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At its core, this is a story about electrons. Electrons drive the interactions of 

matter at the nanoscale, so an understanding of electron behavior offers significant 

insight into the behavior of nanoscale materials.  

Atomic force microscopy (AFM) has demonstrated great success as a tool for 

probing matter at the nanoscale, and recent reports suggest that it may even be capable of 

mapping electron clouds on atomic surfaces. The most recent of these claims came in 

2004, when Hembacher et al. [Science 305] observed subatomic features while imaging a 

graphite surface with a tungsten tip using higher-harmonics frequency modulation AFM 

(FM-AFM). The authors’ interpretation of these features as the footprint of the electron 

density at the tungsten tip’s apex atom has been met with much skepticism. But despite 

the potential significance of the results, a detailed theoretical study has not been 

performed.  



In this work, a computational method based in density functional theory (DFT) is 

developed in order to simulate the imaging process and draw fundamental conclusions 

regarding the feasibility of subatomic imaging with higher harmonics FM-AFM. The 

application of this method to the tungsten/graphite system reveals that the bonding lobes 

of increased charge density are in fact present at the tungsten tip’s apex atom and that the 

corresponding higher harmonics images can exhibit subatomic features similar to those 

observed experimentally.  

 We further show that the filtering process used to experimentally measure the 

harmonics does not introduce imaging artifacts but that harmonics averaging is not an 

appropriate method for enhancing contrast. We then suggest an alternate approach: the 

individual mapping of the first two harmonics, which are expected to dominate the 

contrast under the experimental conditions studied. 

 Finally, we demonstrate the important role played by the surface atom used to 

probe the AFM tip. We find that a small, non-reactive atom is necessary for resolving 

subatomic features. Most importantly, we show that the observed features are not a direct 

reflection of the electron density at the AFM tip’s front atom. Instead, they represent a 

measure of the bonding stiffness between the tip’s front atom and the atoms in the layer 

above. 
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1.  Introduction 

 

 

 

1.1.  – A Note to the Reader 

 

The effective communication of scientific work is no simple task. All research has 

an underlying story, but the sheer magnitude of information that a PhD dissertation 

encompasses can make it easy for the broader context of the work to get lost in the fray. 

With this in mind, I’ve attempted to craft a narrative that illustrates how this research 

problem was approached, the issues that arose, and how those issues influenced the 

direction of the work over the course of my graduate studies. Additionally, each chapter 

of this work is essentially self-contained, making a cover-to-cover reading unnecessary 

for understanding the major research results and how each relates to the scope of the 

overall problem.  

The work in this dissertation is theory-based and was inspired by the 2004 

experimental report of subatomic features resolved via higher harmonics AFM [1]. These 

features were explained as maps of a single tungsten atom’s electron density. This 

interpretation was met with a great deal of skepticism, but until now it has not been 

verified or refuted with theoretical simulation. 

Before outlining the objectives of this dissertation in Chapter 2, the remaining 

sections in this chapter provide a succinct overview of the experiment and the relevant 
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work that led to it. This information is sufficient for understanding the simulation 

development and results presented in Chapters 4-7; however, detailed background 

information (and the details of each element of the experiment) can be found in the 

Chapter 3 Literature Review. 

The inherent complexity of this work unveiled itself gradually: Chapter 4 presents 

the initial development of the simulation method, the issues that arose, and how those 

issues shaped the work that followed. 

The first of the published results is presented in Chapter 5. In this chapter, the 

feasibility of imaging subatomic features with higher harmonics AFM is demonstrated; 

however, no claims are made regarding the physical source of this subatomic contrast. 

This chapter is an adaptation of our 2011 Nano Letters publication [2]. 

Chapter 6 contains a detailed look at the effects of the signal processing used by 

Hembacher et al. We discuss both i) filtering the cantilever trajectory signal, and ii) the 

rms detection of higher harmonics as they pertain to the contrast observed in 

experimental images. We show that filtering does not generate artifacts in the observed 

images but that the rms detection of higher harmonics is not an appropriate measurement 

technique for increased image contrast. Nonetheless, the latter result does not negate the 

feasibility demonstrated in Chapter 5, because we find that the rms images are dominated 

by the first and second harmonics such that the same subatomic features are observable in 

their individual maps. The work in this chapter is an adaptation of our 2012 Applied 

Physics Letters publication [3]. 

In Chapter 7, we take the first steps toward identifying the physical source of the 

subatomic contrast. In other words, we wish to determine if the subatomic features are 
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truly connected to the electron density of the AFM tip. New simulation systems are 

presented that allow us to draw fundamental conclusions in this regard. We find that 

while the subatomic features are not direct maps of the foremost tip atom’s electron 

density, the features do represent the spatial dependence of the bonding stiffness between 

the tip’s front atom and the layer of atoms above. As such, the subatomic features reveal 

the symmetry that one would expect for each crystallographic orientation of the AFM tip 

apex. We also find that the size and electronic structure of the atom (or molecule) used to 

probe the tip have a significant impact on the atom’s ability to resolve these symmetry 

features. At time of writing, this work is being prepared for publication. 

Finally, in Chapter 8, the intellectual contributions of this dissertation are 

discussed, beginning with a summary of the main conclusions and followed by the future 

outlook for this work. 

 

1.2.  – Motivation 

 

It has been nearly three decades since the scanning tunneling microscope (STM) 

and atomic force microscope (AFM) revolutionized the field of surface science [4, 5]. 

Each instrument is now capable of routinely resolving individual surface atoms, but as 

with any microscopy technique, one wishes to push the achievable resolution to its 

highest possible limit.  

The first report of subatomic features in an AFM experiment emerged a decade 

ago from the group of Franz Giessibl in Germany. The authors performed simultaneous 

STM/AFM of the Si(111)-(7x7) reconstruction with a tungsten tip attached to a qPlus 
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sensor [6]. In the constant frequency shift image, each surface adatom displayed a 

substructure composed of two crescents (shown in Figure 3.9). Because gentle contacts 

between the tungsten tip and the silicon surface were performed in order to achieve stable 

STM imaging, the authors interpreted these subatomic features as the signature of two 

dangling bonds at the apex atom of a silicon cluster picked up by the tip during contact 

[7]. This interpretation was met with skepticism and remains a subject of debate within 

the AFM community today. Although it has been supported by subsequent density 

functional theory (DFT) simulations from two separate groups [8, 9], another group has 

suggested that the subatomic features may have been feedback artifacts [10], and recent 

DFT calculations indicate that the features could have been the result of a multi-atom tip 

termination [11]. Nonetheless, if the interpretation is correct, the experimental findings 

have profound implications for scanning probe microscopy and the insight it can provide 

for atomic-scale matter interactions.  

The next publication claiming the resolution of electron density came from the 

same group a few years later when, in 2004, Hembacher and coworkers published the 

results of a simultaneous STM/AFM experiment for a tungsten tip imaging a graphite 

surface. Again, the tungsten tip was attached to a qPlus sensor, and imaging was done in 

ultra-high vacuum at 4 K. Remarkably, the image created by the higher harmonics of the 

cantilever trajectory revealed features within the diameter of a single tungsten atom, 

which the authors interpreted as bonding lobes of increased charge density at the apex 

atom of the tip (see Figure 1.2) [1].  

Again, the analysis of the subatomic features as the footprint of electron bonding 

lobes has been met with much doubt within the AFM community. But despite the debate 
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over the accuracy of the interpretation – as well as the potential significance of the results 

– an in-depth theoretical feasibility study of the 2004 experiment has yet to be completed. 

This dissertation aims to fill that gap. 

To do so, a computational method based in DFT is developed to simulate the 

higher harmonics imaging process. Aside from answering the question of feasibility, the 

method development itself has provided much insight into why a theoretical study has not 

yet been attempted, as well as why the experimental results have not been reproduced in 

the eight years since their publication. 

The details of the 2004 experiment performed by Hembacher et al. are crucial to 

comprehending the scope of the theoretical study herein, but the details themselves must 

be prefaced with a small amount of background information (which will be expanded 

upon in the literature review). In the next section, we paint a broad picture of the path 

leading up to the 2004 experiment of Hembacher et al. before presenting its details and 

the part they play in the simulation development. 

 

1.3.  – Background 

 

The steep distance-dependence and short interaction range of tunneling current 

between probe and sample (see Figure 1.1) make scanning tunneling microscopy ideal for 

achieving atomic resolution on nanoscale surfaces imaged in vacuum environments [12]. 

The relative ease of measuring tunneling current also makes it an attractive choice for 

imaging feedback, but this choice inherently limits the applicability of STM to 

conductive samples.  
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Atomic force microscopy is not hindered by this limitation since it is a force-

based method, but detection of the relevant forces is not as straightforward as current 

measurement in STM, and therefore achieving atomic resolution with AFM is not as 

simple [12]. The force between tip and sample (Fts) in AFM is comprised of multiple 

components that are generally categorized as either short-range or long-range (see Figure 

1.1). In ultra-high vacuum (UHV), the short-range (SR) component is predominantly the 

chemical bonding force (acting on the range of angstroms) while the long-range (LR) 

component consists of van der Waals (vdW), electrostatic, and magnetic forces (acting up 

to ~100 nm) [12-14], with vdW typically the dominant LR contribution. For atomic 

resolution imaging in AFM, one should ideally isolate the short-range chemical forces, 

but the different force contributions are not easily separable [12, 13, 15]. 

 

 

Figure 1.1 – Tunneling current in STM vs. tip-sample forces in AFM. 

 

Nevertheless, the challenge of atomic resolution by AFM in UHV was overcome 

in 1995 when Giessibl atomically resolved the Si(111)-(7x7) surface reconstruction [16] 

using the frequency modulation (FM-AFM) detection method [17]. In the FM-AFM 

mode of imaging (also called noncontact, or nc-AFM), a cantilever is excited with a 
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sinusoidal driving force such that its oscillation remains at resonance and generally at a 

fixed amplitude. As the cantilever approaches the sample surface, tip-sample interaction 

forces alter its effective resonance frequency, and the drive frequency is continuously 

updated to match this new effective resonance. (This can be achieved through either a 

phase-locked-loop (PLL) controller [18] or using the self-excitation method [19].) There 

are two possible choices for topographical mapping in the FM-AFM mode. In constant 

height FM-AFM, the base position of the cantilever remains fixed during the scan, so the 

image of the surface is a map of the frequency shift as a function of x and y. Alternatively, 

one can use the frequency shift as a feedback parameter during the scan. The z-piezo is 

then moved up and down to maintain a constant frequency setpoint, so that the surface 

image is a map of the z-piezo position as a function of x and y.  

 To atomically resolve the Si(111)-(7x7) surface in 1995, Giessibl used the latter 

approach (known as constant frequency shift FM-AFM) with a cantilever oscillation 

amplitude of 340 Å. It has since been determined theoretically that much smaller 

oscillation amplitudes are optimal for FM-AFM imaging [20], which in turn requires 

stiffer cantilevers to avoid jump-to-contact [21]. To this end, quartz tuning forks 

(stiffness, k ~ 1-3 kN/m) have been implemented in various forms as AFM cantilevers by 

soldering a probe tip to one of the prongs [6, 22-24]. The mass of the added tip breaks the 

oscillation symmetry of the tuning fork prongs which can drastically lower the tuning 

fork’s Q factor. However, in the qPlus configuration one of the prongs is fixed to a 

substrate such that a single quartz “cantilever” remains, with its high Q factor intact [24]. 

Regardless of the type of cantilever used, neither FM-AFM mode measures Fts 

directly but instead does so indirectly through the cantilever’s frequency shift (or z-
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position at constant frequency shift). To recover quantitative values for Fts, an inversion 

must be applied post hoc [25-29]. Because this additional step is not ideal from an 

experimentalist’s standpoint, various methods have been proposed to recover Fts in real 

time [29-32]. One such method, pioneered by Urs Dürig, is critical to the current 

investigation. 

In 2000, using a first-order perturbative approach, Dürig demonstrated that for 

cantilever oscillations on the order of the short-range interaction, Fts can be reconstructed 

by tracking the amplitudes and phases of the higher harmonics of the tip trajectory [32]. 

This relationship is given as  
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for 1≠n , where an is the amplitude of the nth harmonic, k is the cantilever stiffness, and 

Tn(u) is the nth Chebychev polynomial of the first kind [32, 33]. By integrating Eqn. 1.1 
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The authors argue that the advantage of this result lies in the fact that, for 

attractive forces in noncontact AFM, higher gradients of Fts have a stronger dependence 
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on tip-sample distance. If one considers a force that varies as 1/zp, doubling the distance 

reduces the force by 1/2p, but the nth derivative of the force with respect to z will be 1/2p+n 

times as small [1]. Thus, contributions to the higher force derivatives will come primarily 

from the front-most tip atom. The coupling of the higher harmonic amplitudes to higher 

gradients of Fts makes the latter experimentally accessible, and thus implies that mapping 

the harmonics should provide increased spatial resolution with respect to conventional 

FM-AFM [1, 33, 34]. (Note that while this is valid for attractive forces, it is not true in 

general. We revisit this point in Chapter 6.)  

In their 2004 experiment, Hembacher et al. implemented this higher harmonics 

technique using simultaneous, constant height STM/FM-AFM to image a graphite 

surface with a tungsten tip attached to a qPlus sensor, with separate electrodes for 

measuring tunneling current and cantilever deflection. The deflection signal was sent to a 

programmable Stanford Research Systems SR650, which is an 8-pole elliptic-type high-

pass filter with 0.1 dB of pass-band ripple and 80 dB of stop-band attenuation [35]. A 

cutoff frequency of 20 kHz was used in order to eliminate the cantilever’s fundamental 

frequency of ~18 kHz. The combined higher harmonics signal is the root-mean-square 

(rms) voltage output from the filter, given by  
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where Sn is the sensitivity of the deflection sensor for the nth harmonic [1], 
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This processing step has been one of the largest points of contention. The justification for 

collecting the harmonics this way is given in Ref. [33], as well as note 22 in Ref. [1]. The 

crux of the argument is that (simulated) images produced by individual higher harmonics 

are similar; therefore, collecting an rms of all higher harmonics will not change the 

nature of the image. Further, collecting all harmonics offers ease of implementation and 

increases the signal-to-noise ratio (see Chapter 6 for further discussion). 

In Hembacher et al.’s work, imaging was conducted in cryogenic UHV to 

minimize atomic vibrations, and graphite was chosen as the surface material in order to 

exploit the small size of carbon as a probe atom (in these experiments, the roles of tip and 

sample are viewed as reversed, i.e., the sample atoms are imaging the tip; the authors cite 

the reciprocity principle posited by Chen in ref. [36]).  

The simultaneously recorded tunneling current and higher harmonics images are 

shown in Figure 1.2 (Fig. 2 from Ref. [1]) with each row of images corresponding to a 

separate experiment (gentle tip-sample contacts were made between each). The tunneling 

current images (Figure 1.2A, C, and E) for each experiment exhibit a single maximum 

within the diameter of a tungsten atom (274 pm), while the higher harmonics images 

(Figure 1.2B, D, and F) show multiple maxima within the same diameter. The authors 

interpret these subatomic features as the footprint of bonding lobes of increased charge 

density at the foremost tungsten tip atom. They further note that while both tunneling 

current and the higher harmonics should exhibit steep distance-dependence, only the most 

loosely bound electrons will tunnel (i.e., those at the Fermi level, EF); therefore, the STM 
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images cannot resolve the spatial variations in the total charge density [1, 37]. In fact, 

STM can image only one of the two inequivalent carbon atoms that make up the graphite 

lattice, because only one of the two has a sufficiently high local density of states (LDOS) 

at EF [37].  

 

 

Figure 1.2 – The simultaneously recorded tunneling current (left) and higher harmonics (right) 

images from Hembacher et al. (see Figure 2 in Ref. [1]). Each row represents a separate experiment, 

with gentle tip-surface contacts between each. While the tunneling current images show a single 

maximum within the diameter of a tungsten atom, the higher harmonics images display multiple 

maxima within the same diameter. The authors interpret these subatomic features as the footprint of 

bonding lobes of increased charge density at the foremost tungsten tip atom. 
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The different symmetries of the subatomic features found in each experiment (see 

Figure 1.2B, D, and F) are attributed to the crystallographic orientation of the tungsten 

atoms at the tip apex. Wigner-Seitz cells of BCC tungsten indicate that two-fold 

symmetry corresponds to the [110] direction, three-fold to the [111], and four-fold to the 

[001], as illustrated in Figure 1.3. For the case of [001], the existence of four lobes of 

increased charge density has previously been demonstrated in bulk systems by plane-

wave quantum mechanics calculations of the W(001) surface [38, 39]. These lobes are 

thought to be the result of covalent-like bonding in the bulk, which is a common feature 

of transition metals with partially occupied d-shells [1, 40].  

 

 

Figure 1.3 – Wigner-Seitz cell of BCC tungsten. View parallel to (A) [001] exhibiting four-fold 

symmetry, (B) [111] exhibiting three-fold symmetry, and (C) [110] exhibiting two-fold symmetry. 

 

 Thus the important features of the 2004 experiment that must be considered in a 

full theoretical treatment can be summarized as: 

 

1. The crystallographic plane of W responsible for contrast, and the presence of bulk 

surface states in a non-bulk system such as an AFM tip. 

2. The effect of simultaneous STM/AFM on the electronic states of the system. 

3. The cantilever dynamics. 

4. The sensitivity of qPlus sensors to higher harmonics. 
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5. The effect of filtering the cantilever trajectory. 

 

In this dissertation, items 2 and 3 are not covered for reasons that will become apparent in 

Chapter 4. However, they are obvious next steps in the future of this research work.  
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2.  Dissertation Objectives 

 

 

 

 Broadly speaking, this dissertation will investigate the feasibility of imaging 

electron density with higher harmonics atomic force microscopy. Originally, the goal was 

to develop a multi-scale simulation method – ranging from density functional theory 

(DFT) to continuum dynamics – in order to consider all five of the important features of 

the 2004 experiment as outlined at the end of the previous chapter. However, as we will 

see in Chapter 4, the development of such a method uncovered many challenges that 

made it necessary to take a more fundamental approach first, and then slowly build up to 

a full theoretical treatment of the problem (which is beyond the scope of the current 

work).  

 The objectives for our fundamental approach are as follows: 

 

1. Develop a simulation method based in DFT in order to simulate higher harmonics 

FM-AFM UHV experiments. 

2. Implement the developed method as a means to test the fundamental feasibility of 

subatomic imaging via higher harmonics AFM. 

3. Test the effects of signal processing on the qualitative nature of higher harmonics 

images. 
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4. Draw fundamental conclusions regarding the physical source of observed 

subatomic contrast. 

