large or small. So N = 4

SYM theory has two adjustable parameters: the number of colors N , and the ’t

Hooft coupling λ.

On the ‘AdS’ side of the correspondence, we have the gravity theory: type IIB

superstring theory on an AdS5×S5 background. AdS5×S5 is a 10D spacetime that

has the structure of 5D Anti-deSitter space AdS5, and a five-sphere S5. AdS5 has

the metric

ds2 =
r2

R2

(
dxµdx

µ + dr2
)

(2.1)

where µ = 0, 1, 2, 3. The string theory has a rich spectrum, the details of which will

not be important for what follows. There are two dimensionless parameters on the
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gravity side: the string coupling gs and the ratio of the string length scale ls and

the radius of AdS5 space R, R/ls.

Having quickly defined the theories on the two sides of the correspondence, we

now discuss the matching of parameters and observables between the two theories.

The AdS/CFT correspondence is a strong/weak duality, with R/ls ∼ λ1/4, and

gs ∼ 1/N . When the field theory is weakly coupled and λ is small, allowing one to

do perturbative calculations on the field theory side, the dual gravitational theory

is sensitive to stringy physics, and cannot be described by Einstein gravity. In this

regime one must use the full string theory. Furthermore, if N were small in the

gauge theory, string loop corrections would be unsuppressed in the gravity theory,

so that one would not be able to describe the string theory using string perturbation

theory.

On the other hand, suppose that the field theory has λ → ∞ and N → ∞.

On the string theory side, gs → 0, and R/ls → ∞, which implies that the string

theory reduces to a classical two-derivative theory of gravity: general relativity

with some specific matter content. This means that given a dictionary between

the generating functionals of correlation functions of the two theories, one could

calculate the correlation functions of observables in the strongly-coupled quantum

field theory by doing an equivalent calculation in a classical weakly-coupled gravity

theory.

Before we proceed to describe this dictionary., it is important to note that

above we used N = 4 SYM theory, a CFT, as an example, but in fact the discussion

of the domain of validity of the correspondence applies to all of the known examples
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of the gauge/gravity correspondence, including non-conformal theories. In all known

cases, field theories with gravity duals are in some kind of large N limit. In theories

with gravity duals where the conformal symmetry is broken, and the coupling runs,

there is still a strongly-coupled ultraviolet fixed point. The large strength of the

coupling at this UV fixed point is used to provide a separation of scales on the

gravity side between the curvature scale R of the backgrounds and the string scale

ls. There are no gravity duals known for asymptotically free theories like QCD,

which have weakly-coupled ultraviolet fixed points. It is unknown whether a string

dual for QCD exists; if it does, it is expected on general grounds that it would not

have a large separation of scales between R and ls because of the UV behavior of

QCD.

2.1.1 Correlation functions

Consider a local gauge-invariant single-trace operator in the field theory, such

as O = 1
Nc

trF 2. As we discussed previously in Sec. 1.2, to find the correlation

functions in the field theory, one introduces a source φ0 that couples to O. The

correlation functions of O can then be found by taking functional derivatives with

respect to φ0(x) of

〈e
R
d4xφ0(x)O(x)〉CFT (2.2)

Gauge-invariant single-trace operators in a CFT are characterized by the rep-

resentation of the Lorentz group they transform in (e.g., scalar, spinor, vector, etc).

In addition to their symmetry properties under the Lorentz group, operators in a
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field theory have scaling dimensions, which give their behavior under scale transfor-

mations. For instance, classically the operator trF 2 has scaling dimension ∆ = 4,

since it has two derivatives and two gauge fields. In the full theory, quantum cor-

rections usually change the value of the scaling dimension away from the classical

one. That is, operators can have anomalous dimensions.

The gauge/gravity duality dictionary associates a bulk field in the 10D gravity

theory with every gauge-invariant local operator in the CFT. To state how these

bulk fields are related to field theory quantities, we need a few more facts about the

gravity theory. Recall that the metric of AdS5 × S5 is

ds2 =
r2

R2
dxµdx

µ +
r2

L2
dr2 + L2dΩ2

5 (2.3)

where dΩ2
5 is the metric on the S5. We can make a choice of coordinates in the

above metric z = R2/r, which leads to an often more convenient expression for the

AdS5 × S5 metric,

ds2 =
R2

z2

(
dxµdx

µ + dz2
)

+ L2dΩ2
5. (2.4)

µ = 0, 1, 2, 3 are the directions the field theory dual turns out to ‘live’ in, and z is

an extra ‘holographic’ direction. z turns out to have the interpretation of something

like an energy scale in the dual field theory, with small z corresponding to high

energies and large z corresponding to low energies in the field theory. AdS5 has a

boundary located at z → 0 in the coordinates used above, which is where the field

theory can be said to ‘live’. Note that because AdS5 has a boundary, given a field

in AdS5, one must specify a boundary condition at z = 0 to obtain a solution to the

equations of motion.
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The isometry group of AdS5 is SO(4, 2), which encodes the conformal symme-

try of the dual CFT, which is described by the group of conformal transformation

SO(2, 4). In generalizations of the AdS/CFT correspondence, the S5 is replaced

by some other 5D compact manifold X5, while the AdS5 is usually replaced by a

space which becomes asymptotically AdS5 in the limit r → ∞. This corresponds

to having a dual field theory with broken conformal symmetry at low energies (‘the

infrared’, referred to as the IR), but with conformal symmetry reemerging at high

energies (‘the ultraviolet’, which is referred to as the UV).

It turns out that many calculations, the S5 part of the background is unimpor-

tant, and we suppress the dependence of the metric on the S5 in what follows. This

is because for many quantities, the details of X5 affect the details of the matching

of gravity theory quantities to field theory quantities, but not the general features

of the results. In particular, the dependence of the bulk fields on the compact man-

ifold will not be important for the quantities we will be calculating in the rest of

this dissertation.1.

Now we can state the mapping between bulk fields and field theory quantities.

A scalar operator O with scaling dimension ∆ in the field theory is associated with

a scalar field φ(x, z) in AdS5. More generally, a vector operator is associated with

a vector field in the bulk, tensor operators with bulk tensor fields, and so on. The

boundary value of φ(x, z) at z = 0 is associated with the source φ0(x) of O via the

1For some remarks on how our neglect of the X5 affects our results, see the discussion in Chapter

3 regarding matching some of the parameters appearing in our results in a certain special case,

with those of Ref. [12], in which the full 10D theory is analyzed.
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relation

φ(x, z → 0) = z4−∆φ0(x). (2.5)

The factor of z4−∆ is necessary to give φ0(x) the correct mass dimension [φ0] = 4−∆,

since a 5D scalar field in AdS is dimensionless. To see this, note that as befits a

gravitational theory, the 5D action has an overall dimensionful factor involving the

5D Planck scale:

S5D =
1

2κ2

∫
d5x
√
g
{
R + (∂φ)2 +m2φ2 + V (φ)

}
(2.6)

where R is the Ricci scalar with [R] = 2, and κ2 = 8πGN = 4π2R3/N2 is the 5D

Newton constant 2 with [κ2] = −3.

The gauge/gravity conjecture then consists of the claim that

〈e
R
d4xφ0(x)O(x)〉CFT = exp

(
Sbulk[φ]

∣∣∣
φ(z→0,x)=z4−∆φ0(x)

)
(2.7)

On the left hand side of this equation is the generating functional of connected

correlation functions of O in the strongly-coupled large N quantum field theory.

On the right hand side, we would in general have the partition function of the

string theory, which in the classical (due to large N) and low energy (due to strong

coupling) limits reduces to that of a two-derivative theory of gravity coupled to

matter fields φ. The gravitational action Sbulk is evaluated on bulk fields satisfying

the bulk equations of motion, subject to the boundary condition in Eq. 2.5.

2The precise relation of κ with N requires that one know the full supergravity dual, including

the behavior of the solution on X5. Above we wrote the relation of κ with N that is appropriate

to having X5 = S5, as happens with N = 4 SYM.
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The full (classical + quantum) scaling dimension of a scalar operator in the

field theory determines the mass-squared m2 of the associated bulk scalar field:

m2R2 = ∆(∆− 4) (2.8)

An example of a dimension-4 scalar operator in N = 4 SYM is just the lagrangian

density L, which is sourced by the YM coupling constant. Since N = 4 is a CFT,

the coupling does not run, and the anomalous dimension of L zero. So the total

scaling dimension of L remains ∆ = 4. The dual bulk field is a massless 5D scalar

field. In the supergravity theory, this massless 5D scalar is the dilaton.

The correspondence also applies to higher-spin operators. For instance, the

stress-energy tensor T µν of the field theory has scaling dimension ∆ = 43, and is

sourced by the 4D metric in the field theory. The corresponding tensor bulk field is

the 5D metric gMN .

Using the dictionary, one can now calculate (for instance) the Euclidean two-

point correlation function of a scalar operator with dimension ∆ > 1 in N = 4 SYM.

The calculation on the gravity side proceeds by introducing a bulk scalar field with

the appropriate mass into the Wick-rotated action (t→ it):

S5D =
1

2κ2

∫
d5x
√
g

{
gMN∂Mφ∂Nφ−

1

2
m2φ2

}
(2.9)

=
1

2κ2

∫
d5x
√
g

{
1

2
φ(�−m2)φ) + ∂N(φ∂Nφ)

}
(2.10)

where � is the curved-space d’Alembertian operator and m2L2 = ∆(∆−4), and the

metric is that of AdS5 space, Eq. 3.4, as is appropriate for strongly-coupled large

3The stress-energy tensor is conserved, so that ∂µTµν = 0 in flat space. The anomalous dimen-

sions of conserved currents are exactly zero[2].
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N N = 4 SYM. Terms more than quadratic in φ do not affect the calculation of

two-point functions, which is why we did stopped at the mass term in writing the

potential for the scalar above. To find the two-point function, one must solve the

equations of motion for the 5D scalar

(
∂2
z −

3

z
∂z − q2 − m2R2

z2

)
φ(z, q) = 0 (2.11)

where we went to 4D Fourier space, subject to the boundary condition

φ(z → 0, q) = z4−∆φ0(q) (2.12)

where φ0(x) is a prescribed source function. The solution of this equation which is

regular in AdS5 is

φ(z, q) = fq(z)φ0(q). (2.13)

where

fq(z) =
z2−∆J∆−2(−iqz)

ε2−∆J∆−2(−iqε)
(2.14)

where Jn(y) is a Bessel function, normalized so that at the UV boundary z = ε→ 0,

we have fq(ε) = 1, and ε has been introduced as a UV cutoff. One must then

evaluate the action on this solution. Clearly, only the boundary term remains once

this is done:

S =

∫
d4q

(2π)4
φ0(−q)F(q, z)φ(q, z)|z→0 (2.15)

where

F(q, z) =
N2

8π2

1

z3
f−q(z)∂zfq(z) (2.16)

Now one simply takes two derivatives with respect to φ0(x) to obtain the two-point

36



Euclidean correlation function:

〈O(x1)O(x2)〉CFT = −2 lim
z→0
F(p, z). (2.17)

For ∆ = 4, for instance, this evaluates as4.

〈O(x1)O(x2)〉∆=4
CFT =

N2
c

16π2
q4 log(q2ε2) (2.18)

which is the behavior one expects from the field theory side.

It is natural at this point to ask how one really goes about matching bulk fields

and gauge theory operators. The dictionary matches operators with given Lorentz

quantum numbers and total scaling dimension with bulk fields with particular 5D

masses. But the total scaling dimension of a gauge theory operator is in general not

calculable in perturbation theory when λ is large, and generically one expects large

quantum corrections to the classical scaling dimension.

This strong coupling problem means that given a generic bulk field with mass

m2R2 = ∆(∆ − 4), in general one cannot identify to which specific gauge theory

operator it corresponds. One does not even know (without further information)

whether there exists an operator in the gauge theory that has total scaling dimension

∆. In special cases (for instance with N = 4 SYM), one can deduce the existence of

such operators and their form in terms of the fundamental fields of the theory. For

our purposes here, we can assume that such operators do exist for the bulk fields

of interest. With this assumption, the gauge-gravity duality allows one to calculate

4We have thrown away terms that diverge as z → 0. These divergences correspond to contact

terms in the field theory, and the justification for discarding them in this case is the subject of

holographic renormalization theory[13, 9]
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the correlation functions of such operators.

However, despite the λ→∞ limit inherent to gauge/gravity duality, one can

sometimes symmetries and associated non-renormalization theorems to identify the

dual gauge theory operator. For instance, as we remarked above, the bulk metric is

associated with the stress tensor of the field theory, and the total scaling dimension

of the stress tensor is equal to its classical scaling dimension. Thus means that it is

straightforward to identify the correlation functions of the stress tensor in terms of

quantities on the dual gravity side.

