
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the
a. James clark school of engineering. It is a graduated national science

foundation engineering research center.

www.isr.umd.edu

Local Pruning for Information Dissemination in
Dynamic Networks for Solving the Idempotent
Semiring Algebraic Path Problem

Kiran Somasundaram, John S. Baras

Isr TechnIcal rePorT 2010-12

Local Pruning for Information Dissemination in Dynamic Networks for
Solving the Idempotent Semiring Algebraic Path Problem

Kiran K. Somasundaram and John S. Baras

Abstract— We present a method, inspired from routing in
dynamic data networks, to solve the Semiring Algebraic Path
Problem (SAPP) for dynamic graphs. The method can be used
in dynamic networks such as Mobile Ad Hoc Networks, where
the network link states are highly dynamic. The algorithm
makes use of broadcasting as primary mechanism to recompute
the SAPP solution. The solution suffers from broadcast storm
problems, and we propose a selective broadcasting mechanism
that reduces the broadcast storm. We call this method local
pruning and prove its correctness.

I. INTRODUCTION

In distributed computing, several different computations
can be viewed from a common viewpoint as instances of
the Semiring Algebraic Path Problems (SAPPs) on graphs
[1]. These include well known graph problems, such as
shortest path computations, and problems that seemingly
have nothing to do with graphs, such as solutions to system
of linear equations and regular expressions describing the
language accepted by a finite automation.

The functions that can be expressed as a SAPP on graphs
have a linear algebraic interpretation over semirings [2].
Consequently, several well-know solution methods in linear
algebra, such as Gauss elimination, Jacobi and Gauss-Seidel
iterations, can be applied to the weighted adjacency matrix
associated to this algebraic path problem. These solution
methods can be classified as direct solution (elimination)
methods and iterative solution procedures. While the direct
solutions are easily implemented in a centralized processor,
the iterative solutions are more amenable to be implemented
in a distributed setting. For these iterative procedures, which
are primarily based on matrix powers [1], the convergence
depends on the structure of the weighted adjacency matrix
[1], [3].

The advent of pervasive mobile devices has created the
need for new algorithm design mechanisms for a mobile
computing platform. The limited capabilities of these mo-
bile devices has created several interesting problems that
did not exist in traditional networks. These limitations
have made communication an expensive commodity for
distributed algorithms. In particular, network-wide broadcast,
as a communication primitive, has an unreasonable cost in
these networks. In communication networks, broadcasting

Kiran K. Somasundaram and John S. Baras are with the Institute
for Systems Research and the Department of Electrical and Computer
Engineering, University of Maryland, {kirans, baras}@umd.edu

This material is based upon work supported by the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011 and the MURI Award Agreement W911-NF-0710287
from the Army Research Office.

is used for information dissemination in several algorithms,
e.g., ARPANET modified algorithm, Optimized Link State
Routing (OLSR), Topology Broadcast based on Reverse-Path
Forwarding (TBRPF), Scalable Broadcast Algorithm (SBA),
Dominant Pruning, Ad Hoc Broadcast Protocol (AHBP),
Light and Efficient Network-Wide Broadcast (LENWB),
trust certificate flooding algorithms. A summary of these
algorithms is presented in [4], [5], [6]. In mobile networks,
where the information state is highly dynamic, information
dissemination by broadcasting causes significant overhead.
This problem is called the broadcast storm problem [4].
Consequently, several local pruning approaches have been
proposed to reduce the broadcast storm problem [5]. These
pruning algorithms are aware of their local neighborhood
information and selectively broadcast only “significant” in-
formation of their local neighborhood for the distributed
computation. This selective broadcast reduces the broadcast
storm problem.

In this paper, we consider distributed computation of
the SAPP over dynamic graphs. Many problems where the
dynamics arise from the mobility of the processors or from
the changes in the element values of the weighted adjacency
matrix fall under dynamic SAPPs. Even for a few changes in
the weighted adjacency matrix, re-computation of the SAPP
using iterative procedures, in general, can exhibit long con-
vergence times. The communication cost associated with the
message passing for these iterations might be prohibitively
expensive. In this paper, we develop a new scheme for
solving the dynamic SAPP by selective broadcasting that
has a relatively inexpensive communication requirements
for the re-computations. This algorithm is inspired from
ideas from routing in dynamic networks (e.g., ARPANET,
OLSR). We consider a special class of semirings called the
idempotent semirings. Several functions including routing
objectives, overlay constructions, max-marginals, hypothesis
testings and trust certification calculations can be abstracted
using idempotent semirings.

The main contribution of this paper is identifying a se-
lective broadcasting method that ensures that the SAPP can
be computed on dynamic graphs. We call these methods
local pruning methods and provide proofs of correctness.
We provide sufficient conditions, called strict monotonicity
conditions, when the pruning algorithms preserve the SAPP
solutions in a distributed setting.

The paper is organized as follows. In Section II, we
introduce the SAPP for idempotent semirings. In section
III, we present the pruning algorithms and their correctness
proofs for the information broadcast.

II. SEMIRING SYSTEMS

We define a semiring system as any system, monolithic or
networked, that has the function of computing a special al-
gebraic problem called the Semiring Algebraic Path Problem
(SAPP) [2]. To illustrate this special path problem, we will
introduce some notations and definitions from graph theory
and some algebraic structures.