 

 The next chapter will present the relevant literature in a manner that builds the 

foundation of these dissertation objectives in the context of subatomic AFM. 
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3.  Literature Review 

 

 

 

3.1.  – Scanning Tunneling Microscopy (STM) 

 

The story of subatomic imaging begins in 1982, when Binnig et al. demonstrated 

that electron tunneling could be achieved through a controllable vacuum gap [41]. The 

theory of electron tunneling had been known since the late 1920’s, and the understanding 

of tunneling through a potential barrier from a surface into vacuum had already been 

demonstrated [42]. The real breakthrough was the use of piezoelectric materials to 

achieve mechanical actuation with picometer precision. If one can maintain two metals at 

a sub-nanometer distance, then a bias voltage between the two metals will cause a 

measurable current to flow. 

 This work was the foundation of the scanning tunneling microscope, which 

Binnig et al. introduced the same year [4]. To be successful as a microscope, precise 

vibration isolation was (and still is) required. But in less than a year, Binnig and 

coworkers were able to achieve true atomic resolution with the STM by resolving the 

Si(111)-(7x7) surface reconstruction (see Figure 3.1) [43] – solving one of the most 

perplexing surface science problems of the time, and completely revolutionizing the field. 

For this work, Binnig and Rohrer received the Nobel prize [44]. 
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Figure 3.1 – The 7x7 reconstruction of Si(111) observed by Binnig et al. with the STM [43]. 

 

An understanding of the scanning tunneling microscope is important not only 

because it was utilized in the Hembacher experiment, but also because it sheds light on 

the unique challenges faced in AFM. An understanding of STM also reveals its 

shortcomings, and hence demonstrates the importance of AFM as – at the very least – a 

supplementary technique. 

Scanning tunneling microscopy involves imaging a metal or semiconductor 

surface with a sharp metal tip, usually made of etched W or Pt/Ir wire (see Figure 3.2). A 

bias voltage applied between the tip and sample causes a current to flow when the 

distance between the two is on the order of a nanometer. 
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Figure 3.2 – A cartoon illustration of the tip-sample interaction in STM. A bias voltage applied 

between the tip and sample causes a current to flow when the distance between the two is reduced to 

the range of a nanometer. In one mode of STM operation, the tip follows the contour, z(x,y), in order 

to keep the tunneling current constant (Figure 2 of Ref. [12]). 

 

The tunneling current is proportional to the voltage applied as well as the local 

density of states (LDOS) of the tip-sample system at or above the Fermi level, EF [45]. 

This is an important point. The Fermi level is defined as the highest occupied energy 

level of an electron in a material at 0K, thus electrons at the Fermi level are the most 

loosely bound and will carry the tunneling current in STM [45].  

Tunneling current in STM also has an exponential dependence on the gap distance, 

given by 

 

2( ) ~ z
I z e

α−  (3.1) 
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where z is the gap distance and 2mα = Φ ℏ , with Ф the work function of the tip or 

sample (depending on the bias voltage), m the mass of an electron, and ℏ  the reduced 

Planck’s constant. A typical work function for metals is ~4 eV, meaning α ~ 1 Å-1; 

therefore, when the gap distance z is increased by merely an angstrom, the current drops 

by an order of magnitude. The consequence is that all of the tunneling current is spatially 

confined to the apex atom of the tip and its nearest sample atom [12].  

A typical plot of tunneling current versus distance was shown in Figure 1.1. Its 

monotonic nature with tip-sample distance also makes it ideal for use as feedback. In the 

constant tunneling current mode of operation, the tip-sample distance is increased or 

decreased as the tunneling current goes up or down, respectively. An alternative mode of 

operation is to keep the tip-sample distance constant and measure the varying current; 

both modes produce a topographic map of the sample surface.  

 Although STM completely transformed the field of surface science, it suffers 

from a major limitation: both the tip and sample must be electrically conductive. 

Fortunately, this limitation was overcome with the invention of the atomic force 

microscope by Binnig et al. in 1986 [5]. While the AFM presented the possibility of 

achieving atomic resolution on insulators (as well as conducting materials), it also 

brought with it a set of experimental difficulties that would take nearly a decade to 

overcome. 

 

 

 



 

 20 

3.2.  – Atomic Force Microscopy (AFM) 

 

3.2.1.  Modes of Operation and Relevant Forces 
 

During the initial experiments with the STM, small forces acting on the probe tip 

were observed [46, 47]. This ultimately led to the invention of the atomic force 

microscope in 1986 by Binnig, et al. [5], in which these forces were utilized for imaging 

feedback, removing the need for conducting tip-sample systems. 

 

3.2.1.1.  Contact Mode (CM-AFM) 
 

The first AFM operated in what is now referred to as contact mode, where the tip 

probes the sample with small repulsive forces. Here the tip-sample forces (Fts) can be 

measured directly from the deflection of a cantilever of known stiffness, k, via Hooke’s 

law. This force is then implemented as a feedback signal for imaging by maintaining a 

set-point cantilever deflection during imaging. Aside from the change in the feedback 

parameter, the control electronics are essentially the same as STM. 

It was initially thought that the AFM could achieve atomic scale resolution as 

easily as its predecessor. Indeed, early AFM images demonstrated proper lattice 

periodicity [48, 49], but single atom defects and step edges were not visible, which led to 

the realization that a cluster of atoms – as opposed to a single atom – must be in contact 

with the surface [34]. Additionally, the repulsive normal forces between tip and sample 

could damage the sample if the stiffness of the cantilever probe exceeded the stiffness of 
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the atom-atom interactions on the surface [50], and the lateral force of the tip dragging 

along the surface could result in a similar fate. 

 

3.2.1.2.  Amplitude Modulation (AM-AFM) 
 

The introduction of the first dynamic AFM mode – amplitude modulation AFM, 

or AM-AFM – sought to alleviate the problem of sample damage [51]. Also known as 

“tapping mode” AFM, AM-AFM involves oscillating a cantilever above a sample surface 

such that it makes only intermittent contact. The oscillation frequency chosen is close to 

the resonance frequency of the cantilever, and tip-sample forces are measured indirectly 

through their effects on the cantilever’s oscillation amplitude, which is then used as the 

feedback parameter. More specifically, the gradient of the tip-sample force alters the 

cantilever’s effective resonance, 

 

eff ts

k
F

m
ω = −∇  (3.2) 

 

where ωeff is the cantilever’s effective resonance, k its stiffness, and m its effective mass. 

The resonance shift results in either an increase or decrease in the oscillation amplitude, 

which can be seen in Figure 3.3 [13]. 
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Figure 3.3 – A harmonic oscillator under the influence of attractive or repulsive forces experiences 

either an increase or decrease in amplitude (depending on the frequency setpoint), which can be 

inferred from the translational shift of its resonance curve. Adapted from Ref. [13]. 

 

While AM-AFM has had great success imaging a broad range of materials in both 

air and liquid [13], it is not without shortcomings of its own. The nonlinear nature of the 

tip-sample forces (recall Figure 1.1) results in the existence of two stable oscillation 

amplitude states, which creates a feedback issue (called “bistability” in the literature) if 

care is not taken when choosing the setpoint amplitude for a given experiment. Further, 

as mentioned above, vibrating the cantilever means that the tip-sample forces are no 

longer being measured directly, but rather through their effect on the cantilever’s 

oscillation. This will be discussed in more detail in Section 3.2.1.3. 

Finally, achieving atomic resolution on most surfaces requires an ultra-high 

vacuum (UHV) environment, which is fundamentally problematic for AM-AFM. The 

reason lies in the use of amplitude as the feedback parameter. The solution to a damped 

harmonic oscillator subject to an external force contains a transient term that takes a time 
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02Qτ ω=  in order to be reduced by a factor of 1/ e , where Q is the quality factor of the 

cantilever. In liquid and air, Q is dominated by environmental damping, and generally 

falls in the range of ~1 (liquid) to ~100 (air). However, in UHV environmental damping 

is negligible, and the Q factor is typically on the order of 104-105 [12, 13]. As a 

consequence, the feedback response of AM-AFM is too slow to be practical for imaging. 

The introduction of frequency modulation AFM solves this problem. 

 

3.2.1.3.  Frequency Modulation (FM-AFM) 
 

As discussed in the Introduction (Section 1.3), in the FM-AFM mode of imaging 

[17], a cantilever is excited with a sinusoidal driving force such that its oscillation 

remains at resonance and (usually) at fixed amplitude. Though this mode is still dynamic, 

it is generally used in the noncontact regime, where tip deformation and friction effects 

can be eliminated (for this reason FM-AFM is also called noncontact AFM). As the 

cantilever approaches the sample surface, tip-sample interaction forces alter its effective 

resonance frequency (see Eqn. 3.2), and the drive frequency is continuously updated to 

match this new effective resonance. This can be achieved through using either a phase-

locked-loop (PLL) controller [18] or the self-excitation method [19]. 

There are two possible choices for topographical imaging in the FM-AFM mode. 

In constant height FM-AFM, the base position of the cantilever remains fixed during the 

scan, so the image of the surface is a map of the frequency shift as a function of x and y. 

Alternatively, one can use the frequency shift as the feedback parameter during the scan. 

The z-piezo is then moved up and down to maintain a constant frequency setpoint so that 
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the surface image is a map of the z-piezo position as a function of x and y. Giessibl used 

the latter approach with a cantilever oscillation amplitude of 340 Å to atomically resolve 

the Si(111)-(7x7) surface in UHV in 1995 [16]. The image he acquired is shown in 

Figure 3.4. 

 

 

Figure 3.4 – The first atomic resolution image of Si(111)-(7x7) obtained using FM-AFM (Figure 2 

from Ref. [16]; the labels A-E are discussed therein). 

 

Regardless of which method is used, the feedback for imaging is much faster because the 

change in effective resonance frequency occurs within a single oscillation cycle: 01 fτ ≈  

[12]. Additionally, its being independent of the Q factor makes it suitable for UHV 

imaging. 

Though FM-AFM can be used in UHV, it is still not a direct measure of the tip-

sample interaction forces. The short-range (SR) force component in UHV is 

predominantly the chemical bonding force (acting on the range of angstroms), while the 

long-range (LR) component consists of van der Waals (vdW), electrostatic, and magnetic 

forces (acting up to ~100 nm) [12-14], with vdW typically the dominant LR contribution. 
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For atomic resolution imaging in AFM, one should ideally isolate the short-range 

chemical forces, but the different force contributions are not easily separable [12, 13, 15]. 

In the next section, we will explore how the methods of force reconstruction eventually 

lead to the experimental mapping of higher harmonics of the cantilever oscillation as a 

means to isolate the SR force contributions. 

 

3.2.2.  Force Recovery 
 

 Post-hoc methods of force reconstruction from experimentally observed 

frequency shifts in FM-AFM are largely based on perturbation theory and variational 

methods [12, 13, 25, 28, 29, 32]. One such method – developed by Dürig in 1999 and 

2000 – is of particular interest, as it provides the mathematical foundation for higher 

harmonics imaging [28, 32].  

In ref. [28], Dürig uses variational methods and a Fourier cosine expansion of the 

cantilever trajectory to relate experimentally measured frequency shifts to tip-sample 

interaction forces. He builds upon this result in Ref. [32] and shows that the interaction 

force between an oscillating AFM cantilever and a sample surface can be reconstructed 

(over the range of oscillation) from the amplitudes and phases of the first few higher 

harmonics in the cantilever response, as long as the oscillation amplitude is small, i.e., on 

the order of the interaction range. 

For small vibration amplitudes – over which the tip-sample force gradient is 

approximately constant – the dynamics of the cantilever can be described in terms of a 

simple harmonic oscillator with effective resonance frequency 
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0 1eff tsk kω ω= + , (3.3) 

 

where ω0 is the free resonance of the cantilever of stiffness k, oscillating in a region of 

local interaction stiffness kts. (This equation is equivalent to Eqn. 3.2.) However, in 

noncontact force microscopy, the interaction stiffness is typically not constant over the 

range of oscillation (even for small oscillation amplitudes), so no simple relation between 

frequency shift and interaction force can be established. 

 For the large amplitude case of variable kts, Dürig begins with the system’s action 

integral 
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Here ψ(t) is the tip position as a function of time, and 0( ( ))tsU tψ ψ+  is the tip-sample 

interaction potential, where ψ0  is the base position of the cantilever. According to 

Hamilton’s Principle, the correct tip trajectory ψ(t) will be that for which S is stationary.  
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Dürig then makes the periodic Ansatz 
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so that {an} defines the set of variational parameters. Inserting this into Eqn. 3.5, gives 
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which simplifies to  
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We know from variational calculus that S∂ must vanish with the variation of each an 

independently. Dürig then proceeds by restricting all 0na =  for 2n ≥ , leaving 
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or 
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Substituting cos( )ω=u t  and rearranging yields 

( )
1

0 11 2
1

1 2
1 (1 )

1
ts

u
F z a u du

k a u
ω ω

π −
= − + +

−
∫  (3.12) 

 

Because for a full cycle 0..=t T , the range of the u integral would be 1..1=u , we instead 

take a half-cycle and multiply by 2. The replacement 0 0 1z aψ = +  has also been made, 

where z0 is the distance of closest approach and a1 is the fundamental oscillation 

amplitude. Recalling the form of Eqn. 3.3, we obtain effective tip-sample stiffness from 

Eqn. 3.12 as 
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This equation holds independently of the oscillation amplitude [28]. One can easily verify 

that for a harmonic spring force inttsF k x= − , eff
inttsk k= , because  
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Because Eqn. 3.13 is not invertible in closed form, i.e., Fts cannot be calculated from eff
tsk  

(and hence from ∆f), Dürig uses a large-amplitude approximation to expand the kernel 

21u u− −  about 1= −u  (which is the position of closest tip-sample approach). He then 

keeps only the leading term in the approximation, which leads to an invertible relation 

between Fts and eff
tsk [28, 32]. However, this approximation is only valid in the large 

amplitude case and so is not of further interest here. We instead turn our attention to 

Dürig’s work in Ref. [32], where he looks at the variations in S with respect to the higher 

harmonics an. 

Beginning from Eqn. 3.8, and lifting the restriction that 0na =  for 2≥n , one 

obtains the following set of coupled equations for the Fourier coefficients {an}, 
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Note also that the periodic ansatz for the tip orbital now begins from 0=j . Dürig then 

assumes that the tip-sample interaction is weak in the sense that all Fourier coefficients 

with 1≠n  are small compared to a1 (this justifies the use of perturbative methods), such 

that 0
j

a =  for all 1≠j  in the orbital function of the integrand [32], 
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where ( )1( ) cos cos ( )nT u n u
−=  is the n

th-order Chebyshev polynomial of the first kind 

(see Figure 3.5). The substitution cos( )ω=u t  for the 1=n  case leads directly to the 

Chebyshev polynomials when 1>n  via the multiple-angle formula for cos( )ωn t . Clearly 

we recover the effective tip-sample stiffness (and hence the frequency shift) of Eqn. 3.13 

from Eqn. 3.15 with 1=n . 
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Figure 3.5 – The first seven Chebyshev polynomials of the first kind. 

 

 Dürig continues by expressing a general tip-sample force in terms of a Chebyshev 

series 
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with 
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Combining Eqns. 3.15 and 3.17 produces the following relationship between the 

expansion coefficients, fn, of the general Fts (Eqn. 3.16) and the Fourier amplitudes, {an}, 

of the tip orbital 
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 (3.18) 

 

The experimentalist has access to the cantilever stiffness, k, as well as the effective tip-

sample stiffness, eff

tsk , via the experimental frequency shift. Thus, collecting the Fourier 

components, i.e., the amplitudes of the higher harmonics, allows one to reconstruct Fts in 

real time through Eqns. 3.16 and 3.18 as long as the oscillation amplitude is on the order 

of the tip-sample interaction range [28, 32]. Dürig verifies this result for an example 

Morse-type force function. The verification of the result for force curves developed with 

DFT in this work is presented in Section 5.6. 

 

3.2.3.  Higher Harmonics Imaging 

 

 Giessibl expands on Dürig’s work to show that the higher harmonics amplitudes 

are related to higher gradients of the tip-sample force, which – when attractive in nature – 

have progressively steeper distance-dependence and therefore should provide higher 
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spatial resolution (because contributions should come primarily from the front-most tip 

atom) [1, 33].  

Giessibl does this by integrating Eqn. 3.15 by parts n-times and utilizing 

Rodrigues’ formula for Tn(u) [52]: 
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resulting in 
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and demonstrating that an correlates to a convolution of ( )0 1
n n

tsd dz F z a u +   with a 

bell-shaped weight function ( )
1 221

n

u
−

−  [1, 33]. 

 This result is the basis for the decision of Hembacher et al. to collect the higher 

harmonics of the cantilever oscillation [1], for as long as the cantilever’s oscillation 

amplitude is on the order of the tip-sample interaction distance, the harmonics contain 

useful information. With regard to using harmonics to characterize a surface, a wonderful 

analogy to the timbre of musical instruments is given by de Lozanne [53], who observes 

that the same note played by both a violin and a trumpet sounds different, even though 

the fundamental frequency played is the same. The difference lies in the harmonic 

content of the two signals. 
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 While the theoretical usefulness of the higher harmonics is clear, there remains 

the practical question of whether or not their amplitudes are large enough to be measured. 

Again, the above derivation is only useful when the oscillation amplitude is on the order 

of the interaction range (i.e., angstroms), and Giessibl has demonstrated that such small 

oscillation amplitudes result in the best signal-to-noise ratio [20]. But achieving stable 

angstrom-scale cantilever oscillation requires extremely stiff cantilevers, and the 

harmonics of such an oscillation will typically have amplitudes on the picometer scale, 

which makes them difficult to measure. Fortunately, the use of qPlus sensors offers 

solutions to both of these problems. 

 

3.3.  – qPlus Sensors 

 

 Because the restoring force of an oscillating cantilever is given by kAosc, 

achieving stable oscillation (i.e., avoiding jump-to-contact) with subnanometer 

amplitudes requires extremely stiff cantilevers [25]. Quartz tuning forks satisfy this 

requirement, but the addition of a large tip mass to one of the prongs breaks the 

oscillation symmetry resulting in a ringing mode with low Q [54]. The oscillation 

symmetry of the prongs is also broken by tip-sample interactions, which alter the 

effective resonance of only one of them. However, in the qPlus configuration [6, 24, 54] 

one of the tuning fork prongs is fixed to a substrate, as shown in Figure 3.6. 
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Figure 3.6 – Quartz tuning fork in the qPlus configuration. The oscillation symmetry between the 

prongs is broken with the addition of the large tip mass, but fixing one of the prongs to a substrate 

keeps the remaining prong's high Q factor intact (Figure 11 from Ref. [12]). 

