ABSTRACT

Title of dissertation: INTERACTIVE VISUALIZATION TECHNIQUES
FOR SEARCHING TEMPORAL
CATEGORICAL DATA
Taowei David Wang, Doctor of Philosophy, 2010

Dissertation directed by: Professor Ben Shneiderman
Department of Computer Science

Temporal data has always captured people’s imagination. Large databases of
temporal data contain temporal patterns that can lead to the discovery of important
cause-and-effect phenomena. Since discovering these patterns is a difficult task,
there is a great opportunity to improve support for searching. Temporal analysis of,
for example, medical records, web server logs, legal, academic, or criminal records
can benefit from more effective search strategies.

This dissertation describes several interactive visualization techniques designed
to enhance analysts’ experience in performing search, exploration, and summariza-
tion of multiple sets of temporal categorical data. These techniques are imple-
mented in the software Lifelines? (http://www.cs.umd.edu/hcil/lifelines2/).
Lifelines2 is an interactive visualization system that enables analysts to dynamically
change their focus in order to expose temporal ordering of event sequences and study
the prevalence of such orderings.

This dissertation makes four main contributions. The first three are technical



contributions, and the last is a process model that generalizes user behavior. First,
the Align-Rank-Filter framework is presented to help analysts perform visual search
and exploration. It enables analysts to center their attention on temporal events that
are the focus of their inquiry. Through a controlled experiment, alignment alone is
shown to improve user performance speed by up to 60% in tasks that require under-
standing of temporal ordering of events. The initial successful exploration on the
alignment operator led to its fuller exploitation. Further enhancements to filtering
are presented to better incorporate alignment. Second, I designed and implemented
the Temporal Pattern Search (TPS) algorithm for filtering to support the common,
but difficult-to-specify absence of operator in a temporal pattern. TPS exploits
the data structure of the visualization system, and it compares favorably to exist-
ing common approaches. Third, I present the temporal summaries technique as an
overview to support grouping and comparison features in Lifelines2. They support
higher-level tasks such as hypothesis generation. These features take advantage of
alignment, and the entirety of the system is evaluated in several long-term case
studies with domain experts working on their own problems. Fourth, from these
long-term case studies, I generalize a process model that describes analyst behavior
in searching and interacting with temporal categorical data. Gleaning from obser-
vations in the case studies, collaborators’ interviews and commentaries, and logs
of Lifelines2 usage, I recommend feature design guidelines for future visualization
designers for temporal categorical data.

The enthusiasm of the domain experts who used Lifelines2, the changing strate-

gies for problem-solving, and their initial successes suggest these interactive visual-



ization techniques are a valuable addition to search capabilities.



INTERACTIVE VISUALIZATION TECHNIQUES
FOR SEARCHING TEMPORAL CATEGORICAL DATA

by

Taowei David Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2010

Advisory Committee:

Professor Ben Shneiderman, Chair/Advisor
Dr. Catherine Plaisant

Professor Ben Bederson

Professor Amol Deshpande

Professor Galit Shmuéli



(© Copyright by
Taowei David Wang
2010



Dedication

To my parents EE5HE and EERH

i



Acknowledgments

The path to a Ph.D. is never easy. I have had the fortune to be surrounded by
incredibly capable and supportive people that made this difficult journey of growth
and learning seem almost... enjoyable :)

I would like to first thank my advisor Ben Shneiderman, whose tireless en-
thusiasm and passion for all things HCI and, in particular, our work continue to
inspire me. From writing papers with him, I learned how to be a researcher. From
his communicating, engaging, and working with others, I learned how to be a better
researcher. From the enthusiasm he displayed when communicating, engaging, and
working with others, I learned what it means to be a great researcher. As I sit here
and write these lessons, I realize that these principles do not just apply to research,
but they apply in life in general. Ben, thank you for your lessons in leadership, your
intellectual challenges, your inspiring enthusiasm, all of which have contributed to
my growth.

I would like to also thank Catherine Plaisant, whose enthusiasm rivals only
Ben’s. T have learned a tremendous amount from her on the procedures of working
with users and many design principles. She is not only a close collaborator of my
publications, she has also helped a lot in shaping my dissertation. I thank you for
all your teaching and suggestions to my work along the way. I also thank you for
being a stout supporter for me.

My journey to Ph.D. had its highs and lows. There was a time when I was

not sure if I would continue. In those most desperate days, if it were not for my

1ii



incredibly supportive friends, I would not be writing this lengthy document (believe
it or not, there is some joy in writing it). I would especially like to thank first
Jennifer Golbeck, for her guidance and encouragements in those times of uncertainly
and despair. If it were not for Jen, I would not have gotten in contact with Ben and
Catherine and continued on my journey this far. Secondly, I would like to thank
Bijan Parsia. In those darkest hours, he had also tirelessly taken upon himself to
advise and to encourage me to continue on the journey to Ph.D.

I would like to thank James Hendler, my previous advisor, for letting me
become part of MINDSWAP, where I first began to learn how to do research and
write papers, and where I met important friends. I also thank Jim for his generous
financial support after he has left the university.

I thank the members of the HCIL for their support, challenges, and suggestions
along the way. I have enjoyed the intellectual and the not-so intellectual discussions
with the students, faculty, and staff. Ilike the collective open-mindedness to new and
strange ideas, and I appreciate very much everyone’s constructive and supportive
attitudes toward one another. That made the lab such an idea-fostering and friendly
environment. If “Standing on the shoulders of giants” characterizes the building
of knowledge from the endeavors of others, I am pleased to say that I have been
fortunate to be working with the giants directly in the HCIL day-in and day-out.
I have learned a lot by listening and watching the seasoned researchers at work —
with devices, with kids, with students. Finally, I thank the fellow HCIL students
— the giants of tomorrow —, whose mutual support, critiques and suggestions have

made our work that much better.

v



I thank Mark Smith and his team from the Washington Hospital Center and
MedStar Health: David Roseman, Greg Marchand, Phuong Ho, and Vikramjit
Mukherjee. This research would not have materialized without their generous fi-
nancial support and close collaboration. I would also like to thank the following
collaborators and supporters: Shawn Murphy from Harvard Medical School and
Partners HealthCare, and Neil Spring from the Department of Computer Science,
University of Maryland.

I thank my friends, particularly Margaret Tsai, James Phongsuwan, and Holly
Martinson for putting up with my neglect and keeping me sane by reminding me
that there is a world outside of computer science. I suppose I should also thank my
friends on Facebook, but perhaps a status update would be appropriate.

Finally, I would like to thank my family — for every phone call in a holiday
to remind me that I am in their thoughts, and for every phone call just because.
I would like to especially thank my parents for supporting my decision of going to
graduate school and live my adventure. Lastly, I would like to thank my 1993 Buick.

Even though you finished before I did, I appreciate your faithful 16 years of service.



Table of Contents

List of Figures

List of Abbreviations

1

Introduction

1.1 Overview of the Dissertation . . . . . . . . .. .. ... ... .....
1.2 Contributions . . . . . . . . ...
1.3 Dissertation Organization . . . . .. .. .. ... ... ... .....

Background and Related Work
2.1 Temporal Data Visualization . . . . . . . ... ... ... ... ....
2.1.1 Temporal Categorical Data . . . . . ... ... ... .. ...
2.1.1.1 Classical Designs . . . . ... ... ... ... ....
2.1.1.2 Modern Innovations . . . ... ... .. ... .. ..
2.1.1.3  Multiple Record Analysis . . .. ... ... .....
2.1.1.4  Aggregating Temporal Categorical Data . . . . . . .
2.1.1.5  Temporal Numerical Data . . . . .. . ... ... ..
2.1.2  Other Representation of Time . . . . . . . ... .. ... ...
2.2 Searching for Temporally-Ordered Data . . . . . . .. ... ... ...
2.2.1 Sequential Approaches . . . . ... ... ... ... ... ...
2.2.2 Novel Query Interfaces . . . . . ... ... ... ... .....
2.3 SUMMATY . . . . oo

Supporting Visual Comparisons: Alignment and Intervals of Validity
3.1 Overview . . . . . .. e
3.2 Background and Motivation . . . . .. .. ... ... L.
3.3 Lifelines2 . . . . . . ..
3.3.1 Interface Description . . . . . .. ... ... ... ... ...,
3.3.2  Design Discussion of Alignment . . . . . ... ... ... ...
3.3.3  Design Discussion of Intervals of Validity . . . . . .. ... ..
3.4 Evaluation . . . . . . .. ...
3.4.1 Controlled Experiment . . . . . . . .. ... .. ... .....
3.4.1.1 Experimental Procedure . . . . . .. ... .. ... ..
3.4.1.2 Experimental Results . . . ... ... ... ... ..
3.4.2 Domain Expert Interviews . . . . . . . ... ...
3.4.2.1 Interview Procedure . . . . .. ... ... .. ... ..
3.4.2.2 Interview Results . . . . . ... ... ... ..
3.5 Discussion . . . . ..o
3.5.1 Post-Experiment Design Improvements . . . . . . ... . ...
3.5.2  Generalizability and Limitations . . . . . . . .. .. ... ...
3.5.3 Impact . . . . ..o
3.6 Summary . . ... ..

vi



4 Supporting Temporal Pattern Search: An Algorithm 67

4.1 Overview . . . . . .. 67
4.2 Background and Motivation . . . . . .. ..o L 68
4.3 Problem Description . . . . . .. ... oo 73
4.4 TPS Algorithm Description . . . . . .. .. ... ... ... ... .. 74
4.4.1  Algorithm Overview . . . . ... .. .. ... ... ...... 76
442 AnExample . . . .. ..o 83
4.5 Analysis . . . .. 86
4.6 Algorithm Extensions . . . . . . . . . .. ... ... .. ... ... 88
4.7 Evaluation . . . . . ... Lo 90
4.7.1 Method . . ... . . .. ... 94
4.72 Results. . . . . . .. 95
4.7.3 Evaluation with Real Scenarios . . . . ... .. .. ... ... 101
4.8 Discussion . . . . . . ... 103
4.9 Summary ... ... 105
5 Supporting Hypothesis Generation: Temporal Summaries, Grouping, and
Comparison 107
5.1 Overview . . . . . . . 107
5.2 Temporal Summaries . . . . . . . . .. ... 109
5.2.1 Integration with the Improved ARF Framework . . .. .. .. 111
5.2.2  Comparing Within A Single Group . . . . . . ... ... ... 112
5.2.2.1  Showing Distribution of Multiple Events . . . . . . . 112
5.2.2.2  Splitting Records By Event Occurrences . . . . . . . 113
5.2.2.3  Direct Manipulation of Temporal Range Filters . . . 114
5.2.3 Comparing Groups . . . . . . . . . . 117
5.3 Case Studies . . . . . . . . .. 118
5.3.1 Heparin-Induced Thrombocytopenia . . . . . . ... ... .. 119
5.3.2  Monitoring Graduate Student Academic Progress . . . . . .. 127
5.4 Discussion . . . . . ..o 131
5.5 SUMMATY . . . . o o e e 133
6 Solving Real Problems: Case Studies and a Process Model 134
6.1 Overview. . . . . . . . . e 134
6.2 Case Studies: Early Adoption . . . . . ... ... ... ... ..... 135
6.2.1 Early Heparin-Induced Thrombocytopenia Study . . . . . .. 136
6.2.2 Trauma Patients and Hematocrit Study . . . . . . ... ... 139
6.2.3 Observations and Discussions . . . . . . ... ... ... ... 143
6.3 Case Studies: Mature Adoption . . . . . . ... ... ... ... ... 145
6.3.1 Heart Attack in Relationship to Day Light Savings Time . . . 145
6.3.2 Communication Network in Drug Trafficking Ring . . . . . . . 148
6.3.3 Exploring Book Reading Sessions on ICDL . . . . . .. .. .. 152
6.3.4 Hospital Room Transfer . . . . . ... ... ... ....... 155
6.3.4.1 Bounce-Back . .. ... . ... ... ... ... ... 158
6.3.4.2 Step-Up . . . . . .. 161

vil



6.4 Lifelines2 Feature Usage . . . . . .. .. . ... ... ... ...... 169
6.4.1 Log Dataindetail . .. .. ... ... ... ... ... 171

6.5 A Process Model for Exploring Temporal Categorical Records . . . . 174
6.6 Recommendations. . . . . . .. ... oL 181
6.7 Summary . . ... 183
Conclusions 186
7.1 Future Work . . . . . . ... 188
7.1.1 Scalability . . . . .. ... 188
7.1.1.1 Using Fewer Shapes . . . . ... ... ... ... .. 189

7.1.1.2  Dealing with Massive Amounts of Live Data . . . . . 189

7.1.2 Extension to Alignment . . . . . ... ... ... ....... 190
7.1.2.1 Tight Integration with Sequence Filters . . . . . .. 190

7.1.2.2  Alignment on Sequences of Events . . . . . ... .. 191

7.1.2.3 Automatic Discovery of Useful Alignments . . . . . . 193

7.1.3 Information Density and Alternative Summaries . . . . . . . . 194
7.1.3.1 Better Utilization of the Vertical Space . . . . . . .. 194

7.1.3.2 Vertical Summaries . . . . . . . ... ... L. 195

7.1.3.3 Sequence Summaries . . . . . . . ... ... ... .. 196

7.1.4 Practical Concerns . . . . . ... ... ... ... 197
7.1.4.1 Extension to Other data Types . . . . . .. ... .. 197

7.1.4.2 Scripting for Automation . . .. ... ... ... .. 197

7.1.4.3 Automatic Conversion from Database Schema . . . . 198

7.1.5 Process Support . . . . . .. .. 198
7.1.5.1 Knowledge Provenance . . . . . . . ... .. ... .. 199

7.1.5.2  Extending Grouping Support to Analysis Branching 199

7.2 SUMMATY . . . . o v o e 200
Lifelines2 Software 201
A.1 Lifelines2 Data Model . . . . . . . .. ... ... ... ... 202
A1l Imput Data . . . . ... 202
A.1.1.1 Lifelines2 Format . . . . . . ... ... ... ... .. 202

A.1.1.2 Customization File Format . . . .. ... ... ... 204

A.1.2 Internal Data Structures . . . . . . ... ... ... ...... 208
A.1.2.1 Core Data Structure . . . . . ... ... ... .... 208

A.1.2.2 Global Data Structures . . . .. .. ... ... ... 210

A.1.3 Output Data . . .. .. .. ... ... ... ... ... ... 210

A.2 Align, Rank, and Filter . . . . . . ... ... .. ... ... ...... 211
A.3 Intermediate Data Structures and Rendering Behavior . . . . . . .. 214
A.3.1 Drawing Records . . . . . ... ... ... ... ..., 214
A.3.2 Drawing Temporal Summaries . . . . . . . . .. ... .. ... 217

A4 GUI Layout . . . . . . . . . . 219
A.5 ARF Time vs. Rendering Time . . . . . ... .. ... ... ..... 221
AB5.1 Summary . . ... 224

viil



B Temporal Pattern Query in Practice 225

B.1 An Example of Temporal Pattern Query . . . . ... ... ... ... 225
B.2 Example Query . . . . . . . . .. 226
B.3 Analysis of the Query . . . . . . . .. ... ... 227
B.4 Additional Barriers . . . . . . ... .. 229
B.5 Summary . . ... 229
Bibliography 230

1X



1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

List of Figures

A screen shot of Lifelines showing a set of medical records on the top,
and aggregation of medical events at the bottom. . . . . . .. .. .. 3

Two screen shots of the IDD system from Harter et al. [33]. All
processes are listed on the y-axis, and time is on the x-axis. In the
left screen, process 18 is focused, and the lines connecting the dots
represent messages passed among the different processes. Analysts
can select which process or time points to focus on. The right screen
shows additional interactions analysts can perform: filtering by time,
process, message and their attributes. A “Magnify” command allows
for zooming. . . . .. ..o 8
The xtg visualization system generalizes previous designs in visualiz-
ing parallel computation. In addition, it allows multiple view windows
of the same temporal data. The search interface allows searching of
events and bookmarks. . . . .. ..o L0000 9
The screen shot of LifeLines shows a variety of events in a patient’s
medical record. Extending from previous research, LifeLines supports
rich color encoding, semantic zoom, brushing, and collapseable facets. 11
The two innovations of SemTime [45]. The left screen shows the
relationships among events on a segmented timeline. The screen shots

on the right show the expansion of a “sub-timeline” in-place. . . .. 13
Continuum: temporal information to be organized by a dynamically-
defined hierarchy [6]. . . . . . . . .. .. Lo 14

Screen shot of ThemeRiver. Categorical data (key words in news
articles) are aggregated and displayed in an aesthetic way to highlight
the rise and fall of news events. . . . . . .. .. ... ... 17
Composite screen shot of three screen shots of TimeSearcher’s Time-
Box query in action. By creating additional boxes in the space where
multiple time series data is displayed, only the time series that inter-

sect with the TimeBoxes remain. The others are filtered out. . . . . . 19
A screen shot of PatternFinder, its form-based query interface on top,
and ball-and-chain result visualization at the bottom . . . . . . . .. 30

Partial screen shot of the i2b2 querying interface. The top right Query
Tool panel allows Boolean queries over medical terms to be specified.
A query is generated as a conjunctive normal form of the terms. Each
Group in the interface is a list of OR’s, and the groups of OR’s are
ANDed together. . . . . . .. . 32
Composite screen shot of the query interface in Amalga (formerly
known as Azyxxi). Analysts can search for patient records by values
in cells as in a spreadsheet (left dialog box). Further filtering can be
accomplished by restricting the values to be matched (right dialog box). 33



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

Lifelines2 when no alignment is in effect. Each triangle represents an
event. Note the data is presented chronologically, and the records are
ranked by the number of Pneumonia and influenza events. . . . . .
This figure shows the same dataset as in Figure 3.1. However, all
patient records are aligned by the 1st Pneumonia and influenza. Note
the relative time scale on the top. A single zoom had been applied
to the alignment line. . . . . . . . ... .. ... . 0L
The top portion shows two partial records without intervals of va-
lidity. Because prednisone (a steroid) prescriptions coincided tem-
porally with asthma diagnoses and with no other events, users may
mistakenly conclude that prednisone was given for asthma. The bot-
tom portion shows the same two records with intervals of validity.
Rheumatism’s lasting interval allows users to visually confirm that
there may be more than one reason why predisone was prescribed. . .
A partial screen shot of the data set used in the tasks for Intervals of
Validity tasks. . . . . . . . ..
Task Completion Time. Each circle or x denotes the mean, and each
vertical line denotes the standard deviation. Blue circles denote the
results for the align-rank-filter (ARF) variation of the interface in
Task 1 to 4 and interval of validity (IV) variation in Task 5 and 6.
Red x denote the other interface variation. Although blue circles
always have lower means, only in Task 2 and 4 were there statistical
significance (denoted by an asterisk in task names). The significance
was salient (p < 0.0001) in both cases. . . . .. ... ... ... ...
Error Rate by Tasks. Blue circles represent align-filter-rank (ARF)
variation of the interface in Tasks 1 to 4 and interval of validity (IV)
variations for Task 5 and 6. There was a significant difference in error
rate in Task 2 (p < 0.01), Task 3 (p < 0.1), Task 5 (p < 0.05), and
Task 6 (p < 0.1). We noted that in Task 5, users performed better
when intervals of validity were not displayed. . . . . . . . . . ... ..
Error Size by Task. Blue circles denote the ARF variation of the
interface in Tasks 1 to 3 and IV variations in Tasks 5 and 6. Error
sizes were significantly smaller for ARF variation in Task 2 (p < 0.05)
and Task 3 (p < 0.1). Please note that responses for Task 4 were not
numeric, so error size was not an applicable measure. Error sizes
were significantly smaller in Task 5 (p < 0.05), in favor of the no IV
variation. . . ... . L. L e
The incorporation of Lifelines2 in the patient database query system
i2b2 as a way to display query results. . . . . .. ... ... .. ...

(a) Partial screen shot of two students records in Lifelines2. (b)
Combo boxes used to specify temporal patterns for search. . . . . . .

x1



4.2

4.3

4.4

4.5

4.6

4.7

An NFA corresponding to .*A["BC]*D.*, which is the regular ex-
pression equivalent to the search pattern ABC'D. The black triangle
indicates the starting state, and the double circle indicates the ac-
cepting state. any represents the set of all characters . . . . . . . ..
Comparison of the performance of TPS, NFA, and Shift-And in search
pattern length m = 1,2,3,4,5,10,20,...,100 for positive-only pat-
terns. The vertical axis is logarithmic in time. TPS outperforms the
other two approaches in general (except when m = 1, and betters
NFA consistently by one order of magnitude. The sharp increase
of time required at m = 20 for Shift-And reflects the use of using
multiple integers to represent more than 32 states. . . . . . . . . . ..
Comparison of the performance for TPS, NFA, and Shift-And in
search pattern length m = 2,...20,30,40,...,100 for alternating
patterns. The vertical axis is logarithmic in time. Similar to the
case of positive-only patterns, TPS consistently outperforms NFA for
these search patterns by roughly an order of magnitude. However, the
Shift-And approach is, in general, faster when the m is less than or
equal to 32. For very small size of m, the results are more sensitive
to the randomly generated patterns. All three approaches perform
much better with m = 3,5. TPS is much more sensitive to this than
the other two approaches, and as a result, had the most performance
Galll. . . ..
Comparison of the performance of TPS, NFA, and Shift-And in search
pattern length = 10,20, ‘,100 for worst-case patterns. The vertical
axis is logarithmic in time. Like two previous cases, TPS consistently
outperforms NFA, but the differences are considerably smaller than
in the comparison for positive-only patterns. Shift-And handily out-
performs the other two for m < 40, but loses to TPS (significantly
for m > 60) otherwise. . . . . . .. ...
Comparison of the TPS and NFA performance in number of event
types k = 2, 3, “, 9, and 10, 20, ‘50 over all lengths of search patterns
for alternating patterns. The vertical axis is logarithmic, and it is
time in seconds. TPS performs similarly to NFA initially, but gets
dramatically better than both NFA and Shift-And as the number of
event types Grows. . . . . . . ..o oo e e e
Comparison of the TPS and NFA performance by varying number
of event types k = 2,3,°,9 and 10, 20, ‘,50 over all lengths of search
patterns for worst-case patterns. The performance graph is similar
to Figure 4.6, with the only exception that Shift-And also improved
in performance as the number of event types increases past 9.

x1i

98

. 101



4.8

4.9

5.1

5.2

5.3

5.4

5.5

Comparison of the performance of TPS, NFA and Shift-And by vary-
ing the number of events in a record n = 100,200, ...,1000. The
search pattern is fixed to be . The values presented is the average of
the pattern with m = 3,5, 7. The records are fixed to ABABAB*ABC.
This guarantees n/2 backtracks for record. There are 5000 records
for each n. The vertical axis is logarithmic in time. TPS and NFA
have similar performance, while the Shift-And algorithm outperforms
the other two by an order of magnitude. . . . . . .. ... ... ...
Same comparison as Figure 4.8, except that the values represent the
average run of large pattern length: m = 41,51,61. The advantage
of Shift-And is far less prominent when m is large. . . . . . . . . . ..

Annotated Lifelines2 screen shot. (a) The main visualization panel.
A temporal summary is shown in (b). To the right is the control
panel. (c) shows the controls and the current state of Align, Rank,
and Filter. (d) shows additional controls for temporal summary, and
also for navigating groups. Group creation and other controls are
wedged between (c¢) and (d). . ... ... oL
A temporal summary showing the daily distribution of creatinine test
results of 3598 patients when aligned by their 1st occurrence of Ra-
diology Contrast. . . . . . . . . .
The second tab in (b) of Figure 5.1 is activated. The data in Figure
5.1 is split into 4 mutually exclusive groups: those who have CREAT-
H only before alignment, after, both, or neither. 2408 patients never
had any CREAT-H. 564 patients have CREAT-H both before and
after the alignment. . . . . . . . .. .. ...
The first 6 patients in the final group of 157 that fits our filtering
criteria. The unusual peak of high creatinine tests on the third day
after the alignment is indicative that our exploratory search is heading
to the right direction. . . . . . . . . . ..o
Summaries are shown in this between-group comparison. One is the
result of the final filter (Final 157), and the other is the complement
set (Complement). Creatinine high (CREAT-H) and creatinine nor-
mal (CREAT-) are aggregated by month. The events counts here are
normalized by the number of records in that group for meaningful
comparison. The numbers on top of the bars indicate the average
number of CREAT-H and CREAT- events per record in that month.

The patients in Final 157 clearly have much higher normalized averages119

xiil



5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

The temporal summaries show discharge patterns (Discharged Alive
in green, Discharged Dead in black) aligned by the first admission to
ICU. In (a), the raw count of event are shown, but the large disparity
in number of patients between the two groups makes it hard to com-
pare. In (b) the counts are normalized by the number of patients. It
is clear to see that patients in ICU Hep HIT+ tended to stay longer
in the hospital than those in ICU Hep No HIT+, where over 80% of

patients in were discharged within 1 month. . . . . . . .. ... ...

Normalized hospital discharge data aligned by first admission to ICU
from 4 groups are compared here Discharged Alive in green, Dis-
charged Dead in black). Each group is a subset of the one above it,
and a “closer” approximation to true HIT patients. We hypothesized
that the closer approximation, the more stretched the discharge pat-
tern should be. The first three seem to support our hypothesis, but
not the last one — we see that there are far more Discharged Dead

than the others in the first month, and this may be skewing the data. 124

Normalized platelet data aligned by the 1st admission to ICU for 4
groups (Platelet Normal/High in pink, and Platelet Low/Critical in
red). These numbers of platelet tests only dramatically increase from

the first group to the second. . . . . . . . . ... ... .. ... ...

There are three groups in comparison here (from the top): Students
who advanced to candidacy, students who advanced to candidacy
while TA’d for 4 or more semesters, and students who advanced to
candidacy while TA’d for 3 or fewer semesters. All data are aligned
by the admission date. The students who had TA’ed for 4 or more

semesters averaged one year longer than those who had not. . . . . .

the comparison of the distribution of hematocrit lab results of two
patient groups: the ones that were discharged alive (top), and those
discharged dead (bottom). The data is aligned by Trauma admission.
Orange indicates normal/high hematocrit events, and pink indicates

low/critical events. . . . . . . ...

The same two groups as in Figure 6.1, but this figure shows the distri-
bution of the discharge numbers (normalized by record counts) across
calendar year. Green indicates discharged alive, and red indicates
discharged dead. There is a fairly regular pattern (almost cyclic) for
discharged alive year-in year-out with the annual peak usually centers
around late summer /early fall. The discharged dead aggregation does
not have seem to have as regular pattern. This is partly because there
are so much fewer discharged dead cases (~ 450) when compared to

alive cases (> 7000). . . . . . . ...

Distribution of heart attack events aligned by all “Fall-Back” daylight

saving time change days. . . . . . . . ... .. . L.

Distribution of heart attack events aligned by all “Spring-Forward”

daylight saving time change days. . . . . . . . ... ... ... ....

Xiv

147



6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13
Al

A2

A3

A4

B.1

Telephone data in a drug trafficking ring is aligned by a phone call
between the person with the highest eigenvector centrality and an-
other. The analyst tried several sentinel events, and found this one
led to an increased chatter between Ryan and Sean, two important
players in the network. . . . . . . ... .00 150
Three records representing three visitors’ reading behavior in ICDL
are shown. These records are aligned by the visitor’s first visit to
page 1: event 00I1. These behaviors do not conform to the common
expectation. In particular, the first visitor has bursts of fast backward
seeking as if the visitor clicked on the “back” button in the browser

quickly to get to a certain page. . . . . .. ... 153
Screen shot representing the search results of one of the five patterns
for the Bounce-Back Study (ICU — Floor — IMC). . ... ... .. 160
Sample screen shot of the process in Lifelines2 to identify the Step-Up
patients . . . ..o 164
Number of patients admitted to IMC from the start of 2007 to the
end of 2009. . . . . .. 165
Number of patients who exhibited the Step-Up pattern from the start
of 2007 to the end of 2009. . . . . . . . . ... ... 166
Percentage of patients who exhibited the Step-Up pattern from the
start of 2007 to the end of 2009. . . . . . . . . ... 167
Percentage of patients who exhibited the Step-Up pattern from the
start of 2007 to the end of 2009 by quarters. . . . . .. .. ... ... 168
Logs of Lifelines2 usage are analyzed in Lifelines . . . . . . . . .. .. 172

Partial screen shot of the customization file for the Contrast-Creatinine
dataset in Section 5.2. Orange portion shows the semantic customiza-

tion. Green portion shows the view-related customization. Red por-

tion shows the descriptor for the type of input data. Blue portion
shows the display preferences of each event type. . . . . . . . .. ... 207
Class inheritance diagram of the Align (red), Rank (green), and Filter
(blue) operators. Dashed rectangles indicate abstract classes. Solid
rectangles indicate concrete classes. Ovals indicate interfaces. Arrows
indicates either an extension of a class or an implementation or an

interface (depending on the context). . . . . ... ... ... ... .. 212
Average execution time for ARF operators and rendering across five
datasets and their linear regression. . . . . . . . .. .. ... ... .. 223

Execution time details for ARF operators and rendering across five
datasets and their linear regression. The difference in standard devi-
ation between ARF timing and Rendering timing is apparent. . . . . 224

SQL query in mySQL to find students who have the pattern [Pro-
posal, No Paper Submission, Defense|. The orange portions show the
construction of set 1 and set 2. Then set 2 is subtracted from set 1
(blue portion). Keywords in the mySQL syntax are capitalized. . . . 227

XV



DFA
EHR
HCI
HCIL
HIT
ICDL
ICU
IMC
MI
NFA
TPS
WHC

List of Abbreviations

Deterministic Finite Automaton
Electronic Health Record
Human-Computer Interaction
Human-Computer Interaction Lab
Heparin-Induced Thrombocytopenia
International Children’s Digital Library
Intensive Care Unit

Intermediate Medical Care
Miocardial Infarction
Nondeterministic Finite Automaton
Temporal Pattern Search
Washington Hospital Center

Xvi



Chapter 1

Introduction

As the amount of temporal categorical data grows, the need for effective ways
to interact with them has never been stronger. Much research effort has gone into
the storage, retrieval, and conversion for these data, but little had been done to
increase the value of the stored data. Very few interactive techniques have been
designed for humans to interact with these data. As a result much of the data
in the storage fall into the unfortunate category coined by Powsner and Tufte,
“write-once, read-never” [86]. As the U.S. national health care reform promotes
interchangeable electronic health record formats, it is prime time to design and test

these new interaction techniques for search.

1.1 Overview of the Dissertation

The goal of the dissertation is to design effective interaction techniques for hu-
mans to perform searches in temporal categorical data. I focus on support for three
main tasks: visual search, temporal pattern search, and higher-level information
seeking.

Categorical data are data points that are not numerical. The most common
example are names. Categories are sometimes ordered, such as Monday, Tuesday,

Wednesday. However, more often than not, they are unordered, just like a bag



of words: horse, cat, bird, mouse. There had been much work in visualizing and
searching temporal numerical data, such as stock prices over time. However, support
for temporal categorical data had been mostly left unaddressed.

Initial collaboration with physicians in the Washington Hospital Center and
Harvard Medical School in affiliation with Partners HealthCare revealed that there
is such a need in the real world. Physicians and hospital administrators interested
in better understanding their data are often frustrated in searching for patients by
temporal characteristics (as opposed to patient characteristics). Even state-of-the
art systems in leading medical institutions do not have ideal support. While I have
worked closely with real data and experts in the medical field, and my techniques
are inspired by their needs, the applicability of these techniques are not restricted
to medicine. These techniques are implemented in Lifelines2 (Figure 1.1), and I
demonstrate the effectiveness of the techniques in a number of case studies beyond
the medical domain.

The contributions of this dissertation are listed below.

1.2 Contributions

1. The design and implementation of the novel Alignment-Rank-Filter (ARF)
framework to support browsing and searching temporal categorical records.
The idea is to rearrange the time line by “important events”, rearrange records
by event occurrence frequency, and filter by data characteristics. The dynamic,

data-centric alignment is evaluated to confirm our hypothesis on the effective-



File  About

} Lifelines 2 - contrast +creatine-large.tbxt.out{delD).txt (deidentified data)

Record View | Comparison View | ARF | Comparison |
In2weeks Records 377/377 zomto:[Days || amotater ||| Align by...
Rank by [# of CREAT-H] align by [1st occurrence of Radiology Contrast] | | Radiology Contrast(3598) ‘ - |
! = |lstoccurrence H
[] Yoooo333
CREAT-H 4 AccikibAL A A A A Rank by...
: Aderh A A dﬁ
Radiology Contrast Radiology Contrast [& # of creaTHi(1190) [~
[] Yoooze30
CREAT H 2 AchAAAAAAA AAMA AA| || rFiterby..
CREAT- JerERT
Radiology Contrast Radidlogy Contrast |Nn Fiter ‘ - |
[] Yooo1471
CREAT-H E:] chrAk
: Jranyy AAMAAA Mgk —————
Radiology Contrast Radlology Contrast
¥ooo012: Reset Fite
DV ANbAMdh AAAAL MMM A AM AM —
Radiology Contrast: Radiology Contrast 1 I & §
I alalalalala Aa | colepseal | save Records as New Group
CREAT H L] ar vy AAA
CREAT- frEaT A EA‘ Show Distribution of...
Radiology Contrast Radiology Contrast
I ¥ooo2107 A CREATH(1190) -
CREAT-H 24 ﬁ[‘ ﬁﬂ?i‘ A A ‘ A ‘ ‘ “ A CREAT-(2346) -
D'nRadiv‘ogv Contrast Ra I]:'ogy Contrast A CREAT-L(207) -
002215
Chear # * AAMAA AAA A A A A A View Record Group...
- 'nRadm\ugy Contrast &ad\ ology Contrast ‘In py— ‘v‘
001003
£ AbA AA AAAAA
Radlc\ogy Contrast Ramoogy ﬂ#wtrast AAA —|| [ Less Conrols |
Mm n Events | lcons | Labels | Alignment
50 4D |-3D -2D 1D 34 1D 20 3D 4D 50 B0 70 8D 3D 10D |[MD 120 13| Legend i
A CREATH =
A CREAT- '
A crear A CREATL
A crear- =]
A crEATL O -
Edit Events
Records: 377 15,12 %an- . o -T"“:‘h" Copyright
Distribution | Distribution by Ocurrence Relative to A\lgnment HCI L '-’@. 2007 - 2009
vl 3 et HCIL UMD

Figure 1.1: A screen shot of Lifelines showing a set

of medical records

on the top, and aggregation of medical events at the bottom.

ness of alignment in relative comparison tasks.

An algorithm designed for searching for temporal patterns in temporal cate-

gorical records.

each category in a separate array, a search can ignore many events not men-
tioned in it. Secondly, by using a sorted data structure, efficient binary search
can be used. The internal data structure of Lifelines2 exhibits both of these
characteristics, and an algorithm is designed to exploit them. A comparison

of running time to common approaches shows its effectiveness and I discuss

its extensibility.

The idea is based on two main points.

One, by separating



3. The design and implementation of Temporal Summaries, Grouping, and Com-
parison to support higher-level tasks that involve managing multiple records of
temporal categorical data. I show the usefulness and generalizability of these
features through a number of case studies in several real world domains. As a
product of experimenting with the variety of designs, I also present Lifelines2,

as open source software that implemented all the contributions presented here.

4. By making observations of the case studies, analyzing logged Lifelines2 usage
data, and through interviews with and commentaries of my collaborators, I
generalized the case studies into a process model. It describes the steps an-
alysts take in their exploratory process, and their behaviors. This process
model serves as a guideline to future visualization designers, and I make sev-
eral recommendations as a result. They outline tasks that are imperative to

support, and describe possible design pitfalls.

1.3 Dissertation Organization

The dissertation is organized in the following chapters. I discuss background
and related work first, and present each of the four main contributions in subsequent
chapters. I generalize the case studies and present a process model for performing

search in temporal categorical records. Finally, I give concluding remarks.

1. Chapter 1: Introduction

2. Chapter 2: Background and Related Work



. Chapter 3: Supporting Visual Comparisons: Alignment and Intervals of Va-

lidity

. Chapter 4: Supporting Temporal Pattern Search: An Algorithm

. Chapter 5: Supporting Hypothesis Generation: Temporal Summaries, Group-

ing, and Comparison

. Chapter 6: Solving Real Problems: Case Study Details

. Chapter 7: Conclusions



Chapter 2

Background and Related Work

The intrinsic role time plays in our existence makes it an important perspec-
tive on how we view the world, and interpret its data. We humans often organize
information temporally, whether it is in our minds, or in our digital devices. We
reason about our physical world temporally. The fact that time is not reversible
(currently!) makes it ideal to study causal links — causes always occur before effects.
As a result, we often think of time as a linear entity, and we project time using a
linear representation. However, depending on the tasks, other representations may
be more appropriate. In this chapter, I present first, the designs of temporal data
visualization systems, and, second, strategies of searching for temporal data as the
two main bodies of related work. I break down each body of work into finer seg-
ments for detailed discussion. The background and related work discussed below

reveal opportunities for improving search strategies for temporal categorical data.



2.1 Temporal Data Visualization

2.1.1 Temporal Categorical Data

2.1.1.1 Classical Designs

Most work in interactive visualization of temporal categorical data have pre-
dominantly utilized a linear timeline. This general technique has been applied to
a variety of domains: authoring and management of video annotation [32, 38, 21],
personal histories [84, 54], management of digital documents and alternative desk-
top management [63, 90], and analyses of user actions [57, 29], just to list a few.
Timelines are used with the intention of allowing analysts to grasp when one event
occurs in relation to others. This allows analysts to better understand the complex
system in question.

For example, parallel programs are notoriously difficult to understand, debug,
and optimize. In the late 1980’s and early 1990’s, a large number of research projects
on debugging, performance profiling, and monitoring of parallel programs utilized
timelines to visualize program execution [1, 33, 35, 60, 66, 105, 109]. These systems
visualize the states of threads or processes. They focus on when processes are
running, when they are switched out, and how messages pass among the threads.
The systems enable analysts to identify anomalies and performance bottlenecks
in a single parallel execution. Figure 2.1 shows one example from Harter et al.’s
Interactive Distributed Debugger (IDD) system. IDD displays the message passing

history among the different processes over the program’s execution. Although it is



Display Filter Local NUNINGIE Magnity Display NG lLocal Monitor Magnify
2 1 S T (- -{LiByTime...  J+vorusnn.
ﬁzo e s ﬁzo P
=g ... e — 19 I
1 18 . \
17 ] T s e s s s v s w s e s AR e cmramaroar il EEEE ‘s
p :g ........... P :g \
R AN R .
D :g . 0 :; - . EI Typa of Sender Participant
el Coordinator commits ift clel] - B3 Type of Receiver ——
E :5 ..... \ (. 4/levery participant commits E 1; R A \VE L] Sender D
sl |- NV T s | el 1 N/ ID eceiver o
SOl s s 1O S
1 I 6] ..
1B 5 ... [Request [/
# T I # § . .|& Type Vote t
g ......................... 3 - +|{J Contents
s D R cknowdess R/
1R of].-.
d; 0 i
0 4 8 121620 26 28 22 3 4 & 4 %2 ' 5
MC:” Time in M§ I|::> M@I Time in M§ Iﬁ)
(Ge ) N/ (G ) N\

Figure 2.1: Two screen shots of the IDD system from Harter et al. [33].
All processes are listed on the y-axis, and time is on the x-axis. In
the left screen, process 18 is focused, and the lines connecting the dots
represent messages passed among the different processes. Analysts can
select which process or time points to focus on. The right screen shows
additional interactions analysts can perform: filtering by time, process,
message and their attributes. A “Magnify” command allows for zooming.

an early system, IDD exhibits many design elements that persist in many modern
systems today: First, the temporal dimension is laid out horizontally. Second,
the different parts of the system (processes) are laid out vertically, and, third, the
important events (messages) are represented as markers on the timeline. Some
limited filtering and zooming features are available.

The system xtg [50] generalizes the designs of many of these parallel pro-
gram analysis systems and allows user configuration to reproduce the visualization

of these previous works. Symbols, vertical lines, and line elevations are used to



Display Panel 3

R T I O T T T G TEPE TP T e T P T
Lt Gosdon Bean0p

TR 640 T _SETeA8
beaone sansen

Swarch For Bookmark T
B this tisslize ALl tivalinee
[ recvard in tine Backward in tine

TRTETET T Hio o L
00tss #0003 a9nea

Figure 2.2: The xtg visualization system generalizes previous designs
in visualizing parallel computation. In addition, it allows multiple view
windows of the same temporal data. The search interface allows search-
ing of events and bookmarks.

visually encode changes in the process states. In addition, analysts can create mul-
tiple, zoomable views to gain both an overview and detail or to perform comparison
between executions (Figure 2.2).

The Time Line Browser was one of the earliest works in visualizing medical
data [17, 18]. It also adopts a linear timeline to incorporate both event durations and
values of medical tests, such as blood sugar reading. It is one of the first systems to
mix both numeric time series data with duration events. However, up to this point,
no evaluations has been performed to validate the value of timeline visualizations.

Researchers have been relying on intuition that the timeline representation improves



human understanding of the temporal events. A landmark study on the advantage
of the graphical representation of time is included as part of the study for the next
system.

Plaisant et al. further extended the timeline designs in LifeLines [83, 84] (Fig-
ure 2.3). Duration events are color- and thickness-encoded on a timeline to represent
categories and significance, so “high blood pressure” and “low blood pressure” can
be distinguished. Events of similar categories can be grouped into facets. Analysts
can collapse or expand different “facets” of the data. For example, a facet may
be diagnoses, and another may be medications. Semantic zooming is incorporated
in the visualization, so as analysts zoom in, for example, previously grouped “car-
diovascular problems” may expand to “heart attack” and “hypertension”. Mousing
over events shows the details, and users can see supporting medical documents (such
as a doctor’s note or an x-ray image) on-demand.

An important contribution of the LifeLines study is an evaluation of graphical
display of temporal data. The authors performed a controlled study comparing
graphical layout of LifeLines against tabular display of the same personal history
data. The authors concluded that participants can better temporally compare events
and their durations on a graphical timeline display such as the ones in LifeLines
[5]. This evaluation validated what visualization designers have long suspected:
timeline-based visualization can help analysts understand the temporal dimension
better. Many later approaches have since leveraged on the same visual designs of
LifeLines, including Bade et al.’s MidGaard [9], Kumar et al.’s tmViewer [56], and
Data Montage [20], a commercial product.

10



-

1

« »
@J copyright 1994-98 # Lniversity of marylnd
s 5 55 o i

282 -5
¥ DiagnosisDepression

Lrrmme Srthritis Ohesity -
}-IME, }-IME
AtnalFlutter
Flu Preurnonia
|
KneePain
¥ Hosps.  Appendectory i'neu.munia FmeSu.rgery
¥ Tests Blood EKG
I n 1 E
Xra:i' Blood Blond
1 i o
P F: P P
1 ap 1 ap -ap 1 ap
Tl S
(i i i
¥ NMeds. Prozac Cardizem
|
WVentol
-
Antlh.  Advil  Insulin Insulin
] — H’
Amoll Pm]iamlol
. n 1
Lasilix Batramex stop Lasilix
— ——— — [
¥ Others WSiCalThempy
LowSaltFatDiet
I 1 1]
¥ Trmmn TRtact Tatanne |
ﬂ 2492 a3 o4 as a5 av ﬂ
Ioaé Text Search | Control F'ane1

Figure 2.3: The screen shot of LifeLines shows a variety of events in a
patient’s medical record. Extending from previous research, LifeLines
supports rich color encoding, semantic zoom, brushing, and collapseable
facets.

