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Aerosols can affect the net radiation budget and global climate of the Earth either “directly” – 

through their radiative properties, or “indirectly” – through their cloud-forming abilities by acting 

as Cloud Condensation Nuclei (CCN). The interactions between aerosols and clouds are the most 

significant sources of uncertainty in the overall radiative forcing from due to a lack of 

understanding related to the droplet formation mechanism of aerosols. These uncertainties are 

majorly associated with the carbonaceous aerosols present in the atmosphere, notably due to their 

compositional diversity, vastly variable physicochemical properties, and unique water uptake 

characteristics. In this dissertation, new lab-based measurement techniques and computational 

methods have been developed to resolve the CCN activity and water uptake behavior of pure and 

mixed carbonaceous aerosol particles. 

The first part of this dissertation accomplishes two goals: 1. The development and application 

of a new CCN measurement method, and 2. The formulation of a new computational framework 

for CCN activity analysis of aerosols. The results in this dissertation demonstrate the significance 



  

of size-resolved morphology and dissolution properties of aerosol particles in improving their 

CCN activity analysis under varying ambient conditions. Furthermore, these results suggest that 

in the future, more comprehensive CCN analysis frameworks can be developed by explicitly 

treating other physical and chemical properties of the aerosols to further improve their CCN 

activity analysis. 

The second part of this dissertation focuses on large-scale analysis. The CCN analysis 

framework is implemented into a climate model to quantify the water uptake behavior of 

carbonaceous aerosols, and then study the subsequent variabilities associated with the physical and 

radiative properties of ambient aerosols and clouds. Statistical techniques are also developed in 

this work for chemical characterization of ambient aerosols. The characterization results show 

large regional compositional variations in ambient aerosol populations. These results also suggest 

that the knowledge of chemical species is necessary to quantify the water uptake properties of the 

aerosol population. 
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Chapter 1: Introduction 

 

1.1 Background 

The air around us contains solid or liquid particles that are known as aerosols. Most 

atmospheric aerosols are microscopic in size; ranging from several nanometers to a few 

microns (Speight, 2017). However, aerosols are still capable of significantly affecting 

human health, environment and even the climate (Seinfeld and Pandis, 1998). One 

significant way in which certain atmospheric aerosols affect the climate is by 

facilitating condensation of water vapor atop their surface to form droplets, and clouds 

(Köhler, 1936). Aerosols that form cloud droplets are referred to as Cloud 

Condensation Nuclei (CCN). And the tendency of the particles to take up water in 

supersaturated ambient conditions resulting in spontaneous droplet formation CCN 

activation is defined as their CCN activity. Clouds that are subsequently formed interact 

with solar and terrestrial radiations to alter the Earth’s radiative budget thereby leading 

to either warming or cooling of the climate (Wallace and Hobbs, 2006; Rap et al., 

2013). Although it is reported that clouds have an overall cooling effect on the 

atmosphere, the magnitude of the overall cloud radiative forcing has large uncertainty 

associated with it. Climate models have shown that uncertainties in the estimates of 

CCN activity subsequently translate to their cloud response (e.g., but not limited to 

Ghan et al., 1997, 2011; Nenes et al., 2001). Therefore, accurate estimation of CCN 

activity of aerosols is important for correctly predicting cloud growth and their impact 

on the climate. 
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Aerosols can affect clouds in either of the 2 ways (Figure 1) – by a change in the 

cloud lifetime and cloud radiative forcing (first indirect effect of aerosols) (Twomey, 

1977), or by a change in the precipitation efficiency and cloud liquid water content 

(second indirect effect of aerosols) (Albrecht, 1989). Both effects are described as the 

“Aerosol Indirect Effect” (AIE). Aerosols and CCN in the atmosphere are 

multicomponent mixtures of organic and inorganic substances and have vastly variable 

chemical compositions, and therefore variable physicochemical properties (e.g., but not 

limited to Asa-Awuku et al., 2010; Bhattu & Tripathi, 2015; W. Liu et al., 2005). 

Furthermore, quantification of the effect of aerosols on the climate due to variations in 

their number concentration, chemical constituency, size, solubility, shape, and mass is 

a challenging task (Kulmala et al., 1998; Kanakidou et al., 2005). These properties play 

a significant role in determining their “CCN activity”. Previous studies have shown 

that the prediction of CCN activity of an aerosol species is highly sensitive to errors in 

their physical and chemical measurements (Zhang et al., 2017). 

 

Figure 1. Schematics showing the aerosol indirect effect. The changes in the cloud 

radiative properties (first indirect effect) and precipitation (second indirect effect) are 

shown. 

 

Recent and continuing studies show improvements in our understanding of CCN 

activity and the factors that affect droplet growth (e.g., but not limited to McFiggans et 

al., 2006; Petters & Kreidenweis, 2007; Thalman et al., 2017). One such example is the 
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application of computational and data-driven approaches for performing chemical 

analysis of ambient aerosols to identify their chemical compositions (Kyriakides et al., 

2011). In addition to this, there are advancements in the representation of CCN activity 

in models under prescribed atmospheric conditions (Nenes et al., 2001; Morales and 

Nenes, 2010; Shipway, 2015). Governing dynamical and physical equations for 

evolving atmospheric conditions, coupled with CCN activation schemes can estimate 

droplet growth and cloud responses across a wide range of aerosol populations using 

Global Climate Models (Liu et al., 2012, 2016). However, despite such progress, 

models are still prone to systematic misrepresentations of CCN activity and its effects.  

The uncertainties in radiative forcing and cloud responses are observed to be more 

pronounced in model responses for species with low hygroscopic yet wettable 

characteristics, such as carbonaceous (organic) aerosols (Xu et al., 2014; Vu et al., 

2019). Carbonaceous aerosols have been well studied for their strong climate forcing 

resulting from their radiative effects (Talley et al., 2013). They innately possess low 

hygroscopicity, but act as CCN due to their interactions with more hygroscopic and 

soluble organic and inorganic species (Taylor et al., 2017; Dalirian et al., 2018). These 

interactions result in aging of carbonaceous aerosols which manifest as changes in their 

mixing state and are highly unpredictable. Furthermore, carbonaceous aerosols have 

high compositional variability and a high atmospheric burden (e.g., but not limited to 

Barati et al., 2019; Bhattu & Tripathi, 2015; Xu et al., 2014). The combined 

atmospheric mass burden of primary and secondary organic aerosols can vary 

anywhere between 20% and 90% of the total atmospheric aerosol mass, depending on 

the ambient conditions (Zhang et al., 2007). Also, organic, and carbonaceous aerosol 
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particles are generally either non-spherical or fractal-like (Wu and Colbeck, 1996; 

Schnitzler et al., 2014). Studies related to climate modeling also show that the 

uncertainties in CCN activity of carbonaceous aerosols directly relate their cloud 

response (Pringle et al., 2009; Spracklen et al., 2011; Karydis et al., 2012). As a result, 

this dissertation aims to improve current analytical measurement and analysis to better 

understand and estimate the CCN activity and cloud response from carbonaceous 

aerosols. 

As stated previously, there are large uncertainties associated with the cloud 

radiative forcing. The Intergovernmental Panel for Climate Change has shown that the 

aerosol-cloud-climate interactions (ACCI) related to organic and carbonaceous 

aerosols are one of the largest source of uncertainty in the Earth’s radiative forcing 

(Figure 2). Reducing these uncertainties requires improving our current understanding 

of the CCN activity and cloud forming abilities of aerosols. Even though field 

observations, controlled laboratory measurements and large-scale climate modeling 

extensively study carbonaceous ACCI, there have been few attempts to implement 

findings from controlled measurements for improving large-scale climate predictions. 

The following sections provide a brief overview of measurement and computational 

procedures adopted for controlled CCN experiments of carbonaceous aerosols relevant 

to this research. Furthermore, the details regarding parameterization of water uptake 

for carbonaceous aerosols and its implementation within a large-scale climate model 

are also provided. Next, a newly developed computational methodology is introduced 

for chemical characterization of atmospheric aerosols using their real-time Raman 
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spectral measurements. Lastly, this chapter concludes by providing an outline of the 

subsequent chapters of the dissertation. 

 

Figure 2. Contributions of forcing agents during the industrial era between 2011 and 

1750 as presented in the IPCC 2022 Technical Summary. Colored bars represent the 

estimates for positive (heating; red) and negative (cooling; blue) radiative forcing in 

terms corresponding to the forcing precursors highlighted along the y-axis. Error bars 

represent the forcing uncertainty associated with each forcing term. Aerosol-cloud 

interactions contribute the greatest forcing uncertainty and climate sensitivity 

uncertainties; the mean uncertainty ranging between -1.2 to 0 W/m2 with a mean around 

-0.45 W/m2. 

 

1.2 Controlled Experiments for CCN Activity Analysis and Global Climate Modeling 

CCN activity of aerosols is linked with their cloud forming ability and therefore to 

their indirect effect on the climate. The CCN activity of aerosols is innately dependent 

on several physicochemical properties – particle size, chemical composition, mixing 

state, surface activity, aqueous solubility – to name a few (Petters and Kreidenweis, 
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2013; Padró et al., 2012; Lee et al., 2011; Petters and Kreidenweis, 2008; Kulmala et 

al., 1998). All aerosol properties can be measured experimentally or determined 

empirically to describe the CCN activity of any aerosol species. CCN activity is 

strongly dependent on dry particle size (Dusek et al., 2006). Most of the widely 

implemented CCN measurement procedures are based on the use of particle sizers, 

otherwise known as classifier instruments. Traditionally, a Differential Mobility 

Analyzer (DMA) is the most used aerosol classifier for CCN experiments. 

In this dissertation, the CCN activity and droplet growth experiments in 

supersaturated conditions were measured using the Droplet Measurement Technologies 

Continuous Flow Stream-wise Thermal Gradient CCN Counter (CCNC) based on the 

design of (Roberts and Nenes, 2005). The CCNC is coupled with an aerosol classifier 

to size-select aerosol particles in the scanning mode to obtain the number size 

distributions of the aerosol population (Rose et al., 2008; Moore et al., 2010). The size-

selected aerosol particles passing through the CCNC are then subjected to 

supersaturated relative humidity in the range of 0.2% - 1.8% to generate number 

concentrations resolved with respect to time at a resolution of 1 second. The CCNC 

consists of a cylindrical flow chamber and the aerosol sample streams passes through 

it. The flow chamber creates a supersaturated environment for aerosols by creating a 

temperature gradient across its ceramic-lined inner walls. Particle-free sheath air keeps 

the aerosol particles along the centerline of the column where the CCNC column retains 

supersaturated conditions, and the particles can take up water and form droplets. 

Particles of a given size activate and form droplets when the instrument 

supersaturation in the CCNC exceeds their critical supersaturation. For the experiments 
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performed in the scanning mode, the instrument supersaturation is held constant while 

the DMA (or any other classifier instrument) generates a number distribution across 

the size spectrum. The number size distributions obtained from the CPC and CCNC for 

the aerosol species are then combined to get the size for which the particles will activate 

at the instrument supersaturation. The particle size thus obtained is called the critical 

dry diameter of the particles. The schematic of a typical DMA-CCN setup is shown in 

Figure 3. 

 

Figure 3. DMA-CCN experimentation setup for measuring the size-resolved number 

concentration of aerosols. 

 

From the aforementioned experimental procedure (based on a DMA), the critical 

dry diameter is an electrical mobility diameter of the particles since the DMA classifies 

aerosols based on their electrical mobility. The DMA charges the particles moving 

through it electrostatically and balances drag force with the electrostatic force to 

characterize the electrical mobility diameter of the particles. The DMA is coupled with 

a Condensation Particle Counter (CPC) and a CCNC to measure aerosol number 

concentrations, and hence, estimate their CCN activity with respect to electrical 
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mobility diameters. The DMA is ideally supposed to apply a unit charge on the particles 

before classifying them. However, it is generally observed that the particles may carry 

more than one unit charge on them depending on the charging efficiency of the 

neutralizer. As a result, larger particles carrying a higher charge may have the same 

electrical mobility diameter as the smaller particles carrying one unit charge. This 

phenomenon associated with the DMA instrument is commonly known as multiple 

charging and can potentially lead to inaccuracies in the particle sizing and consequently 

in the CCN activity measurements (Fuchs and Daisley, 1965). In this dissertation, a 

new experimental setup without particle charging artifacts was proposed and tested 

with an Aerodynamic Aerosol Classifier (Cambustion™ AAC) for particle sizing 

(Gohil and Asa-Awuku, 2022). The AAC classifies particles by their relaxation time, 

which depend on the mass and the mechanical mobility of the particles (Tavakoli and 

Olfert, 2013). The particles passing through the AAC are then classified based on their 

aerodynamic diameters. A schematic of the AAC column is provided in Figure 4. 

 

Figure 4. Schematic of the Aerodynamic Aerosol Classifier (AAC) instrument 

representing how the polydisperse aerosols classified to generate monodisperse 

population. 
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Unlike in the DMA, the drag force on the particles passing through the AAC is 

balanced by the centrifugal force due to the rotating AAC column. Since the AAC does 

not require particle charging for classifying aerosols, it eliminates any possible 

uncertainties in measurements due to multiple charging. The AAC can also be coupled 

with the DMA and be used for size-resolved shape factor and particle effective density 

measurements of the aerosols. These measurements can be highly useful for 

morphological corrections of aerosol particles, thereby helping with further reducing 

uncertainties in the CCN activity analysis (Tavakoli et al., 2014; Tavakoli and Olfert, 

2014). Moreover, the AAC sizing resolution increases with the increasing aerodynamic 

diameter of the particles. A schematic of the AAC-CCN setup is shown in Figure 5. 

The details of the AAC-based experimental setups, uncertainty analysis, and the 

implementation for CCN and shape factor measurements are provided in chapter 2. 
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Figure 5. AAC-CCN experimentation setup for measuring the size-resolved number 

concentration of aerosols. 

 

The CCN activity of any aerosol species can be expressed using a single 

hygroscopicity parameter (𝜅). (Petters and Kreidenweis, 2007) provided a simple, yet 

highly useful method based on the traditional Köhler theory to compute 𝜅 of any 

aerosol by combining their dry particle size (𝐷𝑑𝑟𝑦) with the supersaturated water vapor 

(𝑆) amount at which the particles of the given size activate and form droplets. 𝜅 is not 

a physical quantity but rather an indicator of the affinity of a given type of particle 

towards water. And theoretically, 𝜅 based on the traditional Köhler theory expresses 

the chemical composition of the aerosols and is a function of the molar volume. 𝜅 is 

usually in the range of ~0 (highly water insoluble species like mineral dust and black 

carbon) to 1.4 (highly soluble compounds like sodium chloride). Furthermore, 𝜅 is 

widely used in climate models to represent the CCN activity of different 

atmospherically relevant aerosol species. 

In the Köhler theory framework, all aerosols are assumed to be instantaneously and 

infinitely soluble in water. The complete water solubility assumption for any solute in 

Köhler theory is approximated using Raoult’s law. This assumption reasonably applies 

for many inorganic and organic aerosols with high water solubility and has been 

validated experimentally (e.g., but not limited to Asa-Awuku et al., 2008; Chan et al., 

2005; Gohil et al., 2022; Padró et al., 2010; Peng et al., 2021; Petters & Kreidenweis, 

2007; Razafindrambinina et al., 2022; Xu et al., 2014). It is important to note that 𝜅 is 

strongly governed by the aqueous solubility of the aerosol particles (Petters and 

Kreidenweis, 2008; Sullivan et al., 2009) but does not require the aerosol particles to 

soluble in water.  
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The distinction between aqueous solubility and 𝜅 is especially relevant in the case 

of carbonaceous and organic species. Several of these species are classified as sparingly 

water soluble (e.g., but not limited to succinic acid, various primary organic aerosols) 

for which solubility is explicitly treated for hygroscopicity parameterization using 

Köhler theory. Moreover, there are other species that are effectively water-insoluble 

(e.g., black carbon) but possess wettable characteristics and are CCN active (Dalirian 

et al., 2018; Dusek, Reischl, et al., 2006; Laaksonen et al., 2020). For such cases, more 

complex models (such as the Frenkel-Halsey-Hill Adsorption Theory; FHH-AT) have 

been used for CCN activity analysis (Sorjamaa and Laaksonen, 2007). Models like 

FHH-AT assume aerosol particles to be completely water insoluble and describe 

droplet growth via water monolayer adsorption on to particle surface. 

In this dissertation, a new computational framework was developed that combines 

the effects of adsorption-driven water uptake with solubility partitioning of the solute 

(Gohil et al., 2022; Riipinen et al., 2015; Sorjamaa & Laaksonen, 2007). The FHH 

isotherm was used to describe water adsorption. A dynamic variability in the particle 

size was incorporated into the FHH isotherm through fractional dissolution of solute as 

the droplet continued to grow. Additionally, the effect of dissolved fraction of solute 

on the droplet growth was accounted for through the Raoult’s law. The details of the 

formulation and application of this hybrid CCN activity framework are provided in 

chapter 3 and 4. Furthermore, a single hygroscopicity parameter has also been derived 

using the hybrid CCN activity model; details of the hygroscopicity parameterization 

are provided in chapter 3. 
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As it has been established so far, hygroscopicity of any given aerosol can be 

determined theoretically or using experimental measurements. Hygroscopicity of an 

aerosol is important for quantifying its affinity towards water; the single hygroscopicity 

parameter of different aerosol types are also used to represent their water uptake 

behavior within climate models (Liu et al., 2012, 2016a). Hygroscopicity parameters 

within climate models are generally prescribed for different aerosol species based on 

the literature (Liu and Wang, 2010). The hygroscopicity parameters of different aerosol 

types affect the CCN activity and droplet nucleation in the models. CCN activation can 

then affect the atmospheric burden of different chemical species and the cloud droplets 

which strongly control the physical and radiative properties of the clouds. Studies have 

shown that the primary and secondary aerosol burdens, cloud droplet number 

concentration in the atmosphere have a strong sensitivity towards hygroscopicity 

(Morales and Nenes 2014). Therefore, it is important to either prescribe or physically 

parameterize aerosol hygroscopicity with high certainty to improve cloud 

representation in climate models. 

In this dissertation, a mathematical formulation of the single hygroscopicity 

parameter was derived from the hybrid CCN activity model and implemented within 

the Community Atmosphere Model 6.0 (NCAR-CAM6). Specifically, the single 

hygroscopicity parameter for organic and carbonaceous aerosols were computed based 

on the hybrid CCN model. As the default configuration, CAM6 takes the 

hygroscopicity parameters for different aerosol types through the Modal Aerosol 

Model (MAM4). In this work, the hygroscopicity parameter was explicitly calculated 

for organic species based on the mixing state and constituency of the modal aerosol 
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population.  In particular, the hygroscopicity parameter used applies the HAM model 

developed in chapter 3 and thus provides a new approach to understand aerosol-cloud-

climate interactions on a global scale. 

1.3 Real-time Chemical Characterization of Atmospheric Aerosols 

Recent and continuing studies show improvements in our understanding of CCN 

activity and the factors that affect droplet growth (McFiggans et al., 2006; Asa-Awuku 

and Nenes, 2007; Asa-Awuku et al., 2009a; Thalman et al., 2017). One such example 

is the application of computational and data-driven approaches for performing 

chemical analysis of ambient aerosols to identify their chemical compositions (e.g., but 

not limited to Carey et al., 2015; J. Liu et al., 2017). It has been shown that aerosol 

identification-related problems can be solved by utilizing measured chemical 

signatures (mass spectrometry, FTIR, X-ray diffraction, Raman spectrometry) (e.g., but 

not limited to Doughty & Hill, 2017; Stefaniak et al., 2009; Toprak & Schnaiter, 2013) 

of aerosol particles with the application of methods related to statistics, big data 

analysis, signal processing and machine learning (e.g., but not limited to Carey et al., 

2015; Christopoulos et al., 2018; Kwiatkowski et al., 2010). This research combined 

the ideas related to these concepts to develop a tool for performing chemical analysis 

of ambient aerosols. 

Chemical analysis of aerosol particles is required to determine their composition 

and mixing state. Over the past decades, researchers have demonstrated several 

inference-based (e.g., but not limited to Cubison et al., 2008; Gunthe et al., 2009) and 

measurement-based (e.g., but not limited to but not limited to Asa-Awuku et al., 2011; 

Ervens et al., 2007) approaches for discerning bulk aerosol chemical composition. 
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However, over the past few years, it has been argued that the use of size-resolved 

aerosol compositions for studying CCN activation results in more accurate estimates 

(e.g., but not limited to Cubison et al., 2008; Gunthe et al., 2009; Medina et al., 2007). 

Single-particle aerosol measurement techniques provide a means to obtain size-

resolved aerosol composition and henceforth are being rigorously explored. Single-

particle measurement techniques include mass spectrometry, fluorescence 

spectrometry, FTIR, Raman spectrometry, and electron-beam excited x-ray diffraction. 

Raman spectrometry (Raman, from hereon) has been shown to be a highly efficient 

technique employed for characterization of compounds (Blaha et al., 1978; Jacobson, 

2001; Sadezky et al., 2005). There are 2 main reasons for that: 1. Raman spectra are 

the signatures of the chemical bonds present in the chemical compounds and are 

therefore unique for the compounds they correspond to; and 2. Raman spectra can be 

detected for particles of the order of nanometers. Hence, compositional data retrieved 

for aerosols using Raman measurements can be highly valuable for understanding their 

droplet forming abilities. 

In this dissertation, chemical characterization of aerosols was done using their real-

time Raman spectral measurements. A Resource Effective Bioidentification System 

(REBS)-based Automated Aerosol Raman Spectrometer (ARS) was used for 

measuring the Raman spectra of the ambient aerosols (schematic shown in Figure 6). 

An added benefit of ARS over a traditional Raman spectrometer is a significantly 

reduced stabilization time for the sample and high temporal resolution of spectral 

collection (about 15 minutes) (Doughty and Hill, 2017). 

 



 

 

15 

 

 

 
 

Figure 6. Schematic of a REBS-based Automated Aerosol Raman Spectrometer. 

1.4 Overview of the Dissertation 

The subsequent chapters of this dissertation describe in detail the experimental and 

computational work performed in this research. The main rationale for this research 

was to use findings from controlled laboratory experiments for deriving cloud and 

climate responses using a large-scale climate model. Chapter 2 discusses the 

development of a novel CCN experimental setup using an AAC instrument. The 

findings of this work provide three major conclusions – a. the CCN activity of low 

hygroscopicity organic and carbonaceous species are well-quantified with the new 

AAC-CCN experimental setup, b. using the AAC-CCN setup produces very good 

agreement with published single-hygroscopicity parameters, particularly in the case of 

sucrose, and c. dynamic shape factor measurements are necessary for CCN activity 

prediction and can be provided using an AAC-DMA coupling. 

Chapters 3 and 4 describe the conception, formulation, and application of the hybrid 

CCN model as well as the hygroscopicity parameterization. The entirety of these 

chapters focuses on the CCN activity analysis of organics that were used as proxies for 

atmospherically relevant primary and secondary organic matter. As previously 
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established, the water uptake properties of ambient aerosols need to be well understood 

to quantify and explain aerosol-cloud-climate interactions with high certainty. The 

findings from chapter 3 describe that explicit solubility considerations within an 

otherwise purely adsorption based CCN activity model can improve the droplet growth 

predictions for aerosols possessing a wide range of aqueous solubility. Chapter 4 

applies the hybrid CCN model for the analysis of soot-like species. Through chapters 

3 and 4, it was established that a hybrid solubility-adsorption CCN framework can be 

successfully predict droplet growth associated with pure and mixed species with a 

variety of physical, chemical and morphological properties. 

Chapter 5 utilizes the concepts developed in the preceding two chapters to modify 

the hygroscopicity treatment of aerosol species in the Community Atmosphere Model. 

The main feature of this work was the modification of the hygroscopicity of three 

aerosol modes considered within CAM – Black Carbon (BC), Primary Organic Matter 

(POM) and Secondary Organic Aerosol (SOA). Improvements were observed upon 

comparisons between observations and simulated aerosol and cloud responses from 

CAM. The work in chapter 6 was based on the development of a classification 

algorithm to identify different chemical species in the atmosphere. This work involved 

collection of Raman spectra of ambient aerosols in real-time over at White Sands (New 

Mexico) and comparison of the measured spectra with reference databases. The 

findings of this work revealed the presence of numerous organic and inorganic species 

with possibly varying mixing states on a particle-basis. Finally, chapter 7 outlines final 

remarks, future work, as well as the broader implications and overall conclusion of this 

dissertation research. 
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Chapter 2: Cloud Condensation Nuclei (CCN) Activity Analysis 

of Aerosols Using the Aerodynamic Aerosol Classifier (AAC) 

Access published article at: 

Gohil, K., & Asa-Awuku, A. A. (2022). Cloud condensation nuclei (CCN) activity 

analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier 

(AAC). Atmospheric Measurement Techniques, 15(4), 1007-1019, 

https://doi.org/10.5194/amt-15-1007-2022 

2.1 Abstract 

The Aerodynamic Aerosol Classifier (AAC) is a novel instrument that size-selects 

aerosol particles based on their mechanical mobility. So far, the application of an AAC 

for Cloud Condensation Nuclei (CCN) activity analysis of aerosols has yet to be 

explored. Traditionally, a Differential Mobility Analyzer (DMA) is used for aerosol 

classification in a CCN experimental setup. A DMA classifies particles based on their 

electrical mobility. Substituting the DMA with an AAC can eliminate multiple 

charging artefacts as classification using an AAC does not require particle charging. In 

this work, an AAC-based CCN experimental setup was developed and applied for CCN 

activity analysis of aerosols. Computational methods were also developed to quantify 

the uncertainties associated with aerosol particle sizing. To do so, the AAC transfer 

function analysis was conducted to calculate the measurement uncertainties of the 

aerodynamic diameter from the resolution of the AAC. The analyses framework has 

been packaged into a Python-based CCN Analysis Tool (PyCAT 1.0) open-source 

code, which is available on GitHub for public use. Results show that the AAC size-

selects robustly (AAC resolution is 10.1, diffusion losses are minimal and particle 

transmission is high) at larger aerodynamic diameters (≥ ~85nm). The size-resolved 
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activation ratio is ideally sigmoidal since no charge corrections are required. Moreover, 

the uncertainties in the critical particle aerodynamic diameter at a given supersaturation 

can propagate through droplet activation and the subsequent uncertainties with respect 

to the single-hygroscopicity parameter (𝜅) are reported. For a known aerosol such as 

sucrose, the 𝜅 derived from the critical dry aerodynamic diameter can be up to ~50% 

different from the theoretical 𝜅. In this work, additional measurements were conducted 

in order to obtain dynamic shape factor information and convert the sucrose 

aerodynamic to volume equivalent diameter. The volume equivalent diameter applied 

to 𝜅- Köhler theory improves the agreement between measured and theoretical 𝜅. Given 

the limitations of the coupled AAC-CCN experimental setup, this setup is best used for 

low hygroscopicity aerosol (𝜅 ≤ 0.2) CCN measurements. This work demonstrates the 

application of the AAC for CCN applications, especially related to correcting 

morphological irregularities on the particle scale. 

 

2.2 Background 

Cloud Condensation Nuclei (CCN) activity is defined as the ability of an aerosol 

particle to facilitate the condensation of water vapor on its surface; the condensation 

occurs in supersaturated ambient conditions resulting in the formation of droplets. The 

use of size-resolved aerosol number concentrations obtained with the help of counting 

instruments is a reliable method for determining the CCN activity of aerosols (e.g., but 

not limited to Barati et al., 2019; Moore et al., 2010; Petters et al., 2007; Rose et al., 

2008; Zieger et al., 2017). Currently, the most common method for studying CCN 
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activation uses a CCN counter (CCNC) and couples it with an aerosol classifier. CCN 

activity measurements have consistently improved over the past few years since the 

development and commercialization of the Continuous-Flow Streamwise Thermal 

Gradient CCN Chamber (CFSTGC) developed by the Droplet Measurement 

Technologies (DMT) (Roberts and Nenes, 2005; Rose et al., 2008; Lathem and Nenes, 

2011) and it is widely used. However, there are several commercially available options 

to size-select ultrafine particles. 

An aerosol classifier size-selects and generates a monodisperse aerosol from a 

polydisperse aerosol population. The most widely used aerosol classifier for CCN 

measurements is the Differential Mobility Analyzer (DMA) (Knutson and Whitby, 

1975; Rader and McMurry, 1986; Wang and Flagan, 1990). The DMA classifies the 

aerosol particles based on their electrical mobility; a charge distribution is applied on 

the particles which then pass through an external electrostatic field that is generated by 

varying the voltage difference across the DMA column. Many CCN studies use the 

DMA in “scanning mode” for which stepwise voltage is applied across the aerosol flow 

to generate monodisperse particles between ~10-500nm. The size-selected particles 

are then counted by a Condensation Particle Counter (CPC) and a parallel CCNC to 

obtain the number size distributions for the total aerosol particles (Condensation 

Nuclei, CN) and activated droplets (CCN) respectively, at a constant instrument 

supersaturation. The aerosol CN and CCN number size distributions are then combined 

to calculate the size-resolved activation ratio (
CCN

CN
) of the aerosol at the given 

instrument supersaturation. 
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A major limitation of this method is associated with the working mechanism of the 

DMA. The DMA uses a neutralizer (e.g., Kr-85, soft X-ray, or Po-210) to distribute 

electric charge to classify the polydisperse particles. The particles may receive multiple 

unit charges depending on the charging efficiency of the neutralizer. As a result, the 

particles carrying a unit charge possess the same electrical mobility as larger particles 

carrying a higher integral charge. Therefore, the perceived monodisperse aerosols 

likely contain a mixture of different-sized particles. This issue is known and can lead 

to discrepancies in the size-resolved activation ratio (
CCN

CN
) (Moore et al. (2010)). 

Hence, charge correction algorithms (Fuchs, 1963; Wiedensohler, 1988) are commonly 

applied to resolve particle multiple charging issues and data correction is applied in 

CCN software. Multiple charging errors can still affect the reliability and efficacy of 

CCN activation data. 

The multiple charging issues in electrical mobility-based classifiers have led to the 

development of instruments that use particle mechanical mobility. Classifiers can 

measure the relaxation time in pressurized flow or free-molecular (vacuum) regimes 

(e.g., but not limited to Chein & Lundgren, 1993; Conner, 1966; Flagan, 2004; 

Keskinen et al., 1992; Marple et al., 1991). Recently, the working principle and 

instrumentation details for an Aerodynamic Aerosol Classifier (AAC) were described 

(Tavakoli and Olfert, 2013; Tavakoli et al., 2014). The AAC does not require particle 

charging for size-selection and does not produce multiple charging artifacts (Yao et al., 

2020). The AAC classifies particles with respect to their relaxation time and reports 

their corresponding aerodynamic diameter. 
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The AAC has been used with different instruments. Johnson et al., (2018) used the 

AAC in tandem with the Scanning Mobility Particle Sizer (SMPS) to characterize the 

transfer function of the AAC. The AAC can classify particles as large as 6μm (Johnson 

et al., 2018). Furthermore, the AAC in tandem with a DMA can determine the aerosol 

dynamic shape factor (Tavakoli and Olfert, 2014; Barati et al., 2019; Yao et al., 2020; 

Tran et al., 2020) and particle effective density (Tavakoli and Olfert, 2014; Peng et al., 

2021b). Sang-Nourpour & Olfert, (2019) and Tran et al., (2020) discuss methods for 

Optical Particle Counter (OPC) calibration using an AAC. 

In short, the AAC is increasing in popularity (e.g., but not limited to Johnson et al., 

2020, 2021; B. Su et al., 2021). However, the scientific knowledge of coupling an AAC 

with a CCNC is limited. One previous study (Barati et al., 2019) published results for 

the CCN analysis of low-hygroscopicity aerosols but did not investigate the 

uncertainties in AAC-CCN size-resolved measurements and CCN activity predictions. 

To our knowledge, the validation of AAC-CCNC coupling on CCN measurement and 

prediction has not been studied before, and hence the AAC-CCNC coupled system is 

currently not well understood. This work explains the AAC-CCNC coupling for CCN 

activity measurements and uncertainties associated with size-selection, number size 

distributions and CCN activity estimates employing the AAC transfer function. 

In addition to a standardized experimental protocol for an AAC-CCNC setup, a 

computational tool also needs to be developed for CCN analysis. Currently, the 

Scanning Mobility CCN Analysis (SMCA) (Moore et al., 2010) package is widely used 

to calculate the CCN activity of aerosols using their electrical mobility-classified 
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number size distribution data. The processed size-distribution data from the SMCA can 

be analyzed using the Köhler theory (Köhler, 1936; Seinfeld and Pandis, 1998). SMCA 

has been shown to efficiently perform functions that include inversion of time series 

measurements to obtain size-resolved data (Wang and Flagan, 1990), and multiple 

charge correction using the algorithm given by Wiedensohler, (1988). SMCA works 

well for a variety of organic and inorganic aerosols to estimate their CCN activity (e.g 

Barati et al., 2019; Dawson et al., 2020; Fofie et al., 2018; Giordano et al., 2015; Moore 

et al., 2010; Padró et al., 2012; C. Peng et al., 2021; Vu et al., 2019). So far, there is no 

computational analysis tool for data processing or CCN analysis using their 

aerodynamic measurements based on AAC-CCNC setup. 

In this work, the AAC was coupled with the CCNC instrument, ascribing to the 

aforementioned advantages and novelty of the AAC, for CCN activity analysis. The 

experimental setup and CCN analysis tool were developed and tested. The analysis tool 

was developed in Python (PyCAT 1.0, described in Section 2.3.3) and is available on 

GitHub for public use. In the following sections, the discussion begins with the 

description of the experimental setup to size select and count particles. The following 

section describes the theory and mathematical formulations used in CCN analysis of 

aerosols. After that, the uncertainty estimation is discussed associated with 

aerodynamic size selection and the propagated error into the CCN activity analysis, and 

the impact on the subsequently derived single-hygroscopicity parameter (𝜅) values. 
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2.3 Data and Methodology 

2.3.1 Instrument and Setup 

A Cambustion™ Aerodynamic Aerosol Classifier (AAC) size-selected 

polydisperse aerosol. Briefly described here, the AAC contains 2 concentric cylindrical 

columns for particle selection. The schematic of a typical AAC is shown in Figure 4. 

The particles are introduced into the AAC from inside the inner cylinder and the aerosol 

flow is then passed into the space between the 2 cylinders. The particles move with 

axial and radial velocities because of the rotation of the cylinders. The rotational speed 

steps across a range of values when the AAC is operated in "scanning mode". Each of 

the rotational speeds correspond to a relaxation time and aerodynamic diameter. At 

different speeds, the particles can hit the inner surface of the outer cylinder depending 

on their size. The outer cylinder has an opening through which the particles of an 

optimum size corresponding to a specific rotational speed can pass through. Particles 

larger than the threshold optimum size hit the cylindrical surface before the opening, 

and the ones smaller than the threshold, exit the classifier along with the exhaust flow. 

The working principle of the AAC has been described previously in extensive detail 

(Tavakoli and Olfert, 2013; Tavakoli et al., 2014; Johnson et al., 2018). 

Figure 7 shows the experimental setup used in this study. The classified aerosol 

was split into 2 streams - the first stream was passed through a Condensation Particle 

Counter (CPC, TSI 3776) to obtain total aerosol particle counts (condensation nuclei, 

CN), and the second stream was passed through a DMT Continuous-Flow Streamwise 

Thermal-Gradient CCN Chamber (CFSTGC, or simply CCNC; Roberts & Nenes, 
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2005) to obtain activated aerosol particle counts (cloud condensation nuclei, CCN). 

The CCNC consists of a cylindrical chamber that has internally wetted walls to 

maintain an approximately constant supersaturation along the CCNC column. A series 

of experiments were performed with sucrose at different instrument supersaturations 

(between 0.2% and 0.6%). Sucrose is a highly water-soluble, moderately hygroscopic 

oligomer that is an atmospherically relevant aerosol from biogenic sources (Dawson et 

al., 2020). The CCN properties of sucrose have been well-studied and characterized 

(e.g., but not limited to Dawson et al., 2020; Petters & Kreidenweis, 2007; J. Wang et 

al., 2017; Xu et al., 2014). Sucrose was selected as an appropriate choice of aerosol to 

benchmark the AAC-CCNC experimental setup. 

 

Figure 7. AAC–CCNC experimentation setup for measuring the size-resolved number 

concentration of aerosols. 

The polydisperse aerosol population was generated from an aqueous solution using 

a Collison atomizer. The aerosol was passed through a series of 2 diffusion driers (for 

drying to <10% RH) and then introduced into the AAC to generate monodisperse 
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aerosol. The atomization typically produces dry particles in the submicron size range. 

A total sample flow rate of 0.8 L min-1 was split between 0.3 and 0.5 L min-1 for the 

CN and CCN measurements, respectively. Additionally, a sheath flow rate of 8 L min-

1 was applied to maintain a sheath-to-sample flow ratio of 10:1. Furthermore, the AAC 

was maintained at a temperature and pressure of 21.5° C and 1 atm, respectively. The 

CCNC instrument supersaturations were calibrated using ammonium sulphate 

((NH4)2SO4) (Rose et al., 2008). The details of CCNC calibration performed using 

DMA-based size-resolved (NH4)2SO4 measurements from 0.2 to 0.6% supersaturation 

are provided in the appendix section 2A.1. 

The AAC was operated in the "step-scanning mode". In step-scanning mode, there 

is a transit time and stabilization (delay) time when the AAC advances from one 

rotational speed setpoint to another. Each rotational speed is related with a 

corresponding size bin, and here the AAC was run between successive size bins for 

14.5 seconds (transit time of 9.5 seconds and delay time of 5 seconds). Increasing the 

stabilization interval improves the repeatability of the particle counts and reduces 

uncertainties due to particle diffusion at lower sizes. The measured CCN to CN 

activation ratio (
CCN

CN
) was calculated for each size-selected aerodynamic diameter. A 

sigmoidal fit was applied to the size-resolved activation ratio. The critical dry diameter 

is defined at the 50% activation efficiency at a constant instrument supersaturation and 

was reported every 30 minutes and repeated 5 times for the AAC-CCN experimental 

setup. 
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2.3.2 CCN Activation Theory 

The critical dry diameter and instrument supersaturation can be used in Köhler 

theory (Köhler, 1936; Seinfeld and Pandis, 1998) to estimate the size-independent 

single-hygroscopicity parameter (𝜅) of the aerosol species. 𝜅 of an aerosol species is 

calculated as follows (Petters and Kreidenweis, 2007), 

𝜅 =
4𝐴3

27𝐷𝑝50
3 ln2(𝑆)

; where 𝐴 =
4𝑀𝑤𝜌𝑠

𝑅𝑇𝜌𝑤
    (2.1) 

In the above equation, 𝐷𝑝50 is the critical dry diameter of the aerosol species at 

supersaturation 𝑆. Physically, 𝐷𝑝50 is a threshold size for activation; particles larger 

than this threshold are assumed to fully activate and convert into droplets and those 

smaller than the threshold remain unactivated. 𝑀𝑤, 𝜎𝑤 and 𝜌𝑤 correspond to the molar 

mass, surface tension and density of water, respectively. 𝑅 is the universal gas constant, 

and 𝑇 is the average temperature inside the CCNC column. Under the Köhler theory 

framework, the 𝜅 of an aerosol species can be related to the molar mass (𝑀𝑠), density 

(𝜌𝑠), and Van’t Hoff factor (𝜈𝑠) of the solute (Sullivan et al., 2009; Mikhailov et al., 

2013), 

𝜅 =
𝜈𝑠𝜌𝑠𝑀𝑤

𝜌𝑤𝑀𝑠
      (2.2) 

Eq. (2.2) assumes complete aqueous solubility of the aerosol species. Past studies have 

found sucrose 𝜅 from CCN measurements (obtained from Eq. 2.1) in the range of 0.06-

0.1 (e.g., but not limited to Dawson et al., 2020; Ruehl et al., 2016; J. Wang et al., 2017; 

Z. Wang et al., 2015; Xu et al., 2014). Furthermore, the theoretical 𝜅 of sucrose 
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(obtained from Eq. 2.2) is 0.084 and implies that the previously reported 𝜅 estimates of 

sucrose are in good agreement with the theoretical 𝜅 of sucrose. Therefore, the 

theoretical 𝜅 (from Eq. 2.2) can also be used to validate the sucrose 𝜅 derived from the 

AAC-CCNC setup. 

 

2.3.3 Python-based CCN Analysis Toolkit (PyCAT 1.0) 

Each step-scanning mode timeseries using the AAC-CCNC setup measures 90 CN 

datapoints and 1400 CCN datapoints. Therefore, a computationally efficient method is 

required to synchronize and analyze the AAC and CCNC datasets. A computer code 

(Python-based CCN Analysis Toolkit, PyCAT) was developed to analyze both SMPS 

and AAC size-resolved CCN data for CCN activity analysis. The code is written in 

Python3.7 and uses the most recent version of the built-in libraries. It can perform 

timeseries data synchronization and analysis, CCN activity analysis (section 2.2) and 

uncertainty analysis (section 3). In addition, the code provides aerosol sizing properties 

at the point of activation and Köhler theory analysis based on user inputs. Additionally, 

the code is flexible and allows the user to organize and visualize the post analysis data. 