A. Notations and Definitions from Basic Graph Theory
We give definitions from graph theory that are necessary to

describe the semiring algebraic path problem. For a detailed
reference of graph theoretic notations and definitions, see
[7]. Let G(V,E) denote a labeled directed graph. The vertex
set V is the set of processors in the system, which we call
nodes, and the arc set E ⊆ V × V denotes the adjacencies
between these nodes. We consider only arc labels: for any
arc (u, v) ∈ E, there is an associated label a(u, v).

A subgraph of G, denoted by G′ ⊆ G, is a graph
G′(V ′, E′) such that V ′ ⊆ V and E′ ⊆ E (restricted to
V ′×V ′). For any vertex i ∈ V ′, the set of arcs incident to i
in any subgraph G′ is denoted by ΩG′

i . The set of paths in any
subgraph G′ between a pair of vertices i, j ∈ G′ is denoted
by PG′

ij . We denote a path p ∈ PG′

ij as a sequence of vertices
p = (i = u1, u2, . . . , un = j), where uk ∈ V ′, 1 ≤ k ≤ n.
Also, for i ∈ V ′, PG′

ii contains the empty path p = (i). For
any path p = (i = u1, u2, . . . , un = j) ∈ PG′

ij , the successor
vertex for a vertex uk, 1 ≤ k < n, in p is

ηuk
p = uk+1.

For any pair of vertices i, j ∈ V , let 2P G′
ij be the power set

of PG′

ij , which is the set of all subsets of PG′

ij . For P ∈ 2P G′
ij

the successor vertex set of the first vertex, i, is given by

HP = {ηi
p : p ∈ P}.

B. Classical Shortest Path Problem
The classical shortest path problem is a well studied graph

optimization problem in computer science and operations
research [2], [8]. Interestingly, a number of algorithms that
solve the shortest path problem can be generalized to solve a
particular algebraic path problem in semirings [2]. Before we
introduce shortest path problem on a labeled graph G(V,E).

Consider an example labeled graph G(V,E) shown in
Figure 1. The arc labels auv ∈ Z+, (u, v) ∈ E, and
artificial ∞ weights (labels) are used for non-existent arcs.
The weighted adjacency matrix corresponding to the labeled
graph in Figure 1 is

A =


1 4 7 ∞
∞ 3 2 ∞
∞ 1 ∞ 3
5 ∞ 6 2

 .
For the shortest path problem, the weight of a path p is
given by a composition rule w(p) =

∑
(u,v)∈p a(u, v), and

the weight of shortest path between a pair of vertices i, j ∈ V
is given by another composition rule

xG
ij = min

p∈P G
ij

w(p). (1)

1 

3 

4 

2 

1 

4 

3 
2 

1 

7 
6  3 

2 

5 

Fig. 1. Example network for shortest path computation

Since the number of paths in PG
ij is, in general, numerous, it

becomes computationally intractable to compute the shortest
path metric using Equation (1). However, the rules of com-
position for the shortest path problem have an underlying
structure that enables efficient computation. We will illustrate
this using instance in Figure 1. Consider the computation of
the shortest path length from 1 to 4:

xG
14 = min

p∈P G
14

w(p).

The shortest path from 1 to 4 is (1, 2, 3, 4), which has weight
8. For this path, the sub-path from (2, 3, 4) must be one of
the shortest paths from 2 to 4; otherwise, we can construct
an alternative better path from 1 to 4. This observation is
referred to as Bellman’s optimality principle [9]. This can
be generalized as follows.

Consider the shortest path from i to j. If i 6= j, then
this path is of the form (i = u1, u2 . . . , un = j). For this
shortest path, the sub-path p′ = (u2, u3, . . . , un = j) must
be the shortest path from u2 to un, and consequently, the
shortest path metric is given by xij = aik +xkj , for k = u2.
Thus, the shortest path metric computation for i 6= j can be
written as xij = mink∈V (aik +xkj). For i = j, we need also
consider the empty path from j to j, i.e, (j). For the shortest
path computation, the weight of an empty path is 0 (there is
no cost in staying at j). Thus, the shortest path computation
from j to j is xjj = min{mink∈V (ajk + xkj), 0}. For all
pairs of vertices, we can express these computations as a
system of equations:

xG
ij = min

k∈V
(aik + xG

kj), for i 6= j, and

xG
jj = min{(min

k∈V
(ajk + xG

kj)), 0}. (2)

Note, the above systems of equations is a fixed point equation
in xG

ij , i, j ∈ V that is referred to as the Bellman’s equation
[17]. In general, the Bellman’s equation do not necessarily
have a unique solution. However, there is always a minimal
solution among the set of equations [3], [2]. These minimal

solutions correspond to the weights of the shortest path
between i, j ∈ V . The system of equations in (2) yields
a computationally efficient method to compute the weight of
the shortest paths for all pair of nodes. For the example in
Figure 1, the unique solution of the system is given by the
solution matrix

X =


0 4 6 8
9 0 1 4
8 2 0 3
5 8 6 0

 .
Suppose xG

ij , i, j ∈ V is a minimal solution to Equation
(2), the corresponding set of solution paths is given by

PG
ij

∗
= {psol ∈ PG

ij : w(psol) = xG
ij}, i, j ∈ V. (3)

(A solution path, psol, is a shortest path with respect to the
weight w.)