2.1.1.2 Modern Innovations

Modern visualization research for temporal categorical data have focused on
innovating different aspects of the classical designs. One extension is to incorporate
more complex categorical hierarchies. Another is to focus on the explicit relationship
among temporal events. However, they have largely ignored the importance of
providing novel and effective search strategies.

A number of more modern research efforts have focused on extending the

11



small hierarchy of event types in LifeLiines to incorporate deeper, richer hierarchies.
These efforts are motivated by complex domains where taxonomy of domain jargon is
readily available, for example, the medical field. Systems from Shahar et al. [96, 52],
Post et al. [85], and Murphy et al. [70] deal with medical terminology by using
standard or custom-built medical ontologies. Users can use the ontologies to search
and navigate patient records. However, these systems typically treat temporal events
as if they were attributes — whether a patient has been diagnosed with “asthma”
and “pneumonia” as opposed to temporally ordered sequences such as “asthma”
followed by “pneumonia’.

While the organization of query terms enhances the usability of a search sys-
tem, other modern visualization systems have instead focused on the known, explicit
relationships among events. One example is historians using timelines to represent
historical events and their connections in order to facilitate and enrich the narra-
tive. The focus of these approaches is on a single interesting event (e.g., Kennedy
assassination) and its related events (those that lead up to the interesting event,
and those that follow). This gives historians a way to convey the temporal relations
of the events as well as a way to decompose a complex event into smaller events for
analysis. The SIMILE timeline tool from MIT is one such example [88]. It relies on
subtle visual cues to denote relationships of events by using color encodings.

Jensen’s SemTime, by contrast, allows multiple explicit relationships among
events (such as article citations) to be visualized as directed lines on the timeline [45].
To avoid obscuring the line paths, SemTime lets analysts truncate a linear timeline
into stacked “time segments” of possibly different granularities (Figure 2.4 (left)).

12



Trenchard & Gordon

J Poois
Arsto 0
Dionysus of Hel.

FamiliarWitn Commen ted Supported Opposed ComglexComment
o e o s »  ——

Figure 2.4: The two innovations of SemTime [45]. The left screen shows
the relationships among events on a segmented timeline. The screen
shots on the right show the expansion of a “sub-timeline” in-place.

This allows analysts to mitigate the overlapping of edges, as many arrows can now
travel vertically. This idea effectively transforms a timeline visualization to a graph
visualization that resembles the semantic substrate advocated by Shneiderman and
Aris [98], where each substrate is a timeline segment. A second innovation is that
SemTime allows a duration event to have its own “sub-timeline”, which contains all
“sub-events” specific to that event (such as battles in a war), and allows expansion
of the event details in-place (Figure 2.4 (right)).

André et al.’s Continuum also makes use of the “sub-timeline” idea to orga-

nize hierarchical information on a timeline (Figure 2.5). However, Continuum’s data

13



N idwavand

Composer
Beethoven, Ludwig van
(1770-1827)

Birth Date Sun, 31 Dec 1769

Death Date Sun, 31 Dec 1826

1770 V1780 V1780 V1790 V1800 11810 1820

Figure 2.5: Continuum: temporal information to be organized by a
dynamically-defined hierarchy [6].

structure is facet-based, and allows analysts to associate each facet to create an ap-
propriate hierarchy for exploration. For example, in the domain of classical music
composers, pieces, and recordings, an analyst can dynamically create the hierar-
chy era -> composer -> piece or era -> piece to suit a particular exploratory
need. This dynamic hierarchy approach can be seen as a generalization of the mul-
tidimensional attribute browser FilmFinder [46], which plots a Starfield on time

axis.

2.1.1.3 Multiple Record Analysis

Most of the previous work presented so far are for analyzing temporal data for
a single entity, i.e., single patient, single parallel program. There are also work on
visualizing temporal data on categorical events over multiple records. Lexis diagrams

14



are an early example that is not interactive [61]. Demographers use them its more
modern variations [87] to visualize multiple life histories at simultaneously. These
approaches uses a Cartesian space, but both the x-axis and the y-axis are time.
One would represent the calendar, and the other would be a time scale relative to
a common, significant event. For example, the important event may be the start
of pregnancy. Using these Lexis approaches, analysts can quickly find how many
women are pregnant at time ¢; using the calendar time axis. Using the other axis,
the analysts can quickly identify those who have been pregnant for more than x
months. The representation of the personal record is simple. A line or a narrow
strip usually suffices. These Lexis approaches are very useful when representing
change of personal statuses in a population. Lexis pencil [27] takes the idea further
to 3 dimensions, and displays different facets of a history on faces of a 3-D pencil to
increase information density and allow for richer interaction.

These Lexis approaches use an important, but often overlooked strategy to deal
with multiple records. The records are all aligned by the start of the significant event
in their own respective timeline. The alignment allows for quick visual comparison
among the individual records. However, this alignment is not dynamic, and users can
only see the time progression after the alignment (no visualization of the statuses
before the alignment). The idea of alignment is also adopted in other modern
visualization tools. Experiscope [29] and Session Viewer [57] both have facilities
to let analysts pick multiple records and align by a certain point in the record.
Analysts can pick arbitrary points in Experiscope, while in SessionViewer, the time

point selection is constrained by the presence of events. Analysts can only pick time

15



points where an event exists. The manual selection of alignment point provides
great freedom to analysts to build their preferred view, but it is slow and does not
scale to more than a handful of records.

There are yet other approaches that use the periodicity of time as points
alignment to allow discovery of cyclic patterns in temporal data [118, 12]. For
example, if every week represents one cycle, all the same days of the week in a month
would be aligned (similar to a calendar). So if there are weekly cyclic patterns, the
alignment can make them visually compelling. However, this kind of alignment is
based on calendar designation, and not based on the data, and only cyclical patterns
in data that is based on the calendar designation would be visually prominent.

One of the goals of my dissertation is to generalize these different alignment
approaches. I propose and evaluate an alignment design that is dynamic, automatic,

and data-centric to overcome the problems in these earlier systems (Chapter 3).

2.1.1.4 Aggregating Temporal Categorical Data

An aspect of dealing with temporal categorical data is to aggregate them in a
meaningful way. The common approach is to aggregate them by type, and visualize
the resultant numerical temporal data. Several algorithms and techniques have been
proposed to efficiently aggregate temporal categorical data. Dubinko et al. propose
an algorithm to rapidly aggregate photos tagged in different temporal granularities
to create compelling photo slide shows [23]. Ribler et al. proposed several aggrega-

tion techniques for temporal categorical data, but mostly only focusing on temporal

16



Figure 2.6: Screen shot of ThemeRiver. Categorical data (key words
in news articles) are aggregated and displayed in an aesthetic way to
highlight the rise and fall of news events.

periodicity [91]. Aggregation of temporal categorical events into numerical values
in visualization systems is fairly common.

One often-cited example of aggregating categorical events into numerical data
is ThemeRiver [34] (Figure 2.6). It visualizes keywords mentioned in news articles
to track the rise and fall of importance of news events over time. Each keyword is
represented as a color, and the thickness denotes its usage frequency. Many keywords
can be tracked simultaneously. Analysts can easily tell how news topics rise and fall
over time. However, ThemeRiver provides no facility to allow search.

Heer et al.’s sense.us and Wattenberg’s Baby Name Voyager [117] use a similar
strategy — animated stacked bar charts to visualize numerical data over time. Baby
Name Voyager allows analysts to filter for specific subsets of baby names, thus adding

an interactive search component. This kind of aggregation can be found in a variety

17



of domain applications. Phan et al. use bar charts to aggregate network event data
to analyze network intrusions [80]. In traffic analysis, accidents can be aggregated by
type and displayed in a temporal-geographical visualization in applications such as
[28]. In all of these applications, however, the visualization of the numerical trends
over time was the end goal. These applications do not support search functionalities
or higher exploratory tasks. I present the design of temporal summaries (Chapter
5) and show they provide support for selecting temporal range filters relative to an

alignment, and how the comparison of these summaries can be a useful feature.

2.1.1.5 Temporal Numerical Data

Although numerical time series visualizations fundamentally support very dif-
ferent tasks, many existing work present multiple time series in coordination. Among
others, [86] and [25] present multiple numerical medical data of a single patient in
the same view to facilitate visual tracking of a patient‘s condition, but offer none
or very limited interactions. These approaches, however, do not have any search
capabilities.

Innovative search methods may be hard to come by for temporal categorical
data, but it is not the case for temporal numerical data. In an effort to search
and query for patterns across many time series data, Hochheiser and Shneider-
man’s TimeSearcher [41] overlays multiple single-variable numeric time-series in one
overview display, and provide novel query methods. The direct-manipulation inter-

face allows users to focus on interesting points, and filter out uninteresting variables.

18



Figure 2.7: Composite screen shot of three screen shots of Time-
Searcher’s TimeBox query in action. By creating additional boxes in
the space where multiple time series data is displayed, only the time
series that intersect with the TimeBoxes remain. The others are filtered
out.

Furthermore, novel features such as TimeBox (Figure 2.7) and Angular Query to
specify the rise, fall, slope, and range of patterns in the visualization was advocated
to alleviate the problem of constructing complex queries. Subsequent work on Time-
Searcher2 expanded the earlier research by handling (1) unevenly-spaced time series
data, (2) scaling to 10,000+ time points, (3) dealing with multiple variables, and (4)
providing mechanisms for flexible pattern search [8]. The approach of visualizing
multiple time series in the same space is adopted in many other systems, such as

[81] from Pieczkiewicz et al.

19



Instead of overlaying the different numerical time series on the same 2-D space,
Interactive Parallel Bar Charts (IPBC) uses 3 dimensions: the first for each time
series, the second for the time dimension, and the third for the values of time series
[14]. Analysts can select a portion of a time series to invoke a similarity search
which returns segments in the visualization that is similar to the selected pattern.
Analysts can also create a linear function that describes the behavior of a time
series. IPBC can then use the function to find parts of the many time series that
exceed the function.

Unlike TimeSearcher, VizTree [62] is a tool where pattern-finding is built-in
from the internal data structure to the external representation. The range of a time-
series is reduced to n bins. Each bin represents a symbol. A suffix tree of branching
factor of n is built to represent the entire time series. Each branch corresponds to
a symbol, and each path represents a string of symbols. The thickness of a path
represents the frequency of that string in the time-series, hence the frequency of the
pattern in the time series. The authors showed the effectiveness of this represen-
tation for matching patterns, detecting anomalies, and spotting motifs, and argued
that it is a scalable solution for massive time series. Also unlike TimeSearcher,
VizTree focused on recurring patterns from one single time series, as opposed to
across many time series. It is worth noting that VizTree turns numerical time series
into ordinal data (bins), which dictates a specific ordering, differing from unordered
categorical data. Furthermore, the size of each discrete step in binning has dramatic
effect on the ordinal sequence representation of the time series.

Shahar et al. present a temporal abstraction framework [96, 95, 52] to combine

20



the patterns of numerical time series to build higher-level abstractions (temporal
abstractions) to assist decision making. While most of the applications have been
in the medical domain, it has also been applied to network security data [95]. For
example, by combining the values platelet counts, bone marrow toxicity readings
and other numerical readings, these systems can identify different stages (ordinal
data) of transplantation problems in bone marrow transplant patients. While the
automatic detection and creation of higher level temporal abstractions (categorical
data) is useful, these systems do not provide search mechanism on the abstractions.
Other temporal abstraction approaches such as PROTEMPA have commented that
the lack of search mechanism combined with the lack of effective representation of

detailed patient data makes discovery of novel patterns difficult [85].

2.1.2  Other Representation of Time

Several works have used alternative representation of time to support specific
tasks. Weber et al. [118] and Carlis et al. [12] showed that by using spirals marked
with time intervals (weeks, months, quarters, or years), periodicity of data can be
easily noticed. Hewagamage et al. propose a way to visualize events on a spiral
timeline in both 2D and 3D space, where events are represented as icons [37]. In
Weber’s tool, users can vary the length of the cycle and explore time series data
to find repeated patterns. However, when data do not exhibit a cyclic nature (or
that if the cyclicity is not in accordance with the temporal cycles), the temporal

patterns can still be very difficult to spot. EventTunnel [106] uses a circle to place

21



temporal events, however, it does not align the temporal cycles on the same wedge
of the circle. Instead, it uses the wedges of the circle to organize events that share
the same attributes.

Temporal-spatio visualizations such as TimeMap [47], Pattern Browser [37],
and (to an extent) COPLINK [15] allow individual events to be displayed both in
geographical dimension and temporal dimension (through traversable animation).
These visualization approaches are focused on enriching the historical narrative ex-
perience of the users on a single interesting event (e.g., one timeline for a crime),
and not finding patterns across many histories (e.g., multiple timelines of similar
crimes). The system Gravi++ uses a force-directed layout to represent patients and
their answers to psychological surveys [40]. A group of patients can be simultane-
ously visualized. Similar answers tend to cluster and become visually prominent.
By stepping through time via animation, the change of patient survey answers can
be tracked. Similar to animation, small multiples have also been used to visualize

multiple time series simultaneously [42].

2.2 Searching for Temporally-Ordered Data

There are two main characteristics in temporal data for search. The first
is the ordering of temporal events, and the second is the duration between any
two temporal events. There have been many proposed temporal query languages
[102, 103, 16] and extensions of SQL to specific domains such as medicine [76, 49, 75].

Unfortunately these command line languages suffer from the same critical problems

22



SQL does (see Appendix B for a detailed example)). In this section, I present
the more novel approaches to access temporal data. While these approaches are
innovative, there are more left to be desired with respect to searching for the two

characteristics of temporal data.

2.2.1 Sequential Approaches

Searching for temporal patterns is an important task for temporal data analy-
sis. Unfortunately, many temporal visual analysis tools do not support such tempo-
ral pattern search [20, 24, 106, 57]. State-of-the-art production tools often omit this
functionality in favor of simplicity, learnability, and familiarity [68, 70]. In making
the visual analysis tool effective in its visual and interactive operations, often the
data structure is indexed to suit those purposes. However, these indices may not
be suitable for searching for temporal patterns. Temporal categorical data present
its own constraints on how data needs to be represented faithfully. Many of the
algorithms presented below rely on pre-processing of the pattern to ensure efficient
run time.

While the preprocessing is generally light (O(m), where m is the length of pat-
tern) in approaches like nondeterministic finite automaton (NFA) and bit-parallelism
approaches, it would be better to avoid any pre-processing. It begs the question that
when data are read into an analysis system, could they be primed or otherwise in-
dexed so that subsequent temporal pattern queries can be performed quickly? Chap-

ter 4 presents an algorithm that is designed to overcome these constraints. However,

23



something would be amiss if I do not discuss the plethora of related topics.

The most obvious topic one is string matching. At a first glance, string match-
ing is very similar to matching events over time — both share a sense of progression
(event in time or character in position),both are concerned with finding ordered
sequences of items. However, there are some fundamental differences. In classical
string matching, (1) a pattern is wholly specified (“abc” as opposed to, in a temporal
pattern search scenario, “a” followed by “b” followed by “c”), (2) no two characters
can occur at the same position in a string, and, finally, (3) that negations are usually
not considered. Nevertheless, it would be useful to examine these clever algorithms
to examine these fast classical approaches to see they could be generalized for the
purpose of temporal pattern search: Knuth-Morris-Pratt (KMP) [53], Boyer-Moore
(BM) [11], and Rabin-Karp (RK) [51]. KMP pre-processes a given pattern to build
a prefix table that tells the algorithm when and how far ahead (in number of charac-
ters) it can skip, avoiding unnecessary scans. Likewise, BM builds two tables based
on the pattern which tells the algorithm how much to safely skip ahead. Finally,
RK utilize the fact that a string can be viewed as a number, where each character
is represented by a digit (in radix = size of the alphabet) and modulo equivalences
to speed up checking for matches.

These string matching algorithms all exploit the fact that a string is con-
tiguous. Every character (except for the first one and the last one) has only one
predecessor and a successor, and the characters are indexable. This information,
along with the known pattern, can be used to reduce the number of scans in the
text. Sadri et al. use this fact to optimize sequential searches in SQL-TS over

24



data streams by using a variant of KMP [92]. The drawback is, or course, that the
text and the pattern must be contiguous, limiting the expressiveness of their search
patterns. In temporal data, events are not contiguous (so the pre-processing in the
classical string match approaches cannot apply). Some events can occur at the same
time. Finally, when searching for temporal patterns, both occurrence of events and
the non-occurrence of events are important along with wild cards, optional, and
repeatable events.

A more general way to deal with data that needs to be processed one-by-one is
to utilizes either deterministic or non-deterministic finite automaton (DFA or NFA)
[108]. These automaton-based approaches are more flexible than the classical string
matching algorithms because they can handle regular useful operators such as the
Kleene Closure (*), wild cards (.), negations("), and classes of characters, to name
a few. Given a text of length n and a pattern of length m, a DFA can perform a
search in O(m), but building a DFA can take up to O(2™) space [89]. This makes
the DFA approach useful for applications where building a DFA is infrequent or
can be done off-line, such as network intrusion detection systems [121, 55, 26]. On
the other hand, an NFA can compactly represent an equivalent automaton in space
O(m), but the search time may take up to O(mn) to perform a search.

Given the trade-off between DFAs and NFAs, many systems choose to use NFA
or extensions of NFA for their stream processing needs [2, 22]. These approaches
tend to have an expressive pattern language where negations, Kleene Closures, and
temporal constraints can be included. They are more expressive than regular ex-

pression. These systems are geared towards fast processing over continuous event

25



streams, where an event can be more complex, and contains additional attributes.
The domain of data this dissertation focuses on is a simpler problem where events
do not have these additional attributes, and thus allows the design for a simpler
algorithm for searching for temporal patterns. For example, in [2], searching with
negation of events is supported by first finding all positive events and then prun-
ing off the results that contain negation events in the wrong temporal ordering. In
contrast, my algorithm searches for negations in-place (Chapter 4).

Newer string match approaches such as the Shift-And, Shift-Or, or the Back-
ward Nondeterministic Dawg Matching algorithm can be more easily adapted to deal
with classes of characters, optional and repeatable characters that classical string
match algorithms cannot handle [72, 73, 71]. The basic idea behind these algorithms
is to use bits to represent the states of an NFA. When a symbol is read, all states can
be updated in parallel by cleverly using bit-wise operators (and, or, shift, xor, etc).
When there are w bits in a computer word, these algorithms are expected to perform
w times faster than an equivalent NFA. Today when most consumer machines are
either 32 or 64 bits, this can be a significant performance advantage. When more
than w states are required to represent the pattern, multiple words can be used.
In this case, the performance of these algorithms suffers because of the overhead of
using an array of integers instead of a single integer to represent the states, and the
best worst case time for Shift-And becomes O(mn/w). However, unlike real NFA or
DFA approaches, these algorithms are difficult to extend to handle additional data
constraints. Finally, both the automaton and the bit-parallel approaches assume the

inputs to be a single string, and cannot be directly applied to temporal categorical

26



records.

There are also some more ad-hoc temporal pattern search algorithms designed
for specific purposes. For example, Harada et al., assume a grouping over a column
of data (e.g., customer ID) and an ordering by a second column (e.g., time stamp)
and searches for temporal patterns (by the ordering column) within each group (in
a customer’s history) [30, 31]. They do not use an NFA approach to perform the
search, instead, an algorithm that resembles building a topological graph is used.
The expressiveness of their language allows the specification of only limited negation.
For example, let a, b, c,d be event types, their approach can define a pattern that
have the same semantics as the regular expressions .« a. * b.x, . * a. x [*bd]. * c.x, but
not .*a[ bd]*c.x, which is required for properly support negated events. The limited
expressiveness also means that their algorithm never has to backtrack. There was
no reported run time analysis for their algorithm.

Finally, Agrawal et al. propose a Shape Definition Language, aimed to describe
the shapes formed by the values of a single numeric variable over time [3]. Users
can use the simple definition language to specify increasing, decreasing patterns for
search. The language is as expressive as regular expressions, but can discard non-
maximal subsequences to reduce clutter. Though it is designed for time series data,
the query method itself is categorical, and the capability to discard non-maximal
subsequences is useful for finding “broken” data such as the event of checking into
an emergency room without having been released first. This search approach is akin
to the that of VizTree, and share similar weaknesses. Temporal data can not be

generalized as a single sequence for search. Point events can occur at the same time,

27



and duration events can overlap.

2.2.2 Novel Query Interfaces

Tansel et al. present Time-by-Example, a “user-friendly” query language for
historical relational databases [107]. The interface is akin to the Query By Exam-
ple (QBE) language [122], but the language is relationally complete (for example,
QBE cannot express nested sets [77]). The interface allows users to specify query
constraints, including temporal constraints, in text. Although there were no formal
studies, the authors note that their interfaces for the more advanced features of the
query language are difficult for novice users.

Hibino and Rundensteiner compared the efficacy of a visual query interface and
a form-based query interface for Temporal Visual Query Language (TVQL) [39]. The
visual interface contains a set of range sliders to specify the temporal relationships
among time intervals of interest. There are four sliders for each pair of intervals (A,
B), specifying the relationships between (A.start, B.start), (A.start, B.end),
(A.end, B.start), (A.end, B.end). In addition to the sliders, a temporal dia-
gram is dynamically generated as a feedback to the user. The controlled experiments
showed, with statistical significance, that this visual interface is difficult to train,
but allows participants to interpret the semantics of the queries and construct in-
cremental queries more efficiently . While the results are promising, there are a few
important points worth noticing. First, the number of sliders increases exponen-

tially in the number of events. While every degree of freedom can be specified, it

28



is unclear whether they need to be in every case. Next, the visual representation of
the intersection of intervals is not scalable to multiple, intersection intervals. Each
of the range sliders has numeric values so the temporal displacement between two
time points can be set. The numeric values do not have units. Furthermore, it
is unclear whether it is possible to change units for multi-granularity query spec-
ification. Finally, the authors seem to have overlooked ways to specify absolute
temporal constraints (e.g., event A must happen before the absolute time January
8, 2001).

PatternFinder allows analysts to specify temporally ordered sequences in mixed
temporal and categorical data sets [24] (Figure 2.8). It also presents the results as a
chain-and-ball visualization to highlight all the matching events in personal records.
PatternFinder is powerful, but the large number of widgets that allow analysts to
specify the temporal ranges of events often overwhelmed analysts. The interface
was later simplified and applied to the real system Amalga in a subsequent project
[58], where relative comparison is built into the query interface. These approaches,
however, do not allow the specification of the absence of events, which are important
in many real world applications. For example, clinical researchers may want to find
patients who have the sequence of events “with no prior history of heart problem,
later diagnosed with hypertension, received no treatments, and finally experienced
a heart attack”. Without the absence operator, analysts cannot specify the lack of
heart problem events and treatment events in the middle of the sequence.

HCI designers have also designed visualization and interaction strategies that

guide analysts to search and filter. Multidimensional data that contain time stamps

29



52 Patternfinder2.0 [Z]@

File Data

Person/People Event Box 1 EventBox2
Nare Twpe . I Span Tupe O
M Levell |Test - Levell |Test M
o Level2 |BloodWork — =| | M D Level? |BloodWork  v| | M
o o
I 9 Level3 |WBC M Level3 |WBC MIN add
Value < Value E1 | Constiaint
Gender s s
1 15 § 16 n §
V' femal
I male
295602005 | Min Date MaxDate | 05-0ct-200]
Curent Querye (29-5ep-2005.29-5ep-2005) ~
Test Blood Wark WBC HumericalGueryControls.Range[1,15] (simple) | Bun By
TimeSpan Days [disabled) v
- ‘Tab\e ‘ 17 matches found
Bryan, Estelle [ ) "
Hicks, Kourtney [ ]
Napier, Pamellz 0 1
0
0
$ e
Porter, Noreen .

Tripp, Latasha ] 3
0

¥ Show AlEvents 285epiE | oeeiams |

Figure 2.8: A screen shot of PatternFinder, its form-based query inter-
face on top, and ball-and-chain result visualization at the bottom

can use interactive, direct-manipulation, and dynamic query techniques [4, 97, 110]
to filter for data points that are within a temporal range [46, 119, 104, 6]. There have
been fewer visual techniques for searching for temporal sequences. TimeSearcher
[41, 8], VizTree [62], and SessionViewer [57] are rare examples.

More recently, ActiviTree [113] automatically aggregates personal activities
over a population and uses a page-rank-like algorithm to suggest likely, and possi-
ble routes of exploration. One can think of ActiviTree as an aggregation of Lexis
diagrams [61] in that it works for personal statuses well, but cannot handle simul-

taneous or overlapping events in general. Another interesting advance is searching

30



for similar sequences. Mannila et al. propose several ways to compute similarity
among event sequences [65, 64]. Similarly (pun intended), Wongsuphasawat et al.’s
interactive visualization Similan uses the idea of “edit distance” to compute a simi-
larity measure for event sequences that works for relative time scales. Analysts can
dynamically adjust weights on a variety of factors to fine-tune the way similarity
measure is computed.

Even though these related work on search interfaces have some shortcomings,
state-of-the art systems medical record systems have lagged even further. Real
production systems have often sacrificed the functionality in favor of simplicity,
learnability, and familiarity. As a result, queries on the temporal ordering of events
are often sacrificed. For example, the i2b2 medical database allows only boolean
queries to be specified in patient records from its interface by default [70] (Figure
2.9). Instead of “Pneumonia ” after “Asthma”, it can only handle “Pneumonia”
and “Asthma”’. The Amalga system (formerly known as Azyxxi), our physician
collaborators electronic health record system allows for canned search/filter options

that allows value constraints, but not temporal constraints (Figure 2.10).

2.3  Summary

This related work section describes innovations in visualizing and searching
temporal data. On the visualization side, many good existing designs can be lever-
aged. However, there also seems to be a niche for novel visual operators that support

relative comparisons. In terms of search, on end of the one spectrum, non-visual,

31



Caizbz Workbench
File Wwindow Help

®, i2b2 workbench for Demo Project Cemc
oviget... FTTTEETTIEA O || @ cuery ool 52 | & > %] = O
Query Mame: | Reset Groups |
Group 1 | X Group 2 | F 4
ini fart ! >
IContalnlng —I Ias s e Drates | OCcurs = 0x I Exclude | Dates | Ooours = 0x | Exclude
Find | IOntoIogy | 55] Fernale (2] Asthma dd
-- (23 antiasthmatic combinations & Group
; @ Antiasthmatics causing ady
{1 Asthma _lLI
&#-(_7] Asthma, unspecified LI | v
= Cancel Run Quer
@ Previous Queries £32 | i | I R
o & % @ Timeline view 53 | & <2 P %l 7O

Create model For Timeline I Render a Timeling I

IQuery Mame: LI I

Row # |Drag (i |Value

I\falue Texk Height

Figure 2.9: Partial screen shot of the i2b2 querying interface. The top
right Query Tool panel allows Boolean queries over medical terms to
be specified. A query is generated as a conjunctive normal form of the
terms. Each Group in the interface is a list of OR’s, and the groups of
OR’s are ANDed together.

command-line based languages are difficult to grasp, and adoption is limited to
advanced users. On the other end of the spectrum, interfaces that allow complete
specification of all constraints in a temporal search can easily overwhelm users. As a
result, state-of-the-art interfaces shy away from providing the desired expressiveness
required to perform temporal search of event patterns and favor simpler Boolean
queries. This treatment of temporal data limits users’ freedom to analyze it. These

missing pieces suggest research opportunities, and I present my solutions to these

problems in the following chapters.

32



LeEe) Vicwer |

@Zyxm

Clinical View (All)

“- Pt Immmm

Input  Forms Docum

Misc Admin Dashboard

Complaint Attd MD Admit DIT Dschg DIT
1748 P 006 08:00

T a——

2NO3PW 76M abdominal pain nos

. BT

Find records meeting these criteria:

Last name ] -
ilter

Ayailable fields

Biling. Check-1

C.&ngioDate-Time
jo-Time
C.Blood-Culture
C.CoPath-Date
C.CoPath-Date-Time
C.CoPath-Time
CLT-Date
C.CT-Date-Time
C.CT-Time
C Diabetic
C.Dictations-Date
C.Dictations-Date-Time
|| Nirtatinne. Time

DoB [ |
Clear | E

PCP &Z"201007:52
GSG ©|'r201004:12

L 42010 07:52

[
£ 2201010:36 »~
::]mmo 07.06 e

. inman anan t}

=)

Add field >
< Remove field

Define value... >

Fields used for the filter

BEN] 1 P | ast-Name BEGIN WITH A

1> P.Zip-Code CONTAINS 20740
1> V.Admission-Date BETWEEN 1/4/2010 an
1> V.Diagnosis BEGIN WITH pneumonia

Figure 2.10: Composite screen shot of the query interface in Amalga
(formerly known as Azyxxi). Analysts can search for patient records by
values in cells as in a spreadsheet (left dialog box). Further filtering can
be accomplished by restricting the values to be matched (right dialog

box).

33



Chapter 3
Supporting Visual Comparisons: Alignment and Intervals of Validity

3.1 Overview

An appropriate visual arrangement of data can allow analysts to build a more
easily maintainable mental model, or see patterns that otherwise would be difficult
to discern. For example, in graph visualization literature, TreePlus by Lee et al.
uses a tree to visually represent a graph [59]. It effectively reduces the high vi-
sual complexity typically present in a node-link diagram. As a result analysts can
perform faster and with more reliability in some graph browsing tasks. A differ-
ent technique by Aris et al. shows that by arranging the nodes in a legal decision
citation network by semantic substrates, analysts can better detect prominent pat-
terns (e.g., lower court citing higher court decisions) and outliers (e.g., higher court
citing lower court decisions) [7]. Modern computation expands the power of visual
graphics in that modern systems empower analysts to dynamically and iteratively
rearrange the visualization to suit their purposes. The question then, is what is an
appropriate visual arrangement for analyzing multiple temporal categorical data?
And subsequently, can the arrangement be dynamic?

In this chapter, I describe alignment, a novel interaction technique that is suit-
able for browsing records of temporal categorical data. Alignment is implemented

in the visualization tool Lifelines2. I also describe a controlled experiment that val-

34



idates the usefulness of alignment. Finally, I summarize the impact of my findings
to the field of temporal categorical data visualization. The content of this chapter

corresponds to one of my earlier publications [115].

3.2 Background and Motivation

Lifelines2 was initially motivated by our physician and clinician friends from
Harvard Medical School and Partners HealthCare. They highlighted two scenarios
where querying large databases of clinical data and reviewing results are not well

addressed by currently available tools.

1. Observational research using existing data (instead of a clinical trial).
In this scenario, researchers use de-identified data collected for the purpose of
other (existing) studies or medical practice data to better understand health

problems or study the effect of treatments.

2. Clinical trial patient recruitment. Harvard Medical School and Partners
HealthCare receives over 600 requests a year from researchers everywhere to
find suitable participants for clinical trials. The query terms typically contain
diagnoses, treatments, and chief complaints. Analysts need to make a decision
on whether each of the patients is a possible candidate for the trial based on

manual reviews of the results.

Among the many challenges posed by these two scenarios, are the issues of de-

sign and user interaction. First, temporal comparison among patients is challenging,

35



subsequently making finding patterns difficult. Secondly, even experts who know
the underlying temporal data semantics and provenance can misinterpret the data
presented. I illustrate these two challenges in the following motivating example:

Researchers who study asthma may be interested in the relationship between
patients’ first pneumonia and their asthma attacks and treatments. A query is issued
with those two diagnoses. Researchers then review the frequency and the temporal
placement of the asthma events in relation to the first pneumonia in a large set of
patient records. The reference event (i.e., the 1st occurrence of pneumonia) is called
the sentinel event, and I use that term in the rest of the dissertation. Reviewing
results on a timeline display is helpful but requires comparing events spread over,
potentially, a large time span. In addition, pneumonia and asthma are often related,
and diagnoses often occur very closely, researchers may spend a significant amount
of time zooming and panning to switch between a global overview and a detailed
inspection. The constant interaction with the display is disruptive to a researcher’s
visual memory, making discovery of patterns difficult. Proving the existence of a
phenomenon will still require statistical analysis, but could interactive techniques
assist analysts in the initial review of the data to find problems, perceive patterns
and formulate hypotheses about possible phenomena?

A second problem reported by our colleagues is that even highly trained med-
ical professionals can forget the implicit but uncertain duration of medical events
when interpreting temporal events, making the review process error-prone. To reuse
the asthma example, researchers might be looking for patients who have been given

steroids for their asthma condition. Because clinical data do not encode what condi-

36



tion a drug is prescribed for, users have to rely on the data at hand to estimate why
the drug was prescribed. Steroids are prescribed for asthma but also for rheuma-
toid arthritis or other long lasting medical conditions. Even though highly trained
analysts should be well aware that rheumatism is a long-lasting condition, they are
still susceptible to interpreting a rheumatism diagnosis, which appears as a point
event, as a short-term condition, and make the wrong decision. Would showing the
interval of validity of a diagnosis be helpful to remind users of the likely duration

of the condition?

3.3 Lifelines2

Lifelines2 is a prototype visualization system that focuses on supporting analy-
sis across multiple temporal categorical records. The original Lifelines was designed
to summarize the entirety of a single personal history record (e.g., a medical record).
In contrast, Lifelines2 displays multiple records. It is a platform in which I develop
and experiment with interaction and visualization techniques. The first two issues I
experimented with were alignment and intervals of validity. Here I give a description

of the interface, and describe the design of the two features.

3.3.1 Interface Description

In Lifelines2, Each record is vertically stacked on alternating background color
and identified by its ID on the left (Figure 3.1). Asthma and pneumonia diagnosis

events appear as color-coded triangle icons on a horizontal timeline. By default all

37



records share the same absolute time scale (with the appropriate temporal granu-
larity such as years or month labels displayed at the top) and the display is fitted
so that the entire date/time range fits in the screen. As in Lifelines, zooming on the
horizontal axis and panning is possible. Tool tips provide details, and records can be
collapsed (one by one or all at a time) into a compact silhouette using smaller icons
and less space. Left-clicking onto the visualization centers and zooms in. Right-
clicking zooms out. Any click onto the record ID area resets the display to the
initial, fitted overview. In Figure 3.1, it is easy to see the co-occurrence of Pneu-
monia and influenza events and Asthma events . However, it is not clear whether
Asthma occurred before or after each patient’s first Pneumonia and influenza. Users
are forced to zoom in to each patient’s first occurrence of Pneumonia and influenza
for details, but each zoom can only reveal the details around a particular Pneumonia
and influenza event on the absolute timeline.

On the right side a control panel provides access to align, rank, and filter the
display. Menus are data-driven. Users can choose any event category to align all of
the records. For example, Figure 3.2 shows setting the st pneumonia-or-influenza
as the sentinel event, and all records are aligned on a vertical line by that event.
It is easily verifiable that the first 3 patients were diagnosed with asthma within a
month prior to or at the same time their pneumonia was diagnosed, while the other
2 patients in view were not. When alignment is in effect, the time scale becomes
relative and labels indicate time relative to the alignment, e.g., “+1 month” and
“1 month”. By default the st occurrence is used, but a menu allows users to

switch to the n'" event, for example, the 2nd, the 3rd, the last, or 2nd from the last

38



& LifeLines 2 - asthma-pneumonia.txt {de-identified real data)
File  About

=1=[x|

Records 37/37

W1000000008
Asthm a
Preumonia and infl
Viral pneumonia
W1000000112
Asthm a

Preumonia and infl

V1000000038
Asthm a
Other bacterid pne
Preumonia and infl
Preumonia due to S
¥1000000122
Asthm a

Preumonia and infl

W1000000030
Asthm a

Preumonia and infl

W1000000113
Asthm a

Rank bv [# of Pneumonia and influenza]

[»

ARF Confrols [ Preferences

align by...
= |N0 alignment | - |
A A A A A AMAA Rank by...
11 | I || © name
Filter by...
M A A AhAAA AN () nothing
9 | 3 #times H
() sequence
AA | A A AA
9 Collapse all
A = 4
A  Pneumonia due to Staphylos
AMA M A 4 A L=
Priurnonia due to other spec~ ||
y =13
Preumania due to ather sp~ |
- |
Al A ALAAMAAAL Yiral preumania
8 =l
o _:"\Lﬁ:q"-,
AA | AlA| A AA ~|HCIL j}@/; Copyright 2007
'] [« “tiyint  HCIL UMD

Figure 3.1: Lifelines2 when no alignment is in effect.

Ranked by [# of Preumonia and influsnza]

Each triangle

represents an event. Note the data is presented chronologically, and the
records are ranked by the number of Pneumonia and influenza events.

The records are listed in alphabetical order by default but users can rank

filtered out of the display.

occurrences. Records that do not contain at least n occurrences of that event are

records by the number of occurrences of an event category. In Figure 3.2 the records
are ranked by the number of asthma events, bringing to the top the more severe
cases. The number of asthma events for each record is shown next to the event type
header for clarity. Instead of ranking the records by number of event occurrences,
users can filter it (e.g., removing records that contain less than 2 pneumonia events).

Users can also filter out records that do not contain a specified sequence of events



£ Lifelines 2 - asthma-pneumonia.txt (de-identified real data) ;Iilél

File  About
Records 37/37 Rank by [# of Preumonia and influenza] |~ (ARF Contrals | Preferences
Align by [ st Preumonia and influenza] P
-2 mons -1 mon match 1 mon 2 mons Align by...
1000000008 = |&H Prieumania and influenzai37) | - |
Asthma * A Rank by...
Preumonia and infl 11 . 7 name
Viral preumonia | (@) #ftimes [Preumaonia and influenz. .. =
1000000112 Filter by...
Asthm a P 4 (@) niothing
Pneumonia and infl 9 (0 #ftimes H
1000000098 © sequence
Asthma A A
Other bacterid pne
Preumonia and infl 9 Callapse al
Prieumonia due to S E -
¥1000000122 A Preumonia due to Staphyloe
Asthma A A A " ==
) Frieunonia due to other spece |
Preumonia and infl 7 E
¥1000000030 Preurmnonia due to other sp~ |
. A . -
Yiral preumania
Pneumonia and infl & E -
V1000000113 = ST
Asthma r'y - HC' L } "@;' Copyright 2007
T &
ANK iy HCIL UMD
Aligned by [1st Preumonia and influenza] Ranked by [# of Pneumonia and influenza]

Figure 3.2: This figure shows the same dataset as in Figure 3.1. However,
all patient records are aligned by the 1st Pneumonia and influenza. Note
the relative time scale on the top. A single zoom had been applied to
the alignment line.

(e.g., asthma followed by pneumonia). Finally the legend area can be used to turn
on and off certain types of events from the display to reduce visual clutter and to

focus on a subset of event types.

3.3.2 Design Discussion of Alignment

With alignment I believe that Lifelines2 provides a simple yet effective means
to quickly focus on a specific characteristic across multiple records, and subsequently

allows analysts to explore the data to look for common temporal patterns across

40



multiple records more quickly. The rationale for this is that without alignment,
comparing records via sentinel events would require analysts to zoom in on one
record at a time and then inspect the events around the sentinel event. In between
zooming in on specific records, an analyst may also need to zoom out to an overview
so that he or she can find where the sentinel event is for the next yet-to-be inspected
record. On the other hand, when all records are aligned by a sentinel event, one
single zoom into the alignment line allows analysts to focus on the details of the
sentinel events in all visible records. Overall the need to zoom and pan is greatly
reduced, as is the need to keep in memory the scale of time ranges from record to
record being compared. Secondly, if there is a secondary event of interest, analysts
can better see if there is an occurrence pattern on the secondary event with respect
to the sentinel event. Finally, the alignment is dynamic in that analysts can quickly
change what the sentinel event is, properly refocus the visualization to match what
they are thinking.

Existing visualization systems have exploited visual alignment as a way to
rearrange temporal or sequential data to reveal previously unknown patterns. How-
ever, these approaches to alignment are different and less-general. Some systems
provide an alignment view of the data to allow temporal comparison in relative
scale [61, 87, 27, 14], but it is a default view, and users cannot change the alignment
dynamically. Systems described in [12, 118] allow data to be displayed in alignment
to common cyclical temporal granularities such as days of the week or hours of the
day to expose periodicity of the data. These approaches are not data-driven, so an-
alysts cannot use alignment to focus on data characteristics. Other systems such as

41



Experiscope [29] or SessionViewer [57] require manual specification on data points
or time points to be aligned, which is only interactively scalable to a few records.
The alignment approach presented here is solely based on data and is automatic in
the sense that users do not specify alignment points for each record. Consequently it
allows analysts to easily realign as their focus of the data changes. To this end, the
alignment presented here is more general than those in the literature. The benefit
of alignment in general may seem clear from its wide adoption in these visualization
systems. However, there is no previous work quantifying that benefit — which I
address in this chapter — nor study of its use in multiple medical applications.

The more traditional ranking and filtering operators expand the set of ex-
ploratory tools analysts have for temporal categorical data, however, these operators
are not conceptually, visually, or interactively novel ideas and are not the focus of
the evaluation. The alignment, ranking, and filtering operators are collectively (and

affectionately) called the ARF framewort.

3.3.3  Design Discussion of Intervals of Validity

To test the idea of displaying intervals of validity (IV), I built a control panel
to allow the specification of ranges before and after each event type. Intervals of
validity are then displayed visually as a thin line extending from the point event in
both temporal directions. The specification of the range contains two parts: (1) a
scalar to represent the magnitude, and (2) a unit (e.g., hour, day, month, infinity).

Analysts can specify, for example, that asthma events have a 4 day range prior to

42



the actual event to indicate that an asthma episode occurred prior to the recording
of the diagnosis event. At the same time, a 2 week range after the events can
be assigned to indicate that the patients tend to experience asthma conditions at
least two weeks after a diagnosis. Analysts can use infinity to designate long-term
debilitating conditions such as diabetes once such diagnosis is determined. The
goal of intervals of validity is to provide a visual reminder of the possible duration
of the state or diagnosis represented by the point event. Analysts no longer need
to remember and estimate the duration of each event category, making it easier
to spot events that occur concurrently (or in the case of clinical data events that
“might” be occurring concurrently). Figure 3.3 shows sample data with and without
the interval of validity, and how a trained clinician might erroneously interpret it.
In this example the interval values are suggested by our physician colleagues and
specified manually by us. Ultimately the length of the intervals would be specified by
a trusted, authoritative data provider, or possibly computed based on other factors
(e.g., age of the patient). This controlled approach allows us to study how the
intervals are interpreted by users and measure if the intervals improve performance

at least in the simplest tasks.

3.4 Evaluation

I conducted two separate user studies. The first study aimed to quantify the
benefits of alignment and intervals of validity using a controlled experiment. The

goal in this experiment was also to observe what strategies analysts chose, and

43



(1) Without intervals of validity

¥1000000002

Asthma “ Y

Rheumatism, exclu
prednisone
¥1000000054
Asthma A A ‘ AN
Rheumatism, exclu
prednisone

(2) With intervals of validity

V1000000002

Asthma H- i

Rheumatism, esxclu
prednisane

¥1000000054
patma e b | Ak
Rheumatism, exclu I ! !
prednisone

Figure 3.3: The top portion shows two partial records without inter-
vals of validity. Because prednisone (a steroid) prescriptions coincided
temporally with asthma diagnoses and with no other events, users may
mistakenly conclude that prednisone was given for asthma. The bottom
portion shows the same two records with intervals of validity. Rheuma-
tism’s lasting interval allows users to visually confirm that there may be

more than one reason why predisone was prescribed.

what problems they would encounter. Because medical professionals have very little
availability, and are hard to recruit for a user study, this 1%¢ study used data and
experts from another domain. We used synthetic data based on graduate school
academic events and recruited graduate students, faculty, and staff who are famil-
iar with graduate academic life. I designed the tasks similar to the tasks medical
researchers would perform, and verified with medical experts that the tasks were
representative . In the second user study, I used real, but de-identified medical data
and interviewed medical professionals. The goal of the second study was to obtain

domain experts’ comments, suggestions, reflections on the uncertainty aspects of

44



the data.

