
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: SYNTHESIS AND DESIGN OF MICROWAVE 

WIDEBAND FILTERS AND COMPONENTS 

  

 Wei Meng, Doctor of Philosophy, 2014 

  

Directed By: Professor Kawthar A. Zaki, Department of 

Electrical and Computer Engineering 

 

 

In the development of modern communication systems, various stringent 

requirements are imposed on the hardware components to support emerging 

applications. There is broad interest in developing wideband microwave passive 

components that enable the successful building and integration of wideband 

communication systems.  

The main objective of this dissertation is the development of exact synthesis 

techniques for wideband microwave filters, based on proposed equivalent circuit 

models. In the conventional narrowband approach, the multiple resonators are 

arbitrarily coupled by frequency independent couplings, which do not accurately 

represent very wideband frequency responses. By replacing the frequency 

independent couplings by the frequency dependent coupling model in the equivalent 

circuit, the synthesis techniques are re-developed by: (i) coupling matrix approach 

and (ii) cascade synthesis approach.  



  

Coupling structures in LTCC (Low Temperature Co-fired Ceramic) technology that 

can provide very wide coupling bandwidth and are suitable for the developed 

synthesis technique are analyzed. Various wideband microwave filters realized in 

LTCC technology which utilize the proposed synthesis approaches are demonstrated 

by design examples. High performance microwave transitions that can be used for 

integration of the LTCC broadband filters in wideband communication systems are 

also investigated.  
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Chapter 1 Introduction 

 

1.1 MICROWAVE WIDEBAND SYSTEM 

 

In the development of modern communication systems, various stringent 

requirements are imposed on the hardware components to support emerging 

applications. Microwave communication systems have been widely deployed in 

cellular communication networks, broadcast satellites for TV and broadband internet 

services, radar and sensing systems for both civilian and defense applications.  

 

In [1], a wideband communication satellite payload architecture is proposed. 

Conventionally, communication satellite transponders use channelized filter banks to 

allocate the frequency bands into narrowband channels. Technology advancement has 

achieved revolutionary results for satellite communication, such as digital signal 

processing techniques (DVB-S2 [2]), mobile Very Small Aperture Terminal (VSAT) 

on ground, and so on. However, the basic configuration of a communication satellite 

payload has remained on a channelized approach [3]. By adopting wideband 

architecture, the system complexity and the payload mass are significantly reduced. 

For a typical Ku-Band transponder with 12 channels of 36 MHz bandwidth each, a 

combined single 500 MHz channel can achieve high frequency spectrum utilization 

with more usable bandwidth, and possibly improve the overall power efficiency, as 

analyzed in [1].  
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Emerging Active Electronically Scanned Array (AESA) applications require a 

Monolithic Microwave Integrated Circuit (MMIC) Transmitter/Receiver (T/R) 

frontend module to operate over very wide frequency bandwidth, and support multi-

band / multi-function applications. Therefore, considerable efforts have been made in 

this area [4] [5]. High performance components of ultra wideband antennas, 

broadband high-power monolithic amplifiers, and novelty in array architecture have 

been successfully developed and tested. Moreover, such frontend modules require 

highly system level integration and great miniaturization through advanced packaging 

technology. In [6], a high-power, wide bandwidth, and compact size frontend module 

using multilayer ceramic technology has been introduced, which can operate up to 

Ku-Band.  

 

Therefore, there is broad interest in developing wideband microwave passive 

components that enable the successful building and integration of wideband 

communication systems.  
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1.2 LTCC TECHNOLOGY 

 

LTCC (Low Temperature Co-fired Ceramic) technology has found increasingly 

promising potential especially for RF and microwave applications. LTCC technology 

features the capability of embedding passive elements, such as resistors, capacitors, 

and inductors into a ceramic-based substrate, providing multichip and multi-substrate 

packaging. The technology also includes the surface mounted active components, 

thus enabling the solutions of System-in-Packaging integration and miniaturization 

[43].  

 

The realizations of microwave filters in LTCC technology have already had 

significant attention in industry and academia [44]-[51]. In early work, LTCC has 

been typically used in planar multilayer structures, which suffer from higher loss [52]. 

In [44], the LTCC waveguide filter was first introduced using a similar structure to 

conventional inductive windows. In [53]-[54], the conventional ridge waveguide was 

also applied to LTCC technology to realize wideband filters. In both cases, the use of 

metallization patches and rows of vertical vias as fences to approximate the 

conductors and metallic housing takes full advantage of a 3-dimensional structure in 

LTCC. This consequently achieves low volume and small size, high packaging 

density, and relatively high Q value. In Fig. 1.1, a typical LTCC implementation of a 

ridge waveguide is shown as a conceptual illustration.  
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(a)       (b) 

Figure 1.1.  LTCC implementation of ridge waveguide, (a) ridge wave guide 

with solid metallic wall and housing and (b) LTCC implementation with 

metallization patches and rows of vertical via.  

 

In this dissertation, a combline-like resonator structure in LTCC is introduced to 

design a broad range of wideband microwave filters. The typical realization of the 

proposed combline-like resonator for LTCC technology is shown in Fig. 1.2. The 

resonator consists of a vertical square or rectangular metallic post shorted at the 

bottom (bottom ground plane) and a conducting patch at the other open end. The 

resonant mode of a conventional combline structure is a TEM mode [55]-[56]. The 

electric field and magnetic field patterns of the fundamental resonant mode of this 

combline-like structure are shown in Fig. 1.3. As expected, the electric field is mainly 

concentrated between the conducting patch and the top ground plane and the 

magnetic field is circulating around the metallic post.  
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(a)      (b) 

Figure 1.2.  The realization of a combline-like resonator, (a) side view and (b) 

top view; the equivalent circuit model of a combline-like resonator.  

 

 
(a) 

 
(b) 

Figure 1.3.  Fields pattern of a combline-like resonator, (a) electric field (side 

view) and (b) magnetic field (bottom view).  
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(a)      (b) 

Figure 1.4.  The realization of a combline-like resonator with an input coupling 

stripline, (a) side view and (b) top view.  

 

Therefore, the equivalent circuit model of such a combline-like resonator structure 

can be simply modeled an LC resonator. The resonant frequency is controlled by the 

length of the metallic post, the area of the conducting patch and the gap distance 

between the patch and the ground plane.  

 

Due to the nature of a layered stack structure in LTCC technology, it is most 

convenient to utilize a tapped-in stripline as an input / output coupling realization as 

shown in Fig. 4.4. The amount of input coupling or the input impedance is controlled 

by the tapped-in position and the width of the stripline. Another important factor is 

that the 50 Ohm characteristic impedance line can be easily achieved by a simple 

stripline transition [57]. 
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1.3 DISSERTATION OBJECTIVES 

 

The increased demand for high performance wideband microwave components 

inspired the research and development work presented in this dissertation.  

 

The main objective of this dissertation is the development of exact synthesis 

techniques for wideband microwave filters, based on proposed equivalent circuit 

models. The filters’ frequency responses can cover a very wide frequency range, and 

at the same time, maintain very high performance to satisfy stringent specifications.  

 

This dissertation is devoted to developing novel synthesis techniques of wideband 

microwave filters by: (i) coupling matrix approach and (ii) cascade synthesis 

approach. Coupling structures in LTCC technology that can provide very wide 

coupling bandwidth and are suitable for the developed synthesis technique are 

analyzed. Various wideband microwave filters which utilize the proposed synthesis 

approaches are demonstrated by design examples. High performance microwave 

transitions that can be used for integration of the LTCC broadband filters in 

communication systems are also investigated.  
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1.4 DISSERTATION ORGANIZATION 

 

The dissertation is composed of six chapters. Chapter One is this introduction.  

 

Chapter Two is devoted to the coupling matrix approach for the synthesis of 

wideband multi-coupled resonators filters with frequency dependent couplings. In a 

conventional narrowband approach, the multiple resonators are arbitrarily coupled by 

frequency independent couplings, which do not accurately represent very wideband 

frequency responses. By replacing the frequency independent couplings by the 

frequency dependent coupling model in the equivalent circuit, the synthesis technique 

by coupling matrix approach is re-developed. The approximation problem is directly 

solved in the bandpass domain instead of in the lowpass domain, to derive the 

filtering characteristic function, from which the [Z]-parameters are derived. The 

equivalent circuit model consisting of LC resonators and frequency dependent 

couplings in a filter network is analyzed, also to derive its [Z]-parameters. By 

equating the two sets of derived [Z]-parameters, the values of circuit elements are 

synthesized according to the prescribed specifications.  

 

Chapter Three is focused on another approach, cascaded network synthesis of 

wideband microwave filters with frequency dependent couplings. The conventional 

synthesis of a ladder network consisting of lumped circuit elements cannot provide an 

analytical solution for the folded circuit network topology. The conventional network 

synthesis approach is also incapable of incorporating frequency dependent couplings. 
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Therefore, the network synthesis approach is further developed to enable frequency 

dependent couplings, suitable for representing the filter frequency responses over a 

wide frequency range. This approach is primarily based on the [ABCD] matrix. The 

overall [ABCD] matrix of a circuit network can be built up by cascading the [ABCD] 

matrix of each individual circuit element. The synthesis can be regarded as an inverse 

process, which will extract the values of all circuit elements from the overall [ABCD] 

matrix following a pre-defined sequence.  

 

Chapter Four presents several physical designs of wideband microwave filters. A 

combline-like resonator structure suitable for LTCC realization is introduced, which 

can also be easily modeled by LC resonators as an equivalent circuit. Four coupling 

structures constructed by the combline-like resonators are investigated in detail. 

These structures provide frequency dependent coupling inverters in the equivalent 

circuit model. For each filter design example its equivalent circuit is first synthesized 

by using one of the synthesis techniques introduced in Chapter Two or Chapter Three. 

Next, the physical realizations of the filters based on the combline-like resonator 

structures, and one or multiple coupling realizations in LTCC technology are 

presented. The filters are then implemented and optimized in electromagnetic (EM) 

simulating software, HFSS, to obtain the optimum dimensions satisfying the 

prescribed specifications. Some measurement results are also included to demonstrate 

the successfulness of the synthesis techniques and design procedures.  
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Chapter Five deals with another important microwave component, the transition in 

wideband communication systems. In LTCC technology, passive components are 

usually buried into a multi-layer ceramic structure for the benefit of 3D integration 

and the application of system-on-chip packaging. Therefore, a transition acting as an 

interface between the buried passive components and the external conventional 

connectors is needed. These external connectors can be coaxial to connect to coaxial 

signal cable or a co-planar waveguide launcher for measurements by probe station. 

The transition is a critical element in the development of LTCC module. In addition, a 

novel transition design capable of integrating other functionality, such as embedded 

filtering function is also presented. Finally a transition with very wide operating 

frequency range implemented in LTCC is presented in this Chapter.  

 

In Chapter Six, the conclusions of this dissertation are summarized, and further 

research work is discussed.  
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1.5 DISSERTATION CONTRIBUTIONS 

 

The main contributions of this dissertation are summarized as the follows.  

 

1. The approximation problem determining the filtering characteristic function is 

directly derived and solved in the filter bandpass domain, so that it is suitable for the 

equivalent circuit model of a filter network with frequency dependent couplings.  

2. The multi-coupled resonators filter network with frequency dependent coupling 

is directly solved and synthesized in the bandpass domain, instead of transforming 

and solving it in a lowpass prototype.  

3. The cascade synthesis approach for a filter network in the bandpass domain is 

also re-developed to enable the inclusion of frequency dependent coupling and folded 

coupling structure.  

4. Three types of frequency dependent coupling inverters have been identified, and 

have been applied into the developed novel synthesis techniques.  

5. The microwave filter realizations in LTCC technology are intensively 

investigated for very wide frequency band applications.  

6. Four types of coupling structures for combline-like resonators in LTCC 

realization are investigated in details. These are the basic structures for the wideband 

filter realization in LTCC.  

7. A novel quasi-elliptic inline filter is synthesized by the developed techniques, 

designed in an electromagnetic simulator and successfully built and tested. This filter 



 

 12 

 

has simple topology, small physical layout, and two transmission zeros realized at 

finite frequencies.  

8. Several transitions in LTCC have also been designed, which feature very wide 

bandwidth, or embedded filtering function.  

 

The publications from this dissertation are given in [13] [41] [72] and [73].  
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Chapter 2 Synthesis of Wideband Multicoupled Resonators 

Filters Using Coupling Matrix 

 

2.1 INTRODUCTION 

 

The synthesis techniques of narrowband multicoupled resonators filters have been 

well documented [7]-[9]. In those studies, the two-port lossless filter network is 

modeled by lumped LC resonators with multiple frequency independent couplings. 

Given a filtering function with prescribed order, passband return-loss level, and 

transmission zeros, a coupling matrix can be analytically synthesized. This approach 

proved to be sufficiently accurate for narrowband filters, but is not adequate as the 

filter bandwidth is increased. For wideband filters, the circuit model with frequency 

independent coupling elements does not accurately reproduce the responses of a 

physical electromagnetic structure.  

 

A coupling element in microwave structures behaves as a capacitance (electric field 

coupling), an inductance (magnetic field coupling) or a combination of both. Early 

work on wideband filters by Wenzel [10], [11] discussed the qualitative behavior of 

the responses of multicoupled resonators filters with simple coupling elements (single 

inductive or capacitive elements). The discussions in [10] focused only on canonical 

cross coupled structures, and did not present a systematic synthesis procedure. It has 
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also been shown in [12] that a multicoupled resonators filter whose coupling 

coefficients are linear functions of frequency can be transformed to a filter network 

with constant coupling coefficients. Recently, several attempts have been made on the 

exact synthesis of wideband microwave filters [13], [14]. The couplings in waveguide 

technology can be approximated as a linear function of the guided wavelength, not 

with the frequency as in TEM cases. However if the filter bandwidth is moderate, 

such linear frequency dependence could be applied as a good approximation.  

 

In this Chapter, a synthesis technique is presented that accounts for the frequency 

variation of microwave coupling structures. The circuit model of a two-port lossless 

filter network consists of a number of LC resonators arbitrarily coupled by frequency 

dependent coupling elements. The type of coupling elements can be capacitive, 

inductive or a composite of both. The two-port impedance parameters of the filter are 

obtained in the form of partial fraction expansion from the nodal analysis of the 

circuit. The corresponding impedance parameters can also be evaluated from the 

desired transfer and reflection functions of the filter. By identifying the impedance 

parameters obtained from the circuit analysis and those from the desired transfer and 

reflection functions, it is possible to determine the values of the circuit elements.  

 

The recent work [14] addresses the same problem of wideband filter synthesis by a 

different approach. It utilizes the so-called “transversal circuit” and manipulates it to 

achieve different equivalent circuit that may be realizable in a physical structure. In 

this Chapter, a totally different and systematic approach for exact synthesis of 
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wideband microwave filters with frequency dependent couplings is presented. The 

circuit model has direct correspondence to physical realization. The physical 

representation is clear and straightforward. The filtering characteristic function is 

directly obtained in the bandpass domain, avoiding any low-pass to bandpass, or 

variable transformations.  
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2.2 THE APPROXIMATION PROBLEM 

 

2.2.1 Problem Statement 

 

 

Two-Port 

Network

vS

RS

v1 v2
RL

i1 i2
a1

b2

a2

b1  
(a) 

Two-Port 

Network

iS GS v1 v2
GL

i1 i2
a1

b2

a2

b1  
(b) 

Figure 2.1.  A general two-port network with (a) voltage source and (b) current 

source.  

 

For a general two-port lossless, lumped element, reciprocal network as shown in 

Fig. 2.1, the transfer and reflection functions (known as Scattering or S-parameters) 

are expressed as rational functions of the complex frequency variable s:  

  
11

( )
( )

( )

F s
S s

E s
=  and 

21

( )
( )

( )

P s
S s

E sε
=     (2.1) 
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From (2.1), each of the transfer and reflection functions can be expressed as a ratio of 

two polynomial functions in s. The properties of the polynomials E(s), F(s) and P(s) 

and the definition of the constant ε will be introduced in the following sections that 

consider two cases: one for a lowpass prototype network and the other for a bandpass 

filter network.  

 

The approximation problem in filter theory determines realizable rational transfer 

and reflection functions of minimum degree satisfying the desired specifications, such 

as insertion loss (IL), return loss (RL), and group delay (GD). The produced transfer 

and reflection functions can meet the given requirements on the amplitude responses 

in all passbands and stopbands, and the phase responses in the passbands. Proceeding 

to the next step, the transfer and reflection functions will then be synthesized and 

realized by a filter prototype network with specific topologies and coupling 

structures.  

 

For a lossless network, the conservation of energy formula should also apply 

  
2 2

11 21( ) ( ) 1S s S s+ =       (2.2) 

for real frequency s = jω.  

 

Therefore, the following equation must hold  

  
2

1
( ) ( ) ( ) ( ) ( ) ( )E s E s F s F s P s P s

ε
− = − + −    (2.3) 

where the polynomial E(s), F(s) and P(s) have real coefficients.  
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Using (2.3), the transfer and reflection functions in (2.1) can be further expressed as  

  

2 2
2

11 2 2

2

21 2 2

( )
( )

1 ( )

1
( )

1 ( )

C j
S j

C j

S j
C j

ε ω
ω

ε ω

ω
ε ω

=
+

=
+

     (2.4) 

where C(jω) is known as the characteristic function:  

  
( )

( )
( )

F j
C j

P j

ω
ω

ω
=       (2.5) 

and s = jω. The properties of the characteristic function C(jω) will also be introduced 

in the following sub-sections that consider lowpass and bandpass domains, 

respectively.  

 

The approximation problem is herein re-defined as to finding the characteristic 

function C(jω), i.e., to finding the values of zeros and poles of the characteristic 

function C(jω) for an optimum filtering function with equiripple levels in all 

passbands and stopbands of minimum degrees. 

 

 

2.2.2 Solving the Approximation Problem in the Lowpass Domain 

 

The two-port lossless lowpass prototype filter is normalized to a cutoff frequency of 

1 radian per second and has impedance level of 1 Ω at each port. The traditional 

synthesis of the lowpass prototype filter network is carried out that are normalized in 

frequency and impedance level. Using the frequency variable transformation and the 



 

 19 

 

scaling in frequency and impedance level, it is possible to realize bandpass filter 

networks with any desirable frequency bandwidth and impedance levels.  

 

For any two-port lossless filter prototype network in the lowpass domain composed 

of N multi-coupled resonators, the transfer and reflection functions can be expressed 

as a ratio of two Nth degree complex polynomials as in (2.1), where s is the complex 

frequency variable s = α + jω, and ε is a real constant normalizing the transfer 

function S21 to the equiripple level at ω = ±1 as follows:  

  
/10

1

1 ( )

( )10 1RL

P

F
ω

ω
ε

ω
=±

= ⋅
−

     (2.6) 

where RL is the prescribed return loss level in decibels.  

 

The polynomials E(s), F(s) and P(s) are all monic polynomials, i.e.,the coefficients 

of their highest degrees are unity. Moreover, they must assure the following 

requirements to satisfy the conditions of a realizable two-port lossless prototype 

network:  

1. The polynomial P(s) containing the prescribed transmission zeros of the transfer 

function is of degree M ≤ N – 1. Prescribing the positions of the transmission 

zeros follows the rule that symmetry must be preserved about the imaginary 

(jω) axis of the complex s-plane.  

2. The polynomial F(s) is of degree N, where N is the degree of the filtering 

function.  

3. The polynomial E(s) is a strict Hurwitz polynomial of degree N, whose zeros 

must lie in the left half of the complex s-plane.  
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The aim now is to find the zeros and poles of the characteristic function C(jω) in 

(2.5) of an optimum solution. The analytic determination, as the most desirable 

approach, of the characteristic function in the lowpass domain is known for several 

classes of generic mathematical functions: 

1. All-pole functions employing some well-known functions, i.e., Butterworth, 

Chebyshev, and Bessel types.  

2. Transfer functions having the maximum number of real frequency transmission 

zeros, i.e., the Elliptic function type.  

3. Generalized Chebyshev filtering functions solved by recursion techniques with 

symmetrically or asymmetrically prescribed transmission zeros and/or group 

delay equalization zero pairs.  

 

On the other hand, some numerical techniques, still a favorable approach, have also 

been implemented to solving the approximation problem by which the optimum 

filtering function can be obtained to satisfy any specific requirements. One of the 

widely used techniques is the transformed variables to synthesize lowpass prototype 

network for narrow bandpass filters. The strong usefulness of these transformed 

variable techniques has already been demonstrated in numerous publications. Also, 

such a technique can be applied to increase the computation accuracy for the filtering 

functions of very high degrees, namely for the filter network with high order.  
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Solving the approximation problem in the lowpass domain has also been extended 

to the design of multi-band filters, namely, multiple passbands filters. The 

characteristic filtering function can be numerically obtained by placing the 

transmission zeros within the original passband to generate a large amount of 

reflection and herein create multiple passbands. Once the characteristic function 

exhibiting multiple passbands is generated, the same synthesis and design technique 

can be applied to realize multi-band filters.  

 

For the application of bandstop filters, a bandpass-like filter configuration with 

bandstop filtering characteristic can be easily created by simply exchanging the 

transfer function S21(s) and the reflection function S11(s), so that what used to be 

return loss characteristic now becomes the transfer characteristic, and vice versa. If 

the filtering characteristic is a Chebyshev function for instance, the original 

prescribed equiripple return loss level becomes the equiripple stopband attuenation, 

whereas the former rejection levels out of passband become the return loss 

performance out of stopband. Therefore, the approximation problem can be solved in 

the same manner to obtain the filtering characteristic for bandstop filter applications.  

 

 

2.2.3 Solving the Approximation Problem in the Bandpass Domain 

 



 

 22 

 

The two-port lossless bandpass filter is directly defined on the frequency passband. 

Therefore, the frequency variable transformation is not necessarily involved. The 

impedance level could be set to 1 Ω for simplicity or scaled to any practical values.  

 

For any two-port lossless filter network in the bandpass domain composed of N 

multi-coupled resonators, the transfer and reflection functions can also be expressed 

in the form as shown in (2.1). Nevertheless, they, in this case, are of a ratio between 

two 2Nth degree real polynomials in the complex frequency variable s = α + jω. 

Similarly, ε is a real constant normalizing the transfer function S21 to the equiripple 

level  

  
/10

1 2

1 ( )

( )10 1RL
or

P

F
ω ω ω

ω
ε

ω
=

= ⋅
−

    (2.7) 

where ω1 and ω2 are the real frequency points at low and high side of the equiripple 

level of the filter passband, respectively, and RL is the prescribed return loss level in 

decibels.  

 

The following properties of polynomials E(s), F(s), and P(s) should be satisfied, in 

order to be realizable in a two-port lossless network in the bandpass domain:  

1) The polynomials E(s), F(s) and P(s) are all monic polynomials, i.e., the 

coefficients of their highest degrees are unity.  

2) The polynomial P(s) containing the prescribed transmission zeros of the transfer 

function is of degree less than 2N. Prescribing the positions of the transmission 

zeros follows the rule that symmetry must be preserved about the imaginary 
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(jω) axis of the complex s-plane, or the transmission zeros are directly located 

on the imaginary (jω) axis.  

3) The polynomial F(s) is of degree 2N, where 2N is the degree of the filtering 

function.  

4) The polynomial E(s) is a strict Hurwitz polynomial of degree 2N, whose zeros 

must lie in the left half of the complex s-plane.  

5) The formula for the conservation of energy (2.2) also holds.  

 

Therefore, the characteristic function defined in (2.5) can now be expressed as  
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z c d e
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ω
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=

= = =

−

= =

− + + +

∏
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 (2.8) 

where pi, i = 1, 2, …, N, are the reflection poles, zj, j = 1, 2, …, M, are the 

transmission zeros (corresponding to real frequencies). Other coefficients, ci, di, and 

ei are derived from real or complex transmission zeros, which is usually prescribed 

and may be utilized for group delay equalization. It is obviously to see the following 

equation must be true  

  2 2 4 2p M L K N+ + + <  

  2 4 0, 1, ,
i i

d e i K− < = K      (2.9) 

 

Comparing the characteristic function and the transfer and reflection functions 

defined in the bandpass domain to those in the lowpass domain, a primary, but critical 

difference is the orders of the polynomials for the filter networks with the same 
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number of N resonators. Precisely, the orders of the polynomials E(s) and F(s) are 2N 

instead of N. Doubling the order of polynomial to 2N makes it possible to directly 

represent the characteristic function C(jω) in the bandpass domain. Also, the zeros 

and poles of the characteristic function are directly defined in the bandpass domain 

(real frequency points) without using any frequency transformation between the 

bandpass and lowpass domains. Therefore, any amount of filter bandwidth in filter 

design requirement can be theoretically accomplished. The order p of the frequency 

variable ω in (2.8) is arbitrary as long as the characteristic function C(jω) is an odd 

function and the inequality in (2.9) is satisfied. The order p actually represents the 

number of transmission zeros at zero frequency. Also, it should be chosen carefully 

according to realizable filter physical structures.  

 

In order to find the zeros and poles of the characteristic function C(jω) in (2.8) for 

an optimum filtering function, some numerical techniques are typically required. 

There is no general analytic solution to this problem. One possible solution of the 

approximation problem has been given in [17] using transformed variable for 

different classes of wideband filters, in which the approximation problem is solved in 

the lowpass domain. An obvious motivation using transformed variable is that, when 

such a problem was initially postulated in filter theory, the computing power in that 

era was severely restricted and the design automation of filter synthesis is extremely 

limited. Nevertheless, the characteristic function in (2.8) can still be directly solved in 

bandpass domain. In [18], another possible numerical technique is introduced with 

detail equations to realize an optimum filtering function in the lowpass domain for 
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multiband filter synthesis. The same concept and technique has been applied to 

solving the approximation problem in the bandpass domain. The detailed derivations, 

equations and algorithms are given below.  

 

As shown in Fig. 2.2 (a), the determination of the characteristic function is based on 

the bandpass filter network, obtaining an equiripple performance in each passband 

and stopband, which will mathematically depict an optimum filtering function. The 

passband is defined by two frequency points, ω2 and ω3. The return loss between 

these two points is equiripple, and its level is usually prescribed according to the 

specification. The frequency point ω1 is the band edge equiripple point of the lower 

stopband. Similarly, ω4 is the band edge equiripple point of the upper stopband. The 

attenuation levels of the stopbands are usually controlled by the number of 

transmission zeros in respective stopbands. Other requirements, like phase and group 

delay, can also be accomplished by prescribing real and/or complex transmission 

zeros in (2.8). It is worth mentioning again that ω1, ω2, ω3 and ω4 in Fig. 2.2 (a) are 

directly defined as real frequency points.  
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(a) 

 
(b) 

Figure 2.2.  (a) Typical responses of a bandpass filter network. (b) Typical 

responses of a characteristic function including all critical frequency points in 

bandpass domain.  
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Because the real and/or complex transmission zeros, (if any are present), and the 

order p of the frequency variable ω in (2.8) are prescribed, using  

  2 2 4 2

1 1

( ) ( ) ( )
L K

p

i i i

i i

D c d eω ω ω ω ω
= =

= − + +∏ ∏    (2.10) 

the characteristic function C(jω) in (2.8) can be re-defined as  
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The algorithm to solve the characteristic function in (2.11) employs an iteration 

process to recursively find the locations of the zeros and poles. Hence, the iteration 

process for obtaining the optimum filtering function starts with the initial guess of a 

set of zeros {zj} and poles {pi}. The critical frequencies, at which C(ω) has its 

extrema, are determined by solving the roots of the derivative of C(ω)  

  
2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

dC d F F P F P

d d P P

ω ω ω ω ω ω

ω ω ω ω

′ ′−
= =   (2.12) 

namely, solving  

  ( ) ( ) ( ) ( ) 0F P F Pω ω ω ω′ ′− =      (2.13) 

 

A typical response curve of the characteristic function C(ω) is shown in Fig. 2.2 (b), 

which exactly corresponds to the responses of the bandpass filter network shown in 

Fig. 2.2 (a). Let the roots of equation (2.13), which should be located within filter 

passband be α1, α2, …, αN-1. Also, let α0 and αN represent two passband edge 

equiripple points that are pre-defined, namely, ω2 and ω3 respectively. Each pole of 
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p’s should lie between two successive α’s as shown in Fig. 2.2 (b), i.e., 

1 , 1,2, , 1
l l l

p l Nα α− < < = −K , or  

  0 1 1 2 2 1N N N
p p pα α α α α−< < < < < < < <L   (2.14) 

 

With the initial guess of poles p’s, the absolute values of C(ω) at α’s are usually not 

equal. Therefore, the updated values of p’s are required to find for an updated C(ω), 

which will approach closer to an equiripple performance, according to the solved 

values of C(ω) at α’s. Now, let C0(ω) be the initial characteristic function and C1(ω) 

be updated one with a new value p
’
l replacing the old pl  
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In (2.16), p
’
l will be used to force C1(ω) to have equal absolute values at αl-1 and αl, 

namely,  

  1 1 1( ) ( )
l l

C Cα α− = −       (2.17) 

 

Substituting (2.16) into (2.17) yields  
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From (2.15)  
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then substituting (2.19) and (2.20) into (2.18) yields  
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Therefore, p
’
l can be solved as  

  
2 2 2 2 2 2

2 1 0 1 1 0

2 2 2 2

0 1 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

l l l l l l l l
i

l l l l l l

p C p C
p

p C p C

α α α α α α

α α α α
− − −

− −

− + −
′ =

− + −
  (2.22) 

Now, C1(ω) has equal absolute values at αl-1 and αl.  