An opensource code has been completely packaged with the necessary capabilities and 

is available on GitHub for public use. Here the application of PyCAT has been 

demonstrated for the first time. PyCAT has been used for CCN activity analysis and to 

quantify the uncertainties associated with aerodynamic measurements and how they 

manifest in the CCN activity. 
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2.4 Uncertainty Analysis of Measurements 

The uncertainty analysis for particle size-selection using the AAC in step-scanning 

mode has been described in detail previously (Johnson et al., 2018; Yao et al., 2020). 

In this section, the derivation of AAC uncertainty has been briefly described and fully 

describe the effects of size-selection for CCN activity and single-parameter 

hygroscopicity uncertainty analysis. 

Aerosol particles moving with an axial speed 𝜈 through the AAC column 

experience drag force. The drag force on a particle of an assumed spherical shape can 

be expressed as, 

𝐹𝑑𝑟𝑎𝑔 =
𝜈

𝐵𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
       (2.3) 

where 𝐵𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 is defined as the mechanical mobility of the spherical particle 

(Tavakoli et al., 2014; Johnson et al., 2018; Yao et al., 2020). For a given set of AAC 

operating conditions, 𝐵𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 can be determined as (Tavakoli et al., 2014; Yao et al., 

2020), 

𝐵𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝐶𝑐(𝑑𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙)

3𝜇𝜋𝑑𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
      (2.4) 

where 𝜇 is the dynamic viscosity of the surrounding gas, 𝑑𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 is the particle 

diameter under the assumptions of sphericity, and 𝐶𝑐(𝑑𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙) is the Cunningham’s 

slip correction factor of the particle with the diameter 𝑑𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 (described in appendix 

section 2A.2). 
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The particle drag force is balanced by the particle centrifugal force in the AAC for 

size-selection (Tavakoli and Olfert, 2013). The particle centrifugal force is defined as 

follows, 

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 =  𝑚𝜔
2𝑟       (2.5) 

where 𝑚, 𝜔 and 𝑟 are the mass, rotational speed, and radial position of the particle, 

respectively. The aerosol particle relaxation time, 𝜏 =  𝑚𝐵𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙. Using this 

definition, the force balance expression 𝜏 is expressed as, 

𝜏 =
𝜈

𝜔2𝑟
        (2.6) 

The maximum particle relaxation time (τ∗) is calculated as follows (Tavakoli et al., 

2014), 

𝜏∗ =
𝑄𝑠ℎ +𝑄𝑒𝑥ℎ

𝜋𝜔2(𝑟1 +𝑟2)2𝐿
       (2.7) 

where 𝑟1, 𝑟2 and 𝐿 denote the classifier inner radius, outer radius, and length 

respectively. 𝑄𝑠ℎ and 𝑄𝑒𝑥ℎ are the inlet sheath flow and outlet exhaust flow, 

respectively. In this study, 𝑄𝑠ℎ and 𝑄𝑒𝑥ℎ were fixed by the CPC sample flowrate. 𝜔 is 

the only variable parameter in Eq. (2.7) and defines the setpoint for size-selection and 

determines the 𝜏∗ corresponding to particles of desired aerodynamic diameter. 

The particle relaxation time can also be expressed in terms of the particle 

aerodynamic diameter as follows (Johnson et al., 2018), 

𝜏 =
𝐶𝑐(𝑑𝑎𝑒)𝜌0𝑑𝑎𝑒

2

18𝜇
       (2.8) 
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where 𝜌0 is the reference density of 1000 kg/m3 and 𝐶𝑐(𝑑𝑎𝑒) is the Cunningham slip 

correction factor of the particle with aerodynamic diameter 𝑑𝑎𝑒. The aerodynamic 

diameter of a particle is defined for a spherical particle with a density of 1000 kg/m3. 

A non-dimensional relaxation time, 𝜏̃ =
𝜏

𝜏∗
 is calculated by dividing Eq. (2.8) with Eq. 

(2.7). 

Previous studies have developed models to calculate the probability of selecting a 

particle passing through the AAC, otherwise known as the AAC transfer function (TF) 

(Johnson et al., 2018; Tavakoli and Olfert, 2013). Tavakoli & Olfert, (2013) developed 

the AAC transfer function following the methodology from Knutson & Whitby, (1975). 

In this work, the non-diffusing particle streamline TF theory is used to describe particle 

classification (Tavakoli and Olfert, 2013). The AAC TF is denoted by, and for ideal 

non-diffusion conditions, it is defined as follows (Martinsson et al., 2001; Tavakoli and 

Olfert, 2013; Johnson et al., 2018), 

𝛺𝑁𝐷(𝜏̃; 𝛽; 𝛿) =
1

2𝛽(1−𝛿)
⋅ [|𝜏̃ − (1 + 𝛽)| + |𝜏̃ − (1 − 𝛽)| − |𝜏̃ − (1 + 𝛽𝛿)| − |𝜏̃ − (1 + 𝛽𝛿)|]  (2.9) 

where 𝛽 =
𝑄𝑠+𝑄𝑎

𝑄𝑠ℎ+𝑄𝑒𝑥ℎ
 and 𝛿 =

𝑄𝑠−𝑄𝑎

𝑄𝑠+𝑄𝑎
, such that 𝑄𝑎 is the inlet aerosol flow, and 𝑄𝑠 is the 

outlet sample flow. The AAC was operated under balanced flow conditions 

(𝑄𝑠 = 𝑄𝑎) and (𝑄𝑠ℎ = 𝑄𝑒𝑥ℎ), and thus 𝛽 and 𝛿 were reduced to 
𝑄𝑠

𝑄𝑠ℎ
 and 0, respectively. 

Under the balanced flow assumption, Eq. (2.9) can be simplified to (Johnson et al., 

2018), 

Ω𝑁𝐷,𝐵(𝜏̃; ) =
1

2β
⋅ [|𝜏̃ − (1 + 𝛽)| + |𝜏̃ − (1 + 𝛽)| − 2 ⋅ |𝜏̃ − 1|]   (2.10) 
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The non-ideal particle behavior was accounted for by incorporating a transmission 

efficiency (𝜆Ω) and transfer function width factor (𝜇Ω) in the TF (described in 

appendix section 2A.2). The resulting TF for non-ideal, non-diffusing, balanced flow 

conditions is expressed as (Johnson et al., 2018), 

Ω𝑁𝐷,𝐵,𝑁𝐼(𝜏̃; 𝛽; 𝜆Ω; 𝜇Ω) =
𝜆Ω⋅𝜇Ω

2

2𝛽
⋅ [|𝜏̃ − (1 +

𝛽

𝜇Ω
)| + |𝜏̃ − (1 +

𝛽

𝜇Ω
)| − 2 ⋅ |𝜏̃ − 1|]  (2.11) 

Figure 8 compares the theoretical TFs for ideal (Eq. 10) and non-ideal (Eq. 2.11) 

particle behaviors under the balanced flow, non-diffusion AAC framework. The two 

transfer functions are shown for a particle aerodynamic diameter of 150 nm (𝜏 

=147.7ns, Eq. 2.8). 

 

Figure 8. The ideal (blue) and nonideal (NI) (orange) AAC trans-fer functions based 

on the particle streamline non-diffusion (ND) model as developed by Tavakoli and 

Olfert (2013). The transfer functions are shown relative to 150 nm aerodynamic 

diameter as the set point. This corresponds to a relaxation time set point of 147.7 ns. It 

can be observed that the NI transfer function maximum is significantly reduced 

compared to the ideal transfer function, which is attributed to a reduced transmission 

efficiency for the NI transfer function. Additionally, the transfer function broadening 

is higher for the NI transfer function, which is quantified using the transfer function 

width factor. Overall, the NI transfer function provides an improved basis for particle 

size selection using the AAC. 
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The AAC resolution can be determined from the TF broadening relative to the 

setpoint at 𝜏 = 𝜏∗ (or 𝜏̃ = 1). The AAC resolution can be correlated with the 

uncertainty associated with the relaxation time or aerodynamic diameter. Particles 

classified by the AAC only contain a narrow range of aerodynamic diameters. The 

AAC resolution is expressed as 
1

𝑅𝜏
=
Δ𝜏

𝜏
=

𝑄𝑠

𝑄𝑠ℎ
 and assumes the flows to be balanced, 

laminar and constant (Yao et al., 2020). The AAC resolution can also be expressed in 

the coordinates of the aerodynamic diameter as 
1

𝑅𝑎𝑒
=
Δ𝑑𝑎𝑒

𝑑𝑎𝑒
 which forms the basis to 

determine the uncertainties associated with the aerodynamic diameters. Using Eq. 

(2.11), the uncertainty in relaxation time is (Yao et al., 2020), 

[
Δ𝜏

𝜏
]
2

= [
𝛿𝑄𝑠ℎ

𝑄𝑠ℎ
]
2

+ 4 [
𝛿𝜔

𝜔
]
2

+ 4 [
𝛿𝑟

𝑟
]
2

+ [
𝛿𝐿

𝐿
]
2

      (2.12) 

which can further be used to derive the uncertainty associated with the corresponding 

aerodynamic diameter as follows, 

Δ𝑑𝑎𝑒

𝑑𝑎𝑒
=
Δ𝜏

𝜏
⋅ [

𝑑𝑎𝑒+𝛼𝑐⋅𝜆+𝛽𝑐⋅𝜆⋅𝑒(−𝛾𝑐⋅
𝑑𝑎𝑒
𝜆
 )

2𝑑𝑎𝑒 +𝛼𝑐⋅𝜆+𝛽𝑐⋅𝜆⋅𝑒(−𝛾𝑐⋅
𝑑𝑎𝑒
𝜆
 )⋅(1−𝛾𝑐⋅

𝑑𝑎𝑒
𝜆
)
]    (2.13) 

where 𝛼𝑐 = 2.33, 𝛽𝑐 = 0.966 and 𝛾𝑐 = 0.4985 are the Cunningham slip correction 

factor coefficients taken from (Kim et al., 2005), and 𝜆 is the mean free path of the 

particles. The aerodynamic diameter can be converted to the volume equivalent 

diameter, which is a more accurate representation of the particle morphology and size. 

The volume equivalent diameter is expressed using the dynamic shape factor and 

aerosol density as follows, 
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𝑑𝑣𝑒 = 𝑑𝑎𝑒√
𝜒𝜌0𝐶𝑐(𝑑𝑎𝑒)

𝜌𝑝𝐶𝑐(𝑑𝑣𝑒)
        (2.14) 

where 𝜌𝑝 is the particle density, 𝐶𝑐(𝑑𝑣𝑒) is the Cunningham’s slip correction factor for 

the particle with the volume equivalent diameter, 𝑑𝑣𝑒, and 𝜒 is the size-dependent 

dynamic shape factor. The uncertainties in the volume equivalent diameter are 

quantified using the uncertainties in measured aerodynamic diameter and dynamic 

shape factor as follows, 

[
Δ𝑑𝑣𝑒

𝑑𝑣𝑒
]
2

= [
𝛿𝑑𝑎𝑒

𝑑𝑎𝑒
]
2

+
1

4
[
1

𝜒𝜌0

Δ𝐶𝑐(𝑑𝑎𝑒)

𝐶𝑐(𝑑𝑎𝑒)
]
2

+
1

4
[
1

𝜌𝑝

Δ𝐶𝑐(𝑑𝑣𝑒)

𝑐𝑐(𝑑𝑣𝑒)
]
2

+
1

4
[
Δ𝜒

𝜒
]
2

  (2.15) 

The uncertainty given by Eq. (2.15) has a direct implication to the aerosol 𝜅. For a 

given supersaturation, the uncertainty in 𝜅 is dependent on the uncertainty in the 

volume equivalent diameter, and is expressed as, 

Δ𝜅

𝜅
= 3 ⋅

Δ𝐷𝑝50

𝐷𝑝50
         (2.16) 

Eq. (2.16) implies that the relative uncertainty in 𝜅 is theoretically 3 times more 

than that of the critical dry diameter. In Eq. (2.16), the 𝐷𝑝50 can either be the critical 

dry electrical mobility, aerodynamic or volume equivalent diameter. In this work, the 

uncertainties in Eq. (2.16) are evaluated with respect to volume equivalent diameters 

derived from the measured electrical mobility and aerodynamic diameters. Another 

important point to note here, is that since the activation diameter varies with 

supersaturation, the uncertainty at every activation diameter will also be different. This 
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implies that for each measured activation diameter, the uncertainty in aerosol 𝜅 will 

vary, and will thus depend on the uncertainty in critical dry diameter. 

 

2.5 Results for Laboratory Aerosols 

The AAC-CCNC measurements of sucrose were reported at varying CCNC 

instrument supersaturations (0.2 to 0.6%). The aerosol particles classified with the 

AAC were counted using a CPC and CCNC. An example dataset of CN and CCN 

number size distributions measured at 0.39% supersaturation is shown in Figure 9(a). 

The CN and CCN particle counts are plotted against the aerodynamic diameters. Error 

bars in the y-axis denote the relative uncertainties in the CN and CCN number 

concentrations. The errors in CN and CCN concentrations are calculated from counting 

uncertainties of the CPC and CCNC, and uncertainties in the instrument flow rate of 

CPC and CCNC. Details of uncertainty estimation for the CN and CCN counts are 

provided in Moore et al., (2010) and are briefly described in appendix section 2A.4. 

The observed relative uncertainties in the CN and CCN concentrations were < 1% for 

every aerodynamic diameter, which indicates that counts are repeatable. Figure 9(b) 

shows the size-resolved activation ratio (𝑅𝑎  =
𝐶𝐶𝑁(𝑆;𝐷𝑝)

𝐶𝑁(𝐷𝑝)
) for 0.39% supersaturation 

(𝑆), where 𝐶𝐶𝑁(𝑆; 𝐷𝑝) is the CCN measurement at the constant 𝑆 and 𝐷𝑝 divided by 

CN measurements at constant 𝐷𝑝, 𝐶𝑁(𝐷𝑝). A brief description of the sigmoidal fitting 

and its mathematical representation is provided in the appendix section 2A.3. The 

sigmoidal fit applied to the 𝑅𝑎 is also shown in Figure 9(b). Error bars on the y-axis in 

Figure 9(b) show the uncertainties in 𝑅𝑎. The 𝑅𝑎 uncertainties were calculated by 
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propagating the uncertainties in CN and CCN number concentrations. Details of the 

estimation of y-axis uncertainties of 𝑅𝑎 in Figure 9(b) are also provided in the appendix 

section 2A.4. 

 

Figure 9. The CN and CCN number size distributions (a) and the corresponding size-

resolved activation ratio (b) for sucrose are shown. The measurements were performed 

at a supersaturation of 0.39%. The activation aerodynamic diameter was found to be 

about 130 nm from the activation ratio obtained using the size-resolved measurements. 

The dry aerodynamic activation diameter corresponds to the 50% activation efficiency, 

which corresponds to an activation ratio of 0.47. Furthermore, the uncertainties in the 

aerodynamic diameters, CN and CCN number concentrations, and size-resolved 

activation ratio are also denoted on the plot using their respective error bars. 

 

In both Figure 9(a) and 9(b), the error bars along the x-axis show uncertainties in 

aerodynamic diameters estimated using the AAC TF. The x-axis uncertainties in Figure 

9(a) and 9(b) decreased with increasing aerodynamic diameters. The decrease in the x-

axis uncertainties can be explained using Figure 10(a) which shows the AAC TF for 

non-ideal particle behavior. For non-ideal AAC TF, the increase in the AAC resolution 

can be attributed to a monotonic increase in the transmission efficiency (𝜆Ω) and 

transfer function width factor (𝜇Ω) with respect to the aerodynamic diameter (Figure 
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10(b)). Figure 10(a) shows that the AAC TF broadening decreases with an increase in 

aerodynamic diameter for a fixed sheath flow rate. This is likely due to a reduced 

classifier flow effect with increasing aerodynamic diameter (Johnson et al. (2018)). As 

a result, the AAC resolution increases with increasing aerodynamic diameter. An 

increased resolution results in a decrease in the x-axis uncertainty with increasing 

particle sizes. In other words, the diffusion losses decrease with an increase in the 

mobility mass and aerodynamic diameter, in turn decreasing Ra uncertainties 

associated with AAC particle size-selection and counting. From our AAC-CCNC 

measurements at 8 L min-1, the minimum AAC resolution was 10.1 to prevent excess 

transfer function broadening and improve the accuracy of the size-resolved 

measurements. Figure 10(a) is a direct result of Eq. (2.13) and suggests that reducing 

the error in size measurement reduces the magnitude of error propagation for single-

hygroscopicity parameter (𝜅). 

 

Figure 10. (a) ND–B–NI transfer functions for low-flow measurement conditions from 

the AAC-based setup are shown. The transfer functions are plotted with respect to 

dimensionless relaxation time. The lower and upper aerodynamic diameter limits for 

the measurements are 90 and 392.3 nm, respectively. The corresponding relaxation 
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times are highlighted for the aerodynamic diameter set points. The resolution increases, 

and hence the measurement uncertainties, decrease with an increase in the particle 

aerodynamic diameter. (b) The size-dependent transmission efficiency (𝜆Ω, blue) and 

transfer function width factor (𝜇Ω, red) are shown above. The marked points on the plot 

correspond to 𝜆Ω and 𝜇Ω computed at the dry activation diameters at the set instrument 

supersaturations used in this study (between 0.2% and 0.5%). As a general trend, both 

the transfer function parameters increase with the increase in aerodynamic diameter. 

This results in an increase in the AAC transfer function resolution and a decrease in the 

size-related uncertainty with an increase in aerodynamic diameter (that is, the particle 

relaxation time). The plot also shows that the transfer function width factor is slightly 

more sensitive to the increase in the aerodynamic diameter, which can be followed by 

comparing the slopes of the linear fits of the transmission efficiency and width factor 

relative to the aerodynamic diameter. 

The critical dry aerodynamic diameter at 0.39% supersaturation was approximately 

130nm. The AAC-CCNC sigmoidal fitting is similar to that applied by SMCA (Moore 

et al. (2010)). However, the sigmoid applied to the AAC-CCNC measurements does 

not require the correction of multiple charging artefacts. The critical dry aerodynamic 

diameter (130nm) and 𝑆 (0.39%) were then combined using the Köhler theory 

framework (Section 2.2) to estimate the single-hygroscopicity parameter (𝜅) of 

sucrose. At 0.39% the 𝜅 was found to be 0.041 (Eq. 2.1). This had a ~51% difference 

with respect to the theoretical 𝜅 (0.084) of sucrose. Like Figure 9(b), Figure 11 shows 

the size-resolved activation ratios estimated from the measured number size 

distributions at 5 different supersaturations (0.23%, 0.31%, 0.39%, 0.48%, and 0.57%). 

The uncertainties associated with the aerodynamic diameters and their corresponding 

activation ratios are also shown on the plot. In addition to this, the critical dry 

aerodynamic diameters obtained from the size-resolved activation ratios at respective 

supersaturations are provided. For every set of size-resolved activation data, the y-axis 

uncertainties increase, while the x-axis uncertainties decrease with increasing 

aerodynamic diameters (Table 2.1). 𝜅 was calculated for each supersaturation using Eq. 
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(2.1), and the propagated uncertainty from the critical dry volume equivalent diameter 

was calculated using Eq. (2.16). The 𝜅 and associated uncertainties were averaged for 

5 sets of measurements at every instrument supersaturation. Accounting for changing 

instrument supersaturations, the mean 𝜅 for the set of 5 aerodynamic measurements 

was 0.036 ± 0.008 (slightly < 0.041, the mean 𝜅 at 0.39% supersaturation). The 0.036 

𝜅 value was less than previously reported sucrose 𝜅 values from electrical mobility 

CCN measurements (in the range of 0.06-0.1) (Xu et al., 2014; Ruehl et al., 2016; 

Dawson et al., 2020), as well as the theoretical sucrose 𝜅 (0.084). This relatively large 

differences between 𝜅 values are attributed to the use of the aerodynamic diameter in 

Eq. (2.1). 

Aerodynamic diameters are generally overpredicted as they are based on a spherical 

particle with a density (𝜌0) = 1000 kg/m3, and is likely true in the case of sucrose as 

its bulk density = 1586 kg/m3, which is significantly larger than 𝜌0. In such a case, a 

more reliable measure of particle size is required to improve the accuracy of the AAC-

CCN hygroscopicity estimates. The measured aerodynamic diameters were converted 

into volume equivalent diameters by accounting for the particle dynamic shape factor 

and true particle density (Tavakoli and Olfert, 2014). Size-resolved shape factor 

measurements of sucrose are described in detail in the appendix section 2A.5. Dynamic 

shape factor (𝜒) = 1 corresponds to spherical particles, and 𝜒 > 1 marks a deviation of 

particle shape from sphericity. For sucrose particles with aerodynamic diameters 

between ~100nm and 250nm, the size-resolved dynamic shape factor was 

approximately 1 and was observed to be only as high as ~1.1 for particles with 𝑑𝑎𝑒 =

100 nm. Table 2.1 provides a summary of critical dry aerodynamic diameters and their 
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volume equivalent counterparts found in this study for CCN measurements at different 

supersaturations. 

 

Figure 11. Size-resolved activation ratios are shown over a range of instrument 

supersaturations as presented on the plot. Their corresponding dry activation 

aerodynamic diameters are also depicted on the plots. The dotted line passing through 

the 50% activation efficiency (activation ratio of about 0.47) point on the plot intersects 

the activation ratio plots at their respective dry activation diameters. The dry activation 

diameter systematically decreases with increasing ambient supersaturation. Moreover, 

the volume equivalent diameters corresponding to their aerodynamic diameters are not 

shown here. 

The 𝜅 computed using Köhler theory from 5 different dry aerodynamic activation 

diameters and their respective volume equivalent diameters are summarized in Table 

2.1. Physically, the volume equivalent diameter represents a spherical particle with the 

same mass as that of a non-spherical aerodynamic particle. However, the volume 

equivalent diameter accounts for the aerosol density as well as the deviation of the 

aerosol particles’ shape from sphericity and improves the accuracy of hygroscopicity 

estimates. The mean 𝜅 of sucrose computed from critical dry volume equivalent 

diameters was estimated to be 0.09 ± 0.006. The critical dry volume equivalent 

diameters combined with their respective critical supersaturations provided estimates 
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of sucrose 𝜅 that are in a better agreement with the theoretical and previously reported 

hygroscopicity values. 

 

Figure 12. The variation in uncertainty of size-resolved measurements using a DMA 

and AAC are compared in this plot. The orange dot-dashed lines denote the range of 

uncertainty in measurements in an AAC, and the blue dashed lines denote the range of 

uncertainty in measurements in a DMA. The black solid lines are the best fits for the 

size-resolved measurements for sucrose obtained using the Köhler theory. 

Table 1. The table provides the analysis summary of the set of measurements 

performed for sucrose with the help of the AAC–CCNC setup. At low supersaturations, 

sucrose has large dry activation diameters for which the measurement uncertainties are 

slightly lower. Furthermore, the CCN activity predictions in terms of κ using the Köhler 

theory are also accurate. With an increase in the supersaturation the dry activation 

diameter reduces, and correspondingly the variations in κ continue to rise, being as high 

as about 35% at 0.58% instrument supersaturation. The conversion of dry aerodynamic 

activation diameters of sucrose to their corresponding volume equivalent diameters was 

done with the help of the dynamic shape factor. The shape factor measurements and 

analysis were performed following the procedure described in Tavakoli & Olfert, 

(2014). 
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2.6 Summary, Recommendations and Implications 

This study presents the AAC-CCNC experimental setup. The presented 

methodology can be applied for CCN activity analysis of different aerosol species. 

Aerosol size-selection with the AAC does not require charging of particles; thus, the 

AAC-CCNC coupling generates truer monodisperse aerosols, ideally sigmoidal 

activation data, and improves the accuracy of size-resolved measurements. For AAC-

derived critical dry aerodynamic diameters, the sizing uncertainty is larger at low 

particle sizes and reduces with an increase in particle size (Table 1). Thus, larger critical 

dry aerodynamic diameters are preferred with the AAC-CCNC setup and so the AAC-

CCNC setup more applicable for CCN measurements of low-hygroscopicity aerosols. 

It should be noted that this phenomenon is reversed for electrical mobility 

measurements. In the DMA, this can be attributed to increased diffusion losses due to 

a drop in transmission efficiency for the particles larger than 100nm. A similar 

observation can be made based on the findings in Figure 10 of Johnson et al., (2018). 

To reiterate, the uncertainties in the electrical mobility diameter increase for larger 

particle sizes (Figure 12). Table S6.1 provides the measure of uncertainties in 

aerodynamic and mobility diameters of sucrose at the same supersaturations. 
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An optimum range of aerodynamic diameters for CCN measurements can be 

suggested based on the findings of this work. There are fewer particles larger than 

0.5𝜇m generated via Collison atomization. Therefore, atomization produces extremely 

low number concentrations for particles larger than 0.5𝜇m, which can significantly 

reduce the counting statistics. This suggests that ~0.5𝜇m was a suitable upper limit of 

aerodynamic diameters for laboratory AAC-CCNC measurements. The lower size limit 

can be defined using the AAC resolution, the TF broadening and hence the flow rates 

used in the experiments. The sample and sheath flow rates were set to 0.8 L min-1 and 

8 L min-1, respectively. Additionally, AAC TF equations (section 3), indicate a lower 

size limit of ~85nm. The minimum measurement resolution to obtain good counting 

statistics corresponding to any aerodynamic diameter 85nm was 10.1. Based on the TF 

analysis in this paper and the previously described CCN activity measurements (Rose 

et al., 2008; Moore et al., 2010), it can be inferred that AAC is useful for particle 

classification and size-resolved measurements for relatively larger particles in the 

submicron regime. Furthermore, 85nm is a reasonable lower limit for CCN 

measurements of low-hygroscopicity aerosols. Low-hygroscopicity aerosols 

(predominantly organics with 𝜅 ≤ 0.2; Petters & Kreidenweis, 2007; Vu et al., 2019; 

J. Wang et al., 2019; Xu et al., 2014) do not activate readily at smaller particle sizes 

and atmospherically relevant supersaturations (<1%). The laboratory number size 

distribution measurements for such aerosols are reliable at low to mid-range 

supersaturations with the AAC-CCNC setup. 

The uncertainty analysis in this work shows that size-resolved aerodynamic 

measurements are precise. However, the accuracy of the aerosol hygroscopicity 
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estimates from aerodynamic measurements is low; this is seen from the lack of 

agreement between aerodynamic diameter-derived 𝜅 and previously reported well-

accepted 𝜅 values of sucrose. The aerodynamic diameter can be converted to a volume 

equivalent diameter if an additional aerosol classifier is used in series with the AAC 

(Yao et al., 2020). The size-resolved dynamic shape factor (𝜒) was measured using the 

DMA-AAC setup to convert the aerodynamic diameters to their respective volume 

equivalent diameters. The volume equivalent diameter of the particles was estimated 

by incorporating 𝜒 and known aerosol density (Eq. 2.14). The aerosol hygroscopicity 

estimates using volume equivalent diameters in the analysis showed good agreement 

with previously reported sucrose hygroscopicity values in literature. 

Overall, the AAC-CCNC coupling offers a promising tool for obtaining size-

resolved CCN activity measurements for challenging low-hygroscopicity organic 

aerosols. Using the AAC-CCNC setup, the measurements and activation properties are 

obtained in terms of aerodynamic diameter. However, the sole use of aerodynamic 

diameters should be avoided in the context of CCN activity. CCN activity depends on 

particle size and chemistry; aerodynamic diameters assume a constant density of 

1000kg/m3, therefore neglecting the densities of different chemical species. The use 

of aerodynamic diameters for CCN analysis has significant consequences for the 

representation of aerosols and for the estimation of hygroscopicity (𝜅). Future work 

should add the dynamic shape factor and particle density in aerodynamic diameter-

derived CCN activity analysis. The additionally known parameters improve agreement 

between the measured and theoretical 𝜅 values. It should also be noted that the 

uncertainty calculations presented in this manuscript solely focus on the uncertainties 
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from changing sizing instrumentation used before the CCN counter. That is, if one uses 

the same CCN counter, the uncertainty in the supersaturation (from changes in the Δ𝑇, 

flow rate, and Δ𝑃) are constant. One can add additional calculations of error in 

supersaturations by referring to Roberts & Nenes, (2005) and Rose et al., (2008). If the 

user intends to perform CCN measurements using the AAC and DMA, they should run 

the CCN measurements at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2A 

Summary: This appendix contains the CCNC supersaturation calibration data, 

calculation of necessary AAC measurement parameters, methods for uncertainty 

analysis of number concentration data, description of the dynamic shape factor 

measurement method, and DMA-based CCN measurement data and associated 

uncertainties. 
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2A.1 CCN counter (CCNC) calibration 

Dry particles are subjected to supersaturated conditions when passing through the 

CCNC column. The CCNC supersaturation is set by applying an axial temperature 

gradient for specified flow and pressure gradient within the CCNC column. 

Theoretically, the temperature gradient stays constant if the CCNC parameters are 

maintained constant. However, in practice there are fluctuations in the CCNC 

parameters which can cause deviations in the instrument supersaturation from the set 

supersaturation. These deviations in CCNC supersaturations were resolved by 

calibrating the CCNC. Calibration was performed by following the procedure 

described by Rose et al. (2008). 

 

 

 

 

Table 2A.1 (NH4)2SO4 CCN Counter (CCNC) calibration data 

Supersaturation Setting (%) Calibrated Supersaturation (%) Critical Dry Diameter (nm) 

𝟎. 𝟐 0.215 75.6 ± 2 

𝟎. 𝟑 0.308 61.7 ± 0.6 

𝟎. 𝟒 0.402 52.3 ± 0.6 

𝟎. 𝟓 0.493 45.5 ± 1 

𝟎. 𝟔 0.586 41.2 ± 0.4 

𝟎. 𝟖 0.771 34.7 ± 0.7 

𝟏. 𝟎 0.957 29.6 ± 0.6 
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Figure 2A.1. CCN counter (CCNC) calibration using (NH4)2SO4 CCN measurements 

from DMA-based setup. The critical dry electrical mobility diameters are plotted 

against their respective instrument supersaturations and are overlayed against the 𝜅 =

0.6 line that corresponds to pure ammonium sulfate (Petters and Kreidenweis (2007)). 

2A.2 Estimation of AAC measurement parameters 

2A.2.1 Cunningham’s Slip Correction Factor 

Particles experience a drag force when they move along a fluid of given viscosity. 

Stokes’ law provides a solution for estimating the viscous drag in laminar flow regimes 

where the Reynold’s number << 1 (Crowder et al., 2002). An underlying assumption 

in the estimation of this viscous drag is that there is no slip at the particle surface when 

particles move through the fluid. However, this assumption starts to break down when 

the particle size becomes several times larger than the mean free path. In such cases, 

the drag force needs to be corrected for the slip to maintain a constant flow velocity. 
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Cunningham derived a correction factor for the drag force, which is commonly 

expressed as a function of particle size (𝑑) and is as follows, 

𝐶𝑐(𝑑) = 1 +
𝜆

𝑑
⋅ (𝛼𝐶𝑐 + 𝛽𝐶𝑐 ⋅ exp (−𝛾𝐶𝑐 ⋅

𝑑

𝜆
))    (2A.1) 

where 𝛼𝐶𝑐 = 2.33, 𝛽𝐶𝑐 = 0.966 and 𝛾𝐶𝑐 = 0.4985 (Kim et al. (2005)). 𝜆 in Eq. (2A.1) 

is the mean free path of the surrounding gas particles which is estimated as follows (Eq. 

(2A.2)), 

𝜆 = 𝜆0 ⋅ (
𝑇

𝑇0
)
2

⋅ (
𝑃0

𝑃
) ⋅ (

𝑇0+𝑆

𝑇+𝑆
)       (2A.2) 

where 𝜆0 is the air mean free path at the reference conditions of 67.3 𝑛𝑚, 𝑇 is the air 

temperature in the classifier in 𝐾, 𝑇0 is the reference temperature of 296.15 𝐾, 𝑃 is the 

air pressure in the classifier in 𝑃𝑎, 𝑃0 is the reference pressure of 101325 𝑃𝑎 and 𝑆 is 

the Sutherland constant for air of 110.4 𝐾. 

2A.2.2 Cunningham’s Slip Correction Factor 

The AAC transfer function includes non-ideal particle behavior using the transmission 

efficiency (𝜆Ω) and transfer function width factor (𝜇Ω). The 𝜆Ω of the AAC is 

empirically determined using Eq. (2A.3) (Johnson et al. (2018)), 

𝜆Ω = 𝜆𝐷 ⋅ 𝜆𝑒         (2A.3) 

where 𝜆𝑒 is the entrance/exit transmission efficiency of the classifier, and 𝜆𝐷 is the 

diffusional transmission efficiency. 𝜆𝑒 for the AAC has been typically observed as 0.8. 

𝜆𝐷 is given as, 
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𝜆𝐷 = {
0.819𝑒−11.5𝛿𝑑𝑒𝑝 + 0.0975𝑒−70.1𝛿𝑑𝑒𝑝 + 0.0325𝑒−179𝛿𝑑𝑒𝑝 𝑖𝑓 𝛿𝑑𝑒𝑝 ≥ 0.007

1 − 5.5𝛿𝑑𝑒𝑝
2 3⁄ + 3.77𝛿𝑑𝑒𝑝 + 0.814𝛿𝑑𝑒𝑝

4 3⁄ 𝑖𝑓 𝛿𝑑𝑒𝑝 < 0.007
 (2A.4) 

where 𝛿𝑑𝑒𝑝 in Eq. (2A.4) is a size-dependent deposition parameter and is given as, 

𝛿𝑑𝑒𝑝(𝑑) =
𝐿𝑒𝑓𝑓⋅𝐷(𝑑)

𝑄𝑎
, such that 𝐿𝑒𝑓𝑓 is the effective deposition length of the AAC and 

has a value of 46m, 𝐷(𝑑) is the size-dependent diffusion coefficient of the particles, 

and 𝑄𝑎 is the aerosol flow rate. 

 

2A.3 Sigmoidal fitting for size-resolved activation ratio 

The critical dry diameter (𝐷𝑝,50) for an aerosol at a given supersaturation is determined 

with the help of the size-resolved activation ratio (denoted by 
𝑁𝐶𝐶𝑁

𝑁𝐶𝑁
). The 

𝑁𝐶𝐶𝑁

𝑁𝐶𝑁
 for a 

single-component aerosol population is known to fit a sigmoidal function with one 

plateau. The half-maximum point of the sigmoidal fit then corresponds to the 𝐷𝑝,50 of 

the aerosol at the given supersaturation. A 4-parameter sigmoidal function was applied 

to the 
𝑁𝐶𝐶𝑁

𝑁𝐶𝑁
 v/s 𝐷𝑝 measurements of sucrose at different supersaturations to calculate 

their respective 𝐷𝑝,50. The sigmoidal function used fit the data is shown as Eq. (2A.5). 

𝑁𝐶𝐶𝑁

𝑁𝐶𝑁
=

𝐴1−𝐴2

1+𝑒
(𝐷𝑝−𝐷𝑝,50)/𝑑𝑥

− 𝐴2       (2A.5) 

𝐴1 and 𝐴2 are the minimum and maximum of the sigmoid respectively, 𝑑𝑥 is the slope 

of the sigmoid. The sigmoid is fit was scaled over a range of 0.0 to 1.0, i.e., 𝐴1 and 𝐴2 

were set to 0 and 1, respectively. 
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2A.4 Uncertainty estimation for size-resolved counting and activation 

measurements 

If 𝑁 generally denotes the particle counts from a CPC or CCNC, and 𝑄𝑎 denotes the 

aerosol flow rate, the relative uncertainty in the measured particle concentration (𝜖𝐶) 

is determined from the relative counting uncertainty (𝜖𝑁) and the relative flow rate 

uncertainty (𝜖𝑄𝑎) as follows (Moore et al. (2010)), 

𝜖𝐶
2 = 𝜖𝑁

2 + 𝜖𝑄𝑎
2          (2A.6) 

Particles are assumed to be randomly distributed throughout the sample. Poisson 

statistics can be used to estimate 𝜖𝑁 as 
𝜎𝑁

𝑁
≈ 𝑁−

1
2⁄ . For the CCN counter (CFSTGC), 

the 𝜖𝑄𝑎 is generally ~4%. For the TSI CPC 3776, 𝜖𝑄𝑎 is about 2%. The uncertainties 

in the particle concentrations can used to propagate the uncertainties in the size-

resolved activation ratio (𝑅𝑎 =
𝐶𝐶𝐶𝑁

𝐶𝐶𝑁
). The uncertainties in size-resolved activation 

ratio (𝜖𝑅𝑎) can be denoted as, 

𝜖𝑅𝑎
2 = 𝜖𝐶𝐶𝑁𝑁

2 + 𝜖𝐶𝐶𝑁
2 = 𝜖𝑁𝐶𝐶𝑁

2 + 𝜖𝑁𝐶𝑁
2 + 𝜖𝑄𝐶𝐶𝑁

2 + 𝜖𝑄𝐶𝑁
2    (2A.7) 

𝜖𝑅𝑎
2 = 𝑁𝐶𝐶𝑁

−1 2⁄ + 𝑁𝐶𝑁
−1 2⁄ + 𝜖𝑄𝐶𝐶𝑁

2 + 𝜖𝑄𝐶𝑁
2      (2A.8) 

Eq. (2A.7) can be simplified to Eq. (2A.8). Under standard experimental conditions, 

for most atmospherically relevant CN concentrations, 𝜖𝐶𝐶𝑁 is 7% or less, while 𝜖𝐶𝐶𝐶𝑁 

is less than 17%. The subsequent 𝜖𝑅𝑎 is less than 18% (Moore et al. (2010)). 
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2A.5 Shape factor measurements 

 

Figure 2A.2. Sucrose dynamic shape factor data for sucrose, collected using an AAC-

DMA setup (Tavakoli and Olfert (2014)). The size-resolved shape factor is plotted 

against the aerodynamic diameter measurements of sucrose. Shape factor relates 

aerosol density with the particle size and was used to derive volume equivalent 

diameters corresponding to the respective aerodynamic diameters (details in sections 3 

and 4 of main text). The above figure shows that the shape factor of sucrose is close to 

1 over a range of sizes, which implies that sucrose particles are mostly spherical. 

2A.6 DMA-CCNC measurements 

 

Figure 2A.3. Size-resolved activation data of sucrose determined using CCN 

measurements using the DMA-based setup. The activation ratios are shown with 

respect to electrical mobility diameter of the particles. 
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Table A2.2. Sucrose DMA-based CCN Activation Data. Uncertainties in Critical Dry 

Diameters Using Electrical Mobility Measurements from a DMA-based Setup 

Instrument Supersaturation 

(%) 
Critical Dry Diameter (nm) 

Uncertainties in Critical Dry 

Diameters (%) 

𝟎. 𝟐𝟏𝟓 153.3 ±7.42 

𝟎. 𝟑𝟎𝟖 122.3 ±7.11 

𝟎. 𝟒𝟎𝟐 99.1 ±6.91 

𝟎. 𝟒𝟗𝟑 87.2 ±6.75 

𝟎. 𝟓𝟖𝟔 78.2 ±6.67 

𝟎. 𝟕𝟕𝟏 64.5 ±6.23 

𝟎. 𝟗𝟓𝟕 55.3 ±6.41 

 

 

Figure 2A.4. CCN measurements of sucrose from DMA-based setup. The activation 

measurements overlayed with 𝜅 = 0.084 line which corresponds to pure (ideal) 

sucrose. 
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Chapter 3: Droplet Growth Analysis and Hygroscopicity 

Parameterization using an Adsorption-Solubility Partitioning 

Hybrid Model 

Access published article at: 

Gohil, K., Mao, C.-N., Rastogi, D., Peng, C., Tang, M., and Asa-Awuku, A.: Hybrid 

water adsorption and solubility partitioning for aerosol hygroscopicity and droplet 

growth, Atmos. Chem. Phys., 22, 12769–12787, 

https://doi.org/10.5194/acp-22-12769-2022, 2022. 