3.4.1 Controlled Experiment

3.4.1.1 Experimental Procedure

The data consisted of scholastic records for a set of students. Data were point
events such as submitting a paper, a software release, dates of a dissertation proposal
or defense, signing up for a class, or submitting a job application. There were 20
participants in this study. Each participant was paid $10 for his or her time. The
participant who found the most answers correctly (completion time is used as a
tie-breaker) was paid an additional $10. The best-performer incentives were used to
motivate the participants for correctness over speed and ensure the data collected
represent the participant’s best efforts.

The experiment was further divided into two independent parts. The first
part evaluated the benefits of alignment. The second part evaluated the benefits
of showing the intervals of validity. Both parts of the experiment follow a repeated
measures design. Each part had two interface variations, and each participant per-
formed a set of tasks once for each variation. I recorded the time to complete each
task and errors, if any.

In Part 1, participants were asked to perform tasks regarding events around
sentinel events, using 2 interface variations of Lifelines2. One variation had align-
ment as an operator (ARF), while another did not (RF). I gave a short demon-

stration of the interfaces, answered questions, and let the participants familiarize

45



themselves with the interface (for a total 15 minutes of training). I then asked them
to perform specific tasks. Because each participant needed to decide on how to
best approach a task, I allowed each participant to read each task description and
formulate a plan of attack before loading the task data and starting the timer. This
ensured that the time recorded was the time of task completion, and did not include
plan formulation or task comprehension. I recorded the strategies the participants
used. Every participant was asked to perform the set of tasks below, once with the
alignment feature available (i.e., with the ARF interface variation), once without
(i.e RF). The order in which the two variations of the interface were presented was
counter-balanced to mitigate learning effects. The tasks and their design rationale

for this part of the experiment are discussed below.

Task 1: How many students submitted a paper within 1 month after proposal?

(5 records)

Task 2: How many students submitted a paper within 1 month after proposal?

(20 records)

Task 3: How many students published at least 3 papers between proposal

and defense?

Task 4: What occurred most often within a month of a student’s 1st paper

submission?

Task 1 and 2 are similar to tasks where a researcher must study the relationship

between a sentinel event and another temporally related event category. The sentinel

46



event was deliberately made clear in these two task descriptions. While the task
descriptions for the two tasks were the same, the data in Task 1 was much simpler
than that in Task 2. Task 1 included only 5 records that fit on the screen, so users
could find the correct answer without having to interact at all with the display. Task
2 had more records (20) with an expanded time range so users needed to zoom, pan,
and scroll significantly to answer the question correctly. First I hypothesized that
alignment would reduce the time it took users to perform these tasks even when all
data was visible on one screen. I further hypothesized that when more interaction
was required, the benefits of alignment would be much more pronounced.

Task 3 is conceptually more complex and there was no clear way to manipulate
the data using alignment, ranking, and filtering to find the answers. This task was
designed to simulate the process of temporal pattern confirmation clinical researchers
might perform (such as confirming a hypothesis about certain patterns of events).
While this task required participants to focus on temporal range comparisons relative
to a sentinel event (proposal), it did not require detailed inspections that incur
extensive interactions. Therefore while I expected to observe alignment’s benefits,
I also expected them to be less salient.

Finally, Task 4 simulated how a researcher would go about discovering new
patterns around sentinel events (in this case, a simple temporally-constrained co-
occurrence relationship). I hypothesized that the benefits of alignment would be
significant, since both intense interaction and relative comparisons were required in
this task.

In Part 2 of the experiment, I used only the interface variation with alignment

47



(ARF), but how events were represented were varied. In one variation (IV) the lines
of the interval of validity were visible; in the other condition (no IV) they were not.
Participants performed the set of tasks below, once for each variation. The order
in which the interface variations were shown to the users was counter-balanced like
in Part I of the experiment. Because every participant performed Part 1 of the
experiment before Part 2, they were already familiar with the alignment feature
and did not go through another round of training. Participants were asked to fill
out a subjective satisfaction questionnaire for each part of the experiment. The two

tasks for this part are listed below (Figure 3.4).

e Task 5: Assuming a class lasts 3 months, how many students proposed while

they were taking a class?

e Task 6: Assuming a class lasts 3 months, and it takes 2 months to prepare
for proposal, how many students were preparing for proposal while taking a

class?

In Task 5, participants were asked to find proposals that occur within 3 months
after a class-signup event, and only the interval of the class-signup events was of
concern. In Task 6, however, both the intervals of class-signup and the proposal
event were important.

I hypothesized that when intervals of validity were shown visually, participants
could perform both tasks 5 and 6 more quickly and with lower error rate. In addition,
because there were more intervals to keep track of and increased cognitive load, the
benefits of the intervals will be more dramatic in Task 6. Since the duration of the

48



[ ¥etudent 02
Paper Submission
Masters Degres
Software Release Masters Degres
Proposal
Class Signup
Wtudent 03
u Job Intelgnew
Paper Submission
Software Release Paper Stbmission
Proposal S
Defense
Class Signup

[ ¥student ng
Paper Submission |
Masters Degree: MP;E: SDLbrr_ussmn
Software Release oﬂ‘if s Degree
Proposal Software Release

Class Signup
[ ¥etudent 05

Job Interview

Paper Submission
Masters Degree Paper Stbrmission

gfg“ﬁi‘; Relesse Software Release
Defense
A A
Class Signup v A
[ ¥student 06
Job Interview

Paper Submission
o Degree: Paper SLbmission

Software Release Mastars Degres |
Proposal Ll Software R

Defense
Class Signup m :

Paper Submissic

I

osal

osal

5 Slarun

osal

Malsters Degree
osal

A

V)

Figure 3.4: A partial screen shot of the data set used in the tasks for
Intervals of Validity tasks.

events were described in the task description, this study did not attempt to answer
whether the lines might remind users of the likely duration of the event. This was
only addressed in the qualitative study described in Section 3.4.2 (page 55).

I used a different dataset for each task in each interface variation to avoid
participants remembering previous answers. There were 2 sets of datasets, one for
each interface for Part 1. The same applied for Part 2. The data were different
enough so that the participants could tell that they were different, but the complex-
ity was comparable between any corresponding tasks in each set. All experiments
were conducted on an IBM laptop with the following specifications: 14 inch screen,
1.4 Ghz CPU, 1.2GB RAM, Windows XP Professional. Every participant used an

optical mouse instead of the built-in laptop tracking devices.

49



1401

120 F

100 F

80

S

20 1 1 1 1 1 1 1 1

Time [sec)

Figure 3.5: Task Completion Time. Each circle or x denotes the mean,
and each vertical line denotes the standard deviation. Blue circles denote
the results for the align-rank-filter (ARF) variation of the interface in
Task 1 to 4 and interval of validity (IV) variation in Task 5 and 6. Red x
denote the other interface variation. Although blue circles always have
lower means, only in Task 2 and 4 were there statistical significance
(denoted by an asterisk in task names). The significance was salient (p
< 0.0001) in both cases.

3.4.1.2 Experimental Results

I analyzed each task separately. I used a repeated measures one-way ANOVA
to verify the significance of the time differences in task completion. I used Cochran-
Mantel-Haenzsel general association statistic to test whether the error rates between
two interfaces were different in both parts of the experiment (p=0.05). Finally, for
numerical answers that participants gave, we used a one-way ANOVA to see if the
difference in the size of the errors was significant. Figures 3.5, 3.6, and 3.7 show the

results, and we discuss them here in detail.

20



09r

08F

07

DEF

05F

0.4r

Error Rate

03

0Z2r

01F

or E R %

_D . "] 1 1 1 1 1 1 1 1
1l T2* T3* T4 TE* TE*
Tasks

Figure 3.6: Error Rate by Tasks. Blue circles represent align-filter-rank
(ARF) variation of the interface in Tasks 1 to 4 and interval of validity
(IV) variations for Task 5 and 6. There was a significant difference in
error rate in Task 2 (p < 0.01), Task 3 (p < 0.1), Task 5 (p < 0.05),
and Task 6 (p < 0.1). We noted that in Task 5, users performed better
when intervals of validity were not displayed.

Throughout the experiment, participants were observed using the following
effective strategy: first reduce the data via filtering and alignment (if available),
and only manually inspect data that have potential. Ranking was not used very
often.

In Task 1 and 2, when using interface with ARF (i.e., with alignment), all
except two participants chose to use alignment or alignment in conjunction with a
filter. When alignment was not available (i.e., in the RF interface variation), most
participants used sequence filter.

In Task 1, while the mean task completion time, error rate, and error size were

better in the ARF variation, there was no statistical significance. In Task 2, however,

o1



251

Error Size

IR

05 1 1 1 1 1 1 1 1

Figure 3.7: Error Size by Task. Blue circles denote the ARF variation of
the interface in Tasks 1 to 3 and IV variations in Tasks 5 and 6. Error
sizes were significantly smaller for ARF variation in Task 2 (p < 0.05)
and Task 3 (p < 0.1). Please note that responses for Task 4 were not
numeric, so error size was not an applicable measure. Error sizes were
significantly smaller in Task 5 (p < 0.05), in favor of the no IV variation.

the benefits of alignment were statistically significant. Participants were able to
complete the task 65% faster with alignment (p < 0.0001). In addition, participants
were less prone to make errors when using alignment (p < 0.01). When they did
make an error, the size of error was significantly smaller than when alignment is
not available (p < 0.05). These results supported the hypothesis that alignment
reduces disruptive interaction and allows users to perform these tasks faster and
more accurately when the data is larger (i.e., more than a few records). For smaller
dataset that fit in one screen, however, the benefit of alignment is very limited.

As we expected, participants had very different strategies in completing Task 3

because the fastest strategy was not as clear as in Task 1 or 2. When the alignment

52



operator was available in the ARF variation, over two-thirds of the participants
aligned by proposal and used a type of filter. Most popular filters were “at least
3 paper submissions”, and the sequence filter “proposal, paper, defense”. No par-
ticipant tried to align or filter solely by defense, although it was the most effective
technique in this question (students must have a proposal before they can defend,
and by aligning by defense, students proposed but have not defended would be
eliminated from view, reducing the number of records one needed to inspect). This
reflected that it takes time to learn to make the best use of any new feature, de-
spite the familiarity of the domain knowledge. When alignment was not available,
sequence filter was the favorite among the participants. The sequences “proposal,
paper, defense” and “proposal, defense” were the most popular.

In Task 3, the difference in completion time between the two interfaces was
negligible (2.9%). Participants tended to make an error less often when alignment
was available (p < 0.1), however, there were no significant differences in error size.
This result did not support our hypotheses on completion time. Although it sup-
ported our hypothesis regarding error rate.

The performance difference in task completion again was startling in Task 4.
Using alignment, participants were able to complete the task 62% faster (p < 0.0001)
with no significant difference in error rates. All but 1 participant used alignment
when alignment was available. When using alignment was not an option, most users
opted to use "paper submission” as a filter but seven participants used neither filter
nor ranking, and relied on manual navigation and their vision.

In the second part of the experiment, Task 5 and Task 6 were designed to

93



measure the possible benefits of intervals of validity in terms of the time it takes to
visually find potential overlaps. My hypothesis that intervals of validity help users
perform faster and more accurately was not supported. I found that there were no
statistically significant differences in completion time. There were significant but
conflicting differences in error rates. Surprisingly, users were less likely to make a
mistake when intervals of validity were not displayed in Task 5 (p < 0.05). In Task
6, users were less likely to make a mistake (by a margin of 30%, p < 0.1) when
intervals of validity were displayed.

Task 5’s result was puzzling. One participant offered one possible explanation
in her comments. She noted that she relied on the visualization more when intervals
of validity were displayed, and was less inclined to zoom-in to verify her answers,
especially when the task is as simple as Task 5. And so when the difference is only
a few pixels on screen, a wrong judgment may be made.

An interesting observation was that every participant used the alignment func-
tion in both Task 5 and Task 6, regardless of whether they had been particularly
successful with alignment in the first part of the study. We hypothesized that partic-
ipants recognized that Tasks 5 and 6 were relative comparison tasks, and understood
(presumably from previous experiences with it) that alignment would get them to
the answer quicker.

In the questionnaire users rated alignment very positively. On a scale of 1 to
9, users agreed that alignment was helpful in Tasks 1 to 4 with a mean of 8.3. They
also agreed that they were able to perform faster in Tasks 1 to 4 when alignment was

available with a mean rating of 7.95. One participant commented that “scrolling was

o4



a big distraction, and alignment helped eliminating a lot of it”. Another participant
commented that when using the interface where alignment was not an option, he
noticed that he was mentally doing the alignment himself, suggesting that alignment
may be a natural operator when people need to reason about time. While intervals of
validity were still rated as helpful in Tasks 5 and 6 (7.85), the overall perception was
that they were not as critical as alignment. Our participants agreed that they could
perform tasks 5 and 6 more quickly with intervals of validity with a rating of 7.55.
Clearly, the lack of statistical significance in these tasks suggested that perceived
performance gain is not the same as actual performance gain. One participant did
comment that the intervals of validity allowed him to get an idea how long the

durations are, “especially if I forgot.”

3.4.2 Domain Expert Interviews

3.4.2.1 Interview Procedure

In this initial study I interviewed 4 medical professionals — one registered nurse,
one physician, and two faculty members in a nursing school, none had a connection
with the development of this interface. Three have had experience with medical
informatics systems and have been involved in medical research. I showed them our
application using de-identified data from our colleagues at Harvard. I asked them
to talk out loud while using the application, without any training. I recorded how
they interpreted the visual display and their impressions of the interface, the ARF

framework, intervals of validity, and collected what they felt were usability issues

95



and thir suggestions to future refinements.

I first loaded a dataset corresponding to the problem described in Section
3.2 (page 35) regarding the uncertain nature of the data, and how it was to be
addressed by intervals of validity. It contained 11 patients who had asthma, and
were prescribed some type of steroid. Some of the patients had other conditions
(e.g., rheumatoid arthritis, pneumonia) that might also require steroids treatments.
The only introduction I gave to the medical professionals was that Lifelines2 was
intended to view results from a search in patient databases. I gave no tutorial, nor
explanation of what they were seeing on screen initially. I asked our interviewees to
comment on what they saw and how they interpreted the display.

Once they had reviewed the data, I asked them to imagine that they were
selecting patients for a study, and they only wanted patients who were given steroids
for their asthma condition. Those who were given steroids for other reasons should
not be included. Of course, there was no way to know the actual reason why a
patient was prescribed steroids, but I wanted them to select what they thought
were the likely ones, and filter out the ones that seem unsuitable to trigger some
reasoning about the uncertainty of the data. I then asked them to go through the
same exercise again with the same data, but with the intervals of validity visible
(Figure 3.3 shows the differences in display). I used interval values provided by our
colleague at Harvard Medical School. Rheumatoid arthritis and rheumatisms were
given the interval of infinity after each event occurrence. Asthma had 4 months after,
and pneumonia had 2 weeks after. I asked our experts how they would interpret the

intervals. I also looked at how their answers differed in the two sessions, and asked

o6



how the intervals made them change their mind.

The second data set they looked at contained patients with asthma and pneu-
monia. I asked our medical experts to look at the data and see if they could find
trends in the dataset. In particular, whether there were more patients who first
contracted pneumonia before an asthma event or there were more of those who first
had asthma, then pneumonia. I showed them how to use alignment, ranking, and
filtering.

Then, using a third dataset containing 45 patients with various heart problems,
I asked our experts to use the interface on their own and to discuss what might be the
most commonly co-occurring event to an acute myocardial infarction (heart attack)
in this set of patients. This time around, I let them go about the task without much
guidance or interruption. I aimed to observe whether ARF made sense to them, and

how they would utilize its functionality on their own.

3.4.2.2 Interview Results

Three out of four participants had no problem interpreting the visualization
from the start. They were able to immediately figure out the timeline, each patient’s
record, and the temporal event data shown as triangles. One participant did not im-
mediately grasp that individual patient records were displayed. She had interpreted
the triangles to indicate sets of patients at the beginning, but soon after realized on
her own what was going on. Two participants commented on how helpful the color

encoding was.

o7



Looking at the asthma-steroid data, all of them talked about the asthma
triangles as flares, not merely diagnoses. When asked to find patients who were
given steroids for their asthma condition, most of them employed the strategy I had
anticipated: find each steroid prescription event, and see what the closest event prior
to that was. If the closest event was asthma, and it was within a few months, then
they are likely to think the steroid was prescribed for asthma. Two participants took
into account the frequency of how correlated the steroid prescription event is to other
events. When no intervals of validity were displayed, none of the participants paid
much attention to the possibility of a long lasting rheumatism condition. When the
intervals of validity were displayed, they all interpreted them as durations. However,
two participants interpreted the intervals as certain or known duration, and not as
an uncertain, possible duration.

The important result was that showing intervals affected how our participants
viewed and interpreted the data. When they were asked to find patients who were
given steroids for asthma with intervals of validity, the lines reminded them the
durations of each event, and some of their answers changed from the no interval ver-
sion, although the direction of change did not always conform to what we expected.
We had expected them to have picked fewer patients for the clinical trial because
they might have forgotten or ignored an existing rheumatoid arthritis. However,
two of the participants picked more patients because some unexplained steroid pre-
scription event is now explained by an asthma that occurred just 3 months before.
This was now easy to see with the 4 months duration for each asthma event. Two

participants did not like that fact that someone else could assert intervals because

o8



they might not trust that person. They did agree that if they had added the in-
tervals themselves, tailored to the questions they have in mind for the field that
they are in, then they would have no objections. One participant commented that
“intervals of validity were good reminders of uncertainty, and using the range to
perform overlapping tasks is much simpler.” He also commented that long intervals
draw a lot of attention, and whether such attention is good might depend on the
situation.

One other interesting observation was that the Lifelines2 was able to elicit
narration from the domain experts. They would look at one particular patient
record, consider the temporal patterns in that record, and rely on their domain
knowledge to construct a story behind the visualization and explain why it occurred
that way. For example, one participant observing the asthma and steroid dataset
(which also included pneumonia, rheumatism, etc.) saw one particular patient who
had pneumonia on a yearly basis. She was able to make the observation that the
patient was probably an elderly and had pneumonia every flu season (the record
showed pneumonia events during every autumn). Asthma then would often co-
occur with pneumonia to make the patient sicker. In one year, the data shows that
the steroid was given to the patient. The domain expert made the observation that
the steroid was probably a prophylaxis given ahead of the flu season, and explained
the subsequent lack of asthma in that season.

Participants were quick to grasp the ARF framework of alignment, rank and
filter. They figured out how to use them on their own without any introduction or

demonstration of the functionalities. Using the asthma-pneumonia data, all partici-

29



pants were able to quickly align or filter to see if there were overall patterns in those
patients. They did comment that alignment and ranking allowed them to figure
out the data quickly. They also liked that once the data is aligned by a patient’s
1st pneumonia, zooming in and scrolling down were all it took to get through all
the patients efficiently. One participant said that grouping records by whether a
second sentinel event occurred before or after the 1st one might be a good addition.
Ranking using temporal relationships to aligned sentinel events was also mentioned
as being potentially useful.

When I loaded the set of patients with heart diseases and asked our par-
ticipants to discover patterns of events with regard to acute myocardial infarction
(AMI), 2 out 4 quickly approached the question with alignment on the correct event.
They were able to see that coronary atherosclerosis co-occurred with AMI most often
in this dataset. One participant, using her medical knowledge, found another asso-
ciation pattern between coronary atherosclerosis and hypertensive disease events in
this data.

When I asked our interviewees on what they thought about Lifelines2 and
its applications, two participants quickly offered examples where Lifelines2 could
be useful in their own research and became very enthusiastic. They both were
involved in working with clinical data (though independent from each other), and
were impressed with how effortless it was to identify certain patterns using the ARF
framework. One example was to use this approach in a study of patterns of events
that might suggest medical mis-diagnosis in an emergency room.

In addition to this pilot study the prototype was demonstrated to our sponsors

60



and partners and received unusually encouraging feedback. During a presentation at
the National Institute of Health a respected medical researcher at the University of

Chicago commented supportively, ”[it will] change the entire paradigm in medicine”.

3.5 Discussion

3.5.1 Post-Experiment Design Improvements

From the feedbacks of the controlled experiment participants, interviews with
the medical professionals, and continuing work with the physician collaborators, I

have made the following changes to Lifelines2 since the experiments described here.

1. The mixed experimental results regarding intervals of validity suggested that
it is not as critical a feature as I had previously thought. Interface changes
have been made to bring forth other more important features, while intervals
of validity is now embedded deeper in the application. Analysts can still bring
up the control panel to set, and adjust and activate/deactivate intervals of
validity, but now it takes more effort to get to. More over, the subsequent
case studies with physicians and hospital administrators, intervals of validity
was never discussed as an additional visual aid to the data even though it was

a feature that had been demonstrated.

2. A means to maintain the visual encoding of each data set was implemented.
A customization (.cstm) file is now automatically created to remember the

various settings analysts have set for each particular dataset. The customiza-

61



tion file is automatically written to disk when Lifelines2 exits normally, and
automatically loaded when the same dataset is opened by Lifeliens2. It re-
members features such as color/size of event encoding, whether to show labels,
size /position of labels, settings for intervals of validity, etc. Additionally, an-
alysts can overwrite how events types are ordered by default. Analysts can
specify groups of events and the order in which they should be displayed. For
example, the events High Blood Pressure, Normal Blood Pressure, and Low
Blood Pressure would be ordered High, Low, Normal if the default alphabet-
ical ordering is used. Instead, analysts can change the ordering by creating
a group in the customization file that specifies these three event types must
be presented in a specified order. The persistence of visual encoding and op-
tions allow analysts to better maintain a mental model of the data in between

sessions.

. The filter control has been extended in two ways. First, to better support
the useful alignment operator, the number of occurrence filter (i.e., “find all
records that have 3 instances of heart attack”™) has been extended so that when
there is an alignment active, analysts can apply the filter to only before, or
only after the alignment, in addition to the entire time. Secondly, the sequence
filter has been extended to incorporate absence events. That is, when filtering
by sequence, analysts can specify a search pattern to find students who had
“proposal followed no paper submissions followed by defense”, or in plain

words, find students who “proposed and then defended, but did not submit

62



any paper during that period”. An algorithm designed for Lifelines2 to support

this kind of filter efficiently is presented in Chapter 4

. Instead of using one single (thickened) vertical line to indicate alignment,
Lifelines2 used a thick band to indicate alignment. The thick band does not
indicate any actual time range on screen, and because of that events that
occur very closely to the sentinel events are pushed out of the band, giving the
sentinel events more space and clarity. I at first had used a bright yellow band
to bring extra visual prominence to the alignment line. Credit goes to Allison

Druin and her keen design sense that the current white band takes place.

. My collaborators told me that although studying the 1% heart attacks across
patients is interesting, sometimes they are interested in all occurrences of heart
attacks. In particular many medical conditions are defined by having certain
events within certain time frames, and focusing only on the n'* event would
not suffice. Therefore the alignment operator has been modified to handle
align by all events in addition to align by the 1%, 27 or the 2" to last event.
This way, trends for a specific type of event regardless of their ordering may

become more visible.

. Distribution of event types was requested as one of the several ways physicians
would use to understand a group of patients. I have implemented temporal
summaries to show distribution of event types across multiple temporal gran-

ularities. Its detailed description and usefulness are reported in Chapter 5.

63



3.5.2  Generalizability and Limitations

The idea of alignment is generalizable to broader classes of temporal data.
I have shown that it works for point-event temporal categorical data in Lifelines,
however, it is not difficult to imagine directly extending to events with durations.
No question, the alignment may become more complex, such as options to align by
the starting of duration, ending of duration, or mid point of duration.

Temporal visualization systems that include both numerical time series (e.g., a
person’s body-mass index over time) and categorical events (e.g., medical diagnoses),
can also make use of alignment on the categorical events to explore trends in time
series with respect to the alignment events. Extending to pure numerical data may
be more difficult. One way to deal with this is to first convert numerical data into
categories. Another way is to define categories by the numerical trends in fixed
temporal duration (rise, fall, sharp rise, sharp fall, plateau, etc.) similar to the
formalism described in [3]. Each approach has its strengths and weaknesses, and

may be more suitable to one domain more than the other.

3.5.3 Impact

The idea of alignment has raised the importance of relative temporal compar-
isons. Other systems, including a couple from our lab, have since then utilized and
extended it in different ways.

The projects PatternFinder in Amalga [82] and Similan [120] from our lab have

incorporated alignment as part of issuing temporal queries. In the PatternFinder in

64



@ QueyTea 51

[Beytome A &

Gont Tl [

o[ O >0 [t G
B A ||Bl kst

ia || et et sl

3 T —
15> 0x [ [Dais]|_Ocaas >0x | Bk

e

Zom s | o J{ Abgnby...
21 Bosgrent
| Rankcby...
il T
. )
Fiter by
A e
N
A
Gl
A A Show Disrbution of..
i tewouhain
A hore
e
A ~ | View Record Group...
=
- [ st
e o L [ men|
Legend
e L Ppr———
2 & vovogans
b bl bl p i
e 101 bt e e w1 2
tton [ty Grerce e o i |
) «
Lo hEU20S 162001 6 || punese Pt gt anls | e® ()
oo uey 51209 el

Figure 3.8: The incorporation of Lifelines2 in the patient database query
system i2b2 as a way to display query results.

Amalga query interface, analysts would specifically specify a baseline event (prior
to the alignment), a sentinel event, and a post-Alignment event and the result
visualization centers around the alignment. In Similan, the use of alignment is
optional. Analysts uses alignment to both view the temporal data on a relative time
scale, and to perform temporal queries relative to the sentinel events. Klimov et al.,
recognizing the importance of relative time queries, has incorporated mechanisms
(similar to that of alignment) to allow analysts to specify relative time queries
in patient databases [52]. Finally, my collaborators at Harvard Medical Center
have worked to incorporate Lifelines2 into their patient record querying system i2b2

(Figure 3.8).

65



3.6 Summary

This chapter describes evaluation with two features aimed to support the tasks
of visually browsing records of temporal categorical data. Alignment and intervals-
of-validity were evaluated in a controlled experiment. The benefits of alignment
were statistically significant for relative comparison tasks where the data is more
complex. However, the benefits of intervals-of-validity is not as clear. Subsequent
changes to the interface took into account these findings. Lifelines2 as a whole was
qualitatively evaluated with medical professionals. The reported learnability and
applicability were good. Participants were enthusiastic and interested despite the

discovery of several usability issues.

66



Chapter 4
Supporting Temporal Pattern Search: An Algorithm

4.1 Overview

Temporally ordered events can often reveal interesting information. Under-
standing whether a particular pattern occurs, how frequently certain patterns occur,
and whether one pattern occurs more often than the others are common questions
an analyst would pursue. There has been much attention from both academia and
industry to develop analysis tools focused on temporal events and their temporal
patterns in a variety of domains: health care and electronic health records (EHR)
[115, 20, 24], business intelligence [106], and web server log analysis [57].

In particular, electronic health records have gained much attention in recent
years. Clinicians recruiting participants for clinical trials often screen candidates
by reviewing their records. In the initial stages, they would issue queries to find
participants with certain features. These features include patient attributes such as
age and gender, but also often include a temporal pattern of events. Some query
patterns are as simple as finding participants who “had a stroke after a heart attack”.
Some may involve negation, e.g., “diagnosed with breast cancer without having a
prior mammogram”, and some may be more complex, e.g., “with no prior history
of heart problem, later diagnosed with hypertension, received no treatments, and

finally experienced a heart attack”.

67



Searching for records that contain a specific sequence is an important task to
our collaborators in studying patient records. However, most of the visualization
applications mentioned above, and current state-of-the-art query systems have no
accessible features that allow them to do so. In this chapter, I first motivate the
problem and present the Temporal Pattern Search (TPS) algorithm. I analyze the
worst-case running time of the algorithm and evaluate its performance against exist-
ing common approaches in experiments with random data and in experiments with
real data. The content of this chapter corresponds to a technical report submitted

for publication [114].

4.2  Background and Motivation

While the typical model to find temporal patterns is to perform the search
using a command line language such as SQL, and then review the results in an
analysis tool, there are high costs associated with this approach. First, the query
languages themselves pose as a significant technical barrier. To be able to specify
temporal patterns, domain analysts have to learn the syntaxes, where esoteric parts
may be required (Appendix B.1 describes a detailed example). Because domain
analysts often do not know the query language, they have to rely on an additional
SQL expert to formulate the queries. The collaboration turnaround may take hours,
if not days. In a situation where an analyst is iteratively refining a query for the
purpose of exploratory analysis, the multiple turnarounds are detrimental to the

process.

68



In some settings, however, existing interfaces exist to circumvent the steep
learning curve of query languages. In these settings, analysts can use higher level
commands and rely on the interface to translate them into SQL queries. How-
ever, more often than not, the interfaces reduce the expressiveness of the underlying
language in favor of usability, learnability, and familiarity. For example, search-
ing for temporal patterns may be unsupported by the interface, in favor of the
simpler Boolean or conjunctive queries. The inflexibilities often frustrate our physi-
cian/clinician collaborators using state-of-the art electronic health record database
interfaces such as Amalga [68] or i2b2 [70].

Finally, searching temporal patterns on personal histories that have hundreds
or thousands of events with tens of thousands of histories in a database can take a
long time. Experiences in building a query interface extension for Amalga revealed
some performance problems using SQL [58, 82]. A temporal pattern query in SQL
is not feasible for the hospital’s database of thousands of patients because of a
prohibitively high number of self-join operations. Only after building additional
indices and preprocessing (which itself can take hours) could a temporal query be
managed [58]. The performance time also increases exponentially with the number
of elements. It is unrealistic to perform tailored optimization techniques for each
potentially different temporal pattern search. Instead, it is more effective to break
down a temporal pattern search into two stages. First issue a conjunctive SQL query
to find patients who have events A, B, and C, which can be executed efficiently. The
temporal pattern search (e.g., A followed by B followed by C) can then take place

in an analysis tool, where data can be further structured to better support these

69



searches.

However, not all visual analysis tools provide the features that support search
for temporal patterns. One of the challenges for these systems is that it may be
difficult to have one data structure that is suitable to both a fluid and speedy in-
teraction for the visualization and good search performance. That is, by indexing
the data smartly, a system can optimize interactive speed. However, a different
indexing may allow the system to optimize search speed. Simultaneously maintain-
ing two indices would be a fine solution, but doubling the memory usage is pricey.
When temporal pattern search becomes an indispensable feature, I had to design
an algorithm that works with the Lifelines2 data structure while maintaining good
search performance. Below I give an overview of the data structure in Lifelines2 and
the interface for the temporal pattern search, and I discuss the challenges the data
structure presented to the design of the algorithm.

Lifelines2 visualizes each record as a row on the time line (Figure 4.1 (a)).
Within each record, the events of the same type are placed on the same horizontal
line. Event types are differentiated by color. To clarify, by record (as, for example,
in electronic health record (FHR)) I mean a collection of event histories associated
with an entity (such as a patient in the context of EHR) and not tuples as in
the database literature. Lifelines2 provides several ways to filter records by their
features. One of them is via a sequence filter (for which TPS is designed). Previous
research suggested complex interfaces with full control of all temporal constraints
among items in a pattern often overwhelms users [24]. Therefore, I decided on a

simplified temporal pattern specification interface. Although more restricted, it can

70



Wstudent 00 Filter by...
Class Signup m
Job Interview | SEquUence -
Masters Degree
Paper Submission A Proposal(Zz) -
'Séréggnstigéup “ ™\, Mo Paper Submission(i) -
Defense ek 5
Job Interview | Eloies hd
Masters Degree | Mone -
Paper STbm ission A
Proposa
Software Release Hone hd
(a) (b)

Figure 4.1: (a) Partial screen shot of two students records in Lifelines2.
(b) Combo boxes used to specify temporal patterns for search.

still specify all the aforementioned example medical queries in Section 4.1. Lifelines2
allows users to specify a temporal pattern such that each item in the pattern can be
a presence item or an absence item (negation). These items are selected from a list
of combo boxes (Figure 4.1 (b)). The ordering of the combo boxes determines the
temporal ordering. Lifelines2 does not allow other temporal constraints (e.g., event
A occurs within 3 days after event B) among the items on the pattern. However, this
type of temporal constraints can be specified via temporal summaries in Lifelines2
[116](also see Chapter 5). Once a pattern is specified, Lifelines2 finds all records
that contain such a pattern and visually filters out the rest.

I made the following design decisions on how I internally represent the event
histories in Lifelines2. As these decisions were made to support existing features of
the tool (align, rank, filter (without negation in sequence filter initially)) and before
I designed the TPS algorithm, the constraints represent interesting challenges. In
Lifelines2, each record is represented as a set of sorted arrays of events. There is

one array for each event type. All events of the same type are sorted by their time

71



stamps in their array. This decision comes from the following constraints:

1. Data Constraint: It seems most straight-forward to store all events on a
single sorted array regardless of type. However, for events that have the same
time stamp, this scheme can create conflicts, mislead analysts, and produce
wrong results. Using one array for each event type allows us to circumvent
this problem. (However, I assume events that have the same type and the
same time stamp are the same event). The number of times that two events
have the same time stamp varies by dataset. Table 4.1 shows selected clinical
datasets the collaborators supplied. The proportion of events that have the

same time stamp can range from less than 0.5% to almost 50%.

2. Drawing Constraint: Lifelines2 maintains the drawing order of events by
event types. Events of the same type are rendered together (on the same hor-
izontal space). Lifelines2 maintains the Z-order by event types to avoid visual
inconsistencies that can potentially disrupt analytical tasks. The separated
arrays would allow the drawing algorithm an efficient way to access events of

the same type.

3. Interface Constraint: While searching for temporal patterns is important,
it is not all that Lifelines2 does. Other operators designed for exploratory
analysis (such as alignment and rank) benefit from this separate arrays ap-
proach. In addition, it is useful to analysts to hide event types that are not of
interest. These interface features involve finding event data of a specific type.
Separating events into different arrays by type would allow Lifelines2 to afford

72



Dataset Name | #Records | #Events | #2Events with Same Time Stamp
Creatinine 3598 32134 16
Heparin 841 65728 31251
Heart Attack 9361 196581 93610
Transfer 51006 207187 51318
Bipap 6583 135951 14650

Table 4.1: Selected Real Datasets and Their Statistics

these features most efficiently.

These constraints present certain challenges to searching temporal event histo-
ries, but also present a unique opportunity to explore and exploit this data structure.
This chapter focuses on my exploration in designing a temporal pattern searching
algorithm in the presence of these constraints, especially the latter two constraints
that involve human performance and visual design. I describe the temporal pattern
search problem formally and give a description of my algorithm in the following

sections.

4.3 Problem Description

An event e is defined, and uniquely identified by an event type T'= T, and a
time stamp ¢ = t.. A personal record (such as a personal electronic health record)
consists of a set of k sorted arrays. Each array corresponds to an event type T..,
where i € [1, k], and contains all events of that type in the person’s history, sorted
by their time stamps.

A temporal pattern specifies the ordering of events as a pattern and may
include negations. More formally, a temporal pattern P = pipaps . . . pm, where each
p; is an event type T}, or its negation Tpi. In this paper, we use the word negation

73



and absence interchangeably.

In the case that a temporal pattern contains only positive items (no negation),
the pattern P = pipops ... pm = Tp, Lp, Ty, - - . 1), matches a personal record if and
only if Jej, eq,e3,..., €y such that T,, = T}, and t., < t., Vi € [1,m — 1] in the
record. In another word, the event types in the specified pattern exist in the record,
and that they occur in the order the pattern specifies.

If a negation exists, e.g., pipeps = Tplfpszg, then the pattern matches a
record if and only if Je;,es3 such that 1., = T, and T., = T,, and t., < t.,
and Pey such that t., € (t.,,t.,). If there are contiguous negation items such as
pipapsps = Ty, T, T, Ty, , then the sequence matches a record if and only if Jey, ey
such that T,, = T,, and T, = T,, andt., < t., and Pey, ez such that (t., € (te,,1c,)
Or te, € (tey,te,)). The semantics of the temporal pattern we discuss in this paper
can be mapped into regular expressions, for example, P = T, T,,T,,T,, can be
translated into a semantically equivalent regular expression . * T}, ["T},,Tp,] * T}, .*.
My problem is how to search for records that match the specified pattern under the

data structure we have discussed.

4.4 TPS Algorithm Description

Code Listing 4.1 shows the pseudocode for the algorithm Temporal Pattern
Search (TPS). IS_.A MATCH(R,P) takes a record R , and a temporal pattern P. A
record R is a table of arrays, indexed by event types. Each array contains all events

of the same type, and can be referenced by R[T], where T is the event type. Each

74



event e has a time stamp e.TIME and a type e.TYPE. P is an array of pattern
items. Each item item includes an event type item.TYPE, and a flag whether it is
a negation item or not item.isNeg. Table 4.4 shows a trace of the TPS algorithm
with example P and R. For the ease of narration, we have represented the input
record R as an array in 4.4 and refer to its i*" elements using the array notation

R]i] in the following discussions.

0 IS_A_MATCH(R, P)

1 [« false //whether to backtrack

2 T[P.length] //matched times

3 A[P.length] //indices of last pos item
4 ®[P.length+1] //following neg item times
5 IT[P.length] //if has neg item after

6 X« 0 //current index

7 T =00 //current time

8 J«—-1 //last pos item

9

10 while (x<P.length)

11 if (x ==-1)

12 return false

13 if (P[x].isNeg)

14 HANDLE_ABSENCE(R, P)

15 else

16 HANDLE_PRESENCE(R, P)

17 return true

Code Listing 4.1: starting function and initialization of global
variables.

In addition to the details that are shown, the pseudocode assumes that there
exists the following function NEXT(R[T] ,t), where R is a record, T is an event type,
and t is a time stamp. NEXT(R[T],t) returns an event e of type T in R such
that e.TIME > t and that there is not another event d of type T in R such that

d.TIME < e.TIME. If no such event e exists, the function returns NIL. In other

5



index: 0 |1 234 |5|6|7 8|9
time: 0 | 102030 [40[50]60[70]80]90 index: 0 | 1]2] 3 |4]5
RecordR= & [C|[E|B|c|a|c|D|c|F PattenP= 2 [ B [C [ D | E | F
Current index ¥ | Binary Search Performed in | Code
and current time 1| matching pattern with data |Line # P T A @ I X|t|®
0 initialization FALSE [1 [1 1 [1 0 -» -1
I[x = 0, T =-=matching?[0] = A .. R[0] (73-78) FALSE [0]—0 [0]— -1 100
2[x = 1, T = 0 matching2[1] = B . R(3] (4853) [2]—10 [2]—0 [0]—30 [2]—TRUE 3 10 2
matching P[2] = C .. R[1]
3K =3, T = 10 matching?[3] = D .. R[7] (42-46) TRUE [5]—TrRUE 2 19 0
matching p[4] = E .. R[2]
matching P[5] = F .. R[9]
4x =2, T = 1% matchingP[1] = B .. R[3] (68-70) TRUE 029 -1
matching P[2] = C .. R[4]
5 =0, 1 = 29 matchingP[0] = A .. R[5] (73-78) FAL3E [0]<50 [0]— -1 1 50 0
6 =1, T =50 matchingp[1] = B .. NIL (30-34) [1}e—co 2
7K =2, T = 50 matching P[2] = C .. R[6] (73-78) FALSE [2]—60 [2]—0 3 60 2
8x =3, 1t = 80 matching?[3] = D .. R[7] (42-46) TRUE [3]<~TRUE 2 69 O
matching P[4] = E .. NIL
matching P[5] = F .. R[9]
9k = 2, T = €9 matchingP[2] = C .. R[8] (73-78) FALSE [2]—80 [2]—0 3 80 2
10 = 3, T = 80 matching P[3] = D .. NIL (30-34) [2]—= 5
matching P[4] = E .. NIL
11 = 5, 1 = 80 matching (5] = F .. R[9] (73-78) FALSE [5]«<-90 [5]<5 6 90 5

Table 4.2: A trace of the TPS algorithm with example inputs R and P

words, NEXT(R[T],t) returns the event of type T that occurs after and closest to

the given time stamp t, if it exists. Since all event arrays in records are sorted by

time stamps, it is assumed that NEXT(R[T],t) uses an efficient implementation of

binary search.

4.4.1 Algorithm Overview

The main loop IS_A MATCH(R,P) processes an item from the sequence P one

at a time. The variable y (current index on the sequence) keeps track of which item

is current. When all items in the sequence have been found and no constraints from

76



negation events are violated, TPS returns TRUE. However, if y is set to —1, it means
that there is no match and the main loop returns FALSE.

When processing each item on the pattern, if it is a presence item, IS_A_MATCH(R,P)
calls HANDLE_PRESENCE (R, P), which attempts to find an event that satisfies the cur-
rent item. If it is an absence item, TPS calls HANDLE_ABSENCE(R,P), which finds
the next absence event, and checks to see if that absence event occurs between the
previous presence item match and the next presence item match. If it does, then a
constraint is violated, and the algorithm backtracks. Backtracking means TPS tries
to look for an alternative to one or more of its previously made matches. The algo-
rithm increments the variables x (the current item on pattern) and 7 (the current
time) when processing the search. When backtracking occurs, TPS rolls back these
variables, among others, appropriately to restart a previous search.

The first thing to notice about this description is that there would be no need
for backtracking if there were no absence events. Furthermore, when it backtracks,
it backtracks only to the previously closest presence item (never to an absence item).
The characteristics on how the algorithm backtracks determine what states we need
to keep track of.

We use Greek letters to denote global variables. Capital letters represent
arrays, and lower case ones represent single variables. Aside from y and 7, Code
Listing 4.1 also shows the initialization of 7', A, ®, II, 3, and d. They describe the
states TPS is in when matching and save previously-done work to reduce unnecessary
backtracking. [ keeps track of whether we are backtracking. 3 is a boolean, and

indicates whether we are backtracking. ¢ represents the index of the previously

7



matched presence item (while 7 is the current index). Delta is an array of length
[P.length], and it keeps track of the index of the last presence item for each item
in the pattern. So A[i] indicates the index of the last presence item for the i
item in the pattern (A is an array of §’s). T is another array of the same length,
and keeps track of the time stamps for all previously-matched presence items.

For each item on the sequence, ® keeps track of the known time for the fol-
lowing absence event (if the following item is an absence event). This allows TPS
to skip some fruitless matches during backtracking. Suppose we are searching for
pattern P = ABC in a record AAAAAAABAC. P[0] will initially match the first
A in the record. Upon encountering B in the record and backtracking to P[0] = A,
the next search should start from the time stamp of the known next absence event B
(instead of from the time stamp of the known bad A) to avoid the multiple, unneces-
sary matches to all of the A’s before the B in the record. ® has length P.length+ 1.
The extra space at the end is used when a pattern starts with a negation, and needs
a default place to remember that absence item. Finally, for each item in the pattern,
IT keeps track of whether it has an absence item immediately before that item. If
I1[i] = FALSE, it indicates that there is no absence item prior to the i** item in the
pattern. Because there is no absence item immediately prior, when TPS finds an
alternative match for the i** item in backtracking, the algorithm does not need to
check whether this alternative match would violate an existing constraint. II is not
necessary, but makes this narration easier.