In the forthcoming sections, we will generalize the struc-
ture of the shortest path problem to an algebraic structure
called semirings and the system of equations in (2) to
an algebraic path problem called semiring algebraic path
problem.

C. Semiring Algebra

A semiring is an algebraic structure (S,⊕,⊗) that satisfies
the following axioms:
(A1) (S,⊕) is a commutative monoid with a neutral element
©0 :

a⊕ b = b⊕ a
a⊕ (b⊕ c) = (a⊕ b)⊕ c

a⊕©0 = a

(A2) (S,⊗) is a monoid with a neutral element ©1 , and an
absorbing element ©0 :

a⊗ (b⊗ c) = (a⊗ b)⊗ c
a⊗©1 =©1 ⊗ a = a

a⊗©0 =©0 ⊗ a = ©0

(A3) ⊗ distributes over ⊕:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

The set S is called the carrier set of the semiring. For
a detailed reference on semirings, see [2]. The axiom A3,
which we call semiring distribution, plays a vital role in
several computations. Computations that obey the semiring
axioms can be solved distributively and in many cases
efficiently. To illustrate this point, consider the classical
shortest path problem (Subsection II-B). This problem can
be expressed by the (Ẑ+,min,+) semiring (the structure
satisfies all the semiring axioms), where Ẑ+ = Z+ ∪ {∞},
and ©0 =∞ and ©1 =0.

Consider the shortest path computation on the spoon-like
labeled graph shown in Figure 2. The figure shows a labeled
directed graph G, where the arc (i, k) has a label a ∈ Ẑ+.

i	
 k	
 j	
 a	

b	

c	

Fig. 2. Spoon network to illustrate semiring distribution

There are two paths from k to j with weights b, c ∈ Ẑ+.
When computing the weight of the shortest path from i to j
in Equation (1), there are only two paths to consider: xG

ij =
min{a+ b, a+ c}. The (Ẑ+,min,+) structure, by virtue of
its semiring distribution, reduces the computation to

xG
ij = a+ min{b, c} (∵ Axiom A3),

= a+ xG
kj .

The semiring distribution, in essence, “factors-out” the com-
mon computations, i.e., in the above example xG

kj , and
consequently, reduces the computational effort. In fact, for
the general shortest path problem discussed in Subsection
II-B, the semiring distribution of (Ẑ+,min,+) reduces to
the set of equations in Equation (1) to that in Equation
(2)! In the next section, we will generalize the shortest path
computation to an algebraic path problem computation, and
will illustrate how the semiring distribution yields, again, a
reduced representation.

D. Semiring Algebraic Path Problems

Consider a directed labeled graph G with the arc labels
auv ∈ S, (u, v) ∈ E, where S is the carrier set of some
semiring (S,⊕,⊗). For any path p = (i = u1, u2, . . . , un =
j) ∈ PG

ij , the weight of p is defined by an arc composition
rule:

w(p) = au1u2 ⊗au2u3 ⊗· · ·⊗aukuk+1 ⊗· · ·⊗aun−1an . (4)

The weight of an empty path is defined to be ©1 . Given the
weights of all paths in PG

ij , the aggregate weights from node
i to node j is defined by an path composition rule:

xG
ij = ⊕p∈P G

ij
w(p). (5)

The above compositions for i, j ∈ V , which forms a set
of equations, is called the Semiring Algebraic Path Problem
(SAPP).

These rules of compositions can been seen as generalized
version of the rules of computation for the shortest path
problem (Subsection II-B), i.e., ⊗ and ⊕ are generalizations
of + and min operators, respectively. Factoring-out common
terms (Subsection II-C) in the set of equations, by applying
the semiring distribution property, the SAPP can be reduced
to

xG
ij = ⊕k∈V (aik ⊗ xG

kj), for i 6= j, and

xG
jj = (⊕k∈V (ajk ⊗ xG

kj))⊕ 0. (6)

In general, the fixed points of the SAPP need not neces-
sarily correspond to solutions of the path composition (5).
However, under certain conditions of minimality, illustrated
in Subsection II-D, some of the fixed points have a corre-
spondence to paths. For a detailed reference on the SAPP,
see [1], [2].

A number of composition rules used in networked systems
can be expressed a SAPP over some semiring algebras. For
instance, SAPPs appear in control theory - dynamic program-
ming [9], in information and coding theory - factor graphs
[11], [12] and in network security - PGP trust evaluations
[13], algebraic routing - BGP [14], [15]. For other examples
of SAPPs in networked systems, see [3].

E. SAPPs for Idempotent Semirings

Among the classes of semiring structures, a particularly
useful and prevalent structure is the idempotent semiring
algebra [2]. For these semirings, the idempotent law holds
for ⊕, i.e., for an idempotent semiring (S,⊕,⊗),

a⊕ a = a, a ∈ S.

This idempotent law induces a partial order in S. We define
the partial order by

a, b ∈ S, a = a⊕ b ⇐⇒ a ≥ b (7)

Note, the partial order can also be defined as a dual order [16]
to the definition in Equation (7). To remain consistent with
the notation used in [2], we follow the definition in Equation
(7). This partial order makes the constituent monoid (S,⊕)
of the semiring canonically ordered [2], and such semirings
are also referred to as dioids, in literature [2].