2.2 Breaking of conformal symmetry

Let us again consider the relation between the scaling dimension of scalar

gauge theory operators and the mass of the corresponding bulk fields:

m2
5 = ∆(∆− 4) (2.19)

This formula tells us that irrelevant scalar operators correspond to bulk scalar fields

with positive m2, exactly marginal operators correspond to fields with m2 = 0, and

relevant operators correspond to fields with m2 < 0. In flat space, fields with m2 < 0

are a signal of instability, but this is not necessarily the case in a curved space like

AdS5: there is no instability for fields that have m2R2 > −3 [14]. In the field theory,

this corresponds to the restriction ∆ > 1, which is simply the unitarity bound on

the dimension of a scalar operator in 4 dimensions[15].

Suppose that one wants to study systems with broken conformal symmetry in

the dual field theory. A way to do this is to add an operator as a deformation. To be
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able to use the AdS/CFT dictionary, we need the field theory to remain conformal

in the UV. This means that the deformations we will consider are relevant, with

∆ < 4. For instance, one can turn on a mass for the fermions, which at weak

coupling corresponds to adding a ∆ = 3 operator to the theory. This introduces a

scale, and breaks conformal symmetry.

As was noted in the preceding section, once conformal symmetry is broken in

the field theory, the dual geometry will no longer be AdS5. The bulk scalar field

now has to be allowed to backreact on the geometry. The reemergence of conformal

symmetry in the UV is reflected in the geometry becoming asymptotically AdS5 as

z → 0. The effect of conformal symmetry breaking on hydrodynamic observables is

the central subject of the next two chapters.

2.3 Finite temperature and real-time correlation functions in AdS/CFT

Turning on a finite temperature breaks conformal invariance in the field theory,

since a non-zero temperature introduces a scale into the theory. On the gravity

side, the claim of the gauge/gravity duality dictionary is that the background can

no longer be AdS5. It turns out that in the cases of interest in this dissertation,

the dual background corresponding to a large N strongly coupled CFT with finite

temperature T is that of a Schwarzschild black hole in AdS5, often referred to later

as AdS5-Schwarzschild[16]:

ds2 =
r2

R2
(−f(r)dt2 + dxidx

i) +
R2

r2f(r)
dr2 (2.20)
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where f(r) = 1− r4
0/r

4 and i = 1, 2, 3 are the spatial directions of the field theory.

The temperature T of the field theory is identified with the Hawking temperature

of the black hole

T =
r0

πR2
. (2.21)

Note that the black hole horizon is a flat 3-brane in this solution, rather than the

spherical horizon of a Schwarzschild black hole in 4D. The entropy of the dual field

theory is associated with the Bekenstein-Hawking entropy S = A/4G, where A is

the area of the horizon. This gives an entropy density for large N , strongly coupled

N = 4 SYM of

s = S/V =
π2

2
N2T 3. (2.22)

This turns out to be 3/4 of the entropy density of N = 4 SYM theory[10, 9]. The

N2 dependence makes sense given that this is a theory with N2 deconfined degrees

of freedom.

2.3.1 Calculation of s and T for generic black brane geometries

It will be important later in this dissertation to be able to calculate s and T

in generic backgrounds, so we give a discussion of how this is done here. Consider

the following geometry:

ds2 = a(r)2
(
−h(r)dt2 + dx2

)
+

dr2

h(r)b(r)2
(2.23)

Here h has a simple zero at r = rh, the location of the black hole horizon, and a, b

are non-zero at r = rh. The entropy density is very simple to obtain, as it can be
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read off directly from the geometry using the relation S = A/4G:

s =
2π

κ2
5

|a(rh)|3, (2.24)

where we chose to write the Newton constant in terms of the 5D Planck constant

κ2
5 = 8πG.

There are a number of ways to calculate the Hawking temperature, but the

simplest way in practice is via ‘analytic continuation’. In this method, one does

a Wick rotation t → iτ . In field theory, the periodicity β of τ , τ + β ∼ τ , is

identified with the temperature T = 1/β. In the gravity theory, one makes the

same identification. However, the metric must remain free of conical singularities

for consistency. The demand that there be no conical singularity in the metric at

r = rh relates T to the values of the metric coefficients at r = rh.

To see how this works, let us consider the line element above for r = rh + ε,

where ε� 1. In this region, after the Wick rotation we get

ds2 = a(rh)
2h′(rh)εdτ

2 +
dε2

h′(r)εb(rh)2
(2.25)

where we have dropped the dx2 part of the metric, since it won’t play a role in what

follows. In terms of a new coordinate

u =
2ε1/2

b(rh)h′(rh)1/2
, (2.26)

the metric takes the form

ds2 = a(rh)
2h′(rh)

2b(rh)
2u

2

4
dτ 2 + du2. (2.27)

This looks like the metric for a flat plane in polar coordinates, with τ as the angular

variable θ ∼ θ + 2π. If the metric is to have such an interpretation, we must have
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(at u = 1)

2π =

∫ 2π

0

dθ =

∫ β

0

1

2
|a(rh)h

′(rh)b(rh)|dτ (2.28)

=
1

2
|a(rh)h

′(rh)b(rh)|β,

and since β = 1/T , we obtain

T =
|a(rh)h

′(rh)b(rh)|
4π

(2.29)

2.3.2 Real-time correlation functions

Now we can discuss the calculation of real-time correlation functions. The

introduction of a black hole horizon presents some subtleties for the calculation

of two point functions, since in addition to regularity in the UV, one must now

also specify the boundary condition for solutions of the equations of motion at the

horizon. The correct choice for calculating retarded two-point correlation func-

tions turns out to be the imposition of incoming-wave boundary conditions at the

horizon[17, 18, 19, 20, 21, 22, 23, 24].

The other subtlety one must deal with concerns the behavior of the boundary

term in Eq. 2.9 when the background contains a black hole. Since there are now two

boundaries, one at z = 0 and the other at the black hole horizon z = zh, there are

two contributions in the boundary term when the action is evaluated on solutions

of the equations of motion subject to the incoming-wave boundary condition. The

correct prescription was rigorously justified in Refs. [21, 20]. To obtain two-point

retarded correlation functions, which is all we will need in this dissertation, the
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prescription is to simply discard the contribution from the horizon:

GR(q) = −2 lim
z→0
F(q, z) (2.30)

where F(q, z) is defined analogously to the Euclidean case, but now one must solve

the equations of motion in the black hole background, subject to incoming-wave

boundary conditions at the horizon.

2.4 AdS/CFT duality in string theory

In this section we sketch the arguments that lead to the AdS/CFT conjecture

in string theory.

As mentioned in the introduction, string theory is a theory of relativistic quan-

tum strings, moving in 10 spacetime dimensions. There are two kinds of strings in

string theory: open and closed strings. Closed strings do not have end-points, and

their spectrum contains massless spin-two excitations, which are nothing other than

gravitons; this is how it was first realized that string theory contains gravity. Open

strings have end-points, and their spectrum generally contains various kinds of gauge

fields.

String theory turns out to contain more than just strings. It also contains

non-perturbative extended excitations called ‘D-branes’, that look like soliton-like

hyperplanes in the 10D spacetime. These end points of open strings can be free to

move around in spacetime, or they can end on a D-brane. (The ‘D’ in D-brane comes

from the fact that strings that have an end that sits on a D-brane have Dirichlet

boundary conditions at that end.) The open string spectrum contains massless
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vector excitations, which are associated with U(1) gauge fields.

D-branes are extended objects, and a Dp brane has a p+1 dimensional world-

volume. In this section we focus on D3 branes, which have 4D world-volume. Con-

sider a system ofN D3 branes lying on top of each other in a 10D spacetime described

by type IIB superstring theory. The AdS/CFT conjecture is that this system has

two equivalent descriptions: N = 4 SU(N) super-Yang-Mills theory, which is a CFT,

and type IIB superstring theory on an AdS5 × S5 background.

At low energy, the closed strings give rise to a 10D supergravity theory. Keep-

ing this at the back of our minds, consider the open string sector associated with

strings ending on the D3 branes, and follow the discussion of Ref. [9]. Let us first

consider a perturbative description of the open-string dynamics of the D3 brane

stack. In this description, one considers open strings with both ends attached to

the D3 branes.

The perturbative low-energy spectrum of open strings in the presence of one

D3 brane contains maximally supersymmetric U(1) gauge theory living on the world-

volume of the D3 brane, in four dimensions. The U(1) gauge theory comes from

open strings with both ends attached to the D3 brane. If one has N coincident D3

branes (that is, the branes are right on top of each other), the low-energy theory

must capture the fact that each open string can start and end on N different branes,

so that there are a total of N2 different kinds of strings. The low energy theory turns

out to be N = 4 YM SU(N) gauge theory (N = 4 SYM) living on the world-volume

of the stack of N D3 branes. 5

5One might think that the theory would have gauge group U(N) instead, but it turns out that
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As described in the previous section, N = 4 SYM is a very special gauge

theory: the contributions of the gauge bosons, fermions and scalars in the theory

to the beta function cancel, and it can be shown that the theory is conformal. In

particular, the coupling of the N = 4 SYM theory does not run, in contrast to the

behavior of the coupling in QCD. The YM gauge coupling g2
YM is related to the

string coupling gs via

g2
YM = 4πgs (2.31)

The above perturbative description of the open-string sector turns out to be

valid when

λ = 2πgsN � 1, (2.32)

since string interactions cost powers of gs, and there are N open-string ‘species’ to

consider due to the presence of N D3 branes. This means that the perturbative

open string description is valid when N = 4 SYM is weakly coupled.

Next, one can show that in the perturbative (in the sense that λ � 1) low

energy limit (compared to 1/ls), it turns out that the open strings living on the

branes decouple from the closed strings living in the 10D ‘bulk’ spacetime. The

reason for this is that it can be shown that the energy density of the D3 branes

scales as N/gs, while the Planck mass scales as 1/g2
s [9]. As a result, the closed string

sector does not feel the presence of the D-branes, and the supergravity solution in

this regime is just a flat 10D space. Thus we find that at low energies, the stack of N

D3 branes can be described by weakly-coupled N = 4 SYM theory and supergravity

the U(1) factor decouples from the world-volume theory[9, 10]. In any case, the difference between

U(N) and SU(N) is subleading in the large N limit.
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fields living on a 10D flat background, which the two sectors decoupled from each

other.

To recapitulate, in the λ� 1 limit, the string theory reduces to two decoupled

systems in the low-energy limit’:

• Flat 10D type IIB supergravity

• N = 4 SYM .

Now consider the limit when λ � 1. Now we cannot trust the perturbative

description of the D-branes in terms of open strings. However, in this limit the

energy density of the D3 brane stack becomes non-negligible, and we have to into

account the effects of the D3 branes on the supergravity solution.

Following Ref. [10], the relevant part of the low-energy (low compared to 1/ls)

effective action describing the kind of string theory we will be focusing on here (type

IIB string theory) is given by

Sstring =
1

2κ2

∫
d10x e−2Φ

(
R + 4∂MΦ∂MΦ− 1

4
F5 ∧ ?F5

)
(2.33)

where M = 0, 1, . . . 9, Φ is a scalar field called the dilaton, R is the Ricci scalar

associated with the metric G, F5 is the field-strength 5-form associated with the

4-form field that is part of the massless string spectrum, and ? is the Hodge star

operator that maps p-forms to 10− p forms. This action must be supplemented by

a self-duality constraint F = ?F .

A stack of N coincident D3 branes is a solution to the equations of motion
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associated with Eq. 2.33 which takes the following form

ds2 = H−1/2dxµdxµ +H1/2
(
dr2 + r2dΩ2

5

)
(2.34)

F5 = N
1

2
(ω5 + ?ω5)

where µ = 0, . . . 3 are the coordinates along the world-volume of the D3 brane, dΩ2
5

is the metric on the five-sphere S5,

H = 1 +

(
R

r

)4

(2.35)

and ω5 is an appropriately normalized volume form on S5, obeying

∫
S5

ω5 = 1⇒
∫
S5

F5 = N (2.36)

The solution for the dilaton is related to the string coupling as

e2Φ = g2
s , (2.37)

while (
R

2πls

)4

=
gsN

4π3
(2.38)

For this solution to be reliable, two conditions must be met. First, we must

be able to neglect string loop corrections, which means that we must have gs → 0.

