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Although cluttered indoor scenes have a lot of useful high-level semantic in-

formation which can be used for mapping and localization, most Visual Odometry

(VO) algorithms rely on the usage of geometric features such as points, lines and

planes. Lately, driven by this idea, the joint optimization of semantic labels and

obtaining odometry has gained popularity in the robotics community. The joint

optimization is good for accurate results but is generally very slow. At the same

time, in the vision community, direct and sparse approaches for VO have stricken

the right balance between speed and accuracy.

We merge the successes of these two communities and present a way to incorpo-

rate semantic information in the form of visual saliency to Direct Sparse Odometry

– a highly successful direct sparse VO algorithm. We also present a framework to

filter the visual saliency based on scene parsing. Our framework, SalientDSO, relies

on the widely successful deep learning based approaches for visual saliency and scene

parsing which drives the feature selection for obtaining highly-accurate and robust

VO even in the presence of as few as 40 point features per frame. We provide exten-



sive quantitative evaluation of SalientDSO on the ICL-NUIM and TUM monoVO

datasets and show that we outperform DSO and ORB-SLAM – two very popular

state-of-the-art approaches in the literature. We also collect and publicly release

a CVL-UMD dataset which contains two indoor cluttered sequences on which we

show qualitative evaluations. To our knowledge this is the first framework to use

visual saliency and scene parsing to drive the feature selection in direct VO.
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Chapter 1: Introduction

Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO)

algorithms have taken center stage in the recent years due to their wide-spread

usage. They play a prominent part in the perception and planning pipelines of

self-driving cars, autonomous quadrotors, augmented and virtual reality. The never

ending quest to come up with realtime solutions for these methods whilst being as

accurate as their offline counterparts has led to alternative problem formulations in

terms of constraints and optimization methods [1–4].

Not so long ago, the field was dominated by indirect methods [2, 5, 6] which

rely on feature matching and foundations of multi-view geometry coupled with win-

dowed optimization to build a map of the scene and obtain accurate poses. These

approaches are based on the low-level geometric features and do not work very well

with environments with repeating structures and texture-less surfaces. Some works

have improved upon the previous approaches in-terms of speed and accuracy by

incorporating prior knowledge such as the dynamics of the system and/or data from

more sensors such as inertial measurement units [7], time-of-flight sensors [8] etc.

However, minimalism is a trend forward, i.e., trying to achieve the same tasks with

a minimal number of sensors. In the scope of this thesis, we focus on a monocular
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VO solution. The current state-of-the-art in monocular approaches which have the

best compromise of speed and accuracy are direct sparse approaches such as Direct

Sparse Odometry (DSO) [9].

However, object centric SLAM approaches are more robust by nature due

to the high level semantics used in the formulation. Lately, joint optimization of

3D poses, stucture and labelled object locations has improved the state-of-the-art

significantly. These frameworks rely on the widely successful deep learning based

object recognition engine and pose graph optimization frameworks, combining both

low-level geometric features and the high-level semantics.

However, humans perform the task of mapping very differently. The human

visual system interprets the scene for various tasks like recognition, segmentation,

tracking and navigation by making a series of fixations [10]. This is called the Ac-

tive approach [11–13], whilst the traditional approach is called the Passive approach

(See Table 1.1). These fixations lie in the proto-segmentation of the salient ob-

jects/locations in the scene. The word proto-segmentation refers to the fact that a

segmentation around the fixation point may lead to partial/complete segmentation

of an object, which depends on the scenario. Solving the problem of recognition and

tracking along with segmentation is like a chicken-egg problem. One would need

a good segmentation for recognition and tracking and vice-versa. An Expectation-

Maximization (EM) type of scheme, where one would jointly/alternatively optimize

for the segmentation and recognition/tracking has gained popularity in literature

lately, due to the advancement of fast and accurate optimization frameworks.

Very recently, this philosophy of fixation and attention has started to gain

2



Table 1.1: Active vs Passive approach for computer vision tasks.

Task Passive approach Active approach

Segmentation Graph cut or super-pixel based
methods.

Fixation based region segmenta-
tion and recognition in a feedback
loop.

Recognition Sliding window of filter banks
with a classification algorithm for
final prediction.

Saliency/fixation based segmen-
tation/clustering followed by se-
lection of attributes and sliding
window of filters with a simple
classification algorithm.

Tracking and
Failure recovery

Making an online dictionary for
robustness against changes and
use detection for failure recovery.

Tightly couple saliency into the
tracking filter to reduce search
space and use salient regions for
failure recovery. By doing so,
we introduce high level semantics
into the low level processes (feed-
back).