We introduce the term absence block in a search pattern. An absence block is a

contiguous block of absence event items in the search pattern, generally surrounded

78



by presence events on either end (except when the block is the leading or the ending
part of the pattern). For example, the pattern P = T, T,,T;,T,,TpsTp,; consists of
two absence blocks T, T,,, and T, and , of size 2 and 1 respectively.
When the current item in the pattern P[x] is an absence item, HANDLE_ABSENCE (R,

P) (Code Listing 4.2) is called. In lines 21-28, TPS looks ahead in the pattern to
determine what events are in the absence block. For each event type in the absence
block, the algorithm finds the next event of that type in the record, and saves the
minimum time stamp value over all such events as minTime. If minTime does not
exist, then that means there are no events of these types in the record, and TPS can
safely increment x and remember that these events do not exist by saving this fact
in ¢ (lines 30-34). Otherwise, TPS looks ahead for the next presence item, finds a
matching presence event in the record and compare its time stamp with minTime.
If it occurs before minTime (no violation), then we can move to the next item in the
pattern and update our states (lines 48-53). However, if it occurs after minTime, we

have to backtrack (lines 42-46).

79



18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Code Listing 4.2: the HANDLE_ABSENCE function that deals
with absence items in the sequence.

HANDLE_ABSENCE(R, P)
minTime <« NIL
numAbs«—0
for (i < x to P.length)
item « P[i]
if (NOT item.isNeg) break
numAbs < numAbs + 1

absEvent «— NEXT(R[item.Typel, 7)

if (absEvent == NIL)
continue

minTime < MIN(absEvent.TIME, minTime)

if (minTime = NIL)
if (0> -1
D[]+ o0
else
®[P.length-1]« o0
X < x +tnumAbs
else
if (x + numAbs < P.length)
nltem < P[y+numAbs]

nEvent < NEXT(R[nItem.TYPE], 7)

I[I[y+numAbs] <« TRUE
if (nEvent = NIL OR
nEvent.TIME > minTime)
X0
if (xy >0)
0 — Alx]
7 «— minTime-1
[« true
else

T[x + numAbs] < nEvent.TIME

®[§]+minTime
A [x+numAbs] «+ x-1
0 «— y+numAbs
X < x+numAbs+1
7 <—nEvent.Time
else
X0
0 — Alx]
7 «<—minTime-1
(8 «TRUE

80




When we backtrack, TPS set # to TRUE to indicate that it is in backtrack
mode. When in backtrack mode, any subsequently matched item will require an
additional check to see if a prior constraint is violated. For example, in Table 4.4,
the C in pattern P = ABCDEF is originally matched to R[1] = C in stage 2. A
backtrack occurs in stage 3, forcing a C' to be matched with R[4] in stage 4.

However, making that choice violates ABC because R[3] = B, causing another
backtrack. This is the reason why this additional check is required in backtrack
mode. When a violation like this occurs, TPS sets the local variable backtrackMore
to be TRUE in HANDLE PRESENCE(R, P), line 71. This makes TPS to backtrack
additionally to P[0] = A in stage 5 in Table 1, which eventually leads to matching
P|0] to R[5] = A. Code listing for HANDLE_PRESENCE (R, P) shows how TPS deals

with presence items and, additionally, backtracks when [ is true.

81



56 HANDLE_PRESENCE(R, P)

57 event«NEXT(R[P[x].TYPE], 7)

58 if (event«NIL)

59 X -1

60 else

61 backtrackMore«FALSE

62 if (B AND II[x1)

63 if (Alx] < 0)

64 badTime« ¢ [P.length-1]

65 else

66 badTime« P [A[x]

67 if (badTime < event.TIME)

68 Y — Alx]

69 T — ®[x]1-1

70 0 — Alx]

71 backtrackingMore«-TRUE

72 if (backtrackingMore) return

73 T «—event.TIME

74 T [x]<event.TIME

75 Alxl— ¢

76 0 — X

7 X <+ x+1

78 (8 «FALSE
Code Listing 4.3: the HANDLE_PRESENCE
function that deals with presence items in the

sequence.

When handling a presence item, TPS finds the first occurrence of the given
event type after the current time 7 (line 57). If there is no such event, TPS imme-
diately sets the x to -1 (lines 59), which subsequently causes IS_A MATCH(R, P) to
return FALSE, terminating the search. If there is a match and TPS is in backtrack
mode, the algorithm checks to see if the match violates a previous constraint (line
63). This check is performed by comparing the matched event’s time with the time
of the closest known absence event in the future (badTime) that follows the match of

the previous presence item (line 67). If the violation exists (matching event time is

82



greater than badTime), TPS sets backtrackingMore to TRUE, and updates several
variables to backtrack more (lines 68-71). If there is no violation (or that we are
not in backtrack mode to begin with), TPS updates the variables to advance on
the pattern (lines 73-78): current time 7 is updated to the newly matched event’s
time, and this new time is also stored in T for future reference. The current index
X is stored in last index ¢, and A is accordingly updated. x is incremented by 1 to

advance on the pattern. Finally, 3 is set to FALSE to exit backtracking mode.

4.4.2 An Example

Table 4.4 shows a trace of TPS searching for the pattern P = ABCDEF in
the record R = ACEBCACDCF. Again, note that I am using an array notation
to describe R for ease of narration even though R contains a set of sorted arrays of
historical events. Each event in R is associated with a time stamp.

The first column shows the iteration number of the main loop in Code Listing
4.1. The second column shows the value of the two most important variables xy and
T at the beginning of each loop. The third column shows the events in R that are
being matched with item(s) in P in that loop. The fourth column indicates which
lines of code are reached to assign the values to the state variables in the right
portions of the table.

The first row of Table 4.4 shows the 0" loop, where all variables are initialized.
I describe the entire trace textually here, but focus on loops 1-6 in detail. Loops

1 and 2 demonstrate how presence and absence items are handled if there are no

83



backtracks. Loops 3 and 4 are examples that show how negation items can trigger
multiple backtracks. Loop 6 shows how TPS handles negation items when there are
no such events in the record.

In the 1% loop, TPS attempts to find a match for the first item in the pattern
P[0] = A. The event A at time 0 is matched. The current index x on the pattern
is incremented to indicate that we will try to match the second item in the pattern.
The current time 7, from which the next search will begin, is also updated to 0,
the time stamp of the matched event. ¢ is updated to remember the index (0) of a
previously-matched presence item on P. [ is kept as FALSE as the algorithm does
not need to backtrack.

The 2™ loop shows how TPS deals with an absence event in P[1] = B. TPS
uses binary searches to find the first event for each event type in the absence block (in
this case there is only one (B)) and the first presence event (C) after this contiguous
absence block. Because the first B TPS finds in R[3] does not violate the absence
event criteria, no backtrack is necessary (0 is unchanged). TPS remembers that
the time stamp of the first B is found in ®[0], where 0 is the index of the previous
presence event. II[2] is set to TRUE to indicate that the item P[2] follows at least
one absence item.

In the 3" loop, TPS again deals with an absence block and its following
presence event: DEF. This time, however, because both the first D and E occur
between the previously matched P[2] = C' and the upcoming P[5] = F', [ is set to
TRUE to indicate that TPS will backtrack. x is rolled back to 2 so TPS will find a

new match for P[2]. 7 is set to be right before the time stamp of the first known

84



absence event of the absence block. In this case, it is R[2] = FE, which has time
stamp of 20. TPS sets 7 to be 20 - 1 = 19, where 1 is the smallest time granularity
in consideration (usually milliseconds). This way if a C' in the record has the time
stamp of 20, the binary search functions would not miss it.

In backtracking mode in the 4% loop, TPS attempts to match P[2] = C to
RI[4]. Since P|2] trails an absence block, TPS checks to see if matching P[2] to R[4]
violates a constraint. In this case, it does violate ABC, for there is a B in R|[3].
This means TPS needs to backtrack again, to P[0]. To do this, TPS decrements ¥,
but increments 7 to right before the time stamp of R[3] (29).

TPS finds a match for P[0] = A in R[5] in loop 5 and updates other variables
normally as in loop 1, and sets 3 to FALSE. When processing P[1] = B in loop 6,
TPS finds no B’s in R after the current time 7 = 50. This means the constraint of
ABC will not be violated for any C' that occurs after. This fact is stored in ®[1].
X is of course incremented by 1. Because the lack of B in the record, TPS only
processes the absence block that contains P[1] in this loop. The following presence
event is left for the next loop.

In the 7% loop, TPS finds R[6] = C' to match P[2]. However, in the 8 loop,
TPS finds a R[7] = D between the previously found C' and the next available F' in
R[9]. This forces TPS to re-search for another match for C'. Variables are updated
exactly in the same manner as in loop 3.

Fortunately, an alternative is found in R[8] = C' in loop 9, and this match does
not violate any existing constraints. In loop 10, TPS fails to find another £ or D

in the remainder of the record. Finally, TPS matches the last item in the pattern

85



P[5] = R[9], and returns TRUE, terminating the execution.

4.5 Analysis

If the search pattern contains no negation: P = pipaps ... pm = Tp, T, T - .- T,
its running time is O(lg(|Tp, | + lg(|Tp,|) + ... + 1g(|T},.|), where |T},| denotes the
number of events of type 7}, in a personal record. This is because the algorithm
uses binary search to find an event when a presence item is encountered. If there are
no events to be found, the algorithm immediately terminates and returns FALSE. In
contrast, if such a pattern exists, then the running time is bounded by O(mlg(n)),
where n is the total number of events (regardless of type) in the record.

When the search pattern contains absence items, TPS may need to perform
backtrack when absence events are encountered, and the worst case analysis is based
on (1) the possible number of backtracks, and (2) the amount of computation done
when a backtrack occurs. In general, the input data trigger a backtrack when an
absence block in the pattern is not satisfied, e.g., a T,, occurs between a T}, and
a T, for the pattern P = T, T,,T,, Ty, T, Tp,- The maximum number of absence
blocks in the search pattern is then % , where m is the length of the pattern. The
algorithm works so that when an event that violates an absence block specified in
the pattern, the event’s time is recorded in the array ®, and the algorithm will start
at that event’s time when backtracking. For this reason, we only have to consider
non-overlapping presence-absence events in the data as potential backtrack points

from the data. Therefore, for a record containing n events, there can be at most

86



5 non-overlapping presence-absence event patterns, where 2 is the length of the
smallest possible presence-absence pattern. For each such pattern, it can cause up
to % backtracks. Putting everything together, the total number of backtracking
opportunities is 3 - § = 7.

The amount of extra computation resulting from a backtrack is related to the
size of the absence blocks. The pseudo code indicates that each backtrack results in
a constant number of variable assignments, but the real work lies in the occasions
when TPS re-performs its search on the failed part of the pattern. A backtrack
is always triggered by an absence block, and a new search is performed to find a
matching presence event immediately before the absence block, all absence events
in the absence block, and the trailing presence event (if there is one specified in the
pattern). This means O((2 + |ab|)lg(n)) work is performed, where ab is the size of
the largest absence block. This expression is maximized when |ab| = m, resulting
in O(mlg(n)) , where m is the length of the search pattern.

The worst case running time would then be the number of backtracking op-
portunities times the work done in a backtrack situation. However, a search pattern
cannot both have the largest absence block and the highest number of absence

blocks at the same time. Let m be the size of the search pattern, and z be the

largest absence block size. We want to find x that maximizes the running time

function f(z) = (5 - ®5%(xin(n))) , where m and n here are considered constants.

The second derivative f”(x) = —1 shows that f(x) is concave down. By the second

derivative test, and the fact that its first derivative equals to zero when x = %

Y

xr = 3 must be a global maximum. This means that the worst case patterns are the

87



ones that have a largest absence block equaling half the length of the search pattern,

and the other half of the pattern consists of only alternating (positive-negative) pat-

terns to increase backtrack opportunities. Substituting » = 3 in f(x), we obtain

the worst case bound O(mgnlg(n)) = O(m?nin(n)). In addition, TPS uses O(m)

space for the state-keeping arrays.

4.6 Algorithm Extensions

The basic TPS algorithm presented here is amenable to handle additional
search constraints akin to many of the extensions in the finite automaton approaches.
Here T present a straight-forward modification to TPS that handles two common
constraints: temporal range constraints and value range constraints.

Temporal range constraints specify how an event must temporally relate to
others. Each item on the temporal pattern can have multiple temporal constraints.
For example, for the pattern P = pipops...p,n we can additionally specify that
p3 must occur between 5 to 10 days after p; and within 3 hours after p,. It suf-
fices to consider only temporal constraints related to previously matched items, as
constraints related to yet-to-be matched items can be converted to this form. It
is worth noting that the temporal constraints work for both positive and negative
items. When temporal constraints are used on a positive item, they specify the only
time spans when the events can match. When temporal constraints are used on a
negative item, they specify the time spans when event must not match.

The value range constraints, on the other hand, specify that the matching

88



events must have values within a certain range in order to be considered a match.
For example, physicians may look for patients who had a heart attack followed by
heart surgery followed by a systolic blood pressure reading of 140 or greater. More
complex value range constraints can involve higher dimensional data, or data values
relative to previously matched items.

These constraints change how TPS works because matching on event types is
now conditional on their time stamp and values. The basic idea to handle these
constraints is to selectively filter the events that can be matched in the steps of the
algorithm. Since he basic structure of TPS guarantees the correct backtracking, the
simplest way to handle these constraints is to extend NEXT(R[T] ,t). That is, after
a binary search is per-formed on an event type array A, and an index is determined,
the temporal constraints and the value constraints for that item are checked. If the
first event fails the check, subsequent events on the array can be tested until one
passes or no more events can be tested.

Code Listing 4 shows the modified function, where M is the array of currently
matched events. D and V are, respectively, arrays representing the temporal range
and value range constraints. The modified function requires the binary search func-
tion as before, and additionally functions that check whether an event passes the
constraints. This direct extension makes the worst case bound O(m?n%«a), where
a is the amount of work needed to run DURATION_CHECK(¢) and VALUE_CHECK(‘).
These functions can have high complexity as there can be at most ¢ — 1 duration
constraints for each i*" item on a pattern of length m. Additionally, the values may

be multidimensional or of other complex data structures.

89



When the event type structure is a hierarchy instead of a list and search pat-
terns include supertypes (types that have descendants), the NEXT(R[T],t) function
needs to be further extended to use binary search on each of the subtype’s array, and
return the one closest to current time t. Caching of the results of the binary searches
can improve performance. Since each NEXT(R[T],t) can take up to O(klg(n)) to
perform, the over all worst-case bound for TPS becomes O(km?nlg(n)) , where k is

the number of event types.

4.7 Evaluation

There are several regular expression implementations we considered comparing
TPS to. Ifirst tested the standard Java regular expression engine in java.util.regex,
and a faster (though more limited) implementation that uses deterministic finite au-
tomata: (dk.brics.automaton) [69]. However, initial tests revealed that the Java
regular expression engine runs in time exponential to the length of the search pattern
in the worst case. I used a fixed input string of 500 characters, and search patterns
of varying length (m = 2,3,4,5). The string is chosen so that the patterns will not
match. The regular expression patterns are obtained by converting positive-only
patterns described in our discussions to its equivalent regular expression form. For
example, ABCBD is converted to .*A.*B.*C.*B.xD.x. Table 4.3 illustrates this
exponential behavior of matching positive-only patterns (no negation) of varying
length against a single string of size 500. This behavior is due to the fact that

each .* presents a choice point for java.util.regex, and combinatorially, there

90



Search Pattern Length | Time (seconds)
2 0.024
3 0.272
4 31.193
5 3099.675

Table 4.3: Using java.util.regex to perform searches exhibits exponential be-
havior. The time reported is time taken to match a pattern over a single string.
The input string size is 500, while the search pattern length varies from 1 to 5.
The strings are chosen so that there is no match for the patterns, thus requiring
java.util.regex to exhaust all possibilities before returning false. This behavior
is due to the fact that the patterns contain many .*, which can require exponential
number of searches.

are O(2™) choice points in a search pattern consisting of all positive items of length
m [19]. For the particular application and type of patterns we consider, .* is un-
avoidable, and occurs very frequently (grows linearly with respect to the number of
items in the search pattern in the worst case). Therefore the very poor performance
of java.util.regex means that this commonly used strategy makes our TPS algo-
rithm seem remarkably efficient. It is worth noting that popular regular expression
engines such as the one in perl also suffers from the same problem [19].

The DFA approach, on the other hand, has a similar problem. As long as the
search pattern sizes are kept reasonable, the performance is very good. However,
when the search pattern is longer than 30 items, the exponential space the DFA re-
quires makes the approach infeasible (it fails to construct the DFA when all memory
has been allocated to the Java Virtual Machine).

Instead, we compared our Temporal Pattern Search algorithm to more scalable

approaches. We include, first, a simple NFA that handles the wild card character (.),

Kleene Star (*) over single symbols, and negation over a set of symbols (["xyz]),

91



where xyz are symbols) (Figure 4.2), and secondly, the bit-parallel Shift-And algo-

rithm described in [71].

any any - {B;C} any

Figure 4.2: An NFA corresponding to .*A["BC]*D.*, which is the reg-
ular expression equivalent to the search pattern ABC'D. The black tri-
angle indicates the starting state, and the double circle indicates the
accepting state. any represents the set of all characters

The NFA approach keeps a set of states that it is currently in. Initially only
the start state - indicated by the black triangle in the figure - is in the set of current
states. As the NFA reads one symbol at a time from the input string, it checks with
all the current states it is in and sees if any of state’s transition rules fire to bring
in a set of new current states. When all inputs are consumed, the NFA checks to
see if the accepting state (indicated by the double circle in the figure), is in the set
of current states. If it is, then the NFA returns TRUE to indicate that a match has
been found; FALSE otherwise. For a search pattern of length m, there are at most m
states in its corresponding NFA (each positive term translates to a state, and each
negative block, regardless with length, also translates to one state). For an input
string of size n, the running time for the NFA is bounded by O(mn) because the

NFA may be in all m states for each of the n symbols.

92



Due to the limited expressiveness of the search patterns under consideration
here, the NFA does not need to wait until all inputs have been consumed to check for
the accepting state. In our implementation, the NFA checks for the accepting state
after each symbol has been consumed, except when the last item on the pattern is
a negations (in which case, the NFA does need to consume all inputs to ensure that
there are no violations). This small optimization increases the NFA performance by
a significant amount in practice.

The Shift-And algorithm used here differs from [71] in that it models the first
state so that the first state is not assumed to be active at all times (needs to be
inactive when the pattern starts with a negation, and that negated event is encoun-
tered in the search). Since we are using Java Runtime Environment in 32-bit, the
length of the computer word w = 32. The Shift-And used here is extended to handle
patterns that produce more than 32 states. The extension uses an array of integers
to represent more than 32 bits and handles the necessary bit operations (shift, and,
or, xor, negation) correctly over the array. The extended version, however, also
carries an overhead for the array representation. In the evaluation below, when the
number of states for the Shift-And algorithm remains under or equal to 32, the orig-
inal algorithm is used. When the number of states is greater than 32, the extended
algorithm is used. When the number of states for Shift-And is less than or equal
to 32, the search algorithm performs in O(n). If it greater than 32, it performs in
O(mn/32). Like the NFA implementation described above, the Shift-And algorithm

also terminates immediately when a match has been found.

93



4.7.1 Method

The NFA and Shift-And most naturally work with a temporally ordered string
of events. TPS works over a set of type-separated, temporally ordered arrays. The
aim of this evaluation is to see if we had the most appropriate data support for
each approach, whether TPS has any advantage over NFA or Shift-And. That is,
I attempt to answer the question “if I had implemented our visualization tool in
the most appropriate way to use an NFA (or Shift-And) search, would it perform
faster?” The evaluation is structured as follows. (1) It is guaranteed that the input
event history data does not have events that have the same time stamp. This means
the NFA or Shift-And do not need to be modified to handle this case, and that the
input data will be semantically equivalent in the evaluation. (2) The input data are
transformed into a single string for the NFA and Shift-And approaches to process.
(3) In all the reported results, the preprocessing time is not included. That is, the
time used to build the NFA and the bit masks for Shift-And is not included. The
time required to build an NFA is O(m), and the time required to for Shift-And
preprocessing is O(mk/w), where k is the number of event types, and w is the
number of bits in a computer word. The preprocessing time is fairly light, although
it would still be reflected in the interface when analysts construct a pattern query.

Let k designate the number of event types in a set of records. I randomly gen-
erated a set of 5000 records for each k = 2,3,...,9 and k£ = 10, 20, 30, 40, 50. Each
record in the set has 500 events. Each event in a record occurs with uniform prob-

ability. I also randomly generated a set of search patterns for each dataset, where

94



each event type occurs in the pattern also with uniform probability. In the search
pattern input file, there are three types of patterns that are generated: (1) patterns
that contain only positive items, (2) patterns that contain alternating positive and
negative item (half with leading positive terms, half with leading negative terms)
and (3) patterns that represents the theoretical worst-case scenario, given length of
the pattern m and number of the event types k. These worst-case scenario patterns
are like the alternating patterns, but with a large absence block of size min(k, %)
inserted at a randomly chosen position according to a uniform distribution. These
patterns are designed to elicit the worst performance in TPS.

For each input set of records, the script parses the records, constructs the
appropriate data structures for TPS, NFA, and Shift-And, and constructs the NFA
and Shift-And supporting data structures. Clock is then set to collect only the
search time for each approach. Each pattern for each dataset is performed 10 times

for each approach. The average is then taken and presented here. The performance

numbers are obtained by running our script in Java 1.6- 32-bit environment on

Windows Vista 64-bit with a dual core CPU (2.5GHz) and 4GB of RAM.

4.7.2 Results

The results are examined from two perspectives. First, I inspect how the
length of a search pattern impacts the performance of the three algorithms. I do
this by summing up the time taken to execute all patterns of one type across all

alphabet sizes and compute the average time it takes to perform a search on all

95



records.

Figure 4.3 shows the performance graph when all search patterns include only
positive items. The x-axis is the length of the search pattern, and the y-axis is time
in seconds and on logarithmic scale. First, TPS performs consistently better than
both NFA and Shift-And. TPS is more than one order of magnitude faster than
NFA, and nearly one order of magnitude better than Shift-And when m > 15. In
the Shift-And algorithm, each .* is modeled as a separate state, so a pattern length
of m in the all-positive patterns has 2m states. This is why the performance hit
occurs when m > 16, as opposed to m > 32 as in other pattern types. The sharp
decrease in performance represents the overhead required to support arbitrarily long
search patterns. Secondly, the running time increases as the length of the pattern
increases. I had expected the TPS to outperform NFA on the positive-only pattern
portion of the evaluation as TPS’s search over positive-only events is bounded by
O(mlg(n)), that is, this is the “best-case” scenario. I was a bit surprised by its
(slight) advantage over Shift-And when the number of states was fewer than 32,
given that Shift-And runs in O(n) in these cases.

Next, I look at the results for the alternating patterns. Unlike the positive-
only patterns, these patterns provide many opportunities for backtracking, and I
expected to see the TPS performance to be worse than the previous graph. Figure
4.4 shows the performance graph over a variety of search pattern lengths. The
patterns with odd lengths are “easier” for all three approaches. They all can find
those pattern faster. The fluctuation in performance reduces as the length of pattern

increases. Shift-And has the smallest fluctuation, while TPS has the largest, enable

96



Performance on Positive-Only Sequences

100
1 W

sl

0.1

Time (seconds)

— ™ Mmoo 2

1
15
20
25
30
35
40
45
50
55
60
65
70
75
30
a5
90
95

100

0.001

Length of Search Pattern

=f=TPS
== NFA
ShiftAnd

Figure 4.3: Comparison of the performance of TPS, NFA, and Shift-And
in search pattern length m = 1,2, 3,4, 5,10, 20,...,100 for positive-only
patterns. The vertical axis is logarithmic in time. TPS outperforms

the other two approaches in general (except when m = 1, and betters

NFA consistently by one order of magnitude. The sharp increase of
time required at m = 20 for Shift-And reflects the use of using multiple

integers to represent more than 32 states.

it to outperform Shift-And in these odd-lengths patterns. Despite the fluctuation,
it is clear that TPS still consistently outperforms NFA, but the gap is often less
than an order of magnitude. The Shift-And approach generally outperforms TPS
for shorter patterns (m < 32). However, TPS outperforms Shift-And for the small

patterns with odd lengths. All three performance lines grow much slower than the

positive-only sequences.

In the worst-case patterns scenario, we expect TPS to lose most of its advan-
tage while NFA performs similarly to the alternating patterns scenario. NFA does
indeed perform similarly to the alternating patterns scenario, except with an initial

growth when m = 10,20, 30 parts, which TPS also experienced (Figure 4.5). In

97




Time (seconds)

10

1

0.01

Performance on Alternating Sequences

VAA S S

_l‘R

Yy N W == NFA

\./ ]
Shiftand

[ I T~ S T o Y= N s = T = T I I L TR = T S = [ = T = = T = Y = Y = R = Y = I = ]
I T I N I B I R T B o N s T~ S T T o N SO 5 A - ]

100

Length of Search Pattern

Figure 4.4: Comparison of the performance for TPS, NFA, and Shift-
And in search pattern length m = 2,... 20, 30,40, ..., 100 for alternating
patterns. The vertical axis is logarithmic in time. Similar to the case
of positive-only patterns, TPS consistently outperforms NFA for these
search patterns by roughly an order of magnitude. However, the Shift-
And approach is, in general, faster when the m is less than or equal
to 32. For very small size of m, the results are more sensitive to the
randomly generated patterns. All three approaches perform much better
with m = 3,5. TPS is much more sensitive to this than the other two
approaches, and as a result, had the most performance gain.

this scenario, TPS’s performance gets closer the NFA’s, taking nearly one second to
perform a search over all the records. However, it still beats NFA in all of our test
cases, and we do not observe a growth adhering to the m? term in the worst-case
bound. Similar to the alternating cases, the Shift-And approach is very fast for m
up to 30. However, it loses its performance advantage to TPS with m > 40.

To study why TPS is performing relatively well when its worst case running
time is comparatively bad, I plotted the average time it takes to perform a search

over all records when the number of event types is varied. Since TPS examines an

98



Performance on Worst-Case Sequences

10

=

=

8 K-i

& —a —8—Tps
o

£ e NFA
-

Shift-And

0.1

10 20 30 40 50 60 70 BO S0 100

Length of Search Pattern

Figure 4.5: Comparison of the performance of TPS, NFA, and Shift-
And in search pattern length = 10, 20, *,100 for worst-case patterns. The
vertical axis is logarithmic in time. Like two previous cases, TPS con-
sistently outperforms NFA, but the differences are considerably smaller
than in the comparison for positive-only patterns. Shift-And handily
out-performs the other two for m < 40, but loses to TPS (significantly
for m > 60) otherwise.

event on a need-to basis, the event type size does not affect the asymptotic bound.
However, if the number of events is large compared to the number of event types
in the search pattern, TPS can ignore most of the events. On the other hand, both
NFA and Shift-And are required to, in general, examine all the events. I focus on
the two more difficult cases: alternating and worst-case. In Figure 4.6, initially
TPS and NFA have similar performance (m = 2). As k increases, both NFA’s and
Shift-And’s performances remain roughly in the alternating patterns scenario. On
the other hand, TPS’s performance steadily improves as k increases. Figure 4.7
shows a similar trend with worst-case patterns scenario. The difference here is that

the Shift-And approach also enjoys some performance gain when k grows past 9,

99



Performance on Alternating Sequences

10

“*-ii—-—.\.\ -
01 MF&

u Shift-And

Time (seconds)

001

2 3 4 5 <] 7 8 9 10 20 30 40 50

NMumber of Event Types

Figure 4.6: Comparison of the TPS and NFA performance in number
of event types k = 2, 3, ¢, 9, and 10, 20, ‘50 over all lengths of search
patterns for alternating patterns. The vertical axis is logarithmic, and
it is time in seconds. TPS performs similarly to NFA initially, but gets
dramatically better than both NFA and Shift-And as the number of
event types grows.

though not as dramatic as TPS’s.

On the flip side, if TPS is required to look at all of the events, TPS is not
expected to perform better than NFA. To show this, I fix the search pattern to be
ABC (m = 3) and the events in records to be ABABAB ... ABC. This combination
results in a search that requires TPS to look at every event in the record, creating
a very large number of backtracks, and eventually returning FALSE. I vary n =
100, 200, ..., 1000 to show the effects of n. This experiment is performed for m =
3,5,7,9,11,31,41,51,61. Figure 4.8 shows the average performance for m = 3,5,7
for the three approaches on 5000 records for each n. n affects the running times

linearly for n = 100,...,1000. TPS and NFA have identical performance, while

100



Performance on Worst-case Sequences

m
=
=
8
2 w=fll=TPS
-]
E iy NE A
(=
Shift-And

01

2 3 4 5 <] 7 8 9 10 20 30 40 50

Number of Event Types

Figure 4.7: Comparison of the TPS and NFA performance by varying
number of event types k = 2,3,°9 and 10,20, ‘,50 over all lengths of
search patterns for worst-case patterns. The performance graph is simi-
lar to Figure 4.6, with the only exception that Shift-And also improved
in performance as the number of event types increases past 9.

Shift-And outperforms them by an order of magnitude. When the same experiment
is performed for larger m (m = 41,51,61), Shift-And’s performance edge becomes

very small (Figure 4.8).

4.7.3 FEvaluation with Real Scenarios

The experiments with random data above show the strengths and weaknesses
of TPS. They give a reasonably clear picture on the situations where TPS is expected
to perform well or badly. However, the evaluation would not be complete if these
algorithms are not applied to real scenarios. I used the real datasets listed in Table
4.1 and the real search patterns our physician collaborators are interested in to

evaluate the three algorithms. The datasets in Table 4.1 contain events that share

101



Performance on Max Backtrack Sequences

(smallm)

10
z 1
=
g
p =f—TP5
E 01 . M F 2

Shift-aAnd

001

100 200 300 400 500 600 700 800 900 1000

Mumber of Events per Record

Figure 4.8: Comparison of the performance of TPS, NFA and Shift-And
by varying the number of events in a record n = 100, 200, ..., 1000. The
search pattern is fixed to be . The values presented is the average of the
pattern with m = 3,5, 7. The records are fixed to ABABAB‘ABC'. This
guarantees n/2 backtracks for record. There are 5000 records for each
n. The vertical axis is logarithmic in time. TPS and NFA have similar
performance, while the Shift-And algorithm outperforms the other two
by an order of magnitude.

the same time stamp. I had to modify these datasets to ensure that these events
do not exist since neither the NFA nor the Shift-And approaches can handle them.
I followed the same procedure as described in Section 4.7.1 for data conversion and
timing.

Table 4.4 shows the number of temporal patterns our collaborators are inter-
ested in for each dataset, the average length of the patterns, and how much time
each algorithm took to perform. We did not perform the evaluation for one of the
datasets (Heart Attack) in Table 4 because our users had no temporal patterns

they wanted to search for. TPS outperformed the other two approaches in all but

102



Performance on Max Backtrack Sequences

(large m)

10

Time (seconds)
=

01
100

200 300

=f—TP3

e NF A

400 500 600 700 800 500 1000

Number of Events per Record

shift-And

Figure 4.9: Same comparison as Figure 4.8, except that the values rep-
resent the average run of large pattern length: m =
advantage of Shift-And is far less prominent when m is large.

41,51,61. The

Dataset Name | Patterns | Average Pattern Lengths | Time (milliseconds)

TPS | NFA | Shift-And
Creatinine 5 3.2 51 | 325 20
Heparin ) 4.6 12 26 20
Heart Attack - - - - -
Transfer 5 3 93 | 981 99
Bipap 9 3.89 66 | 711 82

Table 4.4: Selected Real Datasets, Their Statistics, and Algorithm Performance

the Creatinine dataset, even when the length of the patterns is small, where the

Shift-And algorithm has its biggest advantage in the randomized evaluation.

4.8 Discussion

While I have shown that the worst-case asymptotic bound for the TPS al-

gorithm is worse than that of a NFA, the empirical evaluations show that TPS

consistently outperforms the NFA approach under our experimental conditions with

103




randomly generated inputs. The experimental conditions are chosen to reflect the
situations under which we expect users to be using Lifelines2. In working with our
collaborators in the medical field, the average number of events in a single patient
record usually are in the low hundreds, with the highest nearing a thousand, and
lowest only a handful. The number of types of events is typically between 10-35.
In practice, it is rare to see the cases where k is so small and TPS performs only
marginally better than NFA. It is also rare when k is as large as 50 that TPS
advantage exceeds more than one order of magnitude.

One the other hand, the very efficient Shift-And algorithm has great speed
advantage when w is at most 32 and consistently out-performs TPS in the experi-
ments with random data. When it is not, its performance is slightly worse than that
of TPS on average. TPS also has a slight performance edge in the evaluation with
real data and search patterns. While the NFA approach and the TPS approach are
both easily extensible to handle additional constraints, the bit-parallel approaches
are not. These approaches rely on bit masks that are built in the preprocessing
stages so that when a symbol is read, the mask can be retrieved in constant time
and utilized. However, when these additional constraints are present, the masks can
no longer be pre-built. The mask that needs to be applied would be conditional
upon the values in addition to each of the symbols read.

For n <1000, the performance growth is roughly linear even in cases that the
maximum number of searches and backtracks are required (Figure 9). We also do
not observe a quadratic growth for m < 100, although the asymptotic bound for
TPS contains a m? term. While I do not expect users to specify a pattern query of

104



these extreme lengths, it is comforting to know that if users wished to do so, TPS
would be able to handle it.

The implications of these results are that while TPS may not be suitable for
all situations, I argue it is the appropriate choice for our application Lifelines2. In
addition, other analysis tools focused on temporal categorical data such as Data-
Montage [20], Event Tunnel [106], and SessionViewer [57] can benefit from TPS to
provide sequential search capabilities. In addition, TPS can be used as an external

function in database applications where searching for temporal patterns is required.

4.9 Summary

I present an extensible algorithm that is suitable to visualization systems such
as Lifelines2 for temporal pattern search. The TPS algorithm works on the preex-
isting data structure of Lifelines2 — a record is a set of time-stamped-sorted data
structures, where each structure is for each event type in the data. Even though
TPS’s worst-case running time is not as good as those of NFA or the bit-parallel
approaches, its performance with a wide range of random data show that it per-
forms better than NFA, and it is better than Shift-And when the number of patterns
become larger than the size of the computer word. The extensibility of TPS allows
the algorithm to expand to handle additional constraints like many other NFA ap-
proaches, which the bit-parallel approaches cannot handle. When experimenting
with the real data, TPS performed better than Shift-And in three of the four data

sets. With these favorable performance numbers, I argue that the TPS was the right

105



design decision for Lifelines2 and perhaps for other analysis tools.

106



Chapter 5
Supporting Hypothesis Generation: Temporal Summaries, Grouping,
and Comparison

5.1 Overview

Generating new hypotheses is an exploratory and iterative process. It requires
analysts to make generalizations about a dataset. However, making generalizations
is particularly problematic when dealing with large numbers of personal records of
event data, where each record holds many events, and some of which are of the
same type. Often analysts must generalize both how events occur in relationship to
others events (temporal ordering) and also the frequency of the event occurrences
(prevalence). In doing so, analysts often compare datasets that differ in a single
aspect (such as control vs. experimental) in an attempt to gather support for a
hypothesis. Unfortunately, current analysis tools for temporal event data fall short
in accentuating event temporal ordering and prevalence. They also fail at providing
mechanisms for flexible and rapid comparisons.

While command-line query languages provide the means to access large amounts
of temporal event data, temporal SQL queries are very difficult to specify, and the
traditional tabular display of results neither highlights the temporal ordering nor

exposes their prevalence. My previous work sought to address the temporal ordering

107



problem by using the Align-Rank-Filter (ARF) framework to manipulate the visu-
alization of temporal event data. In particular, I showed in a controlled experiment
that using alignment improves user performance greatly in recognizing temporal
characteristics among events.

While alignment has been well-received by users, my ongoing collaboration
with domain experts revealed the following needs in their daily work. They need to
be able to specify temporal range constraints in their searches (e.g., find all patients
who have had an open-heart surgery within 3 months of their first heart attack).
They need to view multiple records as an aggregate to study prevalence of event
data over time. They need to divide and subdivide a set of records into logical
groups and subsequently compare these groups.

In this chapter, I describe my solution - temporal summaries - and how they
support these needs. Temporal summaries are stacked bar charts over a time frame.
By default, events are the objects of aggregation, and each event type is depicted
as a color-coded stack. A single temporal summary allows analysts to compare the
distributional trends of multiple event types over time. Applying multiple temporal
summaries on multiple groups of records allows analysts to compare these groups of
records in a coordinated manner. As analysts zoom in and out, temporal summaries
automatically rescale to display the aggregation in the corresponding granularity.
Finally, temporal summaries provide affordances for analysts to specify temporal
range constraints. This enhances the existing ARF framework, and enables more
ways of creating logical sets of groups. The content of this chapter corresponds to

one of my earlier publications [116].

108



5.2 Temporal Summaries

In Chapter 3, I demonstrated how Lifelines2 brings temporal ordering of event
data to the analysts’ attention via alignment of sentinel events. However, even with
alignment, analysts are still burdened to visually scan the entire dataset to make
sense of and to make generalizations about the data. To overcome this shortcoming,
I added temporal summaries and appropriate controls ((b) and (d) in Figure 5.1). A
temporal summary is a stacked bar chart that aggregates a variety of metrics (event
counts, record counts, etc.) about a group of records over a time frame of varying
granularities.

Consider the medical scenario contrast-induced nephropathy: some patients
who undergo a radiology contrast experience adverse reaction and as a result, their
renal functions decline. If not noticed and taken care of, the condition may be fatal.
To monitor a patient’s renal function, blood tests are performed regularly both be-
fore and after the radiology contrast to monitor the creatinine level. High creatinine
indicates lowered renal function. The adverse reaction typically occurs within 14
days after a radiology contrast. This scenario was the primary scenario physician
collaborators and I shared in developing the visualization and interaction features in
Lifelines2. Here I use this same scenario as a concrete example to introduce the fea-
tures of temporal summaries. I show how analysts utilize temporal summaries to see
patterns, generate new hypotheses, and possibly change the direction of visual ex-
ploration. More specifically, I show how temporal summaries work with the existing

ARF framework to find the patients who may have this adverse reaction. I also show

109



B4 Lifelines 2 - contrast+creatine-large.tet.out{delD).txt (deidentified data)
File About
.
Record View r’ Comparisan View | [ a ) ARF [ Comparison | ‘LJ
r!ll Records Records 3598/3598 G2 Zoom to: | Days = ||| (Align by... 3
Rank by [# of CREAT-H] Align by [1st occurrence of Radiology Contrast Radiology Contrast(3598) | -
CREAT-H 35 JCREATH. = 5
Radiology Contrast Radiology Contras! = 1st occurrence 'T
Wo000563
R Y [
CREAT- i &
Radiology Contrast Radiology Contrasl | A = of CREAT-H(1150) |v|
]¥oo01671
w s Ak A A AAA |||
CREAT- ) | |N0 Fiter | - |
Radiology Contrast Radiology Contrast L
V] Wo001768
CREAT H A
CREAT- Keep Selected | Remove Selected
Radiology Contrast Radiology Contrasl
i Reset Filters
V] ¥oooos40
CREAT-H - dhehrbibdfibAi.  hdlh
Radiology Contrast Radiology Contrast: Collapse all | Save Records as New Group
"1 ¥oooo7es ||
CREAT-H s Ak AN A ||| istributi N
h Radiology Contrast Radiology Contrasl - Show Distribution of...
P = A CREATH(1190) -
|Events | v| MNone -
1 None -
( ) View Record Group...
|.-'-\II Records | - ‘
A crEn \ J
‘ Less Controls (d ) |
m III|| |||III Events | Irons | Labels | Alignment |
Records: 3598 .| L ||||IIIII|||||||.. e = St Conyriaht
= o - : ¥ N opyrig
Distribution L Distribution by Occurrence Relative to Alignment | HCI L _"l@t. 2007 - 2009
T, &
a K| :] (RS HCIL UMD

Figure 5.1: Annotated Lifelines2 screen shot. (a) The main visualization
panel. A temporal summary is shown in (b). To the right is the control
panel. (c) shows the controls and the current state of Align, Rank, and
Filter. (d) shows additional controls for temporal summary, and also
for navigating groups. Group creation and other controls are wedged
between (c) and (d).

how analysts dynamically create subgroups of records, and use temporal summaries
to perform comparisons among them. A video that covers most of the analysis
presented here is accessible from http://www.cs.umd.edu/hcil/lifelines2/ or

directly 1.

"http://www.cs.umd.edu/hcil/lifelines2/videos/Lifelines2- (Contrast-Creatinine)

-11-10-08_flash/full (1024x768) /index.htm

110



5.2.1 Integration with the Improved ARF Framework

The existing Align, Rank, and Filter framework allows analysts to visually

" event (whether it is from start of the record or from

align all records by a chosen n'
the end), or by all occurrences of that event. When “all occurrences” is chosen,
Lifelines2 duplicates records that have more than 1 such event. Analysts can rank
records by number of occurrences of an event type. For example, Figure 5.1 shows
that all records are aligned by the 1% occurrence of Radiology Contrast and ranked by
number of occurrences of CREAT-H (creatinine high) so that the records that have
the most are displayed on top. The number next to each record’s header on the left
indicates how many CREAT-H events that record has. Lifelines2 provides several
filter mechanisms. First, analysts can select an event type and a number to filter
by number of occurrences of an event. Analysts can also filter by a sequence. By
selecting from a list of drop down boxes, analysts can specify a temporal sequence,
and remove records that do not contain such a sequence. Analysts can now specify
both event presences and event absences in the sequence filter. That is, analysts
can specify A before C, with no B in between. The sequence filter does not afford
ways to specify temporal constraints such as B after A within 2 days (Chapter 4).

In (b) of Figure 5.1, the temporal summary is aggregating the event CREAT-
H over 3598 records and over the visible time frame. Analysts can select up to
three types of events from the controls in (d). When multiple events are selected,
they stack up, and analysts can visually compare the relative proportions over time

(Figure 5.2). The combo box on the top right of (a) indicates that the aggregation

111



Ef4l1D (20 |30 (4D

A\ CREAT-H
A\ CREAT-

A\ CREAT-L

SE2
Records: 3598 II

Figure 5.2: A temporal summary showing the daily distribution of crea-
tinine test results of 3598 patients when aligned by their 1st occurrence
of Radiology Contrast.

is in the granularity of days. Temporal summaries will automatically aggregate
over an hour or over a month as analysts zoom in or out. The combo box on top
of (b) indicates that the summary is aggregating events, but analysts can make it
aggregate records instead (how many records have at least one event of the specified
types in each day) or events per record by controlling the combo box. Analysts
can directly draw one or more selection boxes onto temporal summaries to specify a
temporal range selection (Figure 5.1 (b)). Records that are selected are highlighted
in orange gradient with check marks next to them (Figure 5.1 (a)). By affording a

way to specify multiple temporal range filters, temporal summaries enhance ARF.

5.2.2 Comparing Within A Single Group

5.2.2.1 Showing Distribution of Multiple Events

Medical analysts would bring up Lifelines2 and rank by CREAT-H events to

bring the most “severe” patients up top and align by the st Radiology Contrast.

112



Then they would bring up temporal summary and show the distribution of CREAT-
H as in Figure 5.1. The medical analyst may hypothesize that the patients either
had worse renal function immediately before and after their first radiology contrast,
or that more tests had been performed closer to a Radiology Contrast. Adding
all other creatinine test results CREAT- (normal), CREAT-L (low) to the temporal
summary revealed that it is more likely the latter case, as more tests were performed

near the alignment (Figure 5.2).