 

For one stopband, for example, the upper stopband in Fig. 2.2 (b), let the roots of 

(2.13) which should be located within corresponding stopband be β1, β2, …, βU, 

where U is the number of zeros in this stopband. Also, let β0 represents pre-defined 

band edge equiripple point, namely, ω4 at the beginning. Each zero of z’s should lie 

between two successive β’s as shown in Fig. 2.2 (b), i.e., 1 , 1,2, ,
l l l

z l Uβ β− < < = K  

or  

  0 1 1 2 2 1U U U
z z zβ β β β β−< < < < < < < <L    (2.23) 
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Similarly to the case in the passband, the objective here is to find an updated value 

of z’s for an updated C(ω), which will approach closer to an equiripple performance, 

according to the solved values of C(ω) at β’s. The updated characteristic function can 

be expressed as  

  

2 2

1
1 2 2

2 2

1,

( )
1

( )

( ) ( )

N

i

i

M

l
j

j j l

p

C
z

z D

ω

ω
ω

ω ω

=

= ≠

−

=
′−

−

∏

∏
   (2.24) 

where z
’
l is a new zero replacing the old zl in C0(ω), and will be used to force C1(ω) to 

have equal absolute values at βl-1 and βl, namely,  

  1 1 1( ) ( )
l l

C Cβ β− = −       (2.25) 

 

Substituting (2.24) into (2.25) yields  

 

2 2 2 2

1

1 1

2 2 2 2
2 2 2 21

1 1

1, 1,

( ) ( )
1 1

( ) ( ) ( ) ( )

N N

l i l i

i i

M M

l l l l
l j l l j l

j j l j j l

p p

z z
z D z D

β β

β β
β β β β

−
= =

−
− −

= ≠ = ≠

− −

= −
′ ′− −

− −

∏ ∏

∏ ∏
(2.26) 

Thus, following some mathematical derivation,  

  
2 2 2 2

1
0 1 02 2 2 2

1

( ) ( )l l l l
l l

l l l l

z z
C C

z z

β β
β β

β β
−

−

−

− −
= −

′ ′− −
   (2.27) 

which solves  

  
2 2 2 2 2 2

2 1 0 1 1 0

2 2 2 2

1 0 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

l l l l l l l l
l

l l l l l l

z C z C
z

z C z C

β β β β β β

β β β β
− − −

− −

− + −
′ =

− + −
  (2.28) 
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Table 2.1.  Roots of Polynomials (in GHz) 

 Roots of P(s) Roots of F(s) Roots of E(s) 

1 ±j2.1620 ±j3.0227 -0.0859±j2.9257 

2 ±j2.5460 ±j3.2189 -0.3099±j3.0849 

3 ±j5.8692 ±j3.6470 -0.5866±j3.5468 

4 ±j6.5586 ±j4.2238 -0.6390±j4.2822 

5  ±j4.7154 -0.4002±j4.8562 

6  ±j4.9689 -0.1237±j5.1009 

 

One count of iteration to obtain an updated characteristic function is completed 

once all of the updated zeros {zj} and poles {pi} are found for all passbands and 

stopbands. The process will go back to (2.13) to find new critical frequency points by 

using the updated characteristic function. The iteration will be terminated if an 

equiripple performance according to acceptable tolerance is simultaneously achieved 

at all critical frequency points. Otherwise, the iteration process will continue to find 

the next characteristic function. The convergence of this iteration process is 

guaranteed using above technique, and usually less than 30 iterations are required 

depending on the established tolerance.  

 

Once the characteristic function is obtained, it is straightforward to find filter 

transfer and reflection functions in (2.1) through the relationship in (2.3), subjecting 

to the realizable conditions. Thereafter, knowing the scattering parameters [S], the 

impedance matrix [Z] of the bandpass filter network may be obtained using 

 

11 22 12 21 12

11 22 12 21 11 22 12 2111 12

0

21 22 21 11 22 12 21

11 22 12 21 11 22 12 21

(1 )(1 ) 2

(1 )(1 ) (1 )(1 )

2 (1 )(1 )

(1 )(1 ) (1 )(1 )

S S S S S

S S S S S S S Sz z
Z

z z S S S S S

S S S S S S S S

+ − + 
 − − − − − −   =  − + +  
 − − − − − − 

(2.29) 

If the polynomial E(s) can be expressed as  
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  ( ) ( ) ( )
e o

E s E s E s= +       (2.30) 

where Ee(s) is even polynomial, and Eo(s) is odd polynomial, the impedance matrix 

[Z] can be derived after some mathematical manipulation as:  

  
11 12

0

21 22

( ) ( ) /

( ) ( ) ( ) ( )

( )( ) /

( ) ( ) ( ) ( )

o

e e

o

e e

E s P s

E s F s E s F sz z
Z

z z E sP s

E s F s E s F s

ε

ε

 
 − −   =    
 − − 

  (2.31) 

 

If the characteristic impedance Z0 at ports is assumed to be 1 Ω, the impedance 

matrix [Z] can be expressed in a form of partial fraction expansion: 

  
11, 12,11 12

2 2
1 21, 22,21 22

2n
k k

k k kk

r rz z s

r rz z s=

  
=    ′± Ω   
∑     (2.32) 

 

To illustrate the procedure, the numerical technique will be applied to a sixth degree 

filter with an equiripple return loss level of 22 dB and four transmission zeros at 

lower and upper stopbands (two at each stopband). The transmission zeros are chosen 

to give equiripple attenuation lobe levels about 50 dB and 60 dB at lower and upper 

stopbands, respectively. The center frequency f0 is 4 GHz, and the bandwidth is 2 

GHz, which corresponds to a 50% relative bandwidth. Thus, the prescribed equiripple 

frequency points ω1-ω4 are 2.58 GHz, 3 GHz, 5 GHz, and 5.81 GHz, respectively.  

 

The procedure starts with an initial guess of a set of zeros {zj} and poles {pi}, the 

roots of polynomials P(s) and F(s), respectively. The location of initial values of {zj} 

and {pi} can be evenly distributed at the filter stopband and passband, respectively. 
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The convergence condition of the iteration process is set as a test function of the 

difference of ripple levels at critical frequency points (the goal is to have equal-ripple 

level in the filter passband and stopband). Within few iteration counts, the process is 

dramatically converged. When the value of the test function is smaller than a pre-set 

value, the iteration process will stop. The roots of all polynomials are given in Table 

2.1. Moreover, the value of constant ε in (2.1) is 1.5316, and the order p in (2.8) is 

one in this example. The transfer and reflection functions of this example have been 

plotted in Fig. 2.2 (a). Note that the approximation problem is directly solved in the 

bandpass domain, thus the imaginary values of the roots of the polynomials F(s) and 

P(s) are exactly located at the reflection zeros and transmission zeros, respectively on 

the responses in Fig. 2.2 (a).  
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2.3 COUPLING MATRIX SYNTHESIS FOR NARROW-BAND 

FILTERS 

 

2.3.1 Overview 

 

In this section, we examine the existing coupling matrix representation of multi-

coupled resonators filter circuit model with frequency independent couplings for 

narrow-band microwave filter applications.  

 

In the early 1970s, Atia et al. [7] introduced the concept of the coupling matrix as 

applied to the synthesis and design of multiple coupled cavity microwave filters. The 

circuit model is comprised of N inter-coupled lumped-element series resonators as 

shown in Fig. 2.3. The couplings among these resonators exist in an arbitrary way, 

and are represented by the frequency independent coupling impedance matrix jM. The 

assumption of frequency independent couplings is only valid over a narrow frequency 

band. Therefore, the filter bandwidth realized by this circuit model is limited to 

narrow bandpass filter with typical relative bandwidth (bandwidth / center frequency) 

less than five percent.  
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Figure 2.3.  General two-port circuit model of multi-coupled resonators filter 

network with frequency independent couplings.  

 

 

2.3.2 Circuit Analysis and Coupling Matrix Synthesis 

 

Kirchhoff’s law is applied to the loop currents in the series resonators of the circuit 

shown in Fig. 2.3, leading to a set of equations which may be represented in a matrix 

form:  

  [ ] [ ] [ ]e Z J= ⋅        (2.33) 

where [Z] is the impedance matrix of the N-loop filter circuit network plus its 

terminations, and  

  [ ] [1, 0, 0, , 0]t

s
e e= K  

  [ ] [ ]Z jM sI R= + +  

  1 2 3[ ] [ , , , , ]t

N
J i i i i= K       (2.34) 
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where [.]
t
 denotes matrix transpose and I is the identity matrix, es is the source 

voltage, and i1, i2, … , iN are the currents in each of the N loops. The impedance 

matrix [Z] itself is the sum of three N N×  matrices.  

 

The matrix R is the N N×  matrix with all entries zero, except the first element is 

equal to the source impedance Rs and the last element is equal to the load impedance 

RL. And the coupling matrix M is the N N×  reciprocal matrix containing the values 

of mutual couplings between resonators and having the form: 

  

1,1 1,2 1,3 1,

1,2 2,2 2,3

1,3

1,

1, 1,

N

N N

N N N NN

M M M M

M M M

MM

M

M M M

−

−

 
 
 
 =
 
 
 
 

L

O

M O

  (2.35) 

 

The synthesis procedures for obtaining the values of coupling matrix have been 

clearly presented in [8] in detail. In brief, the key steps in solving the current 

synthesis problem include: solving the inverse problem of the impedance matrix to 

obtain the admittance matrix [Y] of the multiple coupled resonators filter network, 

generating another admittance matrix [Y] in a partial fraction expansion form from the 

filtering characteristic polynomials E(s), F(s) and P(s)/ε, and finally relating these 

two admittance matrices by identifying the corresponding elements in order to solve 

the coupling matrix in an analytical manner.  

 

In general, all the entries in the coupling matrix M are nonzero. If the coupling is 

between the resonators in sequence, Mi,i+1, it is known as a mainline coupling. For the 
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entries on the main diagonal, Mi,i, they are named as self-couplings. Whereas, all the 

other couplings between non-sequentially numbered resonators are referred to as 

cross couplings.  

 

 

2.3.3 Coupling Matrix Reconfiguration 

 

It is clear that there is no practical way to realize and implement a coupling matrix 

with all nonzero entries into a physical structure with realizable dimensions. 

Therefore, a common practice is to eliminate the unwanted couplings with a sequence 

of similarity transformations (also known as rotations) in order to obtain a coupling 

matrix with a minimal number of couplings in a more convenient form.  

 

A similarity transformation on an N N×  coupling matrix is given as follows:  

  1 0

t
M H M H= ⋅ ⋅       (2.36) 

where M0 is the original matrix, M1 is the transformed matrix, and the rotation matrix 

H has the same dimensions N N×  and is defined as an identity matrix with a pivot [i, 

j] (i ≠ j), except of the following elements having special values: 

  , , cosi i j jH H θ= =       (2.37a) 

  , , sini j j iH H θ= − = −       (2.37b) 

where the angle θ is defined as the rotation angle. All other entries apart from the 

principal diagonal in the rotation matrix H are zero.  
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In using the similarity transformation, the eigenvalues and eigenvectors of the 

transformed matrix M are preserved, so that the transformed matrix has exactly the 

same transfer and reflection characteristics as the original matrix. Moreover, given 

the pivot [i, j] (i ≠ j) for the similarity transformation, only those elements in the rows 

and columns i and j may possibly be affected by the transformation. All other 

elements retain their previous values. And if two elements facing each other across 

the rows or columns of the pivot are both zero before the transformation, they will 

still be zero thereafter.  

 

In order to annihilate a specific element in the coupling matrix, the rotation angle 

must be properly chosen for a similarity transformation at pivot [i, j] (i ≠ j) as 

follows: 

 1tan ( / )ik jkM Mθ −= ,  for the kth element in row i  (2.38a) 

 1tan ( / )jk ikM Mθ −= − , for the kth element in row j  (2.38b) 

 1tan ( / )ki kjM Mθ −= ,  for the kth element in column i (2.38c) 

 1tan ( / )kj kiM Mθ −= − , for the kth element in column j (2.38d) 

Usually, a sequence of rotations is required to apply on the full coupling matrix M 

resulting from the synthesis procedures previously described, and progressively to 

annihilate the unrealizable elements to reach a convenient matrix topology.  

 

Many filter network topologies have been extensively studied and well published in 

the literature based on analytical or numerical procedures [24]. Some filter topologies 
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have found numerous applications throughout industry, and certain advanced 

topologies can even provide desirable filter performance.  
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2.4 MULTI-COUPLED SERIES RESONATORS FILTER 

NETWORK WITH FREQUENCY DEPENDENT COUPLINGS 

 

2.4.1 Overview 

 

Rigorous synthesis methods of narrow-band multi-coupled resonator filters with 

frequency independent couplings have been discussed in previous section. As the 

filter relative bandwidth becomes wider, the circuit model of frequency independent 

coupling matrix will no longer accurately reproduce the electromagnetic responses of 

a physical filter structure obtained by electromagnetic simulation. It is known that the 

coupling elements in microwave structures behave as either capacitances (electric 

field coupling) or inductances (magnetic field coupling) or a combination of both. It 

also has been shown in [12] that a multiple coupled-resonator filter whose couplings 

are linear functions of frequency can be transformed to a filter network with constant 

coupling coefficients.  

 

In this section, a coupling matrix synthesis technique is presented to account for the 

frequency variation of the microwave coupling structures. The wideband circuit 

model of filter network consists of N series resonators arbitrarily coupled by inductors 

or capacitors (frequency dependent elements). The circuit analysis leads to the two-

port admittance parameters of the filter in partial fraction expansion form. As 

discussed in Section 2.2, given filter specifications, the approximation problem can be 

solved by numerical techniques to determine the rational transfer and reflection 
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functions of the filter in the bandpass domain. The corresponding admittance 

parameters can be therefore extracted from the transfer and reflection functions. The 

synthesis of the coupling matrix representing the filter network is completed by 

identifying the corresponding elements in admittance parameters obtained from the 

circuit analysis and those from the transfer and reflection functions.  

 

 

2.4.2 Circuit Analysis and Coupling Matrix Synthesis for Inductive Coupling 

 

 

Figure 2.4.  General two-port circuit model of multi-coupled series resonators 

filter network with frequency dependent couplings.  

 

An equivalent circuit of a multi-coupled series resonators filter network is 

comprised of N series LC resonators, where couplings among these resonators exist in 

an arbitrary way. The coupling element between any two resonators can be purely a 

capacitance (electric field coupling), purely an inductance (magnetic field coupling) 

or a composite of both (mixed electric and magnetic field coupling). The coupling 



 

 42 

 

element between resonators i and j is given by a general form ωmij-1/ωCij, which 

obviously has dependence on the frequency variable ω.  

 

In this section, we will consider only the cases where all the coupling elements are 

of one kind, i.e. either inductive or capacitive. Fig. 2.4 shows the wideband circuit 

model for the case with only inductive coupling elements, which are proportional to 

the frequency variable ω.  

 

Kirchhoff’s law is applied to the circuit model in Fig. 2.4, from which a set of loop 

equations can be derived and further simplified to a matrix form:  

1 1,2 1,3 1,

1

1 1

2,1 2 2,3 2,
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C
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C
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ω
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    −
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L L
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          (2.39) 

 

This equation can be immediately re-written in the following form:  

  1 2 1 2

1
[ ( ) ][ , , , ] [ ,0, , ]t t

n
j L M S i i i e eω

ω
+ − = −L L   (2.40) 

where 

  1 2( , , , )
n

L diag L L L= L       
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1 2

1 1 1
( , , , )

n

S diag S S
C C C

= = ⋅L      

  1

1 2( , , , )
n

C diag C C C C C S
−= = ⋅ =L     

  , , 1,2, , ,[ ] 0
i j i j n and i j i i

M m where M= ≠= =
L

   (2.41) 

 

Following some manipulations, equation (2.40) can be re-arranged as:  

 1 2 1 22

1
[ ( ) ] [ , , , ] [ ,0, , ]t t

n
j S I C L M C S i i i e eω

ω
− − + = −L L  (2.42) 

Then keep only current vector to the left of the equal sign 

 1

1 2 1 22

1
[ , , , ] [ ( ) ] [ ,0, , ]t t

n

j
i i i C I C L M C C e e

ω ω
−= − + −L L  (2.43) 

 

Since ( )C L M C+  is a real and symmetric matrix, it can be decomposed as: 

  ( ) tC L M C T T Q+ = Ω =      (2.44) 

where 1 2( , , , )
n

diagΩ = Ω Ω ΩL ,
i

Ω  are the eigenvalues of ( )C L M C+ , and T is 

an N N×  matrix with rows of orthogonal unit vectors, satisfying t tT T T T I⋅ = ⋅ = . 

The inverse matrix in the right-hand-side of equation (2.43) can be solved as: 

  

1 1

2 2

1

1 22 2 2

1 12 2 2

1 1
[ ( ) ] [ ]

1 1 1
[ ( , , , ) ]

1 1 1
( , , , )

1 1 1

t

t

n

t

n

I C L M C I T T

Tdiag T

Tdiag T

ω ω

ω ω ω

ω ω ω

− −

−

− + = − Ω

= − Ω − Ω − Ω

=

− Ω − Ω − Ω

L

L

  (2.45) 

 

Substituting equation (2.45) into (2.43) yields 
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1 2

1 2

1 12 2 2

[ , , , ]

1 1 1
( , , , ) [ ,0, , ]

1 1 1

t

n

t t

n

i i i

j
CTdiag T C e e

ω
ω ω ω

= −

− Ω − Ω − Ω

L

L L  (2.46) 

 

It can be shown that the matrix Q is positive definite, i.e., all of its eigenvalues are 

positive real numbers. Letting 21/
k k

ωΩ = , the two-port admittance matrix [Y] can be 

derived as:  

  

2

2 2

1, 1 1,1
11 1

1 11 0
2

1

n n
k k k

kk ke
k

k

T C Ti j
y C j

e

ω

ωωω
ω ω ω

= ==

= = = −

− Ω −
∑ ∑   (2.47) 

and similarly,  

  

1

1, ,1
21 1

12 0
2

1 1, ,

12

1

1

n
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n
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1

2 2

, ,

22

1 12 0
2

1

n n
n k k n n kn

n
kk ke

k

k

T C Ti j
y C j

e

ω
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−
= = = −

− Ω −
∑ ∑   (2.49) 

 

Knowing the transfer and reflection functions by solving the approximation 

problem in bandpass domain, the admittance parameters [Y] of the wideband filter 

circuit model may be obtained using  
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11 22 12 21 12

11 22 12 21 11 22 12 2111 12

0

21 22 21 11 22 12 21

11 22 12 21 11 22 12 21

(1 )(1 ) 2

(1 )(1 ) (1 )(1 )

2 (1 )(1 )

(1 )(1 ) (1 )(1 )

S S S S S

S S S S S S S Sy y
Y

y y S S S S S

S S S S S S S S

− + + − 
 + + − + + −   =  − + − +  
 + + − + + − 

 (2.50) 

 

If the polynomial E(s) can be expressed as  

  ( ) ( ) ( )
e o

E s E s E s= +       (2.51) 

where Ee(s) is even polynomial, and Eo(s) is odd polynomial, the admittance matrix 

[Y] can be derived after some mathematical manipulation as:  

  
11 12

0

21 22

( ) ( ) /

( ) ( ) ( ) ( )

( )( ) /

( ) ( ) ( ) ( )

o

e e
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e e

E s P s
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y y E sP s

E s F s E s F s

ε

ε
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 + +   =   − 
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  (2.52) 

 

If the characteristic admittance Y0 at ports is assumed to be 1 (S), the admittance 

matrix [Y] can be expressed in a form of partial fraction expansion: 

  
11 1211 12

1 21 2221 22

1n
k k

kk k k

k

r ry y
j

r ry y ωω

ω ω
=

  
= −    ′   −

′

∑    (2.53) 

Note that it is necessary to solve again the approximation problem in the bandpass 

domain to accommodate the introduction of frequency dependent couplings on the 

wideband filter circuit model.  

 

The two expressions for the admittance matrix [Y], in terms of the circuit elements 

of the multi-coupled series resonators filter network in equations (2.47)-(2.49), and in 

terms of the eigenvalues and residues from the transfer and reflection functions in 
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equation (2.53), may be related to identify the corresponding elements. It is seen 

immediately that  

  
k k

ω ω′=        (2.54a) 

  2

1 1, 11k k kC T rω =        (2.54b) 

  1 1, , 21k n k n k kC C T T rω = −      (2.54c) 

  2

, 22k n n k kC T rω =        (2.54d) 

 

Since the matrix [T] is an orthogonal matrix as defined in (2.44), the row vectors T1k 

and Tnk have the following properties: 

  2

1,

1

1
n

k

k

T
=

=∑  and 1, ,

1

0
n

k n k

k

T T
=

=∑      (2.55) 

 

Substituting equation (2.55) to (2.54) yields 

  2 11
1,

1 1 1

1
n n

k
k

k k k

r
T

Cω= =

= =∑ ∑        

  11
1

1

n
k

k k

r
C

ω=

⇒ =∑       (2.56) 

From (2.54b),  

  11
1,

1

k
k

k

r
T

Cω
=        (2.57) 

Following similar derivation for C1, Cn can be found as 

  22

1

n
k

n

k k

r
C

ω=

=∑        (2.58) 
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Knowing equations (2.56)-(2.58), Tn,k can be solved from (2.54c) as 

  21
,

1 1,

k
n k

k n k

r
T

C C Tω

−
=       (2.59) 

 

With the first and last rows of the matrix [T] now determined, the remaining 

orthogonal rows in [T] may be constructed by a Gram-Schmidt process to fill in. As 

defined in (2.44), tQ T T= Ω  is now known, and from  

  

1 1 1,2 1 2 1, 1

2,1 2 1 2 2 2, 2

,1 1

n n
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Ω =  
 
 
 

L

L

M M O M

L L

 (2.60) 

all remaining circuit elements Li, Ci, and mij in the multi-coupled series resonators 

filter network can be found. Firstly, since C1 and Cn are already known,  

  11
1

1

Q
L

C
=  and nn

n

n

Q
L

C
=      (2.61) 

 

The two-port parameters determine uniquely L1, C1, Ln, and Cn, but others, C2, …, 

Cn-1 are arbitrary to choose. If the loop characteristic impedances 

  /ok k kZ L C=       (2.62) 

where k = 2, …, n-1, are chosen as design parameters, then  

  k ok kkL Z Q=  and 
kk

k

ok

Q
C

Z
=     (2.63) 

 

Moreover, from (2.44) and (2.60),  
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  ,

ij

i j

i j

Q
m

C C
=        (2.64) 

 

Thus, all of the circuit elements are synthesized.  

 

The synthesized coupling matrix may contain all the elements. To realize a certain 

topology some of the matrix elements must be reduced to zero. This can be readily 

done using matrix rotations as in the narrow band case.  

 

Circuit analysis and coupling matrix synthesis for the case with only capacitive 

coupling elements are very similar, and can be solved in a similar way.  

 

 

2.4.3 Circuit Analysis and Coupling Matrix Synthesis for Capacitive Coupling 

 

Now consider the case that the coupling element between any two resonators in Fig. 

2.4 is purely a capacitance instead of a inductance as has been shown in previous sub-

sections, namely, it will be inversely proportional to the frequency variable ω. Apply 

Kirchhoff’s Law to the circuit mode, the following equation in matrix form can be 

derived similarly to (2.39):  
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1

1 1,2 1,3 1,

1
2

2,1 2 2,3 2, 2

,1 ,2 ,

,1 ,2 , 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

n

n

l

l

l l l l n

n

n

n n n n n

L
C m m m

i
L

m C m m i

j
i

L
m m C m

i

L
m m m C

ω
ω ω ω ω

ω
ω ω ω ω

ω
ω ω ω ω

ω
ω ω ω ω−

 
− − − − 

 
   

− − − −   
   
   
   
   − − − −   
   
   
 
 − − − −
  

L L

L L

MM M O M M M

L L
M

M M M M O M

L L

1

2

0

0

e

e

 
 
 
 

=  
 
 
 
−   

M

M

 

          (2.65) 

 

This equation can be immediately re-written as:  

  
1 2 1 2

1
[ ( )][ , , , ] [ ,0, , ]C t t

n
j L S M i i i e eω

ω
− + = −L L   (2.66) 

where 

  
1 2

( , , , )
n

L diag L L L= L  

  
1 2

1 1 1
( , , , )

n

S diag
C C C

= L  

  1

1 2
( , , , )

n
C diag C C C S

−= =L  

  , 1,2, , ,

,

1
[ ] 0C C

i j n and i j i i

i j

M where M
m

= ≠= =
L

   (2.67) 

 

After some manipulation, equation (2.66) can be re-arranged as:  

 2 1

1 2 1 2[ , , , ] [ ( ) ] [ ,0, , ]t C t

n
i i i j P I P S M P P e eω ω −= − − + −L L  (2.68) 

where 
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  1

1 2

1 1 1
( , , , )

n

P diag L
L L L

−= =L     (2.69) 

 

Since ( )CP S M P+  is a real and symmetric matrix, it also can be decomposed 

as:  

  ( )C C t CP S M P T T Q+ = Ω =     (2.70) 

where 1 2( , , , )C C C C

n
diagΩ = Ω Ω ΩL , 1

CΩ  are the eigenvalues of ( )CP S M P+ , and 

again, T is an N N×  matrix with rows of orthogonal unit vectors, satisfying 

t tT T T T I⋅ = ⋅ = . The inverse matrix in the right-hand-side of (2.68) can be solved 

as:  

  

2 1 2 1

2 2 2 1

1 2

2 2 2

1 2

[ ( ) ] [ ]

[ ( , , , ) ]

1 1 1
( , , , )

C C t

C C C t

n

t

C C C

n

I P S M P I T T

Tdiag T

Tdiag T

ω ω

ω ω ω

ω ω ω

− −

−

− + = − Ω

= − Ω − Ω − Ω

=
− Ω − Ω − Ω

L

L

  (2.71) 

 

Substituting (2.71) into (2.68) yields:  

 

1 2

1 22 2 2

1 2

[ , , , ]

1 1 1
( , , , ) [ ,0, , ]

t

n

t t

C C C

n

i i i

j PTdiag T P e eω
ω ω ω

= − −
− Ω − Ω − Ω

L

L L
(2.72) 

 

It can be shown that the matrix Q
C
 is positive definite, i.e., all of its eigenvalues are 

positive real numbers. Letting 2C

k k
ωΩ = , the two-port admittance matrix [Y] can be 

derived as:  
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2

2

2 1,

1, 11
11 2

1 11 10

1 1

1
kn n

k k

C
kk kke

k

T
T Li

y j j
e L

ω
ω

ωωω
ω ω

= ==

= = − = −
− Ω

−
∑ ∑   (2.73) 

  

1

1, ,1
21 2

12 10

1, ,

1

12

1

1

1 1

n
k n k

C
k kne

k n k
n

k n

kk

k

T Ti
y j

e L L

T T
L L

j y

ω
ω

ω

ωω

ω ω

==

=

= =
− Ω

= =

−

∑

∑

    (2.74) 

  

1

2

2 ,

,

22 2
1 12 0

1 1

1
n kn n

n kn k n

C
kk kn ke

k

T
Ti L

y j j
e L

ω
ω

ωωω
ω ω

= ==

−
= = − = −

− Ω
−

∑ ∑  (2.75) 

 

The coupling matrix synthesis is carried out in a similar manner as shown in 

previous sub-section. Identifying the corresponding elements in equation (2.53) and 

equations (2.73)-(2.75), it is seen immediately that  

  
k k

ω ω′=  

  2

1, 11

1

1 1
k k

k

T r
Lω

=  

  1, , 21

1

1 1
k n k k

k n

T T r
L Lω

= −  

  2

, 22

1 1
n k k

k n

T r
Lω

=       (2.76) 

 

Since the matrix [T] is an orthogonal matrix as defined in (2.70), the row vectors 

T1,k and Tn,k have the following properties:  
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  2

1,

1

1
n

k

k

T
=

=∑  and 1, ,

1

0
n

k n k

k

T T
=

=∑      (2.77) 

 

Substituting equation (2.77) into (2.76) yields:  

  2

1, 11 1

1 1

1
n n

k k k

k k

T r Lω
= =

= =∑ ∑  

  1

11

1

1
n

k k

k

L

r ω
=

⇒ =

∑
      (2.78) 

Also,  

  1, 11 1k k kT r Lω=       (2.79) 

Following similar derivation for L1, Ln can be found as  

  

22

1

1
n n

k k

k

L

r ω
=

=

∑
       (2.80) 

 

Knowing equations (2.78)-(2.80), Tn,k can be solved as  

  
21 1

,

1,

k k n

n k

k

r L L
T

T

ω−
=       (2.81) 

 

With the first and last rows of the matrix [T] now determined, the remaining 

orthogonal rows in [T] may be constructed by a Gram-Schmidt process to fill in. As 

defined in (2.70), C C tQ T T= Ω  is now known, and from  
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1 1 1,2 1 2 1, 1

2 22,1 2 1 2, 2

,1 1

1 1 1

1 1 1

1 1

C C

n n

C CC t

n n

C
n nn n

L C M L L M L L

L CM L L M L LT T

L CM L L

 
 
 
 
 

Ω =  
 
 
 
 
 

L

L

M M O M

L L

 (2.82) 

all remaining circuit elements Li, Ci, and M
c
ij in the multi-coupled series resonators 

filter network can be found. Firstly, since L1 and Ln are already known  

  1

1 11

1
C

C
L Q

=  and 
1

n C

n nn

C
L Q

=      (2.83) 

 

The two-port parameters determine uniquely L1, C1, Ln, and Cn, but others, L2, …, 

Ln-1 are arbitrary to choose. If the loop characteristic impedances 

  /ok k kZ L C=       (2.84) 

where k = 2, …, n-1, are chosen as design parameters, then  

  ok
k

C

kk

Z
L

Q
=  and 

1
k

C

ok kk

C
Z Q

=     (2.85) 

 

Moreover,  

  ,

1C

i j C

ij i j

M
Q L L

=       (2.86) 

 

Thus, all of the circuit elements for the case that the coupling element between any 

two resonators in Fig. 2.4 is purely a capacitance are synthesized in this sub-section. 