Second, we have to make sure that the geometry does not have any regions where

curvatures become comparable to the string scale, since then we would become

sensitive to higher derivative terms that are not included in Eq. 2.33. It is natural

to expect trouble with the latter issue when R→ ls in the D3 brane stack solution,

and a calculation of curvature invariants for this geometry confirms that the solution
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is reliable only when R/ls � 1. This corresponds to requiring gsN � 1. Translating

to YM theory quantities, we see that the supergravity solution above is reliable when

gs =
g2
YM

4π
∼ 1/N � 1 (2.39)

gsN =
g2
YMN

4π
� 1 (2.40)

Now consider the low energy limit for excitations in the background described

by Eq. 2.34. There turn out to be two kinds of decoupled low-energy excitations in

this background: ones that live in the region r � R, where the spacetime is flat,

and ones that live in the ‘near-horizon’ region where r � R[9]. The near-horizon

limit has the metric

ds2 =
r2

R2
dxµdx

µ +
R2

r2

(
dr2 + r2dΩ2

5

)
(2.41)

which is simply AdS5 × S5.

Thus in the λ � 1 limit, the string theory reduces to two decoupled systems

in the low-energy limit:

• Flat 10D type IIB supergravity

• Type IIB supergravity on AdS5 × S5

In both the λ� 1 and λ� 1 limits, the string theory reduces to two decoupled

pieces. In both cases one of these pieces is described by supergravity on a flat 10D

space. The AdS/CFT conjecture is that the remaining two pieces are equivalent to

each other: N = 4 SYM is equivalent to type IIB supergravity on AdS5 × S5.

The AdS/CFT conjecture involves a strong/weak duality, and thus is very

hard to prove, because the regimes in which one can do reliable calculate in the
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CFT and in the gravity dual do not overlap. However, the conjecture has passed a

large number of consistency tests. For instance, the coupling dependence of some

special quantities (ones connected with anomalies, for instance) in N = 4 SYM is

protected by symmetries, and can be calculated in both the field theory and the

dual. In all cases investigated so far, such calculations, which look very different

on the two sides of the duality, give the same answer. As a result, it is generally

believed in the community that the AdS/CFT conjecture is correct.
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Chapter 3

Sound Bound

This chapter focuses on the behavior of the speed of sound in fluids described

by theories with gravity duals, and is based on work done with Abhinav Nellore

and Thomas Cohen which was published in Ref. [25]. The chapter follows the pre-

sentation of Ref. [25], and is organized as follows. After an introduction describing

the search for universal quantities that are not sensitive to the details of the rather

special theories that posess gravity duals, we describe a class of non-conformal field

theories which have tractable gravity duals. We then calculate the speed of sound

in this class of theories, and show that the speed of sound always approaches a third

the speed of light from below. This is followed by a brief review of other speed of

sound calculations in the literature that serves to place our results in context. We

then make a conjecture that the speed of sound bound may continue to hold outside

the class of theories for which we were able to prove it, and give some encouraging

evidence for some variants of the conjecture. Finally, there is a technical appendix

describing the calculations techniques.

3.1 Introduction

As was discussed in the previous two chapters, gauge/gravity duality can be

used to get insights into the behavior of some strongly-coupled fluids described by
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large Nc gauge theories. The dual gravitational theory becomes tractable when the

large Nc field theory is strongly-coupled, and reduces to general relativity coupled

to various matter fields as discussed in the previous chapter. One can then use

the duality to explore the properties of a strongly-coupled quantum field theory by

doing classical calculations in the gravity dual. In particular, one can calculate

transport coefficients, which are generally not theoretically accessible in strongly

coupled gauge theories.

Unfortunately, there is no gravity dual known for QCD, and thus the gauge/gravity

duality cannot be used to make reliable quantitative predictions for phenomenolog-

ically interesting theories. However, we might hope to be able to develop some

qualitative insights into the behavior of generic strongly-coupled systems by looking

for quantities that do not depend sensitively on the details of any particular grav-

ity dual construction. With some luck, the lessons gleaned from such ‘universal’

properties may tells us something about theories that do not have known gravity

duals.

The most well-known example of a universal quantity in the hydrodynamics

of strongly coupled theories with gravity duals is the ratio η/s of the shear viscosity

to the entropy density. This ratio takes the value η/s = 1/4π (in units where

kB = ~ = 1 ) in all theories with gravity duals, in the sense that the dual theories

are in the λ→∞, Nc →∞ limits[23, 19, 17, 26, 4]. This result does not depend on

any details of the gravity duals. For instance, it does not depend on the dimension of

the spacetime the field theory lives in, or on the temperature and chemical potential.

As was argued in Chapter 1, the viscosity of a weakly-coupled gas diverges with the
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strength of the coupling. In the opposite limit, with a strongly-coupled system, one

might expect that η/s would approach zero, or perhaps saturate at some theory-

dependent finite value of order unity. The fact that systems with gravity duals

universally have η/s = 1/4π may suggest that η/s indeed saturates at a finite value

as the coupling becomes large, and was originally interpreted as implying that η/s

approaches the same universal value 1/4π for all strongly-coupled theories.

The value of η/s in theories with gravity duals turns out to be lower than the

value of η/s for any known fluid in nature. The only fluid competitive with the

value of η/s seen in theories with gravity duals is the sQGP seen at RHIC. The fact

that η/s as measured at RHIC is of the same order of magnitude1 as 1/4π has been

taken to be one of the reasons for believing that the QGP is strongly coupled in the

conditions explored at RHIC.

The phenomenological implications of the universality of η/s in theories with

gravity duals are not clear[27, 28]. Furthermore, the deviations from η/s = 1/4π

as one moves away from the Nc → ∞, λ → ∞ limit do not appear to be universal,

as the sign of the deviations has been shown to depend on the details of the theory

one is working with[29, 30]. However, it remains important to search for universal

properties of theories with gravity duals for both theoretical and phenomenological

reasons.

In this chapter, we consider the behavior of the speed of sound vs in theories

with gravity duals. In any consistent relativistic theory, the speed of sound must

1There are large uncertainties in the extraction of η/s from the experimental data on the sQGP,

so arguably the best one can do is say that η/s in the sQGP is of the order of 1/4π.
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be less than the speed of light, so that v2
s ≤ 1. We show that in the simplest (but

broad) class of non-conformal 4D field theories with gravity duals, v2
s obeys a much

stronger bound: v2
s is always bounded from above by 1/3 at high temperatures. We

work with natural units c = ~ = kB = 1 throughout; while our results can be easily

generalized to theories in D dimensions, we focus on the specific case of D = 4, as

it is the case of phenomenological interest.

The speed of sound is known not to be universal in the same sense as η/s, since

the speed of sound depends on the detailed properties of a system both at weak and

strong coupling. For instance, the speed of sound depends on the temperature T

and chemical potential µ of a system. We work with µ = 0 throughout, but we do

not expect that turning on a finite chemical potential would qualitatively affect our

results so long as µ� T . In addition to showing that v2
s ≤ 1/3 at high temperatures,

we will show that the temperature dependence of v2
s takes a certain universal form

at high temperature2. Moreover, since v2
s > 1/3 has so far never been observed

in energetically stable configurations of theories with gravity duals, it is tempting

to speculate that v2
s = 1/3 is a universal upper bound in a wide class of strongly

coupled gauge theories, at least at high temperatures.

As was mentioned in Chapter 1, the speed of sound can be found from v2
s =

∂p/∂ε, where p is the pressure of a fluid and ε is its energy density, both measured

in the local fluid rest frame. When µ = 0, one can use standard thermodynamic

2By high temperatures we mean T � Λ, where Λ is any other energy scale in the system.
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relations to rewrite v2
s in terms of the entropy density s as

v2
s =

d log T

d log s
. (3.1)

If one turns on a temperature in a 4D conformal field theory, the temperature

provides the only scale, so that by dimensional analysis, one must have s ∼ T 3,

and v2
s = 1/3. In non-conformal theories, on the other hand, there are by definition

scales other than the temperature, and v2
s has a non-trivial dependence on T and

other properties of the theories.

3.2 v2
s in strongly-coupled theories

We now turn to the calculation of the speed of sound in strongly-coupled large

N gauge theories. Such calculations are only tractable in theories with gravity duals,

which are best understood when the dual field theories are CFTs. However, since

v2
s = 1/3 in CFTs at finite temperature, with a CFT there is nothing to calculate,

and we must consider non-conformal theories. Thus we will study the behavior of

the speed of sound in gravity duals of theories with broken conformal symmetry.

Suppose that we have a large N strongly coupled conformal field theory with

an action SCFT that has a gravity dual. To break conformal symmetry in the field

theory, we can add a deformation term to the SCFT with a gauge-invariant single-

trace scalar operator O∆ of total scaling dimension ∆:

SQFT = SCFT +

∫
d4xΛ4−∆O∆, (3.2)

where Λ is the mass scale introduced by the deformation. We restrict our attention

to deformations by relevant operators, for which ∆ < 4, since in this case the theory
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is still conformal in the far UV. For instance, at weak coupling, an example of an

operator deformation with ∆ = 3 is furnished by O3 = ψ̄ψ, where ψ is a fermion

field. Such a the deformation has the interpretation of turning on a mass for some

fermions in the CFT, so that Λ = mf . One can also imagine adding multiple relevant

deformations of this sort, with several Λi. Turning on multiple deformations turns

out not to affect our results in any deep way (in fact they turn out to be essentially

unaltered), so for simplicity we will only consider deformations of the form in Eq. 3.2

above in what follows, and comment on the extension to multiple scalar deformations

at the end.

Let us now consider what the above field theory setup looks like on the gravity

dual side. The gravity dual theory is a 10D theory of gravity coupled to various

matter fields. We assume that the geometry factorizes into a non-compact manifold

times a compact manifold, as in the paradigmatic case of N = 4 SYM, where the

dual geometry at zero temperature is AdS5 × S5. For a generic CFT that has a

gravity dual (up to the caveats in Footnote 3), the compact space is in general some

compact 5D manifold X5, while the non-compact manifold remains AdS5, since the

isometries of anti-deSitter space encode the conformal symmetries of the CFT. The

addition of the conformal-symmetry breaking scalar operator O∆ in the field theory

corresponds to turning on a scalar field φ in the gravity dual. The scaling dimension

∆ of O∆ is encoded on the gravity side in the mass term of the bulk scalar field, as

described in Chapter 2.

The details ofX5 do not play a direct role in the thermodynamics and transport

properties of the dual gauge theory, so we work with the non-compact 5D part of the
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dual geometry in what follows. More precisely, we assume that there is a consistent

truncation of the 10D supergravity equations of motion where the scalar field φ

has a trivial profile on X5.3 Then one can do the trivial integral over X5 in the

action, resulting in an effective 5D action, which is what we work in the rest of the

chapter. The volume of the X5 manifold then shows up in the relation between the

5D Newton constant and the 10D Newton constant, but does this does not affect

calculations of thermodynamic or hydrodynamic observables.

The gravity theory which is dual to the class of non-conformal field theories

we are considering has a 5D effective action given by

S =
1

2κ2
5

∫
d5 x
√
−g
[
R +

12

L2
+

1

2
(∂φ)2 − V (φ)

]
. (3.3)

where κ2
5/(8π) ∼ 1/N2 is the 5D gravitational constant, R is the Ricci scalar as-

sociated with the 5D metric gMN , φ is a real scalar field which is associated with

the operator O breaking the conformal symmetry in the dual field theory, and we

assume that V (φ) is a smooth potential that is symmetric about an extremum at

φ = 0. When φ = 0, the equations of motion associated with Eq. 3.3 are simply

the Einstein equations with a positive cosmological constant 12/L2, and have the

solution of an AdS5 space with radius L:

ds2 =
L2

z2
(dz2 + dxµdx

µ) (3.4)

3It is also possible to have a CFT which has a non-factorizable dual geometry[31] that takes

the form of a ‘warped product’; Ref. [32] gives a survey of some examples of field theories with

duals of this sort. It would be an interesting problem for future work to understand the extension

of the class of 5D effective theories we study here to cover deformations of such CFTs.
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On the field theory side, this corresponds to the geometry dual to the the original

CFT, with the deformation turned off. When φ 6= 0 in the gravity dual, the con-

formal symmetry breaking deformation is turned on, and the dual geometry is no

longer described by Eq. 3.4.

The specific form of the scalar potential V (φ) appropriate to various specific

dual gauge theories would be determined when the action is embedded in a partic-

ular string dual. At the level of the 5D effective theory, different choices of V (φ)

correspond to different dual gauge theories. Thus Eq. 3.3 describes the gravity dual

of a whole class of field theories, rather than the dual to a particular specific gauge

theory.

The AdS/CFT dictionary imposes one condition on V (φ), coming from the

fact that φ is dual an operator of scaling dimension ∆. The scaling dimension ∆ is

encoded in the mass term for the φ:

lim
r→∞

V (φ) =
1

2L2
∆(∆− 4)φ2 +O(φ4) , (3.5)

Our interest is in relevant deformations constrains, so that ∆ < 4, while the

Breitenloher-Freedman bound mentioned in Chapter 2 implies that m2L2 > −4,

which translates into the unitarity bound in field theories of ∆ > 1. Here we re-

strict our attention to 2 < ∆ < 4, since there are some technical subtleties with

extending our analysis to the region 1 < ∆ ≤ 2; however, it can be shown our

results continue to hold throughout the region 1 < ∆ < 4 [33]. We make no further

assumptions about V (φ).