 

The advantage of fixing one prong is that changes in the eigenfrequency of the 

remaining quartz “cantilever” due to (conservative) tip-sample interactions do not affect 

its Q factor [6, 54]. 

The other advantage offered by the qPlus sensor is the most important for the 

purposes of this discussion: the piezoelectricity of quartz can be utilized for detection of 

the cantilever oscillation. Traditional silicon cantilevers rely on optical detection of their 

displacement, and thus require additional hardware for implementation. Optical 

deflection sensors produce a signal that is proportional to the cantilever deflection. On the 

other hand, the bending of a quartz tuning fork prong causes a strain, which in turn causes 

surface charges to accumulate at the corresponding electrode. This charge is proportional 

to the deflection. When the sensor oscillates, however, a current is generated that is 

proportional to the deflection multiplied by the frequency of oscillation. As a 

consequence, higher frequencies (e.g., higher harmonics) generate greater signal strength 

[33]: this is reflected in the equation for sensitivity (Eqn. 1.4). 
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 Finally, the fact that quartz tuning forks have two separate electrodes (see Figure 

3.7) enables simultaneous STM/AFM operation, as it is possible to collect tunneling 

current and cantilever deflection. Referring to Figure 3.7, the electrode on the free prong 

(blue) is connected to the tip bias voltage. The fixed prong electrode (red) is connected to 

a current-to-voltage converter for measuring the cantilever deflection [6]. When operated 

in constant height mode, a direct comparison of simultaneous tunneling current and tip-

sample forces can provide added insight to the interaction of materials. 

 

 

Figure 3.7 – Schematic of the separate electrodes of a quartz tuning fork which makes simultaneous 

STM/AFM possible. The electrode on the free prong (blue) is connected to the tip bias voltage. The 

fixed prong electrode (red) allows piezoelectric detection of the cantilever oscillation [54]. 

 

 The benefits of imaging with small amplitudes using a qPlus sensor in UHV were 

demonstrated in 2000 for the hallmark Si(111)-(7x7) surface. Figure 3.8 shows the 

constant frequency shift (∆f = -160 Hz) data obtained by Giessibl et al. using an 8 Å 

oscillation amplitude [7]. The resolution is far superior to the original FM-AFM Si(111)-

(7x7) image (see Figure 3.4) obtained with a 340 Å oscillation amplitude. In fact, Figure 

3.8 is the basis for the first claim of subatomic resolution as mentioned in Section 1.2. 

Figure 3.9 is an enlarged view of one of the adatoms from Figure 3.8. The two crescents 
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that appear within the diameter of a silicon atom are interpreted as lobes on increased 

electron density [7].  

 

 

Figure 3.8 – Si(111)-(7x7) reconstruction imaged using a qPlus sensor in UHV. The image was taken 

with a constant frequency shift of -160 Hz and an 8 Å oscillation amplitude (Figure 2B from Ref. [7]). 

 

 

Figure 3.9 – Enlarged view of an adatom from Figure 3.8 displaying two crescents within the 

diameter of a silicon atom, interpreted as lobes of increased electron density. 
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3.4.  – Elliptic Filters 

 

 As mentioned in the Introduction, Hembacher et al. filtered out the fundamental 

frequency of the cantilever as a first step in measuring the higher harmonics amplitudes. 

For this they use an elliptic-type high-pass filter. The steep cutoff between the pass- and 

stop-bands is a desirable property of elliptic filters, but this low roll-off causes ripple in 

both bands. No real filter looks like a step function in its magnitude vs. frequency 

response, and ripple in the pass-band means that the magnitude of each higher harmonic 

(particularly those near the “step” corner) is attenuated by a different level. Though the 

SR650 [35] has only 0.1 dB of pass-band ripple, the picometer scale of the harmonic 

amplitudes means that even slight variations in their measured amplitudes can have a 

significant effect on the voltage they produce as per Eqn. 1.3. The non-vertical cutoff also 

means that changes in the cutoff frequency can potentially change the measured 

amplitude of the harmonics and hence the resultant Vhh image. The full effects of filtering 

for the purposes of higher harmonics imaging are discussed in Chapter 6. 

 

3.5.  – Density Functional Theory (DFT) 

 

 With the relevant background for the experiment laid out, we now turn our 

attention to the topics important for simulation development, beginning with DFT. 
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3.5.1.  Overview 
 

The origin of the forces in AFM and the length scales over which they act 

necessitate the use of quantum mechanics to make theoretical predictions of tip-sample 

interactions. The (relatively) large number of atoms required for such a theoretical 

prediction makes density functional theory (DFT) an attractive method for simulating 

AFM experiments, particularly those in vacuum. Simulated AFM images produced from 

DFT calculations have been used by many researchers and began to appear in the 

literature soon after the AFM’s invention [55-57].  

Today, the most common procedure is to simulate a model AFM tip (usually only 

a few atoms of the apex are used) above the sample surface in a grid of points. The 

calculated energies (or forces) at each of these grid points are fit to analytical functions, 

and those functions are then used to derive the tip-sample force curves necessary to 

simulate an image. If the DFT forces are used, then of course the analytical function itself 

becomes the tip-sample force curve. 

This approach has been quite successful in qualitatively explaining experimental 

AFM images, in particular the mechanisms responsible for image contrast. It has also 

successfully explained what the structure of the tip apex atoms must have been in order to 

produce a given experimental image. The small scale of the interaction and the inability 

to know the exact surface and tip structure during a given experiment mean that 

simulation methods are necessary for interpreting AFM images. DFT simulations for 

AFM have become more prevalent as computers have become faster, codes more 

efficient, and exchange-correlation functionals more accurate. 
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In this section the basics of DFT are outlined, a review of relevant literature 

regarding DFT for AFM is given, and a discussion of the code used in this work is 

presented. 

 

3.5.2.  Basics of DFT 
 

The interactions of materials on small scales (microns and below) are ultimately 

determined by the interactions of electrons and nuclei, and the fundamental description of 

those interactions requires quantum mechanics [58]. 

All of the properties of a quantum mechanical system are contained within the 

system’s wavefunction, Ψ, which for a system containing N electrons is a function of 3N 

spatial coordinates: 1 2( , ,..., )
N

r r rΨ = Ψ

 
 


. Here, the dependence on electron spin has been 

excluded. To determine the wavefunction, one must solve the Schrödinger equation (SE):  
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where ℏ  is the reduced Planck’s constant, 2∇  is the Laplacian operator, and ( )



V r  is the 

potential energy expression (operator) for the system. 

For the case of multiple interacting atoms, the potential energy operator becomes 
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where j
r



 are the positions of the electrons and lR



 and Zl are the positions and atomic 

numbers of the nuclei, respectively. This expression reflects the Born-Oppenheimer 

approximation, which exploits the large difference in the masses of electrons and nuclei 

[59]. Thus when concerned with the dynamics of electrons, one may consider the nuclei 

as fixed in space. 

Even under the Born-Oppenheimer approximation, the complex nature of the 

potential energy expression means that the SE is solvable in closed-form for only a few 

simple systems. When the number of interacting particles exceeds as few as three (e.g., 

for calculating the energy states of the electrons in a Li atom) we must resort to numerical 

methods to approximate the solution. Nevertheless, these methods produce excellent 

agreement with experimentally measured properties and have had great success 

calculating the energy states of individual atoms and small molecules [58, 60]. 

One such popular method is Hartree-Fock [59], which approximates the N-electron 

system wavefunction using N single-electron wavefunctions via the Slater determinant. 

The problem is that for real systems consisting of multiple interacting atoms, the 

computational requirements of methods such as Hartree-Fock – whose goal is to calculate 

a multiparticle wavefunction – become astronomically large. Further, in his Nobel lecture, 

Kohn notes that even if computational power were not an issue, one still could not 

calculate an accurate approximation of the true wavefunction using traditional 

wavefunction methods, because the error grows exponentially with the number of 

interacting particles [60]. 

The shortcoming of wavefunction methods was not overcome until the mid-1960s 

with the publication of two papers, the first by Hohenberg and Kohn in 1964 [61] and the 
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second by Kohn and Sham in 1965 [62]. In the first, Hohenberg and Kohn demonstrated 

that the N-electron wavefunction – with a dependence on 3N spatial coordinates – could 

be reformulated as an equation of the electron density, ( )ρ


r , a function of only three 

spatial coordinates [58, 61]. The key to this development was demonstrating that – like 

the wavefunction – ( )ρ


r  completely characterizes the system. 

In the second paper, Kohn and Sham derived what are referred to as the Kohn-Sham 

(KS) equations from the Hohenberg-Kohn theorem [62]. The KS equations recast the SE, 

which describes electrons moving in an external ion potential, into a description of non-

interacting electrons moving in an effective potential [63] that produces the same unique, 

physical electron density. Thus, we are now interested in the density of an N particle 

system, given by 
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where the single-particle Kohn-Sham orbitals, ( )
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where 
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ε  is the orbital energy corresponding to ( )
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 is the effective potential, 
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Here, ( )



v r  is the physical, external (SE) potential and ( )



xcv r  is the local exchange-

correlation potential,  
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where [ ]( )xcE rρ



 is the exchange-correlation energy functional. The ground state energy of 

the system is then calculated as 
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As Kohn noted in his Nobel lecture [60], the exact effective single-particle potential 

( )
eff

v r



 is the unique, fictitious potential which leads to the same physical density of non-

interacting electrons as that of the interacting electrons in the physical potential ( )



v r . In 

her review, Mattsson provides an instructive illustration of the essence of Kohn-Sham 

DFT, reprinted in Figure 3.10. Note that the KS wavefunctions and energies, ( )
i

rϕ



 and 
i

ε , 

respectively, have no physically observable meaning, only a connection to the true 

physical density of the system [60]. 
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Figure 3.10 – An illustration of the essence of Kohn-Sham DFT (Figure 1 in Ref. [58]). 

 

 While the KS equations are mathematically equivalent to the SE, the exact 

exchange-correlation functional [ ]( )xcE rρ



 is not known, so the usefulness of DFT relies 

entirely on whether an accurate approximation can be found [63]. The simplest 

approximation that still provides sufficient accuracy is the local density approximation 

(LDA), which uses only the electron density at a point in space for determining the 

point’s contribution to the total exchange-correlation energy [58]. In this work, we use a 

slightly more complex (and typically more accurate, though it depends on the system 

being studied) generalized gradient approximation (GGA), where the gradient of the 

density at a point in space, ( )rρ∇



, is also taken into account when calculating the 

point’s contribution to the total exchange-correlation energy. The specific functional we 

use is that of Perdew, Burke, and Ernzerhof [64], or simply PBE. 
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3.5.3.  Electronic Structure of Tungsten 

 

The extreme usefulness of DFT has made it a commonplace simulation method in 

many branches of science, such as chemistry, physics, and materials science. 

As noted by Hembacher and coworkers [1], in the early 1980s, Posternak et al. 

[38] and Mattheiss and Hamann [39] used DFT in the local density approximation (LDA) 

to calculate the electronic structure of the W(001) surface. Both papers determined that 

each tungsten atom has lobes of increased charge density pointed in the direction of its 

nearest neighbors, as shown in Figure 3.11 (Figure 3 of Ref. [38]) and Figure 3.12 

(Figure 3 of Ref. [39]). It is these lobes that Hembacher and coworkers believed were 

being imaged (refer to Figure 1.2F). 

 

 

Figure 3.11 – Contour plot of the total valence charge density for the W(001) surface as calculated by 

Posternak et al. (Figure 3 from Ref. [38]). Contours are separated by 0.8 electrons per bulk unit cell. 
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Figure 3.12 – Contour plots of tungsten valence charge densities from (a) slab and (b) bulk 

calculations done by Mattheiss and Hamann (Figure 3 from Ref. [39]). Again, contours are separated 

by 0.8 electrons per bulk unit cell. 

 

It is important to note that these calculations were done for bulk systems, so a relevant 

question arises in the context of AFM: Are similar lobes present in non-bulk systems such 

as AFM tips? As a first step in the method development (see Section 4.3), the electron 

density of a model W(001) tip will be calculated via GGA DFT.  

 

3.5.4.  DFT for AFM 

 

 After Giessibl successfully resolved the Si(111)-(7x7) surface reconstruction 

using FM-AFM [16] in 1995, Pérez and Payne used DFT to study the image formation 

mechanism [15], attributing the atomic contrast to the interaction between a dangling 

bond at the tip apex and the dangling bonds localized at the adatoms on the surface. They 

also found that the saturation of edge electrons on the tip model was essential for 
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obtaining the desired image contrast, as it created the proper sp3 hybridization in the tip – 

resulting in a dangling bond directed toward the surface. 

 After the first report of subatomic contrast in 2000 [7], Huang et al. used DFT to 

verify that such features are experimentally feasible, though they made no attempt to 

connect the subatomic features to the lobes of increased electron density at the tip apex 

atom [8]. 

 Aside from Si(111)-(7x7), Dieška et al. have used DFT to study the contrast 

mechanisms in FM-AFM experiments on metallic surfaces [65, 66], while Caciuc et al. 

have performed DFT studies for imaging InAs(110) [67, 68] and Ag(110) [69, 70]. The 

structure and stability of silicon tip apexes has also been studied extensively using DFT 

[71, 72]. However, no attempt has been made to study higher harmonics FM-AFM 

imaging with DFT methods. 

 

3.6.  – Importance of Curve Fitting 

 

As mentioned in Section 3.5.1, DFT produces a point grid of energies or forces. 

The nature of the curve fit to this DFT data is of utmost importance. First, an ill-fitting 

function undermines the precision of the DFT simulations, which are at the core of this 

method. Second, unlike previous DFT studies of AFM experiments, this work is 

concerned with the higher harmonics in the cantilever trajectory, which couple to the 

higher gradients of the force. As such, the higher gradients of the curve fit must be 

continuous and exhibit well-behaved slopes in order to provide accurate calculations of 

the higher harmonics in the tip motion.  



 

 47 

 

3.7.  – Numerical AFM Simulation 

 

 To study the effect of the cantilever dynamics and control systems on the imaging 

process, continuum simulation is necessary. The Verlet algorithm [73, 74] for numerical 

integration of the cantilever equations of motion has been used with great success in the 

simulation of AFM experiments (see, for example, [75, 76]). The AFM simulator used 

for part of this work was written in the C programming language and integrates the first 

three eigenmodes of the quartz tuning fork, which oscillates in the presence of the DFT-

developed force curves. This is discussed in greater detail in Section 4.4.1.3. Ultimately, 

however, the use of continuum simulation to study the effect of the cantilever dynamics 

must be revisited in future work. 

 

 

 

 

 With the dissertation objectives having been stated and the necessary background 

information expounded upon, the next chapter presents the simulation method 

development along with a discussion of the results and challenges that paved the way for 

the final direction of this work.  
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4.  Simulation Method Development 

 

 

 

This chapter provides an overview of the simulation method development – with 

the initial results and challenges that steered the direction of the work. Because this 

research is the first to tackle higher harmonics simulation for AFM (and perhaps the only 

work to deal with tungsten tip models) we tried to make the simulation approach as 

fundamental as possible and then build upward in complexity. Even with this in mind, we 

found that it was necessary to backtrack and rework certain aspects of the method in 

order to lay the foundation on which to build. Our initial simulation approach can be 

summarized as follows: 

 

1. DFT to calculate energy vs. distance curves for a dense grid above the sample 

surface and to provide us with the electron density of the system 

2. Accurate curve fitting of the energy data, followed by differentiation to produce 

force curves for each (x, y) grid point 

3. Correcting these short-range force curves with a long-range van der Waals 

component 

4. Numerical AFM simulation to calculate the trajectory of the oscillating cantilever 

in the presence of each force curve 
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5. Filtering the trajectory (incorporating the experimental rms technique) followed 

by Fourier analysis of each trajectory to calculate the amplitudes of the higher 

harmonics in the tip-sample interaction 

 

 What follows are in-depth discussions of each step as they pertain to the first tip-

sample system that we simulated, beginning with the implementation details of the DFT 

code and how the first tip model was chosen. 

 

4.1.  – SeqQuest Implementation 

 

As stated in Section 3.2, the short-range force component is responsible for the 

highest resolution. The challenge posed to the experimentalist is to extract the short-range 

component from the many forces acting on the tip [77]. In simulation, however, one can 

develop the theoretical short-range force curve with quantum mechanics, specifically 

DFT. 

 For this the SeqQuest DFT code developed by Peter Schultz at Sandia National 

Labs [78] was used. The source code was obtained directly from Dr. Schultz, as it is not 

commercially available. The code itself ships with both serial and parallel utility files, so 

that it can be compiled to run in either mode. The code was built on both the campus-

wide “deepthought” cluster, which runs the Portable Batch System (PBS) for job 

scheduling, as well as the Mechanical Engineering Department’s “aston” cluster, which 

runs Platform’s Load Sharing Facility (LSF). While this may seem like a straightforward 

task, building the code required a detailed understanding of UNIX systems and bash shell 
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scripting, and SeqQuest technical support is virtually non-existent. As a result, we were 

able to build the code only in serial, meaning an executed job runs on a single core. 

While we were able to compile the code in parallel, successful execution of the mpirun 

program, which implements the Message Passing Interface (MPI) needed for 

multithreaded jobs, has not been realized. (Establishing SeqQuest’s parallel processing 

capabilities would be a good first step in the continuation of this project.) 

 Though SeqQuest is a very robust, accurate DFT code [79], the fact that it is not 

commercially available also means that there are very few post-processing tools. We 

were given a primitive code, “QGRIDS,” for extracting the electronic density of the 

system from the binary files generated by the code. Unfortunately, QGRIDS did not work 

as shipped, but we were able to debug the source code. QGRIDS allows one to generate a 

txt file of the form 

 

[x y z ρ0 / dρ / Ves] 
 

where the fourth column contains either the initial electron density, the change in electron 

density, or the electrostatic potential of the system. In order to make this volumetric data 

useful, a C program was written to convert the four-column format into the Gaussian 

Cube file format, which can be read by the Visual Molecular Dynamics (VMD) software 

developed at the University of Illinois Urbana-Champaign [80, 81]. In this work, all 

three-dimensional renderings of electron density were created with VMD. 
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4.2.  – Atomistic Models 

 

To simulate a tungsten tip above a graphite surface, atomistic tip and surface 

models were built using Accelrys Materials Studio [82]. Our initial focus was the four-

fold features attributed to a W(001) tip structure, so the first tip apex models investigated 

were all oriented in the [001] direction, as shown in Figure 4.1. Figure 4.1A shows a 

three-layer W(001) tip, hereafter called the 3L tip. The tip model in Figure 4.1B has a 

“stronger” second layer – eight additional tungsten atoms – and is therefore referred to as 

the S2 tip. (The motivation for using the S2 tip will be discussed in the next section on tip 

electron density.) The blunt three-layer tip in Figure 4.1C is simply called the Blunt3L tip. 