5.2.2.2 Splitting Records By Event Occurrences

The second tab at the bottom of the temporal summary in Figure 5.1 lets
analysts split the records in view into four mutually exclusive groups, and display
the 4 summaries simultaneously. These records are split by the occurrences of
their CREAT-H events with respect to the alignment. The records that have the
CREAT-H events only before the alignment are in the first group, the records that
had CREAT-H only after are in the second group. Those that had CREAT-H
both before and after were in the third group, and those that had CREAT-H in
neither were in the fourth group. Events that co-occur at the same moment as the
alignment event are not considered when deciding which group they fall into, unless
it is the only such event in the record (in which case, the record will be classified
into the last group). Figure 5.3 shows the respective temporal summaries. The
third summary shows that over 500 patients have CREAT-H before the alignment.

The medical collaborators believed that many patients in that subgroup probably

113



AAA

]
Records: 203 ze 45 44 43 12

Ad A =3
' ; 222 153 143 445
Records: 423 1 [ [ | pm=R
| 54
AAd A A
Records: 564 s N

I
Records: 2408

| Distribution L Distribution by Occurrence Relative to Alignment

Figure 5.3: The second tab in (b) of Figure 5.1 is activated. The data
in Figure 5.1 is split into 4 mutually exclusive groups: those who have
CREAT-H only before alignment, after, both, or neither. 2408 patients
never had any CREAT-H. 564 patients have CREAT-H both before and
after the alignment.

experienced chronic renal insufficiency, and should be removed from the data as
their lowered renal function was not related to the radiology contrasts. Upon our
physicians’ suggestion, I used the occurrence filter to remove those who have had at
least 4 CREAT-H prior to the alignment (using the “Remove Selected” and “Save

Records As New Group” buttons on the control panel on the right). This removed

219 records.

5.2.2.3 Direct Manipulation of Temporal Range Filters

Next I aligned the rest of the records by all occurrences of Radiology Contrast.
Lifelines2 duplicated the records that have multiple Radiology Contrasts, and placed
the duplicates and the original in accordance with the alignment in the same display.

After applying the alignment, the temporal summary aggregated over all of the

114



duplicates and originals in the temporal summary. This means when I specified a
selection box over the summary now for the first 2 weeks after the alignment, I was
selecting all patients who had at least one CREAT-H events within 2 weeks after
any Radiology Contrasts. Multiple-event alignment like this one allows me to select
all occurrences with respect to a single event, and the temporal summary allows
me to specify the temporal constraints. Once a selection is made (either through
selection from temporal summaries, or through the filtering mechanisms), analysts
can create a new group of records and give it a name that they can refer back to,
using the controls nestled between (c) and (d) in Figure 5.1.

This phase of filtering reduced the patient count to 792, but when my collab-
orators looked at them, almost 90% of the patients in this group did not display the
temporal characteristics of contrast-related renal insufficiency. They then further
recommended to restrict to only patients who have a baseline reading of normal
creatinine reading prior to contrast. We decided to apply a sequence filter that
specified patients who had a CREAT- (normal reading of creatinine), followed by
no readings of CREAT-H, followed by a Radiology Contrast, and finally followed by
a reading of CREAT-H. Finally, this resulted in just 157 patients (Figure 5.4).

Since I had ranked all patients by the number of CREAT-H events in de-
scending order, the first six patients in Figure 5.4 are likely to be the most se-
vere. Inspecting the event patterns, these patients also showed strong evidence for
contrast-related renal insufficiency in the two-week time frame after the alignment.
The temporal summary showed a peak of CREAT-H events on the third day after

the alignment, an unusual pattern. Summaries of all previously created groups (not

115



1M

[]¥oooosss

CREAT-H 49 SAEEEAT A s s

CREAT - JCREAT- L

Radiology Contrask Radiology Conkrast
[1¥oooz1s6 |

CREAT-H 3 -H

CRE AT - T -

R adiology Contrask Radiology Conktrast
[1¥ooozas0 [ |

CREAT-H 29

CRE AT - AT -

Radiology Contrask

Radiology Conkrast

[]¥oooi471
CREAT-H 25
CREAT - JEREAT- w
Radiclogy Contrast Radiology Conkrast

[]¥oooz29s

CREAT-H 24
CREAT- ﬂT-W
Radioclogy Contrast Radiology Conkrast
[]¥ooozzis
- -
CREAT-H Ry

ol EE

| Events | - |

1M

Figure 5.4: The first 6 patients in the final group of 157 that fits our fil-
tering criteria. The unusual peak of high creatinine tests on the third day
after the alignment is indicative that our exploratory search is heading
to the right direction.

A crEAT-H

Records: 157 juaaslll

shown) showed a steady decline of the CREAT-H counts after Radiology Contrasts.
This anomaly suggests that the exploration with the physicians was in the right
direction. After removing patients who had 2 CREAT-H or fewer events as unlikely
candidates, I presented our collaborators a total of 84 potential patients who experi-
enced contrast-related renal insufficiency. Our collaborators then were able to refer
to the existing literature and determine that the number is well-within published

studies for a large scale hospital.

116



5.2.3 Comparing Groups

The previous sections show that temporal summaries are useful in showing
event distributions of a single group over time. They are data overviews that help
analysts make decisions on how to proceed with an exploration. They are also tightly
integrated with the existing ARF framework to enhance searching. But temporal
summaries are most useful when used to compare multiple groups of records at
once. Analysts can select “Comparison View” (a tab on top of (a) in Figure 5.1)
to compare automatically created groups (Section 5.2.2.2), or compare previously
created groups. In Comparison View, analysts can specify any number of events
(instead of only three) to be included in the comparison, and align the data just
as before. If analysts choose to perform a within-group comparison, they must also
specify a split criterion. We have already seen split by event occurrences relative to
the alignment in Section 5.2.2.2. Analysts can also split by whether a record has
N numbers of a certain event, automatically creating 2 mutually exclusive groups.
When between-group comparison is selected, analysts can select multiple previously
created groups and explore these groups using temporal summaries in a coordinated
manner. [t is worth noting that the automatically split groups are always mutually
exclusive, while analyst-created groups are not constrained by mutual-exclusivity.

Figure 5.5 shows a partial screen shot of the Comparison View. The controls
to the right indicate that this is a between-group comparison. The final group Final
157 and its complement are selected and shown as two summaries. The creatinine

high (CREAT-H) and normal (CREAT-) events are aggregated by month. All

117



patients are aligned by their first radiology contrast.

When comparing groups that have a large difference in the number of records
(i.e., 3441 vs. 157), a raw count of events is often not informative. The counts need
to be normalized by the number of records in each group in order for meaningful
comparison. Using the “Events (Normalized by Records)” display option, as in
Figure 5.5, the event counts are normalized. The numbers on top of the bars indicate
how many creatinine high and normal readings per patient exists in that month.
This comparison shows that the Final 157 patients had a much higher average
than its complement. This is because the patients in the Final 157 are higher-
risk patients, and tests were performed more frequently for each patient to better
monitor their health.

The contrast-creatinine scenario was developed with our physicians over a pe-
riod of six months. With the physician collaborators’ help, I iteratively refined my
design and added features to support their needs. The successful process of narrow-
ing the set of patients and showing comparisons pleased the physician analysts. I
was able to build confidence in the value of Lifelines2, and subsequently proceeded

with the following case studies.

5.3 Case Studies

I present two case studies here. The first is another application in medical
records where the physicians are studying the length of stay of patients in the

hospital. T also report a second case study on graduate student academic records.

118



[ Record View [ Comparison View | 1" ARF Comparison

Display: | Events(Normalized by Record) |v| Zoom to: | Menths | - | Annotate! Choose Comparison Type
= |Between Group Comparison | - |
Distribution(s) Align by...
AWM 3N M M 1M [2M [3M [aM |5 Radiclogy Contrast(3598)
A CREAT-H 1st occurrence
CREAT-
A 1504 3750 Record Groups
Records: 3441 0013|0045 | 0050 S 0261 /0081 /0,023 |00 [ ] All Records
11.75 [] Nan-chronic
A CREAT-H [ ] candidates
A\ creaT- 3321 T Final 157
Records: 157 oos7 0528 |pos0 (0012 [¥] Complement

Figure 5.5: Summaries are shown in this between-group comparison.
One is the result of the final filter (Final 157), and the other is the com-
plement set (Complement). Creatinine high (CREAT-H) and creatinine
normal (CREAT-) are aggregated by month. The events counts here are
normalized by the number of records in that group for meaningful com-
parison. The numbers on top of the bars indicate the average number of
CREAT-H and CRFEAT- events per record in that month. The patients
in Final 157 clearly have much higher normalized averages

Both of these studies focus on searching for specific groups of records, and comparing
among different groups to evaluate the analysts’ hypotheses, although the medical

scenario is more mature.

5.3.1 Heparin-Induced Thrombocytopenia

Thrombocytopenia is a medical condition in which the platelet count in blood
stream is low. Heparin, a drug used as an anticoagulant, is known to cause this ad-
verse side effect in 0.5-10% of patients. Heparin-induced thrombocytopenia (HIT) is
characterized by a sharp (usually greater than 50%) drop of platelet counts within
5 to 9 days after the first administration of heparin. However, not all drops indi-

cate HIT. Lowered platelet count can simply be the normal side effects of heparin.

119



To ascertain whether a patient has HIT, an additional test called HIT antibody
test is ordered. Unfortunately, the HIT antibody test has high sensitivity but low
specificity. When the test returns negative, then the patient is likely not to have
HIT (98% accuracy). But when the result is positive, the test is only about 25%
accurate. In clinical care, a hospital does not have the luxury to spend an ad-
ditional 5-7 days to perform a more accurate test. Instead, patients whose HIT
antibody test returns true are treated as if they have HIT. A recent medical study
on 22 patients showed that a hospital treating 50 HIT patients a year can incur
$70,000 to $1,000,000 and each patient can increase length of hospital stay by at
least 14.5 days [101]. These patients can increase the financial cost and stretch the
resources of a healthcare facility. A video of most of this analysis is accessible from
http://www.cs.umd.edu/hcil/lifelines2/, or directly 2

Our physician partners at Washington Hospital Center are interested in verify-
ing these results and see if their clinical care data differ from the study. In particular,
they want to focus on the patients who have been admitted to the intensive care
units (ICU) with HIT. Our collaborators could query for the relevant data in their
medical database and perform the analysis that way with the help of the database
administrator. However, they would rather see the temporal ordering of these events
and interactively narrow the data down because in order to determine whether a pa-
tient actually has HIT, the temporal ordering of events and the temporal constraints

are important.

*http://www.cs.umd.edu/hcil/lifelines2/videos/Lifelines2- (HIT)-2009-05-10_

flash/full (1024x768) /HIT(2009-05-10) (1024x768) .htm

120



Over a period of one and half months, an additional case study observer
(Plaisant) and I visited Washington Hospital Center three times to meet with the
physician collaborators (Mukherjee, Smith) and the database administrator (Rose-
man). Each meeting lasted approximately two hours. Much work had been devoted
to understand the medical database and to clean it up to make it suitable for this
case study. Over this period of time, Roseman and I worked via email to obtain
de-identified medical data, and converted them into a format Lifelines2 accepts.
Microsoft Amalga [68] was the clinical information system that served as the data
source for the de-identified data on which the heparin-induced thrombocytopenia
case study was conducted. Its data-centric architecture enabled the database admin-
istrator to relatively easily extract the requisite data. Over all, there were over 30
emails exchanged between the developer and the collaborators to discuss the topic.
When all of us met face-to-face, we spent most of the time exploring the data using
Lifelines2 together. In the following exposition, "we” is used to include everyone
involved in the case study.

We obtained de-identified data on all 841 patients who visited the hospital
and had a HIT test for the calendar year of 2008. For each patient, we have the
medical designation of platelet counts in categories (High, Normal, Low, Critical),
HIT test results (Positive, Negative, Borderline), administration of any of the 9
heparin variants, admission and release from ICUs, and discharge code from the
hospital (Dead or Alive). The categories were further pre-processed to include higher
level categories. For example, platelet Normal and High events are considered the
same in this investigation, so we created the new category High/Normal (while

121



also keeping the existing High and Normal categories just in case) to facilitate our
exploration.

From the original dataset, we filtered to find patients who were admitted to
the ICU and also had exposure to heparin. This ICU-HEP group has 450 patients.
Then we applied another filter, to divide this new group into two subgroups: the 93
patients who had a HIT positive test (ICU-HEP-HIT+), and the 357 who had not
(ICU-HEP-NoHIT+). The hypothesis is that there is a difference in the length of
hospital stay between those who may have HIT, and those who almost certainly do
not have HIT. We aligned the patients by their first admission to ICU, and compared
these two groups against each other to see if there are noticeable differences in the
distribution of discharge events (Figure 5.6 (a)).

The large difference in patient numbers (93 vs. 357) makes comparison of
raw counts meaningless and also impossible for our physician partners to detect
trends. We normalized the counts by selecting “Events (Normalized by Records)”.
In the new summaries, the counts are normalized by the number of patients in each
group, and the bar heights are normalized across the two summaries for direct visual
comparison (Figure 5.6 (b)). It was easy for our collaborators to recognize that the
discharge distribution in /CU-Hep-HIT+ looked more stretched out (right-skewed),
indicating that the patients tended to stay in the hospital longer when they had a
positive HIT antibody test result.

We further created more subgroups from [CU-Hep-HIT+, ones that approx-
imated the ideal temporal orderings of HIT patients closer. Our physician part-
ners hypothesized that by narrowing down to patients who are more likely to ac-

122



-1 M (291 1M 2 M 3 M 4 M
Disc Alive
‘Disc Dead
I
Records: 357 o 4 1
Disc Alive
‘Disc Dead
E4 27
Records: 93 —— 5 5 2
1M 1M 2 M 3 4 M
[+: RE
Disc Alive
‘Disc Dead
0.142
Records: 357 - 0025 o011 o002
Disc Alive 0580
‘Disc Dead 0250
Records: 93 - 0053 | 0053 | opo2q

Figure 5.6: The temporal summaries show discharge patterns (Dis-
charged Alive in green, Discharged Dead in black) aligned by the first
admission to ICU. In (a), the raw count of event are shown, but the
large disparity in number of patients between the two groups makes it
hard to compare. In (b) the counts are normalized by the number of
patients. It is clear to see that patients in ICU Hep HIT+ tended to
stay longer in the hospital than those in ICU Hep No HIT+, where over
80% of patients in were discharged within 1 month.

tually have HIT, the discharge patterns in temporal summaries may stretch even
more. First, we used the sequence filter to find those who had never had a Platelet
Low/Critical, followed by a Platelet Normal/High, followed by any type of Heparin,
followed by Platelet Low/Critical, and finally followed by a HIT Positive test. The
filter identifies only patients who had only normal levels of platelets up until they
were exposed to heparin, after which they experienced a drop in platelet, and a
HIT positive result was returned. This group is named Sequence, and contains 63
patients. From Sequence, we then selected, via temporal range filter in the temporal

summaries, only those who had HIT Positive results within 5-9 days after their first

123



1M 1 M 2 M ]
0. 7e8
Disc Alive
‘ Disc Dead
0173
Records: 450 - 0031 002
Disc Alive 0 580
‘ Disc Dead o2e0
Recaords: 93 - 00537 00537
Disc Alive 0555
‘. Disc Dead 0333
Records: 63 -— D LT
[+
Disc Alive
‘ Disc Dead 0>
Records: 20 005

Figure 5.7: Normalized hospital discharge data aligned by first admission
to ICU from 4 groups are compared here Discharged Alive in green,
Discharged Dead in black). Each group is a subset of the one above it,
and a “closer” approximation to true HIT patients. We hypothesized
that the closer approximation, the more stretched the discharge pattern
should be. The first three seem to support our hypothesis, but not the
last one — we see that there are far more Discharged Dead than the others
in the first month, and this may be skewing the data.

exposure to Heparin. This 5-9 Day group has 20 patients.

The hypothesis is that as we used more stringent filters to create patient
groups that better approximate the true group of HIT patients, we expected to see
the discharge pattern to be more and more spread out (i.e., more patients with
longer stays). The comparison of these 4 groups in Figure 5.7 showed that while
that seems to be the general trend in the first three groups, the last 5-9 Days group
does not follow this trend. We believe it is due to the small number of patients in
that group and the higher-than-average number of Discharged Dead patients in the

first month.

124



Through these exploratory analysis exercises, we have found that for patients
in ICU, those who had HIT Positive tended to stay in the hospital longer than those
who had not. Extended stay in the ICU generally translates to increased cost, but
we thought it might be worth exploring with just the data we have.

We wanted to see if the patients who approximated closer to true HIT pa-
tients received more resources in terms of number of platelet tests performed. In
this comparison, we included the last three groups in Figure 5.7 and also the group
of patients who were admitted to ICU, had exposure to heparin, and had a negative
result in the HIT test. We aligned by each patient’s first admission to ICU and com-
pared the normalized platelet data to see how many platelet tests were performed
per patient in each month (Figure 5.8). We had expected to see the lower groups to
have higher number of platelet tests, but there was little visual evidence to support
that hypothesis. There was indeed a large difference in the number of platelet tests
per patient in each month between the first and the second group, but there was
little difference among the other three. The reason is that the hospital treats all HI'T
test positive patients (the last three groups) with the same diligence and caution
even though the HIT test is only 25% accurate when it is positive.

Lifelines2 succeeded in allowing our physician partners to investigate and
gather visual evidence with respect to their hypotheses. The comparisons on the
discharge pattern showed that the data seem to support the hypothesis that HIT
patients tended to stay in the hospital longer. However, because hospitals do not
know whether a patient has HIT a priori and can only rely on the result of the low-

sensitivity HIT test, we see evidence that the hospital treats all of the HIT positive

125



Plaelet Mormal/High 18.68
A Platelet LowjCritical

Records: 357 = o o2 - 2108 | paegz | o126
2596
Plaelet Mormal/High
A Plaelet Lowjcritical
4591 53718
Records: 93 | -_—2233 0880
2676
Plaelet Mormal/High
A Plaelst Low|Critical
5301 - 5584
Records: 63 | 1698 | psss
247

Platelet Mormal/High

A Plaelet Lowfcritical -
5.3 4895
Records: 20 s 235 | 13

Figure 5.8: Normalized platelet data aligned by the 1st admission to ICU
for 4 groups (Platelet Normal/High in pink, and Platelet Low/Critical
in red). These numbers of platelet tests only dramatically increase from
the first group to the second.

patients with heightened diligence and care with regards to monitoring platelets. If
it were true that HIT patients do incur more cost, the cost would have to come from
elsewhere. It is interesting to note that although both are comparisons of categorical
data, the first comparison highlights the behavior of patient health (how soon they
get well with the hospital’s help), while the second highlights the behavior of the
hospital care (how well the hospital treats the patients).

Dr. Mukherjee, who lead the investigation in this case study was enthusiastic
about the results, but was even more enthusiastic about the process. He had been
using Excel spreadsheets to organize the patient records. He had no better way to
visualize the patients, and he had to perform manual review of each patient record.

While manual review is still necessary, he was looking for a way to reduce the number

126



of necessary manual reviews. Lifelines2 allowed him to specify complex temporally
ordered and temporally constrained filter criteria to remove many patients. He
was able to create successively smaller groups of patients, and decide which group
presents a good starting point for manual review. He commented how being able
to see the individual records is important to him. He can build a narrative by the
events that are visible to him, and make decisions about whether a manual review
is necessary for a particular patient. He also liked how he could compare multiple
groups of patients using temporal summaries and make a judgment on whether a
previous filter was too aggressive. He believed that using Lifeines2 first to identify

the group of patients that require manual review can save him tens of hours of work.

5.3.2 Monitoring Graduate Student Academic Progress

A second application of the temporal summaries is to monitor and evaluate
graduate student progress. Progress through a PhD program can be measured
loosely by grades in course work, advancing through program milestones, publishing
research papers, etc. Each year, the faculty and graduate office of our department
review the progress of each student, considering each of these factors, with the intent
to offer advice to students and their advisors. The tool described in this paper is
the first visualization tool to be applied to the process.

With various queries in SQL alone, the review can identify students who have
fallen behind or are approaching a program deadline. However, temporal summaries

can help to solve two classes of questions that SQL supports poorly. First, are there

127



factors that may predict falling behind schedule? In the case study below, I describe
a faculty investigating how well being a teaching assistant (TA) for four semesters
or more predicts a longer time to advance to candidacy. Second, is there evidence
that the graduate review helps students be better aware of milestones and make
better progress? The review has incidental benefit through, for example, making
all advisors aware of graduate program deadlines, but quantitative evaluation is
difficult.

There are three fundamental differences between student time lines and patient
histories in the other studies. First, although the “outcome” in the medical setting is
clear (months spent in the hospital, how patients were discharged), the outcome for
a graduate student is much less well-defined. Further, the department considers and
maintains only the information that describes currently-enrolled students; those who
have left the program without a degree, who are on-leave, or even have completed
the program, are not evaluated and are not (currently) in the graduate review data.
This limitation in the data reduces the precision of any conclusions: for example,
of the population of students who entered the program six years ago, only those
who have not yet completed their dissertations are included, potentially increasing
time-to-milestone statistics. Second, the confidentiality of current student records
and the lack of a good data de-identifier constrain how we present results: only
screen shots of aggregation of data without numbers are presented. Third, student
time lines do not precisely match chronology: students may start in the spring or
take a leave of absence, adjusting how time spent in the program corresponds to

real time.

128



How might we use detailed information about a student’s time line to bet-
ter predict timely completion of milestones? After an introduction to the tool, the
analyst (a faculty) set about to determine how spending many semesters as a TA
affected the time to propose a thesis. Events represented the start of a graduate ca-
reer, each semester as a TA, and advancing to candidacy. To gather evidence for the
hypothesis that more TA’ing implied a longer time to graduation, the analyst con-
structed three groups: those who had advanced, those who had advanced after four
or more semesters of TA’ing, and those who had advanced after three or fewer. To
create these groups, the analyst aligned all students by the Advanced to Candidacy
event, implicitly selecting only those students who had advanced. From this group,
he used filters to choose two disjoint, approximately equally sized sub-populations:
those who had TA’ed four or more semesters, and those who had TA’ed three or
fewer semesters. The three groups were then visualized in Group Comparison tab
of Lifelines2. The analyst aligned the groups by the event Admission, and showed
the distribution of Advanced to Candidacy (Figure 5.9). When comparing these two
groups and the union, it appears that students who TA’ed four or more semesters
on average one additional year to advance than those who TA’ed three or fewer
semesters. While the difference is startling, it is worth noting whether time spent
TA’ing is a cause of delay or merely a symptom is not easily determined, but that
does not diminish its predictive value.

To quickly evaluate the potential benefit of the graduate review, the analyst
next constructed groups of students who were classified (by the SQL-query-based

tests) as falling behind schedule to explore their success in later years. At each

129



Advanced

Advanced

Advanced

Figure 5.9: There are three groups in comparison here (from the top):
Students who advanced to candidacy, students who advanced to candi-
dacy while TA’d for 4 or more semesters, and students who advanced to
candidacy while TA’d for 3 or fewer semesters. All data are aligned by
the admission date. The students who had TA’ed for 4 or more semesters
averaged one year longer than those who had not.

annual review, each student is given a high-level categorization that attempts to
capture whether the student is On Target, Concerned, or Very Concerned. One
way to investigate whether the annual review is beneficial to students is to examine
the students who were first marked Concerned and see if in the following years
whether these Concerned improve. After aligning students by the first occurrence
of Concerned, the events that followed showed that over 70% of the students who
received such a mark were no longer marked as under Concerned or Very Concerned
the following year.

These analyses are preliminary; their results are not demonstrably true because
of the biases in the partial dataset. However, to assist the analysts in exploring

the data to quickly gather evidence for simple hypotheses, the temporal summary

130



provided significant help in answering key questions about the review of student
progress. This initial portion of a continuing user study was conducted over a
month. The faculty analyst and I met and worked together for about four hours.
The faculty drove the application and spent significant amount of time using the
tool on his own. The faculty and I communicated steadily via e-mails over this

period.

5.4  Discussion

The two case studies were conducted differently. In the HIT study, all the
exploration was done collaboratively, but our medical collaborators dictated what
operations to apply, and the developer “drove” the software. In the student record
case study, all actions were performed by our collaborator, and he continued using
the tool independently. Our collaborator is a professor in the Department of Com-
puter Science. He is not affiliated with my project, nor had he heard of Lifelines2
prior to our first meeting. He maintains the student record database and knows the
schema. He extracted and converted all the data to an input Lifelines2 can accept all
on his own. Although the HIT study was not driven by the analysts, more aspects
of the application were used in more depth.

Our medical collaborators were happy to see patient records on a time line and
not in a spread sheet. One said, “I am a very visual person, and the events laid out
this way corresponds exactly to how I think.” They did not seem to have problems

understanding ARF or interpreting the data the first time they saw it. After a 10-

131



minute introductory demonstration of the features, our collaborators were in control,
dictating what steps to take in the exploration. The dictations included both the
high level logical and also what specific operations to take, reflecting their full grasp
of the features.

On the other hand, having to drive the application through someone else’s
dictation revealed a lot of room for improvements. The exploratory steps in this
case study involved a lot of group creation, between-group and between-view nav-
igation. When creating a large number of groups, better management is needed.
Additional group creation mechanisms such as taking the intersection of two chosen
groups would provide for quicker results. Group names alone are not enough to help
analysts keep track of the groups. Provenance information such as “what filtering
mechanisms did I use to create this group” needs to be automatically saved to help
analysts remember. We had designed the ARF framework so each group retains its
own current state of align, rank, and filter. However, this case study revealed that
analysts would want to apply the same ARF to all groups, and track how these
groups differ. Allowing linked exploration among all groups would be helpful.

In the student record scenario, our analyst was driving the application, so the
developer could observe how analysts unfamiliar with Lifelines2 might use it. We
observed that both ARF and the temporal summaries were easily grasped. The an-
alyst commented, “Alignment is so useful”. However, the nuances on how to better
strategically use ARF escaped our analyst in early use, which confirmed findings
from our previous controlled experiment [21]. In a few instances, the analyst asked

if it was possible to create a certain group. The process required several steps and

132



a combination of more than one selection mechanisms. A new user who had spent
fewer than 10-15 minutes with the application was not expected to make that kind
of connection. On the other hand, selecting from temporal summaries and grouping
selected records were understood well in that time frame. Our collaborator used
temporal summaries to perform temporal selections and create additional groups

with relative ease.

5.5  Summary

I present the feature Temporal Summaries, and a detailed scenario describing
how temporal summaries are used to give dynamic overview of the event trends and
allow analysts perform temporal constraints. I show in the Heparin-induced Throm-
bocytopenia case study and the graduate student academic progress monitor case
study how temporal summaries, coupled with grouping support, help the analyst
search for the data and perform the analysis they intended. They were able to find
visual evidence that supported some hypotheses, or find the lack of visual evidence
that lent no support for their hypotheses. In the Heparin-induced Thrombocytope-
nia study, the physicians were also able to come up with a new (though related)
hypothesis for further analysis. The successes in these case studies give evidence as
to the usefulness of temporal summaries, and the process suggested some potential

improvements.

133



Chapter 6
Solving Real Problems: Case Studies and a Process Model

6.1 Overview

As many interactive visualization systems have been studied in the confines of
a laboratory, the experimental results are replicable and consistent. However, these
settings are merely a simulation of what is out in the real world, and sometimes
practitioners can find it difficult to generalize their results from an experimental
setting to a real-world setting, especially when the visualization system has many
features or configurations. As a result, there is a movement by visualization design-
ers to develop less confined methods to evaluate the value of visualization systems
[99, 74, 43|, and several publications have utilized these methods to evaluate their
systems [94, 79, 67, 93]. In particular, Shneiderman and Plaisant have advocated
a Multi-dimensional, In-depth, Long-term Case Studies (MILCS) method to study
how visualization systems are used in real systems [99]. The methodology consists
of three main ideas. First, in the study, the system is used by analysts who have
a need to use it to solve real problems with real data, outside of the laboratory
setting. Secondly, the visualization designers compile data from multiple sources —
such as analyst interviews, case study observations, and software logs — to build a
narrative of usage in the context of real scenarios. And finally, the success of the

visualization tool is measured by the success of the analysts.

134



While the small, yet fundamental, feature such as alignment can be evaluated
in a laboratory setting, the evaluation of the larger set of features such as temporal
summaries, group comparison would not be complete without long-term case studies.
A number of case studies on Lifelines2 with real data and real participants have been
conducted since the start of the Lifelines2 project, with some already presented in
Chapter 5. Following the MILCS guidelines, there are two phases for the studies.
In the early adoption phase, I assess how Lifelines2 fits the participants’ needs, and
new major features are developed as a result. In the mature adoption phase, no new
major features are developed. The efforts are concentrated on bug fixings, adding
minor features, and collecting participants experience with the tool.

I present these case studies and discuss them in detail. I then generalize these
studies and present a process model for performing exploratory analysis of records
of temporal categorical data. By analyzing the usage logs from the Lifelines2 system
with collaborating testimonials from the case study participants and case study ob-
servations, I present some recommendations to the future designers of visualization

systems for temporal categorical data.

6.2 Case Studies: Early Adoption

The contrast-induced nephropathy case study presented in Chapter 5 is one
of the three main early adoption studies where the primary goals were to investi-
gate user needs in searching and browsing temporal categorical records. The other

early adoption case studies include an earlier study on heparin-induced thrombo-

135



cytopenia, the precursor study of the one presented in Chapter 5 and a study on
trauma admission with hematocrit. Both of these studies are mainly directed by Dr.
Mark Smith (director of the emergency department) and Dr. Greg Marchand (As-
sociate Medical Directory at MedSTAR Transport Services and Assistant Professor
of Clinical Emergency Medicine at Georgetown university School of Medicine) from

Washington Hospital Center/MedSTAR.

6.2.1 Early Heparin-Induced Thrombocytopenia Study

Contrast-induced nephropathy and heparin-induced thrombocytopenia case
studies share some similarities in their medical definition. Contrast-induced nephropa-
thy is defined by a rise in serum creatinine value in the blood, and usually occurs
within 14 days after a radiology contrast. This is an adverse side effect that may
be fatal if not treated immediately and appropriately. Heparin-induced thrombocy-
topenia is defined as a sharp drop in platelet value in blood (usually more than 50%),
occurring within 5-9 days after exposure to heparin, a blood-thinner. They both
focused on adverse reactions due to medical procedures. The adverse reactions are
not otherwise noted in the hospital database (no events marked as contrast-induced
nephropathy or heparin-induece thrombocytopenia). The only way to tell if a pa-
tient has the adverse effect is to examine the event patterns in patient record. The
number of patient records that require review is large. Without effective filtering
and visualization strategies, the task would be too time-consuming. The sentinel

events were clear on the scenarios. Furthermore, the medical definitions also require

136



a temporal constraint on a second event relative to the sentinel event.
A number of features in Lifelines2 were developed to support the common

needs in these early case studies:

e Absence events in the sequence filter was implemented to allow the specifica-

tion of baseline events prior to the sentinel event.

o Alignment-by-all-events and temporal summaries were created to handle tem-

poral constraints.

e Grouping support was added to allow incremental filters.

However, the heparin-induced thrombocytopenia study had additional com-
plexity in the data that required additional preprocessing support. This case in-
volves the usage of a class of drugs collectively called “heparin.” There were 12
different types of “heparin” in the hospital database. When the collaborators and I
inspected the data in detail, we realized that the data needs to be cleaned. For ex-
ample, one type of heparin “Heparin/NaCl 0.45%” turned out to be heparin flushes
— heparin given to keep IV catheters open — and should not be considered as the
administration of normal heparin doses. For this particular clinical question, Plate
High and Plate Normal mean the same thing, while Plate Low and Plate Critical
mean the same thing. These two issues mean that data-preprocessing in the form of
category re-organization is required. I created a tool called “Category Mapper” that
allows the mapping of original events to new events. Analysts can pre-process the

data by merging categories, removing categories, and duplicating categories. For

137



example, we created the Heparin Variant category that is the superset of all other
heparin events (aside from the known heparin flushes). The physicians insisted on
keeping the original heparin categories so they could examine them individually if
needed.

Another obstacle this data set presented was its scale. The data set originally
had 8487 records with 153066 events. After preprocessing and the duplication of
some events, the total number of events increased to 226585. There are almost 70000
Heparin Variant events total, and when align-by-all was applied to Heparin Variant,
70000 visual representation of the records are created, overwhelming the system. In
order to deal with the problem, I reworked the underlying system to reduce the
memory usage. Event names were transformed into integers. Visual representations
of records are only created for the ones only visible on screen. They are created
on-demand, and cached for later access. These optimizations allowed Lifelines2 to
handle this large dataset and its subsequent operations.

Even with all the additions to Lifelines2 and refined data, the case study did
not progress as well as anticipated. This is due to several reasons. While Dr. Smith
and Dr. Marchand were interested in identifying patients that may have the heparin-
induced thrombocytopenia, they were busy fulfilling their daily duties, and could
not meet very frequently (once every two months was fairly average). Even though
the database administrator David Roseman was able to meet with me to deal with
data issues and keep an eye on the progress, the case study ultimated needed the
physicians’ guidance. The progress of this case study was very slow. From initially
obtaining the data to refining the various aspects of Lifelines2 to handle the data

138



to finally allowing data exploration with the physicians, it took about four months.
After sitting down with the physicians to look at the data, they realized that there
may be too many other reasons why a patient’s platelet may drop after having
received heparin. The physicians were unsure as to what other pertinent data can
be added to increase the quality of analysis. It was decided that this study should
be on-hold until a more focused question can be asked and more specific data to be
included.

This case study eventually led to the study of HIT patients in ICUs and the
cost they incur to hospitals reported in Chapter 5. That study was conducted with
Dr. Vikramjit Mukherjee, who was more available and could meet more often. In

contrast, that study took one month and half total.

6.2.2 Trauma Patients and Hematocrit Study

The trauma admission and hematocrit study was mainly directed by Dr. Greg
Marchand. Hematocrit is the proportion of blood volume that is occupied by red
blood cells. Low or critical levels of hematocrit indicate significant hemorrhaging.
Dr. Marchand was interested in what proportion of trauma patients whose hemat-
ocrit level dropped significantly (usually more than 25%) in the first 24 hours upon
trauma admission. Subsequently he was interested in the relationship of hematocrit
test values as a predictive measure for patient discharge status (whether discharged
dead or alive). This study was conducted at the same time as the early heparin-

induced thrombocytopenia study.

139



The Washington Hospital Center initially provided 7801 patients with 68941
events in this dataset. It consists of patients who were admitted to the trauma
service with hematocrit test (HCT) results. We were able to find the proportion
of patients who had low or critical levels of hematocrit within 24 hours of trauma
admission using temporal summary and range selectors. The dataset later expanded
to include discharge status.

This study required comparison of two groups. One with recorded low hema-
tocrit readings within 24 hours of entering trauma care and one without. I imple-
mented a comparison view to Lifelines2 to allow comparison of event trends between
existing groups. Because sometimes analysts compare groups that have very differ-
ent sizes, I added options to allow different aggergations to be visualized. Analysts
can choose to visualize (1) Number of Events (default),(2) Number of Records, (3)
Number of Instances (when align-by-all is in effect), and (4) Number of Events per
Record (for normalization). In particular the screen shots presented below use the
fourth option.

Figure 6.1 shows the number of hematocrit tests performed per patient in each
day, aligned by trauma admission. The orange portion of the graph shows the normal
or high readings of hematocrit (HCT Normal/High), while the pink represents the
low or critical readings (HCT Low/Critical). The top temporal summary is the
population of patients discharged alive (over 7000 patients), and the bottom one
represents the population of patients discharged dead (453 patients). The numbers
indicate that the patients in the dead population received more hematocrit tests

in the first 24 hours, presumably because their more severe conditions required

140



( Record View rCnmnansnnww ARF rCnmuansnn ‘

Oigy: EvenblandedbyReod) v | zumt: 5[] snote | | Choose Comparison Type

‘BeMeen Group Comparison ‘ v ‘

il
Distribution(s) Align by...

16408

‘lst ocurrence H
HCT Low Gritical

70 60 50 40 30 20 1D 1D 20 30 4D 50 60 70 80 90 10D 110 120 130 140 150 %60 170 180 190 200 210 220 230 24D 250 260 270 280 290 (1M 3D 320 WD U ‘ATRMAdm\med(mm) M
HCT Normal [High -
000

Record Groups
[ Al Records

324 Dead
HCT Normal High
02

Records: 7323

[v] Ave

HCT Low Gl ——
Distribution of...

[] A Discharged Dead
HCT Low/Critical
[ & Distargeddive
[ A TR Adnitted
HCT NormalHigh

Records: 453

Figure 6.1: the comparison of the distribution of hematocrit lab re-
sults of two patient groups: the ones that were discharged alive (top),
and those discharged dead (bottom). The data is aligned by Trauma
admission. Orange indicates normal/high hematocrit events, and pink
indicates low/critical events.

more monitoring. It also shows that the dead population tended to have much
higher number of hematocrit low/critical values. Without this comparison, these
differences would otherwise be difficult to tell from the raw event representation in
Lifelines2.

Figure 6.2 shows the comparisons of discharge patterns of the two same groups
(normalized by record numbers). In contrast to Figure 6.1, the were was not aligned
by a particular event. The discharged alive distribution (green, in the upper tem-
poral summary) has fewer variations than the discharged dead distribution (red)
because the sample size for discharged dead is much smaller and that graph is more
sensitive to small changes. The interesting thing to note is that the discharged
alive distribution shows the annual peak in late summer-fall (August-Octorber),
and the pattern is almost cyclic. On the other hand, there does not seem to be such

regularity in the discharged dead population.

141




Lifelines 2 - hematocrtdischarge.it (ake date)

Fie About

Record View ’/Cnmpaﬂsnnwew \

ARF ’/Cnmp nnnnnn \

Distribution(s)

A Discharged Aive
A Discharged Dead
Recads 7323 ||.|IIIIIII
A Dischanged e
A Discharged Desd

Ilnlllllll

e (1]

memI

0062

ek ||.|inllll.llﬂ:..llll.[i:::::T:i:i.ul.ﬂ:lllil||.|.||||i..lll..l.|J.||I.m...i.

s

I

Oy Evens{ornazed b Record | | oot Days

|v| oo

Choose C

ison Type

o 5 o7 oa

.

8

0022

4| ‘Bemeen Group Camparison

Align by...

‘Nn Algrment

Record Groups
[] Al Records

[¥] Dead

[v] Alive

Distribution of...

A Discherged Dead
[m] HCT Low/Critical
A Discherged Alive
[] & TRMAdnitted
o HCT Normal High

Figure 6.2: The same two groups as in Figure 6.1, but this figure shows
the distribution of the discharge numbers (normalized by record counts)
across calendar year. Green indicates discharged alive, and red indicates
discharged dead. There is a fairly regular pattern (almost cyclic) for
discharged alive year-in year-out with the annual peak usually centers
around late summer/early fall. The discharged dead aggregation does
not have seem to have as regular pattern. This is partly because there
are so much fewer discharged dead cases (~ 450) when compared to alive
cases (> 7000).

Despite the warm reception and small successes, this case study was never fully
completed. One problem that was discovered in these early studies is that sometimes
the numbers in the medical description play a huge importance — as the 50% drop
in the heparin-induced thrombocytopenia case and the 25% drop in the hematocrit
case. Since Lifelines2 focused only on categorical data, and had no search support
for numerical data, it was uncomfortable for the physicians to make a judgement
on the quality of search results based on the data available. They saw the values in
being able to perform exploratory analysis, trying different paths of exploration, and
quickly switch from one focal point to another, but the lack of support for numerical
values was a constant criticism of our approach. While numerical support remains

a feature the physician collaborators wanted, I have chosen to stay away from it for

1

42




the sake of the dissertation: There had been much visualization work on that area

and had less research value.

6.2.3 Observations and Discussions

The physicians were observed to be enthusiastic about Lifelines2. They saw
Lifelines2 as a wonderful visual tool, and found Lifelines2 enables them to under-
stand their data more effectively. Dr. Marchand, in particular, said that,“I am a
very visual person. To be able to see the patient records this way allows me to under-
stand it so much quicker and more reliably.” When all of us met to study the data,
he and his team dictated the steps that needed to be done, and I drove the software.
The nature of the dictation was, “Now align by Trauma Admission, and show me
the distribution of Platelet Low/Critical... and rank by the same category.”” That
is, the dictations were specific to Lifelines2 operations. This is indicative of their
understanding of the features in Lifelines2 and how their medical questions can be
translated to the combination of these features. They were able to grasp this level
of understanding after just a 10 minute demo of Lifelines2. They seemed to pick up
the general ideas of ARF and temporal summaries in that amount of time.

The physician and his team of physicians were observed, when in meetings
with me, to constantly refer to the main visualization of Lifelines2 and discuss the
potential circumstances of each particular patient. That is, Lifelines2 visualization
of each patient record encouraged narrative about the patients. The physicians were

able to “fill in the gap” for many of the patients. In the qualitative study presented

143



in Section 3.4.2 (55), I also observed the medical expert to narrate and enrich the
patient stories behind the visualization based on their domain knowledge. The nar-
ration then is used to guide their reasoning and exploration through the data. For
example, in the early heparin-induced thrombocytopenia case, the physicians knew
there were a large number of drugs containing the name “heparin”, and they also
knew that “heparin flushes” behave differently than the normal heparin doses. How-
ever, it was not until they looked at the data in Lifelines2 and examined the patterns
of platelet counts with respect to each heparin drug did they realize that responses
were very different depending on which heparin drug was administered. At that
point, they recalled that “heparin flushes” were also recorded in the database, and
needed to removed in order to proceed in the study. Thus, the physicians were able
to make connections between the individual record visualization and their domain
knowledge, and classify patients by the group visualization (temporal summaries)
support. When interviewd by the Terp Magazine, Dr. Marchand commented on
Lifelines2, “This technology saves time and gives us another important diagnostic
tool” and “[it] will not only make for better care by doctors, but also help patients
make healthier choices on their own.” [111].

The physicians felt that these case studies, while initially thought appropriate,
were not the best match for Lifelines2 because of the lack of numerical value support.
They had decided to wait and think of additional, more appropriate scenarios for
Lifelines2. Dr. Marchand had since then moved onto other things and was not able

to guide the direction of the investigations.

144



6.3 Case Studies: Mature Adoption

When most of the features in Lifelines2 were implemented, I started conduct-
ing more mature case studies. During these case studies, no main features were
added. The efforts were put into software stability, bug fixing, and minor feature
additions. The goals of these studies are to evaluate the usefulness of Lifelines2 as
a whole, gather participants’ comments and suggestions. Chapter 5 presented the
more mature heparin-induced thrombocytopenia study and the graduate student
progress case study. Here I describe other studies that were conducted in the more

mature adoption of Lifelines2.

6.3.1 Heart Attack in Relationship to Day Light Savings Time

A recent article published in the New England Journal of Medicine tied the
day light saving time changes to an increase of heart attack incidents in the following
week [44]. In particular, the study indicated that the spring time change commonly
known as “spring-forward” seems to be associated with a higher number of heart
attacks. However, “fall-back” does not seem to be associated with the phenomenon
(in fact, the rate is lower). Dr. Mark Smith of the Washington Hospital Center was
curious to see if by using Lifelines2, we could mirror the study and find out whether
there is such a phenomenon in the clinical database in Washington Hospital Center.