3.1 Abstract 

In this work, the Cloud Condensation Nuclei (CCN) activity and subsaturated 

droplet growth of phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid 

(TPTA) was studied. Kohler Theory can be effectively applied for hygroscopicity 

analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As 

with other hygroscopicity studies of partially water-soluble and effectively water 

insoluble species, the supersaturated and subsaturated hygroscopicity derived from 

(KT) principles do not agree. To address the disparities in the sub- and supersaturated 

droplet growth, a new analytical framework called the Hybrid Activity Model (HAM) 

was developed. HAM incorporates the aqueous solubility of a solute within an 

adsorption-based activation framework. Frenkel-Halsey-Hill (FHH)-Adsorption 

Theory (FHH-AT) was combined with the aqueous solubility of the compound to 

develop HAM. Analysis from HAM was validated using laboratory measurements of 

pure PTA, IPTA, TPTA and PTA-IPTA internal mixtures. Furthermore, the results 

generated using HAM were tested against traditional KT and FHH-AT to compare their 

water uptake predictive capabilities. A single-hygroscopicity parameter was also 

developed based on the HAM framework. Results show that the HAM based 
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hygroscopicity parameter based can successfully simulate the water uptake behavior of 

the pure and internally mixed samples. Results indicate that the HAM framework may 

be applied to aerosols of varying chemical structures and aqueous solubility. This is the 

first time the adsorption-based droplet growth is combined with solubility partitioning 

to formulate a hybrid droplet growth framework. Chapters 4 and 5 demonstrate the 

application of this hybrid framework for CCN activity analysis of soot proxies and 

cloud response estimation, respectively. 

 

3.2 Background 

Aerosols can affect the global radiative balance and climate by either absorption 

and scattering of radiation (direct effect of aerosols), or by acting as Cloud 

Condensation Nuclei (CCN) resulting in cloud formation (indirect effect of aerosols). 

While the direct effect is well-studied and understood, the indirect effect is still the 

most significant source of uncertainties in climate forcing. This is primarily attributed 

to the poor understanding of the CCN activity and hygroscopic properties of organic 

aerosols (Talley et al., 2013). Organic aerosols are ubiquitous in the atmosphere. They 

contribute significantly to the atmospheric aerosol mass burden and account for 20-

90% of total tropospheric fine aerosol mass (Kanakidou et al., 2005). Furthermore, 

organic aerosols can mix with other organic and inorganic species in the atmosphere to 

modify their the CCN activity and hygroscopic properties (e.g., but not limited to 

Baustian et al., 2012; Fofie et al., 2018; Padró et al., 2012; Sánchez Gácita et al., 2017; 

Schill et al., 2015; H. Su et al., 2010; Vu et al., 2019). Consequently, the CCN activity 
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of organic aerosols needs to be well-characterized to reduce uncertainties in the climate 

forcing due to indirect effect of aerosols. 

Much of the CCN related research focuses on highly water-soluble and sparingly 

water-soluble compounds (e.g., but not limited to Asa-Awuku et al., 2010; Jing et al., 

2018; Samy et al., 2010; Taylor et al., 2017). For such compounds, Köhler Theory (KT) 

is traditionally applied to study their CCN activity and predict their hygroscopic 

properties. KT explains droplet growth by combining the water activity described using 

Raoult’s law (solute effect) with the Kelvin effect (curvature effect) (Köhler, 1936). 

KT is applied under the assumptions of infinite and spontaneous water solubility of the 

solute and an infinitely dilute water droplet solution (Asa-Awuku et al., 2010; Huff 

Hartz et al., 2006; Barati et al., 2019; Dawson et al., 2020). That is, if the aerosol 

instantaneously disassociates in water, traditional KT aptly explains the droplet growth 

driven by molar volume and droplet surface tension (Köhler, 1936; Sullivan et al., 

2009; Giordano et al., 2015). These assumptions work well for many aerosols that are 

highly soluble (> 10−1 m3 solute 𝑚−3 water; Petters and Kreidenweis 2007) that form 

thermodynamically ideal solutions in water. Moreover, the water uptake characteristics 

of such highly water-soluble compounds can be predicted with a single KT 

hygroscopicity parameter (κ) (Petters and Kreidenweis, 2007). The κ parameter derived 

in this way is defined as the “intrinsic κ” of the aerosol. 

However, there is an abundance of partially and effectively water insoluble organic 

compounds in the atmosphere. The CCN activity of such limited water solubility 

compounds has been predicted by incorporating the compound solubility in traditional 
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KT (Huff Hartz et al., 2006; Petters and Kreidenweis, 2008; Riipinen et al., 2015) 

prescribed a “solubility partitioning” framework using the traditional KT for CCN 

analysis of pure and internally mixed aerosols in a large range of aqueous solubility. 

Furthermore, a modified κ parameter accounting for the water solubility of the aerosols 

can also be derived based on this solubility-modified KT framework (Petters and 

Kreidenweis, 2008; Sullivan et al., 2009; Nakao, 2017). This modified hygroscopicity 

varies over the course of droplet growth and is dependent on the droplet size. Despite 

the modifications to traditional KT, differences have been observed between the 

experimental κ with either the intrinsic or solubility modified κ of the aerosol. 

Specifically, aerosols with solubility < 5 × 10−4 m3 m−3 are “effectively insoluble” 

(Petters and Kreidenweis, 2008) and do not agree with the water uptake predictions 

using either traditional or solubility-modified KT. 

Droplet growth can be explained for the effectively insoluble organic compounds 

using a water adsorption framework. CCN activity from adsorption can be modeled by 

combining the water activity from an adsorption isotherm with the Kelvin effect (e.g., 

but not limited to Goodman et al., 2001; Hatch et al., 2012; Henson, 2007; Kumar et 

al., 2011a, 2011b; Kumar, Nenes, et al., 2009; Kumar, Sokolik, et al., 2009; Malek et 

al., 2022; Rahman & Al-Abadleh, 2018; Tang et al., 2016). One such mathematical 

formulation accounts for adsorption using the Frenkel-Halsey-Hill (FHH) isotherm 

(Sorjamaa and Laaksonen, 2007). The FHH isotherm consists of 2 empirical parameters 

denoted as 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻. 𝐴𝐹𝐻𝐻 explains the interaction of the first adsorbed water 

layer and the particle surface, while 𝐵𝐹𝐻𝐻 explains the interaction between 

subsequently adsorbed water layers and the particle. The FHH isotherm combined with 
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the Kelvin effect provides the FHH-Adsorption Theory (FHH-AT) for CCN activity 

analysis. Parameters specific to a given aerosol species can be experimentally 

determined by fitting FHH-AT through their CCN activity measurements. Studies have 

so far explored the application of the FHH-AT for CCN analysis of several water-

insoluble compounds (e.g., but not limited to (Dalirian et al., 2018; Hatch et al., 2014, 

2019; Kumar et al., 2009b, 2011a, b, 2009a; Laaksonen et al., 2020a, 2016)). FHH-AT 

consists of 2 empirical parameters as opposed to a single κ parameter in traditional or 

modified KT. Additionally, an important assumption in FHH-AT and other similar 

adsorption models is that the aerosols are treated as completely water insoluble. Only 

recently, FHH-AT has been shown to work for insoluble particles with water-soluble 

and molecular level functionalized surfaces (Mao et al., 2022). Thus, there now exists 

a transitional regime from a soluble to water-insoluble models to correctly describe 

droplet growth. 

This work probes several aspects of water uptake to develop a comprehensive 

model to describe droplet formation of effectively water insoluble to partially soluble 

organics. Specifically, a new CCN activity model is developed by combining the 

components of the solubility modified KT with the FHH isotherm. In this work, the 

newly developed model will be referred to as the Hybrid Activity Model (HAM). 

Within the HAM framework, the aerosol particles are treated as completely water 

insoluble at the start of the droplet growth process. The particle continues to 

fractionally dissolve into the aqueous phase as droplet growth progresses. While the 

dissolved fraction of the aerosol contributes to droplet growth via Raoult’s law, the 

undissolved fraction contributes to droplet growth via adsorption of water on the 
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surface. Furthermore, this work discusses the development of a single 𝜅 parameter 

based on HAM that includes the effect of aqueous solubility on droplet growth for a 

compound that would be otherwise treated as effectively water insoluble. 

The development and application of HAM is explained using the experimental 

droplet growth measurements of 3 low water solubility structural isomers of benzene 

di-carboxylic acid – Phthalic acid (PTA), Isophthalic acid (IPTA) and Terephthalic acid 

(TPTA). PTA, IPTA and TPTA are among some of the significant benzene 

polycarboxylic acids detected in the atmosphere (Fu et al., 2009; Haque et al., 2019; 

Kanellopoulos et al., 2021; Kunwar et al., 2019; H. Liu et al., 2019; Meng et al., 2018; 

Singh et al., 2017; Yassine et al., 2020). PTA and its isomers are known to be tracers 

of benzanthracene, naphthalene-1 and methylnaphthalene-1, prominent emissions from 

combustion (Kleindienst et al., 2012a; Al-Naiema et al., 2020a; He et al., 2018). PTA 

is also a byproduct of pre-ozonation of fulvic acid, another significant marker of 

biomass burning emissions (Zhong et al., 2017a, b). IPTA and TPTA are also 

predominantly produced from biomass burning and emissions of automobile exhausts 

(Kawamura and Kaplan, 1987; Mkoma and Kawamura, 2013; Balla et al., 2018; Al-

Naiema and Stone, 2017). 

The hygroscopic properties of PTA, IPTA and TPTA have been studied in the past 

(e.g., but not limited to Huff Hartz et al., 2006; Petters & Kreidenweis, 2007; W. Wang 

et al., 2021). However, a comprehensive comparison and discussion of the effects of 

structural isomers on the droplet growth of benzene-dicarboxylic acids does not exist. 

Vapor sorption measurements of bulk PTA indicate hygroscopic growth at high 



 

 

58 

 

ambient relative humidity (> 90% RH) (Wang et al., 2021). (Hämeri et al., 2002) used 

Tandem Differential Mobility Analyzer (TDMA) technology and observed that PTA 

aerosol did not grow in subsaturated conditions. Other studies show PTA internal 

mixtures with inorganics can deliquesce under subsaturated conditions (Jing et al., 

2016, 2018). Furthermore, Huff Hartz et al., (2006) showed that PTA could activate as 

CCN at 1% supersaturation. The activation was consistent with KT that assumed 

complete dissolution with no solubility considerations. Petters & Kreidenweis, (2007) 

report the 𝜅 =  0.059 and 0.051 for PTA under sub- and supersaturated conditions, 

respectively. To our knowledge only one other paper has measured droplet growth of 

IPTA. Huff Hartz et al., (2006) found that IPTA behaves as an insoluble compound and 

does not obey traditional KT. Few studies have measured hygroscopic properties of 

TPTA, but not in context of CCN (Diniz et al., 2017; Zhao et al., 2021). To our 

knowledge, the adsorption models have not been applied for the CCN analysis of PTA, 

IPTA or TPTA. 

Overall, HAM is used in this paper to extensively study the hygroscopic properties 

of PTA, IPTA and TPTA that are not yet cogently known. In addition to the 

aforementioned pure compounds, the internal mixtures of PTA and IPTA are also 

studied. The compounds and their mixtures considered in this work are useful and help 

us understand the efficacy of different CCN models to describe the droplet growth 

associated with different organic CCN with varying aqueous solubilities. The 

experimental CCN measurements provide an efficient means to validate the application 

of the newly developed HAM. In the following sections, the experimental setup is 

described that was used in this study to obtain droplet growth data for PTA, IPTA and 



 

 

59 

 

TPTA and PTA-IPTA internal mixtures. Then, the theory and formulation of HAM is 

described based on KT and FHH-AT, and how it was implemented for droplet growth 

analysis of aerosols. This is followed by the derivation of the single 𝜅 parameter using 

the HAM framework, and then the discussion of results and conclusions of this study. 

 

3.3 Experimental Section 

3.3.1 Compounds and Aerosol Generation 

Phthalic acid (PTA, 1,2 – benzenedicarboxylic acid, >99.5%, Sigma-Aldrich®) and 

terephthalic acid (TPTA, 1,4 – benzenedicarboxylic acid, 98%, Sigma-Aldrich®) and 

Isophthalic acid (IPTA, 1,3 – benzenedicarboxylic acid, >99%, Fisher Scientific®) 

were used as representative compounds for the aromatic acid aerosols (AAAs, 

hereafter, shown in Figure 13). The physical properties of PTA, IPTA and TPTA are 

summarized in Table 1. Aqueous solutions of PTA, IPTA and TPTA were formed by 

mixing 30 mg of acid in 500 ml of ultrapure water (Milli-Q or Millipore®, 18.2MΩ 

cm-1). Additionally, 3 internally mixed solutions of PTA and IPTA were also prepared 

by mixing 30 mg of dry acid mixture in 500 ml ultrapure water. The internally mixed 

solutions were prepared for 3 different mass fractions of PTA and IPTA (5:1, 1:1 and 

1:5 wt/wt). To facilitate the dissolution of solute in aqueous solution, all the solutions 

were sonicated for 2 hours in a warm water bath maintained at ∼ 40 °C to create a 

uniform suspension. The solution was subsequently cooled and maintained at 20 °C. 

Polydisperse aerosols were generated using a Collison Nebulizer (TSI Atomizer 3076). 

The wet aerosol particles were then passed through a series of 2 silica gel diffusion 
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dryers (TSI 3062) to remove moisture (to RH < 10%). The dry particles were then 

classified for supersaturated and subsaturated measurements. 

 

 

Table 2. Physical and chemical properties of AAA compounds 

Compounds 
Molecular weight 

(𝑴𝒔, 𝐠 𝐦𝐨𝐥
−𝟏) 

Density (𝝆𝒔,
𝐠 𝐜𝐦−𝟑) 

Solubility (𝑪,
𝐦𝟑 𝐦−𝟑) 

Phthalic acid 166.14 1.59 3.77 × 10−3 

Isophthalic acid 166.14 1.53 7.84 × 10−5 

Terephthalic acid 166.13 1.52 1.12 × 10−5 

 

 
Figure 13. Molecular structures of the aromatic acid aerosols used in this work. 

 

3.3.2 CCNC Experiments for Supersaturated Measurements and Data Analysis 

A continuous flow stream-wise thermal gradient Cloud Condensation Nuclei 

Counter (CCNC, Droplet Measurement Technologies (DMT) (Roberts & Nenes, 2005 

- CCN 100) was used for the droplet activation measurements (e.g., but not limited to 

(Engelhart et al., 2008a; Moore et al., 2010; Tang et al., 2016; Barati et al., 2019; Vu 

et al., 2019)) of AAAs in supersaturated conditions. Briefly described here, 

polydisperse aerosol was generated and dried as described in Sect. 2.1. The electrical 
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mobility aerosol size from 8 nm to 352 nm was measured with an electrostatic classifier 

(TSI 3936, DMA 3081, and CPC 3776) every 2.25 minutes. The size-selected aerosols 

exiting the DMA were then split into 2 streams. A Condensation Particle Counter (CPC, 

TSI 3776) samples the first stream at 0.3 L min−1 to measure total dry particle 

concentration (𝐶𝐶𝑁), and the CCNC samples the second stream at 0.5 L min−1 and 

constant supersaturation to measure activated particle (droplet) counts (𝐶𝐶𝐶𝑁). A sheath 

flow rate of 8 L min−1 was applied to maintain a sheath-to-sample ratio of 10:1 across 

the experimental setup. The measurements were repeated 10 times for each 

supersaturation. Furthermore, the measurements were performed over supersaturations 

ranging between 0.6% and 1.6%. CCNC supersaturations were calibrated using 

ammonium sulfate ((NH4)2SO4, AS) aerosol (Sigma-Aldrich®, >99.9%). AS data used 

for CCN calibration is provided in the appendix (Section 3A.1). 

PyCAT 1.0 (Gohil and Asa-Awuku, 2022) was employed for data processing, 

analysis, and visualization of the CCN measurements. CCN size-resolved activation 

curves were generated at a fixed supersaturation (𝑆) as (
𝐶𝐶𝐶𝑁

𝐶𝐶𝑁
) across a range of dry 

particle diameters (𝐷𝑑𝑟𝑦). The volume equivalent diameters were used to represent 

particle sizes that were obtained by combining size-resolved particle dynamic shape 

factor (𝜒) with measured electrical mobility diameters (see appendix Figure 3A.3). 

Multiple charging errors were removed from the size-resolved activation ratio 

following a combination of charge correction algorithms from Gunn (1956) and 

Wiedensohler (1988). Following this, a Boltzmann sigmoidal fit expressed as, 

𝑦 =
𝐴1 −𝐴2

1+𝑒
𝑥−𝑥0
𝑑𝑥  

− 𝐴2        (3.1) 



 

 

62 

 

was applied to the size-resolved activation ratio curve. In Eq. (3.1), 𝑦 is the dependent 

variable 
𝐶𝐶𝐶𝑁

𝐶𝐶𝑁
, 𝐴1 and 𝐴2 are the minimum and maximum of the sigmoid respectively, 

𝑑𝑥 is the slope of the sigmoid, 𝑥0 is the inflection point of the sigmoid (generally the 

midpoint of the sigmoid), and 𝑥 is the independent variable (𝐷𝑑𝑟𝑦). The sigmoid fit is 

typically scaled over a range of 0.0 to 1.0, and so 𝑥0 corresponds to the critical dry 

diameter (𝐷𝑑𝑟𝑦,𝑐) at the instrument supersaturation and is physically defined as the size 

at which 50% of all particles are activated. 

3.3.3 H-TDMA Experiments for Subsaturated Measurements 

A Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) measured 

droplet growth of AAAs in the subsaturated regime. The H-TDMA setup has been 

previously explained in detail (Rader and McMurry, 1986; Cruz and Pandis, 1997) and 

only a brief description is provided here. Dried polydisperse aerosol were first charged 

with a Kr-85 bipolar aerosol neutralizer (TSI 3081). Monodisperse charged particles 

with a dry diameter (𝐷𝑑𝑟𝑦) were size selected using a Differential Mobility Analyzer 

(DMA 1). The sample and the sheath flow rates were maintained at 0.3 L min−1 and 3.0 

L min−1 respectively (i.e., sheath-to-sample flow ratio = 10:1). The size-selected 

particles from DMA 1 were then exposed to 95 ± 0.46% RH using a nafion 

humidification membrane (PermaPure M.H series). The humidified aerosol stream was 

then passed through the second DMA (DMA 2) that was equilibrated to a constant RH. 

DMA 2 was coupled with a Condensation Particle Counter (CPC, TSI 3756) and 

operated in Scanning Mobility Particle Sizer (SMPS) mode. The median wet diameter 

(𝐷𝑤𝑒𝑡) of the size-resolved number concentration of the humidified aerosol stream from 
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DMA 2 was reported. 𝐷𝑤𝑒𝑡 was used as the approximate final size to which the particles 

of size 𝐷𝑑𝑟𝑦 would grow under 95 ± 0.46% RH conditions. The hygroscopic growth 

factors (𝐺𝑓) were obtained by taking the ratio of 𝐷𝑤𝑒𝑡 with respective 𝐷𝑑𝑟𝑦, 

𝐺𝑓 =
𝐷𝑤𝑒𝑡

𝐷𝑑𝑟𝑦
         (3.2) 

The RH of H-TDMA setup was calibrated using ammonium sulfate (see Figure 

3A.1; Taylor et al. 2011). ((NH4)2SO4, AS) aerosol (Sigma-Aldrich®, > 99.9% 

purity). Calibration data is found in the appendix section 3A.1. 

 

Figure 14. (a) Schematic of a typical CCN measurement setup under supersaturated 

conditions. The DMA and the CPC collectively operate as an SMPS to obtain a 

distribution of dry particles. The CCNC is connected in parallel and provides the 

distribution of activated particles. (b) Schematic of a typical H-TDMA setup for 

subsaturated droplet growth measurements. The dry DMA (DMA 1) selects dry 

particles of a specified size. The classified particles are then humidified and passed 

through the wet DMA (DMA 2) and the CPC operating as an SMPS to generate the 

droplet distribution. 
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3.3.4 VSA Experiments for Subsaturated Measurements 

A vapor sorption analyzer (VSA, TA Instruments New Castle, DE, USA) setup was 

used for the hygroscopicity measurements of bulk samples in the subsaturated regime. 

Mass change in AAAs as a function of RH (5-95%) was measured at 25 °C. The 

instrument setup for the VSA has been described in detail in literature (Gu et al., 2017), 

and thus, experimental procedure is briefly explained here. During each experiment, 

bulk samples were first dried at <1% RH, then the RH was incremented up to 90% with 

a 10% step and followed by a 5% step from 90 to 95%. A high-precision balance was 

used in the VSA to measure the sample mass at different RHs with a stated sensitivity 

of < 0.1 μg. For every RH, a ≤ 0.1% change in the sample mass was considered as the 

standard for stabilization. The initial dry mass of AAA samples used in this 

measurement was typically around 1.0 mg. For each sample, a minimum of 3 

experiments were performed. At every RH, the sample mass (𝑚) was normalized with 

respect to the initial mass of the dry sample (𝑚0). Subsequently, the mass-based growth 

factor was calculated as 
𝑚

𝑚0
. 

 

3.4 Water Uptake and Hygroscopic Theory and Analysis 

3.4.1 Köhler Theory (KT) 

The equilibrium supersaturation (𝑆) can be estimated over a droplet as a function 

of its size (𝐷𝑝) as, 
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𝑆 = 𝑎𝑤,𝐾𝑇 ⋅ exp (
4𝜎𝑠/𝑎𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)       (3.3) 

where 𝑎𝑤 is the water activity term, 𝜎𝑠/𝑎 is the droplet surface tension at the interface, 

𝑀𝑤 and 𝜌𝑤 are respectively the molecular weight and density of water, R is the 

universal gas constant (8.314 J mol−1 K−1), and T is the temperature. The water activity 

is mathematically expressed as 𝑎𝑤,𝐾𝑇 = 𝛾𝑤𝑥𝑤, where 𝛾𝑤 and 𝑥𝑤 are the activity 

coefficient and mole fraction of water in the droplet, respectively. In traditional Kohler 

Theory (KT), the water activity is approximated as 𝑎𝑤,𝐾𝑇 = 𝑥𝑤 (Raoult’s law), which 

assumes infinite dilution and complete dissolution of the solute. Furthermore, 𝜎𝑠/𝑎 is 

approximated as the surface tension of a pure water droplet. The exponential quantity 

is the Kelvin term that describes the curvature effect. The solute effect and curvature 

effect are competing effects that describe droplet growth – the solute effect accounts 

for the water vapor pressure drop over the droplet due to the aerosol particle, and the 

curvature effect accounts for the water vapor rise over the droplet due to surface tension 

reduction. 

 

3.4.2 Frenkel-Halsey-Hill (FHH) Adsorption Theory (FHH-AT) 

Traditional KT, with or without the explicit treatment of aerosol solubility, can be 

effectively applied for highly soluble species. However, for partially or completely 

insoluble species Raoult’s law is substituted with adsorption isotherms to model water 

uptake behavior. One such isotherm is the Frenkel-Halsey-Hill (FHH) adsorption 

isotherm. The original FHH adsorption isotherm is a physically based framework that 
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defines water activity through multilayer water adsorption as a function of relative 

surface coverage (𝜃, or the number of adsorbed water monomolecular layers). The 

surface coverage can be mathematically formulated similar to that in the Brunauer-

Emmett-Teller multilayer adsorption model (Henson, 2007), which relates the 𝜃 to 

the Gibbs’ free energy change associated with the adsorption. For CCN activity and 

droplet growth applications, the FHH isotherm is typically expressed as follows 

(Sorjamaa and Laaksonen, 2007), 

𝑎𝑤,𝐹𝐻𝐻 = exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)      (3.4) 

where 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 are FHH fit parameters that describe the intermolecular 

interactions responsible for the adsorption of water on particle surfaces. 𝐴𝐹𝐻𝐻 describes 

the interactions between the particle surface and first adsorbed water monolayer. 𝐵𝐹𝐻𝐻 

describes the interactions between successively adsorbed monolayers. 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 

regulate the amount of water adsorbed on the particle surface and the radial distance up 

to which attractive forces can contribute to adsorption of water, respectively. 𝜃 in Eq. 

(3.4) is expressed as 
𝐷𝑝−𝐷𝑑𝑟𝑦

2·𝐷𝑤
 where 𝐷𝑝 and 𝐷𝑑𝑟𝑦 have been previously defined, and 𝐷𝑤 

is the size of the water molecule. The mathematical representation for the FHH-AT is 

analogous to traditional KT, and combines the FHH isotherm with the Kelvin term 

(Sorjamaa and Laaksonen, 2007; Kumar et al., 2009b) such that, 

𝑆 = 𝑎𝑤,𝐹𝐻𝐻 · exp (
4𝜎𝑤𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)       (3.5) 
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The FHH parameters can be empirically determined for any aerosol species from 

their droplet growth measurements (Kumar et al. 2009a). For measurements in 

supersaturated environments, 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 are determined from least square 

minimization of the experimental data with the maxima of the FHH-AT equilibrium 

curves (Kumar et al., 2011a, 2011b; Kumar et al., 2009a, 2009b). A higher value of 

𝐴𝐹𝐻𝐻 implies a higher water adsorption, and a smaller value of 𝐵𝐹𝐻𝐻 implies stronger 

attractive forces over larger distances. It has been observed that 𝐵𝐹𝐻𝐻 has a larger 

influence on the shape of the adsorption isotherm, and hence strongly drives CCN 

activation using FHH-AT (Kumar et al., 2009b; Hatch et al., 2019). 

 

3.4.3 Hybrid Activity Model (HAM) 

The assumptions of complete aqueous solubility or insolubility associated with KT 

and FHH-AT, respectively, represent two extreme possibilities of CCN activation and 

droplet growth. In this work, the two water activities were combined to develop a 

generalized “hybrid” water activity term. The droplet growth model thus obtained is 

called the Hybrid Activity Model, or HAM. Previous studies have discussed several 

other mathematical models built upon the traditional Köhler theory under different 

conditions. One such example is that of the solubility-partitioned Köhler theory (Petters 

et al., 2009; Riipinen et al., 2015) which explicitly includes the activity coefficient (𝛾𝑤) 

of the aerosol compounds to estimate the water activity. 𝛾𝑤 ≃ 1 in the traditional 

Köhler theory only under the assumption of the infinite dilution of the aqueous phase 

of the droplet, which holds true for several highly soluble aerosol species. For limited 
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water solubility compounds, 𝛾𝑤 is calculated by treating the aqueous solubility of the 

compound. However, even then the contribution of the undissolved fraction of the 

solute to the droplet growth is not treated. Another example of modified Köhler model 

is the ‘core-shell’ model Kumar et al. (2011b) that combines the FHH isotherm and 

Raoult’s law in a single framework to evaluate the contribution of the insoluble and 

soluble component of the mixture, respectively, on droplet growth. In the core-shell 

model, partial water solubility is not considered for any of the mixture components. 

HAM builds up on the concepts delineated by Kumar et al. (2011b) and Riipinen et al. 

(2015) and considers all particles as a ‘core-shell’ morphology, while also treating all 

the components as partially water-soluble. The general mathematical representation of 

HAM is as follows, 

𝑆 = 𝑎𝑤,𝐻𝐴𝑀 exp (
4𝜎𝑤𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)       (3.6) 

where 𝑎𝑤,𝐻𝐴𝑀 = 𝑎𝑤,𝐾𝑇 · 𝑎𝑤,𝐹𝐻𝐻, and the definitions of 𝑎𝑤,𝐾𝑇 and 𝑎𝑤,𝐹𝐻𝐻 are provided 

in subsections 3.1 and 3.2, respectively. 

HAM sandwiches different phases of droplet growth for any given particle in three 

stages. In stage 1, HAM assumes that a particle suspended in humidified ambient 

conditions does not dissolve at the start of the activation process (time, t→0). That is, 

droplet growth at t→0 occurs entirely due to the adsorption of a water monolayer on 

the particle surface and can be explained using the FHH isotherm. In stage 1, 

𝑎𝑤,𝐻𝐴𝑀,1 = 𝑎𝑤,𝐹𝐻𝐻 = exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)     (3.6a) 



 

 

69 

 

The FHH parameters (𝐴𝐹𝐻𝐻, 𝐵𝐹𝐻𝐻) for any given species are determined by fitting the 

FHH-AT to the experimental data and can be subsequently used in the HAM 

framework. 

Stage 2 begins as the droplet continues to grow and more water accumulates in the 

aqueous phase. In this stage, the particle starts dissolving and enters the aqueous phase. 

The fraction of particle mass that dissolves or enters the aqueous phase depends on the 

solubility of the compound. Moreover, the dissolved fraction of the particle can be 

estimated at each step of droplet growth using the solubility partitioning concept 

introduced by Riipinen et al. (2015). Briefly described here – a droplet comprises of a 

bulk dry (undissolved) phase and an aqueous (dissolved) phase. The bulk phase can be 

composed of one or more internally mixed species with varying water solubility. This 

causes the composition and core size of the bulk phase to vary dynamically during 

droplet growth. The amount of water in the aqueous phase increases as the droplet 

grows, thereby increasing the concentration of the compounds in the aqueous phase. 

There is a competition for dissolution between the compounds in the bulk phase which 

is dependent on their solubilities. Considering a dry particle consisting of 𝑛 species 

with limited solubility, the undissolved mass fraction of a species 𝑖 (𝜒𝑖) during droplet 

growth is expressed as (Riipinen et al. 2015), 

𝜒𝑖 = 1 −
𝛾𝑖𝜒𝑖𝑌𝑖,𝑑𝑟𝑦𝑐𝑖,𝑝𝑢𝑟𝑒𝑚𝑤

𝑚𝑖,𝑑𝑟𝑦 ∑ 𝜒𝑖𝑌𝑖,𝑑𝑟𝑦𝑖
       (3.6a-1) 

where 𝛾𝑖 is the activity coefficient, 𝑐𝑖 (𝑔 𝑔H2O
−1) is the solubility of the pure species, 

𝑚𝑤 is the mass of water in the droplet, 𝑚𝑖,𝑑𝑟𝑦 is the initial mass of the pure species in 
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the dry particle, and 𝑌𝑖,𝑑𝑟𝑦 is the initial mole fraction of the pure species in the dry 

particle. Eq. (3.6a-1) implies that the dissolved mass fraction of the species 𝑖 in the 

aqueous phase is given as 1 − 𝜒𝑖. A set of 𝑛 coupled equations are simultaneously 

solved to obtain 𝜒𝑖 for all 𝑛 species in the mixture. 𝜒𝑖 is then used to calculate the mole 

fraction of species 𝑖 dissolved in the aqueous phase (𝑥𝑖) at any point during droplet 

growth. Subsequently, the KT water activity can be given as 𝑎𝑤,𝐾𝑇 = 𝑥𝑤 =
𝑛𝑠

𝑛𝑠+𝑛𝑤
, 

where 𝑛𝑠 and 𝑛𝑤 are respectively the number of moles of solute and water in the 

aqueous phase. In stage 2, the contribution of the dissolved fraction of the compound 

in the aqueous phase (through Raoult’s law) can be combined with the undissolved 

fraction in the solid phase (through the FHH isotherm) to generate the overall water 

activity term, 

𝑎𝑤,𝐻𝐴𝑀,2 = 𝑎𝑤,𝐾𝑇 · 𝑎𝑤,𝐹𝐻𝐻 = 𝑥𝑤 · exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)   (3.6b) 

Eq. (3.6b) highlights the main difference between the models presented by Kumar et 

al. (2009a) and Riipinen et al. (2015). 

Stage 3 begins when the droplet is large enough to accommodate enough water in 

the aqueous phase and dissolve the particle mass entirely. This point onward, the 

droplet growth can be explained using traditional KT. In stage 3, 

𝑎𝑤,𝐻𝐴𝑀,3 = 𝑎𝑤,𝐾𝑇 = 𝑥𝑤       (3.6c) 

Eq. (3.6a), (3.6b) and (3.6c) were combined to describe the water activity through 

the three stages of droplet growth in the HAM framework. Thus, HAM can effectively 

estimate the droplet growth across a wide range of aqueous solubilities. The HAM 
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combines 2 extremes represented by fully soluble and fully insoluble behavior in a 

single framework. Moreover, the HAM concept can also be applied to improve upon 

the single hygroscopicity parameterization (𝜅). 

 

3.5 Hygroscopicity Parameterization – Single-Hygroscopicity Parameter (𝜿) 

Commonly, the CCN activity and water uptake tendencies of any given compound 

is expressed using a single hygroscopicity parameter (𝜅). A theoretical 𝜅 is derived 

using a simple parameterization of the solute water activity term in the droplet growth 

model. Additionally, critical dry particle sizes can be combined with their 

supersaturations to experimentally determine 𝜅. In the following subsections, the κ 

parameter derived from different models are explained. 

 

3.5.1 KT Hygroscopicity 

A single hygroscopicity parameter (𝜅) has been developed using the KT 

framework. 𝜅 can be defined through its effect on the water activity in the droplet as 

follows, 

𝑎𝑤
−1 = 1 + 𝜅

𝑉𝑠

𝑉𝑤
        (3.7) 

where 𝑉𝑠 is the dry particulate (solute) volume, and 𝑉𝑤 is the volume of water in the 

droplet. 𝜅 obtained from Eq. (3.7) is a parameterized quantity determined from the 

water activity based on the Raoult’s law. Using 𝜅-based parameterization of aw, Eq. 

(3.3) can be modified for any 𝐷𝑑𝑟𝑦 as, 
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𝑆 = (
𝐷𝑝
3 −𝐷𝑑𝑟𝑦

3

𝐷𝑝
3 −(1−𝜅) ·𝐷𝑑𝑟𝑦

3 ) · exp (
4𝜎𝑤𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)      (3.8) 

For a given 𝐷𝑑𝑟𝑦, the droplet size increases as the supersaturation above the droplet 

surface increases. Supersaturation increases until the point of activation, which is 

characterized using the critical wet droplet size (𝐷𝑝,𝑐). The supersaturation at the point 

of activation along with the corresponding 𝐷𝑑𝑟𝑦 and 𝐷𝑝,𝑐 depend on the 𝜅 of the 

compound. 𝜅 of any compound in an aqueous phase is difficult to measure, but it can 

be theoretically approximated using the Raoult’s law (𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐). The 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 of any 

species (denoted using a subscript i) can be expressed as follows, 

𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖 =
𝜈𝜌𝑖𝑀𝑤

𝜌𝑤𝑀𝑖
        (3.9) 

where 𝜈 is the Van’t Hoff factor of the compound and is related to its aqueous 

dissociation, 𝑀𝑖 and 𝑀𝑤 are the molecular weights of the solute 𝑖 and water, and 𝜌𝑖 and 

𝜌𝑤 are the density of the solute 𝑖 and water, respectively. 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖 defined in Eq. (3.9) 

here is dependent only on solute composition and solvent (water) properties and is 

independent of size. 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 of a mixture can be computed using a volume average 

mixing rule with the Zdanovskii-Stokes-Robinson (ZSR) approximation as follows 

(Petters and Kreidenweis, 2007), 

𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 = ∑ 𝜖𝑖𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖𝑖        (3.10) 

where 𝜖𝑖 is the volume fraction of 𝑖𝑡ℎ component in the dry particle and 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖 is 

the intrinsic hygroscopicity parameter of the 𝑖𝑡ℎ component. 𝜖𝑖 in an internal mixture 
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of 𝑛 components are estimated as 𝜖𝑖 =
𝑚𝑖/𝜌𝑖

∑ 𝑚𝑖/𝜌𝑖𝑛
𝑖

, where 𝑚𝑖 is the mass of the pure 

component 𝑖 in the mixture. 𝜅 in Eq. (3.10) assumes complete aqueous solubility of the 

compound or mixture. Moreover, 𝜅 for a mixture in Eq. (3.10) can be applied to 

mixtures of soluble and insoluble compounds, where the 𝜅 of the insoluble species are 

considered to be 0. The hygroscopicity parameterization requires explicit treatment of 

aqueous solubility for compounds that are inherently insoluble or sparingly soluble but 

possess water uptake tendencies (Petters and Kreidenweis 2008; Sullivan et al. 2009). 

In such cases, 𝜅 is mathematically expressed by modifying 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖 of the mixture 

components (𝜅𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦) as follows, 

 

𝜅𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 =∑𝜖𝑖𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐,𝑖
𝑖

𝐻(𝑥𝑖) 

𝑥𝑖 = (
𝐷𝑝
3

𝐷𝑑𝑟𝑦
3 − 1)

𝐶𝑖
𝜖𝑖

 

𝐻(𝑥𝑖) = {
𝑥𝑖,   𝑥𝑖 < 1

1,    𝑥𝑖 > 1
 

(3.11a) 

(3.11b) 

(3.11c) 

 

where 𝐶𝑖 is the water solubility of the 𝑖𝑡ℎ component of the dry particle (expressed as 

solute volume per volume of water), 𝑥𝑖 is the fraction of 𝑖𝑡ℎ component dissolved in 

water, and 𝐻(𝑥𝑖) is the distribution function of the fraction of the 𝑖𝑡ℎ component 

dissolved in water. Eq. (3.11) (a)-(c) determines 𝜅 as a function of 𝐷𝑝. For unknown 

species with limited water solubility, some range of 𝐷𝑝 corresponds to a volume of 

water which might not be sufficient to dissolve the volume of dry particle. Therefore, 

experimental droplet growth data is required to determine particle hygroscopicity. 
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𝜅 can also be determined if the supersaturation (𝑆) and the critical dry diameter 

(𝐷𝑑𝑟𝑦,𝑐) measured at 𝑆 are experimentally known. The experimental 𝜅 derived using 

KT is denoted as 𝜅𝐾𝑇 and expressed as follows, 

𝜅𝐾𝑇 =
4(
4𝜎𝑤𝑀𝑤
𝑅𝑇𝜌𝑤

)
3

27𝐷𝑑𝑟𝑦,𝑐
3 log2(𝑆)

        (3.12) 

Eq. (3.12) also incorporates the same set of assumptions as Eq. (3.7-11) – dilute 

solution, and infinite and complete solubility of the compound. 

 

3.5.2 FHH-AT Hygroscopicity 

For the FHH-AT, a similar 𝜅 parameterization as KT can be developed by 

combining the water activity with the FHH isotherm using Eq. (3.7) (Mao et al., 2022), 

𝑎𝑤,𝐹𝐻𝐻 = (1 + 𝜅𝐹𝐻𝐻 ·
𝑉𝑠

𝑉𝑤
)
−1

= exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)   (3.13) 

which can be expanded to derive the FHH single hygroscopicity parameter (𝜅𝐹𝐻𝐻). 

The 𝜅𝐹𝐻𝐻 thus determined depends on the experimental data. The measured 𝑆 and the 

corresponding 𝐷𝑑𝑟𝑦,𝑐 can be used to compute the 𝐷𝑝,𝑐 using Eq. (3.5) and subsequently 

used to estimate 𝜅𝐹𝐻𝐻 as follows, 

𝜅𝐹𝐻𝐻 =
6𝜃𝐷𝑤

𝐷𝑑𝑟𝑦,𝑐
· [

1

exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)

]
−1

⇒ 𝑓(𝐷𝑑𝑟𝑦,𝑐, 𝐷𝑝,𝑐)   (3.14) 

The hygroscopicity obtained using the FHH framework explains water uptake and 

droplet growth through adsorption. At the point of activation, the FHH hygroscopicity 
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explicitly depends on the dry particle size and the corresponding critical wet diameter. 

That is, 𝜃 → 𝜃𝑐 = 
𝐷𝑝,𝑐−𝐷𝑑𝑟𝑦,𝑐

2𝐷𝑤
 at the point of activation. 𝜅𝐹𝐻𝐻 in Eq. (3.14) can be further 

simplified (𝜅𝐹𝐻𝐻,𝑠) such that at the point of activation, 

𝜅𝐹𝐻𝐻,𝑠 =
6𝜃𝑐𝐷𝑤

𝐷𝑑𝑟𝑦,𝑐
(𝐴𝐹𝐻𝐻𝜃𝑐

−𝐵𝐹𝐻𝐻+1)      (3.15) 

Eq. (3.15) can be constrained using the critical surface coverage. At the point of 

activation, the critical surface coverage is determined as follows, 

𝑑𝑆

𝑑𝐷𝑝
|
𝑐
= 0 ⇒ 1 −

2𝜃𝑐𝐷𝑤

𝐷𝑑𝑟𝑦,𝑐
− (

2𝐴𝐷𝑤

𝐴𝐹𝐻𝐻𝐵𝐹𝐻𝐻𝐷𝑑𝑟𝑦
2 )

0.5

·  𝜃𝑐

𝐵𝐹𝐻𝐻+1

2  =  0  (3.16) 

𝜃𝑐 from Eq. (3.16) is substituted in Eq. (3.15) such that 𝜅𝐹𝐻𝐻,𝑠 ≡ 𝑓(𝐷𝑑𝑟𝑦,𝑐), which 

essentially represents the theoretical 𝜅𝐹𝐻𝐻. It is important to note that 𝜅𝐹𝐻𝐻,𝑠 is particle 

size-dependent as opposed to 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (Eq. (3.9)), which is not. 