Again, the synthesized coupling matrix may contain all the elements. To realize a 
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certain topology some of the matrix elements must be reduced to zero. This can be 

readily done using matrix rotations as in the narrow band case.  

 

 

2.4.4 Limitation 

 

The wide band circuit model in Fig. 2.4 has series LC resonators coupled by 

frequency dependent couplings. The limitation is on the physical definition of the 

capacitive coupling element between any two resonators. Although the mathematic 

derivation can be carried on for the case of purely capacitive coupling elements or for 

the case of the composite elements of inductive and capacitive couplings, it is then 

very hard to relate the synthesized coupling matrix to the physical structure when 

designing a filter.  

 

Therefore, in the following sections, the circuit model with series LC resonators 

will be replaced by the circuit model with shunt LC resonators.  
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2.5 MULTI-COUPLED PARALLEL RESONATORS FILTER 

NETWORK WITH FREQUENCY DEPENDENT COUPLINGS 

 

2.5.1 Overview 

 

Ci,j

-Ci,j -Ci,j

 

(a) 

Li,j

-Li,j

 

(b) 

Ci,j

-Ci,j -Ci,j

Li,j

-Li,j
-Li,j

 

(c) 

Figure 2.5.  Coupling inverter elements: (a) purely capacitive, (b) purely 

inductive, and (c) a composite of both.  
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The wideband circuit model discussed in previous section is modified from series 

coupled resonators to parallel arrangement. This change of the circuit model makes 

the physical representation more suitable to model three types of coupling inverter 

elements, which are shown in Fig. 2.5. It is evident that these types of coupling 

elements are all frequency dependent.  

 

 

2.5.2 Circuit Analysis 

 

An equivalent circuit model of a multi-coupled parallel resonators filter is 

composed of N shunt LC resonators. Coupling elements among these resonators may 

exist in an arbitrary way, as shown in Fig. 2.6. For i = 1, …, N, the resonator i 

consists of an inductor Li and a capacitor Ci connected in parallel. The coupling 

between any two resonators is an inverter realized by a pi network, which can be 

capacitor (electric coupling), inductor (magnetic coupling), or both for composite 

coupling, as shown in Fig. 2.5. This model can accurately reproduce the responses of 

an electromagnetic structure over a very wide frequency band, provided that the 

number of resonators and the values of the circuit elements are properly constructed.  
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C1

L1

CnCiC2

L2 Li Ln

m1,2 m2,i mi,n

m1,i m2,n

v1

v2 vi

vn

i1 in

 

Figure 2.6.  Circuit model of multicoupled resonators filter.  

 

The node equations of this circuit model can be written as  

  

1 1,2 1,

1

1 1

2,1 2 2, 2

2

,1 , 1

1

1
0

1

n

n

n n

n n n n

n

sC m m
sL

v i

m sC m v
sL

v i

m m sC
sL

−

 
+ − − 

     
     − + −     =
     
     

    
 − − +
  

L

L

M M
M M O M

L

 (2.87) 

where  

  , ,

,

1
, , 1,2, , ; .i j i j

i j

m sC i j n i j
sL

= + = ≠K    (2.88) 

 

The node equations can also be written in the following form:  

  
1

[ ( ) ( )][ ] [ ]C L
s C M P M v i

s
− + − =     (2.89) 

where 
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  1 2( , , , )
n

C diag C C C= K  

  1

1 2

1 1 1
( , , , )

n

P diag L
L L L

−= =K  

  ,

,

1
[ ], , 1,2, , ; , 0L L

i i

i j

M i j n i j M
L

= = ≠ =K  

  , ,[ ], , 1, 2, , ; , 0C C

i j i iM C i j n i j M= = ≠ =K  

  1 2[ ] [ , , , ]t

n
v v v v= K  

  1[ ] [ ,0, ,0, ]t

n
i i i= K       (2.90) 

Then, equation (2.89) can be rearranged as 

  11
[ ] [ ( ) ( )] [ ]C L
v s C M P M i

s

−= − + −     (2.91) 

The matrices ( )CC M−  and ( )LP M−  are both real symmetrical and positive definite 

(see [16] and Appendix A). Therefore, ( )CC M−  can be decomposed as  

  ( )C t

C
C M Q Q− = Λ       (2.92) 

where 1 2( , , , )
C C C Cn

diag λ λ λΛ = K , 
Ci

λ  are the eigenvalues of ( )CC M−  (all real 

positive numbers) and Q is an orthogonal matrix, satisfying t tQ Q Q Q I⋅ = ⋅ = . The 

inverse matrix in the right-hand side of (2.91) can be solved as  

  1 11 1
[ ( ) ( )] [ ( )]C L t L

C
s C M P M sQ Q P M

s s

− −− + − = Λ + −  

  1 1 1 1 11
[ ( ) ]t L t

C C C C
Q sI Q P M Q Q

s

− − − − −= Λ + Λ − Λ Λ   (2.93) 

 

Let  
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  1

CA Q
−= Λ  and 1t t

CA Q
−= Λ     (2.94) 

Substituting (2.94) into (2.93) yields  

  1 11 1
[ ( ) ( )] [ ( ) ]C L t L t
s C M P M A sI A P M A A

s s

− −− + − = + −  (2.95) 

Again, it can be shown that (see [16] and the Appendix A) ( )t LA P M A−  is a real 

symmetric and positive definite matrix, so it is possible to be decomposed as  

  ( )t L t

L
A P M A T T− = Λ      (2.96) 

where 2 2 2

1 2( , , , )
L n

diagΛ = Ω Ω ΩK , 2

i
Ω  are the eigenvalues of ( )t LA P M A−  (all real 

positive numbers) and T is an orthogonal matrix, satisfying t tT T T T I⋅ = ⋅ = . 

Equation (2.95) now becomes  

1 1

2

1 1 1
[ ( ) ( )] [ ] ( )

1

tC L t t

L

i

s C M P M A sI T T A Bdiag B
s s

s
s

− −− + − = + Λ =

+ Ω

 (2.97) 

where  

  B AT=        (2.98) 

 

The node equation (2.91) can now be expressed as  

  
2 2

[ ] ( ) [ ]t

i

s
v Bdiag B i

s
=

+ Ω
     (2.99) 

Thus, the two-port impedance parameters [Z] of the multi-coupled parallel resonators 

filter can be derived as  

  
2

1
11 2 2

1

n
i

i i

sB
z

s=

=
+ Ω

∑  
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2

22 2 2
1

n
ni

i i

sB
z

s=

=
+ Ω

∑       (2.100) 

  1
12 212 2

1

n
i ni

i i

sB B
z z

s=

= =
+ Ω

∑  

 

Comparing equations (2.32) and (2.100), the following parameters can easily be 

identified:  

  

2

1 11,

2

22,

1 21,

2 2

2

2

2

, 1, 2, , .

i i

ni i

i ni i

i i

B r

B r

B B r

i n

=

=

=

′Ω = Ω = K

     (2.101) 

 

Thus, the first and the last row of the matrix [B] are known as well as the 

eigenvalues 2

i
Ω . The issue now is how to reconstruct the matrices [B], ( )CC M− , 

and ( )LP M−  from these known values in (2.101) subject to a given topology. 

Analytical solutions for the synthesis have been obtained for the cases where all the 

couplings are either inductive or capacitive. These solutions are presented in Section 

2.6. For the general case where all three types of couplings exist, a numerical 

optimization approach is adopted and is presented in Section 2.7.  
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2.6 SYNTHESIS FOR ALL INDUCTIVE OR ALL CAPACITIVE 

COUPLINGS 

 

2.6.1 Only Inductive Coupling Elements 

 

For all inductive couplings, the matrix 0C
M = , and Q = I, the identity matrix. 

Therefore, the node equation (2.89) becomes  

  
1

[ ( )][ ] [ ]L
sC P M v i

s
+ − =      (2.102) 

and the matrix B defined in (2.98) becomes  

  1
B C T

−=        (2.103) 

 

By identifying the residues in (2.101), the following results are obtained:  

  

2

1, 11,

1

2

, 22,

1, ,

21,

1

1
2

1
2

2

k k

n k k

n

k n k

k

n

T r
C

T r
C

T T
r

C C

=

=

=

      (2.104) 

The circuit elements can now be solved as follows:  

  2

1, 1 11, 1

1 1
11,

1

1
1 2

2

n n

k k n
k k

k

k

T C r C

r= =

=

= = =∑ ∑
∑

   (2.105) 

  2

, 22,

1 1
22,

1

1
1 2

2

n n

n k n k n n
k k

k

k

T C r C

r= =

=

= = =∑ ∑
∑

   (2.106) 
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21, 1

, 22, 1,

,

2
T 2 T

k n

n k k n k

n k

r C C
r C

T
= =     (2.107) 

 

With the first and last rows of the matrix [T] determined, the remaining orthogonal 

rows of [T] may be constructed by the Gram-Schmidt process or equivalent. Thus, the 

matrix 
L

Λ  and the matrix [T] are known, as well as parameters C1 and Cn. As defined 

in (2.96),  

1 1 1,2 1 2 1, 1

1 1
2 22,1 2 1 2, 2

,1 1

1 1 1

1 1 1

( )

1 1

n n

L t

n n L

n nn n

L C L C C L C C

L CL C C L C CC P M C T T D

L CL C C

− −

− − 
 
 
 − −
 

− = = Λ = 
 
 

− 
 
 

L

L

M M O M

L L

 

          (2.108) 

all remaining circuit elements in the multicoupled resonators filter can be identified. 

Firstly, since C1 and Cn are already known,  

  1

11 1

1
L

D C
=  and 

1
n

nn n

L
D C

=      (2.109) 

 

The two-port parameters determine uniquely C1, Cn, L1, and Ln, but others, C2, …, 

Cn-1, are arbitrary. If the node characteristic impedances  

  /ok k kZ L C=       (2.110) 

where k = 2, …, n-1 are chosen as design parameters, then  
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  ok
k

kk

Z
L

D
=  and 

1
k

ok kk

C
Z D

=     (2.111) 

Moreover,  

  ,

1
, , 1, 2, , ;

i j

ij i j

L i j n i j
D C C

−
= = ≠K    (2.112) 

 

Thus, all of the circuit elements and coupling elements consisting of only inductive 

couplings are synthesized.  

 

The synthesized coupling matrix may contain all non-zero elements. To realize a 

certain topology, some of the matrix elements must be reduced to zero. This can be 

readily done using matrix rotations as in the narrowband case.  

 

 

2.6.2 Only Capacitive Coupling Elements 

 

For all capacitive couplings, the matrix 0L
M = . Following a similar process as that 

in all inductive couplings case, one can derive the values of all circuit elements. The 

node equation (2.89) now becomes  

  
1

[ ( ) ][ ] [ ]C
s C M P v i

s
− + =      (2.113) 

which can be re-arranged as  

  11
[ ] [ ( ) ] [ ]C
v L I s L C M L L i

s

−= + −    (2.114) 
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It can be shown (see [16] and Appendix A) that ( )CL C M L−  is a real 

symmetric and positive definite matrix. Therefore, this matrix can be decomposed as  

  ( )C tL C M L T T− = Ω      (2.115) 

where 2 2 2

1 2( , , , )
n

diagΩ = Ω Ω ΩK , 2

i
Ω  are the eigenvalues of ( )CL C M L− , and T 

is an orthogonal matrix, satisfying t tTT T T I= = . Now equation (2.114) now 

becomes  

  
2 2 2

1 2

1 1 1
[ ] ( , , , ) [ ]

1 1 1
t

n

v LTdiag T L i

s s s
s s s

=

+ Ω + Ω + Ω

K  (2.116) 

Thus, the two-port impedance parameters [Z] of the multi-coupled resonators filter 

can be derived as  

  

2 2

1 1,

11 2 2
1

2 2

,

22 2 2
1

2

1 1, ,

12 212 2
1

/

1/

/

1/

/

1/

n
k k

k k

n
n n k k

k k

n
n k n k k

k k

sL T
z

s

sL T
z

s

s L L T T
z z

s

=

=

=

Ω
=

+ Ω

Ω
=

+ Ω

Ω
= =

+ Ω

∑

∑

∑

    (2.117) 

 

The synthesis of the circuit elements for this case can be carried out in similar 

manner to the case in Section 2.6.1. By comparing the two-port impedance 

parameters [Z] in (2.32) and (2.117), the following parameters can be identified:  
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2

2

2

1,

1 11,2

2

,

22,2

1, ,

1 21,2

1

2
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2

k

k

k

k

k

n k

n k

k

k n k

n k

k

T
L r

T
L r

T T
L L r

′= Ω
Ω

=
Ω

=
Ω

=
Ω

      (2.118) 

The circuit elements can be solved  

  2 2

1 11, 22,

1 1

2 2
n n

k k n k k

k k

L r L r
= =

= Ω = Ω∑ ∑  

  

2 2

22, 21,

, 1,

1 ,

2 2
k k k k

n k k

n n n k

r r
T T

L L L T

Ω Ω
= =     (2.119) 

 

With the first and last rows of the matrix [T] determined, the remaining orthogonal 

rows of [T] may be constructed by the Gram-Schmidt process or equivalent. Thus, the 

matrix Ω  and the matrix [T] are known, as well as parameters L1 and Ln. As defined 

in (2.115)  

1 1 1 2 1,2 1 1,

2 1 2,1 2 2 2 2,

1 ,1

( )

n n

C tn n

n n n n

L C L L C L L C

L L C L C L L C
L C M L T T D

L L C L C

 − −
 
− − 

− = = Ω = 
 
 − 

L

L

M M O M

L L

 

          (2.120) 

all remaining circuit elements in the multicoupled resonators filter can be identified.  

 

Firstly, since L1 and Ln are already known,  
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  11
1

1

D
C

L
=  and nn

n

n

D
C

L
=      (2.121) 

 

The two-port parameters determine uniquely L1, Ln, C1 and Cn, but others, L2, …, 

Ln-1, are arbitrary. If the node characteristic impedances  

  /ok k kZ L C=       (2.122) 

where k = 2, …, n-1 are chosen as design parameters, then  

  k ok kkL Z D=  and 
kk

k

ok

D
C

Z
=     (2.123) 

Moreover,  

  
,

, , , 1, 2, , ;
i j

i j

i j

D
C i j n i j

L L
= − = ≠K    (2.124) 

 

Thus, all of the circuit elements and coupling elements consisting of only capacitive 

couplings are synthesized.  

 

Once again, the synthesized coupling matrix may contain all non-zero elements. To 

realize a certain topology, some of the matrix elements must be reduced to zero. This 

can be readily done using matrix rotations as in the narrowband case.  

 

 

2.6.3 Example 
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To illustrate the synthesis procedure, a seventh-degree all-pole filter with 22-dB 

return loss is demonstrated as an example. The center frequency f0 is 8 GHz, and the 

bandwidth BW is 4.8 GHz, which corresponds to a 60% relative bandwidth. The first 

step is to solve the approximation problem to obtain the transfer and reflection 

filtering functions.  

 

 

Table 2.2.  Matrix D Before Reduction (1e-3*) 

 1 2 3 4 5 6 7 

1 0.5568 -0.1504 0.1097 -0.1256 -0.0047 -0.1148 0.0000 

2 -0.1504 0.3761 -0.0189 0.0600 -0.0143 -0.0645 0.1312 

3 0.1097 -0.0189 0.4239 -0.0684 -0.0302 -0.1473 0.0319 

4 -0.1256 0.0600 -0.0684 0.6514 -0.0654 -0.0871 0.0408 

5 -0.0047 -0.0143 -0.0302 -0.0654 0.6415 -0.1818 -0.1030 

6 -0.1148 -0.0645 -0.1473 -0.0871 -0.1818 0.5958 -0.1820 

7 0.0000 0.1312 0.0319 0.0408 -0.1030 -0.1820 0.5568 

 

 

Table 2.3.  Matrix D After Reduction (1e-3*) 

 1 2 3 4 5 6 7 

1 0.5568 -0.2522 0 0 0 0 0 

2 -0.2522 0.5538 -0.1731 0 0 0 0 

3 0 -0.1731 0.5280 -0.1632 0 0 0 

4 0 0 -0.1632 0.5252 -0.1632 0 0 

5 0 0 0 -0.1632 0.5280 -0.1731 0 

6 0 0 0 0 -0.1731 0.5538 -0.2522 

7 0 0 0 0 0 -0.2522 0.5568 

 

 

The roots of numerator polynomial of S11 or reflection zeros are (all values are in 

GHz) ±j5.6268, ±j5.8461, ±j6.3087, ±j7.0552, ±j8.1048, ±j9.3304, ±j10.2607. The 

roots of denominator polynomial of S11 are -0.6703±j10.8272, -1.3543±j9.4518, -

1.2547±j 7.9771, -0.9239±j6.8848, -0.6044±j6.1585, -0.3374±j5.7198, -
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0.1082±j5.5136. Note that this approximation problem is solved directly on the 

bandpass domain, therefore the imaginary values of roots of numerator polynomial of 

S11 are exactly located at the reflection zeros on the S11 response. The value of 

constant ε is 3.6243. Also, considering an inline coupling realization for this filter, the 

number of transmission zeros at dc, i.e., the order p in (2.8), is chosen as thirteen and 

the synthesis procedure for all capacitive coupling elements is applied. The 

conductance at the source and load port is assumed to be the matched load, for 

instance, 1 Ω.  

 

Then, the values of circuit elements are identified one by one as previously 

explained. L1 and Ln are equal to 0.0141 nH. After solving the matrix Ω  and the 

matrix [T], the matrix [D] in (2.120) is listed in Table 2.2.  

 

Since this matrix [D] is real symmetric, a reduction process by a sequence of 

similarity transformations can be applied to annihilate non-zero couplings to reach a 

practical coupling matrix. This reduction process is the same as those published in 

[8]. As defined in (2.95), the matrix [D] itself is independent of the frequency 

variable ω. By preserving the eigenvalues and first and last eigenvectors of the matrix 

[D] during similarity transformations, the transformed matrix will yield exactly the 

same characteristic function as the original matrix. Also, similarity transformations 

would not apply on the first and last rows and columns of the matrix [D] so that the 

two-port impedance parameters would not change. The matrix [D] after reduction is 

listed in Table 2.3. It is observed that only inline coupling elements exist, and all 
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coupling elements between non-adjacent resonators are annihilated by the sequence 

of similarity transformations determined analytically.  

 

Using the equations (2.121)-(2.124), the L (in nH) = diag(0.0141, 0.0235, 0.0230, 

0.0229, 0.0230, 0.0235, 0.0141). The C (in nF) = diag(0.0395, 0.0235, 0.0230, 

0.0229, 0.0230, 0.0235, 0.0395). Note that Li and Ci, i = 2, ..., n-1 are equal to each 

other. This is because the node characteristic impedances chosen as design parameters 

in (2.122) are assumed to be 1 Ohm for convenience. And the coupling values (in nF) 

are: C12 = 0.0139, C23 = 0.0074, C34 = 0.0071, C45 = 0.0071, C56 = 0.0074, and C67 = 

0.0139. Note that all coupling elements are capacitive couplings. The filter responses 

obtained from polynomials and those obtained from the circuit elements are shown in 

Fig. 2.7. The exact match between these responses validates the synthesis process. 

Note that there is slight difference between this example and the first example 

presented in [13], since the circuit models proposed here and that in [13] are 

essentially dual-networks.  
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Figure 2.7.  Responses of the seventh-degree all-pole filter example.  
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2.7 SYNTHESIS OF GENERAL CASE FOR COMPOSITE 

COUPLINGS 

 

2.7.1 Numerical Technique Using Optimization 

 

For the general case with all three types of coupling elements, a numerical 

optimization approach is applied to solve the synthesis problem. The algorithm is 

easy to implement and is described as the following procedures.  

 

1) Start by initial matrices ˆ ˆ( )CC M−  and ˆ ˆ( )LP M−  that conform to the desired 

topology, i.e., having certain zeros in their off-diagonal positions subject to the 

consideration in physical realization. Note that all symbols with ^ are designated 

as estimated values and all symbols without ^ are as the values obtained from 

previous synthesis techniques.  

 

To improve the efficiency of convergence, the initial starting matrices could be 

chosen from the case of synthesis with frequency independent couplings and the 

values of elements are evaluated at the filter center frequency.  

 

2) Following equations (2.92), (2.94), (2.96), and (2.98), the initial calculations are 

expressed as  

ˆ ˆ ˆˆ ˆ( )C t

C
C M Q Q− = Λ  
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1ˆ ˆ ˆ
CA Q
−= Λ  

2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )t L t t

L i
A P M A T T Tdiag T− = Λ = Ω  

ˆˆ ˆB AT=        (2.125) 

respectively. Thus, 2ˆ
i

Ω , 1
ˆ

i
B  and ˆ

ni
B , i = 1, 2, …, n, are known.  

 

3) Form the error function defined as  

2 2 2 2 2 2 2 2

1 11, 1 12, 22,

1

ˆ ˆ ˆ ˆ ˆ[( 2 ) ( 2 ) ( 2 ) ( ) ]
n

i i i ni i ni i i i

i

er B r B B r B r
=

′= − + − + − + Ω − Ω∑ (2.126) 

Here, r11,i, r12,i, r22,i, and 2

i
′Ω , i = 1, 2, …, n, are known from solving the 

approximation problem.  

 

4) Use constrained optimization to minimize the error function er by defining the 

non-zero elements in ˆ ˆ( )CC M−  and ˆ ˆ( )LP M−  as variables. The constraint may 

include  

ˆ ˆ0, 0, 1,2, ,
i i

C L i n> > = K  

,
ˆ 0, , 1, 2, , &i jC i j n i j> = ≠K     (2.127) 

 

5) If the value of the error function er is reduced to zero or becomes less than a 

threshold value, then the coupling matrices ˆ ˆ( )CC M−  and ˆ ˆ( )LP M−  are the 

desired ones.  

 



 

 73 

 

The whole algorithm can be readily implemented using the programming 

environment of MATLAB [19]. The built-in optimization function gives fairly 

accurate results and fast convergence.  

 

L

1 2 3 4 5 6

L L L L

 

(a) 

L

1 2 3 4 5 6

C L C L

 

(b) 

C

1 2 3 4 5 6

L C L C

 

(c) 

C

1 2 3 4 5 6

C C C C

 

(d) 

Figure 2.8.  Topologies and coupling schemes of the filter synthesis examples in 

Section 2.7.2. The solid cycles are the source/load nodes. The empty cycles are 

the resonators. The solid lines are the couplings, which are denoted by the types 

of the coupling elements above them.  

 

 

2.7.2 Filter Synthesis Examples 
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Table 2.4.  Values of Circuit Elements from Analytical Synthesis and Numerical 

Optimization for the First Example in Section 2.7.2 (L in nH, C in nF, f in GHz) 

 L1 (=L6) L2 (=L5) L3 (=L4) C1 (=C6) C2 (=C5) C3 (=C4) 

Synthesized 0.0097 0.0189 0.0192 0.0365 0.0189 0.0192 

Optimized 0.0097 0.0256 0.0229 0.0365 0.0139 0.0161 

 
L12 

(=L56) 

L23 

(=L45) 
L34    

Synthesized 0.0339 0.0672 0.0697    

Optimized 0.0395 0.0856 0.0832    

 f1 (=f6) f2 (=f5) f3 (=f4) k12 (=k56) k23 (=k45) k34 

Synthesized 8.4551 8.4411 8.2933 0.4216 0.2960 0.2852 

Optimized 8.4551 8.4411 8.2933 0.4216 0.2960 0.2852 

 

 

Table 2.5.  Normalized Values of Circuit Elements for the Set of Illustrative 

Examples in Section 2.7.2 (f in GHz) 

 f1 (=f6) f2 (=f5) f3 (=f4) 
k12 

(=k56) 

k23 

(=k45) 
k34 

Qe1 

(=Qen) 

Fist    L L L  

 8.4551 8.4411 8.2933 0.4216 0.2960 0.2852 1.9376 

Second    L C L  

 8.4973 7.7317 7.6869 0.4195 -0.3189 0.2819 1.9531 

Third    C L C  

 7.0611 7.7602 7.8055 -0.4475 0.2989 -0.3007 1.9531 

Forth    C C C  

 7.0963 7.1081 7.2347 -0.4497 -0.3157 -0.3043 1.9376 

 

 

To illustrate the numerical technique, firstly, a set of examples is presented. The 

filter specifications for this set of examples are identical, namely, sixth-degree 22-db 

return loss filters with center frequency f0 = 8 GHz, and bandwidth BW = 4 GHz. 

Also, all filters in this set are realized with inline structures. The fundamental 
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distinction among these filters is the types of couplings and the arrangement of 

different types of couplings.  

 

As the first example, the filter structure with all inductive couplings, namely, L12, 

L23, L34, L45, and L56 is realized as shown in Fig. 2.8 (a). This example is trivial 

because the analytic solution exists for this case. But comparing the values of circuit 

elements in Table 2.4, where the results from both analytic synthesis and numerical 

technique are given, it is clear that some values of circuit elements are different. 