Navigation and
Mapping

Map based on features based on
image gradients.

Map only using salient region
features or objects obtained us-
ing fixation based segmentation.
Take advantage of the semantic
relationships between differently
labeled regions.

popularity in the robot navigation community [14–17]. This is based on the fact

that humans perform the task of mapping very differently from how it has been

done in the robotics literature. They build “sematic/toplogical” maps to traverse

the scene. This thesis combines the concepts used by humans and robotics literature

to present a framework of indoor visual odometry in which the features are selected

based on a visual saliency map that is obtained by human eye tracking data. This

work aims to mimic the qualitative human vision in the framework of direct VO.

1.1 Contribution

The key contributions of this thesis are:
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• We present a framework of indoor visual odometry in which the features are

selected based on a visual saliency map (Sample output is shown in Fig. 1.1).

• We present a method to filter saliency map based on scene parsing.

• We provide experimental results on various simulated and real indoor envi-

ronments to demonstrate the improved performance of the proposed approach

with comparisons to the state-of-the-art.

1.2 Outline

The rest of the thesis is organized as follows: Chapter. 2 presents the pipeline

of the proposed SalientDSO framework. In Chapter. 3, we introduces the required

preliminaries and adopt VO backbone algorithm DSO [9]. Chpater. 4 describes the

deep network used to predict saliency. Chapter. 5 presents the deep neural model for

retrieving semantic information. Chapter. 6 describes the visual saliency and scene

parsing driven point selection algorithm used in SalientDSO. Detailed experiments

along with quantitative and qualitative results are given in Chapter. 7. We finally

conclude the thesis in Chapter. 8 with parting thoughts on future work.
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Figure 1.1: Sample point-cloud output of SalientDSO which does not
have loop closure or global bundle adjustment. The insets show the
corresponding image, saliency, scene parsing outputs and active features.
Observe that features from non-informative regions are almost removed
approaching object centric odometry.
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Chapter 2: SalientDSO

The overview of SalientDSO is presented in Fig. 2.1. The blue parts of the

Fig. 2.1 show our contribution which constitutes the pre-processing step. The

SalientDSO contains following components:

• DSO serves as the Visual Odometry backbone

• SalGAN predicts saliency map of a given image

• Scene Parsing retrieves semantic information of a given image

• Features/Points Selection uses semantic information to filter saliency map

and select features/points according to the filtered saliency map

Each components will be detailed in the following chapters. In brief, SalientDSO

extracts information from interesting regions/objects in observed environment. Gath-

ering this information, SalientDSO estimates camera pose as well as 3D world model

simultaneously by tracking salient features/points and optimizing estimation with

Gaussian-Newton algorithm in a sliding window manner. By using salient informa-

tion in a scene, SalientDSO performs better in accuray and much robust in a severe

parameter setting compare to the state-of-the-art algorithms.
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Chapter 3: Monocular SLAM and Visual Odometry

Simultaneous localization and mapping is a process of estimating the state of

a robot using on-board sensors, such as cameras, IMU units, and GPS. Simultane-

ous localization and mapping is a key problem in computer vision as self driving

autonomous becomes much more popular in recent years.

In this thesis, the Simultaneous localization and mapping serves as the back-

bone of the whole system. Instead of evenly extracting features from an image, we

concentrate in regions which are interesting in an environment. In the next section,

a powerful techniques presented in [9] adopted here will be analyzed in detail.

3.1 Introduction to Direct Sparse Odometry(DSO)

While for a long time, Simultaneous localization and mapping was dominated

by feature-based (indirect) method [2,5,18], more and more methods, such as direct

[19] and dense [3, 4, 19–22], have emerged in recent years.

3.1.1 Different Formulations

Despite there are different formulation, underlying all is a probabilistic model

which estimates unknown X (3D world model and camera motion) based on noise
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measurements Y (images). Typically, a Maximum Likelihood approach is applied.

X = argmaxXP (Y | X) (3.1)

According to the description in [9], different formulations can be described as

following:

3.1.1.1 Direct vs. Indirect

Indirect methods will first pre-process raw sensor measurement to generate

intermediate representation, such as SIFT [23], SURF [24], and ORB [5]. Second,

as soon as keypoints have been extracted and matched across different views, they

are feeded into the underlying probabilistic model as measurement Y to estimate

world model and camera motion.

Direct methods directly use the raw sensor measurement (Intensity values)

as noise measurement Y , instead of generating intermediate representation.

3.1.1.2 Dense Vs. Sparse

Dense methods gather information from and reconstruct all pixels in an image,

while sparse methods [19] only utilize a selected set (corners, edges).