Though tip-sample interactions with the Blunt3L tip were simulated, Hembacher and 

coworkers note that the tip responsible for subatomic contrast in their experiments is 

almost certain to have been terminated in a single apex atom because of the nature of the 

simultaneously acquired STM images [1, 37]. The simulation results for the Blunt3L tip 

presented in Chapter 5 support this claim. The strong tip-sample interactions caused by 

the four apex atoms lower the resolution of the simulated images. 

 

 

Figure 4.1 – The three W(001) tip structures studied in this work. (A) 3L tip, (B) S2 tip, (C) Blunt3L 

tip. 
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The surface models of graphite studied are illustrated in Figure 4.2 The carbon 

ring surfaces were terminated with either hydrogen or oxygen atoms to saturate free 

electrons and thus mimic the sp2 hybridization of the surface carbon atoms. Though these 

structures maintain full resonance, the two carbon ring surface is likely to be too small to 

adequately represent graphite. Note that this surface is technically a molecule of 

naphthalene, which will be abbreviated NPTH. As such, it contains no second layer, 

which is responsible for the distinction between the α and β atoms of graphite – each α 

atom of the graphite surface is directly above an α atom in the layer below, while β atoms 

are above hollow sites. However, the NPTH surface was used purely in the context of 

method development and thus served merely as a first approximation to reduce 

computational cost. The NPTH simulations were good for carrying out parametric studies 

and revealing simulation challenges, but the feasibility of Hembacher et al.’s 

experimental work was gauged by the more realistic nine carbon ring (9R) surface of 

Figure 4.2B (feasibility is addressed in Chapter 5). The 9R model, aside from being 

larger, contained a second layer of four carbon rings (also edge terminated with hydrogen 

and oxygen atoms) that provided the proper distinction between α and β atoms on the 

surface. The second layer has been excluded from Figure 4.2B for clarity. 
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Figure 4.2 – The surface structures studied in this work. (A) The two carbon-ring naphthalene 

(NPTH) surface, (B) the nine carbon-ring (9R) surface (the four carbon ring second layer has been 

excluded from this figure for clarity). The hydrogen (white) and oxygen atoms (red) saturate the 

bonds of the edge carbon atoms in order to maintain the sp2 resonance of each surface. 

 

4.3.  – Tip Electron Density 

 

All DFT simulations used a spin-polarized PBE functional [64], semi-local norm-

conserving pseudopotentials [83], and a local-orbital basis of contracted Gaussians in a 

linear combination of atomic orbitals (LCAO) to solve the KS equations fully self-

consistently. The double-zeta plus polarization basis for tungsten that shipped with the 

code had been refined in a five layer W(001) system [84]. The different tip and surface 

structures were relaxed independently before being combined as a full system. In the case 

of the tip structures, the lowest energy spin polarization (excess spin-up electrons) was 

also determined prior to any surface interaction. In practice, this is done by relaxing the 

structure for varying spin polarizations and finding the minimum in the plot of relaxed 
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energy vs. spin polarization [79], an example of which is shown in Figure 4.3 for the S2 

tip. In this case, the lowest energy spin polarization is found to be 0 (i.e., no unpaired 

electrons), which is the value used for the subsequent simulations of the S2 tip-surface 

interactions. 

 

 

Figure 4.3 – The plot of Final Relaxed Energy [Ry] vs. Spin Polarization for the S2 tip. The SP = 0 

value produced the minimum final relaxed energy and so was used in subsequent simulations. 

 

Recalling from Section 3.5.3 that DFT calculations of bulk W(001) reveal four 

lobes of increased charge density at the surface, the first question this work wished to 

answer was, “Are similar lobes present in non-bulk systems such as AFM tips?” 

In DFT, the initial electron density ρ0 in the tip-sample system is a superposition 

of the individual atom electron densities. During each self-consistent field (SCF) 

calculation for the system, the change in electron density dρ is calculated. The total 

electron density for the system is then the sum of the initial density and the change. 

Figure 4.4A shows a single isosurface of the change in electron density (dρ = 0.17 e-/Å3) 

calculated in SeqQuest for the 3L tip alone, which reveals only a single lobe normal to 



 

 55 

the apex atom (indicated by a red square). However, the four lobes of increased electron 

density appear during the interaction between the tip and the NPTH surface, as shown in 

Figure 4.4B (again indicated by a red square). Here, the apex atom is 2.50 Å directly 

above the solid red circle of Figure 4.8, which shows the grid above the small model 

surface.  

 

 

Figure 4.4 – (A) A single isosurface of the change in electron density, dρ, for the 3L tip alone (left) 

and (B) 2.50 Å directly above a carbon atom in the NPTH surface model (indicated by a red circle in 

Figure 4.8). The isovalue shown is dρ = 0.17 e-/Å3. 

 

Figure 4.5A shows the same dρ = 0.17 e-/ Å3 isosurface for the S2 tip alone. Here 

we see that the four lobes of increased charge density are present at the tip’s apex atom 

even in the absence of a tip-sample interaction. Because quantum mechanics calculations 

for bulk W(001) have suggested that four lobes of increased charge density are present at 

surface atoms [39, 85], it is reasonable to conclude that the additional second layer atoms 

increase the bulk-like nature of the tip. Figure 4.5B shows the S2 tip 2.50 Å above the 
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same solid red circle of Figure 4.8. Because the four lobes are more pronounced for the 

S2 tip than for the 3L tip, the former was used for all W(001) tip simulations in this work. 

 

 

Figure 4.5 – A single isosurface of the change in electron density, dρ, for the S2 tip alone (A) and 

during an interaction with the NPTH model surface (B). The isovalue in both images is dρ = 0.17 e-

/Å3. 

 

 Because the crystallographic structure of the tip apex is so crucial to the 

interpretation of the subatomic features in Hembacher’s work, the possibility that the 

four-fold symmetry features were caused by four atoms at the tip apex was not 

discounted. The idea was not that the four lobes represented the signature of each of these 

apex atoms, but rather that a single carbon atom may have simultaneously imaged partial 

densities from each. By analogy, instead of four electron density “arms” of a single apex 

atom reaching toward a surface carbon atom, one “arm” from each of four apex atoms is 

reaching toward it. The change in electron density for the isolated Blunt3L tip (see Figure 

4.6A) helps to illustrate this. However, subsequent tip-sample simulations with the 9R 

model (see Figure 4.6B) revealed that these four lobes do not bend toward the surface in 
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a manner that would result in four features within the diameter of a single tungsten atom. 

Simulated higher harmonics images using the Blunt3L force curves also suggest that a 

blunt tip was not responsible for the experimentally observed subatomic features. These 

results are presented in more detail in Section 5.7. 

 

 

Figure 4.6 – The same dρ = 0.17 e-/Å3 isosurface for the Blunt3L tip alone (A) and 2.50 Å above the 

solid red surface grid position of Figure 5.1B. (DFT calculations for the Blunt3L tip above the NPTH 

surface were not performed.) 

 

While the presence of the four lobes of increased charge density in non-bulk tip 

structures is a promising result, it is important to note that the value of the density 

increase is small in comparison to the total electron density in the same region of space. 

Figure 4.7 shows side and bottom views of the ρ = 1.7 e-/Å3 isosurface of the total 

electron density at the S2 apex tip atom (gray), along with the dρ = +0.17 e-/Å3 isosurface 

(orange), which is an order of magnitude smaller. Although this is a concern, it is 

possible that larger (or differently-shaped) tip structures will amplify the density increase 

at the apex. It is also important to remember that the experimental higher harmonic 

images were obtained using simultaneous STM/FM-AFM. The bias voltage between the 
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tip and the sample likely affected the electron density of the tip atoms and possibly 

played a role in the nature of the experimental images. SeqQuest has the ability to 

incorporate an electric field in the DFT simulations, so investigating the effect of the tip 

bias will be an important topic in future work; however, it is not covered in this 

dissertation.  

 

 

Figure 4.7 – A comparison of the total density (ρ) to the change in density (dρ) after a self-consistent 

field calculation for the S2 tip. The ρ = 1.7 e-/Å3 isosurface of the total density is shown in gray, along 

with the dρ = +0.17 e-/Å3 isosurface shown in orange. 

 

Although the discussion thus far has been limited to [001] oriented tungsten tip 

structures, the fact that the crystallographic orientation of the apex tip atoms is not known 

during any given experiment makes the investigation of multiple tip structures critical to 

this work. Chapter 7 will touch on this topic further, as it explores the connection 

between the tip’s electron density and experimentally observable image contrast, but first 

we turn to the initial simulations of higher harmonics images, which revealed important 



 

 59 

challenges to demonstrating the feasibility of subatomic imaging with atomic force 

microscopy. 

 

4.4.  – Simulating Higher Harmonics AFM: Initial Results and 

Challenges 

 

4.4.1.  The NPTH System 

 

For the purposes of method development, the graphite surface was approximated 

with the two carbon-ring NPTH surface. To simulate the tip-sample interaction, SeqQuest 

was used to create a 6x6 grid (see Figure 4.8) of relaxed energy curves from 6.00 Å down 

to 1.25 Å (in steps of 0.25 Å) above the NPTH surface, with the z-distance defined as the 

distance between the centers of the apex tungsten tip atom and the surface atoms prior to 

relaxation. Over each (x, y) grid point, the S2 tungsten tip began 6.00 Å above the surface. 

The system was allowed to fully relax, and then the tip atoms were shifted downward 

0.25 Å before allowing the system to fully relax again. This process was repeated for the 

entire z-distance range and was automated using a bash shell script. 

Each SCF calculation was converged to within 0.0020 Ry (0.027 eV). SeqQuest 

uses a modified Broyden blending scheme on the Hamiltonian matrix in its SCF updates, 

so this value is the maximum change of a Hamiltonian matrix element, as opposed to the 

maximum change of the total energy [78]. The geometry relaxation was governed by a 

force convergence criterion of 0.0010 Ry/bohr (41 pN). During each relaxation, the top 
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layer of the tungsten tip remained fixed, as did the hydrogen atoms on the edges of the 

surface structure. 

 

 

Figure 4.8 – The two carbon-ring NPTH surface used for method development. A 6x6 grid of relaxed 

energy curves was developed using SeqQuest. The solid red circle corresponds to the tip positions 

shown in Figures 4.4B, 4.5B, and 4.9.   

 

It was found that the lobes of increased electron density on the tip interacted 

considerably with the surface as the z-distance between the tip and sample was reduced. 

In Figure 4.9A, the S2 tip is 6 Å above the surface (at the grid position indicated by the 

solid red point in Figure 4.8), while in Figure 4.9B the tip is 1.25 Å above the same 

position. The presence of four lobes of increased electron density on the tip’s apex atom 

and their interaction with the carbon ring surface are promising results, but ultimately we 

must determine if these lobes are resolvable via higher harmonic FM-AFM. 
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Figure 4.9 – The S2 tip structure (A) 6 Å above the surface (the grid position indicated by the solid 

red point in Figure 4.8), and (B) 1.25 Å above the same position. 

 

4.4.1.1.  Curve Fitting the DFT Data 
 

 The iterative tip-sample approach performed in SeqQuest for the S2 tip over the 

NPTH surface produced a three-dimensional grid of 720 (6x6x20) relaxed energy data 

points, i.e., 36 relaxed energy approach curves consisting of 20 data points each. In order 

to generate force curves, these energy curves were fit to a function that was then 

analytically differentiated with respect to z: ( ) ( )F z E z= −∇ . 

Finding the optimum function for curve fitting is a critical step. An ill-fitting 

function undermines the precision of the DFT simulations, which are at the core of this 

method. The standard Morse potential, given by  

 

( ){ }
2

( ) 1 exp ( )
e

V z De z z z Deβ = − − ⋅ − −   (4.1) 
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where De is the depth of the potential well, z is the tip-sample distance, ze is the 

equilibrium separation and β(z) = constant, is one such ill-fitting function. One can alter 

the Morse potential with correction terms to achieve a more accurate fit to the data (for 

example, β(z) can be given a linear or even quadratic form), but in some cases these 

modified energy functions result in force curves that do not have well-behaved slopes in 

regions away from the 20 data points (see Figure 4.11). This is relevant because we are 

interested in not only the first energy gradient (to obtain the force), but also the higher 

energy gradients that couple to the higher harmonics of the cantilever motion. While it 

may seem obvious, the best functional form will be specific to each tip-sample system, 

and one must always take care to determine it. It is important to note that poorly behaved 

force functions do not necessarily need to be discarded, but they must be implemented 

with care. The determining factor in all cases is the fundamental oscillation amplitude 

that is to be used to calculate the higher harmonics from the theory of Dürig (see Eqn. 

3.15 in Section 3.2.2). We will return to this last point in Chapter 7. 
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Figure 4.10 – Better fits can be achieved by giving β(z) a linear or quadratic form in the standard 

Morse potential (Eqn. 4.1), but doing so may result in force curves with ill-behaved slopes in regions 

away from the 20 relaxed energy data points (see Figure 4.11). 

 

 

Figure 4.11 – The force curves resulting from the energy curve fits of Figure 4.10, illustrating the 

potential problems with linear and quadratic Morse potential. 
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For the NPTH system, the best energy fit was determined to be the four-parameter 

Levine potential [86], given by 

 

( ) ( ){ }
2

( ) 1 exp p p

e eV z De z z z z Deβ = − ⋅ − ⋅ − −   (4.2) 

 

where p is not restricted to integer values. This function exhibits a better fit to the relaxed 

energy data than Morse, while remaining well-behaved in regions away from the 20 data 

points. An illustrated comparison between Morse and Levine for an example NPTH 

energy curve is shown in Figure 4.12. 

 

 

Figure 4.12 – An example of relaxed DFT energy data (black dots) for the NPTH-S2 system with the 

corresponding Morse (dashed red line) and Levine (solid green line) fits. The latter was used in the 

simulation data presented in this section. 
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4.4.1.2.  van der Waals Correction 
 

After the analytical differentiation of the fitted energy curves, the resulting short-

range force functions were combined with a long-range van der Waals force, which for a 

spherical tip above a flat surface is given by  

 

( ) 26
H

vdW vdW

vdW

A R
F z

z

−
=  (4.3) 

 

where AH is the Hamaker constant (~1 eV for solids; a value of 1.25 eV was used in this 

work), R is the radius of the tip (150 nm was used for the tungsten tip), and zvdW is the 

distance between the surface atom centers and the edge of the spherical tip [14]. Note that 

zvdW = z + OS, where OS is the distance offset between the edge of the spherical tip and 

the center of the apex tip atom in the simulated cluster (see Figure 4.13).  

 

 

Figure 4.13 – Illustration of the vdW radius for the macroscale tip with the atomistic S2 cluster that 

is simulated with DFT. 

 



 

 66 

The effect of the tip radius and the number of offset layers on the higher harmonics 

images will be discussed in Section 4.4.1.4. 

 

4.4.1.3.  AFM Simulation 
 

 In order to obtain the higher harmonic amplitudes needed to simulate the 

constant-height experimental images of Hembacher et al., continuum simulations of a 

quartz tuning fork oscillating above a graphite surface were performed at each specified 

grid location (recall Figure 4.8), i.e., in the presence of each individual force curve. Thus, 

each force curve requires a separate simulation, with the base position of the tuning fork 

being the same for each.  

The simulator is written in the C programming language and implements the 

Verlet algorithm [73, 74, 87] for the numerical integration of the first three eigenmodes 

of the tuning fork in UHV (f0 = 18 kHz; k0 = 1800 N/m; Q0 = 20,000). Consistent with 

FM-AFM operation, the tuning fork is self-oscillated, meaning that the excitation 

frequency is updated every oscillation cycle. However, the excitation force amplitude is 

not adjusted during the course of the simulation, as it would be experimentally. Instead 

the drive is kept constant and the simulation is allowed to run until the oscillation 

amplitude has stabilized. Stable oscillation is typically reached after ~3 seconds. Figure 

4.14 is a typical plot of the measured effective frequency versus the oscillation number. 

The dotted black line is drawn at the 18 kHz fundamental cantilever frequency, f0. The 

dotted red line marks the stabilized effective resonance, feff. The frequency shift is taken 

as the difference between these two values: 
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0eff
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Figure 4.14 – The frequency of each cantilever oscillation of the continuum simulation is tracked. 

The fact that the oscillation amplitude is not controlled means that the frequency shift takes time to 

stabilize in the presence of each force curve. Here the dotted black line is at the 18 kHz fundamental 

frequency. The dotted red line marks the stabilized effective resonance. The frequency shift is then 

the difference between the two. 

 

MATLAB software was used to simulate the experimental images. The frequency 

shift at each grid point is readily accessible from the steady-state tuning fork oscillation, 

but the higher harmonics require additional processing. Consistent with experiment, the 

trajectory is high-pass filtered before collecting the amplitudes of the higher harmonics 

from a Fast-Fourier Transform (FFT).  

Hembacher et al. used a programmable Stanford Research Systems SR650, which 

is an 8-pole elliptic-type high-pass filter with 0.1 dB of passband ripple and 80 dB of 

stopband attenuation [35] and is easily simulated with MATLAB’s ellip function. They 
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used a cutoff frequency of 20 kHz in order to eliminate the fundamental frequency of ~18 

kHz. The combined higher harmonics signal is the voltage output from the filter, given by  

 

( )
1 2

2

2
hh n nV S a

∞ 
=  
 
∑  (4.5) 

 

where Sn is the sensitivity of the deflection sensor for the nth harmonic [1], 

 

( )
1 22

0.1
1 0.0767

n

n
S

n
≈ ×

+
 mV/pm (4.6) 

 

The justification for collecting the harmonics this way is given in Ref. [33], as 

well as in Note 22 in Ref. [1]. The crux of the argument is that (simulated) images 

produced by individual higher harmonics are similar; therefore, collecting a quasi-rms 

sum of all higher harmonics will not change the nature of the image. Further, collecting 

all harmonics offers ease of implementation and increases the signal-to-noise ratio. This 

experimental technique will be explored further in Chapter 6, which deals exclusively 

with the effects of signal processing on the higher harmonics images obtained. 