 

3.5.3 HAM Hygroscopicity 

Similar to KT or FHH-AT, a single hygroscopicity parameter was developed from 

the HAM framework (𝜅𝐻𝐴𝑀) using Eq. (3.7), 

𝑎𝑤,𝐻𝐴𝑀 = (1 + 𝜅𝐻𝐴𝑀 ·
𝑉𝑠

𝑉𝑤
)
−1

= 𝑥𝑤 · exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)   (3.17) 

The inclusion of the Raoult term (𝑥𝑤) is the main difference between Eq. (3.13) and 

(3.17). 𝜅𝐻𝐴𝑀 is also dependent on the experimental information (𝑆, or 𝐷𝑝,𝑐 along with 
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the corresponding 𝐷𝑑𝑟𝑦,𝑐) and so Eq. (3.17) can be accordingly rearranged to obtain 

HAM single hygroscopicity parameter as follows, 

𝜅𝐻𝐴𝑀 =
6𝜃𝐷𝑤

𝐷𝑑𝑟𝑦,𝑐
(

1

𝑥𝑤 ·exp(−𝐴𝐹𝐻𝐻 𝜃
−𝐵𝐹𝐻𝐻)

− 1) ⇒ 𝑓(𝐷𝑑𝑟𝑦,𝑐, 𝐷𝑝,𝑐)  (3.18) 

𝜅𝐻𝐴𝑀 explains water uptake and droplet growth by combining the effects of 

aqueous solubility and water adsorption. At the point of activation, the HAM 

hygroscopicity depends on the dry particle size and the corresponding critical wet 

diameter. That is, 𝜃 → 𝜃𝑐 at the point of activation where 𝐷𝑝,𝑐 can be computed using 

the generic Eq. (3.6) with the help of measured 𝐷𝑑𝑟𝑦,𝑐 vs. 𝑆. In Eq. (3.6), 𝑥𝑤 is 

calculated using solubility partitioning as explained in section 3.3. Eq. (3.18) is the 

representation of experimental hygroscopicity of the particle based on the HAM 

framework. Eq. (3.18) can be further simplified (𝜅𝐻𝐴𝑀,𝑠) for the point of activation, 

𝜅𝐻𝐴𝑀,𝑠 =
6𝜃𝑐𝐷𝑤

𝐷𝑑𝑟𝑦,𝑐
(1 − 𝑥𝑤(1 − 𝐴𝐹𝐻𝐻𝜃𝑐

−𝐵𝐹𝐻𝐻))    (3.19) 

Eq. (3.19) is the theoretical hygroscopicity based on the HAM framework which is 

constrained using the surface coverage. The constraint at the point of activation is 

estimated from the Eq. (3.6) as given by the following expression, 

𝑑𝑆

𝑑𝐷𝑝
|
𝑐
= 0 ⇒

𝑑

𝑑𝐷𝑝
(𝑎𝑤,𝐻𝐴𝑀 exp (

4𝜎𝑠/𝑎𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)) =  0    (3.20) 

Eq. (3.20) provides 𝜃𝑐 at the point of activation to substitute in Eq. (3.19) and hence 

𝜅𝐻𝐴𝑀,𝑠 ≡ 𝑓(𝐷𝑑𝑟𝑦,𝑐). 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 are the empirically determined parameters from 

FHH-AT specific to the compound. Like 𝜅𝐹𝐻𝐻 and 𝜅𝐹𝐻𝐻,𝑠, 𝜅𝐻𝐴𝑀 and 𝜅𝐻𝐴𝑀,𝑠 are also 
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size-dependent. However, the size-dependence in 𝜅𝐻𝐴𝑀 is variable and is controlled by 

the aqueous solubility of the compound. An extended derivation of 𝜅𝐻𝐴𝑀 is provided 

in the appendix section 3A.2. 

 

3.6 Results 

3.6.1 Köhler theory application for pure and internally mixed AAAs 

The critical dry diameters (𝐷𝑑𝑟𝑦,𝑐) at supersaturations (𝑆) in the range of 0.6% – 

1.6% were calculated using PyCAT 1.0. At any given supersaturation, the 𝐷𝑑𝑟𝑦,𝑐 for 

each sample was calculated from the size-resolved activation ratio. The CCN 

measurements for pure AAAs over a range of supersaturations are shown in Figure 

3A.2 (appendix section 3A.3). The activation diameters determined for every sample 

at applied supersaturations were corrected using their dynamic shape factor. The 

experimental setup for shape factor measurements and the shape factor dataset for 

AAAs and PTA-IPTA internal mixtures are shown in appendix Sections 3A.1 and 

3A.2, respectively. The size-resolved shape factors were then used to transform the 

measured electrical mobility diameters to their respective volume equivalent diameters 

(Tavakoli and Olfert, 2014; Yao et al., 2020; Gohil and Asa-Awuku, 2022). The 

volume equivalent diameters and their corresponding supersaturations were then used 

to estimate the experimental hygroscopicity based on traditional KT (𝜅𝐾𝑇), for all the 

AAA samples. 
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The activation properties of pure AAAs (PTA, IPTA and TPTA) along with their 

predicted 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 and 𝜅𝐾𝑇 are summarized in Table 2. The 𝑆 versus their 

corresponding 𝐷𝑑𝑟𝑦,𝑐 for the samples are plotted in Figure 15(a). The experimental data 

is represented using individual markers. The solid and dashed lines represent the KT 

fits using the theoretical 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. The 𝑅2 scores are provided in Table 3. PTA is 

observed to have the best agreement with the KT prediction (𝑅2 ≈ 0.99). IPTA and 

TPTA show poor agreement with traditional KT. The lack of agreement between 

measurements and traditional KT predictions for IPTA and TPTA can be attributed to 

their significantly low aqueous solubility compared to PTA (by an order of magnitude 

∼ 102). In addition to the predicted and measured AAA data, (NH4)2SO4 is also shown 

in Figure 15 (a). 

 

Figure 15. (a) 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 data obtained from supersaturated CCN measurements of 

pure phthalic acid (PTA), isophthalic acid (IPTA) and terephthalic acid (TPTA). (b) 𝑆 

vs. 𝐷𝑑𝑟𝑦,𝑐 data obtained from supersaturated CCN measurements of internal mixtures 

of PTA and IPTA. The mixtures studied shown in this plot are 5:1, 1:1 and 1:5 by mass 

of PTA. The solid brown line in both subplots corresponds to ammonium sulfate and 

was used for CCNC calibration. The solid black lines were generated using the ideal 

Köhler theory (KT) for the respective samples, and the dashed colored lines are the KT 

fits obtained using the measured CCN data of each sample. 
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For compounds that are considered “sparingly soluble” or “effectively insoluble” 

(Petters and Kreidenweis 2008; Figure 3), an explicit treatment of the compound 

solubility can typically improve the agreement between predicted and measured 

activation properties. Based on this convention, PTA would also be considered 

“sparingly soluble”. However, our results suggest that an explicit treatment of PTA 

solubility is not required. Moreover, 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 is a good representation of PTA 

hygroscopicity. Figure 15(b) shows the traditional and solubility-limited KT fits for 

internal mixtures of PTA and IPTA using their 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. The traditional KT predicts 

the CCN activity of the mixture containing excess PTA (5:1 mass ratio). This suggests 

that the mixture dominated by PTA must have an aqueous solubility closer to pure PTA 

and a 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ≈ 𝜅𝐾𝑇 that can be obtained using the ZSR approximation. The 

agreement between traditional KT fits and experimental data reduces as the mass 

fraction of IPTA increases in the mixture. 

The application of solubility limited (modified) KT showed poor agreement with 

the pure AAAs and PTA-IPTA internal mixtures (appendix Figure 3A.4). Modified KT 

overpredicted the critical supersaturation for any given dry particle size for all 6 

samples. Thus, the underprediction of AAAs CCN activity is attributed to significantly 

low water solubility (in the range of 10−5 – 10−3 vol/vol water). Furthermore, a 

significant droplet growth is required to facilitate 𝜅𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 when 

solubility dependence is included in the hygroscopicity analysis (appendix Figure 

3A.5). The AAA solubilities are 3 or more orders of magnitude smaller compared to 

highly soluble species such as ammonium sulfate (0.42 vol/vol water) or sucrose (1.26 

vol/vol water). Quantitatively, the AAA droplets should grow to about 6.5, 23 and 45 
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times the dry particle size of PTA, IPTA and TPTA, respectively, when 𝜅𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 =

𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. The required droplet growth is significantly large compared to compounds 

like ammonium sulfate or sucrose for which the droplet growth is 1.2 and 1.5 times the 

initial particle size, respectively, when 𝜅𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (appendix Figure 3A.6). 

All of this implies that the hygroscopicity and CCN activity of AAAs and PTA-IPTA 

internal mixtures is more likely a consequence of water adsorption, and not aqueous 

solubility. 

Table 3. Intrinsic and experimental hygroscopicity parameter, and FHH empirical 

parameters used for FHH-AT and HAM analysis. 

Sample 

Intrinsic 

hygroscopicity 

(𝜿𝒊𝒏𝒕 =
𝝂𝑴𝒔𝝆𝒘

𝑴𝒘𝝆𝒔
)
𝐚
 

Experimental hygroscopicity 

(

 𝜿𝒆𝒙𝒑 =
𝟒(
𝟒𝝈𝒘𝑴𝒘
𝑹𝑻𝝆𝒘

)
𝟑

𝟐𝟕𝑫𝒅𝒓𝒚
𝟑 𝐥𝐨𝐠𝟐(𝑺𝒄)

)

 

𝐛

 
𝑨𝑭𝑯𝑯
𝐜  𝑩𝑭𝑯𝑯

𝐜  

Phthalic acid 0.172 0.169 ± 0.007 0.41 0.76 

Isophthalic acid 0.168 0.023 ± 0.0027 0.39 0.87 

Terephthalic acid 0.165 0.013 ± 0.0018 0.16 0.84 

5:1 Pth-to-IPth 0.171 0.159 ± 0.007 0.28 0.69 

1:1 Pth-to-IPth 0.169 0.085 ± 0.003 0.21 0.65 

1:5 Pth-to-IPth 0.168 0.029 ± 0.0024 0.11 0.61 

a 𝑀𝑤 = 18 g mol
−1, 𝜌𝑤 = 1 g cm

−3, 𝜈 = 1 
b 𝜎𝑤 = 0.072 J m

−2, 𝑅 = 8.314 J mol−1 K−1, measured 𝐷𝑑𝑟𝑦 v/s 𝑆𝑐 

  𝐷𝑑𝑟𝑦 = Dry diameter 

  𝑆𝑐 = Measured critical supersaturation 
c Empirically determined FHH parameters from measured 𝐷𝑑𝑟𝑦 v/s 𝑆𝑐 data for the given samples 

 

3.6.2 FHH-AT application for pure and internally mixed AAAs 

FHH Adsorption Theory (FHH-AT) was applied for the analysis of pure and internally 

mixed AAAs. Figure 16 shows the measured 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 data for pure AAAs and PTA-

IPTA internal mixtures. The dashed lines represent FHH-AT fits for their respective 
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CCN activity datasets. It should be noted that agreement for the FHH-AT can be 

obtained for every set of CCN measurements since the FHH parameters are determined 

by applying power law fitting to the datasets. The empirically determined FHH 

parameters (𝐴𝐹𝐻𝐻, 𝐵𝐹𝐻𝐻) for pure compounds and internal mixtures are summarized 

in Table 2. 

 

Figure 16. 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 data obtained from supersaturated CCN measurements of pure 

and internally mixed AAA samples. FHH-AT fits applied to the experimental data are 

shown as dashed lines. 

The values of 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 can be used to qualitatively compare the water uptake 

properties of the pure and internally mixed species (Kumar et al., 2009b; Hatch et al., 

2019). 𝐴𝐹𝐻𝐻 dictates the attractive forces between the particle surface and the first 

adsorbed monolayer of water. A larger 𝐴𝐹𝐻𝐻 implies a tendency to adsorb a higher 

amount of water on the particle surface. For the pure compounds, 𝐴𝐹𝐻𝐻 decreases in 

the order of PTA > IPTA > TPTA (Table 2). This suggests a declining tendency to 

adsorb water. Additionally, 𝐴𝐹𝐻𝐻 for the pure PTA, IPTA and TPTA decrease like their 
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aqueous solubilities (Table 1). For internal mixtures, 𝐴𝐹𝐻𝐻 decreases with a decreasing 

PTA mass fraction (5:1 > 1:1 > 1:5). This also suggests a declining tendency to adsorb 

water with a decrease in PTA concentration. 

 

Figure 17. 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 data obtained from supersaturated CCN measurements of pure 

and internally mixed AAA samples. HAM fits applied to the experimental data are 

shown as dot-dashed lines. 

𝐵𝐹𝐻𝐻 controls the attractive forces between the particle surface and subsequently 

adsorbed monolayers of water. Smaller the value of 𝐵𝐹𝐻𝐻, stronger the attractive forces 

over a larger radial distance from the particle surface. For the pure compounds, 𝐵𝐹𝐻𝐻 

varies in the order of IPTA > TPTA > PTA (Table 2). This suggests that the attractive 

force across the adsorbed monolayers is lowest in case of the droplets formed on IPTA 

particles. For internal mixtures, 𝐵𝐹𝐻𝐻 follows a similar trend as 𝐴𝐹𝐻𝐻 and decreases 

with a decreasing PTA mass fraction (5:1 > 1:1 > 1:5). This suggests that the attractive 

force across the adsorbed monolayers become stronger with a decrease in PTA 

concentration. 
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It can be inferred that 𝐴𝐹𝐻𝐻 follows the trends of solubility and is most likely 

controlled by functional groups and 𝐵𝐹𝐻𝐻 drives overall droplet growth across different 

compositions and molar volumes. The results here are consistent with Mao et al. 

(2022), that showed that the 𝐴𝐹𝐻𝐻 values correlated with functionalized surfaces of 

aerosol with the same core (polystyrene latex; PSL). This suggests that the 𝐴𝐹𝐻𝐻 values 

may play a more important role with compounds of similar molar volume and highlight 

the importance of functionalized groups and isomeric structures in determining overall 

droplet growth. 

 

3.6.3 Hybrid Activity Model (HAM) application for pure and internally mixed AAAs 

One of the major factors affecting droplet growth studied in this work is the aqueous 

solubility of the compound. AAAs and their mixtures used in this work possess 

approximately equal molar mass and densities, and hence equal molar volumes. 

Nonetheless, they differ in terms of their water uptake. Analysis shows that the 

differences in their water uptake behavior could arise due to the significant variation 

between their aqueous solubilities. Results in the previous subsection show that either 

KT or an adsorption theory (FHH-AT) can be applied for the CCN analysis of moderate 

and low aqueous solubility species, respectively. Alternatively, the Hybrid Activity 

Model (HAM) that sandwiches the FHH isotherm with the Raoult’s law through 

solubility partitioning may agree well with the experimental data. 

Figure 17 shows the 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 measurements for AAAs and PTA-IPTA internal 

mixtures plotted along with their HAM fits. The dot-dashed lines represent the HAM 
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fits for the respective CCN dataset. The calculation of the water activity term for all the 

samples studied in this work was done following the method described in section 3.3. 

It was observed that KT, FHH-AT and HAM provided similar fits for samples with 

aqueous solubility of the order of 10−3 m3 m−3. Thus, similar fits for KT, FHH-AT 

and HAM were observed for the samples with higher PTA mass percentage (pure PTA 

and 5:1 PTA-IPTA mixture). The comparison of the goodness of fit between KT, FHH-

AT and HAM can be made using the 𝑅2 scores provided in Table 3. For pure PTA and 

5:1 PTA-IPTA samples, all three models provided a goodness of fit. As the aqueous 

solubility of the sample was decreased (1:1 and 1:5 PTA-IPTA mixtures, pure IPTA 

and pure TPTA, in that order), HAM still provided an improved CCN activity 

prediction for the samples (𝑅2 scores of 0.92, 0.97, 0.94, 0.91, respectively; Table 3). 

FHH-AT and HAM provided similar and improved R2 scores along the decline in the 

aqueous solubility of the species, whereas the 𝑅2 scores corresponding to KT fits were 

found to decline with decreasing aqueous solubility of the samples. Moreover, the 𝑅2 

scores for HAM fittings were observed to be uniformly > 0.9 and generally higher than 

those obtained for FHH-AT. 

 

3.6.4 Hygroscopicity parameterization for supersaturated conditions 

The 𝑆 vs. 𝐷𝑑𝑟𝑦,𝑐 of the AAA samples were transformed into a single hygroscopicity 

parameter (𝜅) based on KT, FHH-AT and HAM (Section 3.4). Figure 18 shows a 

closure plot between theoretical and experimental 𝜅 estimated for PTA, IPTA, TPTA 

and PTA-IPTA internal mixtures from KT, FHH-AT and HAM. The closure analysis 
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provides a better understanding of the applicability of different CCN models. The 

shaded portion of the graph denotes a 95% prediction interval across a 1-1 line (dashed, 

black). 

 

Figure 18. Closure plot representing the experimental and theoretical single 

hygroscopicity parameters obtained using KT, FHH-At and HAM CCN analysis 

frameworks. The goodness of fit was calculated for each compound and internal 

mixture. 

The theoretical 𝜅 for KT has been represented using size-independent 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 =

0.172 calculated using Eq. (3.4) and Eq. (3.5), respectively. 𝜅𝐾𝑇 computed using 𝑆 vs. 

𝐷𝑑𝑟𝑦,𝑐 measurements are plotted for each compound. For KT (solid circles), the 

agreement between 𝜅𝐾𝑇 and 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 decreases with a decreasing aqueous solubility 

of the solute. Specifically, the experimental κ lies within 95% confidence of the 

theoretical κ of pure PTA, 5:1 PTA-IPTA internal mixture, and 1:1 PTA-IPTA internal 
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mixture. TPTA is the sample with the lowest aqueous solubility and hence the lowest 

agreement between 𝜅𝐾𝑇 and 𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. 

The theoretical adsorption-based parameterization (𝜅𝐹𝐻𝐻,𝑠) and 𝜅𝐹𝐻𝐻 computed 

from the experimental data using the FHH-AT framework are shown using solid 

diamond markers in Figure 18. The 𝜅𝐹𝐻𝐻,𝑠 and 𝜅𝐹𝐻𝐻 were estimated using Eq. (3.15) 

and (3.14), respectively. It was found that 𝜅𝐹𝐻𝐻 had a generally good agreement with 

their respective 𝜅𝐹𝐻𝐻,𝑠 (𝑅
2 in the range of 0.91 to 0.99). The lowest agreement between 

FHH-AT κ was observed for PTA and the 5:1 PTA-IPTA internal mixture, as both they 

likely have the highest aqueous solubilities among the studied samples. Moreover, the 

𝜅𝐹𝐻𝐻 and 𝜅𝐹𝐻𝐻,𝑠 values of IPTA and TPTA are highly consistent with each other. 

The theoretical and experimental 𝜅𝐻𝐴𝑀 were computed using Eq. (3.19) and (3.18), 

respectively. The datapoints for 𝜅𝐻𝐴𝑀 and 𝜅𝐻𝐴𝑀,𝑠 are denoted using solid squares in 

Figure 18. The most important feature of the HAM-based 𝜅 framework is that it 

explicitly accounts for the compound solubility within the hygroscopicity 

parameterization. Accounting for the contribution from the solid organic phase and 

dissolved aqueous phase to the overall hygroscopicity of the solute generates the best 

agreement between the 𝜅𝐻𝐴𝑀 and 𝜅𝐻𝐴𝑀,𝑠 values. Consequently, the 𝑅2 scores observed 

between 𝜅𝐻𝐴𝑀 and 𝜅𝐻𝐴𝑀,𝑠 of the 6 AAA samples are > 0.97. It is also important to note 

that 𝜅 values for AAA samples obtained from FHH-AT and HAM frameworks are 

smaller than those obtained using KT. 
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3.6.4 Hygroscopicity parameterization for supersaturated conditions 

All the measurements shown in Figures 19 were performed at a 95% RH. Figure 

19 (a-c) show the droplet sizes (𝐷𝑤𝑒𝑡) with respect to their initial dry sizes (𝐷𝑑𝑟𝑦) for 

pure PTA, IPTA and TPTA. Figure 19 (d-f) show the 𝐷𝑤𝑒𝑡 with respect to the 𝐷𝑑𝑟𝑦 for 

PTA-IPTA internal mixtures. The 𝐷𝑤𝑒𝑡 predictions based on the KT-Raoult term, FHH 

isotherm and hybrid water activity were derived from the parameters in Table 2. The 

Raoult’s model estimates (black dashed lines) for the pure and internally mixed 

samples were generated using their average hygroscopic growth factor (𝐺𝑓; Fig. 19, Eq. 

(3.7)). The supersaturated average 𝜅 of 0.17 for the AAA samples was used to obtain 

the theoretical 𝐷𝑤𝑒𝑡 and 𝐺𝑓 at given dry sizes. The 𝑅2 scores for the KT-Raoult model 

are summarized in Table 3. The KT-Raoult model agreed well for pure PTA and 5:1 

PTA-IPTA mixture. 

 

Figure 19. Subsaturated measurements for pure AAA samples obtained using the H-

TDMA setup are shown. Panels(a), (b) and (c) show the 𝐷𝑤𝑒𝑡 vs. 𝐷𝑑𝑟𝑦 data along with 

model fits for pure PTA, IPTA and TPTA. Panels (d), (e) and (f) show the 𝐷𝑤𝑒𝑡 vs. 

𝐷𝑑𝑟𝑦 data along with model fits for PTA–IPTA internal mixtures. The KT–Raoult term, 

FHH isotherm and hybrid water activity fits are shown in black, red and blue, 

respectively, overlaid with the experimental data. The hygroscopic growth factors (𝐺𝑓) 

for all AAA samples are shown in their legends. 
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The red dashed lines in Figure 19 show the 𝐷𝑤𝑒𝑡 estimated using the FHH isotherm 

(Eq. (3.4)). The empirical FHH parameters used here were determined by fitting the 

FHH-AT to the supersaturated CCNC measurements (Section 4.2; Table 2). FHH 

noticeably underpredicts the hygroscopic behavior of the AAAs except for IPTA and 

TPTA in the subsaturated regime (𝑅2 estimates in Table 3). This implies that the 

insoluble behavior of IPTA and TPTA can be represented with high certainty in 

subsaturated as well as the supersaturated regime, using the FHH theory. Moreover, the 

KT and FHH models (that agreed for soluble compounds, PTA and 5:1 PTA-IPTA 

mixture) have different droplet growth predictions in the subsaturated regime. 

 

Figure 20. Equilibrium droplet growth curves for PTA, IPTA, TPTA and PTA–IPTA 

internal mixtures are shown here. The figure header shows the solute for which the 

respective equilibrium curves are plotted. KT, FHH-AT and HAM lines are shown in 

red (solid), green (solid) and yellow (solid), respectively. An exemplarily measured 

activation point for the respective solute is denoted using a solid red cross. The 𝐷𝑑𝑟𝑦,𝑐 

and corresponding 𝑆 used to generate these equilibrium curves are provided in Fig. 15. 
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The blue dashed lines in Figure 19 show the 𝐷𝑤𝑒𝑡 estimated using the 

comprehensive hybrid water activity expressions described in Section 3.3 (Eq. (3.6)). 

Again, the hybrid water activity requires the empirical FHH parameters obtained by 

fitting FHH-AT to the supersaturated CCNC measurements (Table 2) and the aqueous 

solubility of the compound to account for the dissolved fraction of solute (Table 1). 

The hybrid water activity replicated the subsaturated water uptake of all 6 of the AAAs 

with high certainty (𝑅2 estimates in Table 3). This is due to the explicit consideration 

of both compound solubility and water adsorption to describe the droplet growth 

process. Notably, the hybrid water activity is similar to either the KT-Raoult or the 

FHH isotherm depending on the compound solubility. For sparingly soluble samples 

(e.g., pure PTA), the KT-Raoult and hybrid water activity generated similar fits (𝑅2 of 

0.938 and 0.948, respectively). For effectively insoluble samples (e.g., pure TPTA), the 

FHH isotherm and the hybrid water activity generated similar fits (𝑅2 of 0.998 and 

0.999, respectively) for subsaturated measurements. 

The sub- and supersaturated analyses are consistent with the equilibrium curves for 

the pure and internally mixed AAA samples. Figure 20 shows droplet growth predicted 

using KT, FHH-AT and HAM corresponding to one of the experimentally determined 

𝐷𝑑𝑟𝑦,𝑐. The predicted critical supersaturations (𝑆𝑐) are also shown in the plots. KT 

predicted 𝑆𝑐 values deviate significantly (> 10%) from the experimental 𝑆𝑐, as the 

aqueous solubility of the solute decreases. This is because KT for the structural isomers 

assumes similar droplet growth (𝜅𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 is ∼0.17). However, FHH-AT and HAM 

require higher supersaturations and are less CCN active and therefore the points of 

activation are shifted upwards and to the left. At a given relative humidity (RH) < 
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100%, the KT-derived 𝐷𝑤𝑒𝑡 is found to be larger than those predicted using either FHH-

AT or HAM. This is consistent with the models and experimental data at 95% RH 

shown in Figure 19. KT-based 𝐷𝑤𝑒𝑡 was found to be close to the experimental 𝐷𝑤𝑒𝑡 for 

pure PTA and 5:1 PTA-IPTA mixture, whereas 𝐷𝑤𝑒𝑡 from FHH-AT and HAM were 

found close to the experimental 𝐷𝑤𝑒𝑡 for the remaining solutes. After critical activation, 

there may be a jump from a water adsorption-driven droplet growth to one driven by 

complete dissolution of the solute (vertical jump in green line from blue to red). This 

is prominently seen in PTA but not in as evident in TPTA. Furthermore, multiple 

transitions are observed in internal mixtures. 

 

Figure 21. Subsaturated measurements for pure AAA samples obtained using the VSA 

setup are shown. The mass hygroscopic growth factor is shown with respect to the 

relative humidity (RH). The measurements show that neither of PTA, IPTA or TPTA 

show any mass-based growth as the RH is increased from 5 % to 95 %. 

VSA measured the water uptake of the three AAA compounds in the subsaturated 

regime. None of AAAs showed significant water uptake (with mass growth factors 

smaller than <1%) even at high RH (95%) (Figure 21). It should be noted that the VSA 



 

 

91 

 

measurement uses materials in the range of μm to mm. Thus, the observed 𝜅𝐻𝐴𝑀 in Eq. 

(19) decreases with increasing diameter and eventually approaches zero. The results 

across different particle measurement platforms are consistent with the hygroscopicity 

parameterization that is particle size-dependent. 

Table 4. Goodness of fit (𝑅2) scores for model fits applied to supersaturated and 

subsaturated measurements of pure and internally mixed samples. 

  Supersaturated 𝑹𝟐   Subsaturated 𝑹𝟐  

Sample KT FHH-AT HAM KT FHH-AT HAM 

Phthalic acid 0.99 0.87 0.99 0.938 0.459 0.948 

Isophthalic acid − 0.94 0.96 − 0.894 0.975 

Terephthalic acid − 0.9 0.91 − 0.998 0.999 

5:1 PTA-to-IPTA 0.71 0.91 0.91 0.869 0.549 0.933 

1:1 PTA-to-IPTA − 0.89 0.92 0.604 0.667 0.957 

1:5 PTA-to-IPTA − 0.94 0.97 0.007 0.894 0.987 

It should be noted that in this work, the particle shape morphology (dynamic shape 

factor) was explicitly accounted for, and the electrical mobility diameters consequently 

corrected to their respective volume equivalent diameters as described in Gohil and 

Asa-Awuku (2022). Shape factors were measured and computed for all samples studied 

(appendix Figure 3A.3). Over the mobility diameters of interest (from 50nm to 150nm), 

the dynamic shape factor values were found to range from 1.00 to 1.08 and were 

therefore within 10% of 1.00. This suggests that the AAA samples studied in this work 

are composed mainly of spherical particles. The application of the dynamic shape factor 

of aerosols composed of fractals/agglomerates such as black carbon to the transition 

from soluble to sparingly soluble activation must be considered in future work. 



 

 

92 

 

3.7 Summary and Implications 

This paper presents the droplet growth analysis of AAAs using a new Hybrid 

Activity Model (HAM). HAM estimates the thermodynamics of the droplet growth by 

combining the aqueous solubility of the compound in an adsorption activation 

framework. HAM accounts for the contributions from undissolved as well as the 

dissolved fractions of the particle mass to predict droplet growth. Thus, HAM is able 

to predict critical properties (e.g., 𝐷𝑤𝑒𝑡,𝑐, 𝑆𝑐, 𝐺𝑓) for droplet growth in both the 

supersaturated and subsaturated regimes. 

HAM also predicts the droplet growth of internal mixtures. The three PTA-IPTA 

internal mixtures (5:1, 1:1, and 1:5 with respect to PTA) show a clear transition from 

sparingly water soluble to effectively water insoluble mixtures (Petters and 

Kreidenweis, 2008). For a mixture containing two or more components, the water 

activity based on Raoult’s law is computed using solubility partitioning (Riipinen et 

al., 2015). Moreover, a solubility limit of ∼ 8 × 10−4 vol/vol water (corresponding to 

a 3:1 internal mixture with respect to PTA) was determined using solubility 

partitioning. Below this limit, the discrepancies in CCN activity will likely be > 10% 

for traditional KT. It is therefore reasonable to assume that the effect of adsorption on 

droplet growth would be more dominant in determining the growth of the pure and 

internally mixed AAAs as their solubilities are decreased below ∼ 8 × 10−4 vol/vol 

water. Current literature considers the two paradigms separately and HAM provides a 

continuum to bridge and combine both mechanisms. 
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To do so, HAM requires three compound-specific parameters (𝐶𝑖, 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻) 

and the use of the full HAM in cloud microphysical models may extend the 

computational burden to account for the aerosol chemistry. Therefore, a single 

hygroscopicity parameter was also developed and exhibited an improved 

hygroscopicity parameterization for all solutes studied in this work. Raoult’s law was 

generally overpredicts the hygroscopicity of effectively insoluble solutes. And the FHH 

isotherm generally underpredicts the hygroscopicity of sparingly soluble solutes. 

Combining the two droplet growth mechanisms in HAM provided a more robust 

approximation of the water uptake behavior in both subsaturated and supersaturated 

environments. Consequently, the experimental and simplified (theoretical) 

hygroscopicity estimates based on HAM (𝜅𝐻𝐴𝑀 and 𝜅𝐻𝐴𝑀,𝑠) showed the best agreement 

and highest goodness of fits when it was applied to the experimental data. 

Overall, HAM is a promising new droplet growth model that can be potentially 

used for the analysis of any type of atmospheric compound. HAM is effective because 

it combines the characteristic features of the traditional KT with solubility partitioning 

and FHH-AT. Additionally, HAM differs from previous analytical frameworks that are 

based on compound solubility in that for any species using HAM, the particles are 

treated as completely undissolved at the start of the activation process. This is vital 

because other solubility limiting approaches begin with instantaneous dissolution and 

add the element of reduced solubility along the course of droplet growth. Indeed, the 

approach is congruous to the concept of earlier works that explored the impact of slow 

dissolution (e.g., Asa-Awuku & Nenes, 2007; Shulman et al., 1996) and aligns with 

more current findings that describe the droplet growth of viscous, amorphous, or glassy 
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aerosols (e.g., Altaf et al., 2018; Mikhailov et al., 2009; C. Peng et al., 2022; Tandon 

et al., 2019; Zobrist et al., 2008). 

In HAM, the contribution of the theorized undissolved fraction facilitates a surface 

until the particle fully dissolves, after which further droplet growth is controlled solely 

by the entire particle mass present in the aqueous phase. The HAM concept may have 

even more utility at lower temperatures and higher altitudes. In general, the solubility 

of compounds in water will likely decrease at lower temperatures; thus, the role of 

surface adsorption on the undissolved fraction will be important to droplet growth. 

Additionally, solute viscosity of atmospheric compounds has been shown to have more 

significant effects on droplet growth at lower temperatures in the subsaturated regime 

(Kasparoglu et al., 2021). Rather than considering complex morphological parameters 

(diffusivity, viscosity, rheology), HAM simplifies the concept by considering the 

presence (or lack thereof) of a surface. In addition to the factors considered in this work, 

surface tension can potentially play a role in both the water activity term and also in 

the solute partition and should therefore be treated explicitly in the droplet growth 

process. Incorporation of surface tension in the analysis was beyond the scope of this 

work, and well-designed experiments will be required to observe whether surface 

tension has any contribution on the water uptake of the AAAs studied in paper. 

Furthermore, surface effects of a given species can be parameterized within the HAM 

framework and subsequently into the hygroscopicity to understand such effects for 

partially insoluble to effectively insoluble systems. 
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The next step is to evaluate the application of HAM for the CCN analysis of aerosol 

mixtures for a wider range in aerosol species and compositions. The shift from volume 

to surface based absorption principles maybe more appropriate for significantly water-

insoluble compounds. Specifically, the application of HAM can be examined for the 

hygroscopic growth and water uptake on black carbon agglomerates. Furthermore, 

HAM developed in this work may improve our predictions of a wide variety of 

atmospherically relevant aerosols. For example, many atmospheric organic aerosols 

may vary significantly from each other in terms of their chemical structures and 

aqueous solubilities (Petters and Kreidenweis, 2008; Sullivan et al., 2009). Therefore, 

HAM may potentially improve the representation of hygroscopicity of organic aerosols 

in large-scale Global Climate Models (GCMs), hence reducing the uncertainties in the 

climate forcing due to the aerosol indirect effect. 
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Appendix 3A 

Summary: This appendix contains the CCNC supersaturation calibration data, CCN 

measurements for pure and internally mixed AAA samples, description of shape factor 

measurement setup along with the shape factor data and conversion to volume 

equivalent sizes for pure and internally mixed AAAs, and application of solubility-

limited Köhler theory to pure and internally mixed AAA data. 

 

3A.1 CCN counter (CCNC) calibration 

CCNC calibration was performed using the (NH4)2SO4 aerosol. Dry (NH4)2SO4 were 

subjected to supersaturated conditions when passing through the CCNC column. The 

set supersaturation inside the CCNC column depends on the axial temperature gradient 

for specified flow and pressure gradient. Ideally, the temperature gradient inside the 

CCNC column is assumed to stay constant. That is, if the CCNC parameters are 

maintained constant, then the temperature gradient and hence the supersaturation 

across the CCNC column must stay constant. However, in practice there are 

fluctuations in the CCNC parameters and so there are deviations in the “true” 

instrument supersaturation relative to the set supersaturation displayed on the CCNC 

software interface. These deviations can be resolved by calibrating the CCNC 

supersaturation using a compound like (NH4)2SO4. (NH4)2SO4 is one of most well-

understood and well-characterized aerosol compounds that is widely used for CCNC 

calibration. Calibration was performed by following the procedure described by Rose 

et al. (2008). 
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Table 3A1. Sample CCN Counter (CCNC) calibration data using (NH4)2SO4 

Supersaturation Setting 

(%) 
Calibrated Supersaturation (%) 

Critical Dry Diameter 

(nm) 

𝟎. 𝟐 0.215 75.6 ± 2 

𝟎. 𝟒 0.402 52.3 ± 0.6 

𝟎. 𝟔 0.586 41.2 ± 0.4 

𝟎. 𝟖 0.771 34.7 ± 0.7 

𝟏. 𝟎 0.957 29.6 ± 0.6 

𝟏. 𝟐 1.125 26.1 ± 0.9 

𝟏. 𝟒 1.357 23.1 ± 1.1 

𝟏. 𝟔 1.546 21.2 ± 1. 

 

 

Figure 3A.1. CCNC calibration curve generated using the ammonium sulfate activation 

data provided in Table 3A.1. This curve was used to calibrate the CCNC 

supersaturations at which AAA data was collected. 
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3A.2 Hybrid Activity Model single hygroscopicity parameterization (𝜿𝑯𝑨𝑴) 

Hybrid Activity Model (HAM) is mathematically expressed as, 

𝑆 = 𝑎𝑤,𝐻𝐴𝑀 ⋅ exp (
𝐴

𝐷𝑝
)       (3A.1) 

where 𝑆 is supersaturation, 𝑎𝑤,𝐻𝐴𝑀 is the water activity derived by combining features 

from FHH adsorption theory and Kohler theory, 𝐷𝑝 is the intermediate diameter of the 

droplet, and 𝐴 is a constant which is given as, 

𝐴 =
4𝑀𝑤𝜎𝑤

𝑅𝑇𝜌𝑤
         (3A.2) 

Where 𝑀𝑤 is the molecular weight of water, 𝑅 is the gas constant, 𝑇 is the temperature 

and 𝜌𝑤 is the density of water. 𝜎𝑤 is the surface tension of the droplet and is assumed 

to be the same as that of pure water. 

The development of 𝑎𝑤,𝐻𝐴𝑀 has been described in detail in the main literature 

(Section 3.3) explaining that 𝑎𝑤,𝐻𝐴𝑀 = 𝑋𝑤 ⋅ exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻). 𝑎𝑤,𝐻𝐴𝑀 is equated 

with the parameterization defined in terms of the single hygroscopicity parameter (𝜅) 

which is expressed as, 

𝑎𝑤,𝐻𝐴𝑀 = 𝑋𝑤 ⋅ exp(−𝐴𝐹𝐻𝐻 ⋅ 𝜃
−𝐵𝐹𝐻𝐻) = [1 + 𝜅 ⋅

𝜈𝑠

𝜈𝑤
]
−1

   (3A.3) 

Rearranging Eq. (3A.3) provides the expression for 𝜅𝐻𝐴𝑀 as, 

𝜅𝐻𝐴𝑀 =
6𝜃𝐷𝑤

𝐷𝑑
(

1

𝑋𝑤⋅exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)

− 1)     (3A.4) 

Eq. (3A.4) is the function of the measured 𝐷𝑑 and 𝐷𝑝 derived corresponding to the 

point of activation. Eq. (3A.4) can be further simplified using Eq. (3A.3). The 

exponential on the right-hand side of Eq. (3A.4) can be simplified using the Taylor’s 

series expansion for an exponential function such that, 
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exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵_𝐹𝐻𝐻) = 1 + (−𝐴𝐹𝐻𝐻𝜃

−𝐵_𝐹𝐻𝐻) + (−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)2 +⋯  (3A.5) 

Since −𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻 ≪ 1, (3A.5) can be restated as, 

exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵_𝐹𝐻𝐻) ≈ 1 + (−𝐴𝐹𝐻𝐻𝜃

−𝐵_𝐹𝐻𝐻)    (3A.6) 

The 𝑋𝑤 term on the right-hand side of Eq. (3A.3) is expressed depending on the 

ongoing phase of the droplet formation/growth. The phases of droplet 

formation/growth are described in detail in the main literature (Section 3.3). The left-

hand side of Eq. (3A.3) can be simplified under the assumption that 𝑣𝑤 ≫ 𝑣𝑠, 

[1 + 𝜅 ⋅
𝑣𝑠

𝑣𝑤
]
−1

≈ 1 − 𝜅 ⋅
𝑣𝑠

𝑣𝑤
       (3A.7) 

Combining Eq. (3A.6) and Eq. (3A.7) provides a simplified theoretical expression for 

𝜅𝐻𝐴𝑀, 

𝜅𝐻𝐴𝑀,𝑠 =
6𝛩𝑐𝐷𝑤

𝐷𝑑𝑟𝑦
⋅ (1 − 𝑋𝑤(1 − 𝐴𝐹𝐻𝐻 ⋅ 𝛩𝑐

−𝐵𝐹𝐻𝐻))    (3A.8) 

Eq. (3A.8) contains critical 𝜃 defined as the point of activation such that 𝜃 = 𝜃𝑐. 𝜃𝑐 is 

determined by taking the first derivative of Eq. (3A.1) and equating it to 0 for the point 

of activation such that, 

𝑑𝑆

𝑑𝐷𝑝
=

𝑑

𝑑𝐷𝑝
(𝑋𝑤 ⋅ exp (−𝐴𝐹𝐻𝐻 ⋅ [

𝐷𝑝−𝐷𝑑

2⋅𝐷𝑤
]
−𝐵𝐹𝐻𝐻

) ⋅ exp (
𝐴

𝐷
)) = 0  (3A.9) 

1 −
2𝜃𝑐𝐷𝑤

𝐷𝑑
= (

2𝐴𝐷𝑤

𝐴𝐹𝐻𝐻𝐵𝐹𝐻𝐻𝐷𝑑
2)

1
2⁄

𝜃𝑐
𝐵𝐹𝐻𝐻+1

2      (3A.10) 

Solving Eq. (3A.9) and (3A.10) under different conditions prescribed by 𝑋𝑤 

(depending on the phase of droplet growth) will yield the appropriate 𝜃𝑐 to then 

subsequently parameterize 𝜅𝐻𝐴𝑀. 
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3A.3 CCN data for pure and internally mixed aromatic acid samples 

Figure 3A.2 shows exemplary size-resolved activation ratios derived using the CCN 

measurements of the pure and internally mixed AAA samples. The activation ratio data 

are shown with respect to the electrical mobility diameter of the particles which were 

converted to their respective volume equivalent diameters using their shape factor 

measurements (shown in Section 3A.4). 