More importantly, their geometric prior are different. Dense methods can

establish connectedness between neighbor pixels and formulate as geometric prior

while sparse methods can’t. Such prior is necessary for reconstructing a dense world

model [3, 21,25].

9



3.1.2 Implementation Details

DSO introduced a direct and sparse method. The main benefits of using

keypoints as in indirect method is their ability to provide robustness to photometric

and geometric distortions present in an image. However, with a more precise sensor

model, auto-exposure and gamma correction are not unknown noise. It benefits

direct approaches since direct approaches process image information down to pixel

intensities and can be more informative.

Another benefits of DSO is that because of introducing geometry prior, opti-

mization of dense methods in real time is infeasible. However, sparse methods can

be solved efficiently by Schur complement since its Hessian structure is diagonal.

DSO contains two parts, front end for frames/points selection and initialization

and back end for optimization. The whole pipeline is shown in Fig. 2.1 colored in

black. Note that in the proposed framework, points selection is replaced with our

proposed method in Chapter.6.

3.1.2.1 Calibration

In addition to geometric camera model, it is necessary to do photometric

camera calibration in direct method. Following the formation in [26], a non-linear

response function G : R → [0, 255] with lens attenuation V : Ω → [0, 1] maps

irradiance Bi to the respective intensity value Ii. This is given by

Ii(x) = G (tiV (x)Bi(x)) (3.2)

10



where ti is the exposure time. To get a photometrically corrected pixel value,

I ′i(x) = tiBi(x) =
G−1 (Ii(x))

V (x)
(3.3)

is applied to each video frame as very first step. Note that, in the remainder

of this thesis, Ii will always refer to the photometrically corrected image I ′i.

3.1.2.2 Front end

The front end is the part of algorithm that handles the following:

• Initial Frame Tracking: A new frame is tracked with respect to the latest

keyframe by using conventional two-frame direct image alignment, a multiscale

image pyramid and a constant motion model. If tracking is fail, DSO attempt

to recover a motion by trying 27 different small rotations.

• Keyframe Creation: Similar to ORB-SLAM [5], DSO take as many keyframes

as possible, and then sparsify afterwards by marginalizing redundant keyframes.

There are three rules to decide if a new keyframe is needed:

– Mean square optical flow f =
(

1
n

∑n
i=1 ‖p− p′‖

2) 1
2

– Mean flow without rotation ft =
(

1
n

∑n
i=1 ‖p− p′t‖

2) 1
2 , where p′t is the

warped point position with identity rotation matrix.

– Relative brightness factor a =
∣∣log (eaj−aitjt−1

i

)∣∣
After all, DSO combines all three and create a new key frame if

wff + wftft + waa > Tkf . Here the symbols have the same meaning as in [9].
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• Candidate point tracking: Candidate points are selected using the ap-

proach described in Sec.6. These points are then tracked by using discrete

search along epipolar line and minimizing the photometric error Ephoto given

by Eq. 3.6. The computed depth and variance is used to constrain the search

interval for subsequent frame as described in LSD-SLAM [4].

• Outlier rejection and occlusion detection: Point observations which have

a Ephoto above a certain threshold are removed as outliers and excluded for

further computation.

• Parameters initialization: This step provides the initial estimates of all

parameters for optimizing the non convex error Ephoto. The initial camera

pose is computed from direct image alignment and the initial point’s depth is

from candidate point tracking.

• Candidate point activation: New candidates points replace the old marginal-

ized points. The new points are chosen by projecting onto the current frame

and maximizing the distance between projection of any existing active points.

• Marginalization: This step decides which points and frames should be

marginalized. A KF will be marginalized if less than 5% of points are visible

in the latest frame. If there are more than Nf (fixed at 7) KFs, a KF which

is far from current frame and close to any other KFs will be marginalized.

12



3.1.2.3 Back end

The back end contains a factor graph which performs continuous windowed

optimization using the approach by Leutenegger et al. [27]. It optimizes the total

error (3.6) using Gaussian-Newton algorithm in a sliding window manner. The error

functions are defined as the following:

For a single active point p, its photometric error on keyframe j is defined as

Epj =
∑
p∈Np

wp

∥∥∥∥(Ij[p
′]− bj)−

tje
aj

tieai
(Ii([p]− bi)

∥∥∥∥
γ

(3.4)

where p′ is the projection of point p on KF j, {ti, tj} are the exposure time for

images {Ii, Ij}, ‖‖γ is the Huber norm, ai, aj, bi, bj are brightness transfer function

parameters, Np is the residual pattern with eight surrounding neighbors and gradient

depending weights wp is given by

wp =
c2

c2 + ‖5Ii(p)‖2
2

(3.5)

The full photometric error over all active points and keyframes is defined as

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj (3.6)

where F indicates all active keyframes, Pi indicates all active points in keyframe i,

obs(p) indicates all frames’ observation in which point p is visible.