The higher harmonics in the FFT of an example filtered tip trajectory (above a 

single surface grid point) are shown in Figure 4.15. Note that the amplitudes are on the 

order of 10-2 pm, with the horizontal dotted green lines indicating the amplitude of each 

harmonic. While the amplitude of each harmonic is quite small, each represents physical 

cantilever deflection. In an experiment however, the harmonic amplitudes are measured 

as voltages – with the piezoelectric detection of the qPlus sensor providing increasingly 

enhanced sensitivity to each an as n increases (as discussed in Section 3.3). Also visible is 
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the peak corresponding to the second eigenmode at approximately 113 kHz. The higher 

harmonics voltage Vhh for each surface grid point is obtained via Eqns. 4.5 and 4.6. 

 

 

Figure 4.15 – Example FFT of a filtered tip trajectory revealing small but measurable higher 

harmonics. The horizontal dotted green lines indicate the amplitude of each harmonic. The peak 

corresponding to the second eigenmode at ~113 kHz is also visible. 

 

4.4.1.4.  Simulated Images and the Effect of the vdW Offset 
 

Simulated constant height ∆f (top) and Vhh (bottom) images for the S2 tip above 

the NPTH surface are shown in Figure 4.16 and 4.17 for a two-layer and five-layer 

macroscopic vdW offset (refer to Figure 4.13), respectively. The grid above the surface 

has been repeated five times in both the x- and y-directions and then cropped to produce a 

rectangular image. The Levine potential was used to fit the DFT data for the 6x6 surface 

grid shown in Figure 4.8. The oscillation amplitude is 3 Å and the distance of closest 
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approach (zc) is 1.50 Å. The frequency shifts are given in Hz and the higher harmonics 

voltages in mV.  

Each ∆f image clearly demonstrates atomic resolution of the graphite lattice – a 

single hexagon of which has been drawn over the carbon atom positions. It is interesting 

to note that in both cases, while the apex tip atom probes the repulsive regime of the force 

curve (zc = 1.50 Å), the overall frequency shift remains negative. This is due to the large 

radius (150 nm) used to represent the macroscopic portion of the tip, and the fact that its 

closest approach remains in the attractive force regime due to the offset layers. While 

increasing the number of layers between the apex and macroscopic tip does not change 

the qualitative nature of the frequency shift images, it does decrease the attractive 

contribution to the overall frequency shift as reflected in the contour scaling.  

The Vhh images were created using seven harmonics in the summation (see Eqn. 

4.5). The Vhh image for the two-layer offset (Figure 4.16) does not show the four lobes of 

increased charge density (see Figure 1.2F); however, there is a clear visual difference 

between the two inequivalent carbon atoms that make up the ring. It is possible that 

differences in bonding for the two carbon atoms that comprise the unit cell of graphite 

play a role in this image contrast, but the electron density of the tip model (Figure 4.5B) 

is not reproduced. However, four-fold symmetry features do appear in the Vhh image for 

the five-layer offset shown in Figure 4.17. For comparison with the experimental image 

(Figure 4.18), the five-layer offset Vhh image is displayed with the circumference of a 

tungsten atom (dotted red circle) and carbon atom (white circle) in Figure 4.19. The white 

cross marks the location of the carbon atom on the surface. Note that the four-fold 

symmetry features of the simulated image are smaller than those in the experimental one, 
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and appear to be offset from the center of the carbon atom. For a clearer comparison to 

the atom sizes, the representative circles are shifted to the center of the four maxima in 

Figure 4.20. 

 

zc = 1.50 Å 

OS = 2 

 

zc = 1.50 Å 

OS = 5 

 

Figure 4.16 – Simulated constant height ∆f (top) 

and Vhh (bottom) images for the NPTH system. 

The distance of closest approach zc = 1.50 Å and 

two vdW offset layers are used (i.e., OS = 2). 

 

Figure 4.17 – Simulated constant height ∆f (top) 

and Vhh (bottom) images for the NPTH system. 

The distance of closest approach zc = 1.50 Å and 

five vdW offset layers are used (i.e., OS = 5). 
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Figure 4.18 – Hembacher experimental Vhh image for comparison. 

 

 
Figure 4.19 – The five-layer offset Vhh image of Figure 4.17 (bottom) displayed with the 

circumference of a tungsten atom (dotted red circle) and carbon atom (white circle). The white 

cross marks the center of the carbon atom on the surface. 
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Figure 4.20 – The five-layer offset Vhh image of Figure 4.17 (bottom) with the circles illustrating 

atom size shifted to the center of the four maxima. 

 
 

To understand why the number of vdW offset layers between the apex atoms and 

macroscopic tip results in such drastic changes to the higher harmonics image, it is 

instructive to view the offset’s effect on the tip-sample force curves, shown in Figure 

4.21. Clearly the number of offset layers between the micro- and macroscopic tip 

structures significantly alters the curvature of Fts, which in turn alters the higher 

harmonics amplitudes. However, the first gradient remains relatively unchanged, which 

explains the qualitative similarity between ∆f images. As the number of offset layers is 

increased, the force curve also becomes dominated by the short-range component, which 

is an intuitive result. 
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Figure 4.21 – The effect of the vdW offset (OS) on the tip-sample force curve. As the number of 

layers between the micro- and macroscopic parts of the tip is increased, the force curve becomes 

dominated by the short-range component. 

 

 The other variable that affects the contribution of the vdW force component is the 

tip radius, R, as illustrated in Figure 4.22. The proportionality of FvdW to the first power of 

R (as opposed to the square of the vdW offset, OS) makes the effect of the tip radius less 

dramatic. From Eqn. 4.3, we already know that a smaller tip radius equates to a smaller 

FvdW contribution to the total force, and hence to a stronger dependence on the short-

range component, which is why sharp tips provide higher resolution. However, we chose 

not to investigate the qualitative effect of the tip radius on the simulated images because 

our results to this point made it clear that the continuum simulation produced an 

undesirable level of uncertainty for the purposes of establishing a fundamental 

connection between the electron density of the tip and subatomic features in the higher 

harmonics images. Fortunately, a simpler approach exists, as discussed in the next (and 

final) section of this chapter.  
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Figure 4.22 – The effect of the vdW tip radius on the tip-sample force curve. 

 

4.4.2.  A More Fundamental Approach 

 

Before attempting to draw any conclusions from a full-scale theoretical simulation 

of the 2004 experiment, one should be able to determine if the harmonic amplitudes 

calculated directly from Dürig’s equations can produce sub-atomic contrast (which by 

Hembacher’s argument they should [1]). The advantage of calculating the purely 

theoretical frequency shift and higher harmonic amplitudes this way is two-fold. First, it 

allows one to study the most ideal imaging scenario. Thus, if the subatomic contrast 

cannot be reproduced in this manner, then one can conclude that there is no true 

connection between the electronic density at the apex tip atom and the subatomic features 

of the higher harmonics images. Second, if the higher harmonics images do reflect the 

apex atom electron density, then the calculated ideal amplitudes establish a baseline for 
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evaluating the effects of each continuum simulation parameter on the “measured” 

amplitudes. 

Note that proceeding in this manner eliminates only the variables inherent to the 

continuum simulation. One must still use DFT on a model atomistic system to develop 

the force curves necessary to carry out the purely theoretical calculations. This means that 

one must still consider the accuracy of the atomistic model itself, as well as the 

parameters used in the DFT calculation. Unfortunately, there is no way to gauge the 

accuracy of the atomistic model a priori. However, with regard to the DFT parameters, 

one may take a small measure of solace in the fact that the physical accuracy of a DFT 

calculation for a given system is determined entirely by the choice of the exchange-

correlation functional (or simply “the functional”), which defines the Kohn-Sham 

equations (refer to Section 3.5.2). In this case, we can also be confident in the fact that 

SeqQuest is a well-established DFT code with robust local orbital basis sets. 

In the next Chapter, we explore this new, more fundamental approach again using 

the W(001) S2 tip but this time probing the more realistic 9R surface structure shown in 

Figure 4.2B.  
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5.  Demonstrating the Feasibility of Observing 

Subatomic Features 

 

 

 

This chapter is an adaptation of the work published in Nano Letters [2]. While the 

description of the experimental background present in the published work has been 

largely excluded, there remains some repetition of certain topics discussed earlier in this 

dissertation. These redundancies make this chapter self-contained, and as such have been 

preserved.  

 

5.1.  – Introduction 

 
We begin with a summary of the important features of the 2004 experiments [1] 

that must be considered in a full theoretical treatment of the same: 1) the crystallographic 

plane of tungsten responsible for image contrast, and the presence of bulk-like surface 

states in a non-bulk system such as an AFM tip, 2) the effect of simultaneous STM/AFM 

on the electronic states of the system, 3) the cantilever dynamics, and 4) the effect of 

filtering the cantilever trajectory. In this chapter we focus on the first feature, with the 

specific objective of reproducing the four-fold symmetry features of Figure 1.2F 

(reprinted as Figure 5.11C). Ultimately, to study the effect of the cantilever dynamics and 

control systems on the imaging process, continuum simulation (and thus multiscale 
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modeling) is necessary. However, the validity of the interpretation must first be tested in 

the most ideal imaging scenario. To this end, we can avoid the additional uncertainty of 

the cantilever dynamics and the filtering of a simulated cantilever trajectory by 

calculating the frequency shift and amplitudes of the higher harmonics directly from the 

fundamental theory of Dürig (see Eqn. 3.15), which by the argument of Hembacher et al. 

should reproduce the sub-atomic contrast seen experimentally. The advantage of 

calculating the purely theoretical frequency shift and higher harmonic amplitudes this 

way is two-fold.  

First, as mentioned previously, it allows one to study the most ideal imaging 

scenario in which the higher harmonics amplitudes can be calculated aside from any 

artifacts that could be introduced through the experimental processing of the cantilever 

deflection signal. (One of the major points of critique that has been brought up against the 

work of Hembacher et al. is the hypothesis that the four-fold symmetry features could be 

the result of filtering artifacts; we discuss this in the next chapter.) Consequently, if the 

subatomic contrast cannot be reproduced in this manner, then one can readily conclude 

that there is no true connection between the electron density at the apex tip atom and the 

subatomic features of the higher harmonics images.  

Second, if the higher harmonics images do reflect the apex atom electron density, 

then the calculated ideal amplitudes establish a baseline for evaluating the effects of the 

cantilever dynamics and filtering which would be introduced in a full multi-scale 

simulation.   
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5.2.  – Tip and Surface Models 

 

The W(001) tip and graphite surface models used are shown in Figure 5.1. The 

DFT code SeqQuest developed by Shultz at Sandia National Laboratory [78] was used to 

run all calculations (the computational methods are described in detail in the Sections 4.3 

and 4.4). Recalling that quantum mechanics calculations of the W(001) surface reveal 

four lobes of increased charge density above the top layer atoms, the first question we 

wish to answer is: Are similar lobes present in non-bulk systems such as AFM tips? 

Plotted in Figure 5.2A is a single isosurface (isovalue = +0.2 e-/Å3) of the change in 

electron density, dρ, for the tip structure investigated1. Four lobes of increased charge 

density are indeed visible at the apex atom of the structure (indicated by the red square). 

While the presence of the four lobes of increased charge density in a non-bulk tip 

structure is a promising result, it is important to note that the value of the density increase 

is small in comparison to the total electron density in the same region of space. Figure 

5.2B illustrates the ρ = 2.0 e-/Å3 isosurface of the total electron density at the apex tip 

atom (gray), along with the dρ = +0.2 e-/Å3 isosurface (orange), which is an order of 

magnitude smaller.  

 

                                                 
1 In DFT, the initial electron density ρ0 in the tip-sample system is a superposition of the individual atom 
electron densities. During each self-consistent field (SCF) calculation for the system, the change in electron 
density dρ is calculated. The total electron density for the system is then the sum of the initial density and 
the change. 
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Figure 5.1 – The three-layer W(001) tip structure (A) and graphite top layer (B) studied in this work. 

The model surface of graphite consisted of a 9-carbon-ring top layer edge-terminated with either 

oxygen or hydrogen depending on which was needed to maintain the sp2 hybridization of the carbon 

atoms. This model also contains a 4-carbon-ring second layer that has been excluded in this figure for 

clarity. The second layer is included in order to reproduce the difference in electronic states between 

α- and β-surface carbon atoms. The red circles indicate the grid points for which tip-sample force 

curves were calculated. 
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Figure 5.2 – (A) A single isosurface (isovalue = +0.2 e-/Å3) of the change in electron density for the 

model tip structure used. The view is at an angle from below. The apex atom is indicated by a red 

square. Four lobes of increased charge density are visible. (B) Comparison of the total density (ρ) to 

the change in density (dρ) after a self-consistent field calculation for the tip. The ρ = 2.0 e-/Å3 

isosurface of the total density is shown in gray, along with the dρ = +0.2 e-/Å3 isosurface shown in 

orange. 

 

 Note that only single isosurfaces are plotted in Figure 5.2. For this specific case, 

density changes in the interior of the tip structure are not visible because none occur at 

the selected isovalue (dρ = +0.2 e-/Å3). Plotted in Figure 5.3 are two cross sections 

through the entire change in electron density of the model tip structure, showing all 

isovalues. Figure 5.3B indicates that four lobes are also present below the center atom in 

the top layer of the tip, which is to be expected since this is one of the most bulk-like 

atoms in the system. 
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Figure 5.3 – (A) Side view of the change in electron density (dρ) for the model tip structure, 

indicating the location of horizontal cross sections taken directly below the topmost tip layer (B) and 

directly below the apex atom (C). Horizontal cross section B reveals four bonding lobes below the top 

layer’s center atom and horizontal cross section C reveals four smaller lobes below the apex tip atom, 

with all isovalues of dρ included. 

 

5.3.  – Force Curve Calculation 

 

In order to calculate the force curves necessary to simulate the frequency shift and 

higher harmonics images, the tip model was placed above the surface at each red grid 

point shown in Figure 5.1B. Data points were calculated from 6.00 Å down to 1.00 Å (in 

steps of 0.25 Å) above the surface, with the z-distance defined as the distance between 

the centers of the apex tungsten tip atom and the surface atoms, prior to relaxation. Over 

each surface grid point, the tungsten tip began 6.00 Å above the surface. The system was 

allowed to fully relax, and then the tip atoms were shifted downward by 0.25 Å before 

the system was allowed to relax again2. This process resulted in 100 relaxed energy 

curves each consisting of 21 data points, an example of which is shown in Figure 5.5, 
                                                 
2 Each SCF calculation was converged to within 0.0020 Ry (=0.027 eV). The geometry relaxation was 
governed by a force convergence criterion of 0.0010 Ry/bohr. During each relaxation, the top layer of the 
tungsten tip remained fixed, as did the oxygen and hydrogen atoms on the edges of the surface structure. 
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which is the curve calculated above the solid red grid circle of Figure 5.1B (directly 

above one of the carbon atoms). In order to generate force curves, each energy data set 

was fit to a function that was then analytically differentiated with respect to z: 

( ) ( )F z E z= −∇ .  

Finding the optimum function for curve fitting is a critical step. An ill-fitting 

function undermines the precision of the DFT simulations, which are at the core of this 

method. In this particular case, the standard three-parameter Morse potential is one such 

ill-fitting function. One can alter the Morse potential with correction terms to achieve a 

more accurate fit to the data, but in this case these modified functions either do not offer a 

satisfactory improvement (e.g., the four-parameter Levine potential [86]), or offer an 

improved fit but do not have well-behaved slopes in regions away from the 21 data points 

(see Section 4.4.1.1). This is uniquely relevant to higher harmonics AFM simulation 

because we are interested in not only the first energy gradient (to obtain the force), but 

also the higher energy gradients that couple to the higher harmonics of the cantilever 

motion. The issue of curve fitting the DFT data is of less importance in the simulation of 

standard frequency shift images because slight deviations from the data do not result in 

drastic qualitative differences between simulated images but instead alter only the 

quantitative frequency shift values. To ensure continuous, realistic force curves, we used 

an in-depth, two-stage fitting method which is discussed in the next subsection.  
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5.3.1.   Two-Stage Curve Fitting 
 

Allowing the tip and surface atoms the freedom to relax (excluding the top-layer 

tip atoms as well as the oxygen and hydrogen surface edge atoms) meant that attractive 

and repulsive forces could cause significant geometry deformations, as illustrated in 

Figure 5.4, which shows the tip (from left to right) 6 Å, 3 Å, and 1 Å above the surface. 

The relevant consequence of this was a broadening of the tip-sample interaction potential 

well, which in turn meant that standard interaction potential functions such as Morse, 

Levine, and Lennard-Jones did not fit the data well. Figure 5.5 shows the energy data 

acquired over the solid red circle of Figure 5.1B with the Morse and Levine fits overlaid. 

(The Lennard-Jones fit is not shown, as it was far worse than the others.) Because the 

Morse and Levine functions did not accurately capture the nature of the potential well, 

we developed an alternative, two-stage, curve-fitting approach. 

 

 

Figure 5.4 – The ability of the tip and surface atoms to relax meant that attractive and repulsive 

interactions caused large deformations in the surface geometry. From left to right, the tip is 6 Å, 3 Å, 

and 1 Å above the solid red surface grid position of Figure 5.1B. 
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Figure 5.5 – Final Relaxed Energy (FRE) DFT data for the tip-sample interaction (over the solid grid 

point of Figure 5.1B) illustrating the poor fits of both the Morse and Levine potentials. All of the 

energy curves exhibited a similar broadening of the interaction potential well with respect to these 

standard fits, necessitating a different curve fitting strategy. 

 

To begin, the final relaxed energy data was fit to a 9th-order polynomial (hereafter 

referred to as a Poly9 fit). Figure 5.6 shows how accurate the Poly9 fit is to the DFT data, 

while the larger-range view of Figure 5.7 demonstrates the shortcoming of such a fit for 

force curve development. Clearly a 9th-order polynomial is not a realistic representation 

of the tip-sample interaction for regions far from the surface. Figure 5.8 shows the force 

curve analytically calculated from the Poly9 fit.  
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Figure 5.6 – The FRE data of Figure 5.5 fit to a 9th order polynomial. 

 

 

Figure 5.7 – A larger-range view of Figure 5.6 demonstrating the shortcoming of a 9th-order 

polynomial fit for developing a tip-sample force curve. 
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Figure 5.8 – Tip-sample force curve analytically calculated from the Poly9 curve fit. The blue points 

indicate the force data points that are subsequently used to fit to a Levine-based force function. 

 

In order to circumvent the shortcoming of the Poly9 fit, a second curve fit was 

carried out using the blue data points of Figure 5.8 as a means to recreate the interaction 

well of the tip-sample force, while replacing the unrealistic regions of the force curve 

with a more realistic force model. The function used for the second fit was the 

differentiated Levine potential, multiplied by -1,  
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The fit to this Levine-type force function is illustrated in Figure 5.9. 
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Figure 5.9 – A force function based on the Levine potential was used to fit the interaction well of the 

Poly9 tip-sample force. 