He requested the database administrator David Roseman to find patient records
of the following three indicators of heart attack from the years 2004-2008: (1) el-

evated troponin level (2) admission diagnosis of myocardial infarction (or related

145



Bl m 21
a7m7
o || ‘ |“ ‘ “ ‘ ‘ | ||| ‘ ‘ | ‘ ||‘| ||“|‘ ‘ ‘ ‘ | | ||‘ | ‘ ‘ | ‘l ‘l‘ |‘ “ |‘ “l ‘l ‘
Records: 46805 |II | II I ||| |||III | II | II | I II |I | | I| || II| | I| I|I I |II ||I| I | I I| III|

Figure 6.3: Distribution of heart attack events aligned by all “Fall-Back”
daylight saving time change days.

forms), and (3) discharge diagnosis of the same terms. Roseman was able to find
patients of (2) reliably from the database but not the other two, so I used those
data to perform the mirror study.

I first converted the data into Lifelines2 format, and supplemented it with the
day light saving time change events. There are three additional event types: Spring
Forward, Fall Back, and the generic Day Light Saving Time Change. There are a
total of 9361 records and 196581 events total.

Initially I performed align-by-all on Day Light Saving Time Change event, but
no pattern in the temporal summaries can be visually detected. I then aligned-by-all
Fall-Back and also aligned-by-all Spring-Forward events and showed the distribution
of the heart attack occurrences. While there does seem to be a rise of heart attack
incidents in first few days following the time change, the rise is not qualitatively
different from other rises in the graph. The visual evidence is not overwhelming.

Despite the lack of visually compelling data, I investigated it further by fol-
lowing the the steps of the study. The study compared the daily incidents rates in
the week following the time change to the average of the incidents rates of the same

day 2 weeks before and 2 weeks after. Using Temporal summaries and focusing the

146



00010

-1 M M 2m
AHeart Attack
Records: 46805 II II| I|II | |II|| II I II | III| I II I|I | I I| I| I III |I|||I ||I| || II | I|II | IIIIl |III

Figure 6.4: Distribution of heart attack events aligned by all “Spring-
Forward” daylight saving time change days.

visualization to the granularity of days, I was able to quickly obtain the numbers.
Putting these numbers into an excel spread sheet to further compute the compar-
isons. Similar to the original study, the incident rate of heart attacks are higher
in the week following the Spring-Forward time change than the week following the
Fall-Back time change by about 22%. Also similar to the original study, there is
a large spike of heart attack incidents on the third day after the Spring-Forward
alignment. While the original paper reported that the incident rates were lower
in the week following Fall-Back, I did not observe such a trend in the Washington
Hospital Center data.

The relatively small sample size and the nature of clinical data as opposed to
high-quality, well-maintained data may be the cause of the difference. The sample
size from the original data is about 2 orders of magnitude larger than the WHC
data. The original study used data from the Swedish registry of acute myocardial
infarction, which is known for its high quality. Nevertheless, the study with WHC
was completed in 2 hours — from converting the data from Roseman to finishing
analyzing the data in Excel. The speed comes from the flexibility of being able to

specify the temporal granularities to days, and allowing the align-by-all to focus

147



on all Spring-Forwards or Full-Backs. Combined with how temporal summaries
aggregates the events, the case study was fairly straight forward and trivial. The
uniqueness of this study was that there was no filtering or ranking operations. All the
physicians cared about were the incidents rates, trends, and the final comparative

numbers.

6.3.2 Communication Network in Drug Trafficking Ring

Chris Hutchins, the Information Technology Manager for the North Texas
High Intensity Drug Trafficking Area (HIDTA) under the Office of National Drug
Control Policy contacted me for a copy of Lifelines2 for his data analysis of those un-
der surveillance. The bulk of his drug trafficking data consists of telephone records
which are time-stamped. He had been using the Organizational Risk Analysis soft-
ware from Carnegie Mellon, a MySQL Database, and MS Office software for data
analysis. He also used Tomcat for active web component, php for scripting. Java
and javascript are his choice of programming languages.

Ideally, Chris wanted analysis tools that can provide spatial-temporal-social
analysis support, but it was not possible to find the appropriate tool. He turned
to academic tools to supplement his needs. He also requested GeoDDupe [48] for
geospatial analysis, SocialAction [78] and later NodeXL [100] for social data anal-
ysis, and finally, Lifelines2 for temporal sequence analysis from Maryland. He was
spending some time aside from work to identify potentially useful tools for their

daily analysis work.

148



One aspect of his analysis was to study the communication patterns of the
involved parties. He believes the communication patterns will trace the necessary
steps to move drugs and money around the country and that visualizing these calls
on a time scale can help him find key participants. In addition, he thinks Lifelines2
can help him identify the sources and destinations of communications across the
entire network and, hopefully, whether local netowrks “fire” from either supply-side
forces or markeet-side forces.

Part of the study was to determine what was the best way to transform the
network-natured data into temporal sequence records. Through a few e-mail ex-
changes, Chris and I determined that it was best to convert each phone call source-
destination pairs as each event type, and then salt calls (by adding special events for
them) where there is significance. For example, calls to the person with the highest
eigenvector centrality can be salted so that Chris may align by it.

Having decided on this approach, Chris fetched the data and processed it. In
a small set of data where there are 51 records and 628 phone calls, Chris looked for
sentinel events that increased chatter. He found it by focusing on the calls made by
the person with the highest eigenvector centrality and the number of calls between
this person and another important player From Ryan to SEAN H. By quickly testing
different sentinel events, he was able to find the call From RYAN to ROMFEY as the
sentinel event that seems to be the precursor to a disproportionately large number
of From Ryan to SEAN H in the following month 6.5.

Chris later added the event “Interjection” to the dataset to study the com-

munication trend before and after the law enforcement intervention. After detailed

149



8 LifeLines 2 - lifeline. txt (fake data)

Pl About
Record View | Comparison Yiew | BRF | Comparison_|
AllRecords  Records 1/35 Zoomtos [ Merths |+ amnotater ||| Align by...
Align by [1st occurrenece of From RYAN P to ROMEY] = From RYAN P ko ROMEY(1) ¥
rom RO [y From RVAN P to ROMEY
rom 097 M¥rom RYAN P to 972something! Lt occurrence
rom toIN From RYAN Pto INTER-TEL
rom to 81 From RYAN P to 817something3 Rank by...
rom tosl imm BN P'to 81750mething?
rom toCv rom RY BN P to CVS PHARMACY Record ID [~]
rom tosT From % [ STORE FIXTLRES
rom o fom i
rom to f. om sk (|| Fitter by...
rom toJ0 From RYAN P to JOHN GB
rom tod0 Fiom RYAN P to 00406761 jiolte: -]
rom tosa e SAMENTHA
rom tollz m 17 M - :
rom to 1 om WICKIE H 5 ted
rom toRA an HEL clotes ded |
rom 10GO m GOVERNMENT PROGRAM =
rom tosT Ry EE B |
rom foAT Ejom RYANBLGATT MOBLITY s5rsomahing: =
R T, G | e
rom tu gg D 0 Bealionacom
rom o From RYAN P to AMANDA T istributi
rom fost From RYEAN P to 617som sthing1 Show Distribution of...
rom o0 From RYAN P to OBTE O
rom to6g NP to 852s0m ething! AT BIOREN I >
rom toJE AP IBRERRY A R, v
rom oW 9 o X
rom toSE
rom to 10 £Y 1 | M =
rom to AR Fiom RYAN Pto ARTYR.
rom to M From RYAN P to MICKY G I View Record Group...
Al Records -
= Less Controls
e Everts | Toons | Labek | Algment
TV M| 0M | 3M [BM [TM BW (W [4M [3W 2@ 1M RN W IW EW Ew e Ew smww || Legend =
N From JOSE 5 to AUDREY P
£ A FromMICKIE H to RYAN P |
AFrom RYAN P to SEAN H 4 Ii ID \:
L I Edit Everts
Records: 1 [ [ s B coman
Distribution || Distribution by Occurrence Relative to Algnment_| HC“_ @ 2007 - 2009
i HCIL UMD

Figure 6.5: Telephone data in a drug trafficking ring is aligned by a
phone call between the person with the highest eigenvector centrality
and another. The analyst tried several sentinel events, and found this
one led to an increased chatter between Ryan and Sean, two important
players in the network.

analysis, the “Interjection” event is correlated to the increased number of phone
calls by important actors in the network. He commented that “the distribution
shows the impact of event Interdiction on communications between 2 selected par-
ties.” While performing these studies, he enthusiastically commented on the com-
bination of alignment and temporal summaries, “the distribution panel shows an
extremely good view of what happens to a selected call target in relation to the
aligned call.‘This is not done well by any other software I'm aware of!”

This case study was conducted without any face-to-face meetings or phone
calls. The progress was reported by Chris via e-mail. Since the data were sensitive,

I only received the anonymized data and screen shots from him. Chris also reported

150



a number of bugs that I fixed.

In a post-study e-mail interview, he responded that he had no more time
to perform investigation with Lifelines2, “I used [Lifelines2| for several weeks, and
stopped due to lack of time”, “I haven’t been using Lifelines2 recently and my in-
vestigations of it stalled, for the classic reason: I got no time to advance technology
because there’s no time available. Not my choice. There’s a chance I'll get some
graduate research assistants help from UT Dallas this year, but the project is in its
infancy.” However, he felt that he was getting some new perspective with the visual-
ization provided by the tool: “[With regard to Lifelines2], I think I was approaching
a point where it would be helpful. Since I was very interested in sequential event
analysis, I found some of what I was looking for.” He commented on the quality of
the information shown in the visualization in Lifelines2 to him and the viability of
sharing the data with his colleagues as follows: “Since I [...] ran short of time to fully
analyze it, I didn’t try to share the results with very many people. The few I did
show thought highly of the information available from the software.” When asked
about the biggest bottleneck for his case study, he said it was data extraction and
conversion. He said that “Law enforcement (LE) is riddled with siloed data sources,
and lack standardization. [...] There is no standardized training for analysts across

the country.”

151



6.3.3 Exploring Book Reading Sessions on ICDL

International Children’s Digital Library (ICDL) is a project that began and
is maintained in the Human-Computer Interaction Lab (HCIL) at the University
of Maryland. It hosts over 4000 children’s books translated into over 50 different
languages !. Lab visitor Rong Chen was interested in analyzing how the books are
accessed, how this information can be used to help the site understand how people
are reading the books, and ultimately how to design features to support the reading
habits.

Rong used the server web logs to track each visitor’s session in ICDL. The
logs identify each visitor by IP, and catalogs the visitor’s reading pattern — when
the visitor clicked on a certain page, how is the page represented (single page format
or double page format), what language is the visitor using to view it. She had used
Spotfire 2 as an analysis tool to explore the various dimensions of the log data.
However, the book page visitation patterns were of particular interest to her, and
Spotfire did not have good visual representation for temporal categorical records.
She turned to Lifelines2 for her visualization needs.

Initially, she chose to visualize one of the most popular books “The Blue Sky”
from the library to get an understanding of what the data feel like. Each visitor
identified by an IP is transformed into a short ID number. Each visitation to a
book page was recorded as a separate event, e.g., event 001 for visiting page 1.

Since every visitation is associated with time, these events are time-stamped. While

Thttp://www.childrenslibrary.org/
Zhttp:/ /spotfire.tibco.com/

152



1537
D mk don Y
& =
doon

Figure 6.6: Three records representing three visitors’ reading behavior
in ICDL are shown. These records are aligned by the visitor’s first visit
to page 1: event 00I1. These behaviors do not conform to the common
expectation. In particular, the first visitor has bursts of fast backward
seeking as if the visitor clicked on the “back” button in the browser
quickly to get to a certain page.

she had expected page-by-page transitions as in the canonical reading behavior, not
all visitors exhibited that pattern. Some visitors did not start with the first page.
Some visitors did not finish the book. Some visitors jumped around pages, while
still others seemed to be turning many pages very quickly without reading. Some
of the patterns can be found in Figure 6.6.

One particularly interesting class of patterns that was discovered was that
some visitors would have a series of many visitations to consecutive pages previously
viewed in the reverse order. We had conjectured that these visitors used the “back”
button on their browser to quickly get back to a page they previously visited. This

raised the question that why the visitors chose to use the back button instead of the

153



book page index page where all pages of the book are in one view, and the visitor
can choose one with the guidance of thumbnail pictures. Was it because the visitors
did not know how to access the index easily? Or do the visitors perceive it was
easier /faster to use the “back” button? While we were not able to pursue these
questions further (we could not link IPs to contact information of the users since
ICDL does not require registration to use), this may have revealed a ninteresting
usability trend by the visitors to ICDL, and may influence later site design.

One other interesting insight that was gained was that in books where there
is no text in the initial pages (as many children’s books often have rich illustration
instead of text in some pages), the most frequently visited first page for those books
is the first page with text. Some visitors are observed to read the books more than
once in one session — perhaps twice very thoroughly, or once casually and once
thoroughly, or once thoroughly and carefully re-read several other pages.

While these results were interesting, the most important thing was that the
visualization revealed several previously unanticipated reading behaviors by visitors.
Because of this, Rong and her colleagues Bederson and Rose realized that analyzing
the ICDL usage required some structural definition — what does it mean to read a
book? From the web log data, how can we define that a visitor has read a book
(or most of the book)? They later used a number of variables to define what a
Real Book Reading Session is, and used the definition to mine visitor logs that fit
the definition. The results of their findings were published in the 13th European
Conference on Digital Libraries [13].

While Lifelines2 played a role in helping the analysts visualize on-line book

154



reading behaviors, some shortcomings of Lifelines2 were also revealed. It was not
possible to compute some general but useful statistics. For example, in the book
reading example, it would be nice to compute the average time spent between pages,
or average time spent between certain pages. Secondly, it was difficult to generalize
event sequences. Spotting reading patterns that are very distinct from others was
not very difficult, but spotting the difference among similar event sequences was.
A better aggregation and visualization support for event sequences would go a long
way for this case study. However, there can be challenges in designing an effective
sequence aggregation for this task — the analysts are interested in reading patterns,
which is different from event patterns . That is, the analysts are interested in
reading patterns that are represented in the web log as a class of event patterns.
They care about how book is read, which is a higher-level generalization than the
sequential access to pages of the book. Unless the sequence aggregation is able to

flexibly further generalize specific sequences, the problem will remain unresolved.

6.3.4 Hospital Room Transfer

Physicians in the Washington Hospital Center are interested in patterns of
patient transfers between hospital rooms. The rooms in a hospital can be classified
into several categories: ICU (intensive care unit, typically the highest level of care),
Floor (normal hospital beds, typically house the patients with no life-threatening
conditions), IMC (intermediate medical care, which typically houses the patients

that need elevated level of care, but not serious enough to be in ICU), and Special

155



(emergency rooms, operation rooms, or other rooms). In these studies, these events
represent the entering time of the rooms, not the exiting time. The physicians are

interested in two particular pattern sequences:

1. Bounce-Back: In the bounce-back scenario, physicians are looking for pa-
tients who were discharged from a higher-level care room to a lower-level care
room, and then back to the higher-level care room. For example, ICU -> Floor
-> ICU will be one such sequence (where -> denotes “followed by”). These
cases represent patients who may have been released from the higher-level-care

rooms too soon.

2. Step-Up: The step-up cases are the patients who were initially triaged into
IMC rooms, but then immediately required escalation to higher-level care
rooms. These patients are the ones who may have been mis-triaged. That is,

they should have been sent to ICU as opposed to IMC in the first place.

These scenarios represent one way the hospital can evaluate its quality of
care. Performed longitudinally, the hospital can assess whether there is a drop or
an increase in quality of care. The numbers can be a measure of quality assurance.
The physician working with me is Dr. Phuong Ho. Aside from being a full-time
physician, Dr. Ho also works under Dr. Mark Smith in MedStar Institute for
Innovation (MI2), which seeks to find new technologies that can potentially help
physicians provide better care and hospital administrators to assess the quality of

care in the hospital system.

156



Dr. Ho said that, currently, the way Washington Hospital Center tradition-
ally finds these indicator numbers is either incomplete or time-consuming. First,
standard report of patients admitted to IMC or ICU is fetched quarterly. This is
an automatic service in the database system, and the query was written to include
patients admitted in that time frame and stayed in IMC or ICU. However, patients
who were admitted prior to the time frame and transferred to IMC or ICU would
be missed. This makes the quarterly report routinely miss a handful of patients
every time. This automatic system was, however, not amenable to change, so the
physicians could not change the query it issues. The way the physicians cope with
this is to write their own SQL query to fetch all patients in a certain time period,
overshooting the quarter by months to guarantee as many patients are included.

After they have put the data (either the under-reported automatic service or
the over-reported SQL query) in Excel, they would write rudimentary scripts to
perform this kind of temporal pattern search. However, they have found it difficult
to correctly specify the pattern in Excel. It was particularly difficult for them to
specify the temporal constraints and how far along the data should the query look
for (ideally it should be for all data, but the physicians felt they were at the limit of
their expertise with Excel and could not get to a satisfactory state.) The Excel script
typically take half a work day to implement, but would only take a few minutes to
return the numbers. However, the numbers typically represent grossly lower-bounds
— the error produced from the Excel scripts can be larger than that of the automatic
reporting service that fetches the data — and the physicians do not find the numbers

reliable.

157



The other way of performing the analysis is to have a resident or a nurse look
at the patient records (whether digital or on-paper) manually and flag those that
fit these patterns. While this approach usually gives higher quality results than
the Excel approach, it is extremely time-consuming. Dr. Ho said that it typically
would take at least 5 to 10 minutes to browse a record. When there are as many
as 500 patients in a quarter, this is simply not a good use of their time (not to
mention it could also be very error-prone). Therefore, they only do this sparingly.
Altogether, these figures that supposedly measure the quality of care are not high-
quality because the process of obtaining them is riddled with problems. When Dr.
Ho first saw Lifelines2, he thought he could leverage on a number of features that
help him get to more reliable numbers. For example, Lifelines2 can help select
the data from the results of SQL (e.g., selecting all patients who were admitted to
ICU or IMC in a quarter regardless when they were admitted), which would reduce
the data from the SQL query, but also be more reliable than the automatic data
service. He commented that, “[These are| not the sexiest scientific questions, but

very important clinical question for us.”

6.3.4.1 Bounce-Back

The bounce-back patients represent those who may have been moved from a
higher-level care room prematurely. The canonical list of sequences Dr. Ho was

looking for are the following:

1. ICU -> Floor -> ICU

158



2. ICU -> Floor -> IMC

3. IMC -> Floor -> IMC

4. IMC -> Floor -> ICU

5. ICU -> IMC -> ICU

In addition, Dr. Ho requires that the escalation to the higher-level care rooms
(the third events) needs to occur within 48 hours of the lower-level care room (sec-
ond events). There are no temporal constraints between the first and the second
event. These queries are slightly different from the the ones in the contrast-induced
nephropathy and the heparin-induced thrombocytopenia cases. It is not as clear
what the alignment event should be that would be the fastest way to get to the final
answers. At the end, we decided to align by the middle events so that the temporal
constraints can then be directly applied in the temporal summaries.

For example, the process to find the patients that fit the first pattern “ICU

-> Floor -> ICU”, we did the following steps.

1. Perform a sequence filter on ICU -> Floor -> ICU, and save the results as a

new group named ICU-Floor-ICU.

2. Align by 1%¢ Floor, the middle event.

3. Temporally select ICU events within 48 hours after the alignment.

4. Keep the selected records, and save as a new group as ICU-Floor-ICU Alignl.

5. Export this new group as a file, and return to the group ICU-Floor-ICU.

159



ququququ s i |, &
STt HciL)
] K1) *,

Figure 6.7: Screen shot representing the search results of one of the five
patterns for the Bounce-Back Study (ICU — Floor — IMC).

6. Repeat Steps 2-5 but align by the 1% Floor event.

These steps were repeated for the other 4 patterns. Figure 6.7 shows the
search results for the pattern ICU -> Floor -> IMC. By the end of the process,
there are a number of text files that represent the patient records that fit one of
these patterns. We then used a text editor to merge all these files into one for a final
count. Although these steps looks fairly involved, they allowed Dr. Ho to visually
examine the results after each step and decide if some patients should additionally
be included, like those who may have missed the 48 hours constraint by one minute
or two.

For the quarter of July to September 2009, we found 19 patients out of 576 that

exhibited this pattern. The pattern “ICU -> Floor -> ICU” is the most prevalent

160



pattern, with 10 patients. “ICU -> Floor -> IMC” had 5, “IMC -> Floor -> ICU”
with 4, “IMC -> Floor -> ICU” with 1, and “ICU -> IMC -> ICU” with 0. One
patient had two of these patterns, and that is why these numbers add up to 20
instead of 19. Out of the 576 patients admitted either in IMC or ICU in that time

frame, this represents 3.3%, and this is well within the bounds expected by the

WHC.

6.3.4.2 Step-Up

In the Step-Up Case, the Washington Hospital Center wanted to study the
trends of patients who were initially sent to IMC, but escalated to ICU within 24
hours. This is indicative of insufficient initial triaging — sending patients too sick
to IMC instead of ICU. Unlike the Bounce-Back cases, Dr. Ho was interested in
looking at the numbers with respect to two hypotheses he has had. First, the nurses
had been complaining about the increase of Step-Up cases. They had given Dr.
Ho anecdotal evidence that the initial triage had not been adequate recently. Dr.
Ho wanted to look at the numbers compared to historical numbers to see if this
hypothesis holds was supported. It that is the case, then WHC would consider
changing the way triage is performed.

Secondly, because an influx of new physicians enter the hospital in the third
quarter (fall semester) of every year, Dr. Ho thinks it may be the case that the rate of
Step-Up cases may be higher for these months due to the less-experienced residents.

A competing hypothesis may also be the case: the less experienced residents can be

161



over-compensating for their lack of experience by being overly cautions and sending
more patients to ICU than is necessary, thus reducing the number of Step-Up cases.
Dr. Ho wanted to find out whether there is evidence that supports either hypothesis.

The original query seemed simple: align by all patients’ IMC' event, and select
all ICU events that occur within 24 hours after the alignment. However, as Dr.
Ho and I looked at the data together and tried to perform the searches, he realized
some issues. For example, there should not be Floor events between IMC and ICU
(patient going from IMC' to Floor then to ICU) because this suggests the escalation
from Floor to ICU is not due to an earlier triage. Similarly, there should not be an
ICU prior to the IMC' in question. If there were, the patient was already in ICU,
and this would be considered a Bounce-Back instead of Step-Up. These nuances

can be handled and easily verified in Lifelines2 in the following procedure:

1. Perform a sequence filter on IMC' -> No Floor -> ICU, and save the results

as a new group named IMC-No Floor-ICU.

2. Align by 1% IMC.

3. Temporally select IC'U events that occur any time prior to the alignment, and

remove the selected records.

4. Temporally select IC'U events that occur within 24 hours after alignment, and

keep the selected records.

5. Save as a new group and export this new group as a file.

6. Return to group IMC-No Floor-ICU.

162



7. Repeat steps 1-6 by changing the 1% IMC to the n'* IMC. Stop when there

are no records with n IMCs.

We conducted this study for every quarter from January, 2007 to December,
2009. A sample screen shot of the process is shown in Figure 6.8. Figure 6.9 shows
the number of patients admitted to IMC during that period. It is clear that the
number had been on a rising trend. Figure 6.10 shows the number of patients
who exhibited the Step-Up pattern in the same period. This is a subset of all
patients admitted to IMC. The line graph is more jagged than Figure 6.9, however,
its upward trending is also clear. Given that the number of IMC patients are not
constant throughout the year, we plotted the percentage of patients who exhibited
the Step-Up phenomenon out of the IMC patients (Figure 6.11). It showed that
the percentage of Step-Up patients peaked in the middle two quarters of 2008 (at
nearly 7%), and had actually been in decline since then. This suggested that the
anecdotal evidence Dr. Ho saw was, in fact, merely anecdotal, and did not represent
a larger trend. However, these numbers also explained why the nurses felt otherwise
— the number of total IMC patients had been steadily on the rise, and so the Step-
Up cases were also growing, reaching as many as 20 in the last quarter of 2009.
Dr. Ho explained, “The nurses must have gotten the impression that mis-triaging
occurred more often because they have encountered more Step-Up cases. They felt
the increased number of cases was due to errors in the triaging, while the real reason
is more likely the increased of IMC patients.” He also said, “The reason why there

was an increase of IMC patients was not due to the increase of diseases or injuries.

163



B Leins - Step U207 Q3 ke dotl (S
File  About
Recd e | Corparsn'iew | | Compaon
AllRecords Recards 13/13 xont:[ooy: [ somotster ||| Align by..
by [istoccurencs oF 1] ] e
i st acarrance E
Qv nt T
oy Kﬂu R‘a"k by —
fil) AU A fecado [+]
Ho & y'e ey
o g Fiter by... —
Varaeaset No Fiter -
s At L
e e
Bt A& - '
[ Weotseese Resetrlms
kelnit At e
o & ‘AC‘ Colepsedl save Reco csas few Gowp
Floar oor Sioy
o A Show Distrbution of..
iossaczr T
o P A N [ o — T+
e & ik Ad, o %
o
Bt s Fore =
[ vasizzsr
e i View Record Group...
St i e —.
i} Ak A 15 Aign -|
i e K - AA
iy A Less Contrls \
V42534148 R
o o, K:J‘a Events | Tcans | Labels | Algmert |
o [ vt Lo [ bl | Bomen ]
o MC‘L A Legend
e A A A 7] A adit
s | BN
Sperid ‘emd ==
i} vy A M
e e
o y A ¥l A Foor
m Ast L
o
be a® A & A
e Ao AM A A i
| Va2507¢:
5 A
pecid eci
e ik A
i o
Bxt & A A &
(mp e
i it L
fa A E
Bet 7]
TR TR SR
s
Ao
Edt Events ‘
4t 1 2 1 1 1 1 11
Recards: 13 = . o — — o Copyright
Dstbuten | Dstrbution by Ocaurence Reftve & Aigent e 20
e e [ho o
—

Figure 6.8: Sample screen shot of the process in Lifelines2 to identify
the Step-Up patients

Instead, it was merely a reflection on the expansion of IMC care in the hospital.”

I re-ordered the percentage of Step-Up patients in a Figure 6.12 to better show
the differences across quarters in the past three years to investigate the second hy-
pothesis: “In quarter 3 (Jul-Sep), because of the increase of fresh, less-experienced
doctors, the number of Step-Up cases would be higher.” The chart indicated that
it was not quite the case. Of the four quarters, the second quarter has the highest
number of Step-Up cases altogether, and the first quarter has the fewest by a signif-
icant margin. Dr. Ho commented that, “The attending physicians (supervisors of

the residents) must have been doing a good job reviewing the results of the resident

164



IMC Patient Count

400
350 ~
,.f'"'f

100 IMC Patient Count

Figure 6.9: Number of patients admitted to IMC from the start of 2007
to the end of 2009.

triaging process.” He did not offer an explanation for why the numbers in the first
quarter are so much lower than the others.

Throughout the studies, we discovered a few bugs and a number of usability
issues. First, align-by-all can be conceptually confusing, especially when filtering is
applied. Analysts may have trouble interpreting the temporal summary when align-
by-all is used. When filters and save selected /remove selected are applied, analysts
expected the instances to be saved/removed instead of records, which Lifelines2
focused on. This is a major design problem because the visual representation differs
from what is happening in the data. Since the first meetings on the Bounce-Back and
Step-Up studies, I have made the changes so that filters operate both on records and
instances — so the representation reflects the data faithfully. Secondly, the Bounce-

Back study required the merging of a number of preexisting groups. We did this

165



Step-ups Counts

25
20
e I~ JE— /_\/
/ -~ ~
10 /
5 —SiEp-ups
D T T T T T T T T T T 1
L o o 4 £ o 5, £ o
WIS E TSI
\é\\ q?ﬂ ﬁ\\} Al{)':.- .{b{‘ $‘.‘,‘Q q;’\} {)Lr \'.-S;\ ?ﬂ \’\} ID{.-
MNP A & F @ Q@: S @
R SR R S S S

Figure 6.10: Number of patients who exhibited the Step-Up pattern from
the start of 2007 to the end of 2009.

outside of Lifelines2 by merging the exported data from the groups. Ideally, there
should be group operations in Lifelines2 that enable analysts to better manage the
groups. Finally, I have implemented a small feature that allows analysts to jump to
a specific patient record by ID. This was important as Dr. Ho would want to look
at a specific patient when the data have been re-ranked.

When Dr. Ho drove the application alone, I observed that he had no problem
using alignment, group selection/creation, rank, temporal summaries, and selections
on temporal summaries. However, he did have a problem formulating his query into
a sequence filter. He mentioned that he did not see the sequence Ul immediately on
screen so it did not remind him how to get to the filter. Other than the sequence
filter, Dr. Ho was able to perform the Case Study for Step-Up in a matter of minutes

by himself. He commented that, “The good thing about Lifeliens?2 is its visual power

166



Step-Up Patient Percentage

Step-Up Patient
Percantage

Lo T L I = T I =
]

¥
@""QQ W {;\‘*‘} ,\0" q;;bqﬁ '?-Q o S q;:)“ q{b{‘@?{? @\*‘-‘ %E)“
S & & § & & J

DA W AR AT W OO

Figure 6.11: Percentage of patients who exhibited the Step-Up pattern
from the start of 2007 to the end of 2009.

7

[...] Tcan visually look quickly to see if there anything amiss,” and “I could perform

the pattern-finding in matter of minutes, and feel that data is far more reliable

2

at the same time.” The dream feature for him would be to record the study and
automatically repeat it for every quarter. He wanted it to be automatically done,
and allow him to visually inspect the results so that he can manually change the
results if he needs to. If his review of the process revealed something wrong, he
would like to allow for different branches of the analysis to take place.

Dr. Ho had taken the results produced from our collaboration using Lifelines2
(numbers, Excel spread sheets, graphs, and Lifelines2 screen shots) to a physicians’
meetings in the hospital. The consensus was that these percentages were well-within

the boundaries — especially that it seems to be improving recently —, and changing

triage procedures was probably not a necessary course of action at this point. They

167



Percentage of Step-Up Patients By

Quarter

2

7

-]
i
oy 5
2 4
& m 2007
]
-]
w 2008

2

1 = 2009

0

Quarter 1 Quarter 2 Quarter 3 Quarter 4
Years

Figure 6.12: Percentage of patients who exhibited the Step-Up pattern
from the start of 2007 to the end of 2009 by quarters.

noted that the analysis is interesting, and would love to keep performing the same
analysis for as long as possible to build an historical baseline and so every quarter
in the future can be evaluated the same way. Furthermore, the data can be used
to compare to the numbers from other hospital care systems, for the purpose of
hospital metrics.

Dr. Ho had been working with me for five months. Because part of his job
at MI2 was to discover and test new technologies, he was able to spend more time
(roughly once every two weeks) meeting with me and evaluating Lifelines2, which is
far more frequent than the other physicians. Throughout these months, he was able
to come up with many case study scenarios where Lifelines2 could be used. However,
not all of them had data that were easy to obtain. We started and obtained some

results for the Step-Up and Bounce-Back cases, but we also started on a number

168



of other scenarios, which I do not have preliminary results to report. He said that,
“Lifelines2 would save me so much time to deal with all the different scenarios.”, “I
would never have to spend hours to write broken Excel scripts that produce low-
quality data ever again!”. Spending months working with Lifelines2 also changed
how he views clinical data. In particular, when I asked him about Lifelines2, he said
that, “Yeah, alignment was very different idea, yet so natural. I think about clinical

problems in terms of alignment now, but none of my coworkers does the same.”

6.4 Lifelines2 Feature Usage

These case studies showed how Lifelines2 has been beneficial to analysts in
a variety of different domains. In the mature adoption scenarios (the heart attack
incident in relation to day light savings time study and the drug trafficking commu-
nication network studies), the analysts found the features of temporal summaries
in conjunction with alignment the most useful. In the drug trafficking case, the
analyst was able to try different sentinel events while focused on the communication
frequency of important actors to discover an important actor in the dataset. In the
heart attack incidents in day light savings time change scenario, the situation was
more complex. Because of the small data size and a lack of automatic aggregation
in the granularity of weeks, temporal summaries did not show strong evidence that
the original study claimed. Despite this, the analyst was able to get a sense of
what the distribution of heart attack events looks like, something the original study

never demonstrated. Instead, the most important feature that allowed the analyst

169



to mirror the published study was the automatic tabulation of heart attack events
in temporal summaries. The fact that the temporal summary was configurable to
different temporal granularities made the counting very easy. In these scenarios,
comparison features and filters were not used.

In contrast, in the on-line book reading study of ICDL logs, the most important
feature was the visual representation of the records. The separation of different
event types to different horizontal space and the temporally placed events gave
the analyst a good sense of the overall pattern. The fact that the event types
(page numbers) also have an order made the visualization very clear, and conveys
several different reading behaviors saliently. Alignment was useful in aiding the
visual exploration of the data much as the experiment in Section 3.4.1. The studies
in the mature heparin-induced thrombocytopenia (Section 5.3.1), graduate student
academic progress (Section 5.3.2), and hospital room transfers (Section 6.3.4) used a
richer set of tools in Lifelines2. ARF, temporal summaries, and grouping operators
were used regularly. The first two studies also used group comparison features. The
last study used filters and selections in temporal summaries extensively.

As part of the evaluation process, I had kept a detailed log on the usages
of Lifelines2 operations. Some of the case studies had no logs because the data
are confidential such as the drug trafficking case or the graduate student academic
progress case. The collaborators did not want to de-identify the logs and send to us.
However, all of the case studies with the hospital data are included. The Lifelines2
log is designed so the log itself is in Lifeline2 format, and can be read by Lifelines2

for analysis purposes.

170



6.4.1 Log Data in detail

Since September of 2008, most of Lifelines2 features were complete. Since
then, Lifelines2 had been logging all the user actions in a log directory. There were
a total of 2477 logs. However, some of the logs were not due to exploring the data or
demonstrating the exploration results to collaborators. Many of the logs were short,
and no additional data was opened aside from the default file. These are indicative
that the session was due to testing and debugging uses. After removing the very
short sessions, those that do not open at least one other file, and those that had
logged no operators, I was left with 426 sessions (Figure 6.13). These logs contain all
of the case studies in which we collaborated with the Washington Hospital Center.
The temporal summaries in the figure show the number of events of Align, Rank,
and Filter. The minimal amount of activity in 2009 Jan represented winter break.
The lack of any activity in July and August of 2009 represented my time spent
in an internship. The peculiar spike in October of 2009 represented when Dr. Ho
and I started working on the hospital transfer data. The amount of operations in
Lifeliens2 was reflective of the fact that the study involved many steps, and over 15
different datasets.

Table 6.1 (Page 185) summarizes the logs of the usage of Lifelines2. The
operations are broken down into the following five main categories: ARF, Tempo-
ral Summary, Comparison, Data Operations, and Navigation. The raw number of
counts, counts per session, and percentage of sessions that logged such operations

are presented.

171



B Lifelines 2 - real-combined-2loads +.ixt (fake data)

Fie JumpTo... About

Recardven | Conparsanven | W | capason |

All Records  Records 426/426 zoontor[Years || amotster ||| Align by...

T=]|| o Aigment -
oo 0 E

O apos014_113 - Rank by...

L8 LugdH Record D [+]
ao Sl
Resize Resize.

[ WitL2008-10-14_1251
Zoom In Agoon In
e Her
ange Side ange side
Aig &

Ranik R
& e
ao Sl
Resize MRzsize.

DVL%LGn?—m—H;zn = rou
Gowp ﬂ":ﬁ“p‘" AddRecnts To.. penGow.. v
e Fir |
nﬁgj‘e ide ﬂﬁgfes"“ Show Distribution of...

Loa Loa

Serol Sarol A AignG71) [+
Resize Jresie Rark(150) |
‘WLLL2008-10-15_130

RAri e fom o i) I~
e =
ler Filer
s e View Record Group...

Ao Yo [l Records v]
loat Lozd
Resize R Less Controls

[ Vilage 1016119 o (Events | Teons | Tabels | Algrment
Filer Filer 5
R‘anga slide. ‘:‘mge Slide Legend |
Algn
(o Lost A AddRecords To Group
=L 7= A Change to Algnment Spit

WLL2008-10-16_1213 V] A Change to Nl Spit
Zoom In I © ’
oom In
Gow p [V A ExortGrow
Filer Filer
i‘angeshde ‘:angesme vl A Euca _
Rank nl%l Distribution of
long Load, Save Group As(Complement)
‘RE“E Roesize Distribution Mode: No Spit

0 ;:“'m’m""s kg\?,;‘“ A Distribution Mode: Split By Algnment 4
et lier
Range Slde Range slide < A Change Group N
g A Change

[ 7] A Change Conparison Grass
= a o o e e e S PV T T A Renove Selected
A Change Comparison Type
Change Camparion Event Types
Change Distribution Ty

Al 55 ange Disrbuton Type
e i 2 4 Crangevew
Filer s Save Group As

- i L L= ,
187 | 163 EditEvents
1 | s 1
. — o R — —
Recorch: 426 = 0 “ Copyright
Distribution | Distrbuton by Occurrence Relative to Algnment HCIL 007 - 2010
Ol IKl| HCIL UMD

Figure 6.13: Logs of Lifelines2 usage are analyzed in Lifelines

With respect to the align-rank-filter framework, Filter was the most-frequently
used operator. Alignment was second, and trailed by Rank. However, a larger
percentage (87%) of sessions recorded at least one use of Align, while only 68% had
any Filter. While Rank was useful to reorder the records by their event counts, it was
ultimately not a vital operator in the studies. When pairs of the Align, Rank, and
Filter were looked at as sequences, Align -> Filter and Filter -> Align occurred
in 250 (59%) and 211 (50%) sessions respectively. Align -> Rank and Rank ->

Align occurred at 162 (38%) and 123 (29%)sessions respectively. Finally, Rank ->

172



Filter occurred in 148 (37%) sessions, and Filter => Rank occurred in only 48 (11%)
sessions. When looking at a sequence of three, the break down (number of sessions
that had the contained the sequence) is as follows: ARF (Align->Rank->Filter):
123, AFR: 41, FAR: 37, FRA: 27, RFA: 104, and RAF: 87. These numbers indicate
although Rank is the least popular of the three operations, when it is used, Rank
is typically used prior to Align or Filter, or both. On the other hand, Align and
Filter are used fairly frequently, and which one tended to be used before the other
depends on the analysts’ tasks.

30% of the sessions used temporal summaries, and 24% used selections in
temporal summary. The average number of these operations across all sessions were
over 1 per session. This means that in sessions that these operations were used,
they were used many times, so much that the average count per record is brought
up.

The operations under the Comparison feature only occurred in 11-13% of
all sessions. However, analysts tended to change the event types in the compar-
ison and the groups in the comparison heavily. The type of comparison (Between
Group/Within Group/Both) or the type of distribution type (Event/Reocrd/Event
Normalized By Record Count) were less frequently used.

In these case studies, analysts tended to use Keep Selected as opposed to
Remove Selected. Save Group occurred in 29% of the sessions while Change Group
occurred only in 23%. This indicates that sometimes analysts would save a group,
but not change the group otherwise. This occurs not because the analysts do not

look at the newly created group. Instead, this is because Lifelines2 automatically

173



brings the analysts to the newly created group without having them perform the
group change themselves. Change Group, as expected, is used more frequently than
Save Group.

The first thing to notice in the navigation operations is that Scroll is a dom-
inant operation. Every session involved scrolling, and on average, each session has
more than 16 scrolls. Each scroll is computed only when an analysts lets go of the
mouse on the scroll bar or the up/down keys. Changing the Time Range Slider
was a distant second in usage in this category. In contrast, Change Granularity
(temporal granularity) was not as popular. This may be attributed to the fact that
Using the Time Range Slider analyst can control the temporal range more finely.
Even after using the cruder Change Granularity, an adjustment in the Time Range
Slider was often necessary. Zoom In was used more often than Zoom Out. Collapse

Record and Ezpand Record were the least used features.

6.5 A Process Model for Exploring Temporal Categorical Records

Combining the log data, observations with the collaborators, and interviews
and comments with the analysts, I constructed the following process model for

exploring temporal categorical records.

1. Examine data in visualization for confidence (overview/browse)
2. Exploratory Search

(a) Iteratively applying visual operators

174



(b) Evaluate Results of manipulation

(¢) Deal with unexpected findings

3. Analysis, Explanation

(a) Examine path of search as a whole
(b) Determine to what extent the questions are answered

i. At the limitation of the system

ii. At the limitation of the data

(¢) Refine existing questions

4. Report results to colleagues

(a) Document discovery

(b) Disseminate data

5. Move onto new questions

The exploratory process model presented here does not include the data ac-
quisition stage, which occurs before the exploration begins. However, it is worth
mentioning it because sometimes the exploratory process leads analysts back to data
acquisition. In the data acquisition stage, analysts decide the scope of the data that
they want to examine. When analysts are not satisfied with the data, found sys-
tematic errors in the data, or want to incorporate more data for deeper analyses,
they return to this pre-exploratory stage. In my case studies, this stage often takes
a long time. The reason for the lengthiness in acquiring data lies in the complexity

175



of the data, infrastructural or organizational barriers. The requisite data may reside
in different databases, named using different IDs or codes. They may be difficult to
search, and may require first finding someone who knows where it is.

One of the most common results of analysts looking at their own data through
a visualization technique for the first time is the surprise that there are artifacts
in the data (systematic errors, lack of consistency, etc.). This is because they have
never seen it in an effective format before. As such, my collaborators would cursorily
browse and sometimes examine in detail the data to make sure the data reflects what
they know. Sometimes they would find strange artifacts. For example, when the
data in mature heparin-induced thrombocytopenia case study was first converted,
my physician collaborators found patients who were given drugs after they had been
discharged dead! In this particular case, the discovery was made by playing with the
Lifelines2 interface by showing the distribution of drug prescriptions and aligning
by discharged dead events. The summary showed suspicious timing, and when we
tracked the patients down, we found 7 of them were prescribed drugs after they
had been discharged dead. All 7 cases occurred within one hour of their discharge
dead events, and we decided that we could safely assume that this occurred because
the drug database must have recorded the prescription event with some delay. This
also raised questions on how reliable the time stamp was, and whether subsequent
case study would be affected. We eventually found better data to circumvent the
problem.

After the analysts have gained confidence in the data and the visualization

(that the visualization was not giving false impressions somehow), they move onto

176



Stage 2 — exploratory search. They would start seeking answers to their preconceived
questions or finding evidence for their hypothesis. However, in the process of seeking
answers to one question, new questions often spawn when they notice interesting or
unexpected data. At this point they would utilize their domain knowledge to try
to explain what they see (for example, narrate about certain patient records to aid
their reasoning), or they would write down the new question for later exploration
(for example, noticing that a characteristic of the event pattern and needing a way
to handle them).

During the exploration, there may be different strategies. I have observed that
analysts would apply alignment on different sentinel events in the same exploratory
session to look at the data in different views. By using different alignment while
showing distribution of certain events they care about, they aimed to find useful or
telling sentinel events (Chris on the drug trafficking communication network case
study reported this same strategy). Some analysts would use a more traditional way
for exploration: actively manipulate the display by ranking, filtering iteratively, or
changing the temporal summary. Regardless of the strategy they used, alignment
remained the strongest indicator on what focus they have on the data. The changes
in sentinel event indicate a change of exploratory focus. Sometimes when the collab-
orators had aligned by one event, and realized that alignment would not lead them
to the information they wanted to see, they would reformulate the question and use
a different alignment. This had been observed with Dr. Ho, and in meetings with

Dr. Marchand and Dr. Smith (where they dictated changes of sentinel events).