Recall that the node characteristic impedances chosen as design parameters in (2.110) 

are assumed to be 1 Ohm for convenience in the analytic synthesis. There is no such 

assumption in the numerical optimization routine. Therefore, the values of Li and Ci, i 

= 2, …, n-1 have some freedom subject to the initial values in optimization.  

 

However, the values of circuit elements can be normalized according to the 

following equations [20]:  

  0

1

2
i

i i

f
L Cπ

=  

  
( )

( ) ( )
0

0 0

1

1 1

ijL

ij

i i j j

f L
k

f L f L
=

⋅
 

  
0

0 0

ijC

ij

i i j j

f C
k

f C f C

−
=  

  1 01 1 02 , 2
e en n n

Q f C Q f Cπ π= =      (2.128) 
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The normalized values of circuit elements are also given in Table 2.5. The results 

from both analytic synthesis and numerical optimization are identical after 

normalization, because a unique class of multicoupled resonators filter is realized 

according to the same specification. Note that the number of transmission zero at dc, 

i.e., the order p in (2.8) is chosen as one for this example, where an all inductive 

couplings inline structure is proposed.  

 

The second example as shown in Fig. 2.8 (b) is adopted to realize an alternation of 

inductive and capacitive coupling elements, namely, L12, C23, L34, C45, and L56. The 

types of two coupling elements are changed from inductive to capacitive. Therefore, 

the number of transmission zeros at dc becomes five.  

 

The third example as shown in Fig. 2.8 (c) realizes three capacitive couplings in the 

sequence of coupling elements, C12, L23, C34, L45, and C56. Therefore, two more 

transmission zeros will be relocated to dc resulting in seven.  

 

In the fourth and last example, all capacitive coupling inline structure is realized as 

shown in Fig. 2.8 (d). The number of transmission zeros at dc becomes eleven for this 

case, which is the maximum possible number, because the order of denominator 

polynomials must be less than the order of numerator polynomials in (2.8), which is 

twelve for a sixth-degree filter. Therefore, it is easy to see that, starting from the case 

of all inductive inline couplings, where there is only one transmission zero at dc, once 

the type of an inline coupling is changed from inductive to capacitive, two 
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transmission zeros will be relocated to dc. Up to the case of all capacitive inline 

couplings, the maximum number of transmission zeros will be found at dc. The rest 

of transmission zeros are either prescribed at the finite positions or located at infinity.  

 

The resonators here are arranged in parallel as shown in Fig. 2.6. For its dual 

network, where the resonators are in series Fig. 2.4, the rule on the number of 

transmission zeros at dc is simply reversed. For the cases where there are non-

adjacent couplings, it will be even more complicated, which is left as a future 

research topic.  

 

The numerical technique introduced in this section is applied to the second and the 

third examples. The convergence on the error function (2.126) for all cases in this 

example set is very fast, and optimized values can be obtained in seconds. The 

normalized values of circuit elements for all four examples are summarized in Table 

2.5. Note that the resonant frequencies of some resonators can be dramatically off the 

center frequency at 8 GHz. This shows the need to utilize the synthesis technique 

with frequency dependent couplings in this work when designing wideband 

microwave filters.  

 

Since the filter responses obtained from the polynomials and those obtained from 

the synthesized circuit elements are indistinguishable, the comparisons of these 

responses are omitted. In Fig. 2.9, the filter responses of all four examples obtained 

from the numerical approach are superimposed. Within the passband, the locations of 
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reflection zeros are different. The selectivity of both lower and upper stopbands is 

also different. Thus, the choice of the number of transmission zeros at dc is critical in 

realizing a specific filtering function with a particular physical structure.  

 

 

Figure 2.9.  Responses of the sixth-degree filters.  

 

 

2.7.3 Example with Non-Adjacent Couplings 

 

The same filter specification in Section 2.7.2 is taken for this example with 

introducing two finite transmission zeros, one each at the lower and upper stop bands. 

Fig. 2.10 shows the topology and coupling scheme for this example. This topology is 

enforced during the optimization so that there is no asymmetric non-adjacent 

coupling, such as the couplings between the resonators 1 and 5, the resonator 2 and 4. 
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They could pose great challenge in filter physical design. Only one symmetric non-

adjacent coupling between the resonator 2 and 5 is presented to realize two finite 

transmission zeros. The symmetric plane in the middle is also assumed to reduce the 

number of optimized variables (f1 = f6, f2 = f5, f3 = f4, L12 = L56, and L23 = L45).  

 

 

Figure 2.10.  Topology and coupling scheme of the six-pole filter in Section 

2.7.3.  

 

 

Figure 2.11.  Responses of the six-pole filter in Section 2.7.3.  
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The number of transmission zeros at dc is chosen as three in this example. After 

solving the approximation problem, the optimization approach is applied. The 

algorithm converges in seconds in MATLAB. The synthesized values of circuit 

elements are: f1 = f6 = 8.4559 GHz, f2 = f5 = 8.4120 GHz, f3 = f4 = 7.6128 GHz, k12 = 

k56 = 0.4153 (inductive), k23 = k45 = 0.2828 (inductive), k25 = -0.0574 (capacitive), k34 

= 0.3557 (capacitive) and Qe1 = Qen = 1.9669. One may quickly notice that the value 

of capacitive coupling k34 is positive, which is not physically feasible referring to the 

definition in (2.128). But this sign can be manipulated with adjacent couplings by 

applying matrix rotation, setting the rotation angle at 90 degree.  

 

The filter responses calculated from the transfer and reflection functions and those 

from the optimized circuit elements are superimposed in Fig. 2.11. It is interesting to 

observe that the locations of two finite transmission zeros are not symmetric about the 

center frequency. On contrast in narrowband synthesis techniques, if the filter 

topology is symmetric and there is no non-adjacent asymmetric coupling, the finite 

transmission zeros must be in pairs and symmetric about the center frequency.  
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Chapter 3 Cascade Synthesis of Wideband Microwave 

Filters 

 

3.1 INTRODUCTION 

 

The design of microwave filters usually includes the following steps. The transfer 

and reflection polynomial functions representing frequency responses are first derived 

to satisfy design specifications. Then a filter circuit model has to been identified and 

synthesized according to the transfer and reflection functions. Next the actual 

realization and design of the physical filter layout is realized from the circuit model, 

aided by design software and tools. Two main categories for filter circuit model 

synthesis are available: one is based on the coupling matrix, which represents 

arbitrary electromagnetic couplings among the resonators in the circuit network. In 

Chapter Two, this direct coupling matrix approach has been successfully extended to 

wideband microwave filter synthesis. The other category is based on lumped element 

circuit network. In this circuit synthesis approach, the values of lumped circuit 

elements must be directly synthesized from the transfer and reflection functions, 

subject to specific topology of the circuit network.  

 

The later approach has been covered in [26]-[30]. The synthesis of a ladder network 

consisting of LC circuit elements was introduced in [31]. However this approach 
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cannot cover folded circuit topologies with cross-couplings between non-adjacent 

resonators, which are of critical usefulness in realizing transmission zeros. A general 

approach presented in [32] is capable of achieving generalized Chebyshev filtering 

function in a lowpass prototype. But it cannot incorporate frequency dependent 

coupling inverters, suitable for microwave filters over a wide frequency range. 

Therefore, in this Chapter, this approach is further developed to enable the inclusion 

of frequency dependent coupling inverters in the filter circuit model, as mainline 

couplings or as cross-couplings.  

 

There are three types of frequency dependent coupling inverters: purely inductive, 

purely capacitive, and composite of both. An important functionality of the composite 

type coupling is the capability of realizing a transmission zero due to the interaction 

of electric and magnetic fields. The synthesis technique introduced in this Chapter 

utilizes this feature, combined with close examination between circuit model and 

physical implementation.  

 

The cascade synthesis of wideband microwave filters is a general filter synthesis 

approach based on the [ABCD] polynomial matrix, also called the cascaded / chain 

matrix. The overall [ABCD] matrix of a circuit network can be built up by cascading 

the [ABCD] matrix of each individual circuit element. The cascade synthesis can be 

regarded as the inverse of this procedure. Namely, the value of each individual circuit 

element, represented by its [ABCD] matrix is extracted from the overall [ABCD] 

matrix. The remainder [ABCD] matrix will serve as the starting point for next step. 
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Therefore, this synthesis technique is essentially a series of circuit element extraction 

in a pre-defined sequence [32]. One of the advantages over the coupling matrix 

approach is to provide additional freedom to manipulate individual circuit elements.  
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3.2 THE [ABCD] POLYNOMIAL MATRIX 

 

3.2.1 Overview and Circuit Model 

 

The wideband circuit model of a two-port lossless filter network shown in Fig. 3.1 

consists of a number of LC resonators coupled by frequency dependent inverters in a 

general folded cross-coupled form.  

 

 

Figure 3.1.  Circuit model of multicoupled resonators filter in folded form.  

 

An early work on wideband filters in [10] discussed the qualitative behavior of the 

frequency responses of cross-coupled resonators filters, but the work considered only 

simple coupling elements without a detailed synthesis procedure. In [22]-[23], by 

putting a frequency invariant reactance in shunt with a capacitor, canonical 

asymmetric lowpass prototype filter having complex coefficients in the transfer and 

reflection polynomials may be synthesized. Meanwhile, the coupling elements are 
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still frequency independent inverters. Therefore, a comprehensive study on wideband 

filter synthesis by the circuit synthesis approach with frequency dependent inverters 

in bandpass domain is indeed desired.  

 

In Fig. 3.1, the circuit elements include LC resonators and frequency dependent 

coupling inverters:  

 

-- The LC resonator consists of a capacitor and an inductor in parallel. The number 

of the resonators in the filter circuit model determines the degree of the filter. 

The LC resonator, instead of a frequency invariant reactance in shunt with a 

capacitor enables the filtering characteristic function to be solved directly in 

bandpass domain. During the extraction process, there are several cases to be 

handled: 

• LC resonator in front of a composite type coupling inverter 

• LC resonator in front of an inductive coupling inverter 

• LC resonator in front of a capacitive coupling inverter 

 

-- Frequency dependent coupling inverters, acting as coupling elements among the 

resonators. The couplings between two resonators in sequence are named 

mainline couplings. Those between non-sequential resonators are cross-

couplings. And the frequency dependent coupling inverter can represent the filter 

response over a wide frequency range. Once again, the coupling inverters can be 

inductive, capacitive or a composite of both. During the extraction process, there 
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are several cases to be handled as well:  

• Composite coupling inverter as a mainline coupling 

• Inductive coupling inverter as a mainline coupling 

• Capacitive coupling inverter as a mainline coupling 

• Inductive coupling inverter as a cross-coupling 

• Capacitive coupling inverter as a cross-coupling 

 

The circuit model in Fig. 3.1 is a 6th-degree filter network and will serve as a 

prototype model. Other degree filter networks with or without cross-couplings will be 

scaled from this prototype model in a similar fashion. As summarized in [24], there 

are many excellent contributions to the circuit synthesis approach in the literature. In 

this Chapter, it is not the intention to repeat, but rather to utilize and expand the 

established theories to develop a new synthesis technique for wideband microwave 

filters.  

 

 

3.2.2 The Derivation of the [ABCD] Polynomial Matrix 

 

Although each of the elements of the [ABCD] matrix is a rational polynomial, we 

will call the [ABCD] polynomial matrix for short.  

 

In this Section, the [ABCD] polynomial matrix will be derived from the [S]-

parameters in terms of the polynomials E(s), F(s) and P(s). To recap several equations 



 

 87 

 

from Chapter Two, consider the transfer and reflection polynomial functions (S-

parameters) of a two-port lossless, passive and reciprocal N-degree filter network:  

  ( )
( )

2

21 2 2

1

1
S j

j
ω

ε ω
=

+ Φ
 and ( )

( )
( )

2 2
2

11 2 21
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j

ε ω
ω

ε ω

Φ
=

+ Φ
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where )( ωjΦ  is the characteristic filtering function defined by:  
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where pi, i = 1, 2, …, N are the reflection zeros; zj, j = 1, 2, …, M are the real 

frequency transmission zeros; ci, i = 1, 2, …, L are the imaginary frequency 

transmission zeros; and d
2

i - 4ei < 0, i = 1, 2, …, K define the complex frequency 

transmission zeros.  

 

Eq. (3.1) and Eq. (3.2) are the same as Eq. (2.4) and Eq. (2.8), except a new 

notation )( ωjΦ  for the characteristic filtering function is used instead of )( ωjC , 

avoiding the confusion with the C element in the [ABCD]. In Chapter Two, the 

solution of the approximation problem in bandpass domain, i.e., the determination of 

the filtering characteristic function (3.2) has been presented. Note that Eq. (3.2) is 

directly evaluated in bandpass domain for wideband filter applications.  

 

In order to derive the [ABCD] polynomial matrix, the complex frequency variable s 

rather than jω will be used, so Eq. (3.1) can now be written as:  

  21 21 2

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

P s P s
S s S s

P s P s F s F sε

⋅ −
⋅ − =

⋅ − + ⋅ −
  (3.3a) 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( )

F s F s
S s S s

P s P s F s F s

ε

ε

⋅ −
⋅ − =

⋅ − + ⋅ −
  (3.3b) 

Note that in Eq. (3.3), the polynomial P(s) and F(s) are monic polynomials with real 

coefficients. Namely, the leading coefficient of the highest degree of s is one for both 

polynomials.  

 

To analytically determine )(11 sS  and )(21 sS  in the polynomial form, the complex 

zeros of the denominator polynomial in Eq. (3.3), )()()()( 2 sFsFsPsP −⋅+−⋅ ε  must 

firstly be obtained. These complex zeros must occur in complex conjugate pairs: is± , 

∗± is , i = 1, 2, …, N. Select the complex zeros with negative real parts, and let these 

be 1s , ∗
1s , 2s , ∗

2s , …, Ns , ∗
Ns . These selected complex zeros will form the real monic 

Hurwitz polynomial E(s): 

  ( )( ) ( )( )22

1 1

( ) 2Re
N N

i i i i

i i

E s s s s s s s s s
∗

= =

= − − = − +∏ ∏  (3.4) 

Then )(11 sS  and )(21 sS  can be expressed as:  

  11
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S s

E s
=  and 21

( ) /
( )

( )

P s
S s

E s

ε
=     (3.5) 

and  

  ( ) ( ) ( )e oE s E s E s= +       (3.6) 

where Ee(s) is the even part and Eo(s) is the odd part of E(s).  

 

The [ABCD] polynomial matrix of the lossless two-port network terminated by the 

source and load impedances R01 and R02, respectively can be derived from the S-
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parameters in terms of the polynomials E(s), F(s) and P(s) using the following 

equation [33]-[34]:  

( )( ) ( ) ( )

( )( ) ( ) ( )
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          (3.7) 

 

The impedances R01 and R02 terminating the two ports can be regarded as 

normalizing impedances for the impedance level of the network. Therefore, both of 

the impedances can be assumed as 1 (one) Ohm, R01 = R02 = 1. These impedances can 

later be de-normalized to any impedance value for practical consideration.  

 

For a passive, lossless, reciprocal (S21 = S12) two-port network, the condition of 

conservation of energy implies the following as necessary conditions [34]:  

  1)()()()( 21211111 =−+− sSsSsSsS     (3.8a) 

  1)()()()( 12122222 =−+− sSsSsSsS     (3.8b) 

  0)()()()( 22211211 =−+− sSsSsSsS     (3.8c) 

This set of equations is also called unitary condition. From Eq. (3.5) and Eq. (3.8), it 

is easy to have:  

  ( ) ( ) ( ) / ( ) / ( ) ( )F s F s P s P s E s E sε ε⋅ − + ⋅ − = ⋅ −   (3.9) 

 

For S22(s), the fourth and last element in the S-parameters of the two-port network, 

there are two possible solutions:  
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  22 11( ) ( )S s S s= ±       (3.10) 

 

For the first case, if S11 = S22, then F(s) is an even polynomial, and P(s) is an odd 

polynomial, so that  

  ( ) ( )F s F s= −  

  ( ) / ( ) /P s P sε ε= − −  

  ( ) ( ) ( )e oE s E s E s− = −       (3.11) 

Then Eq. (3.9) becomes  

  ( )
22 2 2( ) ( )

e o
F P E s E s E Eε− = − = −     (3.12) 

 

Now, using (3.5), (3.8) and (3.12), every element of the [ABCD] polynomial matrix 

in (3.7) can be further derived as:  

  
( )( )11 22 12 2101

02 21

1 1

2

S S S SR
A

R S

+ − +
=  

  
( )( ) ( ) ( ) ( ) ( )

2 2
1 / 1 / / / /

2 / / 2 /

F E F E P E E F E F P

P E EP

ε ε

ε ε

+ − + + − +
= =  

  
( )

22 2 2/ ( ) ( )

2 / 2 /

E F P E E s E s

EP EP

ε

ε ε

− + − −
= =  

  
( ) ( )

2 / /

o
EE s E s

P Pε ε

− −
= =      (3.13) 

Similarly,  

  
( )( )11 22 12 21

01 02

21

1 1

2 /

e
S S S S E F

B R R
S P ε

+ + − +
= =   (3.14) 
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( )( )11 22 12 21

2101 02

1 11

2 /

e
S S S S E F

C
S PR R ε

− − − −
= =   (3.15) 

  
( ) ( )11 22 12 2102

01 21

1 1

2 /

o
S S S SR E

D
R S P ε

− + +
= =    (3.16) 

 

Overall, the derived [ABCD] polynomial matrix in terms of the polynomials E(s), 

F(s) and P(s) is  

  
( ) ( ) ( )1

( ) ( ) ( )( ) /

o e

e o

E s E s F sA B

E s F s E sC D P s ε

+  
=    −   

  (3.17) 

 

As for the second case, if S11 = -S22, then P(s) must be an even polynomial, and Eq. 

(3.9) now becomes:  

  ( )
22 ( ) ( )F P E s E sε+ = −      (3.18) 

 

Following similar derivations, the [ABCD] polynomial matrix in (3.7) can now be 

derived as:  

  
( ) ( ) ( )1

( ) ( ) ( )( ) /

e o

o e

E s F s E sA B

E s E s F sC D P s ε

+  
=    −   

  (3.19) 

 

Here, the reflection coefficient )(/)()(11 sEsFsS =  is re-examined. In the filter’s 

circuit model, the first element looking into the circuit from a terminal port is a 

parallel LC resonator in shunt. As ∞→ js , the parallel LC resonator in shunt will 

short the terminal port, which implies the reflection coefficient at this port is equal to 
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-1 at ∞→ js .  

  1)(11 −=∞= jsS       (3.20) 

Therefore,  

  1
)(

)(
)(

2

2

11 −===
∞→

∞→
N

N

js

js e

f

sE

sF
sS     (3.21) 

where Nf 2  and Ne2  are the leading coefficients of the highest order N
s

2  in the 

polynomial F(s) and E(s), respectively. Because F(s) and E(s) are derived from the 

multiplication of their singularities, their leading coefficients of N
s

2  will be 1 (recall 

F(s) and E(s) are both monic). According to (3.21), it is necessary to manually 

multiply F(s) by -1 so that the derived polynomials can properly represent the 

proposed structure of the filter circuit model. The polynomial F(s) is selected for 

convenience, instead of selecting E(s). Note that by multiplying F(s) by -1, the 

necessary condition in (3.8) is still preserved.  

 

For convenience, the polynomials E(s), F(s) and P(s) are still chosen as monic 

polynomials. Then, it will be necessary to modify Eq. (3.17) as  

( ) ( ) ( )( ) ( )1 1
[ ]

( ) ( ) ( )( ) ( )( ) / ( ) /

o e

e o

E s E s F sA s B s
ABCD

E s F s E sC s D sP s P sε ε

−  
= =    +   

(3.22a) 

The highest orders of each polynomial are 

  








−

−−

+ 122

2212

2

1

NN

NN

Lp
     (3.22b) 

where N is the order of filter circuit network, p is the coefficient in (3.2) (the order of 

transmission zeros at dc) and L is the number of real frequency transmission zeros 
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(assumed no other type of transmission zeros, although that is possible).  

 

As seen from the above equation, for a specific element I in the [ABCD] matrix (I = 

A, B, C, or D), the actual element is a rational polynomial of the form ( ) / ( ) /I s P s ε . 

Since all four elements share the same denominator polynomial, sometimes the 

element I may be simply referred as I(s), or just I.  

 

In the following sections, only filter networks having the property of S11 = S22 are 

considered. So the rational polynomials A(s), B(s), C(s) and D(s) will be evaluated 

from Eq. (3.22). For other cases which are not treated here, Eq. (3.17) and (3.19) may 

still be considered.  

 

 

3.2.3 The Cascade Synthesis and the Extraction Procedure 

 

Having formed the overall [ABCD] polynomial matrix in the bandpass domain, the 

next step is to carry out the extraction of every individual circuit element from the 

overall [ABCD] matrix in a pre-defined sequence.  
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(b) 
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1sC

 
 − 

 

(c) 

 

A B

C D

′ ′ 
 ′ ′ 

1 0

0 1

 
 
 

 

(d) 

Figure 3.2.  Extraction procedures for a circuit element from the [ABCD] 

polynomial matrix.  

 

If it is required to extract a certain element, it is hypothesized that the overall 

[ABCD] polynomial matrix contains such an element. Fig. 3.2 (a) shows the overall 

[ABCD] polynomial matrix as a single two-port network. In Fig. 3.2 (b), a capacitor 

element is assumed to be the first element in the overall matrix and to be extracted in 

the first step. The primed [ABCD] matrix represents the remaining [ABCD] 
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polynomial matrix after element extraction. Then, this element is extracted by pre-

multiplying the overall [ABCD] polynomial matrix with the inverse [ABCD] matrix of 

the extracted element as shown in Fig. 3.2 (c), leaving a remainder [ABCD] 

polynomial matrix in cascade with a unit matrix as shown in Fig. 3.2 (d). This unit 

matrix can be ignored. The whole extraction procedure is the reverse of building up 

the overall [ABCD] polynomial matrix from the individual elements in the entire 

circuit network. A sequence of successful extractions will result in a remainder 

[ABCD] matrix, all of which elements are either zero or constant at the final step [24].  

 

Knowledge of the type of circuit element and the order in which it appears in the 

circuit network is required beforehand. For the proposed two-port filter circuit model 

shown in Fig. 3.1, the extraction procedure will commence with an LC resonator from 

one port, followed by coupling inverters. Next, the extraction procedure will work 

from the two ports alternatively till a coupling inverter as a cross-coupling is reached 

and the LC resonators at both ends of this cross-coupling inverter have been extracted. 

After extracting the cross-coupling inverter, the extraction procedure will continue 

working from the two ports in an iterative manner. The last remainder [ABCD] matrix 

will be a single element, the value of which can be solved directly from the [ABCD] 

matrix.  

 

For an inline topology of a circuit network, it is not necessary to alternate the ports, 

from which the extraction procedure is performed. The sequence of extraction can 

start from one port, work through the entire circuit network, and reach the last 
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element at the other port. Nevertheless, it is still possible to alternate the ports during 

the extraction procedure for different considerations, such as for the arrangement 

about the locations of composite type coupling inverters among other coupling 

inverters. Regardless of the sequence, the extracted circuit network will produce the 

same frequency responses. The details about these aspects will be covered in the 

following sections.  
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3.3 THE CASCADE SYNTHESIS 

 

3.3.1 Overview 

 

A third-order filter is used in this Section as an example to demonstrate the 

extraction procedure of the cascade synthesis. The circuit model of this filter is shown 

in Fig. 3.3 with three LC resonators and two composite type coupling inverters 

arranged in an inline topology. The composite type coupling inverter shown in Fig. 

2.5 (c) not only provides the direct coupling between two LC resonators, but also is 

responsible to realize a transmission zero. Therefore, the third-order filter with 

angular center frequency = 8 GHz, bandwidth = 3 GHz and return-loss level -22 dB 

has two transmission zeros, one located below passband at 4.1364 GHz giving a 30-

dB side lobe, and the other located above passband at 13.0881 GHz showing a 25-dB 

side lobe.  

 

 

Figure 3.3.  Circuit model for a third-order inline filter with two composite type 

coupling inverters.  

 

The choice of how the transmission zeros are assigned to composite type couplings 

is arbitrary, and can be regarded as a design factor. This assignment of transmission 
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zeros to composite type couplings will be of great importance in the physical 

implementation of LC resonators and coupling elements and other practical 

considerations of the filter design.  

 

As introduced in Sec. 3.2, the extraction of the values of circuit elements 

commences with the synthesis of the transfer and reflection polynomial functions. 

Then the transfer and reflection functions are used to obtain the [ABCD] polynomial. 

Every circuit element shown in Fig. 3.3 will be extracted from the [ABCD] 

polynomial matrix in a cascaded sequence. After the extraction of a circuit element, 

the remaining [ABCD] matrix will be used for the extraction of next element. The 

extraction sequence will be carried out until the last element is left over, which could 

be an LC resonator or a coupling element. The value of the last element can be 

directly evaluated from the final remainder [ABCD] matrix. The successful extraction 

till the last element also possibly indicates the successfulness of the whole extraction 

sequence.  

 

 

3.3.2 The Cascade Synthesis: Step by Step 

 

First, the polynomials E(s), F(s) and P(s) in (3.5) are evaluated after solving the 

approximation problem introduced in Section 2.2:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

E(s) 1 7.5328 220.74 1029.3 13752 29302 2.388e5 

F(s) 1 0 193.02 0 11978 0 2.388e5 

P(s) 0 1 0 188.41 0 2930.9 0 
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1p =  and 0.87974ε =        (3.23) 

 

Note that the highest degree of s in E(s) and F(s) is 2N (N = 3), since the 

approximation problem is solved in bandpass domain for wideband filter applications. 

The coefficient p in the denominator of (3.2) has to be one, since P(s) is an odd 

polynomial constructed by the multiplication of singularities (transmission zeros 

conjugated pairs), and the order of P(s) is less than the order of F(s). Also, the 

coefficient ε  in (3.5) is evaluated to be 0.87974.  

 

An important issue here is that all of the polynomials are numerically evaluated, 

and the software package MATLAB is used as programming environment. In 

MATLAB [19], by default, double-precision floating-point format is used, which 

gives 16 significant decimal digits. This imposes the limitation on handling the high 

order polynomials, since the rounded numerical error can accumulate very quickly. 

Filters up to 7th-dgree have been tested and will be demonstrated in the next Chapter. 

For high order filter, mathematical treatments, such as variable transformation or 

high-precision computing in MATLAB may be required.  

 

Next, the [ABCD] polynomial matrix can be numerically evaluated from the 

polynomials E(s), F(s) and P(s) by using Eq. (3.22):  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A(s) 0 7.5328 0 1029.3 0 29302 0 

B(s) 0 0 27.725 0 1774.3 0 0 

C(s) 2 0 413.76 0 25729 0 4.777e5 

D(s) 0 7.5328 0 1029.3 0 29302 0 

P(s) 0 1 0 188.41 0 2930.9 0 

          (3.24) 



 

 100 

 

This overall [ABCD] will serve as the starting point of the extraction sequence.  

 

In the following derivation, the inductance L will be replaced by H = 1/L for easy 

expression. Since the microwave filters discussed here are usually defined in GHz 

range in terms of center frequency and bandwidth, if an angular frequency value is 

defined, a capacitance will carry a unit of nF by default. Similarly, for convenience, 

an inductance will carry a unit of nH.  

 

Also note that two known transmission zeros are going to be realized directly by 

two composite type coupling inverters, respectively.  

  12
1

12

4.1364
H

z
C

= =  and 23
2

23

13.0881
H

z
C

= =   (3.25) 

Therefore, either Ci,j or Hi,j (in Mi,j), i = 1, 2, …, N-1 and j = i+1 is known, then the 

other is also known. The assignment of transmission zeros to composite type coupling 

inverters is arbitrary and interchangeable. The different assignment will yield 

different values of circuit elements extracted, but the transfer and reflection response 

will not change.  