So far we have not discussed the introduction of a finite temperature T in the
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field theory. There are now two sources of conformal symmetry breaking in the field

theory: the relevant deformation, and the non-zero temperature. On the gravity

side, turning on a finite temperature translates to the appearance of a black hole in

the dual geometry4. We are interested in describing 4D systems at finite temperature

with translational invariance in the (t, ~x) directions and SO(3) invariance in the ~x

directions. The most general metric ansatz in the gravity dual consistent with these

symmetries is

ds2 = a2(−hdt2 + d~x2) +
dr2

b2h
, (3.6)

where a, b, and h are functions of the holographic coordinate r only, and φ = φ(r).

The function h(r) is assumed to have a simple zero at r = rh, where a black hole

horizon occurs, while a, b and φ are all assumed to be regular at r = rh.

The dictionary identifies the entropy density s and temperature T of the dual

field theory with those the dual black hole. In terms of the ansatz above, s and T

can be read off in the standard way:

s =
2π

κ2
5

|a(rh)|3 , T =
|a(rh)b(rh)h

′(rh)|
4π

. (3.7)

Single-scalar systems of the sort we are considering here have been previously ex-

plored in Refs. [34, 35], and it has been found that such systems have quite rich

thermodynamics: the systems can undergo first- or second-order phase transitions,

depending on the form of V (φ).

Let us now demonstrate that v2
s ≤ 1/3 at high T in all theories of this class.

The basic idea is that because at high temperatures the relevant deformation has

4We are focusing on the deconfined phase, for which the dual involves a black hole[16].
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a small effect on the dual field theory, in the gravity dual the scalar field should

be ‘small’ at high temperatures, so that φ(r) � 1. By high T , we mean T much

larger than all other energy scales in the system. Our derivation self-consistently

shows that small φH ≡ φ(rh) corresponds to asymptotically high T , and at high T

the gravity duals are sensitive only to the ‘universal’ part of V (φ) shown in Eq. 3.5.

This universality can be traced simply to the fact that at high temperatures the

scalar is small everywhere in the bulk.

Since the systems we are considering become approximately conformal in the

UV, v2
s should certainly approach the conformal value of 1/3 as T → ∞. The

correction away from 1/3 must be a power law in Λ/T by dimensional analysis.

However, the sign of the first non-zero correction as well as the power of Λ/T in the

first correction in a high temperature expansion of v2
s is less obvious, and obtaining

these is our goal in the rest of this section.

As T →∞, the temperature becomes the dominant source of conformal sym-

metry breaking, since the effects of the relevant deformation associated with the

scale Λ become negligible. Thus we expect that the background geometry approx-

imates an AdS-Schwarzschild black hole as T → ∞. To determine the sign of the

corrections to v2
s , we solve the equations of motion resulting from Eq. 3.3 perturba-

tively around the AdS-Schwarzschild black hole solution. This is a high temperature

expansion. The horizon value of φ, φH � 1, can be viewed as the expansion pa-

rameter. By working to second order in φH , we obtained a closed-form expression

for the backreaction of the scalar field on the geometry, which determines s and T

from Eq. 3.7.
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The perturbative expansion is somewhat messy, and we relegate a sketch of the

derivation to the appendix; a fuller discussion of the derivation appears in Chapter

4. The result is simple to state:

v2
s(φH) = 1/3− C(∆)φ2

H +O(φ4
H), where

C(∆) =
1

576
(∆− 4)2∆

[
16 + (∆− 4)∆

×
∫ ∞

1

ds s 2F1(2−∆/4; 1 + ∆/4; 2; 1− s)2
]

=
1

18π
(4−∆)(4− 2∆) tan (π∆/4) , (3.8)

where 2F1 is a hypergeometric function, and the simplified form in the last line can

be obtained by standard identities of Meijer-G functions. 5 Since C(∆) is positive,

v2
s ≤ 1/3. This result was also obtained by different methods in Ref. [36].

We can rewrite our result in a more physical form in terms of T , since as

follows from the derivation in the appendix and in Chapter 4,

φH = (πT/Λ)∆−4 Γ(∆/4)2

Γ(∆/2− 1)
. (3.9)

This allows to write our result as

v2
s(T ) = 1/3−

[
1

9π
(4−∆)(2−∆) tan (π∆/4)

Γ(∆/4)4

Γ(∆/2− 1)2

](
πT

Λ

)2(∆−4)

(3.10)

+O

[(
πT

Λ

)4(∆−4)
]

In Fig. 3.1, we show that the closed-form result for v2
s in Eqs. 3.10 matches a

numerical solution for v2
s at large T .

Our expression for the speed of sound Eq. 3.10 holds universally at high tem-

peratures in all non-conformal theories with gravity duals that can be viewed as

5We are grateful to Paul Hohler for showing us the way to do this.
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Figure 3.1: Plot [25] of the high-T approximation to v2
s in Eqs. 3.10 for ∆ = 3 (solid

line) versus a numerical solution (dashed line) for v2
s found using the methods of

Ref. [34]. The numerical solution is for V (φ) = − 12
L2 cosh(1

2
φ), which corresponds to

∆ = 3 . The sound bound v2
s = 1/3 is shown as a horizontal dot-dashed line.

CFTs deformed by a relevant scalar operator. The result above makes clear that

the only parameter of the dual gauge theory on which v2
s depends at high tempera-

ture is the scaling dimension ∆ of the relevant operator deforming the CFT, apart

from the obvious dependence on Λ/T . The speed of sound squared in this class of

theories is universally bounded by 1/3 from above. We have thus proved that this

class of strongly-coupled large N non-conformal gauge theories obeys a non-trivial

bound on the speed of sound.

3.3 Comparison with other calculations of v2
s

Given the apparent universality of our result for v2
s , it is natural to wonder

whether it may hold outside the class of theories that we considered here. In fact,
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it turns out all other calculations in the literature to date have found that v2
s ≤ 1/3

at high temperature in 4D field theories.6 To show the breadth of circumstances

considered in the literature, we briefly survey some representative results on the

speed of sound in non-conformal theories with gravity duals, with an eye to whether

the sound bound v2
s ≤ 1/3 is satisfied at high temperatures.

First, it is interesting to note that in all known cases, single-scalar models

with potentials that do not fall into the class that we considered above also obey

the sound bound at high temperatures[38]. The scalar potential in these theories

is intended to represent a marginally relevant deformation of the dual field theory;

this resembles the way classical conformal invariance is broken in massless QCD due

to the running of the coupling.

The speed of sound of sound has also been calculated in the finite-temperature

version of the Sakai-Sugimoto model[39, 40], which is dual to a strongly coupled 4D

field theory with Nf � Nc fundamental matter fields. It was found that v2
s = 1/5,

which is less than 1/3 [41]. It has also been shown that v2
s ≤ 1/3 at high T in

the D3/D7 system [42], which is dual to another strongly-coupled large Nc 4D field

theory with fundamental matter.

The speed of sound was also calculated in a 4D cascading gauge theory [43,

44]. This strongly coupled large N gauge theory has a rather exotic gauge group

structure, since the effective rank of the gauge depends on the temperature. At high

6An apparent exception to this was found in Ref. [37], but the violation of the sound bound

occurs in a somewhat exotic setup where the dual field theory is on an energetically unstable

branch. On the energetically stable branch, the system obeys the bound.
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T , the effective gauge group is SU(K) × SU(K + P ), where P � K, and it was

found that

v2
s =

1

3
− 4

9

P 2

K
+O

(
P 4

K2

)
(3.11)

As a final example, v2
s has also been calculated inN = 2∗ gauge theory [45, 12].

This theory is 4D N = 4 super Yang-Mills theory at finite T , which is deformed

by turning on small masses for the bosons and fermions in two of the N = 1 chiral

multiplets that are part of theN = 4 gauge theory. To leading order in mf/T,mb/T ,

it was found that

v2
s =

1

3
−

2[Γ(3/4)]4m2
f

9π4T 2
+O(mb,mf/T

4) , (3.12)

which clearly satisfies the sound bound. We note that the 5D effective action de-

scribing this theory actually falls into the class of actions we considered above,

except that it has two scalar fields, corresponding to bosonic and fermionic mass de-

formations. At high T , the scalar field corresponding to the fermionic deformations

dominates over the scalar field associated with the bosonic deformation, and one

obtains our single-scalar system with ∆ = 3. However, connecting the parameter Λ

with mf requires working with the full string dual.

3.4 Sound bound conjecture

As we have seen above, it seems that v2
s ≤ 1/3 at high temperatures in a

much broader class of systems than just the single-scalar models for which we were

able to show a universal bound on the speed of sound at high temperatures. It is

not clear just how broad the class of theories that satisfy the bound is. However,

63



motivated by the examples in the previous section, we conjecture that v2
s ≤ 1/3 at

high temperatures in all 4D theories with gravity duals, at least for energetically

stable systems [37] at zero chemical potential.

It is highly plausible that the sound bound holds more broadly than the context

in which we have proved it. In all examples in the literature where v2
s has been

calculated away from the high T limit, v2
s stays below 1/3 [46, 47]. Thus it seems

likely that the sound bound may continue to hold away from the high T limit in a

broad class of theories with gravity duals.

It is less obvious what class of systems the bound may apply to once one

looks at theories that do not have gravity duals, especially away from the high-

temperature limit. It is important to note that the bound cannot apply to all field

theories in nature. For instance, in QCD at T = 0 and non-zero isospin chemical

potential µI , v
2
s can be accurately calculated in chiral perturbation theory, so long

as one in the regime µI ,mπ � Λ, where Λ is a typical hadronic scale (such as the

mass of the ρ meson), and mπ is the pion mass [48]. In the phase where µI > mπ,

p

ε
=

µ2
I −m2

π

µ2
I + 3m2

π

, (3.13)

so v2
s → 1 as m2

π → 0. Similar behavior for v2
s was seen earlier in ad hoc models, for

instance in the Walecka model [49, 50].

These counterexamples show that the sound bound v2
s ≤ 1/3 cannot apply

generically to all systems with chemical potentials. It is not yet known whether the

bound can be violated in systems with gravity duals at finite chemical potential.

The closest investigation along these lines, Ref. [51], showed that v2
s ≤ 1/3 in a
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D3/D7 holographic model at finite isospin chemical potential in a regime where

µI < mπ. This is a different regime than the one considered in the QCD example

above. It would be certainly be interesting to investigate the behavior of v2
s when

µI > mπ in systems with gravity duals.

One can make a number of heuristic field-theoretic arguments that suggest

that v2
s ≤ 1/3 for theories that are weakly-coupled at high temperatures. For

example [52], one can write the entropy in terms of the number of effective degrees

of freedom Neff(T ), so that the entropy density takes the form

s =
16π2

45
Neff(T )T 3 (3.14)

Then one can easily find an expression for the speed of sound:

v2
s =

1

3 + TN ′eff(T )/Neff(T )
(3.15)

So long as one is working with an asymptotically free theory, which is well-defined

in the UV, one expects that at high temperatures N ′eff(T ) ≥ 0, with N ′eff(T )→ 0 at

large T . Then one sees that the speed of sound will approach 1/3 from below. In fact,

this is exactly what happens in massless QCD at zero chemical potential [53, 54].

The conformal symmetry of the classical theory is broken by the running of the

coupling, and one finds that

v2
s =

1

3
+

5

36π
β [λ(T )] +O

[
λ(T )4

]
(3.16)

where β[λ(T )] < 0 is the β function of QCD given in Eq. 1.7, and λ(T ) is the ’t

Hooft coupling evaluated at the scale T .
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The deviation from the conformal value is proportional to the beta function,

so that one might wonder about the speed of sound in theories like quantum elec-

trodynamics (QED), which are not asymptotically free and have a positive beta

function. Such theories have a Landau pole in the UV, where the coupling becomes

strong, rather than becoming weak. It is thought that this is a signal that these

theories are not well-defined in the UV. However, the Landau pole occurs at very

high energies, so it is legitimate to ask what happens to v2
s in, for instance, QED,

when Tl � T � me, where Tl is the temperature associated with the Landau pole

energy scale, and me is the electron mass. In this temperature regime, the theory

is weakly coupled, and the conformal invariance of the classical theory is violated

quantum mechanically by the running of the coupling. One can show that in QED

in the regime Tl � T � me,[53]

v2
s =

1

3
+

1

162π
α2
EM +O

[
αEM(T )3

]
, (3.17)

where αEM(T ) = e2(T )/4π. This is indeed larger than 1/3, violating the bound on

the speed of sound. Note that where this formula is valid, v2
s is not approaching

1/3, but rather moving away from it, so that this behavior is qualitatively different

what was seen in QCD at zero chemical potential, as well as in theories with gravity

duals. Nevertheless, at weak coupling, it appears that the sign of 1/3 − v2
s at high

temperatures is controlled by the sign of the beta function of the theory.