These dioids have an interesting property that there exists
a minimal solution to the SAPP (Equation (6)) [2], similar to
that described in Subsection II-B for shortest path problem,
that can be associated with a path-set for its solution.
From henceforth, all solutions considered, in this paper, for
the SAPP will be minimal solutions. Unlike the shortest
path problem, for dioids, the solution does not necessarily
correspond to single path (psol in Equation (3)). Instead, for
a general dioid, the solutions correspond to a set of paths.
We call this a solution path-set. Given a dioid (S,⊕,⊗), and
a solution xG

ij , i, j ∈ V to the SAPP (Equation (6)), we can
define a solution path-set Psol ∈ 2P G

ij to a “minimal” path
set such that

⊕p∈Psol
= xG

ij .

Clearly, there would be many such Psol path-sets, and these
path-sets are minimal in the sense that no subset of Psol is
another solution path-set. We denote the set of all solution
path-sets by PG

ij
∗.

III. SOLVING THE SEMIRING ALGEBRAIC PATH
PROBLEM IN DYNAMIC NETWORKS

The shortest path problem with time-varying weights is a
well-studied problem in the context of data networks [17].
For instance, the initial ARPANET routing protocol was a
highly ambitious adaptive routing protocol, which adapted its

routes according to the link congestions (weights). However,
the algorithm suffered from stability issues. The algorithm
was later modified and fixed using a link state version
[17] that broadcast periodically the link state information
(congestion weights) across the network to compute the
same routing objective. It was shown that this mechanism
of computing the shortest path for dynamic networks was
efficient and more stable [17].

Recently, a similar paradigm was adopted in proactive
routing protocols in MANETs. However, in MANETs the
link state information is very dynamic and broadcasting the
entire link state was an expensive and results in broadcast
storm problems. Instead, methods of selective broadcasting
were proposed. We will illustrate one such method used:
Optimized Link State Routing (OLSR).

A. Selective Broadcasting in OLSR

In Optimized Link State Routing (OLSR) protocol [18],
[19], every host in the network discovers its local neigh-
borhood by heartbeat periodic HELLO messages [20]. Since
every host broadcasts to its neighbors the set of neighbors
that it can hear, every host discovers its one-hop and two-
hop neighbors. Figure 3 shows the neighborhood that host
h discovers from the HELLO messages. The neighbor dis-
covery protocol [20] is designed to discover only symmetric
neighbors (that can hear each other), and consequently all
the links discovered are undirected.

h	
 i3	

i2	

i1	

i4	

i5	

j3	

j2	
 j5	

j4	

j1	

j7	

j6	
 i1	

i4	

i3	

Fig. 3. Local View of Host h

The original version of OLSR [18], treats the topology
pruning problem over a static graph. Every host solves a set-
cover problem locally to find the minimum set of one-hop
neighbors that cover all the two-hop neighbors. For instance,
in the example graph shown in Figure 3, the host h selects
from {i1, i2, . . . , i5} a minimal subset of neighbors that
cover all two-hop neighbors {j1, j2, . . . , j7}. This special set
of one-hop neighbors is called Multi-Point Relays (MPRs) in
OLSR. The pruning problem to compute the MPRs is shown
to be NP-hard and a greedy heuristic was proposed in [21].
For this example of Figure 3, the host selects {i1, i3, i4} that
covers all the two-hop neighbors. Then the host broadcasts
links {(h, i1), (h, i3), (h, i4)} across the entire network. Ev-
ery host in the network performs similar broadcast. It is was
proved in [22] that this pruning mechanism preserves the
shortest path, in hop-count, from every source to target host
in the network.

However, the OLSR pruning mechanism is capable of
handling, only, binary link state information (ON or OFF). It
does not offer guarantees on the quality of the routing paths
preserved, as a result of its pruning. In [23], we extended the
pruning methods to guarantee that the shortest paths in the
(Ẑ+,) semiring algebra are preserved in the pruned graph.

In the rest of the paper, we develop pruning methods that
will preserve the SAPP solutions for any general idempotent
semiring. Then the pruned graph can be for broadcast for
computing the SAPP solutions.

B. Mathematical Notations and Definitions for the Pruning
Problem

We introduce the notion of hop-count based neighbor-
hoods. The hop-count of a path p ∈ PG′

ij , denoted by hc(p),
is the number of arcs in p. Then the minimum hop-count
distance between a pair of vertices i, j ∈ V is

dG′

ij = min
p∈P G′

ij

hc(p).

Neighborhoods in G are defined relative to any vertex h ∈
V , which we call the host of the neighborhood. The k-hop
neighborhood of a host h in G is the vertex set

Nk
h = {j ∈ V : dG

hj ≤ k}.

Here, k is called the size of the neighborhood. The boundary
set for Nk

h is
∂Nk

h = Nk
h\Nk−1

h ,

where N0
h = {h}, and Nk

h = ∅, k < 0. Let Nk−
h denote the

exclusive neighborhood, which the neighborhood excluding
h, i.e., Nk−

h = Nk
h\{h}.