 

As shown in Fig. 3.4 (a), a capacitance sCx,1 is first to be extracted from the overall 

[ABCD] by using  

  
1,1

( )
|

( )
x s jz

D s
C

sB s
== = -0.62480     (3.26) 

It is important to note that this equation is evaluated at s = jz1, the frequency of the 

transmission zero realized by the composite coupling M1,2 (C1,2 & H1,2) located 
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behind the LC resonator (C1 and H1) in the circuit topology. Then the remainder 

[ABCD] polynomial matrix, ][ ′ABCD  after the extraction will be evaluated, 

according to the steps in Fig. 3.2 by  

  
1 0

1x

A B

sC C D

   
   −    x x

A B A B

C sC A D sC B C D

′ ′   
= =   ′ ′− −   

 (3.27) 

In numerical form:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’(s) 0 7.5328 0 1029.3 0 29302 0 

B’(s) 0 0 27.725 0 1774.3 0 0 

C’(s) 6.7065 0 1056.9 0 44037 0 4.777e5 

D’(s) 0 24.856 0 2137.9 0 29302 0 

P’(s) 0 1 0 188.41 0 2930.9 0 

          (3.28) 

It is interested to have these relationships:  

  2 2

,1 1( ) ( ) ( ) ( ) ( )x dC s C s sC A s s z C s′ ′= − = +    (3.29a) 

  2 2

,1 1( ) ( ) ( ) ( ) ( )x dD s D s sC B s s z D s′ ′= − = +    (3.29b) 

which are critical in the following extraction steps. The ][ ′ABCD  now becomes:  

  
2 2 2 2

1 1( ) ( )d d

A BA B

s z C s z DC D

′ ′   
=    ′ ′′ ′ + +   

   (3.30) 

The derivation and proof of (3.26) and (3.29) will be presented later in Section 3.4.3.  

 

In next extraction, the remainder [ABCD] polynomial matrix, ][ ′ABCD  in previous 

step will serve as the new overall [ABCD]. As shown in Fig. 3.4 (b), a susceptance 

with the admittance  

  )( 2

1

21,
zs

s

H x
+       (3.31) 
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is extracted from the ][ ′ABCD  by using  

 ⇒
′+

′
=

= 1

)()(

)(
2

1

21,

jzs

x
sBzs

sDs
H

1,1

( )
|

( )

d
x s jz

sD s
H

B s
=

′
=

′
= 0.99032  (3.32) 

Note that this equation is also evaluated at s = jz1, as Eq. (3.26). Then the remainder 

[ABCD] polynomial matrix, ][ ′′ABCD after the extraction will be evaluated by:  

  
2 2

1

1 0

( ) 1xH

s

A B

C Ds z

′ ′   
   ′ ′− +   

 

  
2 2 2 2

1 1( ) ( )x xH H

s s

A B A B

C DC s z A D s z B

′ ′ ′′ ′′   
= =   ′′ ′′′ ′ ′ ′− + − +   

 (3.33) 

In numerical form:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’’(s) 0 7.5328 0 1029.3 0 29302 0 

B’’(s) 0 0 27.725 0 1774.3 0 0 

C’’(s) -0.7534 0 -90.115 0 -2422 0 -18833 

D’’(s) 0 -2.6015 0 -89.023 0 -761.59 0 

P’’(s) 0 1 0 188.41 0 2930.9 0 

          (3.34) 

Again, similar to Eq. (3.29), the following relationships are expected:  

  2 2

1( ) ( ) ( ) ( )xH

d ds
C s A s s z C s′ ′ ′′− = +     (3.35a) 

  ,1 2 2

1( ) ( ) ( ) ( )xH

d ds
D s B s s z D s′ ′ ′′− = +     (3.35b) 

And having the following,  

  2 2 2

1( ) ( ) ( )
d

C s s z C s′′ ′′= +      (3.36a) 

  2 2 2

1( ) ( ) ( )
d

D s s z D s′′ ′′= +      (3.36b) 

Now, the ][ ′′ABCD  becomes:  

  
2 2 2 2 2 2

1 1( ) ( )d d

A BA B

s z C s z DC D

′ ′′′ ′′   
=    ′′ ′′′′ ′′ + +   

   (3.37)  
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The remainder [ABCD] polynomial matrix, ][ ′′ABCD  in (3.37) is a critical 

preparation for the next step, extracting the composite type coupling inverter M1,2. 

The orders of any polynomials in the ][ ′ABCD  and ][ ′′ABCD have not been reduced 

yet. Before proceeding to the next extraction, the two circuit elements extracted from 

the previous two steps are re-examined, by computing the total admittance extracted 

from the circuit network so far:  

  2 2 21
1 1( ) ( )xH

x x x xs s
sC s z s C H H z+ + = + + 1

1
1 HsC

s
+=  (3.38) 

This clearly indicates that a capacitance 1C  and an inductance 1H  have been 

extracted, as depicted in Fig. 3.5.  

  1 0.3655
x x

C C H= + =  

  2

1 1 16.9443
x

H H z= =       (3.39) 

 

Although the circuit elements directly extracted from the [ABCD] polynomial 

matrix are not a capacitance and an inductance in parallel, the extracted elements can 

still be transformed into a LC resonator, which readily yield the first LC resonator in 

the circuit model in Fig. 3.3. This simple transformation will not affect the overall 

[ABCD] polynomial matrix and the filter transfer and reflection functions. Some more 

derivation and discussion about this claim will also be elaborated in a later Section to 

give more insight.  

 

In the third extraction, similar iteration is carried out, the remainder [ABCD] 

polynomial matrix, ][ ′′ABCD  in (3.37) served as the new overall [ABCD]. As shown 
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in Fig. 3.4 (c), a composite type coupling inverter M1,2 (C1,2 & H1,2) is extracted from 

the ][ ′′ABCD . An important difference in extracting a coupling inverter from 

previous two steps is that it is a design freedom to pick the value of C1,2 as one, and 

the value of H1,2 can then be calculated from (3.25). The numerical value of C1,2 can 

determine the admittance level of the entire circuit network [14], and can be scaled or 

normalized in later stage. Therefore, for a simplicity, C1,2 is assumed to be one in this 

step:  

  C1,2 = 1 and H1,2 = 17.110     (3.40) 

 

Then the remainder [ABCD] polynomial matrix, ][ ′′′ABCD after the extraction will 

be evaluated by: 

  
( ) ( )

( ) ( )

2 212 12 12 12
12

12 1212

12 12 12 12 12

12 12

1

2 2
12

1

1

C H C H
H

s C s C
s

C D

s s
sC

H C H C H

s s C s C

A B

C DsC s A s B

′′ ′′− −
−

+ +
+

   ′′ ′′   =     ′′ ′′+    ′′ ′′+ +    

 

  ( ) 12 1212

12 12 12

2

s s
d dC CH

C C C

s s

C D A B
s

C DA B

′′ ′′− −  ′′′ ′′′ 
= + =   ′′′ ′′′′′ ′′    

   (3.41) 

From (3.29a) and (3.36a), the degree of C”d is 2-degree less than C’d and 4-degree 

less than C(s). Similarly, from (3.29b) and (3.36b), the degree of D”d is 2-degree less 

than D’d and 4-degree less than D(s). Also, recall the polynomial P(s) is constructed 

by the multiplication of transmission zeros conjugated pairs in (3.2), so that  

  
)(

)(

)(

)/(

)(

1
2

1

2

1212

2

sP

zs

sP

CHs

sP

+
=

′′

+
=

′′′
   (3.42) 

Therefore, the polynomial )(sP ′′′  will contain all of transmission zeros, except z1 as 

its singularities. Moreover, the degree of )(sP ′′′  will also be reduced by 2. The 
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][ ′′′ABCD  can be numerically evaluated as:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’’’(s) 0 0 0 0.75342 0 64.333 0 

B’’’(s) 0 0 0 0 2.6015 0 0 

C’’’(s) 0 0 7.5328 0 1029.3 0 29302 

D’’’(s) 0 0 0 27.725 0 1774.3 0 

P’’’(s) 0 0 0 1 0 171.3 0 

          (3.43) 

 

The degree of all polynomials has been reduced by 2, which indicates a successful 

extraction of a LC resonator and a coupling inverter. The degree reduction on )(sP ′′′  

also indicates a successful realization of a transmission zero by the extracted 

composite type coupling inverter. The order of the remaining filter circuit model is 

also reduced by 1 to N-1 (p=1, L=2 and N=3).  

  








34

23

3

1
⇔ 









−−

−−

−+ 3222

4232

22

1

NN

NN

Lp
   (3.44) 

 

In the following extractions, the previous three steps are essentially repeated to 

extract the next LC resonator and coupling inverter for an inline structure. And the 

extraction procedure will go on till all circuit elements are extracted. The entire 

circuit model can then be built up.  
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Figure 3.4.  The extraction steps on the first LC resonator and the first 

composite type coupling inverter.  
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1( )xH
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Figure 3.5.  The equivalent transform of the first LC resonator.  

 

For the second resonator, C2 and H2 will be extracted through Cx,2 and Hx,2 by using 

(3.26) and (3.32). First, apply (3.26) to the remainder [ABCD] from previous step,  

  

2

)(

)(
2,

jzs

x
ssB

sD
C

=

= ⇒ 6759.62, =xC     (3.45) 

It is important to note that, in this extraction, the above equation is evaluated at s = 

jz2, the frequency of the transmission zero realized by the composite coupling M2,3 

(C2,3 & H2,3) located behind the LC resonator (C2 and H2) in the circuit topology. 

Then the remainder [ABCD] polynomial matrix, ][ ′ABCD  after the extraction will be 

evaluated by (3.30) in a similar manner, and numerically as:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’(s) 0 0 0 0.75342 0 64.333 0 

B’(s) 0 0 0 0 2.6015 0 0 

C’(s) 0 0 2.5030 0 599.82 0 29302 

D’(s) 0 0 0 10.358 0 1774.3 0 

P’(s) 0 0 0 1 0 171.3 0 

          (3.46) 

The symbols on some [ABCD] polynomial matrix are re-used to show the 

similarities on the extraction procedure without causing much confusion.  

 

Apply (3.32) to the ][ ′ABCD  in (3.46),  
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21

)()(

)(
2

2

22,

jzs

x
sBzs

sDs
H

=
′+

′
= ⇒ 9814.32, =xH   (3.47) 

Note that this equation is also evaluated at s = jz2, as Eq. (3.45). Then the remainder 

[ABCD] polynomial matrix, ][ ′′ABCD after the extraction will be evaluated by (3.37) 

in a similar manner, and numerically as:  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’’(s) 0 0 0 0.75342 0 64.333 0 

B’’(s) 0 0 0 0 2.6015 0 0 

C’’(s) 0 0 -0.4967 0 -170.16 0 -14574 

D’’(s) 0 0 0 0 0 0 0 

P’’(s) 0 0 0 1 0 171.3 0 

          (3.48) 

 

Apply (3.38), and use similar concept as depicted in Fig. 3.5,  

  2 ,2 ,2 10.657
x x

C C H= + =  

  2

2 ,2 2 682.01xH H z= =       (3.49) 

 

After the second resonator, C2 and H2, the second composite coupling M2,3 will be 

dealt with. Since this coupling inverter is the last one in the entire circuit network, the 

value of C2,3 can no longer be assumed to be one [35].  

 

As suggested in (3.41), C2,3 needs to be properly chosen to normalize the remainder 

[ABCD] polynomial matrix, ][ ′′′ABCD , so that after extracting composite coupling 

M2,3, the ][ ′′′ABCD  is readily shown as the last LC resonator. Therefore, the value of 

C2,3 can be evaluated by  
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  4
2,3

2

c
C

b
= −  

0.4967
0.43694

2.6015

−
= − =    (3.50) 

where c4 and b2 are the leading coefficient of the polynomials C’’(s) and B’’(s), 

respectively as shown in (3.48). The value of C2,3, in theory, can also be evaluated 

from the leading coefficient of the polynomials D’’(s) and A’’(s), but as shown in 

(3.48), the D’’(s) has been reduced to zero. The value of H2,3 can then be calculated 

from (3.25),  

  H2,3 = 74.846       (3.51) 

 

Then the remainder [ABCD] polynomial matrix, ][ ′′′ABCD after the extraction will 

be evaluated by (3.41) in a similar manner, and numerically as  

 s^6 s^5 s^4 s^3 s^2 s^1 s^0 

A’’’(s) 0 0 0 0 0 1.1367 0 

B’’’(s) 0 0 0 0 0 0 0 

C’’’(s) 0 0 0 0 0.32920 0 28.109 

D’’’(s) 0 0 0 0 0 1.1367 0 

P’’’(s) 0 0 0 0 0 1 0 

          (3.52) 

 

The degree reduction in (3.52) shows the same pattern as been done in (3.43), 

which indicated a successful extraction of a LC resonator and a coupling inverter as 

well as a successful realization of a transmission zero by the extracted composite type 

coupling inverter.  

 

Recall the constant 0.87974ε =  in (3.23), so actually the ][ ′′′ABCD  in (3.52) is  

  
1 0

[ ]
0.28961 24.729 / 1

ABCD
s s

 
=  + 

   (3.53) 
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which clearly shows that the last element in network is a parallel LC resonator in 

shunt. Then C3 and H3 can be directly picked out from above [ABCD],  

  3 0.28961C =  and 3 24.729H =     (3.54) 

 

Having finished all of the above extraction steps, all circuit elements shown in Fig. 

3.3 have been extracted from the overall [ABCD] polynomial matrix representing the 

filtering characteristic function. The filter responses evaluated from extracted circuit 

elements are shown in Fig. 3.6 superimposed with the filter responses directly 

evaluated from the transfer and reflection polynomial functions. The identical 

responses prove the validation of the extraction procedure and the extracted values of 

circuit elements.  

 

Figure 3.6.  Filter responses evaluated from the extracted results and from the 

characteristic polynomials.  
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3.4 COMPOSITE TYPE COUPLING INVERTER 

 

3.4.1 Frequency Dependent Coupling Inverter 

 

An ideal impedance inverter is a frequency independent two-port network. If one 

port of the impedance inverter is terminated by an impedance Z2, the impedance Z1 

looking into the other port is  

  
2

2

1
Z

K
Z =        (3.55) 

where K is a real constant defined as the characteristic impedance of the impedance 

inverter. The [ABCD] matrix of the ideal impedance inverter can be expressed as  

  












 ±

=







0

1

0

jK

jK

DC

BA

m
     (3.56) 

 

Similarly, an ideal admittance inverter is a frequency independent two-port network. 

If one port of the admittance inverter is terminated by an admittance Y2, the 

admittance Y1 looking into the other port is  

  
2

2

1
Y

J
Y =        (3.57) 

where J is a real constant defined as the characteristic admittance of the admittance 

inverter. The [ABCD] matrix of the ideal admittance inverter can be expressed as  

  













±

=








0

1
0

jJ

jJ
DC

BA

m

     (3.58) 
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A simple approximate practical realization of impedance and admittance inverters is 

a quarter wavelength of transmission line transformer, having the characteristic 

impedance or admittance equal to the characteristic impedance or admittance of the 

inverter, respectively. Such a realization is very common, but can only be applied to a 

narrow frequency range, since the transmission line can match the ideal impedance 

and admittance inversion only at single frequency, which limits the application of 

such realizations to narrow-band filters [36].  

 

 

Figure 3.7.  Lumped element impedance and admittance inverter.  

 

Lumped element circuits that act as impedance and admittance inverters are shown 

in Fig. 3.7 along with their equivalent characteristic impedance or admittance [37]. 

These circuits involve negative values of lumped elements and are frequency 

dependent. However, the negative elements may be absorbed into the circuit elements 
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of the adjacent resonant circuits to eliminate them from the overall network. The 

resultant filter network may consist of LC resonators coupled by frequency dependent 

inverters.  

 

To apply these frequency dependent inverters to practical narrow-band filter design, 

the values of the inverters (impedance or admittance) at the filter center frequency is 

chosen to be equal to the values of the mutual couplings between the resonators of the 

filter network.  

 

Therefore, to model the filtering response over a wide frequency range, the 

admittance coupling inverters as shown in Fig. 3.7 (c) and (d) are used to couple the 

shunt LC resonators in an equivalent lumped-element circuit model. The type of these 

frequency dependent admittance coupling inverters can be purely inductive, purely 

capacitive, or a composite of both as shown in Fig. 2.5 and Fig. 3.8. The impedance 

coupling inverters as shown in Fig. 3.7 (a) and (b) can be also used in conjunction 

with the series LC resonator. Since these two types of circuit models are inter-

changeable due to the dual network theorem, only the former one is thoroughly 

studied and discussed here.  

 

The [ABCD] matrices of three types of frequency dependent admittance coupling 

inverters, purely inductive, purely capacitive, and a composite of both, can be 

expressed as the following, respectively:  
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 ±
=








0

1
0

sL

sL

DC

BA

m
     (3.59) 

  













±

=








0

1
0

sC
sC

DC

BA

m

     (3.60) 

  





















+−

+
=









0)
1

(

1

1
0

sL
sC

sL
sC

DC

BA
    (3.61) 

where s = jω and ω is the frequency variable.  

 

 

3.4.2 Analysis of Composite Type Frequency Dependent Coupling Inverter 

 

As shown in Fig. 3.8, two parallel LC resonators in shunt are coupled by a 

composite type coupling inverter, which is represented by two PI networks in parallel, 

one each for inductive coupling (magnetic field) and capacitive coupling (electric 

field).  

 

This equivalent circuit model is symmetrical, having two identical LC resonators. 

The symmetry plane T-T’ shown in Fig. 3.9 separates the circuit into two identical 

halves. Then a perfect electric wall (PEW) or a perfect magnetic wall (PMW) can 

replace the symmetry plane T-T’ to analyze the coupling coefficient of the composite 

coupling inverter [38].  
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Figure 3.8.  Equivalent circuit model of a second-order filter with a composite 

type coupling inverter.  

 

 

Figure 3.9.  Equivalent circuit model with a composite type coupling inverter 

with a symmetric plane.  

 

If the symmetry plane T-T’ is replaced by a perfect electric wall, the natural 

resonant frequency of the resultant circuit can be derived as  

  

LL

LL
CC

f

m

m
m

e

+
+

=

)(2

1

π

     (3.62) 
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If the symmetry plane T-T’ is replaced by a perfect magnetic wall, the natural 

resonant frequency of the resultant circuit can be found as  

  

LL

LL
CC

f

m

m
m

m

−
−

=

)(2

1

π

     (3.63) 

The coupling coefficient kB of a composite type coupling inverter between two 

identical resonators can be evaluated as  

  
2 2

2 2 1

e m M E
B

e m M E

f f k k
k

f f k k

− −
= =

+ −
     (3.64) 

where 

  
M

m

L
k

L
=

H

H m=  and m
E

C
k

C
=     (3.65) 

are the coupling coefficients for inductive coupling and capacitive coupling, 

respectively. Note that (3.64) and (3.65) are different from those given in [36] due to 

different definition of the equivalent circuit model. In Fig. 3.9, both LC resonators are 

arranged in parallel in the circuit network, and the composite coupling inverter is 

decomposed by two PI networks. This definition is particularly suitable for the 

microwave filters realized by the combline-like structures presented in the following 

Sections as design examples.  

 

Eq. (3.64) indicates that, if the coupling coefficients kM and kE have the same sign 

(both are positive by their definition) the absolute value of the coupling coefficient kB 

of a composite type coupling is less than the value of kM or kE. This is well understood 

by the interaction of electric and magnetic fields within a physical coupling structure 
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[39].  

 

A composite type coupling has a shunt LC resonator in series in the circuit and 

should be resonating somewhere in the frequency domain. Therefore if the intrinsic 

resonance of a composite type coupling is properly selected and carefully designed, it 

can provide coupling between resonators, and realize a transmission zero close to the 

filter passband. This transmission zero can be at either the upper side or the lower 

side of the filter passband without introducing an additional coupling path or other 

complicated transmission zero generation mechanism.  

 

The inductive coupling kM is produced by the interaction between magnetic field 

components in a physical structure. By proper arrangement of the resonators and 

coupling structures, the magnetic field components responsible for kM can be in the 

same direction (in phase) or in the opposite direction (out of phase), resulting in 

positive or negative signs of kM, respectively [40].  

 

It is interesting to observe that in (3.64), if the inductive coupling kM is negative, the 

absolute value of the coupling coefficient kB of a composite type coupling is greater 

than the absolute value of kM or kE (the influence of the denominator in (3.64) is 

omitted for a moment, since usually the product of kM and kE is much smaller than 1). 

Therefore, if a negative inductive coupling and a positive capacitive coupling exist 

simultaneously in a coupling structure, the net total coupling is increased, and the 

filter bandwidth can be possibly enhanced as well. This is a very useful factor in 
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designing a wideband microwave filter, since seeking a coupling structure with large 

coupling is always one of the most challenging tasks in achieving very wide filter 

bandwidth.  

 

 

3.4.3 Proof of the Equations Used to Extract Composite Coupling Inverter 

 

As outlined in Sec. 3.3, a third-order filter is given as an example to demonstrate 

the extraction procedure and some equations used to extract the values of circuit 

elements. Two key equations (3.26) and (3.32) to extract Cx and Hx are derived in this 

Section.  

 

r r

r r

A B

C D

 
 
 

A B

C D

 
 
   

Figure 3.10.  The overall [ABCD] and the remainder [ABCD] after extracting a 

LC resonator and a composite coupling.  

 

Fig. 3.10 shows the overall [ABCD] of a filter equivalent circuit model and the 

remainder [ABCD] after extracting an LC resonator and a composite coupling. Since 

the extraction procedure is an iteration process, the order of the filter circuit network 
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and the number of transmission zeros will both be reduced by one after extracting a 

LC resonator in front of a composite coupling and a composite coupling as a mainline 

coupling. It is sufficient to study this scenario and derive the extraction equations, 

since the subsequent steps will be repeated.  

 

According to Fig. 3.10, there is  

 

12
12

1
1

12
12

1
0

1 0

1

0

r r

r r

H
sC A B A B

sH
C D C DsC

Hs sC
s

 
   +       =      +       − +  
  

 (3.66) 

where the [ABCD]r is the remainder [ABCD] after extraction, which can be solved as  

  
( )1

12

1

12

( ) ( )
( )

H

s

r H

s

sC A s C s
A s

sC

+ −
=

+
    (3.67a) 

  
( )1

12

1

12

( ) ( )
( )

H

s

r H

s

sC B s D s
B s

sC

+ −
=

+
    (3.67b) 

  12
12( ) ( )r

H
C s sC A s

s

 
= + 
 

     (3.67c) 

  12
12( ) ( )r

H
D s sC B s

s

 
= + 
 

     (3.67d) 

 

First, ( )
r

B s  in (3.67b) can be re-written as the following:  

 ( )12

12

12

2 21 1
1 12 22

1 1

1
( ) ( ) ( ) ( )

s
C

r H

C

H H
B s D s s C B s s z B s

z s zs

−   
= − − − +  

+   
 (3.68) 

Let  



 

 120 

 

  1

2
1

1

H

x z
C C= −        (3.69) 

It is argued to find 
x

C , so that the following equation is valid:  

  ( )1

2
1

2 2

1 1( ) ( ) ( ) ( )
H

dz
D s s C B s s z D s′− − = +    (3.70) 

The left hand side of (3.70) is a part of equation in (3.68). This argument can be 

achieved by using:  

  

1

( )

( )
x

s jz

D s
C

sB s
=

=       (3.71) 

which is exact one in (3.26). Substitute (3.70) back into (3.68),  

  12

12

12

2 2 1
1 22

1

1
( ) ( ) ( ) ( )

s
C

r dH

C

H
B s s z D s B s

s zs

−  
′= + − 

+  
  (3.72) 

 

Similar procedures can be applied to ( )
r

A s  (3.67a):  

 ( )12

12

12

2 21 1
1 12 22

1 1

1
( ) ( ) ( ) ( )

s
C

r H

C

H H
A s C s s C A s s z A s

z s zs

−   
= − − − +  

+   
 (3.73) 

Let  

  1

2
1

1

H

x z
C C= −        (3.74) 

To find 
x

C , so that,  

  2 21
1 12

1

( ) ( ) ( ) ( )d

H
C s s C A s s z C s

z

 
′− − = + 

 
   (3.75) 

This argument can be achieved by using  

  

1

( )

( )
x

s jz

C s
C

sA s
=

=       (3.76) 
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Substitute (3.75) back into (3.73),  

  )(sAr
12

12

12

2 2 1
1 22

1

1
( ) ( ) ( )

s
C

dH

C

H
s z C s A s

s zs

−  
′= + − 

+  
  (3.77) 

 

By checking the unitary condition on the [ABCD], 1AD BC− = , the 
x

C  found in 

(3.69) and in (3.74) are identical, and either (3.71) or (3.76) can be used to evaluate 

the value of 
x

C  in the extraction procedure. Moreover, the conditions of (3.70) and 

(3.75) are valid simultaneously. This can also be seen on the remainder [ABCD], 

[ABCD]r. The numerator polynomial of the ArDr has a common factor s
2
+z1

2
, which 

implies that the numerator polynomial of the BrCr must have the same common factor, 

vice versa. This suggests that the 
x

C  found in (3.70) and in (3.75) are identical.  

 

Next, re-visit (3.72), and let  

  1

2
1

H

x z
H =        (3.78) 

It is argued to find 
x

H , so that the following equation is valid:  

  2 21
12

1

1
( ) ( ) ( ) ( )

d d

H
D s B s s z D s

s z
′ ′′− = +     (3.79) 

The left hand side of (3.79) is a part of equation in (3.72). This argument can be 

achieved by using:  

  

1

( )

( )

d
x

s jz

sD s
H

B s
=

′
=       (3.80) 

which is exact one in (3.32), since B’(s) = B(s). Substitute (3.79) into (3.72),  
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  12

12

12

2 2 2

12
( ) ( ) ( )

s
C

r dH

C

B s s z D s
s

−
′′= +

+
    (3.81) 

 

Similar procedures can be applied to (3.77), and let  

  1

2
1

H

x z
H =        (3.82) 

To find 
x

H , so that,  

  2 21
12

1

1
( ) ( ) ( ) ( )

d d

H
C s A s s z C s

s z
′ ′′− = +     (3.83) 

This argument can be achieved by using:  

  

1

( )

( )

d
x

s jz

sC s
H

A s
=

′
=       (3.84) 

Substitute (3.83) into (3.77),  

  12

12

12

2 2 2

12
( ) ( ) ( )

s
C

r dH

C

A s s z C s
s

−
′′= +

+
    (3.85) 

 

Again, by checking the unitary condition on the [ABCD], 1AD BC− = , the 
x

H  

found in (3.78) and in (3.82) are identical, and either (3.80) or (3.84) can be used to 

evaluate the value of 
x

H  in the extraction procedure. Moreover, the conditions of 

(3.79) and (3.83) are valid simultaneously.  

 

From (3.69) and (3.78), it is obvious to have  

  1 x x
C C H= +  

  2

1 1x
H H z=        (3.86) 
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which can validate (3.39) in previous Sec. 3.3.  

 

Using (3.81) and (3.85), the remainder [ABCD] polynomial matrix, [ABCD]r can be 

re-written as  

  12 1212

12 12 12

2( )

s s
d dC CHr r

C C C

r r s s

C DA B
s

C D A B

′′ ′′− −  
= +   

    
   (3.87) 

which is identical to (3.41) in previous Sec. 3.3. This once again shows that by 

properly evaluating the value of 
x

C  and 
x

H , the degree of the remainder [ABCD] can 

be successfully reduced.  

 

2 2

1( )xH
s z

s
+

r r

r r

A B

C D

 
 
 

 

Figure 3.11.  Another expression for the circuit model in Fig. 3.10.  

 

Fig. 3.11 shows another expression for the circuit model in Fig. 3.10. When 
x

C  is 

evaluating as s = jz1, the circuitry immediately behind 
x

C  is open circuit, both in 

series branch and in shunt branch. Therefore, if looking into the circuit network at the 

terminal when s = jz1, only 
x

C  is available. After extracting 
x

C  out, the derived 

equations used to extract 
x

H  is also evaluated as s = jz1. In this case, the circuitry 

immediately behind 
x

H  is open circuit as well. Therefore, this interpretation on the 
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circuit network demonstrates another evidence on the derived equations used to 

extract 
x

C  and 
x

H .  