Given the behavior of v2
s in weakly-coupled QED at high T , it is natural to ask

whether anything can be said about the speed of sound in non-asymptotically-free

strongly-coupled theories with gravity duals. Given what happens to the speed of
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sound at weak coupling, one might expect that v2
s > 1/3 at high T in such theories.

Calculations using the gauge/gravity duality for non-asymptotically-free theo-

ries are very technically demanding, and to our knowledge there is only one example

of such a calculation [55]. Ref. [55] considered the D3/D7 system, but took into ac-

count the backreaction of the flavor fields. The field theory dual consists of N = 4

SYM with Nf fundamental fields. When Nf = 0, the theory is conformal. Once

one moves away from the Nf � Nc limit, and takes into account the effects of the

fundamental fields on the running of the coupling, the conformal symmetry breaks,

and the theory gets a positive β function.

In a controlled regime (well away from the Landau pole), Ref. [55] used the

gravity dual of the D3/D7 with ‘unquenched’ flavors that at strong ‘t Hooft coupling

λ to show that the speed of sound is given by

v2
s =

1

3
− 1

18
εh(T )2 +O

[
ε(T )3

]
(3.18)

where ε(T )� 1 is

ε(T ) ∼ λ(T )
Nf

Nc

, (3.19)

and λ(T )� 1 is the ’t Hooft coupling of the theory at T .

Note that in this strongly-coupled theory with a positive beta functions, v2
s

approaches 1/3 from below, in stark contrast to QED. Moreover, since the D3/D7

theory has a positive beta function at both strong and weak coupling, we see that

something rather interesting must happen to v2
s as we increase λ while holding

Nf/Nc and T fixed and large (but small compared to the break-down scale of the

theory). At small λ, v2
s is greater than 1/3, while at large λ, v2

s is less than 1/3,
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so as a function λ, v2
s at fixed T and Nf/Nc must interpolate between the two

limiting behaviors. If the system has no phase transitions as a function of λ, as

seems reasonable to assume, then there must exist some intermediate λ = λ∗ for

which v2
s(λ∗) = 1/3.

3.5 Conclusions

In this chapter we have shown that v2
s ≤ 1/3 at high T in theories with

single-scalar gravity duals, corresponding to CFTs deformed by one relevant scalar

operator. As we will see in the next chapter, our techniques can be extended to cover

systems with multiple scalar deformations, and can be used to compute transport

coefficients in addition to thermodynamic observables such as vs. We have conjec-

tured that the behavior of the sound bound may be universal in more than just the

class of theories we considered.

3.6 Appendix: Computation of the dual geometry at high T

In this appendix we briefly describe the methods we used to compute vs. A

fuller description is given in the next chapter. Consider the action Eq. 3.3 with

V (φ) as in Eq. 3.5 and the metric ansatz Eq. 3.6. There are three independent

equations of motion: the scalar equation of motion and the tt and rr components of

Einstein’s equations. Since we are dealing with a theory of gravity, one must deal

with diffeomorphism invariance. We find the gauge choice a = r to be convenient.

In this gauge, r →∞ is the UV boundary where the field theory lives.
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When φ vanishes, the general solution to the equations of motion subject to

the ansatz we have chosen is AdS5-Schwarzschild. When φ is everywhere small, the

scalar equation of motion in the black hole background gives it the profile

φ(r) = φ0 2F1(1−∆/4; ∆/4; 1; 1− r4/r4
h) , (3.20)

where φ0 is an integration constant that measures the smallness of the scalar and

will be related to the temperature below. Eq. (4.13) is one of the two solutions to

the linearized scalar equation of motion in AdS5-Schwarzschild. We have discarded

a second solution that is not regular at r = rh, the location of the black hole horizon.

Suppose we fix the entropy density s of AdS5-Schwarzschild (when φ = 0) at

some large s0 in the high-temperature regime. When the φ = 0, one can read off

the temperature in terms of s0 from Eq. 3.7. We then need to find the temperature

that corresponds to s0 when φ is turned on, and the geometry is no longer AdS5-

Schwarzschild. To do this, we perform a perturbation expansion of the metric and

the scalar in powers of φ0 � 1. Working up to O(φn0 ) is sufficient for computing

corrections to v2
s up to O(φn0 ). The metric backreacts on the scalar at odd orders

in φ0, as was seen for O(φ0) above, and the scalar backreacts on the metric at even

orders in φ0.

Turning on a profile for φ corresponds to deforming the dual CFT lagrangian

by the addition of the integral of Λ4−∆Oφ to the CFT action. On the gravity side,

Λ is a new energy scale that also appears in the leading behavior of the scalar at

the boundary[15]:

φ(r →∞) ≈ (ΛL)4−∆r∆−4. (3.21)
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We must keep Λ fixed in terms of L when computing equations of state, since we

do not want to be varying the size of the deformation while doing the expansion.

Thus we set ΛL = 1. Comparing the asymptotic form of Eq. (4.13) as r →∞ with

Eq. (4.14) then gives a relationship connecting rh and φ0:

r∆−4
h Γ(∆/4)2 = φ0Γ(∆/2− 1). (3.22)

rh can in turn be connected to the temperature via Eq. 3.7. Small φ0 thus necessarily

corresponds to large rh, which means that the exact single-scalar background only

approaches AdS5-Schwarzschild in the high-temperature limit, as one would expect

from general considerations. There are four boundary conditions that we impose

at each order in φ0: (1) maintain ΛL = 1 and hence also Eq. (3.22); (2) keep the

horizon location r = rh so that s remains at s0; (3) ensure that the solution is

regular at r = rh; and (4) preserve the boundary asymptotics h→ 1 and b→ r/L.

We do not present our results for b and h here; readers in search of a sleep

aid may find useful the rather cumbersome and unilluminating explicit expressions

for b and h, which are shown in the appendix of Chapter 4. However, we note that

φH = φ0 up to O(φ2
0). Once armed with the high T expansion for the geometry, it

is easy to compute v2
s to O(φ2

H) by plugging the O(φ2
0) results for b(r) and h(r) into

Eq. (3.7), using Eq. (3.22) to eliminate rh, and finally using Eq. (4.19).
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Chapter 4

Temperature Dependence Universality

In this chapter we show that the temperature dependence of transport coeffi-

cients becomes universal at high temperatures in a wide class of theories with gravity

duals. The chapter is based on work done with Abhinav Nellore, and the results

have been previously published in Ref. [56]. The chapter follows the presentation

of Ref. [56], and the organization is as follows. To set the context, we start with a

description of previous results on universality of transport coefficients, and then give

a preview of our results. After a brief reminder of the class of theories we consider

in this dissertation, we describe the high temperature expansion for the geometry

of the gravity dual theories in detail. This is followed by calculations of the temper-

ature dependence of the bulk viscosity, charge density diffusion coefficient, and the

DC conductivity in the high temperature limit. It then follows that the temperature

dependences of all of the transport coefficients calculated are shown to be identical

in the hot strongly-coupled with gravity duals, which is our main result.

4.1 Introduction

In the previous chapter, we used the gauge/gravity duality to investigate the

behavior of the speed of sound in strongly-coupled theories with gravity duals. The

gauge/gravity duality is the only known theoretical tool that can give analytical
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insights into the behavior of strongly-coupled 4D gauge theories. Unfortunately,

there are no known gravity duals for the gauge theories that are currently used

to describe nature. The theories that have gravity duals are quite different from

theories of direct phenomenological interest. As a result, at present the duality can

only be reliably used as a source of calculable toy models that allow us to probe the

qualitative features of strongly-coupled field theories.

Thus it makes sense to the search for universal properties of strongly-coupled

theories with gravity duals. In Chapter 3, we used the duality to look at the high

temperature limit of a wide class of strongly-coupled theories with broken conformal

symmetry. The speed of sound in general depends sensitively on the details of a

theory. However, at high temperatures, the behavior simplifies, and we found that

the speed of sound always obeys the bound v2
s ≤ 1/3. Our calculation, together with

other evidence from the literature, suggests the conjecture that the sound bound

may be a universal property of theories with gravity duals. In showing the existence

of the sound bound, we saw in Chapter 3 that the temperature dependence of v2
s at

high T turns out to depend only on the scaling dimension of the relevant operator

perturbing the dual CFT, and not on any other details of the deformation. This

turns out to foreshadow the results of the present chapter, as we will see shortly.

Given the apparent emergence of universality at high T for v2
s , one may wonder

whether something similar may happen for the hydrodynamic transport coefficients.

The speed of sound v2
s is a thermodynamic observable, since it can be calculated

from v2
s = dp/dε. In the gravity dual, v2

s can be extracted directly from the geometry

of the dual, since the metric encodes the equilibrium pressure and energy density
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of the dual field theory. Transport coefficients are somewhat different, since they

encode non-equilibrium fluid properties, and in general are not read off directly

from the dual metric. Instead, as was mentioned in Chapter 1 and Chapter 2, to

calculate transport coefficients using Kubo formulas, one must calculate the real-

time correlation functions of the relevant conserved currents. In the dual, this

reduces to solving the equations of motion for the associated bulk fields in a given

geometrical background. Since the relevant bulk equations of motion are different

for different transport coefficients, it is not a priori obvious that any of the universal

features of speed of sound would have an analogue for transport coefficients.

The most famous example of a universal quantity in theories with gravity duals

is the ratio of shear viscosity to the entropy density η/s, which takes the universal

value η/s = 1/4π in all such theories. In particular, the value of η/s does not depend

on the temperature, and it is not affected by the breaking of conformal symmetry by

relevant operators. However, other transport coefficients do depend on the detailed

structure of the field theories with gravity duals. For instance, the ratio of the bulk

viscosity to the entropy density ζ/s is known to be zero in conformal field theories,

and becomes non-zero once conformal symmetry is broken by relevant deformations,

when it becomes temperature-dependent.

In this chapter, we examine the behavior of several transport coefficients in

the same class of non-conformal field theories with gravity duals. The class of

field theories we consider consists of large N strongly-coupled CFTs deformed by

n relevant scalar gauge-invariant single-trace operators Oi with scaling dimensions
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∆i < 4, which introduce the energy scales Λi:

SCFT → SCFT +

∫
d4x

n∑
i=1

(
Λ4−∆i
i Oi

)
(4.1)

In this chapter, it is shown that at high T , the temperature dependence of all of

the transport coefficients we studied becomes universal, and the power law behavior

is identical to the temperature dependence of v2
s . We study the bulk viscosity ζ, as

well as the charge diffusion coefficient D, the charge susceptibility Ξ, and DC charge

conductivity σ. We review the calculation of v2
s , and extend it to treat multiple scalar

deformations of the CFT. To discuss the temperature dependence, it is convenient

to work with the appropriately normalized versions of these quantities, so that the

normalized coefficients approach dimensionless constant values as T →∞. For the

normalized set of transport coefficients1 ξi ∈ {v2
s , ζ/s, 2πTD, σ/πT,Ξ/(2π

2T 2)} we

show that at high T

ξi(T ) = ξCFT
i + Cξi(∆)

(
Λ

T

)−2(4−∆)

+O
(

Λ

T

)−4(4−∆)

(4.2)

where ξCFT
i = ξi(T →∞), ∆ ≡ max(∆i), and Λ is the energy scale associated with

the operator with the scaling dimension ∆ 2. As mentioned above, we follow the

discussion in Ref. [56]. As a result, for technical reasons, in the case of ξ = ζ/s,

our analysis is limited to field theories with only one scalar deformation; for all of

the other observables we examined, the methods we use here allow the treatment of

n deformations. However, using a different approach, Yarom [33] has subsequently

1Here we abuse language slightly since we include v2
s in {ξi}, and v2

s is not a transport coefficient.
2In the degenerate case where there is more than one operator with the maximal value of ∆, Λ

must instead be defined as in Eq. 4.44.
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shown in an elegant paper that our result for ζ/s holds for multiple deformations

as well.

As in Chapter 3, we work with units where ~ = c = kB = 1, and focus on 4D

field theories. Below, we begin in Sec. 4.2 by describing the class of gravitational

theories dual to theories of the form of Eq. 4.1. We then describe the high tempera-

ture expansion for the geometry in Sec. 4.3, focusing on the single-scalar system for

clarity. This is followed by the calculation of the transport coefficients at high T in

Sec. 4.4. The extension of the results to the case of multiple scalar deformations is

given in Sec. 4.5, which also summarizes our results.