177



Another important aspect of the exploratory search was that at each step
of the search, the analysts were very keen on what happens to the data. The
Lifelines2 log data showed how often the analysts used Scroll to view records in the
dataset. There are two hot spots where many scroll operations are performed in
the observation. The first is when the analyst is checking the data to make sure it
does not contain errors or missing data. The second is after align, rank, or filter
had been applied. Scrolling to see records in a new order by Rank is common.
However, my collaborators found it was just as important to examine the data after
Align and Filter operations. These operators can change the amount of data that
is being visualized, and my collaborators want to keep an eye on the results of these
operators.

Aside from manual scrolling, my collaborators would also keep an eye on the
distribution of their favorite events in the temporal summary and the number of
records in view. I observed that when align, rank, filter and group operations are
applied, the analysts would focus on these two things. They give the analysts a
global feel of how the data is changing when they apply a variety of operations.
In fact, in cases where heavy exploration was required, as in the early adoption
heparin-induced thrombocytopenia case study (Section 6.2.1), I noticed that the
physicians, including Dr. Marchand, kept their eyes fixed on the temporal summary
as a variety of filters are applied. When the Dr. Mukherjee and I worked on the
mature heparin-induced thrombocytopenia study (Section 5.3.1), he also showed
the same tendency — focusing on the temporal summaries as the data is being sliced

and diced. By fixing his attention on the temporal summaries, he could get a good

178



sense of what changed in the data, and how the operations he had chosen to perform
changed it. He could then decide if he was on the right path of exploration. If he
did not like a filter he previously applied, he would backtrack to that previous state
(a previously created group), and rethink his approach. In fact, my collaborators
would even use the comparison feature on several previously created groups to see if
the paths of exploration seemed to be a fruitful one. Temporal summaries became
an indispensable mini map to the thousands of patient records that cannot fit the
screen. Although focusing on temporal summaries was quick, my collaborators
would still examine the records individually when they had the chance, though not
exhaustively.

When my collaborators encountered unexpected discoveries, they would save
the current state as a new group, and make a mental note to they themselves to
come visit the saved group. When they wanted to continue exploration the next
time using the data, they would export the current data into a new file. When they
found something noteworthy, annotation was used, sometimes in conjunction with
the built-in screen capture in Lifelines2 — although annotation was recorded to only
occur in 5% of all logged sessions (not in Table 6.1.

When my collaborators arrived at an interesting point where their questions
might be answered, they would use their domain knowledge to analyze what they
saw, and offer explanations (Stage 3: Analysis, Explanation). They would verify
how they got there by looking at the groups they created before, or by examining
them all at once in the comparison view, as if they were double-checking their work.

When they were satisfied with what they saw, they would examine the data, and

179



decide whether their questions can be, or are, answered. Sometimes a dead-end was
reached, and they would realize that more data was required. We would then stop
the exploration and discuss how to get the additional requisite data, and how long
it would take to get it, clean it, and assimilate it. However, sometimes the dead-
end was encountered because we were at the limitations of Lifelines2. This occurred
when the analysis in a case study required features Lifelines2 simply does not support
(e.g., numerical values, percentage drops). In these cases, the exploration came to
a halt. Unless we had found a solution (a good way to bin the numerical values into
categorical values, for example), the case study would discontinue. Sometimes the
limitations of Lifelines2 could be compensated by other systems. As in the heart
attack and daylight savings case study, we resorted to using Excel as a platform to
compute our results. In these cases, the case study may come to a stop with fruitful
results. As a result of the end of the exploration, our collaborators sometimes
realized that they needed to refine their questions because they could not proceed
with the original one with the data available, or that a different spin on the question
is more exciting — and the spin would not have revealed itself without the prior
exploration.

Finally, when a case study is completed to some satisfactory point, my col-
laborators would prepare their findings. Dr. Ho routinely asked me to send him
subsets of patient records that represent the fruit of our labor, along with screen
shots, annotations, and spreadsheets if we created any. He would take these data
to show his fellow physicians or his supervisor to argue for the usage of technologies

such as Lifeines2. Overall, I had not encountered that the screen shot needed to be

180



modified for other non-collaborators’ consumption. Our collaborators are capable
of explaining what is happening in a Lifelines2 screen shot. When an exploration
ends, a new one often begins. Though the new one may just be a branch from the

earlier exploration!

6.6 Recommendations

The case studies, Lifelines2 logs, and observations revealed some interesting
user behaviors when dealing with records of temporal categorical data. They also
revealed strengths and weaknesses of Lifelines2. I generalize these into the following
recommendations for future developers of visualization tools for multiple temporal

records.

1. Use Alignment The usefulness of alignment was evident in the Lifelines2
logs, the case studies, and from observations. The user logs corroborate the
findings of alignment in the controlled experiment — alignment is useful, users
recognize it, and as a result they use it often. When dealing with a large
number of temporal categorical data, the ability to use alignment to impose
a strict relative time frame was important to my collaborators. It allowed for
better visual scanning of the data, and the dynamism of alignment allowed the
analysts to quickly switch perspectives and focus if they need to. The idea of
“anchoring” data by data characteristics for exploration had been successful
in other visualization systems, and alignment seems to be one natural version

of it for the temporal domain. Developing future visualization systems for

181



records of temporal data should leverage on alignment for its power, flexibility,
and wide range of applicability. However, there may be other “anchoring”
techniques in temporal visualization in perhaps different situations, and it is

worth pursuing them.

. Show Details One surprise finding was that the analysts liked to look at
the details of the records. Scroll was the most frequently-used operation,
and it is indicative of how much the analysts liked to view records in detail.
Seeing the details and being able to compare the detailed records that are
close to one another seem to reassure the analysts that no data are missing,
broken, or lost along the visualization pipe or the analysis process. My second
recommendation is that detailed depiction of the records is important. Even
if the primary view of the data was to be in an overview display, the analysis
tool should always make the details accessible to analysts — and preferably for

many records at once.

. Overview Differently Lifelines2 provides an overview in the form of tem-
poral summaries. While it is perhaps the most important feature after ARF
(and one of the most frequently used features), more ways to overview the
data may be beneficial to analysts. The observations indicated that for iter-
ative filtering tasks, analysts tend to focus on the overview most of the time,
despite looking at records in detail as well. They would use the comparison
view as a heavyweight overview to examine their exploration process, but a

lightweight overview would be better (more accessible, and without having to

182



take them away from the visualization of record details). Additionally, other
types of overviews would give analysts a better idea of how their data changed
since they applied an operator. For example, a temporal summary provides
a “horizontal” overview. A “vertical” overview that represents the records
would complement temporal summaries, and be a good way to augment the
analysts’ understanding of the data. Furthermore, a good vertical overview

design may reduce the amount of Scroll necessary.

4. Support Branching Exploration Analysts naturally create different sets
of data as they explore. They also naturally perform backtrack and branch-
ing in their exploration. The features in Lifelines2 that support branching in
exploration are Save Group and Change Group. This rudimentary support
for branching exploration and backtrack was both used fairly frequently (av-
eraging almost one use per session in the log). Better branching support and
history keeping for backtracks may be one of the most important practical

feature.

6.7 Summary

I report on the details of both the early adoption and more mature case studies
of Lifelines2. My collaborators were able to identify interesting temporal patterns
and event trends. They were able to obtain concrete results that were publishable
in the ICDL case study. In the drug trafficking case study, my collaborator was

able to find novel data trends. In the case studies on hospital room transfers,

183



my collaborators were able to debunk theories based on anecdotal evidence, and
prevent lengthy and expensive overhaul in how they triage patients. Despite the
identification of additional usability problems and features that can strengthen the
capabilities of Lifelines2, my collaborators continue to be enthusiastic about using
Lifelines2 and incorporating it as part of their daily analysis tool. The anecdotal
evidence from my case studies provide support for the value of the features I have
designed and implemented in Lifelines2.

With observations from these case studies, logs of analyst actions in the Life-
lines2 system, and interviews and comments, I generalized and presented a process
model. Furthermore, since the evaluations and observations revealed much of the
strengths and weaknesses of Lifelines2, I made several design and feature recom-

mendations to future temporal categorical data visualization designers.

184



Operation Count | Count Per Session | % of Sessions
ARF

Align 1680 3.94 87%
Rank 260 0.610 42%
Filter 2564 6.019 68%
Temporal Summary

Show Summary 623 1.46 30%
Temporal Selection 531 1.25 24%
Comparison

Event Type Change 406 0.95 11%
Comparison Type Change 79 0.18 12%
Group Change 406 0.95 12%
Distribution Type Change 179 0.42 13%
Data Operations

Keep Selected 400 0.94 30%
Remove Selected 96 0.23 18%
Save Group 409 0.96 29%
Change Group 687 1.61 23%
Navigation

Zoom In 646 1.52 30%
Zoom Out 157 0.37 13%
Time Range Slider 1865 4.38 29%
Change Granularity 217 0.51 14%
Scroll 6840 16.1 100%
Collapse 55 0.13 8%
Expand 30 0.07 5%

Table 6.1: Operator usage in Lifelines2

185




Chapter 7

Conclusions

With an increasing growth of data in the form of temporal categorical records
today, it also becomes increasingly important to design effective ways to allow ana-
lysts to interact with such data. This dissertation describes four main contributions.
Three are technical supports for different aspects of searching, and one that describes
a process model and design/feature guidelines for future visualization designers. A

summary of the core chapters and the main contributions is provided below.

1. (Align-Rank-Filter Framework) Alignment was designed to allow relative
visual comparisons of temporal categorical data. By focusing on a specific
sentinel event, analysts can better understand the data trends immediately
before, after, and around the alignment. The effectiveness of alignment is
evaluated in a controlled experiment, which showed overwhelming advantage

for certain tasks when alignment is used.

2. (Temporal Pattern Search Algorithm) A common task in interactive vi-
sualization is to filter. A common filtering task in dealing with temporal cat-
egorical data is to filter by patterns. I designed an algorithm (TPS) that uses
the combination of separate arrays of event data and efficient binary search to
perform this kind of pattern search. The TPS algorithm performs better than

the NFA or the Shift-And approaches using real data and patterns. When ex-

186



perimental random data is used, Shift-And performs better in short patterns,
but loses to TPS when the patterns are longer. Unlike Shift-And, however,
TPS is extensible, and can be made to handle additional constraints. TPS
was designed to suit analyses tools such as Lifelines2 because each sequence
filter does not require a preprocessing stage, and can properly handle cases

where there are simultaneous events.

3. (Temporal Summaries) I present temporal summaries, a visualization tech-
nique that allows dynamic aggregation of event types over time in different
temporal granularities. It is used to support overview of event types over
time, and subsequent comparison among different record groups. Temporal
summaries are also used to allow analysts a visual way to perform temporal
constraints that had otherwise been intimidating to analysts when faced with
UI widgets. The value of temporal summaries was evaluated in a series of case

studies.

4. (Process Model and Future Design Guidelines) I then detail the case
studies of Lifelines2 and discuss in detail how the features of Lifelines2 are
utilized in these cross-domain real scenarios. From the experience of working
with collaborators, Lifelines2 logs, and analyst interview and commentary, I
generalize the exploratory analysis process for temporal categorical records. |

also present some recommendations for future visual analytical system design.

With the important national health care reform on the horizon and health-care
related fields moving towards electronic health records (EHRs) for maintainability

187



and affordability, EHRs have been a focus of my collaboration efforts. While many
have devoted their time and energy in designing better storage, indexing , retrieval,
and data conversion systems, not nearly as much effort has been devoted to adding
value to the information that is stored. Interactive search techniques presented in
this dissertation present one of the several starting efforts to add value to the existing
infrastructure, bringing the value of the information to analysts who want to study

them.

7.1 Future Work

There are a number of possible future directions. Some are more intellectually

more interesting, while others are pragmatically important.

7.1.1 Scalability

The Lifelines2 system has been tested with up to 100000 records and over
1.5 million events as is. The system can hold the data all in main memory while
generating the visual representations and executing the various visual operators.
However, these numbers are not enough if Lifelines2 were to support live databases
in a hospital, where millions of patient records may reside. There are, however, a

few ways to extend the scalability of the system.

188



7.1.1.1 Using Fewer Shapes

Lifelines2 creates one independent shape to represent each individual event.
However, the shapes often overlap when the visualization is zoomed out sufficiently.
Instead of using multiple shapes which uses up precious memory, a single shape
would conserve memory, and perhaps allow faster rendering. This will require com-
putation before rendering to see if events are overlapping. However, with position of
events and size of shapes available at time of rendering, this computation would be
fairly straight forward. This new rendering method, however, would create a small
drawback as it would require additional computation to decide which tooltip to see
— since tooltips are no longer tied to specific event shapes. A related issue is the
completely overlapped events. When the visualization is zoomed out sufficiently,
the shapes that completely overlap do not show any differently than other shapes
that represent only single events. Some indication, perhaps size adjustment with
possible a numerical designation for the number of overlapping shapes, would be

worth pursuing.

7.1.1.2 Dealing with Massive Amounts of Live Data

In order to deal with data larger than what the RAM can handle, Lifelines2
will need to manage the records in indexable page files on the hard disk, and will only
cache what is necessary in memory. The page files will be in a format that can be
easily read back quickly into the data structure Lifelines2 uses, as to avoid additional

data processing when it is being read/written. One possibility is to Java Objects

189



which can be read in/written out efficiently. The access to the page file will need
to be asynchronous to the main interaction thread as so the interaction experience
is not disturbed by the potentially long-running action. By the same token, each
asynchronous action should be cancelable by the user. As the access to the data is
asynchronous, most of the operators such as Align, Rank, Filter, Summarize, will
also be asynchronous. Caching of records that are recently on-screen in memory can
help the performance. Dealing with live data presents another challenge. Assuming
there is a database that accepts changes and updates to the records Lifelines2 is
visualizing, every time the data being visualized is changed, the data in Lifelines2
and its page files need to be updated. If the changes occur so frequently that it can
impair the normal interactive experience of Lifelines2, the updates can be updated

in batches in set intervals, or when the updated data is being accessed by Lifelines2.

7.1.2 Extension to Alignment

I have presented alignment by single event types and its effectiveness as a visual
aid for relative comparison tasks. However, alignment can be further extended in
a few different ways. Although they were not critical in the case studies, they are

worth exploring. These extensions are ranked in the order of ease of implementation.

7.1.2.1 Tight Integration with Sequence Filters

Integrating alignment as a part of search has been implemented in temporal

summaries in Lifelines2. However, it is restricted to the events in the summaries,

190



and no additional temporal patterns can be imposed. One possible way to extend
alignment is to integrate it tightly with the sequence filter. In addition to all the
event types and their absences, an Alignment Fvent option can be available when
an alignment is in effect. This will allow analysts to specify temporal patterns in the
context of the alignment. For example, if the data is aligned by the 3" Heart Attack,
a normal sequence filter can specify High Blood Pressure => Heart Attack —> Stroke,
but the Heart Attack is not necessarily the 3" one. With this extension, analysts
can use Alignment Event to specify exactly the 3™ Heart Attack in the sequence
filter. This gives more expressiveness in specifying temporal pattern filters, and this
is similar to the extensions to alignment done in other projects [120, 58]. A straight-
forward implementation in the Temporal Pattern Search (TPS) algorithm is easy.
The Alignment Event option is first translated to the actual event type by which all
the records are aligned. Then in TPS, whenever a potential match to the alignment
event is found, another check is performed (in the NEXT(...) function) to see if the
matching event is indeed the event by which the record is aligned. Only if the event

is the alignment event will NEXT(...) return it to continue the matching process.

7.1.2.2 Alignment on Sequences of Events

A direct extension to aligning by a single event is to align by a sequence of
events. Two different designs can be imagined. First, the sequence of events to
be aligned will occupy the same vertical strip just as the normal alignment. The

strip that contains the sequence, however, will not represent a temporal durations

191



(just as the current alignment design). For a given sequence and the events that
match the sequence, let the first matching event be m; and the last matching event
my,. All other events in the record that occur between m; and m,, and m; and
m,, themselves will be fitted in the strip. All events before and after the sequence
will be laid out the same way as the current alignment design. By warping different
temporal duration into the same vertical strip across records, the actual amount
of time that take place between m; and m,, will be difficult to tell, and this may
create a lot of visual noise in the alignment strip and, worse, give analysts wrong
impressions about the temporal durations.

A less temporally disturbing model is to display all records that contain the
sequence that the analyst wants to align by. Instead of aligning all the elements
of the sequence simultaneously, the analyst is given a choice to align by a chosen
element of the sequence, much like the current alignment design. Subsequently,
analysts an also choose a secondary alignment by choosing another element from
the sequence, which will make the same kind of warping behavior as described in
the previous method. By making the time-warping an explicit action, hopefully this
can make the disturbance on the time less hostile, and provides more control to
the analysts. Finally, temporal distances to an alignment by a particular matching

event on the sequence can be used to sort the matching records for better view.

192



7.1.2.3 Automatic Discovery of Useful Alignments

One interesting observation from the case studies was that analysts sometimes
try a variety of alignments to see if one changes the over all distribution of some other
important event types. The Alignment control combo box makes this fairly easy
to do. Once a selection is made, analysts can simply use the up/down keys on the
keyboard to try different sentinel events to align by. While there is value in trying
different sentinel events — one may see something that is unexpected or informative
— for the purpose of finding “interesting” sentinel events, an automatic approach will
be easier. The difficulty lies in how to define “interestingness.” For example, rise in
the distribution of event “A” prior to the alignment within certain time constraint
followed by the sentinel event and then followed by a rise in the distribution of event
“B” may be considered interesting, but there are many more. Finding an interesting
alignment with respect to any event type may be too difficult a problem to start
with. However, by choosing some important events ahead of time, the algorithm for
automatic discovery may be more feasible. For example, the temporal summaries
of events can be converted into a form that Shape Language proposed by Agrawal
et al. [3] can apply. Then by defining a Sharp Rise in “A” followed by alignment
and then followed by Sharp Drop of “B” and other interesting patterns, they can
be searched and results organized and ranked by a heuristic function that measures

“interestingness.” The results can then be presented to analysts as a ranked list.

193



7.1.3 Information Density and Alternative Summaries

One complaint about the record visualization in Lifelines2 is that there is much
wasted space on screen. There is an argument that the lack of events in certain time
periods conveys important information as well. However, the Lifelines2 log suggests
that analysts tend to scroll to examine the records visually. A more densely-packed
information display or effective alternative summary design could reduce the need

to scroll.

7.1.3.1 Better Utilization of the Vertical Space

One cause for the lack of information density is the design to place only events
of the same type on the same horizontal space. While this design avoids the occlusion
of different types of events, particularly for medical events that can occur very
frequently in a short amount of time, it is also spatially expensive. One way is to
merge event types that can be merged in the same horizontal space with minimal
occlusion. And if occlusions occur, a visual representation for the occlusion will be
important. For event types that cannot be merged onto the same horizontal space,
lessen the vertical space between each event type rows, so the event themselves can
partially overlap is one possible solution. Designing an algorithm that detects what
event types can be merged is an interesting path of future work. However, these
space-saving strategies present some usability challenges. The merging of horizontal
space means that the color and spatial cues for different event types are reduced

to a single one (color). Analysts will only be able to discern one event type from

194



another by its color. Furthermore, the title for the event types to the left of each
record will not be able to accommodate the merged event types, and the reliance
on the legend itself becomes more important. The lack of labels combined with
the reliance on color to discern event types can be very problematic when there
are many event types and some have effectively the same color to the human eyes.
One concern that this approach would not work very well is that Lifelines2 has the
collapse feature where analysts can collapse the records into smaller representations.
To conserve space, the collapsed records do not have title labels for event types, and
events can partially overlap a previous event type. The Lifelines2 log indicates,
however, that analysts are not fond of using this feature. Before the space-saving
strategies are considered, a study needs to investigate whether the lack of labels and
the overlapping are the primary reasons for the lack of the usage. If they were, then
different approaches need to be taken. Instead of improving the information density
of the individual records, other approaches rely on aggregation of selected features
of the records. By directly supporting the tasks that the analysts are interested in

when they scroll down to see the records, these strategies may be more effective.

7.1.3.2 Vertical Summaries

Temporal Summaries have provided a way to aggregate events over time (hori-
zontally). A different approach is to summarize the records vertically. For example,
the Rank operator ranks records by the number of events of a specific type. However,

the distribution of the events across records is very difficult to see. A vertical sum-

195



mary can show the distribution, and allow a more informative cut-off point should

analysts favor one.

7.1.3.3 Sequence Summaries

One primary reason for analysts to look at the records in detail is trying to get
a sense of the predominant patterns, or see the variations of a particular pattern.
Lifelines2 would be a more effective tool if the summary of temporal sequences
(especially the ones relative to an alignment) can be summarized effectively. This
is an example of vertical summary. The summary will help analysts answer the
following questions (1) What are the predominant sequences of events (from a certain
start point such as an alignment)? (2) How “popular” are the predominant sequences
as compared to less popular ones? (3) What are the variations in the sequences?
The variations can depend on what events tend to occur in-between the matching
sequence, or how much time generally pass between the matching elements of the
sequence. This summary can save analysts work in generalizing the data in terms of
sequences, and provide affordance to select records based on their event sequences
and temporal variations on the sequences. One caveat in providing this feature is
that it is not clear how events that occur at the same time can be supported if

events on a record are viewed only as sequences.

196



7.1.4 Practical Concerns

These future work items have less research value, but are identified through
my case studies as important components that will make a system like Lifelines2

more effective in real scenarios.

7.1.4.1 Extension to Other data Types

As a dissertation project, Lifelines2 has focused solely on categorical data. In
the real world, other data are important in decision-making. The early adoption
case studies revealed that physicians would like to include numerical data in the
visualization tool. Instead of viewing the high/normal/low segments of blood pres-
sure, the actual numbers should be plotted, and searchable. The physicians would
like to have ways to search only by categories, only by numbers, and by a mixture
of the two. A second extension is to include attributes of the records (e.g., patient
attributes in the domain of medical records). Gender, age, ethnicity are some canon-
ical attributes in patient records that may be important factors to clinical decisions.

Making these attributes filterable and rankable would be useful to analysts.

7.1.4.2 Scripting for Automation

As a number of the case studies are about measuring the quality of health care
in an institution, it goes without saying that a longer-term monitoring will be more
useful. To perform the same kind of analysis, some of the actions can be automated

— such as what sentinel events to choose, and kind of sequence filter to apply. As

197



long as the results can be reviewed and explored manually, and actions overwritten

by analysts, the automation would be a time-saver.

7.1.4.3 Automatic Conversion from Database Schema

Perhaps the largest bottleneck with my case studies is the gathering and the
refinement of data. The iterative process of getting the right data can be long.
Ideally there would be a component that allows the search on the database and
converts the search results to Lifelines2 format for visual analysis. While this is
done with our collaborators in the i2b2 project [70] (Figure 3.8), the integration
was largely easy because their system already outputs formatted XML documents
with rigid schema. In general, an automatic conversion from the database search
results will require significant amount of tailoring to the individual database schema.
This is no easy task, since there are often numerous databases, each with its own
schema in the same system. This can be a large undertaking, but this will allow the
exploratory process to be faster, and let the analysts drive the exploratory search

from end-to-end.

7.1.5 Process Support

One interesting lesson I learned from the case studies is that as analysis tools
become more and more complex in terms of features, optional configurations, and
operations, analysts need more and more support to deal with their data, findings,

and the entire process. While different data domain and different types of analysis

198



have different features, there are certain commonalities. I envision a standard set
of process support features in all future analysis tools (particularly visualization

analysis tools), and here I list a few items to serve as a start of the line of research.

7.1.5.1 Knowledge Provenance

As analysts gather, view, and slice and dice data in order to gain the insight
on that they seek, the process of how they get to that point should be preserved.
By preserving the path taken, other analysts can follow the path and decide if
the conclusions drawn by the original analyst is correct. For example, others may
discover that one action taken by the original analyst reflects an assumption that
was not reported. Or that the data used for the analysis is somehow flawed. The
preservation of the exploratory analysis path can be used to invite external reviews,
obtain external validation, increase discussions. Furthermore, the path tells others
how certain conclusions or insights are gained. I think preserving how knowledge is
gained from analysis tools is an important first step. A history keeping component
such as the one in Photoshop coupled with a temporal visualization and annotation
would provide the most basic needs. A more sophisticated one would include the

ability to playback an existing analysis path.

7.1.5.2 Extending Grouping Support to Analysis Branching

A next step would extend the preservation of analysis path to allow analysis

branching. An analyst can follow an original analysis path and branch off a new

199



analysis of his/her own independent of the original one. The grouping support in
Lifelines2 is but a rudimentary support for analysis branching, and it does not have a
complete history keeping to allow analysts to roll back to particular analysis states.
The collection of analysis paths can then be taken as an aggregate to see what
interests users. One can potentially compare the different analysis paths and inves-
tigate which part of the data is over-analyzed, and which part is under-analyzed,
and finally determine whether such discrepancies may represent a bias in the anal-
yses. Finally, the entire analysis framework can be deployed on the Web, much like
ManyEyes [112] and sense.us [36], to promote shared, collaborative analysis of data

and elicit comments and feedback.

7.2  Summary

The main results of this dissertation are presented. Each technical contribution
is presented with its evaluation results. I present a list of several potential future
work directions. The breadth and the depth of these directions suggest that the
research presented in this dissertation merely opened the door for more innovation
on the topic of searching temporal categorical data. The many opportunities for
better visualization and interaction support indicates that this topic remains an

intellectually interesting and rewarding research direction for the future.

200



Appendix A

Lifelines2 Software

Lifelines2 is written in Java. It requires Java 1.5 or above to compile and run.
It also requires the 2D graphics libraries piccolo. jar and piccolox.jar [10] '. An
optional package automaton. jar is used as part of the TPS algorithm evaluation
(Chapter 4), but it is not essential for running Lifelines2.

Lifelines2 contains a total of 27597 lines of code in 36 packages. There are
three main packages: external, lifelines, and test. The external and test
are non-essential packages of Lifelines2. The external package contains scripts for
converting raw data from my collaborators to Lifelines2 format, specific XML reader
for the outputs of the i2b2 system [70], and automatic random data generator for
stress tests. On the other hand, the test package contains the codes that test and
evaluates different parts of the Lifelines2 software. For example, the set of code for
evaluating the TPS algorithm in Chapter 4 is in this package.

The external and test packages consist of 8580 lines of code (external
contains 2922 lines), but are not essential to Lifelines2. Removing them will not
prevent the compilation or execution of Lifelines2. They are kept as part of the
Lifelines2 source code because they refer code in the 1ifelines package, and this
organization simplifies the management of the code repository.

I will describe the core 1ifelines package in detail.

!Piccolo: http://www.piccolo2d.org/

201



A.1 Lifelines2 Data Model

I first describe the Lifelines2 input data formats, secondly the internal data

structures, and finally, the various possible outputs from Lifelines2.

A.1.1 Input Data

Lifelines2 accepts two formats of data. The first is in plain text (.txt), and
the second is in XML (.xml). The second format is specifically tailored to the
XML outputs of the i2b2 system [70] for the ease of our collaborations. The XML
reader is not meant for general purposes. In contrast, the first format is a multi-
column format that can be easily created using spreadsheets or other database
output mechanisms. I present only the first format as it is more widely used and I

will refer to it as the “Lifelines2 format” below.

A.1.1.1 Lifelines2 Format

The basic Lifelines2 format consists of three columns. Each column describes
an event. The first column contains the ID of records (which record does the event
belong to), the second column contains the event type (of the event), and the third
column contains the time stamp (of the event). Table A.1 shows a sample data of
athletes with their sports injuries?. Columns are separated by tabs (not shown),

and there are no column headers. Events do not need to be sorted (Tom). IDs

2A similar sample is downloadable from http://www.cs.umd.edu/hcil/lifelines2/pages/

simpleExample.txt

202



Tom achilles tendinitis 2002-07-08
Tom jammed finger 2002-06-24
Jill  jammed finger 2002-04-18
Jill torn ACL 2004-11-07
Alice jammed finger 2005-12-01
Bob achilles tendinitis 2001-02-07
Alice jammed finger 2006-02-07
Bob  broken foot 2002-04-22

Table A.1: Sample data in Lifelines2 format.

do not need to be sorted (Alice). In addition to this 3-column format, Lifelines2
also accepts a fourth column as annotation for that event (any text). Note that all
events in an input file must be in a 3-column or 4-column format, input files that
contain both 3-column events and 4-column events may fail during read-in or miss
data.

The Lifelines2 format file parser is 1ifelines.PlainTextFileParser, and the
i2b2 XML praseris lifelines.i2b2.I2b2XMLParser. lifelines.TextFileParser
is the parent class of the two input file parsers. It is designed to be extensible to
other plain text data file formats. Lifelines2 does not currently have facilities to
handle other types of data such as streaming data or networked data (e.g., con-
nection to a database). Well-known software-engineering design patterns such as
the Singleton and the Factory patterns are used to make the automatic parser
code clean and extensible. When users choose to open a dataset via Lifelines2
file browser (which only shows .txt and .xml files), Lifelines2 decides which file
parser to use, and instantiates a 1ifelines.TextFileParserFactory to create ei-
ther a 1ifelines.PlainTextFileParser or a 1lifelines.i2b2.I2b2XMLParser to

handle the input.

203



Format Examples
YYYY-MM-DD hh:mm:ss.SSS | 2001-11-5 12:43:12.543
YYYY-MM-DD hh:mm:ss 2005-1-1 21:4:21
2003-12-14 2:43:11
YYYY-MM-DD hh:mm 2007-3-26 21:10
2006-12-22 3:22
YYYY-MM-DD 2001-11-24
1997-1-6

Table A.2: Acceptable date/time formats in Lifelines2 format

Lifelines2 format accepts several time stamp formats (Table A.2), where Y, M,
and D stand for Year, Month, and Day respectively. Similarly, h, m, s, S stand for
hour, minute, second, and millisecond. The length of string describes how many dig-
its are acceptable. A detailed description of the date/time format and the Lifelines2

format can be found online3.

A.1.1.2 Customization File Format

In addition to the core input data, Lifelines2 also uses a plain text customiza-
tion file (.cstm) to allow customization of a dataset across different sessions of
Lifelines2. When users close an input file (by exiting Lifelines2 or opening a new
file), Lifelines2 updates the input file’s customization file. If there is not an existing
customization file, Lifelines2 creates one — which records a variety of user prefer-
ences, for example, the size, color, shape of event representations — and stores the
customization file in the same directory as the input file with the same names, e.g.,

inputData.cstm for inputData.txt. Most of the customization settings are stored

3Lifelines2 format: http://www.cs.umd.edu/hcil/lifelines2/pages/

lifelines2InputFormat.html

204



Variable Name

Utility

Dataset-Specific customizations

currentDetailedEventShape
currentDetailedEventSize
currentCollapsedEventShape
currentCollapsedEventSize
currentlLabelPosition
currentDetailedShapeDrawer
currentCollapsedShapeDrawer
inputDatalntegrity
currentAlignmentStripeHalfWidth
currentShowCalendarMark

Shape for events (expanded)

Size for events (expanded)

Shape for events (collapsed)

Size for events (collapsed)

Position for event type labels

Drawer for events (expanded)
Drawer for events (collapsed)

Is data fake, real, or de-identified?
Width of the alignment strip
calendar mark visibility when aligned

Event-Type-Specific Customizations

eventColorMap
legendUIMap
aliasMap
visibilityMap
intervalManager

Event types’ colors

Event types’ GUI in the legend
Event types’ aliases

Event types’ visibility

Event Types’ intervals of validity

Semantic Customizations

customization

Organization of event types

Table A.3: Customization Variables in the class 1ifelines.Settings

in lifelines.Settings (Settings) , and the variables for customization are listed

in Table A.3.

The Settings class uses a singleton design and is accessible globally within

Lifelines2. When Lifelines2 loads a dataset, it attempts to locate a corresponding

.cstm file. If it exists, it is also loaded. Lifelines2 uses the class 1ifelines.CustomizationReader

to read its preference data and populate the singleton 1ifelines.Settings instance

for the dataset in the Lifelines2 session.

Most of the preference data are modifiable directly from Lifelines2 via the

Preferences tab in the ARF tab. However, the optional customization variable (last

line in Table A.3) which describes the semantic grouping of the event types in a

205



dataset is not editable from Lifelines2. Instead, users must edit the customization
file directly. The customization variable describes how events are related to one an-
other, and, subsequently should be displayed in Lifelines2. For example, users can
use an Order customization to describe semantic relationship of the the following
event types: High Blood Pressure, Normal Blood Pressure, and Low Blood Pres-
sure. Order tells Lifelines2 that these three event types should be ordered that way
vertically (High followed the Normal, followed Low) to reflect how users typically
perceive the data instead using the default alphabetical ordering. Furthermore, the
semantic constraint forces Lifelines2 to display these three events in a group (not
interrupted by other events such as Hip Replacement, which would appear between
High and Normal in alphabetical ordering). Multiple semantic groups can be cre-
ated for a dataset, where no one event type should belong to multiple semantic
customizations (such as multiple Orders).

The syntax for the semantic grouping in the .cstm is a 3-column format:
Semantic Grouping Type (e.g., “Order”), Name of the Semantic Group (e.g., “Blood
Pressure”), and a comma-separated list of event Types (“High blood Pressure, Low
blood Pressure, Low Blood Pressure”). The columns are tab-separated. Figure A.1
shows part of the .cstm file, which includes the semantic grouping customizations,
for the Contrast-Creatinine dataset presented in Chapter 5.2. Color highlighting
was added to facilitate the description. Lines that start with % are comments and
are ignored by the customization reader 1ifelines.CustomizationReader.

Most of the code for customization reside in the following packages: 1ifelines.

customization and lifelines.customization.drawers. The package 1ifelines.

206



% event type semantics customization

Drder CREAT CREAT-H, CREAT-, CREAT-L

Drder 24H UCEEAT 24H UCEEAT-H, 24H UCREAT-, Z24H UCREAT-L
Drder BEL CEEAT EL CEEAT-H, BL CEEAT-, BL CREAT-1

% zettings customization

Wiew Detailed Shape Triangle
View Detailed Size 18

View Label Font 11,Tahoma, 0

View Label Pozition g,4

Wiew Label Visibility true

Wiew Collapsed Shape Triangle
Wiew Collapsed Size &

View Alignment HalfWidth 13
View Alignment CalendarMark falze
File deidentified data

vent CEEAT-H Color 255,0,0

wvent CEEAT- Color 102,153,255

vent CEEAT-L Color 102,204,0

Figure A.1: Partial screen shot of the customization file for the Contrast-
Creatinine dataset in Section 5.2. Orange portion shows the seman-
tic customization. Green portion shows the view-related customization.
Red portion shows the descriptor for the type of input data. Blue portion
shows the display preferences of each event type.

customization (332 lines of code) contains the customization file reader and the
abstract super class lifelines. customization.CustomRecord for all customiza-
tion grouping types such as lifelines.customization.Order (Order). The class
(Order)is the only fully implemented grouping type. It allows users to constrain
certain event types to be ordered in a certain way. Its two subclasses 1lifelines.
customization.CompactOrder and 1lifelines.customization.NumericOrder are
intended to, respectively, squeeze multiple event types into one single horizontal
space (e.g., put all High, Normal, and Low blood pressure events in the same horizon-

tal space), and to display numerical data points (such as the actual reading of blood

207



pressure). These two subclasses are not fully implemented. However, the infrastruc-
ture is set up. Each Semantic grouping type such as 1ifelines.customization.Order
is paired up with a drawer in the package lifelines.customization.drawers.
When Lifelines2 draws events in the main display, it consults with the semantic
grouping customization to see if a special drawer is to be used. Custom Drawers such
as CompactOrderDrawer or NumericOrderDrawer in the same package would then
draw these semantic grouping accordingly (e.g., in a single horizontal space or dis-
playing line graphs for numerical data points). Although the drawers are currently
unimplemented, this infrastructure demonstrates the extensibility and adaptability

to a wider range of data types and more customizable display of events.

A.1.2 Internal Data Structures

There are three types of data structures in Lifelines2. An immutable core
data structure represents the records. A temporary, intermediate data structure
represents the graphical data in the display. Finally, there are globally accessible
data structures for a variety of usages, e.g., customization settings and the internal
representation of event types. I cover the first and the third types of data structures,

and discuss the second type of data structures in Section A.3 together with drawing.

A.1.2.1 Core Data Structure

The main classes for data structures in Lifelines2 reside in the package 1ifelines.

data (1118 lines of code). The basic unit of data in Lifelines2 isa 1lifelines.data.Event

208



(Event), which roughly corresponds to a line of input in the Lifelines2 format. An
Event contains an event type, a time stamp, and an, optional, annotation.

A lifelines.data.Record (Record) contains many instances of Event. Chap-
ter 4 describes how Events of the same type are sorted by time stamp in an array,
indexed by event type in a Record so that the Temporal Pattern Search (TPS)
algorithm can work. However, arrays are not the only data structure that would
work with TPS. Any sorted data structure that can support efficient binary search
can be used. Although arrays were used in the earliest versions of Lifelines2, Life-
lines2 currently uses the standard Java data structure java.util.TreeMap instead
of arrays. The java.util.TreeMaps in Lifelines2 automatically sort Events by
timestamps, and supports efficient binary search just as sorted arrays do. Further-
more, the java.util.TreeMap data structure can allow the detection of duplicate
events (same event type and time stamp). However, its performance is expected
to be slightly worse than plain arrays because it is a more complex data structure,
and requires more maintenance. All evaluations and results reported in Chapter
4 are performed with Records that are implemented using java.util.TreeMaps.
Chapter 4 uses the more common data structure array as an example to make the
narrative clearer.

Finally, a Record keeps track of its graphical representations Facet in the
Lifelines2 display. When multiple alignment is used, a Record can have multiple
Facets (Section A.3).

A DataManager contains a set of Records and a variety of statistics. For

example, it keeps track of a set of Records and their Facets, the number of Records

209



in the DataManager, the minimum and the maximum time stamp, total number of

events, and the current Align, Rank, Filter operators.

A.1.2.2 Global Data Structures

I already described the globally accessible 1ifelines.Settings class. An-
other data structure is the lifelines.data.GlobalEventData (GlobalEventData)
class. GlobalEventData contains both the forward and the backward mapping of
event data types to integers. When a new event type is read in from text, Lifelines2
creates an integer to represent it internally. This allows Lifelines2 to store only one
copy of the event type Strings (as opposed to the expensive one copy per Event),
saving large amount of memory. Programmers can use GlobalEventData to access
the event type String by the event type integer identifier, or use the identifier to

access the String (as when the text needs to be displayed on screen).

A.1.3 Output Data

There are four kinds of outputs from Lifelines2: customization files, record
files, screen shots and annotations, and logs I already presented the nuances of
the customization files in Section A.1.1.2. Lifelines2 lets users to export current
group of records into an external file (either via menu or via the group creation
dialog box). The results of the export are in Lifelines2 format. If annotations are
present, a 4-column format is used. Otherwise a 3-column format is used. When

a group is exported, a .cstm file is automatically created to preserve the same

210



preferences as the original .cstm file. The exported file and its .cstm file reside in
the exportedGroups directory by default.

Users can, at any time, take a screen shot of the current state of Lifelines2, and
can optionally provide textual annotation with it. Screen shots are saved as .jpg
files, and annotations are saved as .txt files. The screen shot and the annotation
are saved in the annotations directory by default. The annotation code can be
found in 1lifelines.utils.ui.EurekaDialog.

Lifelines2 keeps detailed logs of users’ operations whenever it is launched.
Logs are written and saved when data files are closed or if users normally close
Lifelines2. The log files are saved in the logs directory in .txt files. These logs
are purposefully written so that it conforms to the Lifelines2 format. This means
that these log files can be directly fed into Lifelines2 for temporal analyses. The
main code for logging reside in the lifelines.replay package (158 lines of code).
The package is so named because the ultimate goal for logging is to allow replays of
past analyses, given the logs and the input data. In the same package, the utility
lifelines.replay.LogAggregator can be found to aggregate a large number of

individual Lifelines2 log files into one for multi-session analysis using Lifelines2.

A.2 Align, Rank, and Filter

The classes that represent Align, Rank, and Filter reside in the 1ifelines.arf
package (760 lines of code) . There are three main abstract classes: AbstractAlignment,

AbstractRank, and AbstractFilter in the package. All Align, Rank, and Filter

211



NullAlignment AlphanumericRank
I, r =1
(AbstractAlignment ‘\l |AbstractRank |

ForwardEventAlignment | EventCountRank

MNullFilter
SequenceFilter EventCountAtL eastAfterAlignmentFilter |
F————

et ot Al e i [ r 1 EventCountAtleastBeforeAlignmentFilter |

EventCountDrivenFilter

JEventCount/\tLeastFilter

Figure A.2: Class inheritance diagram of the Align (red), Rank (green),
and Filter (blue) operators. Dashed rectangles indicate abstract classes.
Solid rectangles indicate concrete classes. Ovals indicate interfaces. Ar-
rows indicates either an extension of a class or an implementation or
an interface (depending on the context).

classes are, respectively, subclasses of these abstract classes. A detailed diagram of
the class structures is presented in Figure A.2.

The NullAlignment, AlphanumericRank, and NullFilter are the default op-
erators in Lifelines2. They correspond to align-by calendar time, rank-by record 1D,
and filter-by nothing. ForwardEventAlignment deals with relative alignment by the
n* event in the data, where n can be positive, negative (the n'* last event), or zero
(all events). EventCountRank ranks records by the number of events of a selected
event type. SequenceFilter filters records by event sequences, i.e., using TPS. The
three concrete classes that implement the interface of EventCountDrivenFilter
allows the filtering by the number of events of a selected event type. The differ-
ences lie in the scope of filtering. EventCountAtLeastFilter looks at events at all
times. The EventCountAtLeastAfterAlignmentFilter looks only at events after

the alignment. Similarly, EventCountAtLeastBeforeAlignmentFilter looks only

at events before the alignment. Users cannot perform the last two filers when no

212



alignment is active.

The inheritance design allows for modular implementation of the current Align,
Rank, and Filter operators and is open to future operators using different criteria.

When users make a choice in Align, Rank, and Filter, Lifelines2 instantiates
the newly selected operator and saves it in the DataManager that represents the set of
Records the users are current viewing. The DataManager then applies the ARF to its
Records. There are four results from the application of ARF operators. First, each
Record is designated a set of time stamps. The set of time stamps indicate how big
a shift needs to occur to align the particular Record with the others. When multiple
alignment is activate, some Records will have more than one shifts in the set. This
set of time stamps are stored locally in the DataManager. Secondly, only Records
that can be aligned by the Alignment remain in the current set (maintained by the
DataManager), the rest are “discarded”. DataManager also maintains a original set,
which can be used to undo the effects of Alignment. Thirdly, Records that satisfy
a particular Filter are highlighted. Fourthly, Records are ordered by the current
Rank operator. Code Listing A.1 shows the pseudocode that applies ARF in the
DataManager. A, R, F in the code stand for the current Align, Rank, and Filter
operators. myCurrentSet is the DataManager’s current set of Records. These four

results are taken into account when rendering takes place.

213



0 ApplyARF(A, R, F)

1 for (each Record r in DataManager)

2 if (A.align(r)) //aligns
3 myCurrentSet.add(r)

4 if (F.isIncluded(r)) //filters
5 r.highlight ()

6 R.sort (myCurrentSet) //ranks

Code Listing A.1: Pseudocode for DataManager.ApplyARF (.. .),
where A, R, F stand for the DataManager’s current Align, Rank, and
Filter operators.

A.3 Intermediate Data Structures and Rendering Behavior

Intermediate and temporary data structures for the graphical representation
of data are created and destroyed Lifelines2’s rendering. I describe the rendering

details and present the design of these graphical elements in this section.