 

 

3.4.4 Examples 

 

To demonstrate the synthesis procedure and give more insight about the composite 

type coupling inverter, a pair of examples is presented in this section. The filter 

specifications for two examples are almost identical, namely, second-order 22-db 

return loss filters with angular center frequency = 3 GHz, and bandwidth = 1 GHz, 

except that one has a transmission zero at 1.8767 GHz below the filter passband and 

the other has a transmission zero at 4.1917 GHz above the filter passband.  

 

For the first second-order filter having one transmission zero at dc, namely, p = 1 in 

(3.2), the filtering characteristic function (3.2) is firstly determined, followed by the 

evaluation of the polynomials E(s), F(s), and P(s) in (3.5)  

  E(s): {1.0000, 4.5747, 21.5470, 27.4213, 71.5009} 

  F(s): {1.0000, 0, 17.3815, 0, 71.5009} 

  P(s): {1.0000, 0, 3.5220, 0} 

  ε = 0.2817       (3.88) 
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(a) 

 

(b) 

Figure 3.12.  Second-order filter with one transmission zero (a) below filter 

passband; (b) above filter passband.  
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The coefficients of the polynomials E(s), F(s), and P(s) are shown in the curly 

brackets with the coefficient of the highest order of s at left most and the coefficient 

of the lowest order s
0
 at right most. For this second-order filter (N = 2), the highest 

orders of s in both E(s) and F(s) are four (2N). From (3.2), the highest order of s in 

P(s) is three. Also, all coefficients are real number.  

 

Then, the [ABCD] polynomial matrix is readily derived from the polynomials E(s), 

F(s) and P(s) using (3.22)  

  A(s): {0, 4.5747, 0, 27.4213, 0} 

  B(s): {0, 0, 4.1654, 0, 0} 

  C(s): {2, 0, 38.9285, 0, 143.0019} 

  D(s): {0, 4.5747, 0, 27.4213, 0}    (3.89) 

The coefficients are shown in similar fashion. The degree of each element satisfies 

those in (3.22b).  

 

Next, using the equivalent circuit model in Fig. 3.8, the values of circuit elements 

can be extracted from the overall [ABCD] polynomial matrix by the equations given 

in Sec 3.4.4. The extracted values of circuit elements are:  

  C1 = C2 = 1.0983, 

  L1 = L2 = 0.1519, 

  C1,2 = 0.8521, H1,2 = 3.0010 (L1,2 = 0.3332).   (3.90) 

 

Only the filter responses evaluated from the extracted values of circuit elements are 
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shown in Fig. 3.12 (a), since they are identical to those evaluated from the 

polynomials. The coupling coefficient of magnetic coupling, electric coupling, and 

total coupling can be calculated by using equations (3.64) and (3.65) as the following, 

respectively.  

  kM = 0.4559, kE = 0.7758, 

  kB = -0.4951.       (3.91) 

 

Similar to the first example, the exact analysis and synthesis procedure are carried 

out to the second one, and the results are listed as the following:  

  E(s): {1.0000, 3.5730, 22.4480, 47.9701, 83.7186} 

  F(s): {1.0000, 0, 18.8005, 0, 83.7186} 

  P(s): {1.0000, 0, 17.5774, 0} 

  ε = 0.4275.        (3.92) 

 

  A(s): {0, 3.5730, 0, 47.9701, 0} 

  B(s): {0, 0, 3.6476, 0, 0} 

  C(s): {2, 0, 41.2485, 0, 167.4373} 

  D(s): {0, 3.5730, 0, 47.9701, 0}     (3.93) 

 

  C1 = C2 = 0.9796, 

  L1 = L2 = 0.0760, 

  C1,2 = 0.6413, H1,2 = 11.2718 (L1,2 = 0.0887).   (3.94) 
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  kM = 0.8571, kE = 0.6546, 

  kB = 0.4612.        (3.95) 

The filter responses evaluated from the extracted values of circuit elements in (3.94) 

are shown in Fig. 3.12 (b).  

 

It is interesting to observe that the total coupling kB in (3.91) and (3.95) has a 

different sign. In first example, the electric coupling is predominant (kE > kM) so that a 

transmission zero is generated below the filter passband. The net total coupling is a 

negative number. In second example, the magnetic coupling is predominant (kE < kM) 

so that a transmission zero is generated above the filter passband. The net total 

coupling is a positive number. And the absolute value of the total coupling could be 

smaller than the electric coupling or the magnetic coupling due to the interaction of 

electric and magnetic fields. Therefore, in order to generate a transmission zero while 

providing enough coupling between two resonators, a composite type coupling may 

be required to realize both strong electric coupling and strong magnetic coupling 

simultaneously. This is an especially critical design consideration and challenge when 

wideband filter design is concerned.  
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3.5 INDUCTIVE AND CAPACITIVE COUPLING INVERTER 

 

3.5.1 Overview 

 

In Sec. 3.3.2, the extraction techniques for a LC resonator in front of a composite 

coupling and a composite type coupling inverter as a mainline coupling have been 

presented in details. As outlined in Sec. 3.2.1, there are other circuit elements in the 

proposed wideband microwave filter circuit model in Fig. 3.1: inductive and 

capacitive coupling inverter as a mainline coupling or as a cross coupling, and LC 

resonators in front of these two type coupling inverters. The extraction techniques for 

these circuit elements will be covered in this section [41].  

 

Inductive and capacitive type coupling inverters can be treated as a special case of a 

composite type coupling inverter. The equations used to extract them are also 

regarded as a simplified version of those used to extract composite type coupling 

inverter.  

 

The synthesis procedure shares the same steps to derive the overall [ABCD] 

polynomial matrix, which are not repeated anymore and are assumed to be known. 

Moreover, the extraction sequence for the general folded cross-coupled form in Fig. 

3.1 will also be referenced.  
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3.5.2 Extraction Equations 

 

The second-order circuit model in Fig. 3.8 is used again with the composite 

coupling inverter replaced by purely inductive coupling inverter or purely capacitive 

coupling inverter in Fig. 3.7 (c) and (d), respectively.  

 

If the frequency-dependent coupling inverter is a purely inductive type, the 

capacitance C1 in an LC resonator in front of an inductive type inverter can be 

evaluated using  

  1

( ) ( )

( ) ( )
s j s j

D s C s
C or

sB s sA s
→ ∞ → ∞

=     (3.96) 

  
1 1
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( ) ( ) ( ) ( )( ) ( )( ) / ( ) /

A s B sA s B s

C s sC A s D s sC B sC s D sP s P sε ε

′ ′   
=   ′ ′′ − −   

 

          (3.97) 

Note that the unprimed symbols represent the original overall [ABCD] polynomial 

matrix before extraction and the primed symbols represent the remainder [ABCD] 

polynomial matrix after extraction. At each step, two values for each element are 

evaluated, one from A(s) and C(s) polynomials and the other from B(s) and D(s) 

polynomials. Basically, they should be of the same value. But in practice, only one set 

of polynomials should be used to extract the element value. A successful extraction 

will indicate that the degrees of both C(s) and D(s) have decreased.  

 

Comparing (3.96) to (3.71) and (3.76), the former is evaluated at s = j∞, while the 

later at s = jz1, which is the frequency of the transmission zero realized by the 
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composite coupling. For an inductive coupling inverter, it can be regarded as realizing 

a transmission zero at infinity, since it is open circuit at infinity frequency. Sharing 

this similarity, a composite type coupling is used to realize a transmission zero in 

general, while an inductive coupling inverter is used to realize a transmission zero at 

infinity.  

 

After the extraction of the capacitance C1, the inductance L1 in the same LC 

resonator can be extracted using  

  1

( ) ( )

( ) ( )
s j s j

B s A s
L or

sD s sC s
→ ∞ → ∞

=     (3.98) 

 

1 1

( ) ( )
( ) ( )1 1

( ) ( )
( ) ( )( ) ( )( ) / ( ) /

A s B s
A s B s

A s B s
C s D sC s D sP s P s

sL sL
ε ε

 
′ ′   =   − −′ ′′     

 (3.99) 

Comparing (3.98) to (3.80) and (3.84), once again, they are identical, except that the 

former is evaluated at s = j∞, while the later at s = jz1.  

 

Next, if the frequency-dependent coupling inverter is a purely capacitive type, the 

inductance L1 of an LC resonator in front of a capacitive type inverter should be 

extracted using  

  1

0 0

( ) ( )

( ) ( )
s s

B s A s
L or

sD s sC s
→ →

=      (3.100) 

And the capacitance C1 in the same LC resonator follows  

  1

0 0

( ) ( )

( ) ( )
s s

D s C s
C or

sB s sA s
→ →

=      (3.101) 
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The equations evaluating the remainder [ABCD] polynomial matrix after extracting 

L1 and C1 in this case are identical to those given in (3.99) and (3.97), respectively. 

But the values of L1 and C1 are evaluated as s = j0 instead of s = j∞ in (3.96) and 

(3.98), respectively.  

 

For a capacitive coupling inverter, it can be regarded as realizing a transmission 

zero at zero, since it is an open circuit at dc. Therefore, the key is that, in order to 

properly evaluate the circuit element values of LC resonator, the type of coupling 

inverter behind this LC resonator must be first determined. And the equations used to 

extract the value of LC resonator will be evaluated at the location of the transmission 

zero realized by this coupling inverter.  

 

The frequency-dependent coupling inverter M1,2 may be treated as either mainline 

coupling or cross coupling. The extraction of mainline coupling is relatively simple, 

since mainline coupling may be evaluated as a unity inverter. Therefore, the values of 

circuit elements are equal to one, namely, L1,2 = 1 or C1,2 = 1. Regardless of the value 

of the circuit element, the remainder [ABCD] polynomial matrix after extracting a 

mainline coupling is:  

 

1,2 1,2

1,2 1,2

( ) ( )
( ) ( )1 1

( ) ( )
( ) ( )( ) / ( ) /

sL C s sL D s
A s B s

A s B s
C s D sP s P s

sL sL
ε ε

− − 
′ ′   =   ′ ′′     

 (3.102) 

or 
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 1,2 1,2

1,2 1,2

( ) ( )
( ) ( )1 1

( ) ( )( ) / ( ) /
( ) ( )

C s D s
A s B s

sC sC
C s D sP s P s

sC A s sC B s
ε ε

 
− −′ ′   

=   ′ ′′     

  (3.103) 

for inductive or capacitive type mainline coupling, respectively.  
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  A B
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Figure 3.13.  Extraction of cross coupling inverter: (a) the overall [ABCD]; (b) 

an inverter represented by [ABCD]inv in parallel with the remainder [ABCD]rem.  

 

For cross coupling inverter, the overall [ABCD] polynomial matrix is first converted 

to an overall [Y] polynomial matrix. The cross coupling inverter is represented by the 

[Y] polynomial matrix, [Y]inv. The remainder [Y] polynomial matrix, [Y]rem of the 

circuit network after the cross coupling inverter is extracted, and then converted back 

to the remainder [ABCD] polynomial matrix. This step is illustrated in Fig. 3.13 [24]. 

For inductive type cross coupling, the value of circuit element is extracted as  

  1

( )

( ) /
s j

B s
L

sP s ε
→ ∞

=       (3.104) 
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2 2

1 1
1

( ) ( )
( ) ( )1 1

( ) / ( )
( ) ( ) 2 ( )( ) ( )( ) /

( ) /

A s B s
A s B s

P s B s
B s C s D sC s D sP s

P s sL s L
sL

ε
ε ε

 
′ ′   =   + −′ ′′   −   

 

          (3.105) 

For capacitive type cross-coupling, the value of a circuit element is extracted as  

  1

0

( ) /

( )
s

P s
C

sB s

ε

→

=       (3.106) 

2 2

1 11

( ) ( )( ) ( )1 1

( ) 2 ( ) / ( ) ( )( ) ( )( ) / ( ) / ( )

A s B sA s B s

C s P s sC B s s C D sC s D sP s P s B s sC εε ε

′ ′   
=   ′ ′′ + −−   

 

          (3.107) 

 

When finite transmission zeros are present, the degree of P(s) > 0, it is essential to 

extract cross coupling inverter in order to decrease the order of P(s). Moreover, the 

rules to be observed when extracting a folded prototype network can refer to the 

summary in [24], except those exclusively stated hereby.  

 

 

3.5.3 Examples 

 

Two synthesis examples are presented in this section to demonstrate the extraction 

procedure. The first example is a sixth-degree 22-dB return loss filter with angular 

center frequency = 6 GHz and bandwidth = 4 GHz. It is known that the maximum 

number of transmission zeros that can be realized in a folded network is no more than 

N-2, if the couplings between source and load nodes or between source/load and any 
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inner resonator are not presented [42]. Therefore, four transmission zeros are 

implemented above the passband of this filter to generate an equi-ripple level at the 

upper stopband. Therefore, all possible cross couplings as shown in Fig. 3.1 will be 

presented.  

 

Following the synthesis procedure introduced, the overall [ABCD] polynomial 

matrix for this filter is derived through the coefficients of the transfer and reflection 

polynomials functions. And the transmission zero at dc is chosen as one for this 

example.  

 

Fig. 3.14 (a) shows the topology and coupling diagram of this filter. All mainline 

couplings and cross couplings are extracted as inductive type coupling inverters, 

denoted by L.  

 

Using the extraction equations given in this Section, all of the circuit elements 

shown in Fig. 3.14 (a) should be successfully extracted. As mentioned, the extraction 

procedure should be following a specific sequence for the folded network:  

 1) C1 and L1 for the first LC resonator, 2) turn network, 3) C6 and L6 for the 

sixth LC resonator, 4) cross coupling M16, 5) mainline coupling M56, 6) C5 

and L5, 7) cross coupling M15, 8) turn network, 9) mainline coupling M12, 10) 

C2 and L2, 11) cross coupling M25, 12) turn network, 13) mainline coupling 

M45, 14) C4 and L4, 15) cross coupling M24, 16) turn network, 17) mainline 

coupling M23, 18) C3 and L3, 19) coupling M34.  
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The extraction works on the two terminals of the circuit network alternatively. The 

resonator node is first extracted. The mainline coupling is usually extracted as a unity 

inverter. And the cross coupling can only be extracted after the two resonator nodes of 

this coupling have been extracted. A coupling cannot be extracted unless any other 

couplings in front of it have been extracted.  

 

The extraction procedure usually commences from one terminal for the first LC 

resonator. The procedure of turn network means to change the working terminal to the 

other one for a two-port network. In the [ABCD] matrix, it is simply to inter-change 

the element A and D [8]. At the end of extraction procedure, the polynomials P(s), 

A(s), B(s), C(s) and D(s) are either zero or constant (constant for the evaluation of the 

circuit element value of last inverter M3,4).  

 

For this example, the extracted values of circuit elements are Ci = [0.2259, 0.0095, 

0.5328, 1.1964, 0.0095, 0.2259], Li = [0.1036, 2.4948, 0.0409, 0.0140, 2.4603, 

0.1036], L12 = L23 = L45 = L56 = 1, L34 = 0.2009, L16 = 47.8427, L15 = 18.9739, L25 = 

23.5012, and L24 = 1.4375. One may find that it is more meaningful to represent the 

extracted values of circuit elements after normalization in doing physical 

implementation using (2.128). As mentioned before, the last inverter can no longer be 

assumed to be 1 in order to maintain the admittance level of the entire circuit model. 

So the L34, the last mainline coupling inverter for this case is evaluated, while other 

mainline couplings are 1.  
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The filter responses obtained from polynomials and those obtained from the 

extracted circuit elements are shown in Fig. 3.14 (b). The exact match between these 

responses validates the extraction procedure.  
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(b) 

Figure 3.14.  (a) Topology and coupling diagram and (b) frequency responses of 

the first six-degree filter example. The solid circles are the source/load nodes. 

The empty circles are the LC resonators. The solid lines are the coupling 

inverters: L denotes the inductive type, C denotes the capacitive type, and L/C 

denotes the composite type.  
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Figure 3.15.  (a) Topology and coupling diagram and (b) frequency responses of 

the second six-degree filter example.  

 

The same filter specification is taken for the second example, except that there is 

one transmission zero at each side of the filter passband. The resonators topology and 

coupling scheme of this filter example is shown in Fig. 3.15 (a). For this example, 

both inductive and capacitive frequency-dependent coupling inverters are presented. 
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Moreover, in order to avoid the asymmetric cross-coupling M2,4 or M1,5, the locations 

of two transmission zeros should be carefully selected. The order of transmission zero 

at dc is chosen as five.  

 

The same synthesis and extraction procedures are carried out. The extracted values 

of circuit elements are: Ci = [0.3207, 11.3379, 0.000479, 0.000479, 11.3379, 0.3207], 

Li = [0.1351, 0.0028, 48.8170, 48.8091, 0.0028, 0.1351], C12 = L23 = L45 = C56 = 1, 

L34 = -125.8058, and L25 = 0.0361. The filter responses from the polynomials and 

from the extracted circuit elements are shown in Fig. 3.15 (b). Again, there is no 

observed difference between these responses. The asymmetry on the locations of two 

transmission zeros about the center frequency is observed, although the values of 

coupling inverters and the resonators are symmetric about the horizontal middle-plane 

of the circuit network.  
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Chapter 4 Wideband Microwave Filters Designs 

 

4.1 DESIGN METHODOLOGY 

 

4.1.1 Overview 

 

Several examples of filter designs and realizations are given in this Chapter to 

demonstrate the synthesis technique introduced in the previous two Chapters. Also 

some design aspects previously discussed will be further clarified according to the 

physical designs. These filter examples are realized using Low Temperature Co-fired 

Ceramic (LTCC) technology, which has been briefly introduced in Chapter One.  

 

 

4.1.2 Coupling Structures 

 

In Section 1.2, a combline-like resonator realized in LTCC technology has been 

introduced. Four coupling structures formed by combline-like resonators are 

investigated in this sub-Section. As shown in Fig. 1.3 (b), the magnetic field is 

circulating around the post. By placing two posts close to each other, the magnetic 

fields will interact to provide inductive coupling between the two resonators. One 

type of magnetic coupling structure is shown in Fig. 4.1, where two posts are shorted 
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at the same ground plane (arranged in the same direction). The amount of magnetic 

coupling can be controlled by the distance D. The bottom view of magnetic fields is 

shown in Fig. 4.1 (d). The dimensions shown in Fig. 4.1 result in the resonant 

frequency f0 = 3.8623 GHz, the magnetic coupling coefficient 
M

k  = 0.2813, and the 

electric coupling coefficient 
E

k  = -0.0197. The definition of these parameters and 

how to obtain these parameters will be given in the next sub-section.  

 

Another type of magnetic coupling structure is shown in Fig. 4.2, where two posts 

are shorted at the opposite ground plane (arranged in the opposite direction). The 

amount of magnetic coupling can be also adjusted by the distance D. But the field 

vector of magnetic fields in Fig 4.2 (d) displays completely different pattern than 

those in Fig 4.1 (d). Therefore, the interaction of magnetic fields between the two 

posts in one structure is in-phase, while in the other structure out-of-phase. 

Importantly, the in- and out-of-phase of magnetic fields can represent positive and 

negative inductive coupling in practical filter design, respectively. In both cases, 

magnetic field coupling is predominant. The dimensions shown in Fig. 4.2 result in 

the resonant frequency f0 = 3.8379 GHz, the magnetic coupling coefficient 
M

k  = -

0.2756, and the electric coupling coefficient 
E

k  = 0.0516.  

 

As shown in Fig. 1.3 (a), the electric fields are concentrated between the conductor 

patch and the ground plane. By overlapping the conducting patches, the electric fields 

will interact to provide capacitive coupling between the two resonators. One type of 

electric coupling structure is shown in Fig. 4.3, where an additional floating 
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conductor patch is inserted between the patches of the resonators and the ground 

plane. A conducting wall is placed between the two posts of the resonators, blocking 

the coupling of magnetic fields. An opening window is made on the conducting wall 

so that the floating patch can pass through, avoiding being shorted to the ground. The 

field pattern of electric fields in resonator area is shown in Fig. 4.3 (d), whereas the 

electric fields are confined between the floating patch and the patches of two 

resonators. The floating patch acts as a medium to electrically couple the two 

resonators. The amount of electric coupling can be controlled by the size of the 

overlapping area between the floating patch and the patches of the two resonators. As 

shown in Fig. 4.3 (c), if the width of the floating patch is fixed to the width of the 

resonator patches, the length of the floating patch D can be adjusted to control the 

electric coupling. The dimensions shown in Fig. 4.3 result in the resonant frequency f0 

= 4.2131 GHz, the magnetic coupling coefficient 
M

k  = 0.0412, and the electric 

coupling coefficient 
E

k  = 0.1550.  

 

Another type of electric coupling is shown in Fig. 4.4, where the two resonators are 

directly coupled by their patches with one resonator flipped and shorted at the 

opposite ground plane. Two additional ground planes are inserted in the middle of the 

structure so that the patches of the two resonators are sandwiched in between. The 

main purpose of these two additional ground planes is to enhance the capacitance 

between the patches of the two resonators and the ground planes so that stronger 

electric coupling can be achieved. An extra feature is of course to block a portion of 

magnetic field coupling. Similarly to the previous structure, an opening aperture 
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slightly larger than the cross section of the resonator posts is made on each middle 

ground plane so that the post of the resonator can pass through, avoiding being 

shorted to the middle ground plane. The field pattern of electric fields in the resonator 

area is shown in Fig. 4.4 (d), whereas it is clear that most of the electric field is 

confined within the overlapping area of the two resonator patches. Due to the small 

gap, relatively large capacitance can be achieved. Therefore, the amount of electric 

coupling can be simply adjusted by the size of this overlapping area, which as shown 

in Fig. 4.4 (b) and (c) is controlled by the distance D. In both cases, electric field 

coupling is predominant. The dimensions shown in Fig. 4.4 result in the resonant 

frequency f0 = 2.9222 GHz, the magnetic coupling coefficient 
M

k  = -0.0093, and the 

electric coupling coefficient 
E

k  = 0.2709.  

 

For all examples and realizations shown from Fig. 4.1 to Fig.4.4, the dielectric 

constant of LTCC substrate is 7.7 and the thickness of each LTCC layer is 3.94 mil. 

The finite element electromagnetic (EM) simulator HFSS, High Frequency Structure 

Solver from Ansys [58] is used in this and subsequent Sections. The simulation 

results from HFSS have been compared extensively with another EM simulation 

technique, Mode-Matching [59] for accuracy. Also, the simulation results from HFSS 

have also been compared against measurement results. Some of measurement results 

will be given in subsequent Sections.  
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Figure 4.1.  Magnetic coupling structure I, (a) resonators are in the same 

direction; (b) and (c) dimensions; (d) the surrounding magnetic field (bottom 

view). Dimensions in mil: W = 300, L = 400, pa = 70, pb = 70, ra = 50, rb = 50, 

H = 118.2, D = 70, l1 = 110.32, and l2 = 7.88. (Dielectric constant = 7.7).  
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Figure 4.2.  Magnetic coupling structure II, (a) resonators are in the opposite 

direction; (b) and (c) dimensions; (d) the surrounding magnetic field (bottom 

view). Dimensions in mil: W = 300, L = 400, pa = 70, pb = 70, ra = 50, rb = 50, 

H = 118.2, D = 70, l1 = 110.32, and l2 = 7.88. (Dielectric constant = 7.7).  
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Figure 4.3.  Electric coupling structure I, (a) coupled by an additional floating 

conductor patch; (b) and (c) dimensions; (d) the electric field in patches area 

(side view). Dimensions in mil: W = 300, L = 400, pa = 70, pb = 70, ra = 50, rb 

= 50, H = 118.2, D = 100, l1 = 110.32, l2 = 7.88, l3 = 3.94, and Dr = 60. 

(Dielectric constant = 7.7).  
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Figure 4.4.  Electric coupling structure II, (a) directly coupled by the 

overlapping of two conductor patches; (b) and (c) dimensions; (d) the electric 

field in patches area (side view). Dimensions in mil: W = 300, L = 400, pa = 70, 

pb = 70, ra = 50, rb = 50, H = 224.58, D = 20, l1 = 110.32, l2 = 19.7, l3 = 7.88, 

and l4 = 102.44. (Dielectric constant = 7.7).  
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4.1.3 Resonant Frequency and Coupling Coefficient 

 

Since the dimensions of the two resonators are identical for the four coupling 

structures mentioned in the previous sub-Section, the equivalent circuit model of a 

second-order filter with a composite type coupling inverter shown in Fig. 3.8 are used 

to analyze the coupling coefficient for all four coupling structures.  

 

The element values of the equivalent circuit can be extracted from the EM 

simulation results of coupling structures with the method of even- and odd-mode 

excitation. The detailed derivation of extraction method is presented in Appendix B. 

The extracted values can be normalized using similar equations mentioned in (2.128)  

  0

1
i

i i
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ω =  

  
( )
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1 1

ijL

ij

i i j j

L
k

L L

ω

ω ω
=

⋅
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i i j j

C
k

C C

ω

ω ω

−
=  

  1 01 1 0,
e en n n

Q C Q Cω ω= =      (4.1) 

where 0ω  is the center angular frequency of the filter passband, 0i
ω  is the resonant 

angular frequency of the ith resonator, L

ijk  and C

ijk  are the inductive (magnetic field) 

and capacitive (electric field) coupling coefficients, respectively, and 1e
Q  and 

en
Q  are 

the external Q factor for input and output couplings, respectively. Assuming the two 

resonators are identical and the resonant frequency is also identical to the center 
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frequency, Eq. (4.1) can be simplified as  

  
M

m

L
k

L
=  and m

E

C
k

C
=      (4.2) 

where 
M

k  = L

ijk , 
E

k  = C

ijk , 
i j

L L L= = , 
i j

C C C= = , 
m ij

L L= , and 
m ij

C C=  for the 

second-order filter. Eq. (4.2) is the exact one found in (3.65), which have been 

previously defined as the coupling coefficients.  

 

For the magnetic coupling structures in Fig. 4.1 and Fig. 4.2, 
M

k  is predominant 

and 
E

k  is a spurious coupling element, and the magnetic coupling is primarily 

controlled by the distance D. The curves of the coupling coefficient versus the 

distance D are given in Fig. 4.5 (a) and (b), respectively. Note that the extracted 
M

k  

has different sign in these two curves, which evidently shows the positive and 

negative inductive couplings. The curves of the resonant frequency f0 versus the 

distance D are also given in Fig. 4.5 (a) and (b), respectively. Due to the similarity 

between the two structures, the change of the f0 is in very similar trend in the two 

curves.  

 

For the electric coupling structures in Fig. 4.3 and Fig. 4.4, 
E

k  is predominant and 

M
k  is a spurious coupling element, and the electric coupling is primarily controlled 

by the distance D as well. The curves of the coupling coefficient versus the distance 

D are given in Fig. 4.5 (c) and (d), respectively. Note that the extracted 
E

k  in Fig. 4.5 

(d) is relatively larger than those in Fig. 4.5 (c), which is expected. The curves of the 

resonant frequency f0 versus the distance D are also given in Fig. 4.5 (c) and (d), 
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respectively. Due to the patches of the resonators in Fig. 4.4 (a) are heavily loaded 

with the middle ground planes, it is seen that the f0 in Fig. 4.5 (d) is significantly 

lower than those in Fig. 4.5 (a) - (c), though the physical dimensions of the resonators 

remain identical. Therefore, the size of the patch and/or the length of the post may 

need to be adjusted in order to obtain the proper resonant frequency.  

 

The coupling coefficient k and resonant frequency f0 curves shown in this sub-

Section may serve as an essential tool in practical filter design. After the element 

values of the equivalent filter circuit model are synthesized using the techniques 

introduced in either Chapter Two or Chapter Three, the critical initial dimensions of 

physical structures can be interpolated from these or similar coupling coefficient 

curves. This is one of most important steps in filter design practice, since accurate 

initial dimensions can quickly lead to the converged optimum solution with minimum 

effort of optimization.  

 

In addition to the coupling coefficients, the input and output couplings can also be 

extracted from EM simulation results through the external Qe factors given in Eq. 

(4.1). Since the tapped-in stripline is used as the input/output coupling structure, the 

amount of input/output couplings is usually proportional to the width of the 

input/output stripline. Therefore, it is very straightforward to obtain.  