 

Figure 3A.2. Size-resolved activation ratio of pure and internally mixed AAA samples 

from a typical DMA-based CCN setup. The size-resolved activation ratios are 

overlayed with their corresponding sigmoidal fits which were used to determine the 

critical diameters (𝐷𝑑𝑟𝑦,𝑐) at the respective supersaturations provided in the legend. 
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3A.4 Shape factor experiments 

3A.4.1 Experimental Setup 

Shape factor measurements were conducted using a setup based on the Aerodynamic 

Aerosol Classifier (AAC) instrument. The experimental setup has been explained in 

detail in the literature (ref). Briefly explained here – the AAC is used to size-select 

particles of a specific aerodynamic diameter from the incoming polydisperse 

population. The size-selected aerosols are then passed through a Scanning Mobility 

Particle Sizer (SMPS) setup to generate a distribution with respect to electrical mobility 

diameter. The geometric mean of the number distribution is considered as the mobility 

size measurement corresponding to the aerodynamic diameter. The mobility diameter 

and aerodynamic diameter are then used to estimate the volume equivalent diameter 

and dynamic shape factor using a set of coupled equations (Section 3.3, Tavakoli and 

Olfert (2014)). 

 

3A.4.2 Measured data for aromatic acid aerosols (AAAs) 

The exemplary shape factor data of pure AAA samples are shown with respect to the 

aerodynamic diameter of the particles (Fig. 3A.3). The aerodynamic diameters chosen 

here ranged from ~100 to 200 nm. This range of aerodynamic diameters corresponds 

to the electrical mobility diameters ranging from ~50 to120 nm. This is similar to the 

range in which the measure critical dry diameters (𝐷𝑑𝑟𝑦,𝑐) of pure and internally mixed 

samples were observed. 
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The following system of equations are solved to simultaneously obtain the size-

resolved shape and volume equivalent diameter using the measured electrical mobility 

and aerodynamic diameters, 

𝐶𝑐(𝐷𝑣𝑒)

𝜒𝐷𝑣𝑒
=
𝐶𝑐(𝐷𝑚𝑜)

𝐷𝑚𝑜
        (3A.11) 

𝐷𝑣𝑒 = 𝐷𝑎𝑒√
𝜒𝜌0𝐶𝑐(𝐷𝑎𝑒)

𝜌𝑝𝐶𝑐(𝐷𝑣𝑒)
        (3A.12) 

 

Figure 3A.3. Dynamic shape factor measurements for pure phthalic acid (PTA), 

isophthalic acid (IPTA) and terephthalic acid (TPTA). The shape factor data is plotted 

against the aerodynamic diameter of the particles and can be converted their respective 

mobility diameters or volume equivalent diameter using Eq. (3A.11) or (3A.12), 

respectively. Since most of the shape factor values lie in close range to 1 (~5% of 1; or 

close to 1.05), it can be assumed that AAA particles studied in this work are spherical 

in shape. 

 

3A.5 Solubility-limited Köhler theory application to pure and internally mixed 

aromatic acids 

Köhler theory traditionally accounts for the intrinsic hygroscopicity of the compounds 

that depends only on the solute and solvent (water) properties (Section 3.1; Section 4.1 

for results). For compounds that are not completely water soluble, traditional Köhler 

theory can be modified by explicitly accounting for the aqueous solubility of the 

compound. 
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Figure 3A.4. CCN measurements of pure and internally mixed AAA samples from a 

typical DMA-based CCN setup. The activation measurements are overlayed with 

solubility limited Köhler theory fits line which were derived using the apparent 

hygroscopicity parameter (𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡) of the pure and internally mixed samples. 

 

 

Figure 3A.5. 𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 plotted against droplet size for pure and internally mixed AAA 

samples. 𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 was determined using Eq. (3.11) described in detail in Section 3.5.1. 
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Figure 3A.6. 𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 plotted against droplet size for high solubility compound – 

ammonium sulfate (AS) and sucrose, respectively. 𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 was determined using Eq. 

(3.11) described in detail in Section 3.5.1. It can be observed that the droplet sizes that 

needs to be attained at 𝜅𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 for highly soluble compounds is significantly lower 

than those for AAAs (described in detail in Section 3.5.1). This is an important 

consideration for the assumption that AS and sucrose almost instantly dissolve in water, 

hence making traditional KT applicable for analysis. 
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Chapter 4: Solubility Considerations for Cloud Condensation 

Nuclei (CCN) Activity Analysis of Pure and Mixed Black Carbon 

Species 

Submitted work under review: 

Gohil, K., Barrett, R., Rastogi, D., Mao, C.-N., and Asa-Awuku, A.: Solubility 

Considerations for Cloud Condensation Nuclei (CCN) Activity Analysis of Pure and 

Mixed Black Carbon Species, Environ. Sci. Technol. 

4.1 Abstract 

Black Carbon (BC) is an aerosol that is released into the atmosphere due to the 

incomplete burning of biomass and can affect the climate directly or indirectly. BC 

commonly mixes with other primary or secondary aerosols to undergo aging, thereby 

changing its radiative properties and cloud condensation nuclei (CCN) activity. The 

composition of aged BC species in the atmosphere is difficult to measure with high 

confidence and so their associated CCN activity can be uncertain. In this work, the 

CCN activity analysis of BC is performed using laboratory measurements of proxy 

aged BC species. Vulcan® XC72R Carbon Black was used as the representative of BC, 

and 3 structural isomers of benzenedicarboxylic acid – phthalic acid (PTA), isophthalic 

acid (IPTA) and terephthalic acid (TPTA) – were mixed with BC to generate 3 different 

proxies of aged BC species. Most studies related to CCN activity analysis BC aerosol 

use the traditional Köhler Theory or an adsorption theory (such as the Frenkel-Halsey-

Hill Adsorption Theory). PTA, IPTA and TPTA fall in the sparingly water-soluble 

range and therefore do not fully obey either of the aforementioned theories. 

Consequently, a novel hybrid activity model (HAM) was used for the CCN activity 

analysis of the BC mixtures studied in this work. HAM combines the features of 

adsorption theory via the adsorption isotherm with the features of Köhler Theory by 
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incorporating solubility partitioning. The results in this work show that HAM improves 

the representation of CCN activity of pure and mixed BC aerosol species with high 

certainty; evident from a generally better goodness of fit,  𝑅2  > 0.9. This work implies 

that the hygroscopicity parameterization based on HAM captures the size-dependent 

variability in the CCN activity of the pure and aged BC species. In short, the hybrid 

water uptake method has been applied for the CCN analysis of the soot proxies for the 

first time and provides an overall improved water uptake estimations. 

 

4.2 Background 

Black carbon (BC) aerosol is significant due to its effect on the atmosphere and 

climate. This is a result of the observed effects of BC on air quality, climate change, 

and human welfare. BC is produced from incomplete biomass combustion and is one 

of the main biomass burning tracers in the atmosphere alongside other primary and 

secondary organic aerosols (POAs and SOAs). BC is the second most important 

contributor to the warming of the climate after carbon dioxide (Bond et al., 2013; IPCC, 

2007). However, BC aerosols may also significantly indirectly affect the climate via 

interactions with clouds. The aerosol-indirect effect of pure and coated BC aerosols 

must be well understood to better understand their climate forcing.  

Carbonaceous aerosols, and BC aerosol particularly, have complex molecular level 

interactions with water (e.g., but not limited to (Laaksonen et al., 2020a; Weingartner 

et al., 1997; Zhang et al., 2008)).  BC particles in the atmosphere exist as agglomerates 

or nodules and conglomerates with other species; BC are rarely observed in pure form 

are known to age downwind of emission sources (Canagaratna et al., 2015). Aging can 
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substantially alter the morphology of the BC particles, and the aged particles, can range 

in size from a few nm to several μm, and may contain co-condensed phases (Zhang et 

al., 2016; Peng et al., 2016). Aged BC can internally or externally mix with other 

aerosols present in the atmosphere (Bond et al., 2013).  The pure and mixed, or aged 

BC are known to act as Cloud Condensation Nuclei (CCN) under supersaturated 

ambient conditions and can therefore affect the climate “indirectly” through altering 

cloud properties (e.g., but not limited to Dusek et al., 2006; Maskey et al., 2017; 

Stratmann et al., 2010; R. Zhang et al., 2008). BC aerosol is considered water insoluble; 

however, it is wettable and known to take up water and display hygroscopic behavior 

leading to cloud droplet formation. CCN activation is traditionally described using 

Köhler theory and works well for highly water-soluble solutes.  However due to the 

strong water insoluble nature of BC, traditional Köhler theory should not be applied to 

study BC CCN activity and droplet growth. 

For insoluble aerosols such as BC, CCN activity and water uptake is aptly described 

via the effect of water vapor adsorption on the particle surface (Dalirian et al., 2018; 

Laaksonen et al., 2016, 2020). Adsorption activation theory combines adsorption 

isotherms and curvature effects to describe insoluble aerosol droplet growth. Frenkel-

Halsey-Hill adsorption theory (FHH-AT) is formulated by combining the FHH 

isotherm with the Kelvin effect (Sorjamaa and Laaksonen, 2007) and is the most widely 

used CCN activity theory for the droplet growth of insoluble wettable aerosols (e.g., 

but not limited to Hatch et al., 2012, 2014, 2019; Kumar et al., 2011b, 2011a; Kumar 

et al., 2009a; Kumar et al., 2009b; Dalirian et al., 2018; Mao et al., 2022). Additionally, 

the FHH isotherm has been combined with the Köhler Theory for the CCN activity 
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analysis of insoluble particles coated with soluble species assuming a “core-shell” 

morphology. Kumar et al., (2011a, 2011b) also described CCN activation of mineral 

dust species containing a soluble salt fraction using the combination of the classical 

Köhler and FHH adsorption theories. Other studies have developed frameworks to 

theoretically describe CCN activity of insoluble aerosols, such as BC and coated BC 

aerosols, using multilayer adsorption models accounting for the curvature and contact 

angle of the droplets forming on aerosol particles (Laaksonen et al., 2020). 

A systematic theoretical and experimental examination of the changes in the CCN 

activity of BC particles, as they are mixed with low solubility organic aerosols, is 

absent from current literature. So far, the CCN activity studies of BC particles under 

supersaturated or subsaturated conditions predominantly focus on BC mixed with 

readily water-soluble species. One such compound is NaCl (observed as a component 

of sea salt); Dusek et al., (2006) performed chamber CCN measurements and showed 

a significant enhancement in the CCN activity of BC particles on mixing with 5% NaCl. 

Zhang et al., (2008) observed that BC particles aged with sulfuric acid showed up to 

~10-fold and ~2-fold enhancement in their scattering and adsorption properties, after 

undergoing hygroscopic growth at 80% relative humidity. Dalirian et al., (2018) 

performed CCN analysis of BC particles coated with various water soluble and 

insoluble organic compounds using the core-shell CCN model. Other studies include 

CCN analysis of ambient BC aged with high hygroscopicity sea salt aerosols (Furutani 

et al., 2008). 

This work studies the water uptake and droplet formation of particles composed of 

effectively water-insoluble organics mixed with BC using controlled laboratory 
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measurements. Vulcan® was chosen as the representative of BC aerosol; it is a 

synthetic BC substance that possess high electrical conductivity and is widely used for 

electrocatalytic applications (M.J. Lázaro et al., 2011). Three low water solubility 

structural isomers of benzene di-carboxylic acid – Phthalic acid (PTA), Isophthalic acid 

(IPTA) and Terephthalic acid (TPTA) – were used as the proxies for low water 

solubility organic aerosols and mixed with BC. PTA, IPTA and TPTA are prominent 

benzene polycarboxylic acids detected in the atmosphere (Fu et al., 2009; Singh et al., 

2017b; Meng et al., 2018; Haque et al., 2019; Kunwar et al., 2019; Liu et al., 2019; 

Yassine et al., 2020; Kanellopoulos et al., 2021). PTA, IPTA and TPTA are produced 

from biomass burning and emissions of automobile exhaust (Mkoma and Kawamura, 

2013; Balla et al., 2018; Al-Naiema and Stone, 2017; Zhong et al., 2017a, b). PTA and 

its isomers are known tracers of benzanthracene, naphthalene-1 and 

methylnaphthalene-1 (Kleindienst et al., 2012b; He et al., 2018; Al-Naiema et al., 

2020b) and are likely co-emitted with soot.  Therefore, the mixtures of aromatic acids 

with BC can be considered proxies for aged soot. 

Recently a hybrid activity model (HAM) was developed to model the water-uptake 

and hygroscopicity of effectively water-insoluble aerosol (Gohil et al., 2022). HAM 

combines solubility partitioning with the FHH adsorption isotherm to describe the 

droplet growth. HAM was observed to work well for PTA, IPTA and TPTA; the 

goodness of fit (𝑅2) metrics for subsaturated and supersaturated measurements were 

found to be in the range of 0.9 − 0.99 for all the studied aerosol (Gohil et al., 2022). 

HAM suggests that the hygroscopicity is size dependent and pure and mixed aerosols 

are initially treated as completely insoluble at the start of droplet growth. Depending 
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on their aqueous solubility, the particles then continue to fractionally dissolve into the 

aqueous phase as droplet growth progresses. While the dissolved fraction of the aerosol 

contributes to droplet growth via Raoult’s law, the undissolved fraction contributes to 

droplet growth via adsorption of water on the surface. HAM was found to be effective 

with sparingly soluble organic aerosol – however, its utility with relevant 

atmospherically mixed insoluble species (BC, mineral dust, nanopolymers etc.) has yet 

to be tested.  

In this manuscript, HAM is applied and used to describe the variability in the water 

uptake behavior of BC particles mixed with low solubility water solubility compounds 

(PTA, IPTA and TPTA). Additionally, Transmission Electron Microscopy (TEM) 

captures images of mixed aerosol to identify particle morphology that may affect water 

uptake behavior. The compounds and their mixtures considered in this work are useful 

because they could represent atmospheric organic aerosol composition. The CCN 

activity measurements of pure and mixed BC particles also provide an efficient means 

to further validate the application of the newly developed HAM. In the following 

sections, we first describe the experimental setup to obtain experimental CCN 

activation data for pure and mixed BC. We then briefly describe FHH-AT and HAM 

models and compare predictions to data and discuss the results in the context of aged 

soot particles, droplet growth, and cloud formation. 
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4.3 Experimental Section 

4.3.1 Chemicals and Sample Preparation – Pure BC and Internal Mixtures with 

Aromatic Acid Aerosols (AAAs) 

Vulcan® (Cabot Vulcan® XC72R Carbon Black) was used as the representative of 

black carbon (BC). Phthalic acid (PTA, 1,2 – benzenedicarboxylic acid, >99.5%, 

Sigma-Aldrich®) and terephthalic acid (TPTA, 1,4 – benzenedicarboxylic acid, 98%, 

Sigma-Aldrich®) and Isophthalic acid (IPTA, 1,3 – benzenedicarboxylic acid, >99%, 

Fisher Scientific®) were aromatic acid aerosols (AAAs) used in this study. The 

physical properties of BC and AAAs are summarized in Table 1. AAA compounds 

were mixed with BC in a 1:1 mass ratio. The water uptake behavior of the 3 AAA 

compounds in this study have been previously described in detail in (Gohil et al., 2022). 

The mass-to-volume concentration of the pure BC solution was 72 mg BC in 200 ml 

ultrapure water (Milli-Q or Millipore®, 18.2MΩ cm-1). The mass-to-volume 

concentration of BC-to-AAA internal mixtures was also 72 mg (36 mg BC was mixed 

with 36 mg of AAA) in 200 ml ultrapure water (Milli-Q or Millipore®, 18.2MΩ cm-1). 

Furthermore, the acidity of the pure AAA aerosol and 1:1 BC-to-AAA aerosol was 

quantified with their pH. The pH of PTA, IPTA and TPTA was found to be 5.24, 5.43 

and 5.94, respectively. Low acidity suggests that the AAA samples are not strong 

organic solvents. BC readily dissolves in strong acid solutions; therefore, the weak 

organic acid solutions here have minimal dissolution of BC in AAA. Before preparing 

all the pure and internally mixed BC aerosol, dry Vulcan® was first heated at 450 °C 

for 6 hours. The pure and internally mixed aqueous suspensions of BC were then 

sonicated in a 30 °C water bath for 9 hours. The BC aerosol was constantly sonicated 
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in a 20 °C water bath during all aerosol measurement; including the CCN, shape factor 

and TEM grid experiments as described in detail below. 

 

Table 5. Physical and chemical properties of BC and AAA compounds used throughout 

the chapter. 

Compounds 
Molecular weight 

(𝑴𝒔, 𝐠 𝐦𝐨𝐥
−𝟏) 

Density (𝝆𝒔,

𝐠 𝐜𝐦−𝟑) 

Solubility (𝑪,
𝐦𝟑 𝐦−𝟑) 

Black Carbon 

(Vulcan® XC72R) 
12 ~1.8 < 10−5 

Phthalic acid 166.14 1.59 3.77 × 10−3 

Isophthalic acid 166.14 1.53 7.84 × 10−5 

Terephthalic acid 166.13 1.52 1.12 × 10−5 

 

4.3.2 CCN Measurements 

A continuous flow stream-wise thermal gradient Cloud Condensation Nuclei 

Counter (CCNC, Droplet Measurement Technologies (DMT) (Roberts & Nenes, 2005 

- CCN 100) measured CCN of pure and internally mixed BC aerosol. The DMT CCNC 

is a widely used instrument for droplet growth measurements in supersaturated 

conditions (e.g., but not limited to Engelhart et al., 2008; Moore et al., 2010; Barati et 

al., 2019; Vu et al., 2019) and only a brief description of experimental setup is provided 

here. Polydisperse aerosol was generated and dried from aqueous suspensions as 

described in Sect. 2.1. An electrostatic classifier (TSI 3936, DMA 3081) size selected 

monodisperse aerosol corresponding to a fixed electrical mobility diameter. The size-

selected aerosols exiting the DMA were then split into 2 streams. One stream entered 

a condensation Particle Counter (CPC, TSI 3776) at 0.3 L min−1 to measure total dry 

particle concentration (𝐶𝐶𝑁), and a second stream entered the CCNC at 0.5 L min−1 and 
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constant supersaturation to measure activated particle (droplet) counts (𝐶𝐶𝐶𝑁). A sheath 

flow rate of 8 L min−1 was applied across the experimental setup to maintain a sheath-

to-sample ratio of 10:1. The experiments were performed over a range of varying 

supersaturations from 0.2%-1.6%, with 0.1% step size. Each supersaturation was held 

constant for 15 minutes for every sample and particle size to provide sufficient time for 

the CCNC column temperature gradient, and hence the supersaturation to stabilize. 

This process of stepping through each particle size for a range of supersaturations is 

hence forth referred to as a “step-mode” process. Furthermore, CCNC supersaturations 

ranging between 0.2% and 1.6% were calibrated using ammonium sulfate ((NH4)2SO4, 

AS) aerosol (Sigma-Aldrich®, >99.9%) prior to performing measurements for pure and 

mixed BC samples. AS data used for CCN calibration is provided in the appendix 

(Section 4A.1). 

 
 

Figure 22. Schematic of a CCN measurement experimental setup. The DMA and the 

CPC are operated in the stepping mode to obtain number concentrations at selected 

electrical mobility diameter. The CCNC is connected in parallel and measures the 

number concentration of activated particles at the selected dry particle electrical 

mobility diameter. 
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4.3.3 Effective Density Estimation and Shape Factor Measurements 

Dynamic shape factor and effective particle density are measured with an 

Aerodynamic Aerosol Classifier (AAC, Cambustion Ltd.), TSI DMA 3080 and TSI 

CPC 3776 connected in series.  The AAC and DMA measure the aerodynamic and 

electrical mobility diameters of the particles, respectively. The application of the 

experimental setup has been examined in the literature (e.g., Tavakoli et al., 2014; 

Tavakoli and Olfert, 2014; Yao et al., 2020; Gohil and Asa-Awuku, 2022). A brief 

description of the experimental setup is provided in this paper.  Polydisperse aerosol 

was generated from aqueous suspensions as described above. The AAC selected 

monodisperse aerosol corresponding to an aerodynamic diameter (𝐷𝑎𝑒). The sample 

and the sheath flow rates were maintained at 0.3 L min−1 and 3.0 L min−1 respectively 

(i.e., sheath-to-sample flow ratio = 10:1). The monodisperse aerosol was then passed 

through the DMA and the CPC in series operating in the Scanning Mobility Particle 

Sizer (SMPS) mode to generate a number size distribution with respect to the electrical 

mobility diameter. The median diameter of the distribution was considered as the 

approximate electrical mobility diameter (𝐷𝑚𝑜) corresponding to the initially set 𝐷𝑎𝑒. 

The size-resolved effective density and dynamic shape factor of the pure BC and mixed 

BC-AAA aerosols were calculated using coupled aerodynamic and electrical mobility 

measurements. Henceforth, the measured mobility diameters to their respective volume 

equivalent diameters using the effective density (𝜌𝑒𝑓𝑓) and dynamic shape factor (𝜒) 

for the subsequent CCN analysis of the pure and mixed samples. 
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Figure 23. Schematic of the shape factor and effective density experimental setup. The 

AAC selects dry aerosol with aerodynamic diameter (𝐷𝑎𝑒). The DMA and the CPC 

collectively operate as an SMPS and measure a number size distribution of AAC-

selected dry particles with electrical mobility diameters (𝐷𝑚𝑜). The geometric mean of 

the number size distribution of the particles was selected as the electrical mobility 

diameter measurement corresponding to the initially set aerodynamic diameter. 

 

4.3.4 CCN Activity Analysis – PyCAT 

Python-based CCN Analysis Tool – PyCAT (Gohil and Asa-Awuku, 2022) was 

used to process, analyze, and visualize the calibration and BC data. PyCAT was 

developed for CCN analysis using scanning data collected using the DMA or AAC size 

selection experimental setup. In this study, a new module has been added to PyCAT to 

perform CCN analysis of step-mode data. The new module of PyCAT is capable of 

processing and analyzing data collected with respect to fixed electrical mobility 

diameter and varying CCNC supersaturations. Consequently, the activation ratio 

(
𝐶𝐶𝐶𝑁

𝐶𝐶𝑁
) of a given sample for a fixed dry diameter (𝐷𝑑𝑟𝑦) are resolved by 

supersaturations (𝑆). Following this, a sigmoidal function can be fit to the activation 

ratio as, 

𝑦 =
(𝐴1 −𝐴2)

1+exp(
𝑥−𝑥0
𝑑𝑥

)
 − 𝐴2        (4.1) 
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In Eq. (4.1), 𝑦 is the dependent variable 
𝐶𝐶𝐶𝑁

𝐶𝐶𝑁
, 𝐴1 and 𝐴2 are the minimum and 

maximum of the sigmoid respectively, 𝑑𝑥 is the slope of the sigmoid, 𝑥0 is the 

inflection point of the sigmoid (generally the midpoint of the sigmoid), and 𝑥 is the 

independent variable (𝑆). 𝑥0 corresponds to the critical supersaturation (𝑆𝑐) at the fixed 

dry diameter and is physically defined as the size at which 50% of all particles are 

activated. It is important to note that size-resolved χ and 𝜌𝑒𝑓𝑓 were used to convert 

electrical mobility sized to volume equivalent diameters. The volume equivalent 

diameters of the particles are implemented as their dry diameter (𝐷𝑑𝑟𝑦). 

 

4.3.5 Transmission Electron Microscopy (TEM) 

Pure and mixed BC nano-sized particles were collected and analyzed with 

Transmission Electron Microscopy. The JEOL 2100 (TEM; LaB6 filament) was used 

in this work (Niemi et al., 2006; Rastogi and Asa-Awuku, 2022).  Specifically, aerosols 

pass through a neutralizer and the charged particles (Kr-85, TSI 3077A) were then 

deposited for 4 hours onto an electrically grounded lacey carbon-coated copper TEM 

grid (TED PELLA). For EDX and EELS analysis the particles were deposited on a 

Silicon Nitride (SiN) grid.  The deposited particles were then imaged at an accelerating 

voltage of 200 kV and a magnification range of 50-150 k. To minimize sample damage, 

the exposure time was kept limited to 90 sec. 
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4.4 Theory and Analysis 

4.4.1 Effective Density and Shape Factor Calculations 

4.4.1.1 Effective Density 

The effective density of a particle can be calculated by dividing the mass by the 

volume of a spherical particle that has a diameter equal to the mobility diameter of the 

particle. The effective density (𝜌𝑒𝑓𝑓) is mathematically expressed as follows: 

𝜌𝑒𝑓𝑓 =
𝑚

(
𝜋

6
)𝐷𝑚𝑜

3
=
6𝐶

𝜋
𝐷𝑚𝑜
(𝐷𝑓𝑚−3)

       (4.2) 

where 𝑚 is the particle mass, 𝐷𝑚𝑜 is the particle mobility diameter, 𝐶 is a constant, and 

𝐷𝑓𝑚 is the fractal dimension of the given species, also known as the mass-mobility 

exponent. 𝐶 and 𝐷𝑓𝑚 are empirical coefficients that are used relate the mass and 

mobility diameter of the particle through a power law relationship given as, 

𝑚 = 𝐶𝐷𝑚𝑜
𝐷𝑓𝑚

         (4.3) 

The mass 𝑚 in Eq. (4.3) is directly related to the particle relaxation time and mobility, 

which can be measured with the AAC-DMA setup. Therefore, 𝑚 can be obtained by 

solving the following system of equations using the measured data, 

 

𝜏 =
𝐶𝑐(𝐷𝑎𝑒)𝜌0𝐷𝑎𝑒

2

18𝜇
 

𝐵 =
𝐶𝑐(𝐷𝑚𝑜)

3𝜋𝜇𝐷𝑚𝑜
 

𝜏 = 𝐵𝑚 

(4.4a) 

(4.4b) 

(4.4c) 
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where 𝐶𝑐 represents the size-dependent Cunningham’s slip correction factor, 𝜌0 is the 

reference density (1000 kg m−3), 𝐷𝑎𝑒 is the aerodynamic diameter of the particle, 𝜇 is 

the viscosity of the carrier gas in the instrumentation, 𝜏 is the particle relaxation time, 

and 𝐵 is the particle mobility 

Solving the system expressed as Eq. (4.4) for a measured size distribution provides 

the mass distribution of the aerosol. Fitting the Eq. (4.3) to the mass vs. mobility 

diameter distribution generates empirical parameters, which can then be used in Eq. 

(4.2) to obtain the distribution of the particle effective density. The effective density is 

important because it explicitly accounts for the void fraction and therefore accounts for 

irregularities present in the particle shape and morphology (Tavakoli and Olfert, 2014). 

BC and BC-like species may be fractal, and so their effective density can be especially 

useful to observe the deviation from their bulk density. 

 

4.4.1.2 Dynamic Shape Factor 

The dynamic shape factor (𝜒) of a particle quantifies its non-sphericity. The effect 

of non-sphericity of the particle is represented using the drag force. 𝜒 is expressed as 

follows, 

𝜒 =
𝐹𝐷

𝐹𝐷,𝑣𝑒
          (4.5) 

where 𝐹𝐷 is the drag force on the non-spherical particle, and 𝐹𝐷,𝑣𝑒 is the drag force on 

an equivalent spherical particle with the density equal to that of the original particle. 

The spherical particle is referred to as a volume equivalent sphere, and the 
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corresponding size is the volume equivalent diameter (𝐷𝑣𝑒). Size-resolved 𝜒 and the 

respective 𝐷𝑣𝑒 of any given species can be determined using the measured electrical 

mobility and aerodynamic diameters by solving the following pair of non-linear 

equations, 

 

𝐶𝑐(𝐷𝑣𝑒)

𝜒𝐷𝑣𝑒
=
𝐶𝑐(𝐷𝑚𝑜)

𝐷𝑚𝑜
 

𝐷𝑣𝑒 = 𝐷𝑎𝑒√
𝜒𝜌0𝐶𝑐(𝐷𝑎𝑒)

𝜌𝑝𝐶𝑐(𝐷𝑣𝑒)
 

(4.6a) 

(4.6b) 

 

ρp is density of the density of particle inclusive of voids and is therefore equivalent to 

the size-resolved ρeff of the particles. The known measured relative distributions of 

electrical mobility and aerodynamic diameters are used to solve the coupled system 

represented by Eq. (4.6) and obtain the distributions for the volume equivalent diameter 

and dynamic shape factor. 

 

4.4.2 Frenkel-Halsey-Hill Adsorption Theory (FHH-AT) 

The FHH-AT model describes droplet formation and growth via the adsorption of 

water on particle surface. FHH-AT combines the FHH isotherm with the curvature 

effect (Kelvin term) to determine the water vapor over the droplet surface 

(supersaturation) during water uptake (Sorjamaa and Laaksonen, 2007). The FHH 

isotherm defines the water activity through adsorption of aqueous multilayers as a 

function of surface coverage (the number of adsorbed aqueous monolayers on the 

particle surface; 𝜃). The FHH isotherm is mathematically expressed as follows, 
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𝑎𝑤,𝐹𝐻𝐻 = exp(−𝐴𝐹𝐻𝐻𝜃
−𝐵𝐹𝐻𝐻)      (4.7) 

The 2 empirical parameters (𝐴𝐹𝐻𝐻, 𝐵𝐹𝐻𝐻) account for the surface and bulk 

contributions to droplet growth. 𝐴𝐹𝐻𝐻 parameterizes the interactions between particle 

surface and the first adsorbed aqueous monolayer. 𝐵𝐹𝐻𝐻 parameterizes the interactions 

between particle surface and the subsequently adsorbed aqueous monolayers. 𝐴𝐹𝐻𝐻 and 

𝐵𝐹𝐻𝐻 respectively describe the amount of adsorbed water on particle surface as well as 

the radial distance away from the particle up to which the attractive forces can cause 

the adsorption. In Eq. (4.7), 𝜃 =
𝐷𝑝−𝐷𝑐𝑜𝑟𝑒

2𝐷𝑤
, where 𝐷𝑝 is the droplet diameter, 𝐷𝑐𝑜𝑟𝑒 is 

the diameter of the insoluble core, and 𝐷𝑤 is the diameter of a water molecule and has 

a value of 0.275 nm. Combining Eq. (4.7) with the curvature effect (Kelvin term), the 

FHH-AT can be expressed as, 

𝑆 = 𝑎𝑤,𝐹𝐻𝐻 exp (
4𝜎𝑤𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)       (4.8) 

where 𝜎𝑤, 𝑀𝑤 and 𝜌𝑤 are the surface tension, molecular weight, and density of water, 

respectively. 𝑅 is the ideal gas constant and 𝑇 is the temperature. It is important to note 

that the 2 empirical parameters are species dependent and can be determined by 

applying least square minimization on the maxima of FHH-AT equilibrium curve fitted 

to the experimental CCN activity measurements. 

The FHH-AT has previously been modified to incorporate different physical 

properties of aerosol particles. One such modification is based on the inclusion of the 

contact angle of the adsorbed aqueous layers on the particle surface (Laaksonen et al., 

2016, 2020). Another modification expands the FHH-AT framework by including the 
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aerosol solubility (Gohil et al., 2022), resulting in the development of a hybrid activity 

model (HAM). 

 

4.4.3 Hybrid Activity Model (HAM) 

The hybrid activity model (HAM) incorporates solubility partitioning (Riipinen et 

al., 2015) with FHH-AT. The solubility partitioning transforms the ideal Raoult’s law 

such that it includes the solubility of the compound (or, compounds) in the aerosol 

composition. With this approach, the effect of solid, undissolved core on droplet 

activation and water uptake can be included towards water uptake along with the 

contribution from dissolved particle within the aqueous phase. Moreover, the FHH 

empirical parameters (𝐴𝐹𝐻𝐻 , 𝐵𝐹𝐻𝐻) for each sample are the same computed by fitting 

the FHH-AT to the CCN activation data. The mathematical formulation of HAM is as 

follows, 

𝑆 = 𝑎𝑤,𝐻𝐴𝑀 exp (
4𝜎𝑤𝑀𝑤

𝑅𝑇𝜌𝑤𝐷𝑝
)       (4.9) 

where 𝑎𝑤,𝐻𝐴𝑀 = 𝑎𝑤,𝑅𝑎𝑜𝑢𝑙𝑡 ⋅ 𝑎𝑤,𝐹𝐻𝐻. 𝑎𝑤,𝑅𝑎𝑜𝑢𝑙𝑡 is the Raoult’s law term which is 

defined as 𝛾𝑤𝑋𝑤, where 𝛾𝑤 is the activity coefficient and 𝑋𝑤 is the mole fraction of 

water in the aqueous phase of the droplet. Considering the droplet to be infinitely dilute, 

𝛾𝑤 ≈ 1 and 𝑎𝑤,𝑅𝑎𝑜𝑢𝑙𝑡 can then be approximated as 𝑋𝑤 =
𝑛𝑤

𝑛𝑤+𝑛𝑠
, where 𝑛𝑤 are the 

number of moles of water and 𝑛𝑠 are the total number of moles of the solute(s) in the 

aqueous phase of the droplet. 



 

 

122 

 

Physically, the HAM water activity describes the droplet growth and water uptake 

process in 3 stages. Stage 1 is the start of the water uptake by adsorption on the particle 

surface followed by minute droplet growth. Since there in an infinitesimal amount of 

solute dissolved in the aqueous phase in stage 1, 𝑋𝑤 ≈ 1 and therefore 𝑎𝑤,𝐻𝐴𝑀 ≈

𝑎𝑤,𝐹𝐻𝐻. In stage 2, a finite amount of solute continues to dissolve into the aqueous 

phase. Therefore, 𝑎𝑤,𝐻𝐴𝑀 = 𝑋𝑤 ⋅ 𝑎𝑤,𝐹𝐻𝐻 in stage 2. 𝑋𝑤 and 𝑎𝑤,𝐹𝐻𝐻 vary continuously 

during the droplet growth in stage 2 and are estimated using the bulk solubilities of 

each compound with the instantaneous droplet diameter and solute mass dissolved 

(Gohil et al., 2022; Riipinen et al., 2015). Stage 3 begins when the entire mass of the 

initial solute particle has dissolved into the aqueous phase with no undissolved solute 

left. In stage 3, the 𝑎𝑤,𝐻𝐴𝑀 = 𝑋𝑤 (Raoult’s law). Additional details and description of 

the formulation of HAM is provided in (Gohil et al., 2022). 

 

4.4.4 Hygroscopicity Parameterization from FHH-AT and HAM 

The single hygroscopicity parameter is denoted by 𝜅 and is mathematically 

formulated by relating it to the water activity of the CCN activity model. The general 

formulation for 𝜅 was provided by (Petters and Kreidenweis, 2007) and is expressed as 

follows, 

1

𝑎𝑤
= 1 + 𝜅

𝑉𝑠

𝑉𝑤
          (4.10) 

where 𝑎𝑤 is the water activity term, 𝑉𝑠 is the volume of the dry particle, and 𝑉𝑤 is the 

volume of water in the aqueous phase. The 𝜅 parameter derived from a CCN model can 
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be parameterized by substituting the 𝑎𝑤 in Eq. (4.10). Following this procedure, the 

experimental and theoretical single hygroscopicity parameters for FHH-AT and HAM 

have been previously developed. The details of the hygroscopicity parameterizations 

based on FHH-AT and HAM (𝜅𝐹𝐻𝐻 and 𝜅𝐻𝐴𝑀, respectively) have been provided by 

Mao et al., (2022) and Gohil et al., (2022), respectively. 

 

4.5 Results 

 

Figure 24. TEM images of different sized particles of pure BC (A-I, AII) and BC mixed 

with Phthalic (B-I, B-II), Isophthalic (C-I, C-II) and Terephthalic (D-I, D-II) acid, 

respectively. 

The particles generated from BC and BC mixtures in this study have a range of 

non-uniform sizes and shapes (Figure 24). TEM images show that small BC particles 

can be spherical however can agglomerate to form larger sized particles. BC mixtures 

with aromatic acids can modify the shape of these particles. Thus size-resolved 

effective density and dynamic shape factor of pure and mixed BC particles must be 

calculated prior to CCN analysis. 
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4.5.1 Particle Shape and Effective Density for Pure and Mixed BC 

The dry electrical mobility diameters (𝐷𝑚𝑜) of the pure and mixed BC samples 

were converted to their corresponding volume equivalent diameters (𝐷𝑣𝑒) using in-situ 

measurements. The size-resolved effective density and shape factor of the particles was 

computed following the method described in Section 3.1.1 and 3.1.2, respectively. The 

effective density and shape factor of the samples are shown in Figure 25 (a) and (b). 

Fig. 25(c) shows the 𝐷𝑣𝑒 of the pure and mixed BC particles plotted against the 

corresponding 𝐷𝑚𝑜. The black dashed line in Fig. 25(a) signifies the mean bulk density 

of the pure BC (Vulcan® XC72R) particles. The effective density of the particles 

increases towards the theoretical bulk density with an increasing 𝐷𝑚𝑜. The significantly 

low effective density with respect to the bulk density of pure BC at low 𝐷𝑚𝑜 (towards 

the left end of Fig. 25a) suggests that smaller particles could be existing in the form of 

agglomerates. Moreover, the agglomeration of pure and mixed BC particles likely 

decreased with an increase in the 𝐷𝑚𝑜 which can be understood from the increase in 

the size-resolved effective density. 

The likely reduction in fractal-like structures is also evident from the decrease in 

the size-resolved shape factor of the particles with an increasing 𝐷𝑚𝑜. For pure BC, the 

lowest value of shape factor was measured to be ~1.2 for a 𝐷𝑚𝑜 = 260nm. Among the 

mixed BC particles, BC-PTA particles were measured to be most spherical, with a 

maximum shape factor of ~1.15 for 𝐷𝑚𝑜 ≈ 40nm, and minimum shape factor of ~1.0 

for 𝐷𝑚𝑜 > 135nm. BC-TPTA particles were measured to be the non-spherical out of 

the 3 types of BC mixtures with a maximum shape factor of 1.21 for 𝐷𝑚𝑜 = 45nm, 

and minimum shape factor of 1.06 even at 𝐷𝑚𝑜 > 220nm. The size-resolved shape 



 

 

125 

 

factor of BC-IPTA particles were found in the intermediate range between the shape 

factor of BC-PTA and BC-TPTA particles. In Eq. 4.6(a), it is observed that the 

Cunningham’s slip correction factors for the 𝐷𝑚𝑜 and 𝐷𝑣𝑒 have small variabilities 

related to the respective variables. Therefore, an approximate linear relationship can be 

assumed between the 𝐷𝑣𝑒 and 𝐷𝑚𝑜. The straight lines fitted to the 𝐷𝑣𝑒 vs. 𝐷𝑚𝑜 for the 

pure and mixed BC samples are also shown in Fig. 25(c). These straight-line fits were 

used to determine the 𝐷𝑣𝑒 for the CCN analysis with respect to every 𝐷𝑚𝑜 at which the 

CCN measurements were performed. 

 

Figure 25. Size-resolved effective density (a), size-resolved dynamic shape factor (b) 

and size-resolved volume equivalent diameter (c) with respect to electrical mobility 

diameter are shown. The measurements were performed with respect to electrical 

mobility diameters in range of 50nm and 250nm. The estimated volume equivalent 

diameter vs. electrical mobility diameter for pure and mixed BC samples were used to 

generate linear fits. 

 

4.5.2 CCN Activity of Pure and Internally Mixed BC 

CCN measurements of pure and mixed BC particles were performed following the 

procedure described in Section 2.2. The CCN activity data of pure and mixed BC are 

summarized in detail in the appendix (Section 4A.2). For each sample, number 

concentrations were measured with respect to varying supersaturations in the CCNC 
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while the dry particle diameters were held fixed. Figure 4A.1 shows the activation data 

versus supersaturation data for pure and mixed BC samples. The sigmoidal functions 

fitted to the activation ratio is also shown. The critical supersaturations for each sample 

determined from the sigmoidal fits are summarized alongside the corresponding dry 

diameter. It is important to note that the sigmoidal fits for mixed BC samples 

corresponding to each dry particle diameter consisted of a single plateau. The single 

plateau is indicative of a homogenous particle (Vu et al., 2019) and implies that BC-

AAA mixtures can be treated as internal mixtures for subsequent CCN analysis. The 

assumption of internally mixed aerosol mixtures is also supported by Energy 

Dispersive X-ray (EDX) analysis results (Figure 26).  Fig. 26 shows mixtures of BC 

with Phthalic, isophthalic, and terephthalic acid species and the elemental mapping for 

Carbon and Oxygen. Images show the homogeneous distribution of aromatic species 

throughout the mixed particle. 

The primary CCN analysis was done using the FHH-AT. The FHH-AT fits and 

CCN data of pure BC and mixed BC-AAA species were compared with the pure AAA 

samples (Figure 27). Fig. 27 shows the 𝐷𝑣𝑒 of the dry particles with respect to critical 

supersaturations. The empirically determined FHH parameters for pure and mixed BC 

samples, with the FHH parameters of the pure AAA samples that were determined in 

Gohil et al., (2022) are summarized in Table 2. Mixed BC aerosol are less active than 

their pure aromatic acid CCN activity. Moreover, the CCN activity of the mixtures 

decrease in the same order as that of the corresponding pure AAAs. It is interesting to 

note that the slope of the FHH-AT fits of mixed samples diverged away from the FHH-

AT fits of the corresponding AAA with an increasing 𝐷𝑣𝑒. 
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Figure 26. Images show dark field images of BC mixtures with Phthalic (A-I), 

Isophthalic (B-I) and Terephthalic acid (C-I). Images II and III for each mixture are 

EDXs images showing relative distribution of carbon and oxygen respectively for each 

mixture. 