Consider a special labeled subgraph Glocal
h ⊆ G that

contains only the vertices in Nk
h and all arcs between them

except those between any two vertices of the boundary set,
i.e., the vertex set is Nk

h and the arc set is {(u, v) ∈ E :
u, v ∈ Nk

h and {u, v} 6⊆ ∂Nk
h}. We will, later, call this

labeled subgraph the local view of h. We abuse notation
a bit, to define the leaf set of the local view, Lh, the set
of vertices in Nk−

h that have no children in Glocal
h . Clearly,

Nk
h ⊆ Lh. These quantities are illustrated in the example

shown in Figure 4.
For the local pruning algorithms and their correctness

proofs, we work with different local views of the graph
G, so, for better readability, we denote the different graph
quantities, defined above, relative to the local view, Glocal

h .
The set of paths from h to any vertex j ∈ Nk

h , PGlocal
h

hj ,
is denoted by Ph−local

hj , which we call the h-local path-
set. We denote by xh−local

hj , j ∈ Nk
h , the solution to

the SAPP restricted to Glocal
h , i.e., xh−local

hj = x
Glocal

h

hj .
The corresponding set of solution path-sets is denoted by
Ph−local

hj

∗
(= PGlocal

h

hj

∗
), which we call the set of h-local

solution path-set.
Finally, introduce the notion of gateways of paths and

path-sets relative to the local view Glocal
h . For any path

p = (h = u1, u2, . . . , un = j) ∈ PG
hj , the gateway of p

h	
 j3	

j2	

j6	

j4	

j5	

j10	

j9	

j12	

j11	

j8	

j7	

j13	

j14	

j15	
 j16	

j17	

j18	

j19	

j20	

j21	

j23	
 j24	

j22	

Nh
2 -ball

j1	

Fig. 4. Illustration of neighborhood terminology. The figure shows a
directed graph G. The neighborhood (of size k = 2) corresponding
to a host vertex h is indicated by N2

h-ball. The neighborhood vertices,
N2

h = {h, j1, j2, . . . , j6}, induce the local-view subgraph Glocal
h . The

arcs of Glocal
h are indicated by solid lines. Note that the arcs between the

boundary vertices, ∂N2
h = {j7, j8, j9, j10, j11, j12, j13}, are not included

in the arc set of Glocal
h . Here, the leaf set Lh = {j1} ∪ N2

h .

h	

ball	
 Nh
k

ut	

j	

γ p
h gateway	

vertex	

sub-path ph− local

sub-path ph− local

Fig. 5. Gateways for path p in local view

in Glocal
h , denoted by γh

p , is the first vertex of p that is in
the leaf set Lh. i.e., γh

p = ut if and only if ut ∈ Lh and
us 6∈ Lh, 1 ≤ s < t. If the path p never intersects Lh,
i.e., us 6∈ Lh, 1 ≤ s ≤ n, then γh

p is not defined. For a
path-set P ∈ 2P G

hj , we denote the set of gateway vertices by
Γh

P = {γh
p : p ∈ P}.

We denote by ph−local the sub-path (h = u1, u2, . . . , ut =
γh

p), which is completely contained in the local view, by
ph−local and the remnant of the path, (γh

p , ut, ut+1, . . . , un =
j), by ph−local. Similarly, for a path-set P ∈ 2P G

hj , we define
Ph−local = {ph−local : p ∈ P} and Ph−local = {ph−local :
p ∈ P}.

C. Local Pruning

Local pruning [4] in mobile/dynamic networks is an inter-
esting graph optimization problem. These pruning algorithms
make use of the local neighborhood information that is
provided by neighbor discovery protocols [20]. From this
local neighborhood information they select a subset of the
topology information that is broadcast to the network. This
subset is chosen so that the resulting pruned graph preserves

some properties of the original graph. The non-triviality
in these problems is establishing a relation between the
local and pruned global graph. We will make these notions
more rigorous. In [24], we extended the notion of local and
global views introduced in [5] to encompass labeled dynamic
graphs. We summarize these extensions.

We assume that every host has a neighbor discovery
module [18], [19], [25]. It discovers its local neighborhood
information using periodic HELLO messages. The HELLO
message from each host contains both the communication
adjacency and the arc labels for all of its (k − 1)-hop
neighbors (k ≥ 2). Every host, h ∈ V , exchanges these
HELLO messages with their neighbors. Consequently, h has
access to the dynamic labeled graph Glocal

h (since the HELLO
messages from a neighbor j contains its neighborhood infor-
mation, Nk−1

j and the arc labels between them). For instance,
in OLSR k = 2 because every host exchanges its one-
hop link state information with its neighbors. This notion
is formally abstracted as the local view:

Definition At every host station h ∈ V , the local view is the
labeled subgraph Glocal

h , with a neighborhood size k, that is
exposed by the neighbor discovery mechanism at h.

In local pruning algorithms, the host h ∈ V , which has
discovered the labeled graph Glocal

h , chooses a subset of its
incident links in Glocal

h , which we call the pruned arc set,
and broadcasts this arc set to the entire network. For h, the
subset of its incidents links is is ΩGlocal

h

h , which is also ΩG
h

because the local neighborhood is completely exposed (for
k ≥ 2). The set of pruning policies at host h is the set of
functions

F prune
h = {f : Glocal

h → 2ΩG
h },

where 2ΩG
h is the power-set of ΩG

h (set of of all subsets of
ΩG

h).
For a given pruning policy fh ∈ F prune

h at h ∈ V ,
the pruned arc set is denoted by δh = fh(Glocal

h). From
henceforth, fh and δh will represent the pruning policy and
pruned arc set at host h respectively. δh is, then, broadcast
along with the corresponding arc labels network-wide. If
the subset δh is small compared to ΩG

h , then the broadcast
information rate is significantly reduced. This controlled
flooding (of pruned link states) reduces the broadcast storm.
The arc set that is broadcast, by all the hosts, is given by
Ebroadcast = ∪h∈V δh, and this induces an labeled subgraph
Gbroadcast, which we call the broadcast view. The local view
and the broadcast view together create, what we call, a global
view of the graph at h.