When the active set of variables becomes too large, DSO follows [27] to

marginalize points and frames.
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Chapter 4: Saliency Prediction

Saliecny prediction is popular in research for many years. Saliency prediction

is a task to estimate the probability of a region in an image that attracts human’s

attention. It’s prediction can be used as guides for other computer vision tasks or

user studies.

Similar to other computer vision tasks, researchers started with extracting

information from low-level features. [28] extracts low-level features in multiple scales

and combine them to form a saliency prediction. By combining graph model [29]

and mid- and high-level features [30, 31], they achieved predicting better saliency

prediction or eye fixations.

In recent years, more and more deep learning solutions [32–41] has been pro-

posed and significantly improved performance. According to MIT saliency bench-

mark, nine out of top ten results are deep learning solution.

In this thesis, Saliency prediction serves as the guide for candidate points’

selection. We not only consider high gradient pixels, but also select points from

higher saliency region with higher probability. Candidate points’ selection will be

discussed in detail in Chapter. 6. In the next section, a powerful model presented

in [42] adopted here will be analyzed in detail.
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Figure 4.1: The overall architecture of SalGAN from [42].

4.1 Introduction to SalGAN

SalGAN [42] introduced the use of generative adversarial network (GANs) [43]

for saliency prediction. It contains generator and discriminator. Generator is a deep

convolutional neural network trained on adversarial loss (LGAN in Eq. 4.2) which

includes binary cross entropy loss (LBCE in Eq. 4.1) to produce a downsampled

saliency map and dscriminator is a shallower network as compared to the generator

which is trained to solve binary classification between saliency map produced by

generator and the groundtruth one. The overall architecture is shown in Fig. 4.1.

SalGAN [42] is trained on SALICON [44] and evaluated on both SALICON [44] and

MIT300 [45].

15



4.1.1 Generator

Generator is a encoder-decoder like network. The encoder part contains max

pooling layers which decrease the size of feature maps. Encoder’s structure is iden-

tical to VGG-16 [46] and its weights are initialized with the weights trained on

the ImageNet dataset [47]. Decoder part is identical to encoder part with reversed

ordering. Decoder’s weights are randomly initialized.

The binary cross entropy loss between predicted saliency map Ŝ and groundtruth

S is defined as

LBCE = − 1

N

N∑
j=1

Sjlog(Ŝj) + (1− Sj)log(1− Ŝj) (4.1)

where Sj is the probability of pixel Ij being fixated.

4.1.2 Discriminator

Discriminator, in short, is a network trained to distinguish between samples

from the true distribution and generated samples. Its detail architecture is described

in Table 4.1.

The final loss which includes content loss (4.1) for adversarial training is de-

fined as

LGAN = α · LBCE − logD(I, Ŝ) (4.2)

where D(I, Ŝ) is the probability of fooling the discriminator.

Some sample results are shown in Fig. 4.2. One can clearly notice that walls,

floors, and ceilings have lower probability of being fixated on, which is the main idea

16



Table 4.1: Detail architecture of discriminator.

layer depth kernal stride pad activation
conv1 1 3 1 x 1 1 1 ReLU
conv1 2 32 3 x 3 1 1 ReLU
pool1 2 x 2 2 0
conv2 1 64 3 x 3 1 1 ReLU
conv2 2 64 3 x 3 1 1 ReLU
pool2 2 x 2 2 0
conv3 1 64 3 x 3 1 1 ReLU
conv3 2 64 3 x 3 1 1 ReLU
pool3 2 x 2 2 0
fc1 100 tanh
fc2 2 tanh
fc3 1 sigmoid

of the proposed framework.

4.2 SALICON Dataset

Saliency in Context(SALICON) [44] is a publicly available large dataset con-

taining saliency annotated MSCOCO [48] images. This dataset contains 10000 train-

ing images, 5000 validation images, and 500 testing images. Some examples are

shown in Fig. 4.3.

4.2.1 Data Collection

SALICON [44] proposed a novel approach to simulate the natural viewing

behavior of humans. This allows one to collect the probability of visual attention

by aggregating mouse trajectories from different users, instead of recording viewing

behavior with eye-tracker.