 

In essence, this two-stage curve fitting method exploits the accuracy of the Poly9 

fit to the FRE data and then truncates the regions where the fit is poor. This method was 

used to create force curves for the 100 grid points of Figure 5.1B. 

 

5.3.2.   Verifying Force Reconstruction 
 

With the force curves calculated, we first determine the number of harmonics 

necessary to reconstruct the tip-sample force with the 3 Å oscillation amplitude used in 

the experiment. Figure 5.10B shows the force curve calculated from the energy data of 

Figure 5.10A as well as the reconstruction calculated from Dürig’s equations (see Section 

5.6 for details) using the first six harmonics of the 3 Å cantilever oscillation. The three 

vertical grid lines represent the cantilever base position (chosen to be 5 Å) and the two 

end points of the oscillation. Clearly the force curve is well reproduced over the range of 
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oscillation. (Additional reconstructions done with 3 and 9 harmonics can be found in 

Section 5.6.) 

 

 

Figure 5.10 – (A) Example Final Relaxed Energy (FRE) [aJ] versus distance curve. Such curves were 

collected on all locations (red circles) shown in Figure 5.1B. Each point on the graph is the result of a 

separate simulation.  (B) Example force curve developed through DFT and curve fitting (red trace) 

and the reconstruction of the force curve using 6 harmonics in Dürig’s equations (blue dotted trace).  

These curves correspond to the location marked with the solid red circle in Figure 5.1B (directly 

above one of the carbon atoms). 
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5.4.  – Simulated Images 

 

We now proceed from Dürig’s equations (Section 3.2.2.) and simulate 

experimental frequency shift (using Eqns. 3.3 and 3.13) and higher harmonics images 

(using Eqn. 3.15). We begin by focusing on the short-range force curves developed 

through the two-stage fitting method described above, disregarding the long-range van 

der Waals forces. Figure 5.11 shows simulated frequency shift (A) and higher harmonics, 

Vhh (B), images calculated using a 3 Å fundamental oscillation amplitude with the 

distance of closest tip-sample approach set at 1.88 Å. (Simulated images at varying 

closest approach distances are provided Section 5.6 for not only the tip discussed above, 

but also for a “blunt” tip whose apex is terminated with four atoms.) The gray color map 

was chosen simply because it provided the best visual contrast. A red hexagon has been 

overlaid to indicate the positions of the surface carbon atoms. To produce the higher 

harmonics image, the amplitudes of the first seven harmonics (based on the force 

reconstruction exercise of Figure 5.10) were entered into Eqns. 1.3 and 1.4 (see Section 

1.3). While the graphite lattice is clearly visible in the simulated frequency shift image, 

four-lobed features similar to those observed experimentally appear in the simulated 

higher harmonics image (see also Figure 5.18, which was constructed using a blunt tip 

and in which the number of features in the higher harmonics image appears to multiply 

with the number of apex atoms). 
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Figure 5.11 – Simulated frequency shift (A) and higher harmonics, Vhh (B), images calculated using 

Dürig's equations. The grid of Figure 5.1B has been repeated multiple times in both the x- and y-

directions and then cropped to produce rectangular images. Here the distance of closest approach is 

1.88 Å. A red hexagon has been overlaid to indicate the positions of the surface carbon atoms. While 

the graphite lattice is clearly visible in the frequency shift image, four-fold symmetry features similar 

to those observed experimentally appear in the simulated higher harmonics image. (C) and (D) show 

a close-up side-by-side comparison of the experimental (C) and simulated (D) Vhh images revealing 

four-fold symmetry features. 

 

A direct comparison with the four-fold experimental higher harmonics image is 

instructive. Figure 5.11 also shows close-up views of both the experimental (C) and 

simulated (D) Vhh images revealing four-lobed features. In both cases, the features appear 
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within a 200 pm (2 Å) diameter. The white cross in the experimental image was placed at 

a maximum in the tunneling current image, which is presumed to occur directly above a 

surface carbon atom [1]. In a similar fashion, we have placed a white cross at the exact 

position of the nearest surface carbon atom in our simulation. Clearly the simulated 

features are not centered above a single carbon atom. In Figure 5.11B, we see that the 

brightest of the features actually occurs at a hole position on the surface.  

The fact that the simulated features are not centered above a carbon atom is not 

necessarily problematic, but it suggests that the assumption by Hembacher et al. that the 

carbon atom position is the same in both tunneling current and higher harmonics images 

is not guaranteed to be accurate. The experimental observation of offsets between the 

maxima of simultaneously acquired data channels is not uncommon [88]. Note that a 

comparison between the simultaneously acquired tunneling current and higher harmonics 

images of Figures 1.2A and 1.2B, as well as Figures 1.2C and 1.2D, reveal that even in 

these instances, the subatomic features are not centered about a maximum in the 

tunneling current.  

Another clear difference between the experimental and simulated higher 

harmonics images is the symmetry of the four-fold features. While the lobes near the 

white cross on the experimental image (Figure 5.11C) appear to be approximately equal 

in weight, those in the simulated image do not. A possible explanation for this disparity is 

the influence of the pinned hydrogen and oxygen atoms on the edge of the model surface. 

It is reasonable to conclude that the lack of exact bonding symmetry in the surface model 

would lead to a lack of symmetry in the calculated force curves and hence in the 
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simulated higher harmonics images as well. Additionally, close inspection of the 

experimental image shows that the lobe symmetry is not uniform throughout the surface. 

Figure 5.12 shows vertical cross sections of the calculated tip-sample forces, 

which offer further insight into our simulated images. Figures 5.12A and B indicate the 

location of the cross sections relative to the simulated frequency shift and higher 

harmonics images of Figures 5.11A and B, respectively. The force map through the 

carbon ring centers (Figure 5.12C) reveals both hole sites and bond sites. The hole sites 

exhibit the greatest attractive force, similar to previous experimental studies using other 

types of tips (see for example Ref. [88]). Note that the force corrugations are also 

consistent with the lobe features in Figure 5.12B. For example, the force cross section 

through the surface β atoms (Figure 5.12D) shows two lobes above each atom. The 

horizontal variation in the forces through the regions resembling the bonding lobes is 

within one nN. 
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Figure 5.12 – Force cross sections taken relative to (A) the frequency shift and (B) the higher 

harmonics images of Figure 5.11. The force corrugations through the carbon ring centers (C) reveal 

both hole sites (white cross and dotted line) and bonds (blue cross and dotted line), with the hole sites 

exhibiting the maximum attractive force. The force cross section through the surface β atoms (D) 

shows corrugations consistent with the two lobes above each atom. 

 

The similarity between the images in Figures 5.11C and D is a promising result 

that supports the concept of mapping sub-atomic features via higher harmonics AFM 

under ideal conditions. However, it is also important to qualify the meaning of the 

observed features. While it is reasonable to view them as the signature of the unpaired 

bonding lobes of the tip apex, they do not correspond to a static imprint of their shape. 

This can be realized if one considers that for a fundamental amplitude of 3 Å, the tip 

oscillation spans a total vertical distance of 6 Å, which is significantly greater than the 
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size of the bonding lobes. In this case, it may be more proper to qualify the observed 

features as a dynamic signature representing the convolution of the cantilever dynamics 

and parameters with the intermittent short-range forces that emerge between the probe 

and sample orbitals. In fact, our calculations suggest that the observed subatomic features 

can change shape and even appear or disappear in a non-monotonic fashion as a function 

of the cantilever height, which is not surprising if one considers the evolution of the lobes 

at the tip apex as the vertical tip position changes (see Section 4.3). Thus, we cannot yet 

establish a quantitative connection between the electron density of the probe and sample 

and the higher harmonics images, even under ideal conditions.  

Additionally, there remain other aspects of the method that require further study. 

First, the effect of the STM bias voltage, which is expected to induce changes in the 

geometry of the apex lobes by generating attractive forces between the orbitals of the tip 

and the sample. Second, the filtering procedure that is used to separate the small higher 

harmonics signals from the fundamental oscillation. (The calculated amplitudes of the 

first three higher harmonics under the conditions evaluated – specifically zero bias 

voltage and disregarding the long-range attractive forces – were below 0.01% of the 

fundamental amplitude, in the range of hundredths of picometers3.) Finally, the effect of 

the tip layers directly above the apex atom, whose geometry has a direct effect on the 

bulk-like nature of the apex atom and which our calculations show affects the size of the 

lobes (see Section 4.3).  

 

                                                 
3 The first three harmonic amplitudes obtained for the force curve shown in Figure 5.10 are only 0.0049, 
0.0098, and 0.0052% of the fundamental amplitude, respectively, which when taken as the only three 
harmonics in the Vhh sum (Eqn. 1.3) would correspond to 0.029% of the fundamental amplitude signal, after 
considering the piezoelectric sensitivity factor (Eqn. 1.4). 
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5.5. – Conclusions 

 
 In summary, we have presented the results of DFT simulations that confirmed the 

existence of four lobes of increased charge density at the apex atom of a non-bulk 

W(001) tip, which had previously been observed in quantum mechanics calculations of 

the W(001) surface [38, 39]. These bonding lobes have been proposed to be responsible 

for experimentally observed subatomic, four-fold symmetry features produced via higher 

harmonics AFM imaging [1]. To test the feasibility of this claim, we first developed a 

method for simulating higher harmonics AFM imaging. Using the method, we showed 

that it is possible to obtain four-lobed features in a simulated higher harmonics image that 

are qualitatively similar to those observed experimentally. Important questions not 

addressed in this work still remain open, such as the challenges involved in filtering and 

processing sub-picometer higher harmonics amplitudes (discussed in the next chapter) 

and the effect of the bias voltage in simultaneous AFM/STM imaging, which could have 

a significant effect on the magnitude of the short-range tip-sample forces and the 

corresponding harmonics amplitudes. Furthermore, a direct quantitative connection 

between the images and the probe’s electron density cannot yet be established due to the 

complex, intermittent nature of the tip-sample interaction. We address the question of 

higher harmonics processing in Chapter 6, and the connection between the images and 

the system’s electron density in Chapter 7. 
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5.6.  – Additional Force Reconstructions 

 

Recall from Section 3.2.2 that the higher harmonics amplitudes are calculated 

from tip-sample forces via Eqn. 3.15 (reprinted below as Eqn. 5.2). The inversion 

necessary for force reconstruction is accomplished with Eqns. 5.3 and 5.4. 
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Figure 5.13 shows the force curve chosen for this exercise (note: this is a 

reproduction of Figure 5.10B). The base position of the cantilever, z0, is chosen to be 5 Å 

and the oscillation amplitude, a1, is 3 Å, as indicated by the three vertical dotted lines. 

The calculated harmonics amplitudes are shown in Figure 5.14. Keeping with the 

experiment, the cantilever resonance frequency was chosen to be f0 = 18 kHz, and the 

stiffness k = 1800 N/m. 

 Figure 5.15A, B, and C illustrate the force reconstruction calculated from Eqn. 5.3 

using 3, 6, and 9 harmonics, respectively. The force curve can already be reconstructed 

accurately using six harmonics. We have therefore chosen to use seven harmonics to 
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calculate our simulated images (as discussed previously), such that they contain most of 

the tip-sample force information. 

 

 

Figure 5.13 – The force curve used for the reconstruction exercise using Dürig’s equations. The base 

position of the cantilever is 5 Å and the fundamental oscillation is 3 Å. 

 

 

Figure 5.14 – The amplitudes of the higher harmonics for a cantilever oscillating in the tip-sample 

forces of Figure 5.13, as calculated by Eqn. 5.2. Recall that a1 is the fundamental amplitude (not 

shown), so a2 is the amplitude of the first harmonic, a3 the second, and so on. 

 



 

 99 

 

Figure 5.15 – Reconstructing the force curve of Figure 5.13 using (A) 3, (B) 6, and (C) 9 harmonics in 

the expansion of Eqn. 5.3. The accuracy of the reconstruction is already quite high when 6 harmonics 

are used. 

 

5.7.  – Additional Simulated Images 

 

Figures 5.16A through D show a series of simulated ∆f (left column) and Vhh 

(right column) images for a varying distance of closest approach, zc, for the 9R-S2 system. 

For A through D, respectively, zc = 2.50, 2.00, 1.90, and 1.70 Å. 
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 At a closest tip-sample approach of 2.50 Å, the graphite lattice is visible in the 

frequency shift image, but the harmonics are not sufficient to produce useful contrast. 

When zc is reduced to 2 Å, interesting features begin to appear in the higher harmonics 

image. At zc = 1.90 Å, the features exhibit a resemblance to the four-fold symmetry of 

Figure 1.2F that we wish to reproduce. Then when zc hits 1.70 Å, the frequency shift 

becomes positive, meaning the tip is probing repulsive forces. Here, both images show 

the four-fold symmetry features, a finding that coincides with Note 23 in Hembacher et 

al.’s 2004 paper, which states that “the frequency shift data are similar to the higher 

harmonics data…yet with much less contrast and a substantially smaller signal-to-noise 

ratio” [1]. Contrary to this statement, the frequency shift image of Figure 5.16D does not 

appear to have lower contrast. In fact, the contrast seems higher. However, the simulated 

images are not subject to differences in signal-to-noise ratio, which the authors claim is 

higher for their experimental higher harmonics images, offering a possible explanation 

for this discrepancy. 
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A) zc = 2.50 Å 

 
B) zc = 2.00 Å 

 
C) zc = 1.90 Å 

 
D) zc = 1.70 Å 

 
Figure 5.16 – ∆f (left) and Vhh (right) images as calculated from Dürig’s equations for the 9R-S2 system. 
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Figures 5.17A through D show an analogous series of simulated ∆f (left column) 

and Vhh (right column) images for the 9R-Blunt3L system (refer to Section 4.3). Again, 

for A through D, respectively, zc = 2.50, 2.00, 1.90, and 1.70 Å. 

At a closest tip-sample approach of 2.50 Å, the graphite lattice is discernible in 

the frequency shift image, though it appears shifted from the true positions of the surface 

carbon atoms. The higher harmonics image at this distance indicates the periodicity of the 

graphite lattice, though the image resolution is low. At 2.00 Å, the graphite lattice in the 

frequency shift image appears more accurate in terms of the true positions of the carbon 

atoms, and the higher harmonics image seems to offer even higher contrast. Reducing zc 

to 1.90 and then 1.70 Å does not produce features similar to the experimentally observed 

four lobes; however, the higher harmonics images begin to reveal what may be 

interpreted as a multiplication of the four-fold features produced when imaging the 

surface with lone-atom-terminated S2 tip. A side-by-side comparison of the higher 

harmonics images produced by the S2 tip and Blunt3L tip for a closest approach distance 

of 1.88 Å is shown in Figure 5.18. 
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A) zc = 2.50 Å 

 
B) zc = 2.00 Å 

 
C) zc = 1.90 Å 

 
D) zc = 1.70 Å 

 
Figure 5.17 – ∆f (left) and Vhh (right) images calculated from Dürig’s theory for the 9R-Blunt3L system. 
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Figure 5.18 – A side-by-side comparison of the higher harmonics images produced by the S2 tip (A) 

and the Blunt3L tip (B) at a closest approach distance of 1.88 Å. 
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6.  The Effects of Signal Processing 

 

 

 

This chapter is an adaptation of the work published in Applied Physics Letters [3]. 

As in Chapter 5, the overlap with topics discussed earlier in this dissertation has been 

preserved.  

 

6.1.  – Introduction  

 

The ability to image the electron cloud of surfaces at the nanoscale has profound 

implications for the progress of nanotechnology. The scanning tunneling microscope 

(STM) has this ability but is limited to conducting surfaces and can only characterize the 

most loosely bound surface electrons, i.e., those near the Fermi level. Recent experiments 

using frequency modulation atomic force microscopy (FM-AFM) suggest that this 

technique might be better suited to probing the total electron density at a surface [1, 7, 

89]. However, the interpretation of experimentally recorded subatomic features as the 

signature of the probe tip’s electron density has been highly controversial [8, 10, 11, 90]. 

The most recent experimental report of subatomic imaging is the 2004 work of 

Hembacher et al. [1], in which a tungsten tip attached to a qPlus sensor [6] was used to 

characterize a graphite surface using simultaneous STM/FM-AFM. Features of subatomic 

size were observed in the maps of the quartz “cantilever’s” higher harmonics and were 
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interpreted as the footprint of electron bonding lobes at the apex atom of the tungsten tip 

[1]. Figure 6.1 (adapted from Figure 1.2) shows one set of simultaneously acquired maps 

of tunneling current and higher harmonics voltage. The four-fold features in the higher 

harmonics image are attributed to the bonding symmetry of a W(001) tip apex atom, as 

indicated by the Wigner-Seitz cell for body-centered cubic W(001) (Figure 6.1C). While 

it is true that individual higher harmonics in dynamic AFM can provide increased spatial 

resolution, the authors’ interpretation of the experimental higher harmonics images has 

been met with much scrutiny, primarily due to the experimental methods used to process 

the harmonics [1, 2].  

 

 

Figure 6.1 – Simultaneously acquired tunneling current (A) and higher harmonics voltage (B) from 

the experiment of Hembacher et al. (adapted from Figure 1.2). The features of subatomic size in the 

higher harmonics image (B) were interpreted as the signature of bonding lobes of increased charge 

density at the apex atom of a [001] oriented tungsten tip. The Wigner-Seitz cell (C) for body-centered 

cubic W(001) exhibits the same four-fold symmetry observed in the features in (B). 

 

It is well known that the response spectrum of a sinusoidally driven, nonlinear 

oscillator will contain harmonic components. In the case of dynamic AFM, it has been 

shown that the higher harmonics in the cantilever oscillation contain detailed information 
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about the tip-sample interaction [28, 30, 32, 91-97]. This result has led to experimental 

methods to reconstruct tip-sample forces from measured harmonics, as well as research 

aimed at determining if material properties can be extracted from them, and how they can 

be utilized to improve imaging resolution. The harmonics in tapping mode AFM 

operation have been related to the mechanical stiffness of the sample [97], and various 

researchers have demonstrated material-specific contrast by mapping a specific harmonic 

[93, 94].  