4.2 Gravity dual for deformed CFTs

We wish to describe the gravity dual of a strongly-coupled large N CFT that is

deformed by n relevant scalar gauge-invariant single-trace operators Oi with scaling

dimensions ∆i < 4. By the usual AdS/CFT dictionary, each scalar operator with

scaling dimension ∆i is associated with a bulk scalar field φi, with a mass term given

by

m2
iL

2 = ∆i(∆i − 4). (4.3)

Since we wish to consider relevant deformations of the CFT, we have the restriction

∆i < 4. The unitarity bound in the field theory (which is the BF bound in the

gravity dual) is that ∆i > 1. For simplicity of presentation, we work with 2 < ∆i < 4

in the rest of this chapter; we expect our results to extend straightforwardly to

1 < ∆ ≤ 2, and this was shown to indeed be the case in Ref. [33].
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The action for the class of gravity duals we will consider takes the form

S =
1

2κ2
5

∫
d5 x
√
−g

[
R +

12

L2
− 1

2

n∑
i=1

(∂φi)
2 − V (φ1, . . . , φn)

]
, (4.4)

where κ2
5/8π is the Newton constant, φ is a real scalar field, and V is analytic in φi

near φi = 0. We take V (φi) to be symmetric around φi = 0. Different choices of

V (φi) correspond to different dual gauge theories. Up to the restrictions above, the

potentials we consider are arbitrary. The mass terms in the potentials are identified

by the AdS/CFT dictionary with the scaling dimensions of the dual operators as in

Eq. 4.3.

It is also important to note that in general one may have a modified kinetic

term in the gravity dual, so that

1

2

n∑
i=1

(∂φi)
2 → 1

2

n∑
i,j=1

f ij(φ1, . . . , φi)∂φi∂φj (4.5)

for some function f ij. In writing the action in the form of Eq. 4.4, we are considering

theories in which f ij → 1 quickly enough as φi → 0, since our high temperature

expansion turns out to only probe the behavior of the action in this regime3.

Our interest in studying the dual field theory at finite temperature forces us

to choose the metric ansatz

ds2 = a2(−hdt2 + d~x2) +
dr2

b2h
, (4.6)

where a, b and h are smooth functions of the holographic coordinate r only, and

φi = φi(r). This is the most general ansatz consistent with the symmetries we

3From the discussion in Sec. 4.3, it is not hard to convince oneself that if f ij(φi → 0) =

δij +O(φi), the calculation of the background is not affected at the order to which we work here,

O(φ2
i ).
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expect in the dual field theory. We assume that h has a simple zero at r = rh, which

is the location of the black hole horizon. The entropy density s and temperature

T of the field theory are identified by the AdS/CFT dictionary with the entropy

density and temperature of the black hole:

s =
2π

κ2
5

|a(rh)|3 , T =
|a(rh)b(rh)h

′(rh)|
4π

. (4.7)

4.3 High-temperature expansion

In this section, we discuss the details of the high-temperature expansion for the

backgrounds and scalar field profiles for gravity duals of the class of deformed CFTs

discussed here and in Chapter 3. To streamline the presentation, we focus on the

case of a single deformation in this section; the extension to multiple deformations is

straightforward and is presented in Sec. 4.5. Ref. [45] developed a similar expansion

for the study of N = 2∗ SYM theory.

We choose to work in a gauge where a = r, so that the AdS5 boundary is at

r = ∞. There are three independent equations of motion that follow from Eq. 4.4

(with n = 1) and the ansatz Eq. 4.6:

0 =
2V (φ)

b2
+

6(4h+ rh′)

r2
− h(φ′)2 (4.8)

0 = 6rb′ + b(−6 + r2(φ′)2) (4.9)

0 = −V
′(φ)

b2
+ h′φ′ + h

[(
4

r
+
b′

b

)
φ′ + φ′′

]
. (4.10)

The first two equations come from a convenient combination of the tt and rr compo-

nents of the Einstein equations, while the last one is the scalar equation of motion.
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To set up the high-temperature expansion, note that when T � Λ, the influence of

the relevant operator O on the physics of the dual becomes negligible. This means

that on the gravity side, the profile of the scalar field must vanish as T →∞. When

φ(r) = 0, the solution to Eq. 4.8 is just AdS5-Schwarzschild spacetime, with metric

coefficients given by

b =
r

L
, h = 1−

(r0

r

)4

, (4.11)

where r0 is the location of the black hole horizon. Using Eq. 3.7, we can compute

the entropy density and temperature, obtaining

s =
2π

κ2
5

r3
0 , T =

r0

πL
. (4.12)

From these expressions it is clear that s ∼ T 3, as is appropriate for a CFT, and

large r0 corresponds to large entropies and temperatures.

The solution in Eq. 4.11 together with φ(r) = 0 give the background and scalar

profile at the 0th order of the high-T expansion. To move to the first order in the

expansion, suppose that φ(r) is everywhere small. Then it is consistent to compute

the profile of φ(r) in the background of Eq. 4.11, with the result that

φ(r) = φ0 2F1(1−∆/4,∆/4; 1; 1− r4/r4
h) , (4.13)

where φ0 is an integration constant that characterizes the smallness of the scalar, and

will be related to Λ/T below. In obtaining the expression above, we have discarded

a solution to the equations of motion that diverges logarithmically as r → r0. Note

that the solution above is only sensitive to the mass term in the scalar potential.

Since the AdS/CFT dictionary relates the mass of the scalar to the scaling dimension
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of the dual relevant operator, the profile above is in universal in the sense that it

depends on only the scaling dimension of the deformation ∆. This turns out to be

crucial to the emergence of high-temperature universality that we describe later in

this chapter.

Our aim is to compute the properties of the dual field theory at high tempera-

ture, when the scalar φ is small. Since the thermodynamic properties and transport

coefficients of the field theory are encoded in the geometry of the gravity dual, to

get the leading finite-temperature corrections to these observables we must work

to the leading order in the high-temperature expansion at which the geometry is

changed from its T → ∞ form. To this end, we develop a perturbation expansion

of the metric of the dual and the scalar profile in powers of φ0.

Once the scalar field is non-zero, the dual is sensitive to the fact that we have

added the term Λ4−∆O to the field theory Lagrangian density. The energy scale Λ

appears in the gravity dual in the coefficient of the r∆−4 term of φ(r) as r →∞ [57]:

φ(r) = (ΛL)4−∆r∆−4 + . . . . (4.14)

The size of ΛL should not change as we vary the temperature. Thus to choose the

size of Λ in units 1/L, we fix ΛL = 1. To relate Λ with φ0, we expand Eq. 4.13

about r =∞, obtaining

φ(r) = φ0

(
r

rh

)∆−4
Γ(∆/2− 1)

Γ(∆/4)2
+ . . . . (4.15)

A comparison of Eq. 4.14 and Eq. 4.15 now yields a relationship connecting r0 and

φ0:

r∆−4
h = φ0

Γ(∆/2− 1)

Γ(∆/4)2
. (4.16)
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Thus φ0 is small when rh is large; since T is large compared to Λ when rh is large,

this confirms that we are indeed performing an expansion valid at large s and T .

Since the differential order of the system of equations in Eq. 4.8 is four, we

must impose four boundary conditions at each order in the φ0 expansion. The first

three boundary conditions are simple to state:

• preserve ΛL = 1 and consequently Eq. (4.16),

• maintain the boundary asymptotic b → r/L, which has the consequence of

keeping h→ 1, and

• ensure that φ(r) remains regular at r = r0.

The fourth boundary condition is somewhat more subtle, as it encodes the physical

meaning of φ0. To see how the last boundary condition works, suppose we fix a

temperature-dependent observable Ω of the undeformed CFT (so that φ(r) = 0 in

the gravity dual) at some given value Ω0. Ω could be the temperature, the entropy,

a transport coefficient, or the energy density. When the relevant deformation is

turned on, and φ(r) becomes non-zero, our high-temperature expansion should give

the form of the background in the gravity dual when Ω = Ω0. The fourth boundary

condition simply enforces that Ω = Ω0 at every order in the φ0 expansion.

For example, if we take Ω = T , the fourth boundary condition requires that

the temperature T = |a(rh)b(rh)h
′(rh)|/4π remain at r0/πL, its value in AdS5-

Schwarzschild. Eliminating r0 in favor of T in Eq. 4.16 gives

φ0 =
Γ(∆/4)2

Γ(∆/2− 1)
(πLT )∆−4 ,
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so the φ0 expansion is essentially in the smallness of 1/LT when Ω = T .

We find that the most convenient choice for explicit calculations is to take

Ω = s. Since s = 2π
κ2

5
r3

0, the fourth boundary condition above becomes the demand

that the horizon of the black hole remain at rh = r0 at each order in the φ0 expansion.

From Eq. 4.12 and Eq. 4.16, we see that this expansion is in powers of

φ0 =
Γ(∆/4)2

Γ(∆/2− 1)

(
sκ2

5

2π

)(∆−4)/3

. (4.17)

Thus the expansion we pursue is essentially in the smallness of 1/sκ2
5; however, since

large s corresponds to large T , we continue to refer to the expansion as a high T

expansion.

Given this expansion scheme, it is possible to compute the geometry to any

finite order in φ0. At every odd order in the expansion, the geometry backreacts on

the scalar profile; at every even order, the scalar field backreacts on the geometry.

The transport coefficients are then determined from the appropriate solutions to

the equations of motion of the relevant bulk field in the geometry derived using the

high T expansion, as described in Chapter 2. Since the background is first corrected

at O(φ2
0), we must work to O(φ2

0) to determine the leading deviations from the

conformal values of the transport coefficients. To order O(φ2
0), the geometry is only

sensitive to the mass term in the scalar potential, and hence is only sensitive to the

scaling dimension ∆ of the dual relevant operator. It turns out that the transport

coefficients and the speed of sound squared can be written as

ξi = ξCFTi + Cξi(∆)φ2
0 +O(φ4

0) . (4.18)

when φ0 is small, which corresponds to high entropy and temperature. This is
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the reason for the universality of the temperature dependence of the normalized

transport coefficients universally at high temperatures. We have obtained closed-

form solutions for φ(r), b(r), and h(r) to O(φ2
0), but the expressions are cumbersome

and not especially illuminating; they can be found in the Appendix of this chapter.

4.4 Transport coefficients

4.4.1 Speed of sound

Let us briefly review the calculation of the speed of sound vs from Chapter

3[25]. One can compute v2
s by using a Kubo formula; this comes down to examining

the poles in the appropriate retarded Green’s functions of the dual field theory

(making use of Eq. 1.27) by relating them to the behavior of metric perturbations

in the gravity dual. This method is rather involved, but has the virtue of also

yielding the bulk viscosity. An easier method to obtain v2
s is to simply extract it

from the equation of state of the dual field theory[58, 45, 42, 43, 44, 47]. Here,

we describe the latter approach in the context of the high-temperature expansion

presented in the previous section.

To find the speed of sound, we use the relation v2
s = dp/dε, where p is the

pressure of a system and ε is its energy density, both measured in the local rest

frame of the fluid, which is assumed to be in thermodynamic equilibrium. We are

considering systems at zero chemical potential, and in this case one can get a formula

for v2
s that involves just s and T , which are quantities that are particularly easy to
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read off from the geometry:

v2
s =

d log T

d log s
. (4.19)

To determine v2
s , we perform the high-temperature expansion to order O(φ2

0);

at this order, the geometry receives its first non-trivial corrections. Now we evaluate

Eq. 3.7, and applying Eq. 4.19, we find that

v2
s(φ0) = 1/3− Cv2

s
(∆)φ2

0 +O(φ3
0), where

Cv2
s
(∆) =

1

576
(∆− 4)2∆

[
16 + (∆− 4)∆

×
∫ ∞

1

ds s 2F1(2−∆/4, 1 + ∆/4; 2; 1− s)2
]

=
1

9π
(4−∆)(2−∆) tan (π∆/4) , (4.20)

where the simplified form in the last line can be found by making use of standard

identities of Meijer G-functions.

This result has two important consequences. First, since Cv2
s
(∆) is positive for

2 < ∆ < 4, and in fact is also justifiable [33] and positive when 1 < ∆ ≤ 2, at high

temperatures the speed of sound is always bounded from above by 1/3 in this class

of theories [25, 36]. Second, to the order to which we are working, it can be shown

that

φ0 =

(
Λ

πT

)4−∆
Γ(∆/4)2

Γ(∆/2− 1)
. (4.21)

This means that the temperature dependence of 1/3 − v2
s takes the simple form

(1/3 − v2
s) ∼ (Λ/πT )2(4−∆) as T → ∞. Below, we will see that this result is

universal, in the sense that this temperature dependence is shared by all of the

transport coefficients we calculate. Of course, it is already clear that this result
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depends only on the ‘universal’ part of the scalar potential, which carries information

only about the scaling dimension of the deformation operator; no other details about

the information or the dual field theory affect v2
s at this order.