17



Figure 4.2: Left column: Input image, Right column: Saliency overlayed
on input image.
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4.2.2 Subjects

The experiment is deployed on the Amazon Mechanical Turk to enable large

scale data collection.

19



Figure 4.3: Examples of SALICON [44].
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Chapter 5: Scene Parsing

The saliency produced by SalGAN is concentrated around a fixation point

inside the object and is fuzzy. Moreover, the saliency map is not very robust to

viewpoint and illumination changes as the fixation point does not remain constant.

Therefore, we utilize semantic information to filter the saliency. In this chapter, we

introduce the deep nerual network presented in [49] and the training data for our

application.

5.1 Introduction to Pyramid Scene Parsing Network

To obtain semantic information from a scene, we adopt Pyramid Scene Parsing

Network [49] for retrieving semantic labels of every pixel in an image. In brief,

Pyramid Scene Parsing Network (PSPNet) is a deep neural network for pixel-level

prediction tasks. PSPNet uses CNN layers to extract features, then a pyramid

parsing module is applied to harvest different sub-region representation, followed by

up-sampling and concatenation layers to form the final feature representation. The

final features are then fed into more CNN layers to obtain a pixel-level prediction.

The overall architecture is shown in Fig. 5.1. PSPNet is trained on ADE20K dataset

[50], since ADE20K contains various indoor scenes and objects which is suitable for
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Figure 5.1: The overall architecture of PSPNet from [49].

our proposed framework.

5.1.1 Pyramid Pooling Module

In [51], it is shown that the empirical receptive field of CNN is much smaller

than the theoretical one on high-level layers, which makes conventional networks not

sufficiently incorporate the momentous global scenery prior. Moreover, motivated by

some important observations from ADE20K dataset [50] and several common issues

for complex-scene parsing, such as mismatched relationship, confusion categories,

and inconspicuous classes, PSPNet introduce the pyramid pooling module, which

empirically proves to be an effective global contextual prior.

As illustrated in part (c) of Fig. 5.1, pyramid pooling module fuses features

under different pyramid scales. It first pools features of the previous layer with

different kernel size and strides, which are determined by the desired output bin

sizes. Then, 1× 1 convolution layers are applied to reduce the dimension of context

representation to 1
N

of the original one if the level size of pyramid is N . At last,
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reduced representation is upsampled to the same size as the original feature map

via bilinear interpolation and different levels of features are concatenated with the

original feature to form the final pyramid pooling global features.

5.1.2 Network Architecture

As shown in Fig. 5.1, the whole network contains three parts: ResNet [52],

pyramid pooling module, and final convolution layer. Given an input image, it is

fed into a pretrained ResNet model with the dilated network strategy [53, 54] to

extract the feature map with 1
8

size of the input image (part (b) in Fig. 5.1). On

top of the map, pyramid pooling module is applied to gather context information

and representation from different levels are concatenate with the original feature

(part(c) in Fig. 5.1). In PSPNet, 4-level pyramid with bin sizes of 1 × 1, 2 × 2,

3 × 3, and 6 × 6 is used. It is followed by the final convolution layer to from the

final prediction map (part (d) in Fig. 5.1).

5.2 ADE20K Dataset

ADE20K [50] is a publicly available large dataset containing diverse annota-

tions of scenes, objects, parts of objects, and in some cases even parts of parts.

There are 20,210 images in the training set, 2,000 images in the validation set, and

3,000 images in the testing set. For scene parsing benchmark, it contains 150 object

and stuff classes. Some examples are shown in Fig. 5.2.
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5.2.1 Data Collection

Images come from the LabelMe [55], SUN datasets [56], and Places [57] and

were selected to cover the 900 scene categories defined in the SUN database.

5.2.2 Subjects

Images were annotated by a single expert to achieve naming consistencies for

open vocabulary naming.
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Figure 5.2: Examples of ADE20K [50]. Left: color images. Right: class
label map.
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Chapter 6: Candidate Point Selection

Instead of uniformly selecting candidate points from an image as in DSO, we

select points based on saliency. This is very helpful where the scene has a lot of

objects or in a clutter which can be found generally in indoor scenes.

6.1 Implementation Details

6.1.1 Saliency Prediction and Filtering

We feed input images into the SalGAN which is introduced in Chapter. 4

and generate an intermediate saliency map Ŝ. As mentioned in Chapter. 5, the

saliency produced by SalGAN is concentrated around a fixation point inside the

object and is fuzzy. Moreover, the saliency map is not very robust to viewpoint

and illumination changes as the fixation point does not remain constant. Therefore,

we utilize semantic information to filter the saliency. The idea is to weigh down

the saliency of uninformative regions, such as walls, ceilings and floors, and make

saliency consistent across objects with the same semantic meanings.