The changing slope of 𝑆𝑐 vs. 𝐷𝑑𝑟𝑦 of the BC mixtures with respect to their 

corresponding pure AAA can be used to understand the relative importance of the 

mixture components on the overall CCN activity of the mixture in consideration. The 

FHH-AT fits at relatively smaller particle sizes for each mixture converge towards the 

FHH-AT fits of the corresponding pure AAA. This implies that the CCN activity of the 

given BC mixture is predominantly affected by the AAA present in the mixture. In 

other words, the particle morphology and composition of a given BC mixture is 

predominantly affected by the corresponding AAA at smaller 𝐷𝑣𝑒. Conversely, the 

FHH-AT fits of a given BC mixture noticeably diverges away from the FHH-AT fit of 

the corresponding pure AAA. This implies that the morphology and composition, and 

hence the CCN activity of the mixture particles is affected by BC at larger 𝐷𝑣𝑒. 
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Figure 27. 𝐷𝑑𝑟𝑦 vs. 𝑆𝑐 pairs derived from CCN measurements of pure (solid circles) 

and mixed BC (open triangles) aerosol is shown. The CCN measurements of the pure 

AAA samples (from Gohil et al. 2022) are also plotted. The FHH-AT fits are depicted 

using solid and dashed lines for pure and mixed samples, respectively. The particle dry 

diameter refers to the calculated volume equivalent diameters. 

 

 

 

 

Table 6. FHH empirical parameters and 𝑅2 scores for pure and mixed aerosol. 

Sample 𝑨𝑭𝑯𝑯
𝐜  𝑩𝑭𝑯𝑯

𝐜  𝑹𝑭𝑯𝑯
𝟐  𝑹𝑯𝑨𝑴

𝟐  

Black Carbon (Vulcan® 

XC72R) 
7.54 2.26 0.957 0.899 

Phthalic acid (PTA) 0.41 0.76 0.892 0.986 

Isophthalic acid (IPTA) 0.39 0.87 0.936 0.967 

Terephthalic acid (TPTA) 0.16 0.84 0.944 0.989 

1:1 PTA-to-BC 1.37 1.11 0.875 0.991 

1:1 IPTA-to-BC 0.23 0.87 0.908 0.954 

1:1 TPTA-to-BC 0.27 1.04 0.934 0.943 



 

 

129 

 

Along with FHH-AT, the application of HAM was also studied for the pure and 

mixed BC aerosol (Figure 28). 2 sets of analysis were performed using HAM with 

different assumptions for the aqueous solubility of BC. For the CCN activity analysis 

with HAM, the aqueous solubility of BC was assumed to be 10−6 g/g water. Similar to 

FHH-AT, HAM fittings for pure and mixed BC aerosol were also compared to those 

for pure AAAs. Generally, the FHH-AT and HAM generate similar CCN activity 

predictions for pure and mixed BC aerosol under either of the BC aqueous solubility 

assumption. The 𝑅2 goodness of fit scores (summarized in Table 3) for mixed aerosol 

all marginally increase for HAM; this is likely due to the explicit treatment of the AAA 

mixed with BC. However, there are subtle differences between the CCN activity 

predictions of FHH-AT and HAM for pure BC (𝑅𝐹𝐻𝐻
2 = 0.957 vs. 𝑅𝐻𝐴𝑀

2 = 0.899). 

These differences could be the consequences of the explicit treatment of aqueous 

solubility of BC and AAA in the HAM framework. FHH-AT fundamentally assumes 

the particles to be completely water insoluble and therefore the CCN activity 

predictions based on FHH-AT are independent of the considerations related to the 

water solubility of the compounds. On the other hand, HAM-based CCN activity 

predictions can vary depending on the treatment of water solubility. Pure BC is 

assumed to have a non-zero aqueous solubility which results in a non-zero contribution 

from solubility partitioning in HAM and thus a slight underprediction of CCN activity 

as compared to FHH-AT. 
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Figure 28. 𝐷𝑑𝑟𝑦 vs. 𝑆𝑐 pairs derived using the CCN measurements are shown as in Fig. 

27. HAM fits for pure and mixed BC are depicted as solid and dashed lines, 

respectively. The HAM fits for pure AAA are also shown as solid lines using the same 

colors as their corresponding mixture with BC. The HAM fits for all 7 sets of 𝐷𝑑𝑟𝑦 −

𝑆𝑐 pairs used the FHH empirical parameters determined by fitting FHH-AT across the 

measured data (Table 2); the same set of empirical parameters that were used to fit 

FHH-AT fitting in Fig. 27. The 𝑅2 correlation values are also presented in Table 3. A 

slight underprediction in the CCN activity of pure BC was observed with HAM 

compared to FHH-AT (𝑅2 of 0.899 and 0.957, respectively). This underprediction can 

likely be a result of the explicit treatment of BC solubility (10−6 g/g water) in HAM. 
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Figure 29. Hygroscopicity parameterization from HAM (𝜅𝐻𝐴𝑀) is shown for pure 

(closed circles) and mixed BC with pure AAAs (open triangles). The individual points 

correspond to 𝜅𝐻𝐴𝑀 parameterized using experimental data, and the fitted curves 

correspond to the 𝐷𝑑𝑟𝑦-dependent theoretical (or, simplified) 𝜅𝐻𝐴𝑀 as described in 

detail in Gohil et al. (2022). Notable size-dependent trends in the hygroscopicity are 

observed for all studied aerosols. Furthermore, the size-dependent decrease in the 

hygroscopicity of BC-PTA is much more prominent than that in the hygroscopicity of 

BC-IPTA and BC-TPTA as compared to their pure AAA counterparts. 

 

The hygroscopicity of the pure and mixed BC aerosol was also parameterized from 

HAM (𝜅𝐻𝐴𝑀) and compared to the 𝜅𝐻𝐴𝑀 of pure AAAs (Figure 29). It was noted that 

𝜅𝐻𝐴𝑀 of mixed BC aerosol declined sharply compared to 𝜅𝐻𝐴𝑀 of the corresponding 

pure AAA. This sharp decline in the hygroscopicity of the mixture can be attributed to 

an increased influence of BC on the overall water uptake behavior of the BC mixtures. 

Moreover, 𝜅𝐻𝐴𝑀 of BC mixtures are especially low compared to the 𝜅𝐻𝐴𝑀 of the 
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corresponding pure AAA at larger 𝐷𝑑𝑟𝑦. These disparities in the 𝜅𝐻𝐴𝑀 at larger sizes 

between BC mixtures and their corresponding AAAs further suggests a strong 

influence of BC on the overall CCN activity of the larger sized mixture particles. As 

with the 𝑆𝑐 vs 𝐷𝑑𝑟𝑦 data, subtle underestimations can be observed in the size-resolved 

BC 𝜅𝐻𝐴𝑀. These slight underprediction is also associated with the explicit 

implementation of BC solubility (10−6 g/g water) in the 𝜅𝐻𝐴𝑀 parameterization. 

 

4.6 Summary and Implications 

This work presents the analysis of the water uptake of pure black carbon (BC) and 

BC mixed with low-water solubility organic compounds. Because BC is known to show 

changes in mixing state across size distributions, CCN measurements were performed 

for constant size particles selected in stepping mode. However, at a constant particle 

size, TEM and CCN analysis suggested that the mixtures presented here had 

components of carbon and oxidized species uniformly distributed throughout the 

particles. Therefore, BC mixtures in this work were treated as internal mixtures 

implying that BC with other carbonaceous aerosol has the propensity to form 

homogenous internal mixtures. 

The dynamic shape factor and effective density were also estimated for pure and 

mixed BC aerosol with respect to electrical mobility diameters. For all aerosol, the 

effective density was found to increase, and the shape factor was found to decrease 

with respect to size. It was inferred that these size-resolved trends were a consequence 

of the agglomeration of BC particles. It is to be noted that the TEM of BC mixtures 

also show that larger particles are more spherical than the smaller ones. However, TEM 
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of the pure BC particles suggest that smaller particles are more compact and spherical 

compared to particles with larger volume equivalent diameters that exist as 

agglomerated fractal-like structures. Further examination of changes in particle shape 

and density is needed to understand the possible causes for large deviations from 

sphericity at smaller sizes for pure BC particles. It should be noted that the volume 

equivalent diameter values derived using the shape factor and effective density data are 

similar to their corresponding electrical mobility diameter. Nonetheless, the volume 

equivalent diameters are a better representation of particle sizes as compared to the 

electrical mobility diameters (Gohil and Asa-Awuku, 2022). The utility of volume 

equivalent diameters is especially high for CCN analysis of aerosol using droplet 

growth models that show strong particle size dependence. Furthermore, hygroscopicity 

parameterizations based on FHH-AT or HAM also have explicit dependence on particle 

sizes. Therefore, volume equivalent diameters instead of the corresponding electrical 

or aerodynamic mobility diameters can result in hygroscopicity parameterization with 

a high confidence. 

The CCN activity analysis of the pure and internally mixed (or, homogenous) BC 

was performed using the FHH-AT and HAM frameworks. FHH-AT is a widely known 

CCN activity model that describes water uptake through adsorption of water on particle 

surface. HAM is a recently developed framework that combines the FHH isotherm with 

the dissolved fraction of the particle accounting for the solubility limit of the 

compound. An explicit treatment of the solubility becomes significant for compounds 

that are sparingly soluble or effectively insoluble in water, and therefore HAM is 

particularly useful for the CCN analysis of such compounds. The utility of HAM is 
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notable through its application to the experimental CCN data of pure and mixed BC 

aerosol. The CCN activity for internal mixtures predicted using HAM is comparable to 

that predicted using FHH-AT (Table 2, 𝑅2 scores for BC internal mixtures). The CCN 

activity prediction of pure BC using HAM is only marginally different from that 

predicted using FHH-AT on account for a finite water solubility consideration for BC 

in HAM (Table 2, 𝑅2 scores for pure BC). Since there is no significant difference 

between FHH-AT and HAM predictions, HAM should be generally used for CCN 

analysis since HAM explicitly accounts for the effect of the bulk aqueous solubility on 

the overall water uptake behavior of any given chemical species. 

The utility of HAM for the CCN analysis of low-water solubility species such as 

BC can also be understood using their single hygroscopicity parameter (𝜅𝐻𝐴𝑀). The 

experimental hygroscopicity of the pure and mixed BC species based on the HAM 

framework show high agreement with the theoretical estimates. The very good 

agreement between theoretical and experimental hygroscopicity suggests that explicit 

treatment of aqueous solubility for CCN activity analysis is important. Furthermore, 

HAM suggests a size-dependence associated with the hygroscopicity; 𝜅𝐻𝐴𝑀 decreases 

with an increase in the particle sizes. It is important to note that the size-dependent 

decline in the 𝜅𝐻𝐴𝑀 of the BC mixtures is more significant than the decline in the 𝜅𝐻𝐴𝑀 

of their corresponding pure aromatic acids. The comparison between the 

aforementioned size-dependent trends is evident from the theoretical 𝜅𝐻𝐴𝑀 fits in Fig. 

29. Additionally, the size-dependent experimental hygroscopicity of pure BC is slightly 

higher than the simplified hygroscopicity. This is likely analogous to the 
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underprediction in the HAM-based CCN activity estimates of pure BC when compared 

to the experimental measurements. 

HAM was first developed for the CCN activity analysis and hygroscopicity 

parameterization of the atmospherically relevant aerosols that possess low water 

solubility. Previously, HAM had been applied on the controlled laboratory 

measurements of specific organic compounds with aqueous solubility varying over a 

range of 2-3 orders of magnitude. This work expands upon the applicability of HAM 

for the BC species observed in the atmosphere using agglomerated pure and mixed BC 

particles as a proxy. From here on, HAM can potentially be used for CCN activity 

analysis and hygroscopicity parameterization of other inorganic and organic species. 

This is valuable because HAM may be used for representing the hygroscopicity of 

organic and inorganic aerosol modes in Global Climate Models (GCMs), henceforth 

potentially improving the forcing due to aerosol indirect effect. 
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Appendix 4A 

Summary: This supporting document contains the CCNC supersaturation calibration 

data, the description of effective density and shape factor calculations and conversion 

to volume equivalent sizes, and CCN measurements for pure and internally mixed BC-

AAA samples. 

 

4A.1 CCN counter (CCNC) calibration 

(NH4)2SO4 aerosol was passed through the CCNC column to calibrate the 

supersaturation. The set supersaturation inside the CCNC column depends on the axial 

temperature gradient for specified flow and pressure gradient. Calibration was 

performed by following the procedure described by Rose et al. (2008). Table 4A.1 

provides a summary of the set and calibrated supersaturation datapoints that were used 

in this study for the CCN measurements of pure and mixed BC species. 

Table 4A.1. Sample CCN Counter (CCNC) calibration data using (NH4)2SO4 

Supersaturation Setting (%) 
Calibrated 

Supersaturation (%) 

Critical Dry 

Diameter (nm) 

𝟎. 𝟐 0.210 76.4 ± 1.2 

𝟎. 𝟒 0.407 49.4 ± 0.86 

𝟎. 𝟔 0.578 39.2 ± 1.14 

𝟎. 𝟖 0.783 32.1 ± 0.88 

𝟏. 𝟎 0.94 28.5 ± 0.61 

𝟏. 𝟐 1.094 25.8 ± 0.85 

𝟏. 𝟒 1.334 22.6 ± 0.53 
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Figure 4A.1. CCNC calibration curve from the activation data provided in Table S1. 

This curve was used to calibrate the CCNC supersaturations at which AAA data was 

collected. 

 

4A.2 CCN Measurement Data for Pure and Mixed BC species 

 
Figure 4A.2. Schematic of the step-sizing apparatus used to collect number 

concentration measurements of pure and mixed BC samples. 
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Figure 4A.3. Activation ratio and the corresponding sigmoidal fits for the pure and 

mixed BC samples. The measurements were performed with respect to the varying 

CCNC supersaturations for fixed electrical mobility diameters using the setup depicted 

in Fig. 4A.2. 
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Chapter 5:  Application of a Size-Dependent Hygroscopicity 

Framework for Simulating Aerosol Water Uptake in a Large-

scale Climate Model 

 

5.1 Abstract 

The indirect effect of aerosols on clouds, including that due to organic aerosols, is 

a significant source of uncertainties in climate modeling. One of the uncertainties in 

understanding aerosol-cloud interaction is systematic misrepresentation of the water 

uptake behavior (hygroscopicity) of mineral dust and carbonaceous aerosols – 

including primary organic matter (POM), secondary organic aerosols (SOAs), black 

carbon (BC). The hygroscopicity (denoted by κ) of aerosol species in large-scale 

models, such as the Community Atmosphere Model (CAM), are prescribed based on 

traditional Köhler droplet activation theory. Traditional Köhler theory (KT) assumes 

aerosols to be infinitely soluble in water and KT-based κ-values can be overestimated 

for partially water soluble and insoluble organic aerosols. These uncertainties can then 

translate to predicted aerosol-cloud interactions. In this work, we implemented a new 

hygroscopicity parameterization that accounts for partially soluble and water-insoluble 

aerosol, the Hybrid Activity Model (HAM) within CAM6. The HAM 𝜅 accounts for a 

wide range of low aqueous solubility organic aerosols by combining adsorption-based 

water uptake with water solubility as parameterized using the oxygen-to-carbon (O:C) 

ratio of the species. We investigate the changes in CCN and droplet properties from 

HAM-based hygroscopicity parameterization using sensitivity tests as well as the full 

3D climate simulation. We also describe and analyze the resulting impacts on clouds 
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and climate. Furthermore, the fully developed HAM 𝜅 is further simplified to a power 

law function of particle size. Significant increase in atmospheric aerosol burdens and 

decrease in the CCN concentrations were observed after implementing the HAM 𝜅 in 

CAM6. Seasonal mean droplet sizes, cloud fraction and aerosol optical depth using 

HAM 𝜅 had better agreement with the observed seasonal means (within ±𝜎). This work 

is the first to provide a computationally efficient treatment of size-dependent varied 

organic aerosol chemistry for cloud droplet formation. The results suggest that 

accounting for complex aerosol chemistry for hygroscopicity parameterization can 

improve estimates of physical and radiative properties of aerosols and clouds. An 

extensive hygroscopicity treatment of atmospherically relevant aerosols may now be 

considered in other global and regional climate models. This work shows that the 

hybrid hygroscopicity parameter developed in Chapter 3 can be implemented within a 

global climate model to modify the computation of cloud responses and the overall 

aerosol indirect forcing. 

 

5.2 Background 

Aerosol indirect effect (AIE) has been identified as the most significant source of 

uncertainty in the overall cloud forcing (IPCC 2007). Aerosols can act Cloud 

Condensation Nuclei (CCN) resulting in cloud droplet formation, which can affect both 

the radiative properties of clouds (Twomey, 1977), as well as cloud lifetime and 

precipitation (Albrecht, 1989). Several studies show various strategies to reduce the 

uncertainty in AIE, therefore improving the estimates pertaining to the cloud radiative 

forcing within climate models. These strategies include modification of the CCN 
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activation schemes, inclusion of complex mechanisms for water uptake and droplet 

formation, and modification of aerosol properties (e.g., Abdul‐Razzak & Ghan, 2000; 

Fountoukis, 2005; Morales Betancourt & Nenes, 2014; Rothenberg & Wang, 2016; 

Topping et al., 2013). The water uptake behavior of any species is quantified by the 

hygroscopicity of the given type of aerosol. The hygroscopicity parameter (denoted by 

𝜅) of an aerosol population determines droplet formation (Petters and Kreidenweis, 

2007) by controlling the available CCN concentration, thereby affecting the resulting 

AIE. Therefore, it is important to understand the physicochemical properties that can 

vary aerosol 𝜅 to explain the uncertainties their water uptake behavior and subsequently 

in their AIE.  

Previous studies have shown that predictions of AIE, cloud properties and radiative 

forcing can have a strong dependence on the aerosol hygroscopicity (denoted by 𝜅). 

These sensitivity studies show that modifying 𝜅 in the large-scale Global Climate 

Models (GCMs) can result in the variations of several variables. Liu & Wang, (2010) 

performed CAM5 sensitivity runs by modifying the 𝜅 of organic aerosols and found 

that the uncertainty in the 𝜅 may cause an uncertainty in the aerosol indirect radiative 

forcing by a factor of 0.33. Betancourt et al., (2014) performed adjoint sensitivity 

analysis using CAM5 and found that a unit uncertainty in 𝜅 can cause uncertainties in 

the droplet concentration by a factor of 2 to 4. Other similar sensitivity studies include 

the use of chemical transport models for analyzing the effect of aerosol 𝜅 on the aerosol 

indirect effect (Karydis et al., 2011, 2012; Latimer and Martin, 2019). Aerosol 𝜅 has 

also been shown to cause variability in the aerosol atmospheric burdens (Liu et al., 

2016). Rothenberg & Wang, (2016) showed that there can be up to a two-fold change 
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in the estimated ambient supersaturation from a unit change in 𝜅 depending on the CCN 

activation parameterization scheme. Recent studies have also demonstrated the 𝜅 

dependence on relative humidity, thereby suggesting 𝜅 parameterization in climate 

models (Valenzuela et al., 2018; Zhao et al., 2022). Burrows et al., (2022) introduced 

a new aerosol mode (marine organic aerosol) with a 𝜅 = 0.1 in the Energy Exascale 

Earth System Model and found significant increments in the seasonal and annual cloud 

radiative forcing. In general, an improvement in the representation of 𝜅 is crucial for 

improving the estimations of AIE and radiative forcing. 

The uncertainty in the 𝜅 of ambient aerosols, the CCN activity, and therefore the 

AIE is strongly linked to the presence of organic species in the atmosphere (Betancourt 

et al., 2014; Karydis et al., 2012; Liu & Wang, 2010). The uncertainties in the water 

uptake and therefore the indirect forcing due to organic aerosols are attributed to several 

reasons. First, there is a large compositional variability in the organic aerosols mass 

burden; organic aerosols can make up anywhere between 20%-90% for a given regional 

aerosol burden (Zhang et al., 2007). These compositional variances can significantly 

vary the overall 𝜅 of ambient particles. Organic aerosols also consist of compounds that 

are directly emitted into the atmosphere (primary organic matter; POM) and their 

oxidation products (secondary organic aerosol; SOA). The different organic aerosol 

sources can also result in notably different physical and chemical properties (Carrico 

et al., 2008; Petters et al., 2009). Consequently, more comprehensive, and detailed 

hygroscopicity parameterizations of organic aerosols are necessary to reduce the 

uncertainties in AIE. 
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Currently, the AIE estimations from GCMs use prescribed 𝜅 values for organic and 

inorganic aerosol types (Liu et al., 2016). These prescribed 𝜅 values for different 

aerosol types are based on the droplet growth measurements under sub- and 

supersaturated conditions for different types of atmospherically relevant aerosols (e.g., 

Burrows et al., 2022; Liu & Wang, 2010). For certain aerosols, these prescribed values 

can also be derived from their molar volume which is based on the Raoult’s law in 

Köhler Theory. The hygroscopicity parameterization using Raoult’s law is size-

independent and provides a constant 𝜅 for the associated aerosol species across the 

entire particle distribution. Whereas 𝜅 of the particles containing water-soluble 

inorganic species can be quantified with high certainty, significant variability in the 𝜅 

of the organic species can be observed with respect to their chemical compositions and 

mixing states. Moreover, organic and inorganic species interact with each other in the 

atmosphere which also results in significant modifications in the aerosol 𝜅 (e.g, Asa-

Awuku et al., 2009; Bond et al., 2013; Dalirian et al., 2018; Fofie et al., 2018; Malek 

et al., 2022; Padró et al., 2012; Rastak et al., 2017). Generally, 𝜅 of highly hygroscopic 

species can take up values ≥ 1, whereas effectively non-hygroscopic species have a 𝜅 

of ∼ 0. It has been found that the 𝜅 of organic aerosols can vary from 0 (Kanakidou et 

al., 2005), e.g., black carbon and other primary organic compounds from biomass 

burning, to highly hygroscopic, e.g., amino acids and oligomers (Marsh et al., 2017; 

Dawson et al., 2020). Additionally, the CCN activity and 𝜅 of aerosols, can depend on 

various physicochemical properties (e.g., Kucinski et al., 2021; Laaksonen et al., 2016, 

2020; P. Liu et al., 2018a; Malek et al., 2022; Mao et al., 2021; Petters & Kreidenweis, 

2007, 2008; Schill et al., 2015; Sullivan et al., 2009) that may not be described by 
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Raoult’s law. Therefore, more comprehensive CCN frameworks are required to 

parameterize their 𝜅. 

It has been found that explicit treatment of aqueous solubility can be made for 

improving the 𝜅 parameterization of organic compounds. Petters & Kreidenweis, 

(2008) showed that the use of bulk solubility can generate a more accurate 𝜅 of pure as 

well as mixed aerosol particles. The same concept has been implemented by other 

studies to understand the CCN activity and water uptake of several low water-solubility 

species like mineral dust (Sullivan et al., 2009). This solubility-inclusive 

parameterization accounts for the effect of variability in droplet size on 𝜅. Mao et al., 

(2022) recently showed that adsorption-based CCN models (such as the Frenkel-

Halsey-Hill Adsorption Theory; FHH-AT) can also be potentially used for 

parameterizing aerosol 𝜅. They employed the methodology from Petters & 

Kreidenweis, (2007) using the water activity of FHH-AT to derive 𝜅 for effectively 

water-insoluble organic and polymeric species. Furthermore, Gohil et al., (2022) 

parameterized the aerosol 𝜅 using a hybrid CCN activity framework (called the hybrid 

activity model; HAM). HAM combines the adsorption isotherm from the FHH-AT with 

solubility partitioning to describe droplet growth and parameterize 𝜅. It is worth noting 

that the 𝜅 parameterizations based on FHH-AT and HAM depend on particle size. 𝜅 

parameterization by Gohil et al., (2022) explicitly accounted for the aqueous solubility 

of the species with particle size. 

In this work, the HAM-based hygroscopicity parameterization was implemented in 

a GCM to study the AIE. The main idea of this work is to understand the size and 
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solubility dependence of the hygroscopicity parameterization in the HAM that can 

contribute to the variability in AIE estimations in a GCM. The NCAR Community 

Atmospheric Model (CAM) was used to examine the uncertainties in global simulated 

CCN concentration, droplet number concentration, and AIE arising from the 

uncertainty in the current representation of organic aerosol 𝜅. In its current state, the 

CCN activation parameterization in CAM computes droplet growth by incorporating 

prescribed 𝜅 for all aerosol types. The aerosol 𝜅 is important in an activation 

parameterization because it directly relates to the water activity of the CCN model 

(Petters and Kreidenweis, 2007) and controls the subsequent droplet growth. In this 

work, the aerosol 𝜅 for different aerosol types were calculated using the size- and 

solubility-dependent HAM hygroscopicity parameterization. The particle size and 

mixing ratio information from the Modal Aerosol Model (MAM) was also used in the 

𝜅 calculations for different aerosol types in the individual aerosol modes. Furthermore, 

to reduce the computational burden, a simplified form of the HAM hygroscopicity 

parameterization was implemented in CAM. 

 

5.3 Model Description 

5.3.1 NCAR Community Atmosphere Model (CAM) 

The NCAR Community Atmosphere Model (CAM, version 6.3) performed all 

simulations in this work. CAM6.3 (hereafter CAM6) is the atmospheric component of 

the Community Earth System Model (CESM2.2). The Modal Aerosol Model (MAM) 

predicts the mixing state of different aerosol types in the aerosol modes and the number 

concentration of each aerosol mode. MAM4 is the current four-mode model used in 
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CAM6 (Liu et al., 2016). The prediction for the mass and number mixing ratios of 

cloud liquid and cloud ice, the diagnoses of the mass and number mixing ratios of rain 

and snow, and the treatment of the conversions among the cloud hydrometeors is done 

with the two-moment stratiform cloud microphysics scheme (Morrison and Gettelman, 

2008; Gettelman and Morrison, 2015). CCN activation and droplet formation for the 

multi-modal lognormal aerosol size distribution in MAM4 is derived using the Abdul‐

Razzak & Ghan, (2000) CCN activation scheme. 

Other major components included in the CAM6 runs – 1. A deep convection 

scheme (Zhang & McFarlane, 1995), 2. A unified turbulence scheme, Cloud Layers 

Unified By Binormals (CLUBB; Bogenschutz et al., 2010; Bogenschutz & Krueger, 

2013; Golaz et al., 2002), that also incorporates warm cloud macrophysics and shallow 

convection, 3. A radiation scheme to treat aerosol and cloud radiative effects (Iacono 

et al., 2008), and 4. A cold cloud macrophysics scheme (Gettelman et al., 2010). 

 

5.3.2 Prescribed Hygroscopicity of Aerosols through Modal Aerosol Model (MAM) 

in CAM6 

MAM4 is the aerosol model that is coupled with CAM6. The initial versions of 

MAM included the seven-mode aerosol model (MAM7) and the three-mode aerosol 

model (MAM3) (Liu et al., 2012). MAM7 is known to be highly effective at 

representing different aerosol types segregated among the Aitken, accumulation, and 

coarse modes, but at the expense of computational efficiency. On the other hand, 

MAM3 is computationally efficient but significantly underestimates surface black 

carbon concentrations over Asia and higher latitude regions. MAM4 is an upgraded 
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version that includes a separate primary carbon mode, in addition to the Aitken, 

accumulation and coarse modes, to explicitly treat the microphysical aging of black 

carbon. A brief description of the individual modes in MAM4 are provided in Table 1. 

Table 7. Interstitial and cloud-borne aerosol types of each aerosol mode in MAM4 

(mmr: mass mixing ratio) 

Aitken mode Accumulation mode Coarse mode 
Primary carbon 

mode 

Number mixing ratio Number mixing ratio 
Number mixing 

ratio 

Number mixing 

ratio 

Sulfate mmr Sulfate mmr Sulfate mmr 
Fresh primary 

organic mmr 

Ammonium mmr Ammonium mmr Ammonium mmr Fresh BC mmr 

Seasalt mmr Seasalt mmr Seasalt mmr  

Secondary organic 

mmr 

Secondary organic 

mmr 
Dust mmr  

 
Aged primary organic 

mmr 
  

 Aged BC mmr   

 Dust mass mixing ratio   

The four modes in MAM4 include six different aerosol types; their names and alias 

as denoted in CAM6 are as follows – sulfate (SO4), sea salt (SEASALT), black carbon 

(BC), soil/mineral dust (DUST), primary organic matter (POM) and secondary organic 

aerosol (SOA). The hygroscopicity parameter (𝜅) for all these species in CAM6 is 

prescribed through MAM4. The 𝜅 values of 0.507 and 1.16 are prescribed for SO4 and 

SEASALT, respectively, indicating their highly hygroscopic nature (Liu et al., 2016). 

The 𝜅 value of ~0 is prescribed for both POM and BC aerosol types to denote the 

effectively non-hygroscopic nature of the organic matter generated from biomass and 

fossil fuel combustion. For SOA, the 𝜅 values are prescribed to be in the range of 
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0.06 − 0.30 (e.g., Asa-Awuku et al., 2008; Carrico et al., 2008; Gunthe et al., 2009; 

Prenni et al., 2007). The prescribed 𝜅 for all the aerosol types within each mode are 

constant values across the full particle size distribution. Using these values, the volume 

mean hygroscopicity of each aerosol mode is then calculated based on the individual 

species present in that mode. The volume mean hygroscopicity parameters of the modal 

aerosol population are then used in the CCN activation parameterization. This suggests 

that the certainty in the CCN activation and droplet nucleation will directly depend on 

the hygroscopicity of the aerosol modes and therefore on those of the individual aerosol 

types. Moreover, since POM and SOA aerosol types represent numerous compounds, 

a constant 𝜅 applied over the particle size distribution of the carbonaceous aerosols 

may not be the best representation of the overall water uptake behavior. 

 

5.3.3 Hygroscopicity Parameterization for Droplet Nucleation 

In this work, a simplified representation of 𝜅 is developed using the Hybrid Activity 

Model (HAM) framework to implement in droplet nucleation, for organics (POM, 

SOA, BC) and Dust. Such that 𝜅 for the organic and dust species are no longer 

prescribed and are instead computed prior to droplet nucleation. Additionally, the 𝜅 of 

the aerosol mode is computed as the volume mean of the 𝜅 of the individual aerosol 

types and the HAM-derived 𝜅 as explained by Gohil et al., (2022) is simplified to a 

power law functions. The following text briefly described the development of the size 

dependent 𝜅 to be implemented for carbonaceous aerosols. 
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The theoretical HAM-based 𝜅 as a function of dry particle size is expressed as 

follows, 

𝜅 =
6𝜃𝐷𝑤

𝐷𝑑𝑟𝑦
(1 − 𝑋𝑤(1 − 𝐴𝐹𝐻𝐻𝜃

−𝐵𝐹𝐻𝐻))     (5.1) 

where 𝐷𝑑𝑟𝑦 is the diameter equivalent to the size of the dry particle of a given aerosol 

type in the aerosol mode, 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 are empirical FHH parameters that depend 

on the aerosol type, 𝑋𝑤 is the mole fraction of water computed by incorporating 

solubility partitioning in the Raoult’s law (Riipinen et al., 2015), 𝐷𝑤 is the size of one 

water molecule, and 𝜃 is referred to as the surface coverage corresponding to the dry 

size (𝐷𝑑𝑟𝑦) and is theoretically estimated using HAM (Gohil et al., 2022). In Eq. (5.1), 

𝐷𝑑𝑟𝑦 is the only independent variable while all the other quantities are the properties 

of a specific aerosol composition. The 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 of the BC and dust aerosols 

were obtained from literature and are summarized in Table 2. The 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 

values of POM and SOA were obtained from least square minimization using their 

experimental data. 

It is important to note that Gohil et al. 2022 showed HAM to work for known 

aerosol composition. However, when the carbonaceous aerosol composition is 

unknown the O:C ratio can be used as a proxy for water-solubility (Nakao, 2017) as 

follows, 

log(𝐶) = 20 [(
O

C
)
0.402

− 1]       (5.2) 
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where 𝐶 is the aqueous solubility, and (
O

C
) is the O:C ratio of the species. The O:C ratio 

of the pure and mixed particles has been applied to parameterize the theoretical aqueous 

solubility and subsequent hygroscopicity of CCN (e.g., Kuwata et al., 2013; Nakao, 

2017; Razafindrambinina et al., 2022). This work uses the published O:C ratios (Table 

2) of known aerosol species to obtain average aqueous solubility of POM and SOA 

aerosol species in CAM6. Table 2 provides O:C ratios and the references from for 

different POM and SOA considered in this work. For BC and DUST aerosol species 

with exceptionally low water solubility, a value of 10−5 vol/vol water is used in the 

𝜅 parameterization from Eq. (5.1). 

Table 8. Previous studies for hygroscopicity values from experiments and observations 

Organic aerosol species 
𝑨𝑭𝑯𝑯 𝑩𝑭𝑯𝑯 

Average 

O:C 
References 

Primary organic matter 

(POM) 
1.61a 2.45a 0.2b 

#Aiken et al., (2008); 

#Lambe et al., (2011) 

Secondary organic aerosol 

(SOA) 
2.2a 0.87a 0.45b 

$Asa-Awuku et al., 

(2009); #Canagaratna 

et al., (2015); #Cappa 

& Wilson, (2011); 

$Engelhart et al., 

(2008); $Huff Hartz et 

al., (2005); #Mahrt et 

al., (2021); $Prenni et 

al., (2007) 

Black carbon (BC) 7.54b 2.26b − 
&Gohil et al. 

(submitted) 

Mineral dust 1.5b 2.25b − 
&Kumar et al., (2009 

a, b) 

a Calculated using cited experimental CCN data 
b Acquired from literature 
# References O:C data 
$ References for CCN Activity information, specifically activation supersaturation-

critical diameter (𝑆 − 𝐷𝑐) pairs 
& References 𝐴𝐹𝐻𝐻 and 𝐵𝐹𝐻𝐻 data 
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Aerosols are treated as internally mixed in CAM6 – the overall hygroscopicity of 

aerosol species were calculated as molar averaged hygroscopicity parameters of the 

individual aerosol modes. The HAM hygroscopicity parameterization is a complex 

function of dry particle size (Eq. 5.1); thus, for computational efficiency, the 

hygroscopicity function was transformed into a power law expression using the 

species-dependent parameters for the aforementioned carbonaceous aerosol modes. 

Different set of parameters and properties were incorporated in Eq. (5.1) for different 

aerosol types to generate their size-resolved 𝜅 distributions. Subsequently, a 

generalized power law fit was applied to the size-dependent 𝜅𝑖 for each aerosol species 

that can be expressed as follows, 

𝜅𝑖 = 𝐶𝑖𝐷𝑑𝑟𝑦
−𝑎𝑖         (5.3) 

where 𝐷𝑑𝑟𝑦 is the dry particle size, and 𝐶𝑖 and 𝑎𝑖 are power law coefficients for the 

aerosol species 𝑖. The power law was also determined to be a function of dry particle 

size containing 2 power law parameters (Eq. 5.3). Table 3 provides the power law 

coefficients for the organic (POM, SOA and BC) and Dust aerosol species to use in 

CAM6. 

Table 9. Power law coefficients for POM, SOA, DUST and BC 

Organic aerosol species 𝑪𝒊 𝒂𝒊 

Primary organic matter (POM) 1050 2.76 

Secondary organic aerosol (SOA) 1261.7 2.55 

Black carbon (BC) 5.84 1.94 

Mineral dust 3.67 1.18 
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5.4 Global Climate Model Configuration and Experiments 

Three set of simulations were performed using CAM6. The first was a control run 

(denoted as “CTRL”) that was performed to benchmark the default setup of CAM6. In 

CTRL run, the hygroscopicity for all aerosol types were prescribed through MAM4. 

The second set was referred to as the “KT” run for which the hygroscopicity values 

were no longer prescribed and were calculated based on the Raoult’s law water activity 

in Köhler theory. The density and molecular weights of the required aerosol types were 

obtained through MAM4 (Liu et al., 2016). The overall hygroscopicity of the individual 

modes were determined as the volume average of the hygroscopicity of individual 

aerosol types comprising the respective modes. The third set of experiments was called 

“HAM” in which the hygroscopicity of each aerosol types were estimated from HAM 

using the method described in Section 2.3. In addition to the density and molecular 

mass of the aerosol types, the mode diameter and mixing ratio were also acquired from 

MAM4. The mixing ratio of individual aerosol types were used to determine the 

equivalent volume and hence size of a given aerosol type present in the mode. This 

equivalent size was then used in the corresponding power law expression for 

quantifying the hygroscopicity of the aerosol type. The volume average of the 

hygroscopicity of each aerosol type in each mode was then treated as the hygroscopicity 

of that mode. 

All the experiments were run with a horizontal resolution of 0.9° × 1.25° 

(conventionally denoted as 1°), using specified dynamics configurations (also known 

as nudging). Under the specified dynamics configurations, the model meteorology is 
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strictly constrained using external meteorological analysis (Ma et al., 2015; Tilmes et 

al., 2015). For all the experiments, the NASA Modern-Era Retrospective analysis for 

Research and Applications version 2.0 (MERRA2.0) 1° data from the year 2018 was 

used to drive the model. The aerosol and greenhouse gas emissions were set to the 

present-day (year 2000) conditions for all experiments. Employing the nudging 

technique facilitated a direct comparison of model simulations with observational data 

since simulation of aerosol burdens for specified hygroscopicity parameterizations was 

based on realistic climatic conditions. The nudged simulations were performed 

between July 01, 2017, and June 30, 2019. The simulation results for the year 2018 

from all three experiments were used for the analysis of the annual mean variables. The 

results between March 01, 2018, and February 28, 2019 were used to study the seasonal 

mean variables. The analyses from all three CAM6 experiments were compared to three 

distinct observational/reanalysis datasets. 

 

5.4.1 Cloud Fraction and Cloud Droplet Radius - Moderate Resolution Imaging 

Spectroradiometer (MODIS) 

MODIS (Terra/Aqua) was data for direct global observations of the daily cloud 

fraction and cloud droplet radius. The global distribution of the MODIS (Terra/Aqua) 

gridded daily product at a horizontal resolution of 0.1° was available for the year 2018. 
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5.4.2 Aerosol Optical Depth – AErosol RObotic NETwork (AERONET) 

The quality-assured (Level 2.0) Aerosol Optical Depth (AOD) data from 1,348 

locations were used for the analysis. The daily-averaged AOD product was available 

for the year 2018. 

 

5.4.3 Modern-Era Retrospective analysis for Research and Applications version 2.0 

(MERRA2.0) 

MERRA2.0 is the NASA atmospheric reanalysis dataset from the satellite era 

(between 1980 and present). The MERRA2.0 data assimilation system uses the 

Goddard Earth Observing System Model version 5 (GEOS-5). The MERRA2.0 data 

with a spatial resolution 0.625° ×  0.5° (Gelaro et al., 2017) for the year 2018 was used 

to compare the model simulations in all experiments. Moreover, 5-year average of 

MERRA2.0 climatological data about the year 2018 was used. 

 

5.5 Results and Discussion 

In this section, the results from the CAM6 simulations are presented. The following 

subsections describe the simulated aerosol and cloud properties that have significant 

implication towards the understanding of the AIE. For instance, the indirect radiative 

forcing due to carbonaceous aerosols including different POM and SOA can range 

between −2.4 to −4.4 W m−2 (e.g., Kanakidou et al., 2005; Lohmann et al., 2000). The 

simulated results for these aerosol and cloud properties were compared against 
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observations and reanalysis datasets to validate the CAM6 simulations for each of the 

experiments. 

 

5.5.1 Atmospheric Aerosol Burdens 

The organic (POM+SOA), BC and DUST burdens simulated using three different 

configurations of CAM6 are shown in Figure 30. The vertically integrated annual mean 

global organic, BC and DUST burden from the three CAM6 simulations (CTRL, KT, 

and HAM), are compared to the organic burden from MERRA2.0 reanalysis. Fig. 30 

(a), (d) and (g) show the organic burden simulated by the CTRL, KT and HAM 

experiments, respectively. Fig. 30 (j) shows the 5-year average of organic burden about 

the year 2018 from the MERRA reanalysis. Similarly, Fig. 30 (b), (e) and (h) show the 

BC burden simulated by the CTRL, KT and HAM experiment, respectively. The BC 

burden from the MERRA reanalysis shown in Fig. 30 (k). The dust burden simulated 

from CTRL, KT and HAM are presented in Fig. 30 (c), (f) and (i), respectively. The 

MERRA reanalysis for dust burden in Fig. 30 (l). 