A.3.1 Drawing Records

There are many graphical elements that make up the main display of Lifelines2.
They all reside in the 1ifelines package (7093 lines of code). lifelines.Facet
(Facet) represents a Record visually. When alignment-by-all-instances is used, sev-
eral Facets may collectively represent a Record, where each Facet represents a
shifted instance. Inside each Facet, there is a lifelines.SubFacet (SubFacet).
The SubFacet is a legacy data structure from the original Lifelines. It had been used
to represent the different facets of a patient record (e.g., medication, complaints,
treatments, etc.). In Lifelines2, however, the SubFacet structures are containers

for graphical representations of Events and the header information for each record.

214



SubFacets also drives the rendering of the events and headers. 1ifelines.EventNode
(EventNode) class represent Events objects graphically. Each EventNode links to
the actual Event object and creates a tooltip for mouseover events.

These graphical elements all subclass the edu.umd. cs.piccolo.PNode (PNode)
class, and they are displayed onto a lifelines.TimeLine (TimeLine), which is a
subclass of edu.umd.cs.piccolo.PCanvas. While Facets and SubFacets use de-
fault rendering from PNode, EventNode overrides the default. EventNodes render
by first obtaining the current instance of the interface 1ifelines.drawers.shape
.ShapeDrawer (ShapeDrawer) from the global instance of Settings. The con-
crete classes that implement ShapeDrawer has one method that draws the current
shape with the current size for each EventNode as specified in Settings. There are
four concrete classes that implement ShapeDrawer: DiamonDrawer, SquareDrawer,
StripDrawer, and the default TriangleDrawer. These drawers can be found in the
lifelines.drawers.shape package (111 lines of code).

After Align, Rank, and Filter are applied, DataManager creates a list of Facets
and passes them to TimeLine for display. These Facets contain only the skeletal
information. No SubFacet or EventNode objects are instantiated. Instead, these
graphical elements are generated and added to the scene only when rendering is per-
formed. Rendering takes place in the TimeLine.drawFacet method. Each Facet’s
bounds are set and its placement on the TimeLine is determined. If the Facet is in
the current view port (as controlled by the scroll on the right), then its SubFacet
and EventNodes are added for display. If a Facet is not in the view port, then its

graphical elements are removed to reduce memory usage. That is, only elements

215



that can be seen by the users are kept in memory.

The early versions of Lifelines2 did create all graphical elements when new
data is loaded. It would take a long time at the initial data load, and was not
scalable to larger datasets because of its prohibitively high memory requirements.
By dynamically creating and destroying the graphical elements of Facets in the
new implementation, Lifelines2 becomes more scalable. Having to create graphical
elements on-the-fly is slower than having them ready all the time. However, this
optimization enables Lifelines2 to handle larger datasets, such as the initial Heparin-
Induced Thrombocytopenia (over 70000+ EventNodes when align-by-all instances
of Heparin is used), that were not possible before.

Aside from drawing all visible Facets on screen, the TimeLine object also
draws the background and the tick marks on the time line. The tick marks are
managed by the class 1ifelines.TimeRulerNode (TimeRulerNode). It computes
what the major tick marks are (e.g., tick marks that represent year) and what
the minor ticks are (e.g., month) dynamically. It computes how many ticks are
drawn, and where they are placed on screen. TimeRulerNode uses a herusitic to
determine how visible tick marks should be (determined by alpha channel) by looking
at how many tick marks can fit. If there are many, then they are less visible (more
transparent). If there are many, then they are more visible. The aim is reduce to
visual clutter that may detract from analyses. Unlike the Facets and their subsidiary
graphical elements, which are re-computed when different ARFs are applied, the
TimeRulderNode needs to be re-computed whenever zooming and panning occurs.

TimeRulderNode is implemented as a “sticky” in the piccolo pattern. It sits on

216



top of all the other visual elements in view.

A.3.2 Drawing Temporal Summaries

The code for drawing and managing temporal summaries are in the package
lifelines.summary.temporal (2452 lines of code). For the ease of narration, I
will refer to the classes only by their class name below, although readers should take
the package name into account. Temporal summaries provide interesting design
challenges. The summaries must dynamically deal with multiple event types. The
histogram bars need to be linked with the actual Events, Records, and Facets they
represent. Temporal summaries need to deal with multiple temporal granularities.
Finally, aggregating all Events across all Records can be an expensive operation.
The general idea temporal summaries work is by first creating an array of size n+1,
where n corresponds to the number of ticks in the time scale in the main Lifelines2
display. Each element in the array represents a histogram bar in the summary, keeps
the information about how many Events, Facets, and Records contribute to the
bar. The histogram bar class SummaryBar handles multiple events, and stacks up
bars to represent the aggregation of multiple events.

As users zoom in and zoom out, the temporal granularity may change. When
the temporal granularity changes, temporal summaries recompute the aggregation.
The recomputation is performed in a need-only manner. If users pan the time
line. All previously out-of-view histogram bars are created dynamically, and the

appropriate events aggregated. These bins are cached, so once they are created,

217



they do not need to be re-created again, unless new Align or Filter are applied,
new dataset is opened, or different events are to be aggregated. Similarly, when
temporal granularity changes due to zoom-in or zoom-out, additional bins can either
be created (zooming in from year granularity to month granularity makes 12 new
bins for each year) or collapsed (zooming out from month granularity to year would
combine 12 month bins into 1 year bin), temporal summaries need to re-aggregate
and recompute the bins.

The class TemporalSummaryModel is the top level data structure that repre-
sents a temporal summary. It has a set of MultiGranularityTemporalSummaryMo-
dels, which each has several SingleTemporalSummaryModels. Each SingleTempo-
ralSummaryModel represents a temporal summary at a different temporal granu-
larity. As temporal granularity changes due to user interactions, temporal sum-
maries dynamically chooses the aggregation of the right granularity to display.
A SingleTemporalSummaryModel keeps the aggregation of Events, Facets, and
Records for the same granularity. Each aggregation is indexed by the time stamp
of the time line ticks.

The abstract class AbstractTemporalSummary represents the root class for
all temporal summary classes. It contains a TemporalSummaryModel and provides
methods for basic accessor and mutator methods to the model structure. There
are five subclassses of AbstractTemporalSummary: AfterOnlyTemporalSummary,
BeforeOnlyTemporalSummary, BothSidesTemporalSummary, DistributionTempo-
ralSummary, and NoSidesTemporalSummary. They represent each the four types
summaries shown when “Distribution by Occurrence Relative to Alignment” tab is

218



used and one generic temporal summary (DistriutionTemporalSummary). These
subclasses allow slightly different visual representation and labeling.

A TemporalSummaryManager manages the temporal summaries in Lifelines2.
It performs the aggregation and decides what portion of the aggregation goes to
which temporal summary. For example, if the “Distribution by Occurrence Relative
to Alignment” tab is clicked, TemporalSummaryManager determines which Facets
belong to “Occurrence Only Before Alignment”, and aggregates their Events for
the BeforeOnlyTemporalSummary. TemporalSummaryManager does the same for
other three other occurrence types. When “Distribution by Occurrence Relative
to Alignment” is not active, TemporalSummaryManager aggregates all data into
the DistriutionTemporalSummary. Each temporal summary is bundled with a
SummarySelector to perform direct selection. When aggregation has been done, all
temporal summaries are placed onto a TemporalSummaryCanvas.

An analogous set up for the temporal summaries for the purpose of group com-
parison can be found in the 1ifelines.comparison and liefelines.comparison.
summary packages (784 lines of code altogether). Comparisons use Nul1lSplitCompa-
risonTemporalSummary, a subclass of DistributionTemporalSummary to allow

slightly different visual displays.

A.4 GUI Layout

The main GUI components are in the LifelinesPanel in the lifelines

package (7093 lines of code). The LifelinesPanel was created in place of a

219



javax.swing.JFrame so that Lifelines2 can be more easily used as a component
to be integrated in other outside tools such as the i2b2 [70] platform. The current
Lifelines2 creates an LFrame as a container to the LifelinesPanel, but LFrame has
limited functions. Virtually every interaction users make will be directly done to
LifelinesPanel.

A LifelinesPanel has two main areas. The first is the main display area to
the left, and a control panel to the right. The areas are split via a javax.swing.
SplitPane. On each side of the SplitPane, there is a javax.swing.JTabbedPane.
The two JTabbedPanes are synchronized so that when users select the first tab on
the left side, the tab on the right side also becomes active and vice-versa. The left
JTabbedPane isin a lifelines.VisualizationPanel, which manages the main dis-
play area, while the control panel area is directly managed by the LifelinesPanel.

In the VisualizationPanel, There are two main views. The first is the
“Record View”, and the second view is the “Comparison view”. Depending on
which view is active, the VisualizationPanel displays different content. When
“Record View” is active, the typical display of records, events, and temporal sum-
maries are displayed. When “Comparison View” is active, comparisons of groups
using temporal summaries are displayed.

In the “Record View”, there are two additional areas. The top part shows
the records in the time line, while the bottom portion shows the temporal sum-
maries, if they are active. The two portions are synchronized temporally via a
double range slider at the bottom or the zooming controls in the top view. The

VisualizationPanel has many roles. It first acts as a platform where chosen data

220



can be displayed. Groups of records can be loaded in and out of the Visualization-
Panel. The VisualizationPanel interfaces between the data and the visual and the
graphical elements. The VisualizationPanel also manages the TimeLine object,
which manages the record visualization on the top, and the TemporalSummaryManager
object, which manages the display of temporal summaries at the bottom. Finally,
VisualizationPanel passes along user interactions received from LifelinesPanel
to the data and visualization. Similarly, when the “Comparison View” is active,
VisualizationPanel manages the visualization and interaction components of the

comparisons.

A.5 ARF Time vs. Rendering Time

The rendering optimization techniques described in Section A.3.1 led to a
more detailed examination to the overall performance of Lifelines2 — that is, does
performing ARF operators on the dataset take more time the rendering? Which
side should receive more attention for further optimziation? On the one hand,
since ARF operators are intentionally invoked and that they apply to the entire
dataset, users may be more patient with it. So optimization for ARF operators
may not be as critical (though they should not take excessively long). On the other
hand, rendering is invoked implicitly whenever scrolling, zooming, panning, and
application of ARF are invoked. In normal circumstances, rendering should be kept
under 160 milliseconds to deliver a fluid interaction experience.

I used the five real datasets presented in Chapter 4 to perform the performance

221



analysis. I instrumented Lifelines2 so that it records the time it takes to perform
a ARF operation and to perform a rendering operation. I loaded each dataset into
Lifelines2 and perform a variety of align, rank, and filter operations. At the end of
operation, the timing for ARF operation and rendering operations were reported.
Each dataset had a set of 10 comparable ARF operations: align by events, align
to calendar time, 4 sequence filters, rank by most prevalent event (so the screen
is populated by the most number of events), one filter by most prevalent event,
rank by record IDs, and filter reset. The sequence filters are chosen from the set
of sequence filters physicians would use in their investigation. Because the Heart
Attack case study required no sequence filters and had no appropriate sequences for
this analysis, comparable filter sequences were created and used in this comparison.

The timing results and a linear fitting of the data are presented in Figure A.3.
For the smallest data set (Heparin-Induced Thrombocytopenia (814 records)), the
rendering time is more than five times the ARF time. As the number of records
increase, both ARF time and rendering time increase. However, the time it takes to
perform ARF grows much faster than rendering time. In the largest dataset, where
there are 50000+ records, ARF time is about twice that of rendering time. The
rendering algorithm, as described in Section A.3.1, dynamically generates detailed
visual elements for a Facet only if it is on screen. This means that if the number
of events in the screen are the roughly the same across the datasets, the rendering
performance graph to be roughly constant. However, the rendering algorithm also
adds all Facets Facet to the canvas, regardless if they would be on or off the screen.
This explains the growth of rendering as the number of records increases.

222



ARFTime vs Rendering Time

045
¥ = BE-06x+ 00732
2 —

0.4 1 ARF R*=0.934
035 1| B Rendering

Linear [ARF)
0.3

— Linear (Rendering)

0.25

y=2E-06x+ 0.1067

ni=nacna
H

02 //_";;_,Jll
015

Time in Seconds

0.05

0 T T T T T 1
0 10000 20000 30000 40000 50000 60000

Size of Data (# Records)

Figure A.3: Average execution time for ARF operators and rendering
across five datasets and their linear regression.

The time it takes to perform ARF grows much faster than rendering because, in
contrast to rendering, ARF is applied to every single record. Performance improves
if filtering or alignment operations can be terminated early without having to scan an
entire record, but every record must be scanned. As a result, the average standard
deviation for ARF operations (0.0964) is more than twice that for the rendering
(0.0411). Figure A.4 shows the individual timing results. The difference in standard

deviation is apparent.

223



ARFTime vs Rendering Time

a7
Linear (ARF)
06 Linear (Rendering) [
a5
Z ¥= BE-06x+ 0.0732
= 2 =
g 04 R°=0.934
&
£ x
a4 0.3
£
(™= —
b4 y= 2E-06x+ 0.1067
0.z x pi-0 2503 §
0 == T T T T T 1

a 10000 20000 30000 40000 50000 60000

Size of Data (# Records)

Figure A.4: Execution time details for ARF operators and rendering
across five datasets and their linear regression. The difference in stan-
dard deviation between ARF timing and Rendering timing is apparent.

A.5.1 Summary

I present the engineering and the organization of the Lifelines2 software. I
discuss the data model and the rendering pipeline in Lifelines2. 1 compare the
rendering time and ARF time as they are now, and show that ARF time grows

much faster than rendering time.

224



Appendix B

Temporal Pattern Query in Practice

Temporal pattern queries are important in medicine. However, most state-of-
the-art medical informatics systems do not allow such queries. Favoring simplicity,
learnability, and consistency with existing interfaces, these systems often only offer
Boolean queries on the existence of events. In order to issue temporal pattern
queries, domain experts typically need to circumvent the interface altogether and
construct command line queries themselves. In this section, I present an example
on how such a query can be constructed and what difficulties domain experts face
in real situations. I present how generalizable the approach is, and discuss why an

affordable interface is important.

B.1 An Example of Temporal Pattern Query

I use the commonly accessible SQL database mySQL as an illustration on
what a domain experts might have learn in order to issue a temporal pattern query
on a simple 3-column table (Table B.1) similar to the Lifelines2 format (Section
A.1.1.1). This is only an example because different SQL database vendors have
slightly different syntaxes and constructs that may allow for a simpler formulation
of the query. However, the thought process in constructing such a query would be

similar.

225



name type date

Alice Proposal 2002-07-08
Alice Defense 2004-06-24
Alice Paper Submission 2005-12-22
Bob Paper Submission 2002-04-18

Bob Proposal 2002-11-07
Bob Paper Submission 2004-01-07
Bob Defense 2006-11-07

Bob Paper Submission 2007-02-14
Charlie Paper Submission 2003-02-07
Charlie Paper Submission 2004-01-21
Charlie Proposal 2004-05-30

Table B.1: The “student” SQL table.

B.2 Example Query

Imagine a domain expert is analyzing graduate student records using the data
shown in Table B.1. She is interested in the rare situation where students proposed
for a dissertation topic and defended, but did not submit any papers to conferences
or journals during that period of time.

This pattern involves the “absence of” operator, complicating the strategy to
construct the SQL. She needs to first find the set of all students who have the pattern
[Proposal, Defense] (set 1). Next, she needs to construct a second set of students
who have the pattern [Proposal, Paper Submission, Defense| (set 2). Finally, she
needs to take a set difference, subtracting set 2 from set 1 (Figure B.1).

It is not a surprise that she needs to learn the syntaxes for the common SELECT,
FROM, WHERE, JOIN keywords or the comparison operators AND, <, >. But she may be
surprised to find that the set difference operation (the blue portion) is not directly

supported in mySQL. mySQL (version 5.x, the latest free version when the example

226



SELECT DISTINCT * FROM

(SELECT DISTINCT setl.name FROM
(SELECT * FROM students AS tl JOIN students AS t2

WHERE

tl.name = tZ2.name AND
tl.event = 'Proposal' AND
t2.event = 'Defense' AND

t2.date > tl.date

)
as setl)
WHERE NOT EXISTS

(SELECT DISTINCT setZ.name FROM
(SELECT * FROM students AS tl JOIN students AS t2 JOIN students AS t3

WHERE
tl.name
t2.name
tl.event
t2.event
t3.event
(t2.date

)

AS set2);

Figure B.1: SQL query in mySQL to find students who have the pattern
[Proposal, No Paper Submission, Defense|. The orange portions show
the construction of set 1 and set 2. Then set 2 is subtracted from set 1

tZ.name AND

t3.name AND

= 'Proposal' AND

= '"Paper Submission' AND

= 'Defense' and t3.date > tl.date AND
< t3.date AND tZ.date > tl.date)

(blue portion). Keywords in the mySQL syntax are capitalized.

was written) does not support set intersection or set difference operators (where as
in standard SQL, INTERSECT and EXCEPT are supported operators). Instead, she

has to use the combination of DISTINCT and NOT EXIST cleverly in a WHERE clause

to get the ideal effect.

B.3 Analysis of the Query

The above example is a 3-part query that has an absence event in the middle.
This means that the student table needs to be JOINed twice with itself in order
to examine the pattern of three events. The number of JOIN operations increases

linearly with the number of parts in the query. With an n-part query, number of

227




JOIN operations would be n — 1. JOIN operations make a cross product of the tables
in the operation, effectively making a table of size k to size k? if JOINing a table
with itself. In this example query, a table of size k3 is created.

Some database management systems offer a JOIN optimization for the common
case where JOIN occurs only on the same ID. The hash join operation joins only
the rows that share the same ID. In this example, only the rows that begin with
“Alice” are joined, and the rows that begin with “Bob” are joined (separately), and
so on, before putting all the joined rows together. This optimization prevents the
k™ growth of tables, where k is the number of rows, and n the number of parts
in the pattern query. Hash join is very effective when there are only a few events
per student (say, 20 or fewer!), as in this example. However, when there are scores
or hundreds of events per student (as in the case of patients in electronic health
records), the time it takes to execute can be prohibitively long.

The query construction can become more tedious in more complex situa-
tions. In the 3-part example above, there is only one positive event pair (Proposal,
Defense) that are relevant to the negative event. If there are multiple pairs, the
query needs to identify each pair and force potentially different constraints. For
example, the template for the above example would not work for the 6-part query
[A, No B, C; A No D, C] because there are multiple pairs of A and C. The query will
need to include additional constructs to differentiate which A-C pair cannot have B

in between, and which A-C pair cannot have D in between.

!Source: private communication with professor Amol Deshpande

228



B.4 Additional Barriers

In addition to wrestling with issues in constructing SQL query, domain ex-
perts also struggle to deal with infrastructural difficulties. For example, in many
institutions (hospitals, law enforcement institutions), data are not all stored in the
same database. They are often siloed in many databases, and it relies on each user
to decide which databases to connect to. Domain experts often do not know the
which pieces of data reside in which databases, what each piece of information is

named, and what each database is named.

B.5 Summary

The technical difficulties and the infrastructural difficulties prevent domain
experts accessing the data they desire. The work presented in this dissertation,
admittedly, does not help alleviate the infrastructural issues. However, the consis-
tent GUI to allow domain analysts to specify temporal pattern queries reduces the
amount of work they need to do to construct complex SQL queries, and in turn

avoid the inconsistent approaches they must take to in different situations.

229



1]

[10]

Bibliography

Marc Abrams, Naganand Doraswamy, and Anup Mathur. Chitra: visual anal-
ysis of parallel and distributed programs in the time, event, and frequency
domains. IEEE Transactions on Parallel and Distributed Systems, 3:672—685,
1992.

Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil immerman. Efficient
pattern matching over event streams. Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 147-160, 2008.

Rakesh Agrawal, Giuseppe Psaila, Edward L. Wimmers, and Mohamed Zait”.
Querying shapes of histories. Proceedings of the 21st International Conference
on Very Large Data Bases (VLDB 95), pages 502-514, 1995.

Christopher Ahlberg, C. Williamson, and Ben Shneiderman. Dynamic queries
for information exploration: An implementation and evaluation. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
'92), pages 619-626, 1992.

Diane Lindwarm Alonso, Anne Rose, Catherine Plaisant, and Kent L. Nor-
man. Viewing personal history records: A comparison of tabular format and

graphical presentation using lifelines. Behaviour and Information Technology,
17(5):249-262, 1998.

Paul André, Max L. Wilson, Alistair Russell, Daniel A. Smith, Alisdair Owens,
and m.c. schraefel. Continuum: designing timelines for hierarchies, relation-
ships and scale. In Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology (UIST "07), pages 101-110, New York, NY,
USA, 2007. ACM.

Aleks Aris and Ben Shneiderman. Designing semantic substrates for visual
network exploration. Information Visualization, 6(4):281-300, 2007.

Alex Aris, Ben Shneiderman, Catherine Plaisant, Galit Shmueli, and Wolf-
gang Jank. Representing unevenly-spaced time series data for visualization

and interactive exploration. Proceedings of the International Conference on
Human-Computer Interaction (INTERACT °05), pages 835-846, 2005.

Ragnar Bade, Stefan Schelchtweg, and Silvia Miksch. Connecting time-
oriented data and information to a coherent interactive visualization. CHI
'04: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 105-112, 2004.

Benjamin B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for in-
teractive structured graphics. IEEE Transactions on Software Engineering,
30(8):535-546, 2004.

230



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

22]

23]

Robert S. Boyer and J. Strother Moore. A fast string-searching algorithm.
Communications of the ACM, 20:762-772, 1977.

J. Carlis and J. Konstan. Interactive visualization of serial periodic data. In
UIST ’98: Proceedings of the 11th annual ACM symposium on User interface
software and technology, pages 29-38, New York, NY, USA, 1998. ACM.

Rong Chen, Anne Rose, and Benjamin B. Bederson. How people read books
online: Mining and visualizing web logs for use information. In Research and
Advanced Technology for Digital Libraries, pages 364-369, 2009.

Luca Chittaro, Carlos Combi, and Giampaolo Trapasso. Data minding on
temporal data: a visual approach and its clinical application to hemodialysis.
Journal of visual Languages and Computing, 14:591-620, 2003.

W. Chung, H. Chen, L.G. Chaboya, C. O’Toole, and H. Atabakhsh. Evaluating
event visualization: A usability study of coplink spatio-temporal visualizer.
International Journal of Human-Computer Studies, 62(1):127-157, 2005.

Carlo Combi, Angelo Montanari, and Giuseppe Pozzi. The tdsql temporal
query language. In Proceedings of the Sixteenth ACM Conference on Con-
ference on Information and Knowledge Management (CIKM °07: ), pages
193-202, New York, NY, USA, 2007. ACM.

Steve B. Cousins and Michael G. Kahn. Visualizing operations on temporal
data. In Proceedings of the First Conference on Visualization in Biomedical
Computing, pages 72-76, 1990.

Steve B. Cousins and Michael G. Kahn. The visual display of temporal infor-
mation. Artificial Intelligence in Medicine, 3(3):347-351, 1991.

Russ Cox. Regular expression matching can be simple and fast. http://
swtch.com/~rsc/regexp/regexpl.html, 2007.

DataMontage. http://www.stottlerhenke.com/datamontage/.

Marc Davis. Media streams: An iconic visual language for video representa-
tion. Readings in Human-Computer Interaction: Toward the Year 2000, pages
854-866, 1995.

Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker White. Towards expressive publish /subscribe systems. Proceedings of
the 10th International Conference on Extending Database Technology, pages
627-644, 2006.

Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmins Novak, Prabhakar
Raghavan, and Andrew Tomkins. Visualizing tags over time. In Proceedings
of the 15th international conference on World Wide Web (WWW 06), pages
193-202, New York, NY, USA, 2006. ACM.

231



[24]

[25]

2]

[27]

[28]

[29]

[30]

[31]

Jerry Fails, Amy Karlson, Layla Shahamat, and Ben Shneiderman. A vi-
sual interface for multivariate temporal data: Finding patterns of events over
time. Proceedings of the IEEE Symposium of Visual Analytics Science and
Technology (VAST 2006), 2006.

Anthony Faiola and Simon Hillier. Multivariate relational visualization of
complex clinical datasets in a critical care setting: A data visualization in-
teractive prototype. In IV ’06: Proceedings of the conference on Information
Visualization, pages 460-468, Washington, DC, USA, 2006. IEEE Computer
Society.

Domenico Ficara, Stefano Giodano, Gregorio Procissi, Fabio Vitucci, Gianni
Antichi, and Andrea Di Pietro. An improved dfa for fast regular expression
matching. ACM SIGCOMM Computer Communication Review, 38(5):29-40,
2008.

Brian Francis and Mark Fuller. Visualization of event histories. Journal of
the Royal Statistical Society Series A, 159(2):301-308, 1996.

Anna Fredrikson, Chris North, Catherine Plaisant, and Ben Shneiderman.
Temporal, geographical and categorical aggregations viewed through coordi-
nated displays: a case study with highway incident data. In Proceedings of
the 1999 Workshop on New Paradigms in Information Visualization and Ma-
nipulation in Conjunction with the eighth ACM International Conference on
Information and Knowledge Management (NPIVM °99), pages 26-34, New
York, NY, USA, 1999. ACM.

Francgois Guimbretiére, Morgan Dixon, and Ken Hinckley. Experiscope: An
analysis tool for interaction data. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI °07), pages 1333-1342, 2004.

Lilian Harada and Yuuji Hotta. Order checking in a CPOE using event ana-
lyzer. Proceedings of the Fourteenth ACM Conference on Conference on In-
formation and Knowledge Management (CIKM 05: ), pages 549-555, 2005.

Lilian Harada, Yuuji Hotta, and Tadashi Ohmori. Detection of sequential
patterns of events for supporting business intelligence solutions. Proceedings of
the International Database Engineering and Applications Symposium (IDEAS
04), pages 475-479, 2004.

Beverly Harrison, Russell Own, and Ronald Baecker. Timelines: An interac-
tive system for the collection and visualization of temporal data. Proceedings
of Graphics Interface 94, pages 141-148, 1994.

Paul K. Harter, Dennis Heimbigner, and Roger King. Idd: An interactive dis-
tributed debugger. Technical Report CU-CS-274-84, Department of Computer
Science, University of Colorado at Boulder, 1984.

232



[34]

[35]

[36]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. Themeriver:
Visualizing thematic changes in large doeumcnet collections. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):9-20, 2002.

Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of
parallel programs. IEFEE Software, 8:29-39, 1991.

Jeffrey Heer, Fernanda B. Viégas, and Martin Wattenberg. Voyagers and
voyeurs: supporting asynchronous collaborative information visualization. In
CHI ’07: Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 1029-1038, New York, NY, USA, 2007. ACM.

K.P. Hewagamage, M. Hirakawa, and T. Ichikawa. Interactive visualization of
spatiotemporal patterns using spirals on a geographical map. In Proceedings
of Visual Languages 1999, pages 296-303, 1999.

Stacie Hibino and Elke A. Rundensteiner. Interactive visualization for tem-
poral analysis: application to cscw multimedia data. Intelligent Multimedia
Information Retrieval, pages 313-335, 1997.

Stacie Hibino and Elke A. Rundensteiner. User interface evaluation of a di-
rect manipulation temporal visual query language. In MULTIMEDIA ’97:
Proceedings of the fifth ACM international conference on Multimedia, pages
99-107, New York, NY, USA, 1997. ACM.

K. Hinum, S. Miksch, W. Aigner, S. Ohmann, C. Popow, M. Pohl, and
M. Rester. Gravi++: Interactive information visualization to explore highly
structured temporal data. Journal of Universal Computer Science (J. UCS)
— Special Issue on Visual Data Mining, 11(11):1792-1805, 2005.

Harry Hochheiser and Ben Shneiderman. Interactive exploration of time series
data. In DS ’01: Proceedings of the jth International Conference on Discovery
Science, pages 441-446, London, UK, 2001. Springer-Verlag.

W. Horn, C. Popow, and L. Unterasinger. Support for fast comprehension of
icu data: Visualization using metaphor graphics. Methods of Information in
Medecine, 40(5):421-424, 2001.

Weidong Huang, Peter Eades, and Seok-Hee Hong. Beyond time and error:
a cognitive approach to the evaluation of graph drawings. In BELIV 08:
Proceedings of the 2008 conference on Beyond time and errors, pages 1-8,
New York, NY, USA, 2008. ACM.

I. Janszky and R. Ljung. Shifts to and from daylight saving time and incidence
of myocardial infarction. New England Journal of Medicine, 359(18):1966—
1968, 2008.

Matt Jensen. Visualizing complex semantic time-lines. Technical Report
BMTR2003-001, NewsBlip, 2003.

233



[46]

[50]

[51]

[52]

[56]

[57]

N. K. Jog and B. Shneiderman. Starfield visualization with interactive smooth
zooming. In Proceedings of the third IFIP WG2.6 Working Conference on
Visual Database Systems 3 (VDB-3), pages 3-14, London, UK, UK, 1995.
Chapman & Hall, Ltd.

[an Johnson. Putting time on the map. Geolnformatics, 2004.

Hyunmo Kang, Vivek Sehgal, and Lise Getoor. Geoddupe: A novel interface
for interactive entity resolution in geospatial data. In IV ’07: Proceedings of
the 11th International Conference Information Visualization, pages 489-496,
Washington, DC, USA, 2007. IEEE Computer Society.

Harry C. Karadimas, Christophe Chailloleau, Frangois Hemery, Julien Simon-
net, and Eric Lepage. Arden/j: An architecture for MLM execution on the java
platform. Journal of American Medical Informatics Association, 9(4):359-368,
2002.

Gerald Karam. Visualization using timelines. In Proceedings of the 1994 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'94), pages 125-137, New York, NY, USA, 1994. ACM.

Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. Technical Report TR-31-81, Aiken Computation Labo-
ratory, Harvard University, 1981.

Denis Klimov, Yuval Shahar, and Meirav Taieb-Maimon. Intelligent selection
and retrieval of multiple time-oriented records. Journal of Intelligent Infor-
mation Systems (Published Online), 2009.

Donald E. Knuth, James H. Moris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323-350, 1977.

Aparna Krishnan and Steve Jones. Timespace: activity-based temporal visual-
isation of personal information spaces. Personal Ubiquitous Comput., 9(1):46—
65, 2005.

Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George
Varghese. Curing regular expressions matching algorithms from insomnia,
amnesia, and acalculia. Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, pages 155-164,
2007.

V. Kumar and R. Furuta. Metadata visualization for digital libraries: Inter-
active timeline editing and review. In Proceedings of the 3rd ACM Conference
on Digital Libraries, pages 126-133, 1998.

Heidi Lam, Daniel Russell, Diane Tang, and Tamara Munzner. Session viewer:
Visual exploratory analysis of web session logs. Symposium On Visual Ana-
lytics Science And Technology, 0:147-154, 2007.

234



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

Stanley Lam. Patternfinder in microsoft amalga: Temporal query formu-
lation and result visualization in action. http://www.cs.umd.edu/hcil/
patternFinderInAmalga/PatternFinderS-HonorsPaper.pdf, 2008.

Bonshin Lee, Cynthia C. Parr, Catherine Plaisant, Benjamin B. Bederson,
V.D. Veksler, W.D. Gray, and C. Kotfila. Treeplus: Interactive exploration
of networks with enhanced tree layouts. IEEE TVCG Special Issue on Visual
Analytics, 12(6):1414-1426, 2006.

Ted Lehr, Zary Segall, Dalibor F. Vrsalovic, Eddie Caplan, Alan L. Chung,
and Charles E. Fineman. Visualizing performance debugging. Computer,
22(10):38-51, 1989.

Wilhelm Hector Richard Albrecht Lexis. FEinleitung in die Theorie der
Bevolkerungsstatistik. K.J. Triibner, 1875.

Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey Lankford, and Donna
Nystrom. Visually mining and monitoring massive time series. In Proceedings
of the tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’04), pages 460-469, New York, NY, USA, 2004.
ACM.

Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective
wall: detail and context smoothly integrated. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI ’91), pages 173—
176, New York, NY, USA, 1991. ACM.

H. Mannila and P. Moen. Finding similar situations in sequences of events
via random projections. Data Warehousing and Knowledge Discovery (Dawak
'99), pages 271-280, 1999.

H. Mannila and P. Ronkainen. Similarity of event sequences. Proceedings of
Temporal Representation and Reasoning (TIME °97), pages 136-139, 1997.

Charles E. McDowell and David P. Helmbold. Debugging concurrent pro-
grams. ACM Computing Survey, 21(4):593-622, 1989.

Peter McLachlan, Tamara Munzner, Eleftherios Koutsofios, and Stephen
North. Liverac: interactive visual exploration of system management time-
series data. In Proceeding of the Twenty-Sizth Annual SIGCHI Conference
on Human Factors in Computing Systems (CHI °08), pages 1483-1492, New
York, NY, USA, 2008. ACM.

Microsoft. http://www.microsoft.com/amalga/.

Anders Mgller. http://www.brics.dk/automaton/.

235



[70]

[78]

[79]

[30]

Shawn Murphy, M. Mendis, K. Hackett, R. Kuttan, W. Pan, L. Phillips,
V. Gainer, D. Berkowicz, J. Glaser, I. Kohane, and H. Chueh. Architecture
of the open-source clinical research chart from informatics for integrating bi-

ology and the bedside. In Proceedings of the American Medical Informatics
Association Annual Symposium (AMIA °07), pages 548-552, 2007.

G. Navarro. Pattern matching. Journal of Applied Statistics, 31(8):925-949,
2004.

G. Navarro and M. Raffinot. Fast and flexible string matching by combining
bit-parallelism and suffix automata. ACM Journal of Experimental Algorith-
mics (JEA), 5(4):Article No. 4 (36 pages), 2000.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge
Unversity Press, 2002.

Chris North. Toward measuring visualization insight. IEEE Comput. Graph.
Appl., 26(3):6-9, 2006.

Martin J O’Connor, Samson W Tu, and Mark A Musen. The chronus ii
temporal database mediator. Proceedings of AMIA Symposium, pages 657—
571, 2002.

J.M. Overhage, B. Mamlin, J. Warvel, J. Warvel, W.M. Tierney, and C.J.
McDonald. A tool for provider interaction during patient care: G-care. Pro-

ceedings of Annuual Symposium on Computer Applications in Medidcal Care,
pages 178-182, 1995.

Gultekin Ozsoyoglu and Huaqing Wang. A relational calculus with set oper-
ators, its safety, and equivalent graphical languages. IFEFE Transactions on
Softwware Engineering, 15(9):1038-1052, 1989.

Adam Perer and Ben Shneiderman. Balancing systematic and flexible explo-
ration of social networks. IEFE Transactions on Visualization and Computer
Graphics, 12(5):693-700, 2006.

Adam Perer and Ben Shneiderman. Integrating statistics and visualization:
case studies of gaining clarity during exploratory data analysis. In Proceed-
ing of the Twenty-Sizth Annual SIGCHI Conference on Human Factors in
Computing Systems (CHI °08), pages 265-274, New York, NY, USA, 2008.
ACM.

D. Phan, J. Gerth, M. Lee, A Paepcke, and T. Winograd. Visual analysis
of network flow data with timelines and event plots. In Proceedings of the
workshop on Visualization for Computer Security ‘08, pages 85-99, 2008.

236



[81]

[82]

[85]

[30]

[87]

8]
[39]

[90]

[91]

[92]

David S. Pieczkiewicz, Stanley M. Finkelstein, and Marshall I. Hertz. Design
and evaluation of a web-based interactive visualization system for lung trans-

plant home monitoring data. Proceedings of the American Medical Informatics
Association Annual Symposium (AMIA °07), pages 598-602, 2007.

C. Plaisant, S. Lam, B. Shneiderman, M. Smith, D. Roseman, G. Marchand,
M Gillam, C Feied, J Handler, and H. Rappaport. Searching electronic health
records for temporal patterns in patient histories: A case study with microsoft

amalga. Proceeding of the American Medical Informatics Association Annual
Symposium (AMIA °08), pages 601-605, 2008.

Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneider-
man. Lifelines: Visualizing personal histories. Proceedings of CHI 96, 1996.

Catherine Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and Ben Shnei-
derman. Lifelines: Using visualization to enhance navigation and analysis of
patient recordss. Proceedings of American Medical Informatics Association
Fall Symposium (AMIA 98), pages 76-80, 1998.

Andrew R. Post and James H. Harrison. Protempa: A method for specifying
and identifying temporal sequences in retrospective data for patient selection.
JAMIA, 2007.

S. Powsner and E. Tufte. Graphical summary of patient status. The Lancet,
344:386-389, 1994.

Rolant Pressat. Lanalyse démographique: Méthodes, résultats, applications.
Population, 16:505-508, 1961.

SIMILE Project. http://simile.mit.edu/timeline.

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 2:114-125, 1959.

Jun Rekimoto. Time-machine computing: a time-centric approach for the
information environment. In Proceedings of the 12th annual ACM symposium
on User interface software and technology (UIST '99), pages 45-54, New York,
NY, USA, 1999. ACM.

Randy Ribler, Randy, Anup Mathur, and Marc Abrams. Visualizing and
modeling categorical time series data. Technical report, Virginia Polytechnic
Institute && State University, Blacksburg, VA, USA, 1995.

Peza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Expressing and
optimizing sequence queries in database systems. ACM Trans. on Database
Systems, 29(2):282-318, June 2004.

237



[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

101]

[102]

[103]

[104]
[105]

Purvi Saraiya, Chris North, Vy Lam, and Karen A. Duca. An insight-based
longitudinal study of visual analytics. IEEE Transactions on Visualization
and Computer Graphics, 12:1511-1522, 2006.

Jinwook Seo and ben Shneiderman. Knowledge discovery in high dimensional
data: Case studies and a user survey for an information visualization tool.
In IEEE Transactions on Visualization and Computer Graphics, volume 12,
pages 311-322, 2006.

Asaf Shabtai, Denis Klimov, Yuval Shahar, and Yuval Elovici. An intelligent,
interactive tool for exploration and visualization of time-oriented security data.
In Proceedings of the 3rd International Workshop on Visualization for Com-

puter Security (VizSEC ’006)), pages 15-22, New York, NY, USA, 2006. ACM.

Yuval Shahar and Cleve Cheng. Intelligent visualization and exploration of
time-oriented clinical data. Proceedings of the 32nd Hawaii International Con-
ference on System Sciences, 4:4019, 1999.

Ben Shneiderman. Dynamic queries for information seeking. I[EEE Software,
11(6):70-77, 1994.

Ben Shneiderman and Aleks Aris. Network visualization by semantic sub-
strates. IEEFE Transactions on Visualization and Computer Graphics, 12:733—
740, 2006.

Ben Shneiderman and Catherine Plaisant. Strategies for evaluating informa-
tion visualization tools: Multi-dimensional in-depth long-term case studies.

Proceedings of BELIV 06, pages 38-43, 2006.

Marc Smith, Natasa Milic-Frayling, Ben Shneiderman, Cody Dunne, Tony
Capone, Eduarda Mendes Rodrigues, Udayan Khourana, Annika Hupfeld,
Jure Leskovec, Dan Fay, Vladmir Barash, Eric Gleave, and Adam Perer.
Nodexl. http://www.codeplex.com/NodeXL, 2007.

M. Smythe, J.M. Koerber, M. Fitzgerald, and JC Mattson. Financial impact
of heparin-induced thrombocytopenia. Chest Journal, 134(3):568-573, 2008.

Richard Snodgrass. The temporal query language tquel. ACM Trans. Database
Syst., 12(2):247-298, 1987.

Richard T. Snodgrass. The TSQLZ2 Temmporal Query Language. Kluwer,
1995.

Spotfire. http://spotfire.tibco.com/.

Janice M. Stone. A graphical representation of concurrent processes. In Pro-
ceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging, volume 24, pages 226235, New York, NY, USA, 1989.
ACM.

238



[106]

107]

108

109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]

Martin Suntinger, Hannes Obweger, Josef Schiefer, and M. Eduard Groller.
The event tunnel: Interactive visualization of complex event streams for busi-
ness process pattern analysis. Proceedings of PacificVis 08, pages 111-118,
2008.

Abdullah U. Tansel, M. Erol Arkun, and Gultekin Osoyoglu. Time-by-example
query language for historical databases. IEEE Trans. Softw. Eng., 15(4):464—
478, 1989.

K. Thompson. Regular expression search algorithm. CACM, 11(6):419-422,
1968.

Hideyuki Tokuda, Makoto Kotera, and Clifford E. Mercer. A real-time mon-
itor for a distributed real-time operating system. In Proceedings of the 1988
ACM SIGPLAN and SIGOPS workshop on Parallel and Distributed Debug-
ging (PADD ’88), pages 6877, New York, NY, USA, 1988. ACM.

L. Tweedie and Robert Spence. The attribute explorer: Informatin synthesis
via exploration. Interacting with Computers, 1998.

Tom Ventsias. Health it an rx for health care. Terp, 7(1):20-23, 2009.

Fernanda B. Viégas, Martin Wattenberg, Frank van Ham, Jesse Kriss,
and Matt McKeon. Manyeyes: a site for visualization at internet scale.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1121-
1128, 2007.

Katerina Vrotsou, Jimmy Johansson, and Matthew Cooper. Activitree: Inter-
active visual exploration of sequences in event-based data using graph similar-
ity. IEEE Transactions on Visualization and Computer Graphics, 15(6):945—
952, 20009.

Taowei David Wang, Amol Deshpande, and Ben Shneiderman. A temporal
pattern search algorithm for personal history event visualization. Technical
Report HCIL-2009-14, Human-Computer Interaction Lab, University of Mar-
land, 2009.

Taowei David Wang, Catherine Plaisant, Alexander J. Quinn, Roman Stan-
chak, Shawn Murphy, and Ben Shneiderman. Aligning temporal data by sen-
tinel events: discovering patterns in electronic health records. Proceeding of
the Twenty-Sizth Annual SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 457-466, 2008.

Taowei David Wang, Catherine Plaisant, Ben Shneiderman, Neil Spring, David
Roseman, Greg Marchand, Vikrumjit Mukherjee, and Mark Smith. Tempo-
ral summaries: Supporting temporal categorical searching, aggregation, and
comparison. IEEE Transaction on Visualization and Computer Graphics,
15(6):1049-1056, 2009.

239



[117)

[118]

119]

[120]

[121]

[122]

Martin Wattenberg. Baby names, visualization, and social data analysis. In
INFOVIS 05: Proceedings of the Proceedings of the 2005 IEEE Symposium
on Information Visualization, page 1, Washington, DC, USA, 2005. IEEE

Computer Society.

Marc Weber, Marc Alexa, and Wolfgang Miiller. Visualizing time-series on
spirals. In INFOVIS, pages 7-14, 2001.

C. Williamson and Ben Shneiderman. The dynamic homefinder: evaluating
dynamic queries in a real-estate information exploration system. In Proceed-
ings of the 15th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR °92), pages 338-346, New
York, NY, USA, 1992. ACM.

K. Wongsuphasawat and B. Shneiderman. Finding comparable temporal cat-
egorical records: A similarity measure with an interactive visualization. Pro-
ceedings of IEEE Symposium on Visual Analytics Science and Technology
(VAST ’09), pages 27-34, 20009.

Fang Yu, Zhifeng Chen, Yanlei Diao, T.V. Lakshman, and Randy H. Katz.
Fast and memory-efficient regular expression matching for deep packet inspec-
tion. In Proceedings of the 2006 ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS °06), pages 93-102, New
York, NY, USA, 2006. ACM.

Moshé M. Zloof. Query-by-example: A database language. IBM Systems
Journal, 1977.

240