4.4.2 Conductivity

Let us now move on to investigate the behavior of transport coefficients. The

easiest place to start is with the calculations of the transport coefficients associated

with the presence of conserved charges in the dual field theory. Thus, suppose that

the field theory has a U(1) global symmetry, so that there is an associated conserved

current Jµ, and a corresponding conserved charge. One can now consider some new

transport coefficients associated with the conserved charges, for instance the charge

diffusion coefficient D, the charge susceptibility Ξ, and the DC conductivity σ. In

this section, we compute σ at high temperatures.

The AdS/CFT dictionary associates a bulk U(1) gauge field AM (M = µ, r)

with the conserved current in the field theory. To calculate correlation functions of

Jµ using the duality, we must add the term

−
∫
d5x
√
−g 1

4g2
5

FMNF
MN (4.22)

to the gravity dual action Eq. 4.4; here g2
5 is the 5D gauge coupling and FMN is the

field strength. In terms of the parameters of the dual field theory, g2
5/L ∼ N−2

c
4. The

4One can give a precise relation between g5 and the parameters of the gauge theory when one

works with a full string dual for a specific field theory. Since we are looking at class of 5D effective

action that is dual to a class of gauge theories, the proportionality relation given in the text is the

best we can do for general V (φi).

84



fact that transport coefficients can be calculated in linear response theory justifies

treating the new term in the action we wrote above in the probe limit, where the

bulk U(1) gauge field does not backreact on the metric, in contrast to the scalar

field φ. The Kubo formula for the DC conductivity σ is [59]

σδij = lim
ω→0

Gij
R(ω,0)

iω
, (4.23)

where Gij
R(ω,k) is the retarded two-point Green’s function of Ji(ω,k) (i = x, y, z),

and ω is the frequency. Note that the σ is rotationally invariant as defined; one

can also consider systems with different conductivities in different directions, but

we will not do so here. The Green’s function above can be calculated via the

gauge/gravity duality by solving the equations of motion for AM and following the

prescription for real-time correlation functions described in Chapter 2. To find the

high-temperature behavior of σ, one must solve the equations of motion for AM in

the high-temperature background. There is, however, a shortcut. Ref. [59] gives an

elegant proof that when one does such a calculation in the class of backgrounds we

are working with (Eq. 4.6), the final result for σ can always be written directly in

terms of the metric coefficients evaluated at the black hole horizon rh:

σ =
1

g2
5

b(r)

a(r)3

√
−g(r)

∣∣∣∣
r=rh

. (4.24)

This means that we can immediately write down σ using the high-temperature

metric coefficients given in the Appendix, together with Eq. 4.21 and Eq. 4.24. At
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Figure 4.1: Plot of Cσ̃ versus ∆. [56]

high temperatures, we thus find that σ is given by

σ̃(T ) ≡ σg2
5

πLT
= 1− Cσ̃(∆)φ2

0 , where (4.25)

Cσ̃(∆) =
1

6π
(2−∆) tan

(
π∆

4

)
.

A plot of Cσ̃ is shown in Fig. 4.1.

Like v2
s , σ̃ is bounded from above in the high T limit, so that σ̃ < 1 as T →∞.

Also, σ̃ has an identical temperature dependence to v2
s , in the sense that 1 − σ̃ ∼

(Λ/πT )2(4−∆) in the high T limit, just as for v2
s we have (1/3− v2

s) ∼ (Λ/πT )2(4−∆).

4.4.3 Diffusion coefficient and charge susceptibility

Once there is a conserved current in the field theory, in addition to the conduc-

tivity, one can also study the behavior of a small charge density perturbation. There

are two transport coefficients associated with this: the charge diffusion coefficient

D, and the charge susceptibility Ξ.

Let us start with D, which describes the relaxation to equilibrium of a small
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charge density perturbation in the field theory. Without loss of generality, suppose

that the charge density perturbation is along the z direction. Then D appears as a

pole in the two-point retarded Green’s function of Jz(ω, k). (Recall the diffusion dis-

persion relation ω(k) = iDk2 from Chapter 2.) This two-point correlation function

can be calculated using the duality, again by looking at the appropriate solutions

to the equations of motion of the bulk gauge field in the curved background of the

dual. Fortunately, Ref. [59] showed that the result of such a calculation again can

be written in terms of the metric coefficients of the gravity dual background:

D = σ

∫ ∞
rh

dr
a(r)2

b(r)2
√
−g

g2
5 . (4.26)

To find the high T behavior of D, we can simply read off D from the metric

components of the high T geometry found in Sec. 4.3. To O(φ2
0),

D̃(T ) ≡ 2πTD = 1 + CD̃φ
2
0 , where (4.27)

CD̃ =
1

96π

(
4π∆(∆− 4)− 32(∆− 2) tan(π∆/4) + (4.28)

+ π∆(∆− 4)

∫ ∞
1

du u5
2F1(2− ∆

4
, 1 +

∆

4
; 2; 1− u4)2

)
.

Unfortunately in this case we were unable to simplify CD̃ further. We show a plot

of CD̃ in Fig. 4.2.

At high temperatures, we see that 2πTD ≥ 1. For us, the most important

feature of our result for D is that the temperature dependence of 1 − D̃ becomes

the same as that of 1/3− v2
s and 1− D̃σ as T →∞.

It turns out that in in the class of theories we work with here, it is known that

D, Ξ and σ satisfy the Einstein relation DΞ = σ [59]. Using Eqs. 4.25 and Eq. 4.27,
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Figure 4.2: Plot of CD̃ versus ∆. [56]

we find that

Ξ̃ ≡ g2
5Ξ

2L(πT )2
= 1− (Cσ̃ + CD̃)φ2

0 . (4.29)

Since Cσ̃ and CD̃ are positive, Ξ̃ ≤ 1 at high temperatures. Obviously, 1− Ξ̃ again

has the same temperature dependence as the other observables we have considered.

Kovtun and Ritz have proposed that there is a bound on D = σ/Ξ in systems

with gravity duals [60], given by

D ≥ 1

2πT
. (4.30)

Our results are consistent with this proposal.

4.4.4 Bulk viscosity

Finally, we turn to the bulk viscosity ζ. The bulk viscosity characterizes some

aspects of the response of a non-ideal fluid to volume changes, as was discussed in

Chapter 2. To compute ζ in field theory, one can use the Kubo formula Eq. 1.42.

The Kubo formula relates ζ to the low-frequency behavior of an SO(3)-symmetric
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two-point retarded correlation function of the stress-energy tensor. Such correla-

tion functions can be calculated using the gauge gravity duality by relating them

to SO(3)-invariant time-dependent perturbations of the metric of the dual gravity

theory [61, 62, 44, 63, 64, 43, 47, 12].

Calculating ζ using the duality is somewhat challenging as a practical matter,

because the relevant metric perturbations mix with perturbations of other bulk

fields, and one must solve a coupled set of a non-linear differential equations to find

ζ. However, for field theories with single-scalar gravity duals, an elegant formalism

was developed in Ref. [64, 65]. A key idea of the approach is to use a gauge where

the bulk scalar φ is used as the holographic coordinate, so that r = φ in Eq. 4.6.

The advantage of this gauge is that the metric and scalar perturbations decouple,

which makes the calculation of ζ much easier in this gauge than in the gauge we use

in the rest of this chapter.

Here we are interested in the high T behavior of the field theory. On the

gravity side, perturbations around the T → ∞ limit map to perturbations about

AdS-Schwarzschild, for which φ = 0 everywhere. Unfortunately, this makes the

gauge choice φ = r inappropriate for computing the geometry at high temperatures.

Thus to find a simple expression for the ζ, we use the r = φ gauge in the first part

of this section to find a simple formula for ζ/s, and then switch back to the gauge

we use in the rest of the paper (where a(r) = r) to make use of our results for the

high T geometry.

As is shown in Ref. [64, 65], to compute ζ in the r = φ gauge one can consider
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the diagonal metric ansatz

ds2 = g00dt
2 + g11d~x

2 + g55dφ
2, where (4.31)

g00 = −e2Ah(1 +
λ

2
H00)2 , g11 = e2A(1 +

λ

2
H11)2

g55 =
e2B

h
(1 +

λ

2
H55)2 .

Here A, h, and B are functions of φ only, while H00, H11, and H55 are functions of

t and φ, and λ is a formal expansion parameter. The functions H00, H11 and H55

parameterize the SO(3)-invariant metric perturbations. When λ = 0, the metric

perturbation is turned off, and the equations of motion of Eq. 4.4 with n = 1

determine the background with which we work. For us, this background is given by

the high T geometry we computed above.

At first order in λ, the Einstein equations determine H00, H11, and H55. By

taking the ansatz H11(t, φ) = e−iωth11(φ), the 11 component of the Einstein equa-

tions gives

h′′11 =

(
− 1

3A′
− 4A′ + 3B′ − h′

h

)
h′11

+

(
−e
−2A+2B

h2
ω2 +

h′

6hA′
− h′B′

h

)
h11 , (4.32)

where the primes denote derivatives with respect to φ. By applying the recipe we

discussed in Chapter 2 for computing retarded two-point functions and using the

Kubo formula Eq. 1.42, Ref. [64, 65] showed that h11 is related to the bulk viscosity

via

ζ

s
=

1

4π
h11(φH)2V

′(φH)2

V (φH)2
, (4.33)

where s is the entropy density and φH is the value of the scalar (which is the value
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of r as well in this gauge) at the horizon.

Having obtained an expression for ζ, we now do a change of coordinates in

Eq. 4.32 (with ω = 0) implementing the switch from the r = φ gauge back to the

a(r) = r gauge. Once this is done, we plug in the expressions for b, h, and φ up

to second order in φ0. It is convenient to define a new radial variable u = r/rh.

Then when we retain the leading term in φ0 in the coefficients of h11, dh11/du, and

d2h11/du
2, we find that

h′′11 = α(u,∆)h′11 + β(u,∆)h11 , (4.34)

where the primes denote derivatives with respect to u, and α(u,∆) and β(u,∆) are

given in the Appendix. Crucially, α(u,∆) and β(u,∆) do not depend on rh, φ0, or

φH . Thus, Eq. 4.34 does not involve rh, φ0, or φH , which are the only parameters

that depend on temperature.

This means that at high temperatures, h11(φ = φH) = h11(u = 1) only de-

pends on ∆. As a result, all of the temperature dependence of ζ/s lives in the

V ′(φH)2/V (φH)2 factor of Eq. 4.33. When one takes r = rh in Eq. 4.13, it is clear

that φH = φ0 up to O(φ2
0). Then it follows that

ζ

s
= Cζ/s(∆)φ2

0 , (4.35)

where Cζ/s(∆) is determined determined from the solution to Eq. 4.34.

From Eq. 4.35, it is immediately clear that the temperature dependence of ζ/s

is ζ/s ∼ (Λ/πT )2(4−∆). Thus ζ/s has the same temperature dependence at high T

as all of the other observables we examined. This shows that Eq. 4.2 holds, which

is our main result in this chapter.
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Figure 4.3: Plot of Rζ/s,v2
s
(∆) = ∂(ζ/s)/∂ log T

∂(v2
s)/∂ log T

vs. ∆. [56] The small dots were obtained

from a numerical solution of Eq. 4.34, which becomes unreliable near ∆ = 2. The

solid curve represents a guess at an analytical form described in the text, and the

two large dots are taken from the ζ/η results of Refs. [12, 61]. The dashed line is at

Rζ/s,v2
s

= 1/2π, the bound suggested in Ref. [66].

For completeness, we note that we do not know of any obvious analytical

solution to Eq. 4.34. To find ζ/s, we solved Eq. 4.34. In Fig. 4.3, we plot the

quantity

Rζ/s,v2
s
(∆) ≡ ∂(ζ/s)/∂ log T

∂(v2
s)/∂ log T

. (4.36)

which simply gives the leading deviation of ζ/s from its conformal value (0), divided

by the deviation of v2
s from its conformal value (1/3).

The dots in Fig. 4.3 denote the results of the numerical solution. When this

calculation was first described for publication in Ref. [56], it was observed that the

numerical solution turns out to fit a simple analytical formula

Cζ/s(∆) =
1

9
(∆− 4)2. (4.37)
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This analytic formula fits our numerics to great precision (except near ∆ = 2, where

our numerics can no longer be trusted). For example, at ∆ = 3, the analytical

formula predicts Cζ/s(∆ = 3) = 1/9, and the numerical result is 0.1111111.