Definition At every host station h ∈ V , the global view
Gglobal

h is the labeled graph union Glocal
h ∪ Gbroadcast,

where Gglobal
h and Gbroadcast are exposed by some neighbor

discovery and link state broadcast mechanisms respectively.

As mentioned above, the goal of any local pruning algo-
rithm is to prune effectively (maximally) while preserving
some desired properties in the pruned graph, i.e., |δh| must

be minimal and Gglobal
h must preserve some desired property

of the G.
For the pruning problem of interest – pruning for the SAPP

solutions – we require the Gglobal
h to preserve the solutions

to the SAPP defined on G (Equation (6)). More precisely,
we require at h, Gglobal

h to preserve the solution from h to
j ∈ V . We define the SAPP-solution preserving property
at host h, πglobal

h . A subgraph G′ ⊆ G is said to have the
property πglobal

h if and only if

xG′

hj = xG
hj , j ∈ V,

where xG′

hj is the SAPP-solution restricted to the labeled
graph G′. Note, the pruning problem is defined at every host,
h ∈ V . Let Πglobal

h denote the set of all subgraphs of G for
which the property πglobal

h holds, i.e.,

Πglobal
h = {G′ ⊆ G : πglobal

h holds for G′}.

The desired SAPP-solution preserving property for the
pruned graph can be then expressed as a constraint

Gglobal
h ∈ Πglobal

h . (8)

Note that in this formulation, the constraint Gglobal
h ∈ Πglobal

h

is a global constraint, i.e., the constraint is not limited to the
local view; the constraint depends on the global properties
of G.

The corresponding pruning problem is an interesting
multi-agent optimization problem where the objective func-
tion (finding a minimal pruned arc set) for each agent
(host) depends only on local neighborhood information (local
view). However, the agents (hosts) together must satisfy a
global constraint (the global view must preserve the SAPP-
solutions). This is non-trivial because the global constraint
involves the global view, while the hosts have access to
strictly their local view. In general, this global constraints
cannot be expressed in terms of the local view. However, we
will show that under certain conditions, the global constraint,
on the global view, can be reduced a local constraint, on the
local view.

Clearly, there are many local constraints that guarantee
global constraints. For instance, naively preserving all paths
locally, or with a little more sophistication, preserving all
the solution path-sets to all vertices in the exclusive neigh-
borhood is sufficient local constraint. However, since the
objective function is to minimize the pruned arc set, we need
a sufficient condition that also requires the minimal number
of paths to be preserved. In the next section, we provide such
a sufficient local condition that satisfies the global constraint.

D. Strict Inflatory Condition, Sufficiency and Loop-Freedom

Since the local pruning policies of interest at host h ∈ V
are given by the functions fh ∈ F prune

h , it is natural to
establish the conditions that these functions must satisfy.

Consider a local property πlocal
h at h ∈ V . The property

is local in the sense, it is defined only for the local view at
h. Given the local view Glocal

h , the property πlocal
h is said to

hold for a pruning function fh ∈ F prune
h , if for all j ∈ Lh

there exists a solution path-set Psol ∈ Ph−local
hj

∗
such that

∀p ∈ Psol, (h, ηh
p) ∈ δh. Let Πlocal

h denote the subset of
functions of F prune

h for which πlocal
h holds.

The local constraint fh ∈ Πlocal
h , in essence, requires

that at least one solution path-set to every leaf vertex in
the local view is covered by δh. We will illustrate, using
an example, the intuition behind this condition. Consider a
directed labeled linear graph shown in Figure 6. Let the size
of the neighborhood be k = 2. We will illustrate that if the
local pruning condition is not satisfied, then arc (h3, h4) is
not chosen for broadcast. Clearly, for this graph, only host
h3 is responsible of selecting (h3, h4) (by the virtue of the
local pruning policy definition in Subsection III-C). Let us
consider the pruning policy at h3. Here, Łh3 = {h5}, and
(h3, h4, h5) is the only path, and therefore, a solution path
from h3 to h5. If (h3, h4) 6∈ δh3 , then (h3, h4) 6∈ Gbroadcast.
Since (h3, h4) 6∈ Glocal

h1
, (h3, h4) 6∈ Gglobal

h1
. Consequently,

Gglobal
h1

does not preserve the solution path from h1 to h4

and h5. The same argument can be applied to any leaf
vertex of any local view. However, the condition fh ∈ Πlocal

h

is not a necessary condition. As the example suggests, for
Gglobal

h1
∈ Πglobal

h1
, the only necessary condition at h3 is to

preserve the arc (h3, h4). The local condition πlocal
h only

implies this necessary condition. Although there may be
other means to achieve this necessary condition, we choose
to work with πlocal

h because of the ease of implementation,
which will illustrated in the forthcoming sections.