The major difference between the simulated and reanalysis mean burden for all 

organic and BC aerosol types was observed over polar regions (below −60°S and 

above 60°N). Moreover, the simulated global annual mean burdens (Fig. 30 a, b, and 

c) are generally underestimated with respect to the reanalysis data (Fig. 30 j, k, and l) 

even though the agreement between the simulations and reanalysis is better over tropics 

and mid-latitudes. The agreement between the KT-simulated burdens with respect to 

the reanalysis data is lower than the burdens simulated from CTRL or HAM 
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configurations. For example, the maximum global mean organic burden in the KT case 

was found to be 27.63 mg/m2. This global mean increased to 31.86 mg/m2 and 

36.51 mg/m2 for CTRL and HAM, respectively. It was found that HAM estimated the 

global mean organic burden most closely to the reanalysis data (46.18 mg/m2). 

 

Figure 30. Annual global mean of vertically integrated burdens (mg m−2) of organic 

(left panels), BC (middle panels) and DUST (right panels) modes. First row (a, b, c) 

shows the simulations from the CTRL run. Second row (d, e, f) shows the simulations 

from the KT run. Third row (g, h, i) shows the simulations from HAM run. Fourth row 

(j, k, l) shows the MERRA2.0 reanalysis burden. 

Similarly for BC, the simulated global mean burden from KT configuration 

(maximum of 4.84 mg/m2) has the lowest agreement with the reanalysis global mean 

burden (maximum of 5.95 mg/m2). On the other hand, the global mean burden from 

HAM configurations (maximum of 6.33 mg/m2) was overestimated compared to the 

reanalysis global mean burden as well as had the highest agreement. The lower overall 
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agreement between the KT-simulated burdens compared to the reanalysis burdens is 

due to the underestimated burdens in the KT configuration. The KT-simulated burdens 

were underestimated to the generally higher 𝜅 of the aerosol types. The increased 𝜅 

would likely result in a greater CCN concentration. Consequently, there would be an 

increase in the droplet count and precipitation amount, ultimately leading to higher wet 

removal and decreased atmospheric burden. 

For DUST, the simulated burden is larger than the reanalysis. Compared to the 

reanalysis DUST burden maximum of 1197.63 mg/m2, the maximum global mean 

DUST burdens were found to be 3493.7 mg/m2, 3500.2 mg/m2 and 3622.6 mg/m2 

from the CTRL, KT and HAM simulations, respectively. It is important to note that all 

three 𝜅 configurations result in a higher DUST burden compared to the reanalysis 

burdens in southern tropics over Australia. The general overestimation of the DUST 

burden could be attributed to a lower prescribed (for CTRL) or parameterized (for KT 

or HAM) DUST 𝜅 than the real value. 

 

Figure 31. Annual zonal mean profiles for the organic (a), BC (b) and DUST (c) 

aerosol modes. The simulated aerosol burdens are color coded along with their RMSE 

with respect to the reanalysis data (shown in black). The gray shaded region denotes 

one standard deviation about the reanalysis data. 
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Figure 32. Annual global mean of the cloud condensation nuclei (CCN) concentrations 

at 0.1% supersaturation (a, b, c) and 1.0% supersaturation (d, e, f) between ~850hPa 

and ~920hPa. The simulated CCN concentrations from the CTRL run (left panels), 

KT run (middle panels) and HAM run (right panels) are shown. 

The deviation between the simulated and reanalysis burdens becomes more evident 

by looking at the zonal means (Figure 31). The simulated organic, BC and DUST 

burden zonal means are plotted against their respective reanalysis zonal means in Fig. 

31 (a), (b) and (c), respectively. The root-mean-squared error (RMSE) of the simulated 

vs. reanalysis means are also shown on the graphs for the respective aerosol type. Also, 

the gray shaded region represents the first standard deviation about the zonal mean 

reanalysis burdens. HAM-based simulated zonal mean burdens show notably better 

agreement with the reanalysis organic and BC that is also suggested by their lower 

RMSE with the reanalysis burdens. Also, the organic and BC burdens from HAM 

simulations lie within one standard deviation of the reanalysis burdens over the tropics. 

For DUST, burdens from all three simulations agree well with the reanalysis budget 

over northern tropics and midlatitudes. However, there is a significant overestimation 

in the DUST budget from all three simulations over the southern tropics and 

midlatitudes. This overestimation results in a generally large RMSE for the DUST 

budget zonal means (RMSE ≈ 70 mg/m2). For all three simulations, the organic, BC 
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and DUST budget is consistently underestimated with respect to the reanalysis over the 

polar latitudes. HAM framework was specifically developed to study droplet formation 

in warm-cloud conditions, which could be the reason for the high bias with respect to 

the reanalysis over polar latitudes. 

 

5.5.2 Cloud Condensation Nuclei (CCN) Concentrations 

Significant variability was observed in the CCN number concentrations among the 

three 𝜅 configurations with respect to each other. The global annual mean CCN number 

concentrations between 950hPa and 820hPa levels for ambient supersaturated 

conditions of 0.1% and 1.0% were analyzed (shown in Figure 32). Fig. 32 (a), (b) and 

(c) show the CCN concentrations generated from CTRL, KT and HAM simulations at 

0.1% supersaturation. It was found that KT estimated significantly larger CCN 

concentration than CTRL or HAM. A maximum global annual vertical mean 

concentrations of 807.81 cm−3 and 295.37 cm−3 were obtained from CTRL and 

HAM simulations, respectively compared to 1471.42 cm−3 from KT. A similar trend 

was observed for the CCN concentrations at 1.0% supersaturation. Fig. 32 (d), (e) and 

(f) show the CCN concentrations at 1.0% from CTRL, KT and HAM simulations, 

respectively. An overall increase in the CCN concentrations was observed between 

0.1% and 1.0% supersaturations. Furthermore, the CCN concentrations from KT 

simulations were considerably larger than those obtained from the CTRL and HAM 

simulations (maximum CCN concentrations of 2934.87 cm−3, 3540.92 cm−3 and 

2032.54 cm−3 from CTRL, KT and HAM simulations, respectively). The higher CCN 
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concentrations in the KT case is due to the generally large, parameterized value of 𝜅 

for all aerosol types. On the other hand, 𝜅 parameterized from the HAM framework is 

generally lower than the Raoult’s law counterpart due to the size-dependence and 

explicit solubility considerations (Gohil et al. 2022). 

 

Figure 33. Correlation of the relative change in the CCN concentrations at 0.1% (top 

row) and 1.0% (bottom row) with the relative changes in organic (a, d), BC (b, e) and 

DUST (c, f) aerosol modes. The correlation between CCN concentration changes and 

aerosol burden changes between HAM and CTRL cases are plotted. 

Lowest CCN concentration estimates were also generally observed for the HAM 

simulations at other ambient supersaturation conditions (not shown here). A correlation 

analysis was performed to understand the decline in the HAM-generated CCN 

concentrations. The correlation of the change in the global annual mean CCN 

concentrations at 0.1% and 1.0% supersaturations with respect to the changes in the 

different global annual mean aerosol burdens are shown in Figure 33. The correlations 

between were calculated between the relative changes in the CCN concentrations and 

aerosol burdens derived from CTRL and HAM simulations. The change in the CCN 

concentrations at 0.1% supersaturation has a strong correlation with the change in the 

organic burden between CTRL and HAM simulations (Fig. 33a). That is, the relative 
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decrease in the organic burden strongly affects the relative change in the CCN 

concentration at 0.1% between CTRL and HAM. Similar trends are observed 

corresponding to the relative decrease in the BC burden correlation with the CCN 

concentration (Fig. 33b). The highest correlation coefficient was found to be ≥ 0.95 

for both organic and BC burdens, and strong correlations are spread uniformly across 

tropics and midlatitudes. The average correlation coefficients between 45°S and 45°N 

corresponding to changes in organic and BC burdens were 0.51 and 0.58, respectively. 

The correlation between relative decrease in the CCN concentration at 0.1% vs. DUST 

burden is generally low. These low correlations could be resulting from comparable 

DUST burdens simulated in CTRL and HAM configurations (shown in Fig. 33c). 

Whereas higher correlations in the case of organic and BC burdens is due to a reduced 

𝜅 parameter of the aerosols, i.e., small changes in organic and BC burdens generate 

notable changes in the CCN concentration. 

 

5.5.3 Droplet Number Concentration and Liquid Water Path 

The available CCN concentrations govern the cloud droplet number concentration 

(CDNUMC) and the liquid water path (LWP), which directly relate to the cloud 

radiative and physical properties. Figure 34 (a), (b) and (c) illustrate the global annual 

means of the vertically integrated CDNUMC simulated from CTRL, KT and HAM 

experiments, respectively. Similar to the CCN concentrations, KT simulated the 

highest CDNUMC (maximum of 251.31 × 109 m−2) whereas the HAM simulated the 

lowest CDNUMC (maximum of 145.46 × 109 m−2). The distinction between them is 
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more apparent from relative differences of the control experiments with respect to the 

KT and HAM experiments. Fig. 34 (d) and (e) show the relative difference between 

global annual mean vertically integrated CDNUMC from CTRL experiment with 

respect to the simulated values from KT and HAM experiments, respectively. The 

overestimation in the CDNUMC from KT compared to that from CTRL was about 

12%. Whereas the underestimation in the CDNUMC from HAM compared to CTRL 

was about 36%. Furthermore, while the overestimation in KT from CTRL was 

distributed uniformly across the domain, the underestimation in HAM was more 

significant around the equator in the tropics. It is also important to note that the 

CDNUMC in all three cases was analyzed for the regions where the cloud fraction was 

≥ 0. as well as the fractional occurrence of liquid was ≥ 0.05. The CDNUMC was 

found to be more than two orders of magnitude smaller than the average where these 

conditions were not met and were considered effectively 0. 

 

Figure 34. Annual global mean of the vertically integrated cloud droplet number 

concentration (CDNUMC) from CTRL (a), KT (b) and HAM (c) simulations. The 

relative changes in the CDNUMC between KT and CTRL simulations (d) and those 

between HAM and CTRL simulations (e) are also shown. 
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Figure 35 (a) and (b) demonstrate the sensitivity of CDNUMC on CCN 

concentrations at 0.1% and 1.0% supersaturations, respectively. The variability in the 

CDNUMC and CCN counts between the CTRL and HAM cases were considered to 

compute the adjoint sensitivity (
∂CDNC

∂CCN
) between CDNUMC and CCN concentrations. 

The CCN concentrations within the vertical levels of 950hPa and 820hPa were 

considered. Except for the regions with no cloud fraction, low liquid fraction (≤ 0.05) 

or low droplet count (≤ 10−7 m−2), CDNUMC was found to be sensitive to CCN 

concentrations at 0.1% and 1.0%. CDNUMC has an overall greater sensitivity to the 

CCN concentration at 1.0%; a larger with aerosol population relatively with low 

hygroscopicity particles is CCN active at higher supersaturation. This implies that the 

CDNUMC has a strong sensitivity towards the low hygroscopicity aerosol. 

 

Figure 35. CDNUMC sensitivity to CCN concentrations at 0.1% supersaturation (a) 

and 1.0% supersaturation (b). The sensitivities were computed between the values from 

CTRL and HAM simulations. The regions with no cloud cover or liquid water fraction 

≤ 0.05 are masked and shown in white. 

The variability in CDNUMC can change physical and radiative properties of 

clouds. One such properties is the liquid water path (LWP). Figure 36 (a), (b) and (c) 

illustrate the global annual means of the vertically integrated LWP simulated from 

CTRL, KT and HAM experiments, respectively. Like CDNUMC, similar results for 

LWP were also observed. The global annual mean LWP from CTRL and KT had a 
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similar distribution – the maximum values were 67.63 g m−2 (CTRL) and 

69.28 g m−2 (KT), respectively. The LWP from KT was slightly overestimated with 

respect to the LWP from CTRL (Fig. 36d), also implied by the average relative 

difference of 2.6%. The LWP from HAM was notably underestimated compared to 

that obtained for the CTRL case (Fig. 36e) – maximum of 59.38 g m−2 for HAM. The 

average relative difference between the global annual mean LWP from HAM and 

CTRL was −13.05%. Like CDNUMC, the analysis for LWP in all three cases was 

also done for the regions where the cloud fraction was ≥ 0. and fractional occurrence 

of liquid was ≥ 0.05. 

 

Figure 36. Same as Fig. 34 but for the annual global mean of the vertically integrated 

liquid water path (LWP) 

CDNUMC is also related to the cloud droplet radius. The effective droplet radius 

decreases when there is an increase in the droplet number concentration. Figure 37 (a), 

(b) and (c) show the vertically integrated global annual mean effective droplet radius 

generated from CTRL, KT and HAM simulations, respectively. The regions with liquid 

water fraction ≤ 0.05 are shown in white in all three plots. Variations between the 

droplet radius estimation in KT or HAM with respect to CTRL are evident on looking 
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at their relative differences. Fig. 37 (d) and (e) respectively illustrate the relative 

difference in the KT- and HAM-derived droplet radius distribution with the CTRL-

derived droplet radius distribution. Fig. 37 (d) suggests that droplet radius distribution 

from CTRL and KT are similar; a uniform underestimation can be observed in the 

droplet radius simulation from KT by an average of −3.03%. Meanwhile, Fig. 37 (e) 

shows that droplet radius distribution from the HAM simulations is overestimated with 

respect to the droplet radius from the CTRL simulations by an average of 8.84%. An 

important point to note is that the regions of high bias CDNUMC in HAM (Fig. 34e) 

overlap with the regions of droplet radius overestimation in HAM (Fig. 37e). In 

essence, an average of ~36% variability in CDNUMC is associated with ~9% 

variability in droplet radius. 

 

Figure 37. Same as Fig. 34 but for the annual global mean of the vertically integrated 

droplet effective radius 

Figure 38 illustrates the sensitivity of the LWP and droplet radius to the CDNUMC 

(
∂LWP

∂CDNUMC
; Fig. 38a and 38b, respectively). The correlation between the change in the 

LWP and droplet radius to the change in CDNUMC is also shown in Fig. 38 (c) and 

(d), respectively. For LWP, a low sensitivity (≤ ~0.2) to CDNUMC was observed in 
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the tropics, and a relatively high sensitivity (≥ ~0.4) to CDNUMC was observed in 

the northern polar regions. For droplet radius, a low sensitivity (≤ ~0.2) to CDNUMC 

was observed over the poles, and a relatively high sensitivity (≥ ~0.4) to CDNUMC 

was observed in the tropics. Variability in LWP is correlated to the change in 

CDNUMC – this is because LWP and droplet radius depend on the amount of water 

present in the clouds (which is quantified CDNUMC). Droplet radius moderate to low 

sensitivity to CDNUMC. Moreover, droplet radius and CDNUMC are negatively 

correlated to each other. As CDNUMC increases, average effective droplet radius 

increases and vice versa. CDNUMC decreases between HAM and CTRL cases while 

droplet radius simultaneously increases thereby resulting in a notable negative 

correlation between the two variables. 

 

Figure 38. Sensitivity of the LWP and droplet radius with respect to CDNUMC (a, b). 

Correlation of the change in LWP and droplet radius with respect to CDNUMC (c, d). 

On average, the LWP and droplet radius have a moderate sensitivity towards 

CDNUMC. However, the variability in both LWP and droplet radius have a strong 

correlation with the variability in CDNUMC. It is to be noted that that droplet radius 

has a negative correlation with CDNUMC. The sensitivities and correlations were 

computed between the values from CTRL and HAM simulations. The regions with no 

cloud cover or liquid water fraction ≤ 0.05 are masked and shown in white. 
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The droplet radius simulated with the HAM configuration of CAM were also found 

to be in better agreement with the observational data as compared to the other two 

cases. The zonal mean droplet effective radius (μm) from CAM simulations and 

MODIS observations (Terra/Aqua) are shown in Figure 39. Each panel of Fig. 39 

shows the seasonal averages during the year 2018-19 for the droplet radius. The gray 

shaded region denotes the first standard deviation across the observational data. For all 

seasons, the droplet radius distribution simulated with the HAM case has the lowest 

RMSE score as compared to the other two cases. Furthermore, the droplet radius from 

all three simulations lies within one standard deviation from the observations across 

the tropics and midlatitudes. The improved agreement between the simulated and 

observed droplet radius can be attributed to the modified aerosol 𝜅 in HAM. This is 

because 𝜅 dictates the CCN activity and hence droplet formation and growth associated 

with any aerosol species. It is important to note that during the four seasons, all three 

model configurations result in underpredicted droplet radius at the Intertropical 

Convergence Zone (ITCZ.) 

 

Figure 39. Zonal mean profiles for the droplet effective radius, by season. The 

simulated aerosol burdens are color coded along with their RMSE with respect to the 

observational data from MODIS (shown in black). The gray shaded region denotes one 

standard deviation about the observational data. 
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The effect of altering the aerosol hygroscopicity was also analyzed on the cloud 

fraction. The annual global mean of total cloud fraction showed little variability across 

the three simulated cases of CAM (not shown here). The maxima of the three total 

cloud fractions were found to be 0.987, 0.996 and 0.971 for CTRL, KT and HAM 

cases, respectively. Additionally, the average of the annual global mean total cloud 

fraction was 0.726 ± 0.012. For a better comparison of the simulated cloud fraction, 

the zonal mean of the simulated values was plotted against the zonal means of the 

observed global total cloud fraction from MODIS. Figure 40 shows the seasonal 

averages during the year 2018-19 for the cloud fraction. Like Fig. 39, the mean of the 

observations is shown in black with the gray regions representing one standard 

deviations across the mean values. For all three simulations, the cloud fraction agrees 

well with the observations between approximately 60°S and 60°N. Within this same 

region and for all four seasons, cloud fraction predictions from the HAM configuration 

produced the highest agreement with the observations (RMSE provided for each case). 

However, all three cases consistently overpredict the cloud fraction in the polar regions 

which increases the overall RMSE of the simulated cloud fraction. 

 

Figure 40. Same as Fig. 39, but for the annual global mean cloud fraction. Cloud 

fraction observational data was also acquired from MODIS. 
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The effect on the shortwave cloud forcing (SWCF) was also analyzed. The annual 

global SWCF from the three configurations of CAM are presented in Figure 41 (a, b, 

c), along with the relative differences of SWCF from KT and HAM with respect to 

CTRL-based SWCF (Fig. 41 d, e). The annual global SWCF distribution from the three 

simulations are similar; maximum of 184.36 W m−2, 190 W m−2 and 171.95 W m−2, 

and average of 39.3 W m−2, 40.8 W m−2 and 36.25 W m−2 for CTRL, KT and HAM, 

respectively. The average relative differences of 4.37% and −9.85% imply that the 

HAM-based SWCF profile on average has larger disparities than the KT-based SWCF 

profile with respect to CTRL. Furthermore, the relative change in the SWCF simulated 

using HAM vs. CTRL experiments of CAM is correlated with the relative change in 

cloud fraction simulated in the same two CAM experiments (Figure 42). The mean 

correlation coefficient between the changes in SWCF and cloud fraction was 0.348 

with a maximum value of 0.83. The moderate to high correlation coefficients suggest 

that even minute changes in the cloud fraction can have notable changes in their overall 

radiative forcing. Additionally, the cloud fraction and hence the SWCF are associated 

with the droplet concentration (or, the available water content of the cloud). Therefore, 

any variability in the SWCF computation is likely associated with the water uptake 

behavior (dictated by the 𝜅) of the aerosol particles. 
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Figure 41. Same as Fig. 34 but for the annual global mean shortwave cloud forcing 

(SWCF). 

 

5.5.4 Aerosol Optical Depth 

Aerosol optical depth (AOD) is an important measure of the aerosol direct effect. 

AOD is an indicator of the amount of the solar radiations unable to reach the surface 

because of absorption or scattering from the atmospheric aerosol burden. Figure 43 

shows the zonal means of the AOD observations (AERONET) compared against the 

zonal means of the AOD simulated using CTRL, KT and HAM configurations for the 

four seasons for the year 2018-19. For all seasons, the HAM-based AOD simulations 

agree better with the observational data than the AOD from other CAM simulations; 

explained using the higher RMSE scores for HAM AOD. Generally, the RMSE scores 

are lowest for JJA and SON (Fig. 43 b, c) with predicted AOD within one standard 

deviation of the observations. The RMSE scores for MAM and DJF (Fig. 43 a, d) are 

greater than ~0.05 for all three simulations implying larger uncertainties in the 

predicted AOD. 
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Figure 42. Correlation of the change in SWCF with respect to cloud fraction (or, cloud 

cover). The correlation was computed between the values from CTRL and HAM 

simulations. 

For MAM, the uncertainties are due to underpredictions in the AOD over the 

tropics, whereas for DJF, the uncertainties are due to notable overpredictions over the 

tropics. The underpredictions for the MAM season could mostly be due to the 

underrepresentation of the increased anthropogenic emissions in the simulations. The 

overpredictions in the DJF season could likely be due to natural events (such as, dust 

aerosols over desert areas). This could be due to fewer observations over locations of 

such natural aerosols where the burden, and henceforth the AOD may be overestimated 

by the model. Figure 44 displays all locations (red crosses) where the HAM-based 

simulated AOD ≥ 2.5 × (AERONET observational AOD data). The locations on the 

map are overlayed with the HAM-based simulated DUST burden. It can be observed 

that several of these locations (Australia, Northern Africa and Southern Africa) overlap 

with regions of large DUST burdens simulated by CAM using the HAM configuration. 
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Figure 43. Same as Fig. 39, but for the annual global mean aerosol optical depth 

(AOD). AOD observational data was acquired from AERONET. 

 

 

Figure 44. A map of the AERONET sites (marked as red crosses) where the AOD 

simulation from HAM were ≥ 2.5 × (AERONET AOD observational data). The 

AERONET sites are overlayed with the simulated burden of the DUST mode obtained 

from the HAM case. Several of the AERONET sites coincide with large, simulated 

DUST burdens from HAM. 

Fundamentally, the AOD is dependent on the atmospheric aerosol burden. Thus, it 

is important to understand which aerosol can significantly affect the AOD. Figure 45 

shows the sensitivity of the global annual mean AOD over organics, BC, DUST 

burdens. Fig. 45 shows the sensitivity of AOD over the aerosol burdens (units of 

m2 mg−1) for the simulations from HAM and CTRL configurations of CAM. 

According to the adjoint sensitivity analysis, AOD is most sensitive to the organic 

burden (
∂AOD

∂BURDENX
 where X ≡ Organic, BC, DUST; Fig. 45a) and least sensitive to the 

BC burden (Fig. 45b). The average global sensitivity of the AOD to the organic, BC 
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and DUST burdens 1.41, 1.13, and 1.32 units, respectively. The regions where the 

relative difference between the respective aerosol burden simulated from HAM and 

CTRL is ≤ 5% are shown in white. 

 

Figure 45. AOD sensitivity to aerosol burdens are shown (a) AOD sensitivity to 

organic burden, (b) AOD sensitivity to BC burden, and (c) AOD sensitivity to DUST 

burden. The sensitivities were computed between the values from CTRL and HAM 

simulations. The regions with no cloud cover or liquid water fraction ≤ 0.05 are 

masked and shown in white. 

 

5.6 Summary and Implications 

The aerosol indirect effects estimation has large uncertainties and the hygroscopicity 

parameterization is known to be an important factor of these uncertainties. The 

hygroscopicity parameters (𝜅) for all aerosol modes are prescribed within climate 

models such as NCAR CAM, and not calculated. 𝜅 of various aerosol types in CAM 

are prescribed from the ideal Köhler theory (KT). 𝜅 of organic aerosols are prescribed 

based on experimental findings in the literature. Variation in the aerosol and cloud 

properties can be observed if 𝜅 of all aerosol types are explicitly calculated from their 

molar properties using Raoult’s law. Additionally, a physically based size-dependent 

hygroscopicity parameterization (such as that based on the Hybrid Activity Model; 

HAM) that can also be used in CAM to determine aerosol 𝜅. More importantly, a 

simplified hygroscopicity parameterization based on HAM can be implemented in 
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CAM to estimate aerosol 𝜅. The simplified hygroscopicity parameterization helps in 

retaining the computational efficiency of the model, while also capturing all the 

important features of the full hygroscopicity parameter derived from HAM. 

 In this work, CAM simulations with 𝜅 estimations using KT and HAM were 

compared to the free-run CAM simulations. It was observed that the KT based 

modifications resulted significant increment in the CCN concentrations compared to 

the control (CTRL) case. These increments could be attributed to the generally 

increased 𝜅 for all aerosol types in the KT case, thereby overestimating their CCN 

activity. The generally higher organic 𝜅 in the KT case likely resulted in an increased 

wet removal of the aerosols, henceforth decreasing their atmospheric burdens. The KT 

case, however, did not have significant effects on the subsequent physical and radiative 

properties of the clouds. Since the meteorology forcing was maintained the same for 

the CTRL and KT cases, the atmospheric water vapor content and so the resulting 

droplet concentration and other properties have minor changes between CTRL and KT 

case simulations. 

 The CAM simulations with the implementation of HAM based 𝜅 show marked 

differences compared to the free-run CAM simulations. It has been demonstrated using 

CCN experiments that HAM based 𝜅 of moderately water soluble and effectively 

insoluble species can be smaller than their Raoult’s law 𝜅 counterparts. These 

differences can be up to several orders of magnitude and arise due to explicit size-

dependence and solubility treatment in HAM 𝜅. Due to substantially reduced 𝜅 of 

aerosols, the CCN concentrations simulated in the HAM case showed significant 
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reduction compared to those simulated in the CTRL case. The reduction in the 

atmospheric CCN concentration translated to a decreased droplet concentration, liquid 

water path and other physical and radiative cloud properties. The reduced aerosol 𝜅 

also reduced the aerosol scavenging or wet removal pathway and hence showed major 

increase in the atmospheric burdens of organic, black carbon and dust aerosols 

compared to the CTRL case. The physical and radiative properties of aerosols and 

clouds simulated in the HAM case showed highest agreement with the observational 

data. Since aerosol and cloud droplet number counts strongly dictate the direct and 

indirect effect of aerosols, it is implied that HAM-derived aerosol burdens and droplet 

concentration may be an improved representation of the state of the atmosphere. An 

important point is that certain aerosol and cloud properties (optical depth, cloud 

fraction, large-scale and convective precipitation) show minor variability across the 

three simulated cases. Their low variability may be due to averaging out over large 

climatological scales (seasonal or annual). 

 Overall, the implementation of HAM 𝜅 in a climate model was valuable for 

understanding the uncertainties associated with the aerosol and cloud properties. 

Previously, HAM had been applied on the controlled laboratory measurements of 

specific organic compounds with aqueous solubility varying over a range of 2-3 orders 

of magnitude. HAM has also been applied for the water uptake analysis of BC species 

observed in the atmosphere using agglomerated pure and mixed BC particles as 

proxies. This work expands upon the applicability of HAM for representing the aerosol 

𝜅 in NCAR CAM. Since organic aerosols are the major sources of uncertainties in the 

indirect effect, using HAM for representing their hygroscopicity in Global Climate 
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Models can potentially reduce the forcing uncertainties due to aerosols and clouds. 

Moreover, modifying the aerosol 𝜅 for individual chemical species in the climate 

models can further improve upon the estimations presented in this work. 

 Currently, HAM incorporates the effects of only the water solubility of the aerosol 

particles on their cloud activity. Whereas in the atmosphere, the physicochemical 

nature of aerosol particles and therefore their cloud activity can drastically change due 

to chemical transformations – aging, gas phase reactions, phase separation – to name a 

few. Incorporating one or more such modes of chemical transformation in the 

describing the water uptake behavior of the aerosols can further improve the 

representation of their direct and indirect effects. In future, additional modifications of 

HAM or a similar framework could be developed to incorporate more complex 

characteristics of atmospheric aerosols. 
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Chapter 6:  Chemical Characterization of Atmospheric Aerosol 

using their Measured Raman Spectra 

 

6.1 Abstract 

Single-particle aerosol measurement techniques provide a means to obtain size-

resolved aerosol composition and henceforth are being rigorously explored. These 

measurement techniques include mass spectrometry, fluorescence spectrometry, FTIR, 

Raman spectrometry, and electron-beam excited x-ray diffraction. These are useful for 

retrieving information about the composition of minority species in the atmosphere, 

their mixing state, and the process they undergo over different scales. Raman 

spectrometry (Raman, from hereon) has been shown to be a highly efficient technique 

employed for characterization of chemical compounds. There are 2 main reasons for 

that: 1. Raman spectra are the signatures of the chemical bonds present in the chemical 

compounds and are therefore unique for the compounds they correspond to; and 2. 

Raman spectra can be detected for particles of the order of nanometers. In this work, a 

computational tool was developed using techniques related to machine learning, signal 

processing and statistics for Raman data collected for ambient aerosols using the 

Resource Effective Bioidentification System (REBS)-based Automated aerosol Raman 

Spectrometer (ARS). The developed algorithm has been designed to perform 3 major 

operations: 1. Spectral clean-up – this is required because generally the Raman spectra 

obtained using our ARS have a low signal-to-noise ratio, 2. Spectral peaks (feature) 

detection – peaks are the characteristic features of a Raman spectrum that play a major 

role in characterizing the sample through its spectrum, and 3. Identification of the 
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aerosol chemical species, using the Raman data from a reference database, using a 

“vector similarity” metric. This work demonstrates that simple statistical techniques 

can be employed for characterizing the atmospheric aerosols using their single particle 

Raman signatures. Basically, the chemical composition and mixing state of aerosols 

can be determined on particle scale with the help of their Raman signatures using 

statistical methods. 

 

6.2 Background 

Atmospheric aerosols can affect human health, weather, and global climate directly 

or indirectly (Brooks et al., 2010; Dominici et al., 2015). Several harmful 

cardiovascular and pulmonary diseases are known to be caused by prolonged exposure 

to soot and heavy metal emissions (von Klot et al., 2011; Shiraiwa et al., 2012). Fine 

and ultrafine particles can easily cross the nasal passage to enter the lungs. Several 

disease-causing bacteria and viruses can also become airborne and be treated as 

aerosols. Particulate Matter (PM) such as black carbon is known to cause scattering of 

solar radiation in the atmosphere (Petzold and Schönlinner, 2004; Seinfeld, 2008). This 

is generally observed in the case of coarse particles capable of causing tropospheric 

and stratospheric heating from the scattering of solar radiation. At lower altitudes 

within the troposphere, high aerosol density can significantly affect visibility. Thus, the 

tracking and identification of atmospheric aerosols can be highly valuable to study their 

effect on health and the environment. 
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The real-time identification and characterization of aerosols with accuracy is 

particularly challenging. The most common approach taken to perform these tasks is 

the analysis of the electromagnetic properties of observed aerosols. Different tools have 

been employed to quantify electromagnetic properties of materials comprising the 

atmospheric aerosols, primarily by observing their interactions with electromagnetic 

radiations. Techniques such as mass spectroscopy (Jayne et al., 2000), FTIR (Toprak 

and Schnaiter, 2013; Pan et al., 2007), magnetic resonance spectroscopy (Decesari et 

al., 2007; Cleveland et al., 2012) and X-ray diffraction (Stefaniak et al., 2009) relate 

with different properties of the aerosol materials which can be used for their 

identification. Despite being widely implemented for the characterization of materials, 

these processes often suffer from shortcomings. Mass spectroscopy is dictated by 

particle size and mass distribution. These properties are not unique to any chemical 

species, as well as accounting for the variations in particle size and mass distribution 

becomes increasingly difficult when analyzing a mixture of chemical compounds. 

Likewise, FTIR spectrometry suffers from the inability to directly generate spectra and 

requires preprocessing on the recorded interferograms to yield any useful information. 

FTIR spectrometry is also highly susceptible to inferences from instrumental noise. 

Furthermore, techniques such as magnetic resonance spectroscopy and X-ray 

diffraction are hard to automate and are also considerably expensive, while requiring 

large sample sizes to operate. 

During the past few years, the application of Raman spectroscopy has significantly 

improved the characterization of materials (Ault et al., 2013). Raman spectroscopy is a 

non-destructive and versatile technique that can be run continuously to detect chemical 
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species. In addition to this, Raman is easy to automate and can be performed for single-

particle measurements. Furthermore, Raman provides as a unique fingerprint for any 

chemical species as it is related to the vibrational and rotational frequencies of the 

chemical bonds in a chemical species (Turrell et al., 1989). The Resource Effective 

Bioidentification System (REBS)-based Automated aerosol Raman Spectrometer 

(ARS) is a portable device that has been used to record Raman spectra corresponding 

to ambient aerosols (Doughty and Hill, 2017; Ronningen et al., 2014). Figure 46 is a 

labeled representation of the ARS used in this work. The REBS-based ARS has 

multiple advantages that further improve the utility of Raman spectroscopy for 

analyzing atmospheric aerosols. Firstly, Raman spectra ideally require longer to record 

as compared to the previously mentioned techniques. This is directly correlated with 

the time between excitation and stabilization of the sample, and the significantly low 

probability of the occurrence of Raman scattering. The ARS is capable of recording 

Raman of a given sample within times that are of the order of a few minutes, and 

therefore significantly reducing the sampling time. A second important advantage of 

the ARS is that it is a simple instrument consisting of a single laser source, a means to 

collect aerosol samples, a spectrometer, and an imager. Additionally, the ARS has 

smaller dimensions compared to other forms of spectrometers which further its 

portability. 

Despite the high applicability of Raman spectrometry attributed to the versatility 

and high useful information content of Raman spectra, it is significantly susceptible to 

noise. Raman spectra of laboratory samples are collected over a period of a few hours 

(Vehring et al., 1998; Andreae and Gelencsér, 2006). This is done to facilitate full 
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stabilization of the samples before recording the spectra so that the spectra is a good 

representation of the ‘true’ Raman signal of the samples. The main sources of noise in 

Raman spectroscopy are cosmic radiations and fluorescence (Sinanis et al., 2011; 

Bozlee et al., 2005; Craig et al., 2017). Cosmic radiations are observed as high-

frequency spikes throughout the spectra, and fluorescence is observed as low-

frequency unsteady baseline variations in the spectra. To effectively utilize the Raman 

spectra for the purposes of classification, these 2 components need to be eliminated or 

at least be greatly suppressed, from the collected sample spectra (Smulko et al., 2014; 

Murray and Dierker, 1986). Several preprocessing methods have been proposed in 

earlier studies for efficiently removing of both these ‘noisy’ components from Raman 

spectra (Hill and Rogalla, 1992; Kwiatkowski et al., 2010). 

 

Figure 46. The side-view of the REBS-based ARS used to collect the Raman spectra 

of the aerosol samples in this work. The components of the device are labeled. This 

image has been directly taken from Doughty and Hill (2017). 
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The high-frequency spikes are removed from the spectra by passing them through 

smoothing/filtering algorithms. One of the most common algorithms for filtering out 

noise from the Raman spectra is the Savitzky-Golay filter (Člupek et al., 2007; Bromba 

and Ziegler, 1981). In this algorithm, the original Raman spectrum is smoothed by 

breaking it up into fragments and smoothing them in a small ‘window’ by fitting a 

polynomial function through them. The extent of smoothing can be altered by varying 

the window length. This feature of the Savitzky-Golay filter can be exploited for 

preserving and eliminating features of interest in the Raman spectra under 

consideration - a smaller window length is used to preserve shape and narrower peaks 

present in the spectra, and the wider window is used to preserve broader peaks/plateaus 

in the spectra. A major disadvantage of this approach is that there is no effective way 

to optimize the window length and the order of the fitting polynomial - a very high 

window length (of more than approximately 41) can easily lead to a significant 

distortion in the smaller features of the spectra. Achieving a tradeoff between 

eliminating the noise and retaining the necessary features in any given spectrum is a 

challenge with employing the Savitzky-Golay filter. 

Another common approach that has been explored for denoising Raman spectra is 

the Discrete Wavelet Transform (DWT) (Ehrentreich and Sümmchen, 2001; Kaiser, 

2010; Mallat, 1989). Several studies have demonstrated DWT to be a highly efficient 

denoising technique for Raman spectra. Use of certain specific types of wavelets, 

namely Daubechies, Symlet, and Coiflet wavelets have been shown to perform better 

than other alternatives like Haar and Biorthogonal wavelets (Ehrentreich and 

Sümmchen, 2001). Some recent studies provide an insight into a variation of DWT, 
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referred to as the Lifting Wavelet Transform (LWT) and has been shown to perform 

well in the case of Raman spectra with low Signal-to-Noise Ratio (SNR), with a minor 

drawback of being computationally expensive over DWT (Chen et al., 2011, 2018a, b). 

(Chen et al., 2014) discussed a technique for retrieving denoised Raman spectra with 

low SNR by implementing Weiner transform on them. The performance of Weiner 

transform was compared with the performances of some of the more commonly 

employed methods involving the Savitzky-Golay filter, the wavelet transform, the 

Finite Impulse Response (FIR) filter, and the Gaussian filter (Villarroel et al., 2011; 

Wang et al., 2006; Palacký et al., 2011). The Weiner transform was shown to perform 

better than its counterparts, which was quantified by computing the Root Mean Squared 

Error between the low-SNR and the high-SNR samples for the Raman spectrum under 

consideration. Other filtration methods involve the use of Principal Component 

Analysis (PCA) and factor analysis which have been shown to be useful with denoising 

low-SNR signals but are known to be computationally expensive at that. 

Like that for the high-frequency spikes, several methods have been proposed for 

removing the low-frequency fluorescence component from Raman spectra. Baseline 

correction is performed to remove the fluorescence component from the spectra. 

Several methods such as polynomial fitting, Asymmetric Least Squares (ALS) fitting, 

cubic spline fitting and PCA (Eilers and Boelens, n.d.; Shao and Griffiths, 2007; Peng 

et al., 2010) have been used to determine the approximate baseline for Raman spectra. 

ALS was noted as the most commonly employed method for performing baseline 

correction on Raman spectra, along with several of its variations such as the Improved 
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Asymmetric Least Squares (IALS) (He et al., 2014) method and the adaptive iteratively 

reweighted Penalized Least Square (airPLS) (Zhang et al., 2010) method. 

Spike and fluorescence removal help with obtaining the true Raman signal from the 

spectra under consideration. Removing unwanted components from the spectra reduces 

the likelihood of extracting incorrect peaks from the spectra. Peak/feature extraction is 

an essential step in a classification problem that greatly improves the efficiency of the 

algorithm by making it computationally less expensive. Several studies have discussed 

the application and performance of different peak finding algorithms on spectroscopy 

data. These methods include the use of Continuous Wavelet Transform (CWT) (Wee 

et al., 2008), Gaussian fitting (Shang and Lin, 2010), and Lorentzian fitting (Gunnink, 

1977). The spectra for different kinds of materials have different types of characteristic 

peaks - peaks in solid samples fit well using a Gaussian profile whereas peaks in 

gaseous and liquid samples fit well using a Lorentzian profile. “findpeaksG3” 

(O’Haver 1995, O’Haver 2014) is a user-defined class for finding peaks in 

electromagnetic signals by fitting Gaussian functions throughout the signal. The class 

was originally written in MATLAB was translated into Python 3.6 to be used in this 

work. Furthermore, the utility of findpeaksG3 compared and tested against the updated 

“autofindpeaks” (O’Haver 2016). 

A vast variety of classification methods currently exist to identify the composition 

of chemical species. Implementing classifiers to identify aerosols has become highly 

commonplace due to the continuous developments within the machine learning and 

deep learning communities. Sophisticated methods including the use of algorithms 
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such as K-nearest neighbors, Support Vector Machines (SVMs) (VAPNIK and N, 

1995), decision trees, random forests (Ho, 1998), and neural networks (Maquelin et al., 

2003) have been shown to perform with high accuracy in classification problems 

involving the use of Raman spectra (Liu et al., 2017). However, a disadvantage with 

the aforementioned and other similar data-driven techniques is that they are highly 

computationally expensive. Other approaches include the application of simpler vector-

based algorithms (Kwiatkowski et al., 2010; Carey et al., 2015). These algorithms treat 

Raman spectra as vectors and classify unknown vectors based on their “similarity” with 

other known vectors in the database. The similarity between any 2 spectrometric 

vectors can be determined using a variety of metrics such as the absolute difference 

value search, the Euclidean distance, the cosine distance, and the correlation 

coefficient. 

This study aims to develop an algorithm that facilitates a simple and 

computationally inexpensive way of classifying chemical species using real-time 

Raman spectra. The proposed algorithm includes 1. Preprocessing of Raman spectra 

that consists of spike removal from the spectra using Discrete Wavelet Transform 

(DWT) and fluorescence removal by performing baseline correction using Asymmetric 

Least Squares (ALS) fitting, and 2. Classification of measured Raman spectra using 

cosine similarity. The discussion pertinent to the databases used in this study along 

with the analysis and methodology is reported. Additionally, statistical techniques that 

were implemented for validating the algorithms is also presented. Lastly, conclusive 

remarks are provided with regards to the developed algorithms and their corresponding 
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results, along with the advantages and disadvantages of the classification approach 

developed in this work. 