We also compared this conjectured analytic formula for ζ/s against the high-

temperature calculations done for theN = 2∗ theory in Refs. [41, 61]. N = 2∗ theory

is a deformation of N = 4 SYM that is obtained when one turns on masses for the

bosons and/or fermions in two of the N = 1 chiral supermultiplets that are part of

the N = 4 gauge theory. In the notation we use here, these deformations correspond

to looking at bulk scalars with ∆ = 2 or ∆ = 3. For ∆ = 3, corresponding to

turning on masses for fermions, we find that Rζ/s,v2
s
(∆ = 3) = π, while for ∆ → 2,

corresponding to turning on masses for the bosons, we get Rζ/s,v2
s
(∆ → 2) = π2/2.

These results precisely agree with the results of Ref. [61].

Given the remarkable agreement of Eq. 4.37 with our numerical solutions and

with the results of Refs. [41, 61], we conjectured that Eq. 4.37 gives the correct

analytic expression for Cζ/s(∆). This conjecture was later proved by Yarom [33]

using a different approach.

Finally, we note that Buchel [66] proposed the conjecture that

ζ

η
≥ 2

(
1

3
− v2

s

)
(4.38)

in all theories with gravity duals. This translates to the statement that Rζ/s,v2
s
≥

1/2π. As one can see from Fig. 4.3, the Buchel bound is always satisfied at high

temperatures in the class of theories we consider for 2 < ∆ < 4; the bound becomes

saturated as ∆→ 4.
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4.5 Systems with multiple scalars

We have spent most of the previous few section discussing the class of CFTs

that are deformed by one relevant operator. Here, we discuss the straightforward

extension of our results to handle multiple relevant deformations. This extension

is described for all of the observables we computed except ζ/s, since our treatment

of ζ/s relies on a choice of gauge that makes the generalization difficult. It has

since been shown by Yarom [33] that our results do indeed extend to the multiple

deformation case for ζ/s, in the same way as for the other observables.

For clarity of exposition, we focus here on the case where we have two relevant

deformations of the dual CFT. The generalization to n > 2 deformations will be

obvious. When there are two relevant deformations of the CFT action, the action

of the gravity dual has two bulk scalar fields:

S =
1

2κ2
5

∫
d5x
√
−g
[
R +

12

L2
− 1

2
(∂φ)2 − 1

2
(∂χ)2 − V (φ, χ)

]
, (4.39)

where φ and ξ are bulk scalar fields, and V (φ, χ) is an analytic potential that is

even in both φ and χ. Our interest in relevant deformations of the CFT translates

on the gravity side to the demand that

lim
r→∞

V (φ) =
1

2L2
∆φ(∆φ − 4)φ2 +O(φ4)

+
1

2L2
∆χ(∆χ − 4)χ2 +O(χ4) , (4.40)

where ∆φ and ∆χ are the scaling dimensions of Oφ and Oχ, respectively. Just as in

the case of a single deformation, we restrict our attention to 2 < ∆φ,∆χ < 4. This

result turns out to continue to hold for 1 < ∆ ≤ 2 [33].
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The high temperature expansion for the background of the gravity dual goes

through in almost completely the same way as in the single-scalar case discussed

previous. The only substantive change comes from the fact that there now two

expansion parameters, φ0 and χ0, which track the smallness of the two scalar fields.

There are also two energy scales associated with the CFT deformations, Λφ and Λχ.

Fixing the size of Λχ and Λφ in units of 1/L then gives relationships between rh and

φ0, χ0:

r
∆φ−4

h = φ0
Γ(∆φ/2− 1)

Γ(∆φ/4)2
(4.41)

r
∆χ−4
h = χ0

(
Λχ

Λφ

)∆χ−4
Γ(∆χ/2− 1)

Γ(∆χ/4)2
.

To find the leading deviations from the conformal behavior of various observ-

ables in the field theory, we must work to order O(φ2
0, χ

2
0) in the gravity dual. For

any particular observable ξi,

ξi = ξCFTi + Cξi,φ(∆φ)φ2
0 + Cξi,χ(∆χ)χ2

0 +O(φ4
0, χ

4
0, φ

2
0χ

2
0) .

Terms proportional to φ0χ0 cannot arise, because there are no terms proportional

to φχ in a Taylor expansion of V (φ, χ) about (φ, χ) = (0, 0).

Now suppose that ∆φ 6= ∆χ, and take (without loss of generality) ∆ ≡ ∆φ >

∆χ. Then it is clear from the above discussion that φ2
0 � χ2

0 as T →∞. Thus, the

leading deviation of ξ from ξCFT in the high T limit is driven by the least relevant

operator, and

ξ = ξCFTi + Cξi,φ(∆)φ2
0 (4.42)

plus terms that vanish faster than φ2
0 as T → 0. This gives the same temperature
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dependence as we have seen in the single-deformation case.

Finally, consider the degenerate case when ∆φ = ∆χ. From Eq. 4.21, we find

that

ξ = ξCFTi + Cξi(∆)
Γ(∆/4)4

Γ(∆/2− 1)2

(
Λ

πT

)2(4−∆)

, (4.43)

where ∆ = ∆φ, and

Λ2(4−∆) = Λ
2(4−∆)
φ + Λ2(4−∆)

χ . (4.44)

Again, the temperature dependence will be the same for all of the transport coeffi-

cients, in the same sense as before. The extension of the analysis above to the case

of n > 2 deformations is obvious.

4.6 Summary

We now recap. The essential idea throughout our analysis is that in the high

temperature limit, only the least relevant deformation matters as T →∞. Moreover,

since the field theories we consider are CFTs deformed by relevant operators, at high

temperatures the effects of the deformations become small. On the gravity side, this

translates into the fact that the scalar fields associated with the deformations become

’small’ at high temperatures. As a result, only the ‘universal’ part of the scalar

potential in the dual is important for determining the high-temperature behavior

of the theory, and the only property of a deformation that determines its effects on

the physics at high temperatures is its scaling dimension.

Thus, as we have seen, our results in this chapter imply that in conformal

strongly-coupled large N gauge theories with gravity duals that are deformed by
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n relevant scalar operators, observables like the speed of sound and the transport

coefficients, generically referred to as ξi, universally obey the relation

ξi(T ) = ξCFT
i + Cξi(∆)

(
Λ

T

)2(4−∆)

+O
(

Λ

T

)4(4−∆)

(4.45)

at high T in all the cases we have considered.

4.7 Appendix: High T metric coefficients

As we noted in the main text, we found it convenient to do the expansion at

a fixed entropy. In the gravity dual, this corresponds to fixing the location of the

black hole horizon at its AdS5-Schwarzschild value, so that r = rh to all orders in

the expansion. When there is one scalar operator deforming the CFT, one must

compute the back-reaction of one scalar field on the geometry of the gravity dual.

This gives the following results for h(r) and b(r) to O(φ2
0):

b(r) =
r

L
− ∆2(∆− 4)2φ2

0r

96Lr8
h

× (4.46)

×
∫ r

∞
dx x7

(
2F1(2− ∆

4
, 1 +

∆

4
; 2; 1− x4

r4
h

)

)2

h(r) = 1− r4
h

r4
− rhφ

2
0

6r4

∫ r

rh

dx x2f(x), where (4.47)

16r9
h

∆(∆− 4)x
f(x) = 16r8

h 2F1(1− ∆

4
,
∆

4
; 1; 1− x4

r4
h

)

+ x4(r2
h − x4)∆(∆− 4) 2F1(2− ∆

4
, 1 +

∆

4
; 2; 1− x4

r4
h

)

− 8∆(∆− 4)

∫ x

∞
dy y7

(
2F1(2− ∆

4
, 1 +

∆

4
; 2; 1− y4

r4
h

)

)2

.
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Some functions that appear in the calculation of ζ/s in Eq. 4.34 are given by

α(u,∆) =
14u4 − 9

u− u5
−
u3 (∆− 8)(4 + ∆) 2F1(3− ∆

4
, 2 + ∆

4
; 3; 1− u4)

4 2F1(2− ∆
4
, 1 + ∆

4
; 2; 1− u4)

(4.48)

β(u,∆) =
32 2F1(1− ∆

4
, ∆

4
; 2; 1− u4) + (∆− 8)(4 + ∆) 2F1(1− ∆

4
, ∆

4
; 3; 1− u4)

2u6(u4 − 1) 2F1(2− ∆
4
, 1 + ∆

4
; 2; 1− u4)

.
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Chapter 5

Conclusions

In this dissertation, we looked at the high-temperature properties of relativistic

fluids described by a broad class of 4D large N strongly-coupled gauge theories with

gravity duals. The gauge theories in this class can be viewed as conformal field

theories deformed by the addition of n relevant gauge-invariant single-trace scalar

operators. As we have stressed throughout, the theories that can be investigated

using the gauge/gravity duality are not of direct phenomenological interest, as they

are different in a number of important ways from theories that are known to describe

the physical world. In particular, these theories are quite different from QCD, the

theory that describes the strongly-coupled quark-gluon plasma, which is the perhaps

the most famous recent example of a relativistic fluids described by a strongly-

coupled non-Abelian gauge theory. Perhaps the biggest difference between theories

with gravity duals and QCD is that theories with duals remain strongly coupled on

all energy scales, while QCD becomes weakly coupled at high temperatures.

As a result, rather than looking at the quantitive properties of fluids described

by theories with gravity duals, it makes sense to think of the gauge/gravity duality

as a source of tractable toy models of strongly-coupled systems with a number of

properties in common with QCD. In particular, it is important to try to understand

any universal properties of theories with gravity duals, since it is conceivable that
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this may teach us some qualitative lessons that may be of use phenomenologically.

Understanding which features of theories with gravity duals are universal may also

give insights into how the duality can be extended to cover more interesting theories,

perhaps by highlighting the current obstacles to such extensions.

To look for universal properties of theories with gravity duals, we consid-

ered a broad class of theories with gravity duals. These theories are 4D large N

strongly-coupled conformal field theories that are deformed by n relevant operators.

In looking at the high-temperature behavior of the speed of sound vs, the bulk vis-

cosity ζ, the DC conductivity σ, the charge diffusion constant D, and the charge

susceptibility Ξ, we found two striking universal features:

• In Chapter 3, we showed that in the class of theories we examined, there is a

bound on the speed of sound: at high temperatures, v2
s universally approaches

1/3 the speed of light squared from below. In fact, this sound bound appears

to hold more generally in theories with gravity duals, and we conjectured that

it may be a universal property of theories with gravity duals.

• In Chapter 4, we showed that for ξi ∈ {v2
s , ζ/s, , 2πTD, σ/πT,Ξ/(2π

2T 2)}, at

high T the temperature dependence of ξi takes a universal form:

ξi(T ) = ξCFT
i + Cξi(∆)

(
Λ

T

)−2(4−∆)

+O
(

Λ

T

)−4(4−∆)

, (5.1)

where ξCFT
i is the value of the ξi in the T →∞ limit, ∆ is the scaling dimension

of the deformation with scaling dimension closest to ∆ = 4, and Λ is the

associated energy scale.
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One might naively think that the latter result is a trivial consequence of di-

mensional analysis, as a consequence of the conformal symmetry in the T → ∞

limit. Certainly, dimensional analysis tells us that the deviation from the confor-

mal behavior must be a power law in Λ/T . However, the conformal symmetry of

the T → ∞ theory does not fix the exponent in the power law. To see this, note

that if the whole result was a consequence of the T →∞ conformal symmetry, the

temperature dependence of, for instance, v2
s and ζ/s would continue to be identical

at weak coupling. However, at small λ, for conformal field theories deformed by a

turning on a small mass m for a matter field in the theory, it is known that [54]

1/3− v2
s ∼

m2

T 2
(5.2)

ζ/s ∼
(
m2

T 2

)2

(5.3)

Thus at weak coupling, the temperature dependence of v2
s and ζ/s is different at

high temperature, in stark contrast to what we saw in strongly-coupled theories,

where the temperature dependence of these quite different observables is identical.

This shows that the strong coupling limit is crucial for our results.

The universality of the high-temperature dependence of transport coefficients

is a remarkable feature of theories with gravity duals. However, the fact that our

results appear to rely so heavily on the fact that these theories remain strongly

coupled at high temperatures makes it difficult to imagine that this can give much

insight into the phenomenology of QCD fluids. Nonetheless, the universal aspects of

the behavior of theories with gravity duals are interesting in their own right, at least

as mathematical physics, and there are many interesting future research directions.
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For instance, it would be interesting to investigate the effect of the leading 1/N

and 1/λ corrections on the speed of sound and on the temperature dependence of

transport coefficients. In the gravity duals, this would correspond to exploring the

effect of higher-curvature corrections on the dynamics. Further, one can to go the

next order in the hydrodynamic expansion, where one must introduce a number

of additional transport coefficients. It would be interesting to understand whether

these higher order transport coefficients continue to have the universal temperature

dependence that we saw in the high temperature limit for first-order hydrodynamics.
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