Once the per-pixel semantic information C is obtained from PSPNet in Chap-
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Algorithm 1: Saliency prediction and filtering.

Data: Input image I, Pre-defined weights wC

Result: Predicted final saliency Ŝfinal

1 Ŝ = SalGAN(I);

2 C = PSPNet(I);

3 for ∀ {xj, yj} ∈ I do

4 Ŝweighted
j = wC(Cj)Ŝj;

5 end

6 for ∀ {xj, yj} ∈ I do

7 Ŝfinal
j = median

{
Ŝweighted
i ,∀i ∈ Cj

}
;

8 end

ter. 5, the predicted saliency map Ŝ is filtered by:

Ŝweighted
j = wC(Cj)Ŝj (6.1)

Here, wC are the predefined weights obtained empirically for different classes.

To smooth and maintain a consistent saliency map for each class, each pixel is

replaced by the median of saliency for its respective class:

Ŝfinal
j = median

{
Ŝweighted
i ,∀i ∈ Cj

}
(6.2)

All steps to generate Ŝfinal are summarized in Algorithm 1.

6.1.2 Features/Points Selection

First, we split an image into K × K patches. For a patch Mi, we not only

compute the median of gradient as a region-adaptive threshold, but also compute
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the median of saliency as a region-adaptive sampling weight swi. Therefore, for each

patch, the sampling weight swi is computed as:

swi = median
{
Ŝfinal
j ,∀j ∈Mi

}
+ ssmooth (6.3)

where ssmooth is a laplacian smoothing term used to control the bias on a salient

region and the probability of a patch Mi being sampled is:

P S(Mi) =
swi∑

m∈M swm
(6.4)

Secondly, once a patch Mi has been selected, we further split Mi into d × d

blocks. For each block, we select the pixel with the highest gradient only if it

surpasses the region-adaptive threshold. With this strategy, we can select points

which are well distributed in this salient region. In order to extract information

from where no high-gradient pixels are present, we follow the same approach as

DSO and run two more passes to select pixels with weaker gradient in a larger sub-

region with a lower gradient threshold and an increased d. A summary of the whole

selection method is given in Algorithm 2.

Fig. 6.1 shows the selected points for some example scenes. We compare our

selection based on saliency to the uniform selection adopted by DSO. One can easily

notice that texture-less and mostly identical parts, such as walls, floors and ceilings,

are down weighted in our pipeline. As demonstrated in Section 7, this helps us trade

the weak features on the floors and ceilings for weak features on objects where the

saliency is generally higher - thus, in-turn, making the feature selection more robust

and object-centric.
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a

b

Figure 6.1: Point selection using different schemes. Top rows in (a) and
(b), left to right: features selected using DSO’s scheme, saliency only,
saliency+scene parsing. Bottom rows in (a) and (b), left to right: input
image, saliency, scene parsing output. Notice how using saliency+scene
parsing removed all non-informative features.
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Algorithm 2: Saliency based points selection.

Data: Desired number of points Ndes, ssmooth, Ŝ
final

Result: Selected points
1 Initialize selected point set as {∅}, Nsel = 0;
2 while Nsel < Ndes do
3 Randomly select a patch M from distribution PS;
4 Split M into d× d blocks;
5 for each 4d× 4d block do
6 for each 2d× 2d block do
7 for each d× d block do
8 Select a point with the highest gradient which surpass the

gradient threshold;

9 end
10 if no selected point in this block then
11 Select a point with the highest gradient which surpass the

weaker gradient threshold;

12 end

13 end
14 if no selected point in this block then
15 Select a point with the highest gradient which surpass the much

weaker gradient threshold;

16 end

17 end
18 Nsel = Nsel + the number of selected points;

19 end
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Chapter 7: Results

In this chapter, we comprehensively evaluate SalientDSO on various datasets.

• ICL-NUIM dataset [58]: This dataset provides two scenes and four different

trajectories for each scene which are obtained by running Kintinuous on real

image data and finally used in a synthetic framework for obtaining ground-

truth.

• TUM monoVO dataset [26]: This dataset provides 50 sequences comprising

over 100 minutes videos. It ranges from indoor corridors to wide outdoor

scenes. In our experiments, we only evaluate all methods on indoor sequences

{sequence (1− 18, 26, 28, 35− 38, 40)}. Only the indoor sequences are chosen

because the usage of saliency obtained by human gaze is meaningful only for

indoor cluttered scenes.