 

6.3 Data and Methodology 

The algorithms were developed to classify data using the spectrometric data from 

the LR-Raman database of RRUFF. A total of 9,330 Raman spectra were used to 

construct the reference database and will be hereafter referred to as the “RRUFF 

database”. Within the RRUFF database, the spectroscopic data was distributed into a 

total of 1342 different mineral classes. The unclassified data was obtained using the 

Resource effective Bionidentification System-based automated Aerosol Raman 

Spectrometer (REBS-based ARS). The unclassified dataset was made from the ambient 

samples procured at Jornada. A total of about 199,000 samples were collected and 

analyzed by the ARS. These samples were observed to have a significantly lower 

intensity as compared to the samples in the RRUFF database. A threshold of 0.0065 

A.U. was set up for the maximum Raman intensity to extract out data that would be 

used for classification. A total of 903 unclassified Raman spectra were selected in the 

measured dataset and will be hereafter referred to as the “Jornada dataset”. 

Compared to the RRUFF database, the Jornada dataset contained spectra with a 

significantly lower signal-to-noise ratio, with their true Raman signal content heavily 

polluted by high-frequency noise and fluorescence. Two preprocessing algorithms 

were developed and tested on spectra from the RRUFF and Jornada databases. These 

algorithms were designed in such a way that they may be successfully implemented on 
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signals with any amount of noise and fluorescence. The preprocessing algorithms were 

called preprocessing α and preprocessing β. 

Preprocessing α comprised of removal of high-frequency noisy spikes from the 

spectra using employing Discrete Wavelet Transform (DWT). Daubechies-type 

wavelets were employed for performing DWT on all the Raman spectra in both 

datasets. Daubechies wavelets have been shown to perform better than other kinds of 

wavelets when used for Raman spectroscopic data, which possess Gaussian and 

Lorentzian type features. DWT using the Daubechies-type wavelet 5 (db5) was 

implemented for all the spectra in the RRUFF database. Signal-to-Noise Ratio (SNR) 

was calculated for all the spectra before and after applying DWT on them. It was 

observed that for about 96% of the spectra in the RRUFF database, the SNR increased 

by more than 0.25. The spectra in the Jornada dataset were observed to have a 

significantly lower SNR compared to the spectra in the RRUFF database. Three 

different Daubechies-type wavelets were tested on the Jornada spectra - db4, db7, and 

db11. Of all the Daubechies-type wavelets, db4, db7 and db11 produced the most 

prominent improvement in the SNR of the spectra. An increment of 0.3 or above was 

noted for all the spectra in the Jornada spectra using the 3 Daubechies-type wavelets. 

Preprocessing β involved removal of high-frequency noise followed by the removal 

of fluorescence from the spectra. The removal of noise was done by the implementation 

of DWT on the spectra in consideration, which was like preprocessing α. The removal 

of fluorescence was done by performing baseline correction on the spectra. For 
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correcting the baseline, Asymmetric Least Squares (ALS) fitting was done on the 

spectra. The baseline thus obtained was then subtracted from the spectra. 

2 sets of classification algorithms were developed and tested on the Jornada spectra. 

Classification using all 6 algorithms was done in 2 steps - step 1 included a procedure 

that was termed “reconstruction”, and step 2 included a procedure that was termed 

“cropping”. Reconstruction of a given spectrum was done after detecting the peaks 

contained in it - the Raman intensity of all the detected peaks within the regions 

equivalent to their respective peak width were retained and appended to a 0-vector of 

the length same as that of the Raman spectrum at their respective Raman shift positions. 

Cropping was performed on the reconstructed spectra - all the peaks were “cropped” 

out and concatenated with each other to generate a “cropped” spectrum representative 

of the base spectrum. 

 

6.3.1 Preprocessing 𝛂 

For the first set of algorithms, the RRUFF and Jornada spectra were preprocessed 

using preprocessingα. The 3 algorithms were named α1, α2, and α3. For the first set of 

preprocessing algorithms, wavelet transformation was performed depending upon the 

algorithm being implemented. This was followed by feature (peak) detection, which 

was done by fitting Gaussian across the spectroscopic vectors. For the second set, the 

RRUFF and Jornada spectra were preprocessed using preprocessingβ, and the 

algorithms were named β1, β2, and β3. For the second set of preprocessing algorithms, 

wavelet transformation followed by baseline correction was performed depending upon 
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the algorithm being implemented. Feature (peak) detection was done after that by 

fitting Gaussian across the vectors. 

α1 – Raw spectra from the Jornada dataset were read into the code (Figure 47). The 

raw Jornada spectra were interpolated over the same Raman shift range as that of the 

RRUFF spectra. All Jornada spectra were retained in their original form (i.e., Jornada 

spectra do not undergo any preprocessing). First, for step 1, the spectra in the RRUFF 

database were preprocessed using preprocessingα were then passed into the 

“reconstruction” function. Then, the dot product (cosine similarity function, Eq. 6.1) of 

the one Jornada spectrum at a time was computed with “reconstructed” spectra in the 

RRUFF database. 

cos θ = |
𝑃⃗ ⋅𝑄⃗ 

‖𝑃⃗ ‖‖𝑄⃗ ‖
| ∈ [0,1]       (6.1) 

where 𝑃⃗  and 𝑄⃗  are the vectors P and Q, respectively representing 2 spectra, ‖𝑃⃗ ‖ and 

‖𝑄⃗ ‖ are the magnitudes of 𝑃⃗  and 𝑄⃗ , respectively, and θ is the angle between 𝑃⃗  and 𝑄⃗  

that quantifies the similarity between the vectors through the cosine metric. 

A fixed threshold was set for this initial dot product to shortlist the RRUFF spectra 

as the true positive matches. The matches obtained as “true positives” from the RRUFF 

database were then shortlisted for step 2 involving cropping. The Jornada spectrum was 

“cropped” with the help of the features (peaks) of one shortlisted RRUFF spectrum at 

a time. The positions corresponding to the peak positions of the RRUFF spectrum were 

marked on the Jornada spectrum, and fragments as wide as the respective peaks of the 

same RRUFF spectrum were cropped out and appended together. In addition to this, 
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“cropping” was also performed on the RRUFF spectrum under consideration. These 

representative vectors for the Jornada and RRUFF spectra were used to compute the 

dot product. This dot product was computed to obtain matches for individual peaks 

between a given RRUFF spectrum and the Jornada spectrum which is being classified. 

If the dot product exceeded the threshold, the RRUFF spectrum was returned as a 

match. 

 

Figure 47. The flowchart depicting the steps taken when implementing preprocessing 

𝛼 before employing cosine similarity to find matches for the measured spectra. The 

flowchart includes steps taken for both measured and reference spectra. 

 

α2 – Raw spectra from the Jornada database was read into the code. The raw Jornada 

spectra were interpolated over the same Raman shift range as that of the RRUFF 

spectra. Jornada spectra were picked up from the database one at a time, and wavelet 

transform was performed on them to remove the high-frequency noise interfering with 

the signal. No baseline correction was done on the spectral samples and hence, all the 

spectral samples in the Jornada database were retained in their original shape. RRUFF 

spectra were observed to possess a generally higher signal-to-noise ratio (SNR). For 
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maintaining all the reference spectra at a high SNR, they were run through the wavelet 

transformation routine using a Daubechies-type db5 wavelet. Baseline correction was 

not performed on the reference spectra and their wavelet transformed versions were 

used directly for feature detection using Gaussian fitting. After the features (peaks) 

were detected for all the reference spectra, that information was stored in a separate 

python dictionary labeled under the respective sample. All the spectra in the reference 

database were reconstructed using their respective peak(s) information – all detected 

peaks (i.e., their position, width and intensity) for a spectrum under consideration were 

retained and appended on to a 0-vector of the same length as that of the original sample, 

and this was repeated for every spectrum in the database. After this, classification of 

the samples in the measured dataset was done. The wavelet transformed version of one 

measured sample at a time from the dataset was passed into the classification function 

to evaluate the similarity metric with respect to every reconstructed spectrum in the 

reference database. Firstly, the measured sample underwent interpolation in order to 

rescale it to the same range as that of the reference spectra. Next, the interpolated 

measured spectrum was passed into a local function along with one reconstructed 

reference spectrum at a time to evaluate the “cosine similarity”. The reconstructed 

measured spectrum and the reconstructed reference spectrum were then used to 

compute the similarity metric. The value of the metric was compared against a set 

threshold – if the value exceeded the threshold, the matched spectrum was carried 

forward to the next step of comparison in which all its individual matching peaks were 

located in the measured spectrum. This was repeated for all the spectra in the reference 

database for any given measured spectrum. The matches obtained as “true positives” 
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from the RRUFF database were then shortlisted for step 2 involving cropping. The 

Jornada spectrum was “cropped” with the help of the features (peaks) of one shortlisted 

RRUFF spectrum at a time. The positions corresponding to the peak positions of the 

RRUFF spectrum were marked on the Jornada spectrum, and fragments as wide as the 

respective peaks of the same RRUFF spectrum were cropped out and appended 

together. In addition to this, “cropping” was also performed on the RRUFF spectrum 

under consideration. These representative vectors for the Jornada and RRUFF spectra 

were used to compute the dot product. This dot product was computed in order to obtain 

matches for individual peaks between a given RRUFF spectrum and the Jornada 

spectrum which is being classified. If the dot product exceeded the threshold, the 

RRUFF spectrum was returned as a match. 

 

α3 – Similar to that in algorithm 2, the measured spectra were treated with 3 different 

Daubechies wavelets (db4, db7, and db11) to remove the noise from the spectra. The 

wavelet transformed version of measured spectra (one at a time) were passed through 

Gaussian fitting for features (peaks) detection. It was observed that cleaning up the a 

given measured spectrum using 3 different wavelets to create 3 subcases occasionally 

facilitated in different sets of features (peaks) being detected for that measured 

spectrum. 

After peak detection was performed for all 3 variants of wavelet transformed 

measured spectrum, 3 separate reconstructed forms of the measured spectrum were 

prepared. All the detected peaks in the sample were retained and appended at their 
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respective positions to a 0-vector of the size of the measured spectrum generating 3 

separate reconstructed vectors. This was followed by the preprocessing and feature 

detection for the reference spectra in the RRUFF database. The preprocessing of the 

reference spectra involved removal of noise by performing DWT using the db5 

Daubechies wavelet. Baseline correction was not performed on any of the reference 

spectra in this method. After noise removal was done on the spectra, “features 

detection” was performed on them by fitting Gaussians of appropriate dimensions to 

all the detectable sharpest characteristic peaks of every spectrum. Next, the 

reconstruction of the reference spectra was done with the help of the peaks which were 

detected for them. The dot product was then calculated for a given measured spectrum 

and compared to a set threshold, and all the reference spectra that yielded a dot product 

higher than the threshold were shortlisted for step 2 of comparison. 

In step 2, the shortlisted vectors from the set of reconstructed reference spectra were 

used for computing the metric for the measured sample in consideration. Vectors were 

picked up one at a time from the set of reconstructed reference spectra data and 

“cropped” with the help of their peaks’ information. This was done by cropping out 

fragments of the length equivalent to the width of each peak from the vector, at 

locations corresponding to the corresponding peaks. These fragments were then 

concatenated with each other to create a new vector representative of the original, 

containing only the peaks from the original vector. Cropping was performed on the 

sample with the help of the peaks’ information on the reference spectrum it was being 

compared with. Fragments from the reconstructed measured spectrum were obtained 

at the locations corresponding to the peak positions of the reference spectrum, of length 
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equivalent to the width each peak. These fragments were then joined together to obtain 

a vector representative of the measured spectrum, which may or may not contain any 

of the peaks present in the measured spectrum. These two “cropped” vectors were then 

used to compute the dot product which was then compared to a set threshold to suggest 

a “match”. 

 

6.3.2 Preprocessing β 

The general implementation of β algorithms is described using the flow diagram in 

Figure 48, and the detailed description of the algorithms follow within the text. 

 

Figure 48. The flowchart depicting the steps taken when implementing preprocessing 

𝛽 before employing cosine similarity to find matches for the measured spectra. The 

flowchart includes steps taken for both measured and reference spectra. The difference 

between preprocessing𝛼and preprocessing 𝛽 is the inclusion of baseline correction in 

the latter. 

β1 – This algorithm was a modification of α1. Prior to performing feature detection, 

the preprocessing of the reference spectra involved a baseline correction step, followed 

by the wavelet transform. The baseline correction was done by Asymmetric Least 
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Square (ALS) fitting. This was done to remove the low-frequency fluorescence signal 

from the spectra, which would yield just the Raman signal present in each spectrum, 

with a uniform zero baseline everywhere else along each spectrum. The remainder of 

this algorithm remained same for every other step as α1. 

β2 – This algorithm was a modification of α2. Like that in β1, the baseline correction 

was performed for all the spectra in the reference database after wavelet transform, 

prior to performing feature detection. However, baseline correction was not done for 

the measured spectra and the preprocessing involved only wavelet transform. The 

remaining steps were same as those for α2. 

β3 – This algorithm was a modification of α3. Baseline correction was performed on 

the wavelet transformed reference spectra prior to feature detection using Gaussian 

fitting. In addition to this, baseline correction was also performed on all 3 variants 

(derived using db4, db7 and db11) of the wavelet transformed measured spectrum 

before feature detection. Rest of the algorithm follows the methodology described 

under α3. 

 

6.3.3 Cross-validation 

A simple model evaluation algorithm was devised to assess if the performance of 

the classifiers. The distribution of the cosine similarity values for all the measured 

samples in the measured dataset is collected and plotted. This was done by empirically 

determining a probability distribution function to look at the distribution of the cosine 

similarity values for all the measured samples in the measured dataset (Gholamy and 
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Kreinovich, 2017). The probabilities corresponding to the values of the cosine 

similarity were estimated with the help of the number distribution of the cosine 

similarity values, i.e., the histogram of the cosine similarity values. The p-values of the 

cosine similarity values were distributed into a total of 20 bins to display the values 

between 0 and 1.0. If the probability values follow an exponential distribution, the 

values at the tail end of the curve become increasingly unique depending upon the 

steepness of the curve (Benjamini and Hochberg, 1995; Breheny et al., 2018). 

Intuitively, the greater the more unique the values are, the lesser the chance for them to 

be a consequence of “chance” and the greater the likelihood for them to be accurate. 

 

6.4 Results 

6.4.1 Preprocessing α – Results and Validation 

The results pertaining to all six algorithms are presented in this section in sequential 

order as presented above. The results for the measured sample number 25699 in the 

parent database (of which the measured dataset is a subset) are discussed in this section. 

For all the algorithms and different preprocessing schemes used, the highest match is 

generally observed with “Nitratine” with several other mineral species following it with 

a decline in the match score. Depending upon the complexity of the classification 

algorithm, significant variations in the match scores were observed. A detailed 

description of the overall performance of the algorithms along with the advantages and 

disadvantages will follow. Towards the end of this section, an analysis of the 

methodology adopted for validating the results is provided at the end of the section. 
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α1 provided the simplest form of cosine similarity classifier among all the available 

alternatives (results for measured sample label 25699 in Figure 49 (a)). Its simplicity 

is a consequence of the lack of preprocessing done on the measured samples. This made 

the computation of the dot product in step 1 and 2 of algorithm α1 quicker and easier 

to evaluate. Cosine (vector) similarity cannot differentiate a peak from a noisy spike in 

any given vector. The cosine similarity between 2 given spectra was observed to be 

affected by the feature of cosine similarity. For the measured samples with relatively 

low noise, this algorithm produced match results which would look correct by glancing 

at them without doing any cross-validation. Contrarily, the match results for the 

samples with a significant amount of high frequency noise (usually SNR < 1.0) 

sometimes looked completely bogus, despite resulting in a high cosine similarity value. 

In addition to this, the preprocessing of the reference spectra did not include baseline 

correction prior to feature detection, which suggested the possibility of false peak 

detection in the samples. This was also speculated to have negatively affected the dot 

product, and hence the match, by giving non-zero product in the regions where there 

were no observable peaks. 

Another notable disadvantage of α1 were the lack of spread of the dot product 

values for the matches (validation for the match results for measured sample label 

25699 in Figure 49 (b)). A significant portion of the match values were observed to be 

above 0.9 and showed little, if any distinction from each other, making the choice of a 

good match from a poor one extremely hard without any cross-validation. This also led 

to difficulties in setting up a threshold value for shortlisting reference spectra, and 

hence accurately matching peaks between the measured and reference spectra. Results 
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of the validation algorithm produce a discrete frequency histogram of all the possible 

match values. The probability frequency of α1match values is best fit to a Poisson 

distribution. The intuitive validation approach described in the previous section has not 

been shown to be useful with a Poisson distribution in past research (Breheny et al., 

2018). This means that the cosine similarity values obtained with the help of this 

algorithm may or may not be reliable. 
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Figure 49. (a). The match results obtained by implementing algorithm α1 are 

presented. The top panel shows the unclassified measured spectrum, and the bottom 

panel shows the reference spectra obtained as the matches for the measured spectrum. 

The top 5 spectral matches and their corresponding cosine similarity values along with 

their respective mineral classes have been shown on the plot. (b). The validity of the 

match results has been shown in the plot. The distribution of the cosine similarity values 

seems to follow Poisson distribution which implies underlying systemic issues with the 

procedure. 
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α2 was an improvement on α1 in that the measured spectrum was first passed 

through a DWT treatment before the similarity metric was evaluated with any of the 

reference spectra. The top 5 matched spectra and their corresponding scores for the 

measured spectrum labeled 25699 are shown in the Figure 50 (a). As described in 

section 2.1, 3 different wavelets are implemented to perform wavelet transform of the 

measured spectrum, leading to the generation of 3 wavelet transformed spectra 

representative of the measured spectrum. Each of the 3 wavelet transformed spectra 

underwent a significant reduction in the high frequency noisy spikes. Therefore, as 

compared to α1, the dot products computed in step 1 of α2 were observed to yield 

matches which were considered more reasonable on preliminary inspection based on 

observation. However, on passing the similarity values through the validation 

algorithm, it was observed that they also follow a Poisson distribution which implies a 

low reliability of this algorithm. A significant number of matches corresponding to high 

dot products were suspected to be a consequence of the fluorescence present in the 

wavelet transformed measured spectrum. Despite performing DWT, the non-zero 

baseline of the measured spectrum led it to have non-zero Raman intensity at almost 

every Raman shift. These regions of non-zero intensity were speculated to be resulting 

in high a similarity metric when their dot product was computed against the peak 

regions in any given reference spectrum. 

A threshold was set to shortlist reference spectra for computing dot products in the 

second phase. As opposed to the resulting dot products after step 1 of α1, a much more 

uniform spread was observed in the distribution of the dot products resulting from step 

1 of α2. The distribution of the match scores for all reference spectra corresponding to 
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the measured spectrum labeled 25699 is shown in Figure 50 (b). This helped with 

setting up a more robust threshold for shortlisting the reference spectra. Like the first 

phase of α1, the issue of “false positives” being thrown out as matches persisted in the 

first phase of α2. This issue was attributed to the presence of a non-zero baseline, but 

it was relatively less proliferated due to the removal of noise from the samples. 
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Figure 50. (a). The match results obtained by implementing algorithm α2 are 

presented. The 1st, 3rd and 5th panels of the plot show the unclassified measured 

spectrum along with their DWT versions derived using (i) db4, (ii) db7, and (iii) db11 

wavelets respectively. The top 5 matched reference spectra obtained for all these cases 

are shown in the 2nd, 4th and 6th panel of the plot. (b). The result of the validation test 

for the matches obtained for (iii) is shown. The p-values obtained for the cosine 

similarity values show Poisson distribution which highlights an intrinsic problem in the 

method. 
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α3 was an improvement on both algorithms α1and α2. In addition to performing 

wavelet transform on the measured spectra, “feature detection” was also done for them. 

Top 5 matched reference spectra with their cosine similarity scores corresponding to 

the measured spectrum labeled 25699 are shown in Figure 51 (a). Like α2, the wavelet 

transform was performed on the measured spectra using 3 different Daubechies’ type 

wavelets – db4, db7, db11. The effect of using 3 different wavelets was prominently 

observed after feature detection. Generally, all the prominent sharp features were not 

captured for any one of the wavelet-transformed measured spectra. However, feature 

detection for all 3 variants of the wavelet transformed measured spectrum was 

collectively able to determine all the prominent features for any given measured 

spectrum. After feature detection was performed on a measured spectrum, it was 

reconstructed using the detected peaks – all the peaks were individually cropped out of 

the original spectrum and appended at their respective positions to a 0-vector of the 

same length as that of the measured spectrum. In the first phase of this algorithm, the 

dot products were computed between the reconstructed measured spectrum and a 

reconstructed spectrum taken up from the reference database one at a time. A major 

advantage speculated in the implementation of this algorithm was that it completely 

nullified the influence of those regions on the dot product which did supposedly did 

not contain any sharp peaks. A disadvantage of this method was that baseline correction 

was not conducted on any of the measured or reference spectra, which could have 

potentially led to the detection of false peaks in some samples. This was similar to that 

for α1 and α2 and could have further reduced the reliability of the match metric value 

and the match itself. The matched spectra from RRUFF database were shortlisted and 
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their reconstructed forms were thrown in with the reconstructed measured spectrum for 

computing the dot products in step 2. 
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Figure 51. (a). The match results obtained by implementing algorithm α3 are 

presented. The 1st, 3rd and 5th panels of the plot show the unclassified measured 

spectrum along with their DWT versions derived using (i) db4, (ii) db7, and (iii) db11 

wavelets respectively. The top 5 matched reference spectra obtained for all these cases 

are shown in the 2nd, 4th and 6th panel of the plot. (b). The result of the validation test 

for the matches obtained for (iii) is shown. The p-values obtained for the cosine 

similarity values show exponential distribution. All the p-values for cosine similarity 

values beyond the 0.675-mark account for less than 5% of the cosine similarity 

population, which implies the uniqueness of the similarity values in this range. This 

suggests improved reliability of the matches obtained using this algorithm. 
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Like the previous algorithms, step 2 involved cropping the reconstructed measured 

spectrum and the reconstructed reference spectrum under consideration with the help 

of the peaks of the said reference spectrum. The 2 cropped spectra were dotted against 

each other to surmise the peaks that match between the spectra. The reconstruction of 

the measured spectrum with the help of its own peaks prior to computing dot products 

in either of the phases provided a significant advantage over the preceding algorithms 

– this nullification of the dot product to 0 where there was no match for any peak in the 

reference spectrum, with any of the peaks in the measured spectrum. 

Unlike the 2 previous algorithms, the probabilities of the similarity values followed 

a declining exponential distribution. The distribution of the cosine similarity scores for 

all the reference RRUFF spectra corresponding to the measured spectrum 25699 is 

shown in Figure 51 (b). Towards the higher end of the similarity values, the 

probabilities were observed to become drastically low with their number distribution 

towards the tail end of the exponential. This confirmed the uniqueness of the higher 

cosine similarity match scores obtained by implementing algorithm α3. 

 

6.4.2 Preprocessing β – Results and Validation 

β1 was designed as an improvement on α1and included baseline correction on the 

reference spectra (top 5 matches for measured spectrum 25699 in Figure 52a). This was 

assumed to have improved feature detection for reference spectra by reducing the 

possibility of extracting false peaks in any of the spectra. The presence of high 

frequency noise remained as the prime reason behind numerous “false positives” being 
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extracted as matches. Additionally, the issue of ambiguous high metric values for 

matched spectra was still prevalent. The results of the validation test on the cosine 

similarity values obtained in this algorithm had the same trend as that observed in the 

α1. This implied that the implementation of baseline correction on α1 did not make any 

improvements on the reliability of the obtained match results. 
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Figure 52. (a). The match results obtained by implementing algorithm β1 are 

presented. The top panel shows the unclassified measured spectrum, and the bottom 

panel shows the reference spectra obtained as the matches for the measured spectrum. 

The top 5 spectral matches and their corresponding cosine similarity values along with 

their respective mineral classes have been shown on the plot. (b). The validity of the 

match results has been shown in the plot. The distribution of the cosine similarity values 

seems to follow Poisson distribution which implies underlying systemic issues with the 

procedure. 
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There was no observable difference in the matches which obtained in the second 

phase of the procedure (match scores distribution for algorithm β1 in Figure 52b). Most 

of the highest match scores corresponded to the same reference spectra which resulted 

from implementing algorithm 1, with a reduced number of matched peaks in step 2 of 

the current algorithm compared to those observed in step 2 of α1. 
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Figure 53. (a). The match results obtained by implementing algorithm β2 are 

presented. The 1st, 3rd and 5th panels of the plot show the unclassified measured 

spectrum along with their DWT versions derived using (i) db4, (ii) db7, and (iii) db11 

wavelets respectively. The top 5 matched reference spectra obtained for all these cases 

are shown in the 2nd, 4th and 6th panel of the plot. An important distinction between 

algorithm α2 and algorithm β2 can be noted in terms of the performance of the 

preprocessing routines - the much smaller characteristic peaks can also be easily 

retrieved when implementing the latter. (b). The result of the validation test for the 

matches obtained for (iii) is shown. The p-values obtained for the cosine similarity 

values show Poisson distribution which highlights an intrinsic problem in the method. 
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Similar to β1, β2 improved the preprocessing of reference spectra by performing 

baseline correction on them in addition to wavelet transform prior to feature detection. 

Top 5 matches found using each Daubechies’ wavelet for measured spectrum 25699 

are shown in Figure 54 (a). This was assumed to have improved the feature detection 

for the reference spectra. No changes were made to the preprocessing methodology of 

the measured spectrum. As opposed to the matches obtained for α2, there was a 

noticeable improvement in the matches for β2. This was assumed because of the 

improvement in feature detection. However, there were still several instances where 

the matches appeared out of place which was attributed to the variable baseline in any 

given measured spectrum. The results of the validation test on the cosine similarity 

values obtained in this algorithm had the same trend as that observed in the α2. This 

implied that the implementation of baseline correction on α1 did not make any 

significant improvements on the reliability of the obtained match results. 

In step 2, there were issues like those observed for α2. The cropped-out regions 

from any measured spectrum still generally non-zero intensity and therefore resulted in 

non-zero contribution to the overall metric value when dotted with the peak regions of 

the reference spectrum being compared against (match score distribution shown in 

Figure 53b). At times, this seemed to be resulting in matches being found in the regions 

where peaks could be observed in the measured spectrum via preliminary inspection. 

The β3 algorithm was an improvement over all the previous algorithms and was 

analogous to α3 (top 5 corresponding to each Daubechies’ wavelet applied to measured 

spectrum 25699 shown in Figure 54a). In addition to the methodology adopted as α3 
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the spectra from the reference database as well as the measured spectra underwent 

baseline correction before feature detection. This helped with reducing the chance of 

finding false peaks in both the reference spectra as well as the measured spectra. Both 

the spectra were reconstructed with the help of their respective peaks, which was 

postulated to minimize “false positives”. This was expected to be happening from the 

0-ing out of the spectra everywhere except for the peaks’ regions, which would 

effectively squash the dot product to an appropriate value due to 0 contribution from 

the regions with 0 intensity. On performing the validation test on the cosine similarity 

values for this algorithm, a trend similar to α3was observed. Additionally, the number 

density of the higher cosine similarity values was further reduced as compared to that 

observed in the case of α3. This suggested that β3was a further improvement over α3. 

The shortlisting of the matched spectra from the first phase was also expected to be 

increasingly accurate compared to that from the first phase of α3. It was assumed that 

extensive preprocessing of the reference and measured spectra was major contributing 

factor to that. Furthermore, the metric values were found to be very well spread over a 

wide range between 0 and 1 that suggested an improved reliability of the matching 

algorithm (match score distribution for measured spectrum 25699 shown in Figure 

54b). In step 2, the matching of the individual peaks between the spectra being 

compared against one another also seemed to generate overall acceptable results. On 

some occasions, the results did not seem accurate in the second phase as all the peaks 

did not appear to come out as matches as were found through preliminary inspection. 
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Figure 54. (a). The match results obtained by implementing algorithm β3 are 

presented. The 1st, 3rd and 5th panels of the plot show the unclassified measured 

spectrum along with their DWT versions derived using (i) db4, (ii) db7, and (iii) db11 

wavelets respectively. The top 5 matched reference spectra obtained for all these cases 

are shown in the 2nd, 4th and 6th panel of the plot. An important distinction between 

algorithmα3and algorithmβ3can be noted in terms of the performance of the 

preprocessing routines - the much smaller characteristic peaks can also be easily 

retrieved when implementing the latter. (b). The result of the validation test for the 

matches obtained for (iii) is shown. The p-values obtained for the cosine similarity 

values show exponential distribution. All the p-values for cosine similarity values 

beyond the 0.675-mark account for less than 5% of the cosine similarity population, 

which implies the uniqueness of the similarity values in this range. This suggests 

improved reliability of the matches obtained using this algorithm. In addition to this, 

the decline of the exponential is steeper than that obtained for algorithm α3 that 

suggests an improved reliability of the matches thus obtained. 
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6.5 Summary and Implications 

The performances of the six classification algorithms developed in this work differ 

substantially. These performances were quantified with the help of a validation/model 

evaluation algorithm. Results show that the performance of α1, α2, β1, and β2 produced 

fewer appropriate matches. On the contrary, the results obtained using α3 and β3 were 

generally reliable, with the latter delivering an overall superior quality of matches (p-

values ≤ 𝛼 = 0.05) for the measured spectra. It was observed that the matches for 

individual mineral species were obtained with a greater precision using β3, whereas the 

matches for mixture species or those corresponding to individual peaks in the spectra 

were found to be better using α3. This suggests that to obtain an overall reliable and 

accurate match for the measured Raman spectra in any new database, α3 and β3 can be 

used together to complement each other. 

To perform feature (peak) detection in the measured and reference spectra, two 

different user-defined functions were tested – “findpeaksG3” and “autofindpeaks”. 

“autofindpeaks” is as an automized version of “findpeaksG3” that does not require 

user-defined inputs for the amplitude and slope thresholds for determining the peaks in 

any given signal, where “signal” in this context is the Raman spectrum/signal under 

consideration. The only distinction observed in terms of the precision with which they 

could detect all the significant features in any spectrum, with autofindpeaks having a 

more intricate algorithm as compared to findpeaksG3 and hence performing slightly 

better. However, findpeaksG3 was able to run faster on same spectra compared to 

autofindpeaks. For any given sample, autofindpeaks had about 4-6 seconds longer 
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runtime compared to findpeaksG3. This translated to about 12 hours of additional 

runtime for the entire measured and reference databases when using autofindpeaks, 

while algorithm β3 was implemented. This time was observed to noticeably increase 

for other algorithms involving the use of peak detection methods on lesser preprocessed 

samples. In other words, autofindpeaks produced similar results as those of its 

counterpart at the expense of time required to perform the computations. Due to this 

reason, findpeaksG3 was preferred over autofindpeaks for carrying out feature 

detection. 

Daubechies’ wavelets were extensively explored for spectral samples in this study. 

DWT has been previously shown to work well with Raman spectra for removing noise 

from them. Daubechies’ wavelets are one of the wavelet types that are known to work 

best with the Lorentzian and Gaussian type peaks present in the Raman spectra. In this 

work, a general algorithm for performing DWT for noise removal using Daubechies’ 

wavelets was developed. The algorithm demonstrated the performance of 3 different 

wavelets, db4, db7 and db11, on the measured spectra, and the performance of db5 on 

the reference spectra. The choice of these empirically made. These wavelets worked 

well to remove a significant amount of noise from the spectra while preserving their 

shape so that the feature detection algorithm would also work efficiently for extracting 

most of their characteristic features. 

Previous studies have shown the performance of wavelets for analyzing Raman 

spectra via DWT or CWT, but not on a dataset of such magnitude. A total of 9,330 

reference spectra and about 900 measured spectra were used to analyze the 
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performance of Daubechies’ wavelets for removing high frequency noise from them 

via DWT method. The 3 different Daubechies’ wavelets – db4, db7 and db11 – 

occasionally produced distinct kinds of smoothed spectrum from each other, which was 

noticeable after performing feature detection on the spectra. Often some of the features 

were not detected in the one or more kinds of the smoothed spectra by the feature 

detection function despite the said features being observable through preliminary 

(visual) analysis. Despite this challenge, at least 3 of the wavelets produce a smooth 

spectrum for which all the significant features can be detected by the feature detection 

function. 

Raman spectroscopy can be a time-intensive process. It can require long time 

intervals between the excitation and stabilization of the samples for which the spectra 

are being observed. These long intervals reduce corruption of the signal by noise, 

fluorescence, and cosmic radiations. On contrary to this, REBS-based ARS spends 

about 20 minutes to obtain one spectrum and hence there is an abundance of high 

frequency noise, fluorescence and cosmic radiations in the spectra detected by this 

device. To our knowledge, this is the first work to study the performance of wavelet 

algorithms for analyzing considerably large Raman spectra datasets with low signal-

to-noise ratio. This work shows that one can effectively employ 3 different Daubechies’ 

wavelets to remove noise. Furthermore, removal of noise is a necessary process that 

ought to be performed before comparing spectra in databases against each other. And 

additionally, baseline correction using ALS to remove fluorescence may also be 

performed, if required. 
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The results obtained using the proposed algorithms are consistent with previous 

literature. (Kwiatkowski et al. 2010) found a cosine similarity match metric of 

approximately 70% when attempting to obtain a match using the low-SNR Raman 

spectrum of an organic mixture. In this work, the six algorithms applied to classify the 

Raman spectra in the Jornada dataset using the Raman spectra in the RRUFF database 

yielded similar results. (Kwiatkowski et al. 2010) also compared the performance of 

other possible classification algorithms with that of cosine similarity and concluded 

that other vector-based classification algorithms can perform equally well or better 

depending on the algorithm. Other vector-based, trajectory-based and machine learning 

algorithms cited in this work provide even more reliable matches for unclassified 

Raman spectra (Carey et al., 2015; Liu et al., 2017; Park et al., 2017; Zhao et al., 2017; 

Stables et al., 2017; Kyriakides et al., 2011). Overall, we infer that efficient 

preprocessing strategies followed by sophisticated algorithms can significantly 

improve the aerosol chemical characterization using their Raman spectra. 
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Chapter 7: Conclusions 

 

With increasing natural and anthropogenic emissions, we observe a vast 

compositional diversity in carbonaceous and dust-like substances in the atmosphere. 

The cloud effects of these aerosols continue to be the most significant source of 

uncertainty in the overall aerosol indirect radiative forcing. Consequently, a better 

understanding of the effect of different aerosol physicochemical properties on their 

water uptake behavior is critical. In this dissertation, we used experimental and 

computational methods to study the effects of particle morphology and aqueous 

solubility on the water uptake characteristics of changing chemical composition related 

to carbonaceous aerosols. 

 

7.1 Summary and Implications 

We began our study by proposing and testing a new methodology for cloud 

condensation nuclei (CCN) analysis of aerosols (chapter 2). This new methodology 

involves the use of the novel Aerodynamic Aerosol Classifier (AAC) instrument for 

improving the number concentration measurements and particle sizing. The AAC-

based measurements were found to be comparable to that of the more traditional CCN 

measurement setup that employs a Differential Mobility Analyzer (DMA) instrument 

for the CCN analysis of aerosols. However, the AAC seemed to offer notable 

advantages in terms of the CCN analysis of large molecules (such as, sucrose), and also 

provided a method for morphological correction in particle sizes, and thus resulting in 
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the CCN activity analysis with reduced uncertainties. These advantages were especially 

evident from the hygroscopicity parameterization of the aerosols from the 

measurements using the AAC instrument. 

Our work suggests that the use of the AAC instrument could be valuable in 

laboratory and field measurements, particularly for low hygroscopicity aerosols and 

particles with significantly irregular morphology (such as, black carbon). Furthermore, 

our results suggested that the explicit treatment of the particulate shape and density in 

the CCN analysis can significantly improve the water uptake predictions of aerosols. 

In chapters 3 and 4, we extensively discuss the development and application of a 

new CCN analysis framework using laboratory measurements. The new CCN analysis 

framework was called the hybrid activity model (or, HAM) and was based on the 

explicit treatment of the dissolution properties of aerosols on the particulate level. The 

water uptake and hygroscopicity of aerosols are closely linked to their aqueous 

solubility (Köhler, 1936; Petters and Kreidenweis, 2007). Additionally, solubility-

based hygroscopicity parameterizations and CCN analysis frameworks only account 

for the dissolved fraction of aerosol particles in their droplet growth (Petters and 

Kreidenweis, 2008; Sullivan et al., 2009). In this dissertation, we showed that a 

combined treatment of dissolved and undissolved solute fraction can enhance the water 

uptake predictions and hygroscopicity parameterization of pure, as well as mixed 

particles. Moreover, HAM agreed well with experimentally observed droplet growth 

under both supersaturated and subsaturated relative humidity conditions. Our results 
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suggest that using a comprehensive CCN analysis model can improve droplet growth 

estimates for aerosols with wide range of aqueous solubilities. 

In this dissertation, we also derived the single hygroscopicity parameter using the 

HAM framework. We found two main advantages of the HAM-based single 

hygroscopicity parameter. First, the HAM hygroscopicity accounts for the contribution 

of the aqueous solubility as well as the particle size on the droplet growth and water 

uptake. And second, the single hygroscopicity parameter simplistically quantifies a 

comprehensive water uptake mechanism in the form of an empirical variable. 

Therefore, the HAM hygroscopicity parameter provides the flexibility to implement a 

complex water uptake mechanism within large-scale climate models to represent the 

water uptake behavior of aerosols. 

Chapters 5 and 6 describes the computational work in this dissertation. Chapter 5 

presented the implementation of the HAM single hygroscopicity parameter in the 

global climate model (the Community Atmosphere Model). We found that a simplified 

form of the HAM hygroscopicity was feasible to use within the climate model, without 

compromising the computational efficiency. Findings in this work suggest that the use 

of a comprehensive hygroscopicity approximation of particle water uptake can 

substantially improve the predictions of physical and radiative properties of the 

aerosols and clouds. Through sensitivity tests and correlation analysis it was confirmed 

that the representation of aerosol hygroscopicity can significantly alter the aerosol and 

cloud properties. 
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Chapter 6 demonstrates the applicability of statistical and data-driven techniques 

for chemical characterization of aerosol particles using their Raman spectrometric 

measurements. In past studies, machine learning and statistics have been rigorously 

implemented for characterizing the chemical composition of aerosols using their 

Raman signatures. However, these studies have been limited to laboratory 

measurements of up to a few tens of samples. This work shows the application of 

similar computational techniques to characterize ambient aerosol particles. 

Furthermore, this work is the first to present the use of the Raman spectra measured 

with a portable Automated Raman Spectrometer for the chemical characterization of 

atmospheric aerosols. Results from this work suggest that the chemical composition 

and mixing states of the aerosols can be determined using their single-particle 

spectrometric measurements. This work emphasizes that rigorous spectral de-noising 

strategies are generally necessary before meaningful inferences regarding chemical 

composition can be made for a given aerosol population. Additionally, this work 

describes the species that may be likely encountered in the atmosphere for whose 

hygroscopic properties would need to be understood. 

 

7.2 Final Thoughts and Recommendations for Future Work 

The primary goal of this dissertation is to contribute to reducing the uncertainties 

in the AIF due to carbonaceous species. The experimental and computational methods 

developed in this work show promising results towards improving the confidence with 

which the water uptake properties and CCN activity of aerosols are understood. As 
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such, this dissertation describes feasible methods which can be adopted to develop 

CCN activity models in the future. Similar to HAM, more intricate CCN activity 

models can be developed by explicitly incorporating other well-understood 

physicochemical properties of aerosols (viscosity, surface tension, etc.). 

In future studies, advancements in instrumentation techniques can be integrated 

within CCN models to improve the droplet growth from aerosols in ambient conditions. 

For instance, incorporation of parameterized particle morphological descriptors (size-

resolved dynamic shape factor, effective density, etc.) within the CCN activity 

frameworks can be explored. Morphological properties of the particles can be used to 

explicitly resolve surface and bulk contributions on the droplet growth, without relying 

on empirical parameters. Therefore, through explicit inclusion of these properties in 

CCN analysis, a more thorough understanding of water uptake behavior atmospheric 

aerosols can be achieved. Furthermore, implementation of such CCN activity 

frameworks within climate models can lead to better climate and air quality predictions. 

In addition to the above, more advanced machine learning and deep learning 

methods may be developed in the future for the chemical and mixing state 

characterization of ambient aerosol particles. Advanced machine learning algorithms 

(such as, neural networks) have been shown to effectively classify chemical 

compositions with high precision. Combining the de-noising strategies developed in 

this dissertation may have the potential to effectively classify ambient aerosols when 

combined with neural network approach. 
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Finally, this dissertation provides recommendations for future research with the 

help of quantified key physicochemical properties of aerosol particles that directly 

relate to their CCN activity and water uptake behavior. Findings reported in this work 

can be potentially used to reduce the uncertainties in physical and radiative properties 

predicted by climate models. Lastly, results in this dissertation show that small-scale 

experimental methods can generate valuable data that can in turn be used within large-

scale modeling frameworks to obtain meaningful inferences about the impact of 

aerosols on the climate. Overall, results presented in this work can be used to improve 

our understanding the climate and air quality. 
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