 

 



 

 151 

 

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 30 40 50 60 70 80 90

R
es

o
n

a
n

t 
F

re
q

u
en

cy
 f

0
 (

G
H

z)

C
o
u

p
li

n
g

 C
o

ef
fi

ci
en

t 
k

D (mil)

kM

kE

f0

 

(a) 

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

20 30 40 50 60 70 80 90

R
es

o
n

a
n

t 
F

re
q

u
en

cy
 f

0
 (

G
H

z)

C
o

u
p

li
n

g
 C

o
ef

fi
ci

en
t 

k

D (mil)

kM

kE

f0

 

(b) 



 

 152 

 

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

70 80 90 100 110 120 130 140

R
es

o
n

a
n

t 
F

re
q

u
en

cy
 f

0
 (

G
H

z)

C
o

u
p

li
n

g
 C

o
ef

fi
ci

en
t 

k

D (mil)

kM

kE

f0

 

(c) 

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

R
es

o
n

a
n

t 
F

re
q

u
en

cy
 f

0
 (

G
H

z)

C
o
u

p
li

n
g
 C

o
ef

fi
ci

en
t 

k

D (mil)

kM

kE

f0

 

(d) 

Figure 4.5.  Magnetic and electric coupling coefficient k and resonant frequency 

f0 curves of the four coupling structures versus the distance D: (a) for the 

structure in Fig. 4.1 (a); (b) for the structure in Fig. 4.2 (a); (c) for the structure 

in Fig. 4.3 (a); (d) for the structure in Fig. 4.4 (a).  
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4.2 ALL INDUCTIVE-COUPLED AND ALL CAPACITIVE-

COUPLED LTCC FILTERS 

 

4.2.1 All Inductive Coupled LTCC Filter 

 

Two design examples of microwave filters are presented using the synthesis 

techniques introduced in Section 2.6, implemented and simulated in EM simulator 

HFSS to demonstrate the validity of the synthesis techniques. The first example is a 

fourth-degree 22-dB return loss filter with center frequency f0 = 3.9 GHz and 

bandwidth BW = 2.1 GHz (54% relative bandwidth). This filter is realized with all 

inductive coupling elements in an inline structure as shown in Fig. 4.6 (a).  

 

Using the synthesis technique outlined in Section 2.6, the synthesized values of 

circuit elements are: L (in nH) = diag(0.0224, 0.0380, 0.0380, 0.0224); C (in nF) = 

diag(0.0646, 0.0380, 0.0380, 0.0646); L12 = 0.0644 nH, L23 = 0.1148 nH, and L34 = 

0.0644 nH. The number p (order of transmission zero at zero frequency) in the 

characteristic function (2.8) is prescribed as one. One may find that it would be more 

convenient to represent the circuit parameters in terms of normalized elements f0/k/Qe 

in (4.1), instead of L/C. The filter responses from the synthesized circuit elements are 

shown in Fig. 4.6 (b).  

 

The combline-like resonators in Fig. 1.2 with the coupling structure in Fig. 4.1 (a) 

are used to realize this filter, since the inductive couplings are going to be realized 
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among resonators according to the synthesized circuit elements. The EM model of the 

physical structure in HFSS is shown in Fig. 4.7. Usually, the cross section and length 

of the metallic post is fixed, and then the resonant frequency of the resonator is 

adjusted by the dimensions of the conductor patch. The initial distances between the 

metallic posts, primarily determining the amount of inductive coupling are 

interpolated from the coupling coefficient curve similarly to that shown in Fig. 4.5 (a). 

By implementing this scheme, the resonant frequencies of the resonators and the 

couplings between the resonators can be controlled independently.  

 

After obtaining the initial dimensions, the complete EM model is simulated and 

fine-tuned in HFSS. Since this filter structure is relatively simple and the initial 

dimensions are very close to the final ones, the full-wave optimization may not be 

required for this case, although the optimization on the 3D physical model is very 

useful and applied in other more complex filter structures in the following sections. 

The EM simulation results are also given in Fig. 4.6 (b), which are very close to the 

responses from the synthesized circuit model.  

 

The EM model with solid vertical walls in Fig. 4.7 (a) is then converted to the 

model, conventionally called via model as showing in Fig. 4.8 (a), using the 

implementation of LTCC technology given in Fig. 1.1. Additionally, the stripline 

transitions from the input/output coupling striplines of the filter structure to 50 Ohm 

and the launches used by probe station for measurement are included in the final 

realization. The measurement setup is shown in Fig. 4.8 (b) with a fabricated filter 
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device. Four resonator posts can be clearly observed from the device.  

 

L

1 2 3 4

L L

 

(a) 

 

(b) 

Figure 4.6.  (a) Topology and coupling diagram and (b) the responses of the 

fourth-degree filter example. The solid circles are the source/load nodes. The 

empty circles are the LC resonator. The solid lines are the coupling inverters, L 

denotes the inductive type.  
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Figure 4.7.  (a) Physical structure and (b) dimensions of the fourth-degree filter 

example in HFSS. (unit: mil, dielectric constant = 7.6)  
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(a) 

 

(b) 

Figure 4.8.  (a) Final realization of the fourth-degree filter example in via model 

with stripline transitions and launches in HFSS simulator. (b) Fabricated filter 

example in measurement.  
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Figure 4.9.  Measurement results of the fourth-degree filter example: the dashed 

lines are from HFSS simulation of final realization model; all other solid lines 

are from measurements of different fabricated filters.  

 

Several measurement results are superimposed together in Fig. 4.9, along with 

HFSS simulation result of the final realization model. The measured results are very 

consistent among different pieces of fabricated filters, but a frequency down shift on 

filer pass-band is observed. The deteriorated in-band return-loss may be caused by 

incorrect inductive couplings, but the filter bandwidth is properly maintained.  

 

 

4.2.2 All Capacitive Coupled LTCC Filter 

 

The second design example is to demonstrate an inline realization with all 
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capacitive coupling elements as shown in Fig. 4.10 (a). This filter is designed as 

third-degree 20-dB return loss with center frequency f0 = 1.42 GHz and bandwidth 

BW = 0.42 GHz (30% relative bandwidth).  

 

Again, the synthesis technique outlined in Section 2.6 is used. The synthesized 

values of circuit elements are: L (in nH) = diag(0.0397, 0.1184, 0.0397); C (in nF) = 

diag(0.3465, 0.1184, 0.3465); C12 = C23 = 0.0584 nF. The number p in the 

characteristic function (2.8) is prescribed as five for this example. As shown in the 

simulation results of the synthesized circuit elements in Fig. 4.10 (b), the response is 

significantly sharper in the lower stopband than that in the upper stopband, since the 

number of transmission zeros at infinity is much less than that at zero frequency. 

 

For this example, the combline-like resonators in Fig. 1.2 are used, and the 

capacitive couplings are realized by the direct overlapping of the conductor patches. 

The EM model of physical structure in HFSS is shown in Fig. 4.11. The design 

methodology is similar to the fourth-degree filter in the previous sub-Section. The 

strength of capacitive coupling is proportional to the size of the overlapping area, if 

the gap between the two conductor patches is fixed to one LTCC layer. The actual 

size can be interpolated from the coupling coefficient curves similar to that shown in 

Fig. 4.5 (d). Additional, conducting walls are placed between resonators to block the 

inductive couplings, which is similar to the implementation in Fig. 4.3. The EM 

simulation results are also given in Fig. 4.10 (b), which are very close to the 

responses from the synthesized circuit model.  
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Figure 4.10.  (a) Topology and coupling diagram and (b) the responses of the 

third-degree filter example. C denotes the capacitive coupling.  
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Figure 4.11.  (a) Physical structure and (b)-(c) dimensions of the third-degree 

filter example in HFSS. (unit: mil, dielectric constant = 7.7)  
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4.3 WIDEBAND RIDGE WAVEGUIDE AND COMBLINE-LIKE 

FILTERS 

 

4.3.1 Wideband Ridge Waveguide Filter 

 

Ultra-wideband ridge waveguide filters in LTCC realization have been introduced 

in [53]-[54]. The evanescent mode coupling between ridge sections can be treated as 

dominant inductive couplings. Therefore, conventional ridge waveguide filters 

without cross couplings are a form of an inline filter structure with all inductive 

coupled elements as presented in Section 4.2.1.  

 

Both the analytical synthesis techniques by coupling matrix approach in Section 2.6 

and by cascade synthesis of circuit network approach in Section 3.5 are capable of 

obtaining the values of circuit elements. In this sub-section, a ridge waveguide filter 

is used to demonstrate that the synthesized values of circuit elements from the two 

different approaches are essentially identical.  

 

The filter example is a seventh-degree 22-dB return loss filter with center frequency 

f0 = 7.28 GHz and bandwidth BW = 3 GHz (41% relative bandwidth). The coupling 

diagram is shown in Fig. 4.12 (a).  

 

Using the synthesis technique outlined in Section 2.6, the synthesized values of 

circuit elements are:  
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  Li (in nH): 0.0090, 0.0211, 0.0213, 0.0214, 0.0213, 0.0211, 0.0090 

  Ci (in nF): 0.0494, 0.0211, 0.0213, 0.0214, 0.0213, 0.0211, 0.0494 

  L12 (= L67 in nH) = 0.0412, L23 (= L56 in nH) = 0.0900 

  and L34 (= L45 in nH) = 0.0952    (4.3) 

 

Using the synthesis technique outlined in Section 3.5, the synthesized values of 

circuit elements are:  

  Li (in nH): 0.0090, 0.3148, 0.0045, 0.2855, 0.0045, 0.3148, 0.0090 

  Ci (in nF): 0.0494, 0.0014, 0.1020, 0.0016, 0.1020, 0.0014, 0.0494 

  L12 = L23 = L34 = L45 = L56 = L67 (in nH) = 0.1592  (4.4) 

 

It is obvious that the values shown in (4.3) and (4.4) are completely different, 

except for a few elements. Applying the equations in (4.1) to normalize the circuit 

element values in (4.3) and (4.4), the same normalized values are obtained:  

  fi (in GHz): 7.5576, 7.5493, 7.4559, 7.4470, 7.4559, 7.5493, 7.5576 

  k
L

ij: 0.3464, 0.2429, 0.2297, 0.2297, 0.2429, 0.3464 

  Qe(1,n): 2.3475, 2.3475      (4.5) 

 

Therefore, it is best to design the filter based on the normalized values of circuit 

elements after the synthesis of circuit model is carried out by either technique. The 

design of ridge waveguide filter can be implemented by the Mode-Match technique 

[59] or other means [60], and is not repeated here.  
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The EM structure of ridge waveguide filter and its dimensions are shown in Fig. 

4.13. Both the simulation results of the circuit model with synthesized circuit element 

values and the EM model in HFSS are superimposed in Fig. 4.12. They agree with 

each other very well over a broad frequency range.  

 

1 2 3 754 6

L L LLL L

 

(a) 

 

(b) 

Figure 4.12.  (a) Topology and coupling diagram and (b) the responses of the 

seventh-degree ridge waveguide filter.  
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Figure 4.13.  (a) Physical structure and (b)-(c) dimensions of the seventh-degree 

LTCC ridge waveguide filter in HFSS. (unit: mil, dielectric constant = 7.6): a = 

180, b = 78.8, h = 7.88, w1 = 81, w2 = 27, r1 = 59.23, r2 = 35.19, r3 = 22.80, r4 

= 20.46, i1 = 82.61, i2 = 30.66, i3 = 55.58, and i4 = 66.53.  
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4.3.2 Wideband Combline-Like LTCC Filter with Alternative Capacitive and 

Inductive Couplings 

 

The design example in this sub-section is a seventh-order filter with alternative 

capacitive and inductive couplings. The filter has 20-dB return loss with center 

frequency f0 = 1 GHz and bandwidth BW = 0.56 GHz (56% relative bandwidth). Due 

to the consideration on the filter layout and physical realization, the sequence of 

coupling elements is selected as, C12, L23, C34, C45, L56, and C67 as shown in Fig. 4.14 

(a).  

 

As explained before, there is no analytic synthesis method for this case by coupling 

matrix approach in Chapter Two. Therefore, the optimization approach in Section 2.7 

is used to get the values of coupling elements as well as resonant frequencies of 

resonators and external Q factors. The optimization routine in MATLAB converges in 

seconds. The optimized values are: f01 (= f07) = 0.8654, f02 (= f06) = 0.9615, f03 (= f05) 

= 0.9684 and f04 = 0.8752 (GHz); k
C

12 (= k
C

67) = -0.4771, k
L

23 (= k
L

56) = 0.3177 and 

k
C

34 (= k
C

45) = -0.3236; Qe1 (=Qe7) = 1.9262. Because there are two inductive 

couplings and four capacitive couplings, the number p in the characteristic function 

(2.8) is prescribed as nine. The filter responses from the optimized circuit elements 

are shown in Fig. 4.14 (b).  

 

Again, the combline-like resonator in Fig. 1.2 is used to realize the LC resonator in 

LTCC technology. The coupling structure in Fig. 4.4 is used to realize the capacitive 
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coupling, while the coupling structure in Fig. 4.1 is used to realize the inductive 

coupling. Therefore, this realization is a composite of two filter design examples in 

Section 4.2. The EM model of physical structure in HFSS is shown in Fig. 4.15. The 

initial dimensions of the distances between posts and the size of the overlapping of 

patches can be obtained from the corresponding curves of coupling coefficients, 

similar to previous filter design examples. Also, several conducting walls are placed 

to block inductive couplings among non-adjacent resonators, and two middle ground 

planes are inserted into the structure due to the requirement of capacitive coupling 

structure in Fig. 4.4. All conductor patches of the resonators are placed between these 

two middle ground planes. For a high-order filter example, the full-wave optimization 

on the entire EM model is necessary. As explained before, since the resonant 

frequencies and the inductive or capacitive couplings can be separately controlled by 

individual dimensions in one-to-one correspondence, the direct optimization in HFSS 

is very efficient to obtain an equi-ripple response as shown in Fig. 14 (b). There is 

excellent agreement between circuit and EM simulation results.  
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Figure 4.14.  (a) Topology and coupling diagram and (b) the responses of the 

seventh-degree combline-like LTCC filter.  
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Figure 4.15.  (a) Physical structure and (b) dimensions of the seventh-degree 

combline-like LTCC filter in HFSS. (unit: mil, dielectric constant = 7.7)  
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4.4 BANDWIDTH ENHANCEMENT BY NEGATIVE INDUCTIVE 

COUPLING 

 

4.4.1 Negative Inductive Coupling 

 

As introduced in Section 4.1, two magnetic coupling structures in Fig. 4.1 (a) and 

Fig. 4.2 (a) produced in- and out-of-phase magnetic field surrounding the resonator 

posts as shown in Fig. 4.1 (d) and Fig. 4.2 (d), respectively, representing positive and 

negative inductive couplings. This phenomenon is further investigated in this Section.  

 

Fig. 4.16 (a) shows a two-pole filter realized in LTCC, where two metallic posts are 

shorted at the same bottom ground plane. Fig. 4.16 (b) shows another two-pole filter 

configuration in which the second post and its conducting patch are flipped so that the 

second post is shorted at the top ground plane. Note that the position and width of 

coupling striplines are also adjusted. According to the coupling coefficient definition 

in terms of the even- and odd-mode resonant frequency and the curves in Fig. 4.5 (a) 

and (b), the inductive coupling in Fig. 4.16 (a) is positive, and the inductive coupling 

in Fig 4.16 (b) is negative.  

 

Fig. 4.17 shows the phase responses of S21 for the filter structures in Fig. 4.16 (a) 

and (b). There is almost 180-degree phase difference across the frequency range. 

Magnetic fields patterns similar to those shown in Fig. 4.1 (d) and Fig. 4.2 (d) 

indicate that when the magnetic field lines responsible for the coupling between two 
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resonators are in the same direction, the resulting coupling will be positive, while if 

the fields are in opposite direction, the coupling will be negative.  

 

The frequency responses by EM simulator HFSS are also shown in Fig. 4.18, 

represented by solid lines and dot-dashed lines for the filter structures in Fig. 4.16 (a) 

and (b), respectively. Using the extraction method by even- and odd-mode excitation 

mentioned in Appendix B, the values of circuit elements according to the equivalent 

circuit model in Fig. 3.8 can be easily found from EM simulation results:  

 

 kM kE Bandwidth (GHz) 

(a) 0.3097 -0.0278 1.75 

(b) -0.2971 0.0425 1.94 

(c) -0.2984 0.0583 2.12 

          (4.6) 

 

where the normalized coupling value kM (magnetic coupling) and kE (electric coupling) 

are derived according to Eq. 4.2. The positive kM for (a) and negative kM for (b) are 

clearly evident.  

 

It is also observed from Fig. 4.18 that the bandwidth of the second structure is 

slightly increased. Therefore, for the third filter structure in Fig. 4.16 (c), the 

conductor patch is shifted by Dp = 10 mil toward the center, so that the capacitive 

coupling formed between the patches within the coupling structure is purposely 

enhanced. The frequency responses by HFSS are also shown in Fig. 4.18 by dashed 

lines, where the increment on the filter bandwidth is evident. The extracted coupling 
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coefficients in (4.6) show the increase of the electric coupling coefficient kE, while the 

magnetic coupling coefficient kM stays almost the same.  

 

The filter bandwidths taken at 18 dB return-loss for the three filters are also given in 

(4.6), which indicate the progressive increment on the filter bandwidths. Therefore, 

the combination of negative inductive coupling and capacitive coupling will result in 

the increase of the net total coupling, which subsequently will increase the filter 

bandwidth. This statement can also be accommodated by Eq. (3.64), where the 

combination of negative kM and positive kE will increase the absolute value of the 

numerator.  

 

Note that the sizes of the conducting patches for the three filter structures in Fig. 

4.16 are not changed. But the tap-in position and the width of striplines are 

necessarily adjusted in order to maintain the same return-loss level.  
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Figure 4.16.  2-pole filter in LTCC: (a) two posts are both shorted at bottom 

ground plane. (b) The second post is flipped and shorted at the top ground plane. 

(c) Two patches are shifted. Dimensions in mil: W = 100, L = 300, pa = 70, pb = 

40, ra = 40, rb = 40, H = 39.4, l1 = 31.52, l2 = 27.58, l3 = 31.52, f1 = 16, f2 = 

18, f3 = 13.5, D = 30, Dp = 10. Dielectric constant = 7.8.  
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(a)

(b)

 

Figure 4.17.  The phase of S21 for the filter structures in Fig. 4.16 (a) and (b).  

 

 

Figure 4.18.  The frequency responses of the three filter structures in Fig. 4.16: 

solid lines for (a), dot-dashed lines for (b), and dashed lines for (c).  
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4.4.2 Bandwidth Enhancement 

 

Fig. 4.19 (a) shows a 3-pole filter also realized in LTCC, with the first and third 

posts shorted at the bottom ground plane and the second (center) post alternatively 

shorted at the top ground plane. The conducting patches of the first and third posts are 

retreated from the center, avoiding the capacitive coupling with the conducting patch 

of the center post as much as possible.  

 

In the other two configurations shown in Fig. 4.19 (b) and (c), the conducting 

patches of the first and third posts are moving inward towards the center by Dp1 = 20 

mil and Dp2 = 30 mil respectively, increasing the overlapping area with the patch of 

the center post. Note that the sizes of the patches are slightly changed. Therefore, the 

capacitive coupling realized by the electric fields between conducting patches are 

subsequently enhanced.  

 

As demonstrated in the previous sub-section, since the center post is grounded at 

the top, the inductive couplings between the center post and the first and third posts 

are both negative. If the capacitive couplings within the coupling area are increased, 

the total net coupling k12 and k23 (also kB in Eq. 3.64) will be increased as well. 

Therefore, the filter bandwidth should be also enlarged if the input/output couplings 

for each case are accordingly adjusted.  

 



 

 176 

 

The phenomenon of bandwidth enhancement is clearly observed from Fig. 4.20, 

where the three filter structures in Fig 4.19 are simulated by EM simulator HFSS and 

the frequency responses are displayed. The filter bandwidths taken at 20-dB return 

loss for three filters are 1.10, 1.55, and 1.74 GHz respectively.  

 

As stated previously, for this structure, the inductive couplings by magnetic fields 

surrounding the posts are predominant, which is primarily controlled by the physical 

distances between the posts. For a wideband microwave filter requiring large 

couplings, the physical distances between the posts have to be shortened, which 

sometimes presents significant design challenges. The configuration setup shown in 

this sub-section introduces a new approach to enlarging the coupling value and 

increasing the filter bandwidth without physically moving the metallic posts. This 

approach, realized in LTCC layer stacks gives designers some extra freedom when the 

filter dimensions are implemented in physical structures.  

 

Again, the widths of the striplines for input/output couplings are necessarily 

adjusted in order to maintain the same return-loss level. All of the other dimensions 

are unchanged for the three filters structures, except for the shift of the patches. A 

disadvantage can also be observed from Fig. 4.20, where the high-side rejection / the 

slope of insertion loss above filter passband have become worse as the filter 

bandwidth is increased.  
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Figure 4.19.  3-pole filter in LTCC: (a) no overlapping between the conductor 

patches. (b) The conductor patches are shifted by Dp1 = 20 mil. (c) The 

conductor patches are shifted by Dp2 = 30 mil. Dimensions in mil: W = 140, L = 

400, ra = 20, rb = 20, H = 55.16, pa1 = 102.7, pb1 = 100, pa2 = 120.2, pb2 = 

100, pa3 = 115.2, pb3 = 115, pa4 = 106, pb4 = 100, D = 50, l1 = 35.46, s1 = 4.5, 

s2 = 21, and s3 = 28. Dielectric constant = 7.8.  
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Figure 4.20.  The frequency responses of three filter structures in Fig. 4.19: 

solid lines for (a), dot-dashed lines for (b), and dashed lines for (c).  
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4.5 INLINE QUASI-ELLIPTIC FILTER WITH COMPOSITE TYPE 

COUPLINGS 

 

4.5.1 Composite Type Coupling 

 

As discussed in Sec. 3.4, a composite type coupling inverter can provide coupling 

between two resonators, and also generate a transmission zero, due to the interaction 

between the inductive and capacitive couplings co-existing in the composite coupling. 

The realized transmission zero can be solely controlled by the intrinsic resonance of 

the composite coupling itself without an additional coupling path or other 

complicated transmission zero generation mechanism.  

 

In this sub-subsection, two realizations of composite type coupling are given. Recall 

the electric coupling structure in Fig. 4.3, in which the capacitive coupling by electric 

fields is predominant. As shown in Fig. 4.5 (c), the amount of electric coupling can be 

controlled by the size of the overlapping area between the inserted floating patch and 

the patches of the resonators. A conducting wall is placed between the two posts of 

the resonators, blocking the coupling of magnetic fields. An opening window is made 

on the conducting wall so that the floating patch can pass through. Also shown in Fig. 

4.5 (c), the magnetic coupling as a stray coupling still exists, and can be controlled by 

the size of the opening window.  

 

Therefore, if the distance between the two posts of the resonators is fixed, the 
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predominant electric coupling can be adjusted by the size of the overlapping area 

between the patches, while the weak magnetic coupling can be separately adjusted by 

the size of the opening window on the conducing wall. A new structure is created in 

Fig. 4.21 for the composite type coupling. A typical frequency response of the filter 

structure in Fig. 4.21 by EM simulator HFSS is shown in Fig. 4.22. Since the filter 

structure can be represented by the equivalent circuit model in Fig. 3.8, the values of 

circuit elements can be easily extracted from the EM simulation results by even- and 

odd-excitation:  

  kE = 0.3163 > kM = 0.1119     (4.7) 

where the normalized coupling value kE (electric coupling) and kM (magnetic coupling) 

are derived according to Eq. 4.2. As discussed in Sec. 3.4.4, if the electric coupling is 

predominant (kE > kM) in a composite coupling, a transmission zero is generated 

below the filter passband. A transmission zero at 5.85 GHz below the filter passband 

is clearly seen in Fig. 4.22.  

 

Recall the magnetic coupling structure in Fig. 4.1, in which the inductive coupling 

by magnetic fields is predominant. As shown in Fig. 4.5 (a), the amount of magnetic 

coupling can be controlled by the distance between the metallic posts of the 

resonators, and the electric coupling as a stray coupling still exists. A small floating 

patch can be inserted between the conductor patches of the resonators and the top 

ground plane, which can enhance the electric coupling within the coupling area as 

shown in Fig. 4.23.  
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Therefore, a typical frequency response of the filter structure in Fig. 4.23 by the EM 

simulator HFSS is shown in Fig. 4.24. Again, since the filter structure can be 

represented by the equivalent circuit model in Fig. 3.8, the values of circuit elements 

can be easily extracted from the EM simulation results by even- and odd-excitation:  

  kM = 0.5286 > kE = 0.2238     (4.8) 

Similarly, as discussed in Sec. 3.4.4, if the magnetic coupling is predominant (kM > kE) 

in a composite coupling, a transmission zero is generated above the filter passband. A 

transmission zero at 15.41 GHz above the filter passband is clearly displayed in Fig. 

4.24.  
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Figure 4.21.  Realization of composite type coupling, with strong capacitive 

coupling and weak inductive coupling. Dimensions in mil: W = 140, L = 300, ra 

= 40, rb = 40, H = 52.2, H1 = 30.6, pa1 = 102, pb1 = 40, pa2 = 80, pb2 = 118, 

D = 60, s1 = 50, w1 = 90, and w2 = 13.5. Dielectric constant = 7.8.  
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Figure 4.22.  Frequency responses of the filter structure in Fig. 4.21.  
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Figure 4.23.  Realization of composite type coupling, with strong inductive 

coupling and weak capacitive coupling. Dimensions in mil: W = 140, L = 300, 

ra = 60, rb = 35, H = 44.1, H1 = 30.6, pa1 = 110, pb1 = 56, pa2 = 80, pb2 = 60, 

D = 19, s1 = 35. Dielectric constant = 7.8.  
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Figure 4.24.  Frequency responses of the filter structure in Fig. 4.23.  

 

 

4.5.2 Inline Quasi-Elliptic Filter 

 

A fourth-degree quasi-elliptic inline filter with two transmissions, one below filter 

passband and the other above filter passband is designed in this sub-section. The 

circuit model of this filter is shown in Fig. 4.25. The composite coupling M1,2 is 

responsible for the transmission zero below filter passband, and the realization similar 

to the filter structure in Fig. 4.21 will be applied. The composite coupling M3,4 will 

generate the transmission zero above filter passband, and the realization similar to the 

filter structure in Fig. 4.23 will be utilized. A purely inductive coupling M2,3 will be 

used to assemble two structures (two 2-pole filters).  
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Figure 4.25.  Circuit model of fourth-degree inline quasi-elliptic filter with 

composite type couplings.  

 

The inline filter with center frequency = 10 GHz, bandwidth = 2.9 GHz, and return-

loss level at 21 dB is firstly synthesized using the cascade synthesis technique 

introduced in Section 3.3, according to the circuit topology described in Fig. 4.25. 

The synthesized values of the circuit elements are  

  f1 = 9.2168, f2 = 9.6460, f3 = 10.5804, f4 = 10.7863  

  kM,1 = 0.1186, kM,2 = 0.1900, kM,3 = 0.4746  

  kE,1 = 0.3991, kE,2 = 0, kE,3 = 0.2077  

  Qe,1 = 3.3329, Qe,2 = 3.5216     (4.9) 

where the normalization in (4.1) are used.  
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Figure 4.26.  Realization of fourth-degree inline filter in HFSS with via model. 

Dimensions in mil: W = 140, L = 520, H = 52.2, H1 = 30.6, H2 = 30.6, H3= 

44.1, H4 = 21.6, D2 = 40.06. Dielectric constant = 7.8.  
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Figure 4.27. Realization of the first and second resonators in Fig. 4.26. 

Dimensions in mil: ra = 40, rb = 40, pa1 = 119.35, pb1 = 40, pa2 = 100.78, pb2 

= 40, pa3 = 80, pb3 = 120.11, D1 = 60, D4 = 18, s1 = 65.36, w1 = 90, w2 = 13.5. 

Dielectric constant = 7.8.  
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Figure 4.28. Realization of the third and fourth resonators in Fig. 4.26. 

Dimensions in mil: ra = 60, rb = 35, pa1 = 109.01, pb1 = 50, pa2 = 113.34, pb2 

= 50, pa3 = 80, pb3 = 60, D3 = 13.47, s2 = 51.63, s3 = 10. Dielectric constant = 

7.8. 