• CVL dataset: This dataset was collected by the authors of this thesis is

available at prg.cs.umd.edu/SalientDSO.html. The data was collected using

a Parrot R© SLAMDunk [59] sensor suite. The data from the left camera is used

in the experiments.

Different parameters used for running the experiments are shown in Table. 7.1.
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Table 7.1: Parameter settings for different datasets.
TUM ICL-NUIM CVL

Num of active keyframes Nf 7 7 7
Num of active points Np 2000 2000 1200
Global gradient constant gth 7 3 7
Patch size K 8 8 8
Photometric correction Yes Not required Not available

For ICL-NUIM dataset, photometric correction is not required. To comprehensively

evaluate the proposed method, we run each sequence in both forward and backward

direction 10 times.

7.1 Quantitative Evaluation

Fig. 7.1 shows the absolute trajectory Root Mean Square Error (RMSEate)

on ICL-NUIM dataset. Using visual saliency driven features, SalientDSO performs

better in accuracy as compared to DSO. We also report alignment error ealign on

TUM monoVO dataset in Fig. 7.2. We disable the semantic filtering when we

evaluate the proposed method on the TUM monoVO dataset, since this dataset

provides only grayscale images and outputs from PSPNet are inaccurate and noisy

for grayscale images. In Tables 7.2 and 7.3, we compare our method to DSO and

ORB-SLAM on the ICL-NUIM and TUM monoVO datasets. DSO and ORB-SLAM

are the current state-of-the-art direct and feature-based monocular VO methods.

The results for DSO and ORB-SLAM are taken from [9]. ORB-SLAM is a full-

fledged SLAM framework with loop closure and global alignment, while DSO and

SalientDSO are merely odometry frameworks. To make the comparison fair, loop-

closure detection and re-localization have been turned off for ORM-SLAM. The
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Figure 7.1: Comparison of evaluation results for ICL-NIUM dataset.
Left: DSO, Right: SalientDSO. Each square correspondes to a color
coded error. Note that Salient DSO almost always has lower error than
it’s DSO counterpart.

missing values in the table represent tracking failures. We achieve similar or better

performance on most sequences. The improvement is not significant on the TUM

monoVO dataset because most of the sequences involve a traversal through a hallway

where there are no local salient objects or features for saliency prediction to work

well. This makes SalientDSO’s performance close to that of traditional DSO.

The claim in the thesis is that the usage of visual saliency should result in

more robust features than just using image gradient based features as in DSO. The

intuition behind this claim is that visual saliency includes high level semantics which

inherently make the features more robust. To support this claim, we anticipate that

SalientDSO should perform much better than DSO when the number of points is
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Figure 7.2: Comparison of evaluation results for TUM dataset. Left:
DSO, Right: SalientDSO. Note that Salient DSO almost always has
lower error than it’s DSO counterpart. Note that, for the TUM dataset
scene parsing was turned off as TUM dataset only provoides grayscale
images and scene parsing outputs are very noisy for grayscale images.

very low (as low as 40 points). To demonstarate this claim, we evaluate on each

CVL sequence. We run each sequence in both forward and backward direction 100

times, with an extremely low point density of Np = 40. The results are shown

in Table. 7.4. We define failure as either an optimization failure or tracking loss.

Our proposed method is much more robust and predicts an accurate trajectory,

while DSO has a much higher failure rate and its trajectory and projected point

cloud shows significant drift in scale and position. An example of trajectory and

projected point cloud is shown in Fig. 7.3. This experiment highlights the robustness

of features chosen in SalientDSO for cluttered indoor scenes and how this will be

useful for robots with very low computation power due to the less computational

and memory requirements when Np is low.

34



a b c

Figure 7.3: Comparison of outputs for Np = 40 – very few features. (a)
Success case of DSO with a large amount of drift, (b) Success case for
SalientDSO, (c) Failure case of DSO where the optimization diverges due
to very few features. Notice that SalientDSO can perform very well in
these extreme conditions showing the robustness of the features chosen.
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Table 7.2: RMSEate on ICL-NIUM dataset in m.

Forward Backward
Sequence ORB DSO SalientDSO ORB DSO SalientDSO
ICL l0 0.01 0.003 0.022 0.01 - 0.112
ICL l1 0.02 0.004 0.009 0.04 0.003 0.003
ICL l2 0.06 0.012 0.004 0.19 0.010 0.005
ICL l3 0.03 0.006 0.004 0.05 0.008 0.013
ICL o0 0.21 0.320 0.140 0.41 0.399 0.336
ICL o1 0.83 0.094 0.055 0.68 0.006 0.020
ICL o2 0.37 0.012 0.008 0.32 0.582 0.512
ICL o3 0.65 0.007 0.009 0.06 0.006 0.008
Overall Avg. 0.271 0.057 0.031 0.218 0.144∗ 0.126

∗ indicates average taken only on sequences which completed.