Expanding on previous work by Dürig on force reconstruction in FM-AFM [28, 

29, 32], Hembacher et al. derived an expression relating the nth higher harmonic to a 

convolution of the nth gradient of the tip-sample force curve, Fts, with a bell-shaped 

weight function [1, 2, 33], 
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where an is the amplitude of the nth harmonic, k is the cantilever stiffness, and z0 is the 

cantilever equilibrium position. Because atomic resolution generally requires the isolation 

of the short-range component of the tip-sample force [12, 13], this mathematical 

relationship implies that higher harmonics in noncontact AFM should offer increased 

spatial resolution. This is because that for attractive forces in noncontact AFM – which 

are generally monotonic and typically proportional to 1/zn – higher gradients of Fts will 

exhibit steeper distance dependence; thus, contributions to the higher harmonics should 

come primarily from the front-most tip atom(s) [1]. It is important to note that while this 

is valid for attractive forces, it is not true in general. 
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In Chapter 5, we introduced a method for simulating higher harmonics imaging as 

a means to investigate the fundamental feasibility of subatomic imaging and its 

relationship to probing electron density. Briefly, the method involves the use of density 

functional theory (DFT) to calculate the tip-sample forces over a 3-dimensional grid 

composed of 2100 different tip positions above the surface, an in-depth curve fitting 

process, and the theory of Dürig [32] to calculate the theoretical harmonics amplitudes, 

from which the images can be constructed. The surface and tip models used for the DFT 

simulations are shown in Figure 5.1, but are reprinted for convenience as Figure 6.2 (note 

also that the new color coding of Figure 6.2 corresponds to the results of this chapter). 

The model surface of graphite (Figure 6.2A) consisted of a nine-carbon-ring top layer and 

a four-carbon-ring second layer, which has been excluded from the figure for clarity. 

Each layer was edge-terminated with either oxygen (blue) or hydrogen (yellow) atoms 

depending on which type was needed to maintain the sp2 hybridization of the carbon 

atoms. The circles above the surface indicate the (x, y) grid points for which tip-sample 

force curves (Fts(z)) were calculated (the solid, colored circles are related to Figures 6.5 

and 6.10 and will be discussed in a later section). Details of the DFT calculations can be 

found in Chapters 4 and 5.  
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Figure 6.2 – Density functional theory (DFT) calculations form the initial step in simulating the 

higher harmonics images of Hembacher et al.  (A) The top layer of the surface model used to 

approximate graphite and (B) the three-layer W(001) tip model used in the DFT simulations.  A tip-

sample approach was performed over each of the circles in (A).  The filled green, red, blue, and black 

circles mark the locations where harmonics amplitude ratios were calculated for the construction of 

Figure 6.5, as well as the locations of the force curves shown in Figure 6.10. Details of the DFT 

simulations can be found in Chapters 4 and 5. 

 

We previously emphasized that four important features of the 2004 experiment 

must be considered in a full theoretical treatment of the problem: (1) the crystallographic 

plane of tungsten responsible for image contrast and the presence of bulk-like surface 

states in a non-bulk system such as an AFM tip, (2) the effect of simultaneous STM/AFM 

on the electronic states of the system, (3) the cantilever dynamics, and (4) the effect of 

filtering and processing the cantilever trajectory. In Chapter 5, we addressed only the first 

of the four, though we were able to reproduce subatomic features qualitatively similar to 
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those seen experimentally for the tungsten tip with four-fold bonding symmetry at the 

apex (see Figure 5.11). Here we expand on this work by investigating the effects of signal 

processing on the higher harmonics images. We again idealize the cantilever dynamics 

and do not yet consider the effect of simultaneous STM/AFM in order to continue our 

bottom-up theoretical development from the most ideal (noise-free) imaging scenario. 

 

6.2.  – Relevant Experimental Background 

 

In their 2004 experiment, Hembacher et al. did not measure the amplitudes of the 

higher harmonics individually [1]. Instead, the qPlus trajectory signal was fed into a 

programmable eight-pole elliptic high-pass filter (Stanford Research Systems SR650 

[35]) to eliminate the fundamental frequency component and calculate the root-mean-

square (rms) of the harmonics amplitudes, followed by an rms-to-dc converter. The 

higher harmonics images produced were voltage maps representing the rms sum of all 

higher harmonics [1, 33]. This processing step has been one of the most significant points 

of contention regarding the interpretation of their images as maps of the tip apex atom’s 

charge density.  

The motivation for filtering the cantilever trajectory and taking an rms of the 

harmonics amplitudes was to enhance the harmonics signal. In contrast to large amplitude 

tapping mode AFM methods of harmonic imaging [30], Hembacher et al. performed 

small amplitude (Aosc = 3 Å) STM/FM-AFM. Oscillation amplitudes on the order of the 

interaction potential have been demonstrated (using theory) to provide optimum signal-

to-noise ratio (SNR) and enhanced sensitivity to short-range forces [20]. However, for 
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angstrom-scale fundamental oscillations, the amplitudes of even the low-order harmonics 

are typically sub-picometer and therefore need to be enhanced in order for their 

measurement to be practical. Nevertheless, the measurement of higher harmonics in the 

small amplitude limit is desirable because the tip interacts with the surface force field for 

most (if not all) of the oscillation cycle. Dürig has shown that under this condition, the 

lower-order harmonics contain enough information to reconstruct the short-range tip-

sample force over the range of the oscillation [32]. The increased information content of 

the lower order harmonics is a significant advantage with respect to large amplitude 

tapping mode experiments, which can require the measurement of anywhere from tens to 

hundreds of harmonics to accurately reproduce tip-sample force curves, especially near 

the location of the maximum attractive force [98]. 

With regard to enhancement, it has been found experimentally that the higher 

harmonics occurring near a cantilever’s flexural eigenmodes are amplified by the 

excitation of the latter during tip-sample interaction [93]. This result has been exploited 

by developing cantilevers with a flexural eigenmode that is nearly an exact multiple of 

the fundamental resonance, thereby providing the maximum enhancement of the 

harmonic occurring at that frequency [96, 97]. While such cantilevers offer significant 

advantages in tapping mode higher harmonics AFM, their deflection must still be 

measured by optical means, which makes them impractical for the measurement of sub-

picometer harmonics amplitudes, particularly for low-temperature, ultrahigh vacuum 

(UHV) AFM. The same is true for torsional harmonic cantilevers [30], whose increased 

sensitivity is derived from the fact that the photodetector signal is directly proportional to 

the slope of the cantilever. The torsional paddle experiences relatively large angular 
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deflections even for small vertical displacements, so harmonics that are small in 

amplitude can be measured with high signal strength. 

Because the specialized cantilevers described above are impractical for the 

measurement of subpicomenter harmonics amplitudes in UHV, other means of 

enhancement must be implemented. To this end, Hembacher et al. leveraged the 

piezoelectric properties of quartz. The qPlus sensor also offered the added benefit of 

enabling simultaneous STM/FM-AFM. In contrast to optical detection schemes, which 

produce a signal that is proportional to deflection, piezoelectric detectors such as the 

qPlus sensor generate a current that is proportional to both deflection and frequency, thus 

providing built-in amplification of the harmonics. Hembacher’s approach of filtering and 

collecting an rms sum of all higher harmonics was meant to supplement this increased 

sensitivity, as the output voltage obtained by using all the harmonics amplitudes provides 

higher signal strength than that of individual harmonics. The rms voltage signal produced 

from the higher harmonics is given by  
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where Sn is the sensitivity of the deflection sensor for the nth harmonic,  
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(These are reprints of Eqns. 1.3 and 1.4, respectively.) Note that a2 is the amplitude of the 

first harmonic above the fundamental. The sensitivity, Sn, is given by the product of the 
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current per deflection generated by the qPlus sensor multiplied by the current-to-voltage 

conversion rate of the preamplifier [1, 33]. Eqn. 6.3 is plotted in Figure 6.3, which 

demonstrates how the sensitivity plateaus with increasing harmonic number. Plotted in 

Figure 6.4 are the amplitudes of the higher harmonics directly above a β atom of the 

model surface (indicated by a solid blue circle in Figure 6.2), as well as the voltages that 

result from multiplying each by the corresponding qPlus sensitivity value.  

 

 
Figure 6.3 – Sensitivity [mV/pm] of the qPlus sensor to harmonic n (n=1 corresponds to the 

fundamental oscillation frequency). The sensitivity drops off and plateaus by approximately the 9th 

harmonic (n=10). 
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Figure 6.4 – Amplitudes (an) and voltages (an*Sn) directly above a β atom of the model surface 

(indicated by a solid blue circle in Figure 6.2). 

 

While the motivation for the experimental rms approach is clear, the justification 

for its validity needs to be explored in the context of the actual shape of the tip-sample 

force curves. We will consider the filtering and rms processing separately, beginning with 

the latter for reasons that will become apparent. 

 

6.3.  – Root-Mean-Square Harmonics Collection 

 

Giessibl conducted simulations of a simple electrostatic model (composed of ten 

point charges) for the tip-sample interaction, for which the amplitudes of individual 

higher harmonics produced qualitatively similar images [33, 97]. Thus it was assumed 

that mapping the rms sum of all higher harmonics would not change the nature of the 

resultant image and would increase the SNR [1, 33]. Although the intent was not to 

reconstruct force curves, it is important to recall that an rms sum of the harmonics is not 

capable of recovering Fts in real time, which requires measuring the amplitudes and 
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phases of individual harmonics in order to apply the appropriate inversion procedure [32, 

33].  

The information content of the harmonics in dynamic AFM becomes clear from a 

mathematical treatment of the oscillating tip in the presence of nonlinear interaction 

forces. The periodic excitation of the cantilever means that under steady-state conditions, 

the tip-sample forces are also periodic in time, which enables them to be expressed 

mathematically as a Fourier series [92] or Chebyshev series (see Section 3.2.2) [28, 32]. 

In Dürig’s treatment [32], which is the basis of Hembacher’s interpretation (see Eqn. 6.1) 

[1], the higher harmonics amplitudes form the series coefficients (which can be positive 

or negative). Thus, measuring the harmonics allows one to directly reconstruct Fts using 

the appropriate series expansion [1, 2, 28, 32, 33]. Further, as discussed above, the 

relationship between the harmonics and the higher gradients of the tip-sample force 

implies that – for a conservative potential that is monotonically attractive – mapping 

individual higher harmonics should result in higher spatial resolution. (The highest 

measurable harmonic should theoretically have the steepest distance dependence and thus 

provide the highest resolution of short-range forces.) Higher harmonics have also been 

shown to provide high resolution material-specific contrast for tapping mode cases where 

repulsive or dissipative forces are involved [93, 94], although the contrast mechanism 

differs from that of the attractive regime case. 

The reconstruction of Fts from a series summation involving multiple harmonics 

and the mapping of single harmonics for high resolution are both valid experimental 

approaches. However, an issue arises when mixing the two methods by mapping an rms 

sum of higher harmonics for increased spatial resolution. This hybrid method can be 
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problematic because the individual harmonics depend on the exact shape of the 

interaction potential. The relevant consequence is that the amplitudes of the harmonics do 

not maintain set ratios across different surface sites. Figure 6.5 shows the amplitude 

ratios 1:2, 1:3, and 2:3 of the theoretical harmonics over a surface α atom, β atom, hole 

site, and bond for the model tip-sample system shown in Figure 6.2, demonstrating how 

the ratios change for each surface site. (Note that harmonic 1 is the first harmonic above 

the fundamental, i.e., has frequency 2f0.) An rms sum of the harmonics at a given position 

is a statistical measure and therefore does not retain the detailed information encoded into 

each harmonic. As the difference in ratios implies, increases and decreases in the 

amplitudes of specific harmonics are not consistent across the surface, and averaging the 

amplitudes at each surface site cannot capture these changes. Furthermore, such 

averaging can at least partially eliminate the contrast if the changes in the harmonics 

amplitudes show inverse correlations to one another. Thus, an image composed of 

averaged harmonics amplitudes (the rms voltage) cannot be seen as an accurate 

representation of the surface structure or material properties. Finally, because the ratios 

shown in Figure 6.5 are for amplitudes calculated from the fundamental theory of Dürig, 

one can conclude that this phenomenon is independent of the experimental technique 

used to capture the harmonics.  
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Figure 6.5 – Amplitude ratios 1:2, 1:3, and 2:3 of the theoretical harmonics (note that harmonic 1 is 

the first harmonic above the fundamental, i.e., has frequency 2f0) over a surface α atom, β atom, hole 

site, and bond for the model tip-sample system shown in Figure 6.2 for a closest tip-sample approach 

distance of 1.90 Å and an oscillation amplitude of 3 Å, demonstrating how the ratios change for 

different surface sites. 

 

The averaging effects of an rms would also be problematic in large amplitude 

tapping mode AFM. In Ref. [94], Stark and Heckl performed a series of experimental 

tapping mode images of a Pt-C film on silica. Separate images were created using the 

third, fifth, and eighth harmonics of the drive frequency (see Figure 6.6). The relevant 

result is the contrast inversion observed in the image created with the fifth harmonic 

relative to those created with the third and eighth harmonics. In this specific case, if one 

were to create an image using an rms sum of these three higher harmonics, the contrast 

that appears in each individual image would be greatly diminished. While the contrast in 

an averaged image will not always be lower than that in individual harmonics images, the 

former will always be artificial. With this in mind, before discussing the effects of 
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filtering, we will look at simulations for the specific case of Hembacher’s 2004 

experiment. 

 

 

Figure 6.6 – Experimental 3rd, 5th, and 8th harmonics of a 4-nm-thick platinum-carbon test structure 

on a fused silica coverslip. The contrast inversion between individual harmonics means that the 

contrast in an rms sum image would be greatly diminished. (Adapted from Figure 2 in Ref. [94]).  

 

6.4.  – Simulated Images 

 

Using the method and model system (see Figure 6.2) described in Chapter 5, we 

can easily simulate images produced with individual higher harmonics. Shown in Figure 

6.7 are images created from each of the first four harmonics individually, as well as the 

image created by their rms sum (see Eqn. 6.2). Figure 6.8 shows the images created using 

the 5th, 6th, and 7th harmonics, as well as the rms sum of harmonics 1-7. All the images 

shown are constant-height voltage maps (i.e., each harmonic amplitude has been 

multiplied by the piezoelectric sensitivity of the qPlus sensor corresponding to that 

frequency (Eqn. 6.3)) for a 3 Å oscillation and a closest tip-sample distance of 1.90 Å. 

The positions of the surface carbon atoms are indicated by red hexagons. The partial 

“frame” observed on the border of the unit cell, evident in the images of the 3rd, 4th and 
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especially the 5th harmonics, is an artifact caused by the use of a non-periodic system 

(Figure 6.2A) in the construction of the tip-sample force curves. 

While the images created using the 1st and 2nd harmonics exhibit four-fold 

features (indicated with dotted red ovals) qualitatively similar to the experimental image 

shown in Figure 6.1B, the features do not get sharper with increasing harmonic number 

as one would expect based on the steeper-distance-dependence argument of Hembacher 

et al. In fact, not only do the four-fold features appear diminished in the 2nd harmonic 

image, they do not appear at all in the 3rd and 4th harmonics images. This lack of 

qualitative similarity conflicts with the justification presented in Refs. [33, 97] (and 

discussed previously) for collecting an rms sum as a means to enhance signal strength 

without compromising the nature of the resultant image. 
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Figure 6.7 – Simulated Vhh images for the model system of Figure 6.2 created from the (A) 1st 

harmonic, (B) 2nd harmonic, (C) 3rd harmonic, (D) 4th harmonic, and (E) rms sum of the 1st – 4th 

harmonics. The closest tip-sample approach distance is 1.90 Å. The positions of the surface carbon 

atoms are indicated in each image by a red hexagon. Notice that the contour scaling is different in 

each image and that the voltage values in the 4th harmonic image have dropped by nearly an order of 

magnitude relative to the 1st and 2nd harmonic images. Consequently, the features in the rms sum 

image are dominated by the first two harmonics. 
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Figure 6.8 – Simulated Vhh images created using the (A) 5th, (B) 6th, and (C) 7th harmonics, as well as 

(D) the rms sum of harmonics 1-7. 

 

The root of this conflict lies in the simple nature of the electrostatic model used 

for justification [33, 97]. First, while the orientation of the point charges in the simple 

model approximately reflects the charge distribution of a surface W(001) atom [38, 39, 

85], the charges themselves are fixed in space, so they cannot reflect the dynamic 

response of real electron orbitals during the oscillatory tip-sample interaction. Shown in 

Figure 6.9 are cross sections of the change in electron density directly below the apex 

atom of the tungsten tip as calculated by DFT (viewed from above; see Figure 6.9A). The 

tip-surface distance for all cases is 2 Å, and the (x, y) position of the apex atom relative to 

a β carbon atom of the surface is indicated with a red X in the inset of each panel. The 
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direction of each of the three carbon-carbon bonds is also shown. Clearly, the four 

bonding lobes of increased electron density are affected by the lateral position of the tip 

relative to the surface.  

Second, and more important to the validity of the justification, the 1/z2 

dependence of the Coulombic force between point charges guarantees that the higher 

gradients of the force will have the steeper distance dependence necessary for increased 

spatial resolution with increasing harmonic number. The closest approach distance for the 

simple electrostatic model images presented in Ref. [33] is 1.32 Å. Recalling that the 

images in Figures 6.7 and 6.8 are for a closest tip-sample distance of 1.90 Å, we see from 

Figure 6.10 that the DFT tip-sample force curves over the corresponding oscillation range 

do not satisfy the ~1/zn requirement necessary for increasing harmonics to exhibit steeper 

distance dependence. 
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Figure 6.9 – Cross sections (viewed from above) of the DFT-calculated change in electron density 

directly below the apex atom of the tungsten tip, demonstrating that the four bonding lobes of 

increased electron density are affected by the lateral position of the tip relative to the surface. The 

tip-sample distance for all cases is 2 Å, and the (x, y) position of the apex atom relative to a β carbon 

atom of the surface is indicated with a red X in the inset of each panel. The X is approximately 

located at the border of the C atom in all cases. The direction of each of the three carbon-carbon 

bonds is also shown. 
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Figure 6.10 – Representative tip-sample force curves for the four surface sites indicated in Figure 

6.2A. Clearly they do not exhibit ~1/z2 behavior over the range of oscillation, which is indicated by 

the dashed vertical lines. 

 

Although the above results do not support the use of an rms sum of harmonics to 

increase short-range force resolution, there is still a promising aspect to them. Note that 

the contour scaling is different in each image of Figures 6.7 and 6.8 and that the voltage 

values in the 4th harmonic image have dropped by nearly an order of magnitude relative 

to the 1st and 2nd harmonics images. Even though the qPlus sensitivity increases with 

increasing harmonic number, the amplitudes of the harmonics drop off too quickly for the 

sensitivity increase to compensate. Consequently, the qualitative features in the rms sum 

image are dominated by the first two harmonics which, when plotted individually, reveal 

four-fold features similar to the experiment. Since we have not yet simulated the filter, 

the four-fold features seen in Figure 6.7A and B cannot be merely artifacts. This result 

suggests that one could use a single lock-in amplifier to collect either the first or second 

harmonic and potentially reproduce the subatomic contrast of Hembacher et al. under the 
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right experimental conditions (e.g., ideal tip structure), provided the noise level is 

sufficiently low.  