h1	
 h2	
 h3	
 h4	

ah1h2 ah2h3 ah3h4
h5	

ah4h5

Fig. 6. Example line graph illustrating the sufficient condition

The condition fh ∈ Πlocal
h is not sufficient in a distributed

setting to ensure Gglobal
h ∈ Πglobal

h , since it does not
guarantee loop-freedom. This is a well-known problem for
distributed routing protocols [26]: Loops typically occur in
distributed graph algorithms when tie-breaking mechanisms
are not employed. Using an example, we illustrate that
a similar problem is likely to occur in distributed local
pruning without tie-breaking. The Figure 7 illustrates a
scenario where the distributed pruning leads to loops. The
figure shows a labeled directed graph. Let the size of the
neighborhood be k = 2. The leaf sets are Lh1 = {h3},
Lh2 = {h4}, Lh3 = {h4}, Lh4 = ∅ and Lh5 = {h4}. Let
ah1h2 = ah2h1 = ©1 , and ah1h5 ⊗ ah5h3 = ah2h3 > ah2h3 .
Then the set of h-local solution path-sets are
Ph−local

h1h3

∗
= {{(h1, h2, h3)}, {(h1, h5, h3)}}, Ph−local

h2h4

∗
=

{{(h2, h3, h4)}, {(h2, h1, h5, h3, h4)}}, Ph−local
h3h4

∗
=

{{(h3, h4)}} and Ph−local
h5h4

∗
= {{(h5, h3, h4)}}. Note

that all solution path-sets in the example are singletons,
i.e., the solutions correspond to a single path, similar
the shortest path example discussed in Subsection II-B.
The pruned arc sets δh1 = {(h1, h2)}, δh2 = {(h2, h1)},
δh3 = {(h3, h4)} and δh5 = {(h5, h3)} satisfy the local

condition fh ∈ πlocal
h at each host, but the resulting the

Gbroadcast is disconnected! Thus the necessary conditions
do not guarantee loop-freedom and the solutions are not
preserved.

h1	
 h2	
 h3	
 h4	

h5	

ah1h5

ah1h2

ah2h1

ah2h5
ah5h3

ah2h3 ah3h4

Fig. 7. Illustration of loops in pruning. Shows an example labeled directed
graph. The arcs of Gbroadcast are shown with thick lines.

The example of Figure 7 suggests a sufficient condition,
which is called strict monotonicity condition [15]:

a, b ∈ S, a⊗ b < a and a⊗ b < b.

This property is also referred to as a deflatory by other
authors [14]. We will show that under the strict monotonicity
assumption, the local condition fh ∈ Πlocal

h becomes suffi-
cient.

Nh
k

j	
 h	

Ph− local

j '

.	

.	

.	

Ph− local

p1 p2
p3

pt

Fig. 8. Generalized Bellman’s Optimality with path-sets

Consider the illustration shown in Figure 8. Let P ∈ PG
hj

∗

be any solution path-set from h to any j 6∈ Nk
h . The path set

clearly intersects with the boundary (leaf vertices). For each
j′ ∈ Γh

P , we define the constituent solution paths

Ph−local
j′ = {p ∈ Ph−local : γh

p = j′}.

In general, Ph−local
j′ need not be singleton, as shown in the

Figure 8 - paths p2, p3. Then the follow lemma establish
the Bellman’s optimality principle for solution path-sets for
a general idempotent SAPP.

Lemma 3.1: ⊕p∈P h−local

j′
w(p) is one the solutions to

xh−local
hj′ .

Proof: We will assume otherwise and derive a con-
tradiction. Let us assume that any solution xh−local

hj′ >

⊕p∈P h−local

j′
w(p). Consider the solution path-set correspond-

ing to such a solution P rep. If we replace the Ph−local
j′ with

P rep we obtain a dominating solution and this contradicts
that P is a solution to xG

hj .
Theorem 3.2: Under the strict monotocity assumption, if

h ∈ V , fh ∈ Πlocal
h , then Gglobal

h ∈ Πglobal
h .

Proof: Suppose an solution path-set to j is contained in
Glocal

h , then the proof is trivial. Consider the other case: the
solution path-et to j is not contained in Glocal

h . From Lemma
3.1, we know for any solution path-set, there is a local
solution to every gateway vertex. Since the pruning policy
fh ∈ Πlocal

h ensures that such paths are preserved locally,
they are also preserved globally. The strict monotonicity
property ensures global loop-freedom.

E. Optimal Pruning as a Local Set-Cover Problem

With the notation introduced in the previous sections, the
local pruning problem for preserving the SAPP-solution can
be expressed mathematically as follows.

min
fh∈Πlocal

h

|Ωh| (9)

Attempting to list out all feasible pruning policies fh ∈
Πlocal

h , in general, is computationally intractable. We will
show that this problem can be reduced to a set-cover
problem. To formulate this set-cover problem, we introduce
further notation. Let ζh : 2∂N1

h → 2Lh denote the covering
function: for S ⊆ ∂N1

h and

ζh(S) = {j ∈ Lh : ∃P ∈ Ph−local
hj

∗
for each xh−local

hj

such that Hh
P ⊆ S}.

This function ζh can be computed locally efficiently using
generalized Gauss elimination [2], [1]. Then the set-cover
problem is

min
∆∈2∂N1

h

|∆| (10)

subject to ∪S⊂∆ζh(S) = Lh.