 

Figure 4.29.  Frequency responses of fourth-degree inline filter from the HFSS 

model and from the circuit model. 
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Figure 4.30.  (a) Frequency responses of fourth-degree inline filter: the dashed 

lines are from HFSS simulation of the entire filter model with stripline 

transitions and launches; all other solid lines are from measurements of different 

fabricated filters. (b) Fabricated filter example in measurement.  
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From the synthesized values in (4.9), the resonant frequencies of the first and 

second resonator (f1 and f2) are very close in value. Therefore, for initial design, f1, 

kM,1, kE,1, and Qe,1 are implemented by the structure in Fig. 4.21. Similarly, since f3 

and f4 are very close in value, f4, kM,3, kE,3, and Qe,2 are implemented by the structure 

in Fig. 4.23 to find the initial dimensions.  

 

Then the fourth-order inline filter is assembled from two small structures as shown 

in Fig. 4.26. Variant schemes for cascading modular blocks to build a high order filter 

have been available [61]-[64]. But the filter responses quickly deteriorate upon 

cascading the modular blocks. For the filter structure in Fig. 4.26, a small ridge is 

used to connect the resonator post 2 and 3. The design of this small ridge follows 

similar design method used to design ridge waveguide filter in Section 4.3.  

 

Upon the completion of building up the entire physical model, the optimization by 

EM simulator HFSS is used to explore the optimum solution, which will maintain the 

bandwidth and the locations of transmission zeros. The model in Fig. 4.26 has been 

implemented in half version of via model, where the solid 3D objects are replaced by 

rows of via and the metallization plates in each LTCC stack layer as those shown in 

Fig. 1.1. The enclosure remains as solid wall so that the simulation time of the entire 

model on a computer is adequate to run optimization.  

 

The final EM simulation results from HFSS as well as the frequency responses from 
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the circuit model are superimposed in Fig. 4.29. They are almost identical, which 

validates the synthesis technique and the design approach.  

 

Since the characteristic impedances of the input/output microstrip lines are not 50 

Ohm, simple stripline transitions are added, which run from the existing lines tapped-

in the first and forth resonators to 50 Ohm lines. Also, the launches are added at the 

end of 50 Ohm lines in order to take measurement by probe station. The final EM 

simulation of the entire filter structure in full version of via model with stripline 

transitions and launches are plotted in Fig. 4.30. The filter is fabricated by LTCC 

technology and the measurement is taken from 7 pieces of fabricated filters. The 

frequency responses of all measurement are also shown in Fig. 4.30.  

 

The measured results in Fig. 4.30 are very consistent among 7 pieces of fabricated 

devices, except that there is about 500 MHz shift from the simulated results. The 

same filter bandwidths from measured results are maintained, and the two 

transmission zeros, one below filter passband and the other above filter passband are 

clearly observed.  
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Chapter 5 Microwave Wideband Transition Designs 

 

5.1 INTRODUCTION 

 

Transitions between various microwave components are important elements in 

wideband communication systems. The transition, in most cases acting as 

transmission lines is capable of connecting components in substrate or on board, 

transforming impedance levels between different elements, and directly realizing 

passive components with certain functionality, such as power dividing, phase shifting, 

and so on [65]-[68].  

 

The challenge of realizing a transition is that, quite often the transition requires 

customized designs to fit within specific area and stringent requirements, for instance, 

very wide operating bandwidth, large difference in impedance levels, tight spacing 

and restricted area, limitation from physical implementation, and so on. The design 

novelty of the transition can also help alleviate the increased performance demand on 

other components, to which the transition is connected.  

 

Because of the layered stack structure in LTCC technology, a microwave stripline 

structure implemented by metallization traces between ceramic layers is naturally a 

good candidate for a transmission line. Therefore, in this Chapter, novel transition 
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structures in LTCC are introduced to cope with variant stringent requirements.  
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5.2 COAXIAL TO STRIPLINE TRANSITION INTEGRATED WITH 

LOWPASS FILTER 

 

In this section, a transition, which can provide dual functionality, transforming the 

impedance level between two connectors and acting as a filtering structure is 

introduced with detailed design procedures. Several transitions with dual or multiple 

functionality have been addressed [69]-[70], and all of them require additional design 

effort due to the increased complexity.  

 

As shown in Fig. 5.1 (a), the original proposed design consists of a coaxial 

connector, a coaxial to stripline transition, a bandpss filter, and a co-planar waveguide 

launcher. The physical structure models of the coaxial connector and the launcher are 

fixed without modification. The coaxial to stripline transition and the bandpass filter 

are separately designed to satisfy individual requirements.  

 

The stripline transition from coaxial connector should provide 50 Ohm impedance 

level over the frequency band of interest. The filter passband is specified from 10.8 to 

14.1 GHz, which has center frequency f0 = 12.34 GHz and bandwidth BW = 3.3 GHz 

(relative BW = 26.75%). It also requires minimum 50 dB rejection at only the filter 

upper stopband from 22.6 to 27.2 GHz.  
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(a) 

Coax. Connector

Launcher

Coax. To Stripline Transition 

integrated with Lowpass Filter

 

(b) 

Figure 5.1.  (a) Original design, there are two components: a coaxial to stripline 

transition and a bandpass filter. (b) New design with only one component: a 

coaxial to stripline transition integrated with a lowpass filter.  
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Since there is no rejection requirement in the filter’s lower stopband, the 

specifications can also possibly be realized by a lowpass filter, with the cut-off 

frequency of the lowpass filter properly located between the upper edge of the 

passband 14.1 GHz and the lower bound of the rejection 22.6 GHz. Moreover, this 

lowpass filter can be implemented by alternative high- and low-impedance stripline 

structures, which is by nature altering the impedance levels. Therefore, it is possible 

to design an alternative high- and low-impedance stripline structure, acting as both a 

lowpass filter and a transition from a coaxial connector.  

 

As shown in Fig. 5.1 (b), the new proposed configuration contains only one 

component between the coaxial connector and the launcher. The design of the coaxial 

to stripline transition integrated with lowpass filtering function is proposed and will 

be covered in details with design steps.  

 

The design of a lowpass filter is first carried out, which is straightforward following 

the procedures given in [20]. Fig. 5.2 shows an nth-degree lowpass filter prototype 

(for this case, n is an odd number). The design parameters gi for an 11th-degree 

lowpass filter prototype with 0.01 dB in-band ripple level are listed in Table 5.1. 

Moreover, g0 = 1 and g12 = 1 are normalized impedances of the source and load, 

respectively. The series inductor is going to be realized by a high-impedance stripline, 

while the shunt capacitor is implemented by a low-impedance stripline. Note that the 

design parameters gi are symmetric.  
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In LTCC technology, the nominal value of dielectric constant is usually pre-

determined, and the maximum number of layers, namely the total thickness or height 

of substrate is also limited. Therefore, for the implementation of stripline in LTCC 

technology, the realizable characteristic impedance of stripline is restricted, especially 

for the highest possible characteristic impedance value. Usually, the minimum width 

of a metallization trace from the standard process is capable of 3 to 4 mil. As shown 

in Fig. 5.3, the characteristic impedance of a stripline with width wl = 3 mil is 73.7 

Ohm, which is taken as high impedance line, ZoH = 73.7 Ohm. Similarly, the 

characteristic impedance of a stripline with width wl = 35 mil (though this width can 

be further increased) is 21.7 Ohm, which is treated as a low impedance line, ZoL = 

21.7 Ohm.  

 

 

Figure 5.2.  Lowpass filter prototype. (n is odd)  
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Figure 5.3.  Realization of stripline in LTCC. (Dimension in mil): a = 55, b = 36, 

h = 14.4, w1 = 3. (Dielectric constant = 7.8).  

 

The normalized design parameters gi in Table 5.1 are given in a lowpass prototype 

with normalized angular cut-off frequency ω'0 = 1 and normalized characteristic 

impedance R'0 = 1. Therefore, the de-normalized values of Li (from series gi) and Ci 

(from shunt gi) can be derived from  

  0 0

0 0

i i

R
L g

R

ω

ω

′
=

′
       (5.1a) 

  0 0

0 0

i i

R
C g

R

ω

ω

′ ′
=        (5.1b) 

where ω0 is the de-normalized angular cut-off frequency, which is chosen at 16.25 

GHz for this design, and R0 is the de-normalized characteristic impedance, typically 

equal to 50 Ohm. The evaluated values of Li and Ci from (5.1) are also listed in Table 

5.1.  

 

For the realization of Li by high-impedance stripline, the length of stripline can be 
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found from  

  1sin ( )c i i
Li

c oH oH

L vLv
sl

Z Z

ω

ω
−= ≅      (5.2) 

As mentioned, the realizable maximum impedance of stripline in LTCC technology 

is restricted, which has been chosen as 3 mil width stripline or the characteristic 

impedance ZoH = 73.7 Ohm. Therefore, the function sin
-1

 may be invalid for some 

evaluated values of Li, since the function sin
-1

 has the evaluated value not greater than 

one. The approximation in (5.2) is then taken as a temporary solution.  

 

Similarly, for the realization of Ci by low-impedance stripline, the length of stripline 

can be derived from  

  1sin ( )
Ci c i oL i oL

c

v
sl C Z vC Zω

ω
−= ≅     (5.3) 

As shown in Table 5.1, the evaluated values of the function sin
-1

 in (5.3) are very 

small, so another approximation is taken to derive the stripline length as well. The 

evaluated lengths of striplines from (5.2) and (5.3) are listed in Table 5.1 under the 

column Length1. The discontinuity between the high-impedance and low-impedance 

lines is neglected, but is taken into account in the EM simulations.  

After obtaining the initial design parameters calculated from design formulas, the 

physical structure model of the lowpass filter is realized in EM simulator HFSS as 

shown in Fig. 5.4 (b). The frequency responses are also given in Fig. 5.4 (a) shown as 

solid lines. With the approximations made in (5.2) and (5.3), the performance of the 

lowpass filter is not significantly deteriorated, though the cut-off frequency is 

noticeably shifted downward to 13.5 GHz.  
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Table 5.1.  Design Table for Lowpass Filter 

 gi Li Ci Length1 Length2 Length3 

1 0.8234 0.4032  23.14 23.81 23.45 

2 1.4442  0.2829 25.96 15.11 20.60 

3 1.8298 0.8961  51.42 43.03 45.57 

4 1.7437  0.3416 31.35 23.97 23.73 

5 1.9554 0.9576  54.95 44.06 45.56 

6 1.7856  0.3498 32.10 25.70 21.84 

7 1.9554 0.9576  54.95 44.06 45.04 

8 1.7437  0.3416 31.36 23.97 17.43 

9 1.8298 0.8961  51.42 43.03 42.22 

10 1.4442  0.2829 25.96 15.11 10.43 

11 0.8234 0.4032  23.14 23.81 18.20 

Note: Li in nH, Ci in pF, Length1 (in mil) is the calculated stripline length for LPF 

from formulas, Length2 (in mil) is the optimized stripline length for LPF only, 

length3 (in mil) is the optimized stripline length for LPF together with transition.  

 

To restore the performance of the lowpass filter, the length of the stripline is first 

scaled by a factor 13.5/16.25, and then optimized by the optimization routine in HFSS. 

Note that the symmetry of the structure is still preserved, and only sli, i = 1, 2, ..., 6 

are included as optimized variables. The frequency responses evaluated from the 

optimized parameters are also given in Fig. 5.4 (a) shown as dash-dotted lines, where 

the horizontal bars are the limits of the filter specification, clearly satisfied by dash-

dotted lines. The lengths of striplines after optimization are also listed in Table 5.1 

under the column Length2.  
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The physical model of the coaxial connector in HFSS is shown in Fig. 5.5 (b) with 

its frequency responses shown in Fig. 5.5 (a) as dash-dotted lines, which clearly 

displays that the performance of the coaxial connector to a 50 Ohm stripline is out of 

specification. After the design of the lowpass filter is well accomplished, the lowpass 

filter will be directly attached to the coaxial connector, and the physical model of the 

entire transition is depicted in Fig. 5.5 (c).  

 

A two-step optimization strategy is used to obtain the optimum dimensions. First, 

the symmetry of the lowpass filter is again preserved, and only sli, i = 1, 2, ..., 6 are 

included as optimized variables. All remaining dimensions are untouched. Second, 

based on the optimized results from the first step, all lengths of striplines, sli, i = 1, 

2, ..., 11 are chosen as optimized variables without symmetry enforced. All of the 

optimization is carried out in HFSS.  

 

The frequency responses of the coaxial to stripline transition integrated with 

lowpass filter are shown in Fig. 5.5 (a) as solid lines, after using optimization to 

obtain the optimum dimensions of the stripline lengths. For obtaining the frequency 

responses in HFSS, one wave port is set at the open end of the coaxial connector, and 

the other wave port is set at the 50 Ohm stripline end. The lengths of striplines after 

final optimization are listed in Table 5.1 under the column Length3.  

 

The frequency responses in Fig. 5.5 (a) clearly indicate the effectiveness of 

combining the impedance level transforming and the lowpass filtering function, and 
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the successfulness of obtaining the final design parameters by described optimization 

strategy. The filter specifications illustrated by horizontal bars are well satisfied. The 

complete design in via model ready for LTCC manufacturing process has already 

been shown in Fig. 5.1 (b), where the coaxial to stripline transition integrated with 

lowpass filter has been highlighted. Note that the transition is also bent to fit into a 

tight space.  
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Figure 5.4.  Realization of lowpass filter in LTCC, (a) frequency responses from 

initial design parameters (calculated from formulas) and optimized parameters, 

(b) physical model in HFSS. (Dimension in mil), sl1-sl6 refers to Table 5.1, a = 

55, b = 36, wi = 9, wh = 3, wl = 35. (Dielectric constant = 7.8).  
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(c) 

Figure 5.5.  Realization of coaxial to stripline transition integrated with lowpass 

filter in LTCC, (a) frequency responses from coaxial connector and final 

optimized design parameters, (b) physical model of coaxial connector to one 

stripline section, and (c) physical model of entire transition design in HFSS. 

(Dimension in mil), sl1-sl11 refers to Table 5.1, the width of lines is the same as 

that in Fig. 5.4, a = 55, b = 36, sl0 = 40, l = 454. (Dielectric constant = 7.8).  
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5.3 WIDEBAND COAXIAL TO STRIPLINE TRANSITION 

COVERING 14-50 GHZ 

 

In this section, another coaxial connector to stripline transition is introduced. For 

this transition, there is no more specification on out-of-band rejection, but it requires 

a -20 dB return-loss level over an extremely wide frequency range, from 14 to 50 

GHz.  

 

Following a similar approach introduced in last section, a 7th-degree lowpass filter 

with cut-off frequency fc = 55 GHz and 0.01 dB in-band ripple level is first designed 

and realized in LTCC technology. The design procedures are exactly the same as 

those given in last section, which therefore are omitted in this section.  

 

The physical structure of the coaxial connector alone is shown in Fig. 5.6, and the 

frequency responses simulated in EM simulator HFSS are given in Fig. 5.8 as dash-

dotted lines, which clearly show the poor performance. Then the lowpass filter will be 

directly attached to the coaxial connector, where the synthesized and designed 

dimensions of the lowpass filter will be served as initial parameter values for the 

stripline structure of the transition. The realization of coaxial to stripline transition is 

shown in Fig. 5.7, in which the entire transition consists of seven sections of 

alternative high- and low-impedance striplines with one additional 50 Ohm stripline 

at the end.  
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Adopting a similar optimization strategy dividing with steps, first, all lengths of 

striplines will be used as optimized variables, and all remaining dimensions are 

untouched. In the next step, based on the optimization results from the first step, all 

widths of striplines will also be chosen as optimized variables in addition to already 

optimized lengths of striplines. The same optimization routine will be repeated. 

Moreover, the dimensions of the housing of striplines are also possibly included as 

optimized variables in the following step. All of the optimization is carried out in 

HFSS.  

 

The optimized lengths and widths of the striplines are given as the following:  

  li: {11.99, 8.42, 13.52, 4.97, 9.36, 3.50, 6.59} 

  wi: {4.79, 25.26, 4.90, 21.91, 1.98, 17.75, 5.82} 

  i = 1, 2, ..., 7       (5.4) 

The total length of the transition is 58.33 mil only. The frequency responses of the 

complete coaxial to stripline transition with the optimized parameter values are 

shown in Fig. 5.8 as solid lines, where the -20 dB return-loss requirement over 14 to 

50 GHz illustrated by horizontal bar is clearly satisfied.  
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Figure 5.6.  Physical structure of coaxial connector with one stripline section.  
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Figure 5.7.  Realization of coaxial to stripline transition. (Dimensions in mil): 

a1 = 54.2, b1 = 60, a2 = 45, b2 = 30, w8 = 6.5, and other dimensions are given 

in (5.4). (Dielectric constant = 8.8).  
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Figure 5.8.  Frequency responses of coaxial to stripline transition.  
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5.4 LTCC SUBSTRATE TO AIR-FILLED WAVEGUIDE 

TRANSITION 

 

In this section, a LTCC substrate waveguide to air-filled hollow waveguide 

transition is presented. The physical model of this transition in EM simulator HFSS is 

shown in Fig. 5.9 (a). The dimensions of the LTCC waveguide are predetermined as 

a1 = 95 and b1 = 50 (in mil). The air-filled waveguide is a standard WR-28 

waveguide, a2 = 280 and b2 = 140 (in mil). The operating frequency range of this 

transition is specified from 28 to 32 GHz.  

 

A connected four-step physical structure realized by LTCC substrate shown in Fig. 

5.9 (b) is inserted into air-filled waveguide in Fig. 5.9 (a), which looks like a cascaded 

ridge waveguide structure from multiple cross sections, except that the ridges are 

made of LTCC substrate instead of metal material. By utilizing this stepped structure, 

the characteristic impedance of LTCC substrate waveguide can be gradually 

transformed to the characteristic impedance of air-filled waveguide over the 

frequency range of interest.  

 

The LTCC substrate used for this project has dielectric constant = 8.8, and the layer 

thickness is set to 5 mil. Therefore, the thickness of the steps ti in the structure in Fig. 

5.9 (b) must be a multiplication of 5 mil. Moreover, the height of air-filled waveguide 

for the steps hi is trimmed to ease the gradual change of the cross-section dimensions 

and give better impedance level matching between adjacent steps. Note that the 
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height hi is also pre-selected.  

  ti (in mil): {40, 30, 20, 10}, i = 1, 2, 3, 4 

  hi (in mil): {60, 80, 100, 120}     (5.5) 

 

There are in total four steps. Then the width wi and the length li of all four steps 

(except w1) are chosen as optimized variables, and the entire structure is directly 

optimized in HFSS. The optimized parameter values are  

  wi (in mil): {95, 92.3, 52.4, 40.1}, i = 1, 2, 3, 4 

  li (in mil): {49.6, 34.8, 130.9, 185.4}    (5.6) 

 

The frequency responses of the entire LTCC substrate to air-filled waveguide 

transition are displayed in Fig. 5.10, where the in-band return-loss level over 28 to 32 

GHz is well below -25 dB.  
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Figure 5.9.  Realization of LTCC substrate to air-filled waveguide transition in 

LTCC. (Dielectric constant = 8.8).  
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Figure 5.10.  Frequency responses of LTCC substrate to air-filled waveguide 

transition.  
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Chapter 6 Conclusions and Future Research 

 

6.1 CONCLUSIONS 

 

The work presented in this dissertation has explored the synthesis and design of 

wideband microwave filters and other components.  

 

The synthesis techniques of wideband multi-coupled resonators filters represented 

by coupling matrix have been successfully developed in Chapter Two. Based on 

similar approaches for the narrowband case, both the approximation problem and the 

synthesis problem for wideband applications have been extended and solved in the 

bandpass domain to cover a very wide frequency range. Three types of frequency 

dependent couplings are used to replace the frequency independent coupling.  

 

The cascade synthesis techniques of wideband microwave filters by extracting the 

values of circuit elements from the [ABCD] matrix have been successfully developed 

in Chapter Three. Again, three types of frequency dependent coupling inverters are 

investigated, and included in the equivalent circuit model. In contrast to narrowband 

case, the extraction procedures and the equations used to extract the element values 

are more complicated.  
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Based on the newly developed synthesis techniques in Chapter Two and Three, 

various wideband microwave filters have been designed and demonstrated in Chapter 

Four. This again proves the powerfulness of the synthesis techniques, and clearly 

indicates the usefulness of the wideband equivalent circuit model representing the 

filter frequency responses over a very wide frequency range.  

 

In Chapter Five, several novel microwave transitions designs realized in LTCC 

technology have been demonstrated, which have integrated more functionality into 

conventional transition design, such as very wide bandwidth, embedded filtering 

function, and so on.  
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6.2 FUTURE RESEARCH 

 

Both equivalent circuit models in Chapter 2 and 3 consist of LC resonators and 

frequency dependent couplings. Only the first resonant mode of the resonators is 

considered. In the filter realizations in Chapter 4, the demonstrated resonant structure 

is also simply represented by single mode resonator. Overall, the synthesis, design 

and realization of microwave filters in this dissertation are focused on the main 

passband of the filters, even though a very wide bandwidth has been achieved and 

excellent performance has been obtained. In another aspect of practical filter design, 

the stopband performance of a filter is also very critical. Especially the effect of the 

second resonant mode of the resonators or the first harmonic will sometimes 

deteriorate the stopband performance severely. Therefore, is it possible that the wider 

frequency range concerning both filter passband and filter stopband can be studied 

and accurately predicted from the circuit network synthesis? The topic under the 

scope will investigate more advanced equivalent circuit model and synthesis 

techniques that can represent more information for practical filter design.  

 

In Section 2.7, for the general case where all three types of frequency dependent 

couplings are involved, a numerical optimization approach is used to solve the 

synthesis problem of coupling matrix, and find the element values in coupling matrix. 

However, an analytical procedure is still desired, since it can produce more freedom 

on selecting the coupling elements and coupling topology, and provide insight about 

the realization of transmission zeros in coupling matrix approach. Such techniques 
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have been developed for the narrowband band case for multi-coupled resonators filter, 

although it is relatively simpler.  

 

In Section 3.5, the extraction methods for inductive and capacitive coupling 

inverters acting as cross-coupling elements (either symmetric or asymmetric) have 

been given. It is still possible that the composite type coupling inverter can be used as 

cross-coupling, and its extraction equation should exist. Thus, this method is still 

needed to complete the set of extraction questions, and envision more possible 

coupling topologies, although the physical realization of the composite type coupling 

inverter for cross-coupling is very challenging.  

 

Another widely used method to realize a transmission zero for a narrowband 

microwave filter is the Extracted-Pole method [71], which has not been covered in 

this dissertation. It will be interesting to investigate the possible extraction procedure 

and extraction equation to handle this structure.  
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Appendices 

 

APPENDIX A 

 

The matrices ( )CC M−  and ( )LP M−  are both real symmetric and positive 

definite. Symmetry follows from the reciprocity of the circuit model. The proof on 

the positive definite property is from the passivity of the circuit  

  
1,

0
N

i i ij

j j i

C C C
= ≠

> > ∑  

  
1,

1 1 1
0

N

j j ii i ijL L L= ≠

> > ∑      (A1) 

Thus, both ( )CC M−  and ( )LP M−  are diagonally dominant matrices. Invoking 

Sylvester’s criterion in linear algebra, which states that “a symmetric row diagonally 

dominant matrix with positive diagonal entries is positive definite,” it is concluded 

that both ( )CC M−  and ( )LP M−  are real, symmetric and positive definite matrices.  

 

Next is to show that ( )t LA P M A−  is real symmetric and positive definite. The 

matrix is real, and since  

  ( ) ( ) ( )
t

t L t t Lt t LA P M A A P M A A P M A − = − = −    (A2) 

it is symmetric.  
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From (2.33), 1

CA Q
−= Λ , where Q is an orthogonal matrix, and 

C
Λ  is a diagonal 

matrix. Since ( )LP M−  is real symmetric and positive definite, then it can be 

decomposed as  

  ( )L tP M YDY− =       (A3) 

where D = diag(d1, d2, …, dn), di>0, and Y is an orthogonal matrix, satisfying 

YY
t
=Y

t
Y=I. Thus,  

  1 1( )t L t t t

C CA P M A Q Y D DY Q Z Z
− −− = Λ ⋅ Λ =   (A4) 

where 

  1t

CZ DY Q
−= Λ       (A5) 

 

Note that Z is invertible,  

  
1

1 1 1t t

C C
Z DY Q Q Y D

−
− − − = Λ = Λ

 
   (A6) 

Thus, for any vector 0, 0v Zv≠ ≠ .  

 

Therefore,  

  ( ) 2
( ) 0t t t t

v Z Z v v Z Zv Zv= = >     (A7) 

This concludes that ( )t t LZ Z A P M A= −  is positive definite.  

 

The proof on the real symmetric and positive definite property of ( )CL C M L−  

is similar.  
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APPENDIX B 

 

This Appendix shows the even- and odd-excitation method to extract the values of 

circuit elements according to the equivalent circuit model in Fig. 3.8 from the EM 

simulation results.  

 

The circuit model shown in Fig. 3.8 represents a 2-pole symmetric filter. Therefore, 

a symmetric plane T-T’ can be placed in the middle as shown in Fig. 3.9. Under the 

condition of even-excitation of the two ports, the middle symmetric plane T-T’ is 

open circuit, equivalent to a perfect magnetic conductor at T-T’. The reflection 

coefficient of the bisected network under even excitation is defined as Se. Under the 

condition of odd-excitation of the two ports, the middle symmetric plane T-T’ is short 

circuit, equivalent to perfect electric conductor at T-T’. The reflection coefficient of 

the bisected network under odd excitation is defined as So.  

 

Relate the Se and So to the S-parameters of two-port network:  

  2111 SSSe +=  and 2111 SSSo −=     (B.1) 

or 

  )(
2
1

11 oe SSS +=  and )(
2
1

21 oe SSS −=    (B.2) 

 

Derive the input admittance ),( oeinY  of the bisected network under even- and odd-

excitation, respectively:  
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xe

xeein
sL

sCY
1

, +=  

  121 CCC xe −=  and 
121

111

LLLxe

−=     (B.3) 

and 

  
xo

xooin
sL

sCY
1

, +=  

  121 CCCxo +=  and 
121

111

LLLxo

+=     (B.4) 

So the goal now is to find xeC  & xeL  from eS  and xoC  & xoL  from oS , 

respectively, from which the values of circuit element 1C , 1L , 12C  and 12L  can be 

solved.  

 

Derive the reflection coefficient from the input admittance of the network, assuming 

the characteristic admittance of the port is 1 (S):  

  
in

in

Y

Y
S

+

−
=

1

1
11  and 

x

xin
sL

sCY
1

+=     (B.5) 

 S11
2

2

2

2

)
1

(1

)
1

(2)
1

(1

)
1

(1

)
1

(1

x

x

x

x

x

x

x

x

x

x

L
C

L
Cj

L
C

L
C

L
Cj

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

−+

−−−−

=

−+









−−

=  (B.6) 

 

The bisected network is basically an LC resonator. The location of the resonant 

frequency 0ω  can be found from the extreme point of group delay. At the resonant 

frequency 0ω , the phase of 11S  becomes zero, and the imaginary part of 11S  is also 
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zero:  

  
xx LC

1
0 =ω        (B.7) 

 

When the phase of 11S  is +/- 90 degree, the real part of 11S  will become zero:  

  0)
1

(1 2 =−−
x

x
L

C
ω

ω       (B.8) 

  1
1

1

1 =−
x

x
L

C
ω

ω  and 1
1

2

2 −=−
x

x
L

C
ω

ω    (B.9) 

where 1ω  and 2ω  are the frequency points where the phase of 11S  is +90 degree and -

90 degree, respectively.  

  
21

1

ωω −
=xC  and 

21

21

ωω

ωω −
=xL     (B.10) 

 

So xeC  & xeL  can be found from eS , and xoC  & xoL  from oS , respectively. Then 

1C , 1L , 12C  and 12L  can be solved by  

  )(
2

1
1 xexo CCC +=       (B.11) 

  )(
2

1
12 xexo CCC −=       (B.12) 

  )
11

(
2

11

1 xexo LLL
+=       (B.13) 

  )
11

(
2

11

12 xexo LLL
−=       (B.14) 
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