7.2 Qualitative Evaluation

Examples of the reconstructed scenes of sequences CVL 01 and TUM seqence 01

are shown in Figs. 7.4 and 7.5 respectively. Although both reconstructed scenes look

similar, one could observe that amount of drift in SalientDSO is much less compared

to DSO (refer to the zoomed part of Fig. 7.4). One can clearly observe that the

checkerboard of different loops align better in our approach. Instead of sampling

random high gradient points, sampling salient and important points improves the

robustness of VO. Sampling salient points achieves removing outliers and points

with unconstrained depth in optimization which improves the prediction of initial

estimates and the output of windowed bundle adjustment in optimization.
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a b

Figure 7.4: Comparison of drift. (a) DSO, (b) SalientDSO. Observe that
SalientDSO’s output has the checkerboard from different times more
closely aligned as compared to DSO. Here Np = 1000.

a b

Figure 7.5: Sample outputs for TUM sequence 1. (a) DSO, (b)
SalientDSO. Here Np = 1000.
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Table 7.3: ealign on TUM monoVO dataset in m.

Forward Backward
Sequence ORB DSO SalientDSO ORB DSO SalientDSO
seq 01 3.02 0.59 0.60 1.73 0.72 0.60
seq 02 16.12 0.36 0.33 3.23 0.43 0.44
seq 03 3.42 1.75 1.55 1.42 0.59 0.50
seq 04 9.95 0.98 0.82 5.95 1.00 0.76
seq 05 - 1.86 1.77 - 1.55 1.66
seq 06 - 0.97 0.93 1.25 0.73 0.81
seq 07 1.69 0.55 1.14 2.02 0.44 0.48
seq 08 436.00 0.36 0.44 2.63 1.28 1.47
seq 09 2.04 0.65 0.58 0.67 0.52 0.53
seq 10 2.52 0.35 0.34 1.43 0.61 0.61
seq 11 7.20 0.62 0.58 2.99 0.87 0.89
seq 12 2.98 0.75 0.67 3.10 1.01 0.84
seq 13 5.13 1.54 1.27 2.59 8.96 0.81
seq 14 13.27 2.89 0.71 2.10 1.35 1.69
seq 15 2.90 0.71 0.71 1.90 0.88 0.81
seq 16 2.40 0.47 0.45 1.58 0.72 0.67
seq 17 12.29 2.10 2.10 1.50 2.13 2.50
seq 18 14.64 1.77 1.52 - 2.62 2.47
seq 26 28.46 3.98 3.60 4.62 1.66 1.89
seq 28 19.17 1.48 1.88 3.57 1.47 1.65
seq 35 14.09 1.10 0.84 16.81 5.48 9.97
seq 36 1.81 4.01 3.25 1.69 0.70 1.46
seq 37 0.60 0.35 0.40 1.30 0.37 0.46
seq 38 - 0.55 0.50 24.77 1.10 1.03
seq 40 - 2.04 2.16 18.93 0.87 1.04
Overall Avg. 28.55∗ 1.31 1.17 - 1.52 1.44

∗ indicates average taken only on sequences which completed.

Table 7.4: Comparison of success rate between DSO and SalientDSO on CVL
dataset.

Sequence DSO SalientDSO
CVL 01 Fwd 53% 65%
CVL 01 Bwd 59% 92%
CVL 02 Fwd 73% 96%
CVL 02 Bwd 71% 91%

38



Chapter 8: Conclusion

We introduce the philosophy of attention and fixation to visual odometry.

Based on this philosophy, we develop Salient Direct Sparse Odometry, which brings

the concept of attention and fixation based on visual saliency into Visual Odometry

to achieve robust feature selection. We provide thorough quantitative and quali-

tative evaluations on ICL-NUIM and TUM monoVO dataset to demonstrate that

using salient features improves the robustness and accuracy. We also collect and

publicly release a new CVL dataset with cluttered scenes for mapping. We show

the robustness of our features by very low drift visual odometry with as low as 40

features per frame. Our method takes about a second per frame for computation of

saliency and scene parsing on an NVIDIA Titan-Xp GPU and the remaining compu-

tations run real-time at 30fps on an Intel R© Core i7 6850K 3.6GHz CPU. In the near

future, we plan to extend our method to outdoor environment. We also consider to

implement our method on hardware to make the complete pipeline real-time.
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