Theorem 3.3: For any minimizer ∆∗ of the problem in
Equation (10), {(h, i) : i ∈ ∆∗} solves the minimal pruning
problem of Equation (9).

Proof: Since ∪S∈∆ζh(i) = ∂Lh, fh(Glocal
h) = {(h, i) :

i ∈ ∆∗} ∈ Πlocal
h .

For a more detailed illustration of the proofs and algo-
rithms to construct ζ for the (Ẑ+,min,) semiring, see [23].

IV. CONCLUSION

We presented an alternative method to solve for SAPP
solutions on a dynamic graphs. The algorithm makes use
of broadcasting to recompute the SAPP solution when the
network state changes. To reduce the associated broadcast
storm, we propose a selective broadcasting solution and
prove that the pruned graph preserves the solution to the
original SAPP.

REFERENCES

[1] G. Rote, “Path problems in graphs,” in Computing Supplementum,
vol. 7, 1990, pp. 155–189.

[2] M. Gondran and M. Minoux, Graphs, Dioids and Semirings - New
Models and Algorithms. Springer, 2008.

[3] J. S. Baras and G. Theodorakopoulos, Synthesis Lectures on Commu-
nication Networks. Morgan and Claypool, 2010, ch. Path problems
in networks.

[4] W. B. and C. T., “Comparison of broadcasting techniques for mobile
ad-hoc networks,” in Proceedings of the ACM International Sympo-
sium on Mobile Ad-Hoc Networking and Computing (MOBIHOC),
2002.

[5] J. Wu and F. Dai, “A generic distirbuted broadcast scheme in ad hoc
wireless networks,” IEEE Transactions of Computers, vol. 53, no. 10,
pp. 1343–1354, 2004.

[6] L. Eschenauer, V. Gligor, and J. Baras, Security Protocols, ser.
Lecture Notes in Computer Science. Springer, 2004, ch. On Trust
Establishment in Mobile Ad-Hoc Networks.

[7] B. Bollobas, Modern Graph Theory. Springer, 1998.
[8] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993.
[9] S. Verdu and V. Poor, “Abstract dynamic programming models under

commutativiy conditions,” SIAM Journal on Control and Optimization,
vol. 25, no. 4, pp. 990–1006, 1987.

[10] D. Berksekas and R. Gallager, Data Networks. Prentice Hall, 1987.
[11] R. McEliece and S. Aji, “The generalized distributive law,” IEEE

Transactions on Information Theory, vol. 46, no. 2, pp. 325–343, 2000.
[12] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and sum-

product algorithm,” IEEE Transactions on Information Theory, vol. 46,
pp. 489–519, 2001.

[13] G. Theodorakopoulos and J. Baras, “On trust models and trust evalu-
ation metrics for ad hoc networks,” IEEE Journal on Selected Areas
in Communication, vol. 24, no. 2, pp. 318–328, 2006.

[14] T. G. Griffin, “The stratified shortest-paths problem,” in COMNETS,
2010.

[15] J. L. Sobrinho, “Algebra and algorithms for qos path computation
and hop-by-hop routing in the internet,” IEEE/ACM Transactions on
Networking, 2002.

[16] B.A.Davey and H. Priestley, Introduction to lattices and order. Cam-
bridge University Press, 1990.

[17] D. Berksekas and R. Gallager, Data Networks. Prentice Hall, 1992.
[18] T. Clausen and P. Jacquet, “Optimized link state routing

protocol (olsr),” RFC, Oct 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3626.txt

[19] T. Clausen, C. Dearlove, and P. Jacquet, “The optimized link state
routing protocol version 2,” Draft-IETF, September 2009. [Online].
Available: http://www.ietf.org/id/draft-ietf-manet-olsrv2-10.txt

[20] T. Clausen, C. Dearlove, and J. Dean, “Mobile ad hoc network
(manet) neighborhood discovery protocol (nhdp),” Draft-IETF,
October 2009. [Online]. Available: http://www.ietf.org/id/draft-ietf-
manet-nhdp-11.txt

[21] L. A., Q. A., and V. L., “Multipoint relaying: An efficient technique
for flooding in mobile wireless networks,” in 35th Annual Hawaii
International Conference on System Sciences (HICSS’2001). IEEE
Computer Society, 2001.

[22] P. Jacquet, A. Laouiti, P. Minet, and L. Viennot, “Performance analysis
of olsr multipoint relay flooding in two ad hoc wireless network
models,” INRIA, Tech. Rep., September 2001.

[23] K. Somasundaram, J. Baras, K. Jain, and V. Tabatabaee, “Distributed
topology control for stable path routing in multi-hop wireless net-
works,” Institute for Systems Research, Tech. Rep., 2010.

[24] K. K. Somasundaram and J. S. Baras, “Semiring pruning for infor-
mation dissemination in mobile ad hoc networks,” in Workshop on
Applications of Graph Theory in Wireless Ad hoc Networks and Sensor
Networks, 2009.

[25] H. Rogge, E. Baccelli, and A. Kaplan, “Packet sequence number
based etx metric for mobile ad hoc networks,” IETF Draft,
December 2009. [Online]. Available: http://www.ietf.org/id/draft-
funkfeuer-manet-olsrv2-etx-00.txt

[26] C. E. Perkins, Ad hoc networking. Addison Wesley, 2001.