 

6.5.  – Filtering  

 

We now turn to the filtering, which has been at the center of the controversy. 

Recall that Hembacher et al. used the programmable SR650 to collect the rms sum of 

harmonics after high-pass filtering the trajectory to remove the fundamental frequency 

component [1]. While the magnitude response of a filter changes with input frequency, 

the filtering process should not change the qualitative nature of images created using the 

magnitude of an individual harmonic. The filter gain (at the specific harmonic frequency) 

will simply scale the quantitative value measured at each pixel of the image. Indeed, this 

is what we see in our simulations. Figure 6.11 shows simulated unfiltered (left column) 

and filtered (right column) images created using the individual harmonics indicated, 

supporting this notion. Matlab’s ellip function was used to simulate the filter used in 

Hembacher’s experiment, i.e., an 8th order elliptic high-pass filter with a 20 kHz cutoff 

frequency. 

 

 

Figure 6.11 – (Next page) Simulated unfiltered (left column) and filtered (right column) images 

created using the individual harmonics indicated, demonstrating that filtering has a negligible effect 

on the qualitative nature of the images. A slight change in the contour scaling occurs due to the gain 

of the filter. 
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Unfiltered Filtered 
A) 1st harmonic 

 

 

 
B) 2nd harmonic 

 

 

 
C) 3rd harmonic 

 

 

 
D) 4th harmonic 
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Ultimately, however, the question of filtering must be investigated in the context 

of the experiment of Hembacher et al. in order to determine whether their images contain 

artifacts as an inherent result of the filtering process. When considering the effects of 

filtering a trajectory that will be used to construct an rms sum, we note that the qualitative 

nature of the image could theoretically change due to the varying magnitude response of 

the filter. The filter cutoff, order, and type may attenuate/enhance different harmonics by 

different amounts, thereby affecting their average value at each pixel. However, our 

simulations indicate that the filter used by Hembacher et al. has a negligible effect on the 

resultant rms image. Figure 6.12 shows images created from an rms sum of the first four 

harmonics both before (A) and after (B) filtering. The closest tip-sample approach is 

again 1.90 Å (Figure 6.12A is a reproduction of Figure 6.7E meant to offer a convenient 

side-by-side comparison). Note that the contour scaling is equivalent between the two 

images. The qualitative difference is minimal, although the filtered image does seem to 

eliminate the smaller features occurring between the larger four-fold features. Figure 

6.12C illustrates the quantitative difference values between the images (unfiltered minus 

filtered), which are on the order of 5% of the maximum Vhh.  
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Figure 6.12 – Higher harmonics images for a closest tip-sample approach of 1.90 Å, created from the 

rms sum of the first four harmonics before (A) and after (B) filtering (these images were simulated 

using the experimental filter specifications: 8th order elliptic high pass with a 20 kHz cutoff). The 

qualitative difference between the two is minimal, although the filtered image does eliminate the 

contrast occurring between each set of four-fold features. (C) Difference image constructed as (A) 

minus (B).  The quantitative differences in (C) are on the order of 5% of the maximum value of Vhh 

in (A) and (B). 

 

From the images of Figure 6.12, one can conclude that filtering artifacts are not 

responsible for the experimental subatomic contrast. We have also simulated the effect of 

different filter orders (6th and 4th) and cutoff frequencies (25 kHz and 30 kHz), all of 

which produced similarly negligible effects. The reasons for this result appear to be two-

fold. First, elliptic filters are known for their extremely steep transition in gain between 

the stopband and passband, so different filter orders do not significantly affect the 
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harmonics of an 18 kHz oscillation when the cutoff frequency is well below 36 kHz. And 

second, the filter’s extremely low passband ripple (0.1 dB peak-to-peak) results in 

negligible variations in the magnitude response to different frequency components. Both 

of these points are illustrated in Figure 6.13, which shows the magnitude-versus-

frequency responses for elliptic high-pass filters of various cutoff frequencies and orders. 

The dotted vertical lines are placed at 36 kHz, the frequency of the first harmonic. Figure 

6.13B is a magnified view of the rectangular area in Figure 6.13A, which shows the 0.1 

dB passband ripple. 
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Figure 6.13 – Magnitude responses of an elliptic high-pass filter of various orders and cutoff 

frequencies. (B) is a magnified view of the rectangle shown in (A). 

 

6.6.  – Conclusions  

 

The ability of AFM to resolve the electron density of a surface in UHV has been a 

long-standing question within the community. In this work, we focused on the specific 

experiment of Hembacher et al., in which subatomic features in higher harmonics images 
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were interpreted as snapshots of a tungsten atom’s electron bonding lobes. While 

individual higher harmonics in AFM are well known to encode detailed information 

about the tip-sample interaction, the primary point of contention to the authors’ work has 

been the method by which they processed the harmonics experimentally: a programmable 

high-pass filter was used to both eliminate the fundamental frequency and collect the 

amplitudes of the higher harmonics in an rms sum. Thus, the popular competing 

interpretation has been that the “subatomic features” could be artifacts introduced 

through signal processing. 

The open question actually contains two parts: Can UHV AFM spatially resolve 

subatomic features on a surface? And, can those features be seen as maps of charge 

density? By simulating the authors’ processing steps, we have shown that in the ideal, 

noise-free case, individual higher harmonics in AFM can theoretically produce subatomic 

features, independent of any filtering. However, the subatomic features seen in an rms 

sum of higher harmonics cannot be viewed as an accurate representation of surface 

orbitals, which are dynamic in nature and which generate tip-sample forces that vary non-

monotonically with the tip vertical position and thus lead to different contrast for each 

harmonic.  

It is important to note that we have not yet made any claims regarding the actual 

source of subatomic contrast produced by individual higher harmonics. It is not 

unreasonable to postulate that the features observed in some of the images resemble the 

shape of the bonding lobes of increased charge density that can emerge as the tip 

approaches the sample, but a more careful and quantitative interpretation is necessary, 

since our quantum mechanics calculations suggest that these lobes can change shape and 
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even intermittently appear and disappear as the tip-sample distance changes due to the 

oscillation of the cantilever.  

Finally, we point out that as presented in Chapter 5, the expected harmonics 

amplitudes due to the short-range forces are on the order of hundredths of picometers, 

which makes their measurement challenging. Our analysis has so far been limited to the 

most ideal scenario. We have not yet considered non-ideal dynamics effects, including 

noise, or the effect of the electric fields applied by Hembacher et al. to acquire the 

simultaneous STM images. Nonetheless, the fact that subatomic image features 

theoretically exist independent of filtering is a promising result. Given sufficiently low 

noise levels, one should be able to observe them by mapping the first or second higher 

harmonic. 
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7. Identifying the Source of Subatomic Contrast 

 

 

 

 In Chapter 5, we demonstrated the feasibility of observing subatomic features in 

higher harmonics AFM images, though we made no claims regarding the physical source 

of the subatomic contrast. Then, in Chapter 6, we investigated the effects of filtering the 

trajectory signal and processing the higher harmonics on the qualitative nature of the 

images obtained. In this chapter, we demonstrate the importance of the sample atom used 

to probe the tip and connect the subatomic contrast to a physically meaningful quantity – 

namely, the bonding stiffness between the front atom of the tip and the atoms in the layer 

above. At time of writing, this work is being prepared for publication. 

 

7.1.  – Introduction  

 
The scanning tunneling microscope (STM) and atomic force microscope (AFM) 

have become essential to surface science at the nanoscale. In cryogenic ultrahigh vacuum 

(UHV), the latter is now capable of not only atomic scale imaging [6, 16, 34, 37, 99-102], 

but also the chemical identification of individual atoms [103] and even atomic 

manipulation [104-111], all of which are innately tied to the short-range forces acting 

between the atoms of the tip and sample. Beyond atoms, however, one ideally wishes to 

measure the electronic structure of a nanosurface – an ambition driven in part by the 
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continuous miniaturization of circuitry. The fundamental limits on the size and 

performance of silicon-based electronics have created the need to research alternate 

technologies, for example, carbon nanomaterials or single organic molecules to replace 

the conducting channels and other components in traditional devices [112-115]. 

The operating principle of an STM makes it particularly well suited to the study 

of a structure’s electronic properties, and many groups have published experimental 

images of the orbitals of individual molecules [116-120]. However, tunneling current is 

primarily sensitive to the local density of states (LDOS) near the Fermi level (EF) [42, 45]. 

Consequently, the STM cannot capture the full chemical structure of a surface – which 

depends on the total electron density. Nor can the STM directly image atomic positions. 

Instead, it images the perturbations that the atoms impart on charge transfer between the 

metallic probe tip and the conducting sample [121]. This is particularly evident in atomic-

scale STM images of graphite – which reveal only the β atoms, as the α atoms lack 

sufficiently high density of states at EF [37].  

Because it is a force-based method, AFM does not suffer from the fundamental 

limitations of electron tunneling. Further, the short-range forces exerted between tip and 

sample are influenced by the system’s total electron density, which suggests that in 

theory – with sufficient force resolution – one could reveal chemical structure that is 

inaccessible to STM [37, 120]. In 2000, Giessibl et al. reported subatomic features in 

UHV frequency modulation AFM (FM-AFM) images which were attributed to dangling 

bonds at the front-most silicon atom of the probe tip [7]. That is to say, the features were 

viewed as evidence of the directional dependence of covalent bonding, which is 

ultimately governed by the spatial overlap of atomic wavefunctions. This interpretation 
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has been controversial. DFT calculations by two groups supported the dangling-bond 

theory [8, 9], while recent DFT calculations suggest that the features could be the result 

of a multi-atom tip termination [11]. Another group has suggested that the subatomic 

features may be feedback artifacts [10]. Herein lies the fundamental drawback to FM-

AFM: image interpretation is not as straightforward as it is in STM. First, forces are not 

measured directly but indirectly through the shifts in the oscillating cantilever’s resonant 

frequency. To recover forces from frequency shifts requires an inversion procedure (see 

Section 3.2.2) [32, 122]. (None was performed in Giessibl’s 2000 experiment; the 

subatomic features appeared in constant frequency shift images [7].) Further, the forces 

acting between tip and sample are comprised of three main components: long-range van 

der Waals (vdW) forces, electrostatic forces, and short-range chemical forces. It is well 

established that the short-range chemical forces must be isolated for atomic contrast, but 

can one achieve sufficient sensitivity to distinguish force corrugations representative of 

electronic structure?  

The limitations of both STM and FM-AFM – combined with the desire to collect 

as much information on the tip-sample interaction as possible – have resulted in the 

growing popularity of simultaneously measuring tunneling current and frequency shift [1, 

119, 120, 123, 124]. This is readily achieved with the qPlus sensor [6], which has 

separate electrodes for current and cantilever deflection. Stiff quartz cantilevers also 

permit stable oscillation amplitudes below 1 Å, and oscillations on the order of the tip-

sample interaction range have been shown to reduce noise and increase sensitivity to 

short-range forces [20, 125].  
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In 2004, Hembacher et al. added another data channel to their STM/AFM 

experiment by collecting the higher harmonics of the cantilever oscillation [1]. Higher 

harmonics are known to contain valuable information about the tip-sample interaction, 

and as such can be utilized for the reconstruction of Fts over the range of cantilever 

oscillation [32]. The authors demonstrated that higher harmonics also contain information 

about higher gradients of Fts [1]. While it remains unclear whether higher harmonics are 

coupled to a specific physical property, the authors suggested that for monotonically 

attractive forces, the higher harmonics should be more sensitive to short-range forces. 

Indeed, their experimental higher harmonics images revealed multiple maxima within the 

diameter of a single tungsten atom (see Figures 1.2 and 6.1), while the tunneling current 

images taken in parallel revealed only a single maximum. The arrangement of the 

subatomic features in the former appeared to reflect the bonding symmetry of the 

tungsten tip’s foremost atom, and it was therefore proposed that these features were 

images of electron bonding lobes. In Chapter 5, we showed that lobes of increased 

electron density are present at the apex atom of a tungsten tip and that the features 

appearing in the higher harmonics images are theoretically feasible, however no direct 

connection between the two was made. Additional analysis in Chapter 6 demonstrated 

that the implemented method of higher harmonics measurement (via rms-sum) is not 

guaranteed to yield physically meaningful contrast. Nonetheless, maps of the first or 

second harmonics (measured individually) do produce higher contrast than standard 

frequency shift images. In this chapter we show that, when probed with a small, non-

reactive atom, the bonding symmetry of a tungsten tip apex is revealed in simulated tip-

sample forces, as well as frequency shift and higher harmonics images. 
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7.2.  – Tip-Sample Systems 

 
A detailed description of our previously developed simulation method for higher 

harmonics is given in Chapters 4 and 5. Figure 7.1 illustrates the three crystallographic 

orientations of a tungsten tip apex that were investigated in the work presented in this 

chapter. Shown are side and bottom-up views of (a) W(110), (b) W(111), and (c) W(001) 

tip models exhibiting, 2-, 3-, and 4-fold bonding symmetry, respectively. For each model, 

the orange-highlighted atoms indicate those that are bonded to the tip’s front atom. 

 

 

Figure 7.1 – Three crystallographic orientations of a tungsten tip apex were investigated in the work 

of this chapter. Shown above are side and bottom-up views of (a) W(110), (b) W(111), and (c) W(001) 

tip models, exhibiting, 2-, 3-, and 4-fold symmetry, respectively. For each, the bonding symmetry of 

the front atom is indicated by its orange-highlighted bonding partners in the layer above. 

 

In Chapters 5 and 6, motivated by the work Hembacher et al. [1], we used a non-

periodic graphite surface model, the edges of which were saturated such that the sp2 
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hybridization of the carbon atoms was maintained. The atoms in graphite form six-

member rings; each atom is covalently bonded to three others, leaving all atoms with an 

unhybridized 2p orbital perpendicular to the surface. These pz orbitals form pi bonds, 

resulting in the delocalized molecular orbitals responsible for the well-known resonance 

of each ring. While not explicitly stated, Hembacher and coworkers imply that the 

localized pz orbital of each carbon atom acts as the probe of the tungsten tip’s density 

(see Figure 1 of Ref. [1]). Thus, prerequisite to imaging the electronic structure of an 

AFM tip in close proximity to the surface is the breaking of a delocalized pi bond. This 

complex picture makes it difficult to concretely connect the tip and sample electron 

densities with the simulated frequency shift and higher harmonics images, since 

experimental images are always a convolution of tip and sample contributions. 

In order to draw more fundamentally insightful conclusions, we idealize here the 

surface models by using individual hydrogen, helium, or argon atoms. Thus we isolate 

the effects of the surface’s electronic structure in hopes of connecting orbitals to 

experimentally measurable features. Though not physically realistic, this approach is 

driven by Hembacher’s claim that small atoms are necessary to achieve subatomic image 

contrast. The approach also reflects the rationale for imaging individual surface adatoms 

or adsorbates such as carbon monoxide [108, 118, 123, 126] as a means of creating well-

defined bonding partners. Finally, these atoms also exhibit unambiguous bonding 

behavior, in that hydrogen wishes to form one bond and helium and argon both have 

closed valence shells. Hence, we are examining the effects of both size and electronic 

structure of the surface atoms in the most fundamental way possible.  
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Using our previously developed simulation method for higher harmonics AFM, 

tip-sample force curves were calculated for the following five systems, designated by the 

symbol of the “surface” atom, followed by the crystallographic plane of the tungsten tip: 

He-W(110), He-W(111), He-W(001), Ar-W(001), and H-W(001). The force curves were 

calculated on a high-density grid of points in the vicinity of each tip model’s front atom. 

In each case, the symmetry of the tip structure was exploited in order to reduce 

computational cost (see Figure 7.2 for the simulation grids). All density functional theory 

(DFT) calculations were performed with the SeqQuest code developed at Sandia National 

Labs [78]. We used a spin-polarized PBE functional [64], semi-local norm-conserving 

pseudopotentials [83], and a local-orbital basis of contracted Gaussians in a linear 

combination of atomic orbitals to solve the Kohn-Sham equations fully self-consistently. 

The double-zeta plus polarization basis for tungsten that shipped with the code had been 

refined in a five layer W(001) system [84]. 

 

 

Figure 7.2 – For each simulation system, the symmetry of the tip structure was exploited in order to 

reduce computational cost. Shown here are the grids for the (a) W(110), (b) W(111), and (c) W(001) 

tips used to produce the simulated images of Figure 7.6. The black circles in each panel indicate the 

relative size and position of the first two layers of the tungsten tip atoms. 
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At each grid point, the tip structure began 6 Å above the surface (defined as the 

distance between atom centers, prior to relaxation), and the geometry was converged to 

force and energy criteria of 0.0010 Ry/bohr and 0.0020 Ry, respectively4. Note that the 

latter is not a criterion for the change in the total energy. Because SeqQuest uses a 

modified Broyden blending scheme on the Hamiltonian matrix in its SCF updates, the 

figure of merit for the convergence of the self-consistent calculation is the maximum 

change of a Hamiltonian matrix element (the change in the total energy is not necessarily 

correlated with the level of convergence) [84]. After geometry relaxation, the tip atoms 

were shifted down 0.25 Å and relaxed again. This procedure continued until tip stability 

was compromised, i.e., the bonds between the front tip atom and second layer tip atoms 

were broken/reformed due to the repulsive interaction with the probe atom. This occurred 

at different closest-approach distances depending on the crystallographic orientation of 

the tip apex. For all simulation grid points, W(001) was found to be stable down to a tip-

sample distance of 1.50 Å, while W(110) was stable down to 2.25 Å and W(111) down to 

2.50 Å.  

In order to generate short-range force curves (shown in Figure 7.5), the DFT 

energy data for each (x, y) grid point was fit to a linear form of the Morse potential, 
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4 The top layer of tip atoms and the surface probe atom were kept fixed during relaxation. 
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(so called because the argument of the exponential contains a linear function in place of 

the constant that typically precedes the ( )ez z−  term; the additional parameter offers 

more flexibility in the fit), which was then analytically differentiated with respect to z. In 

our previous study of a tungsten tip imaging a graphite surface model, fitting the energy 

data to the linear form of the Morse potential resulted in force curves that were not well 

behaved over the full cantilever oscillation range that we wished to study (6 Å) [2]. 

However, in this work, we wish to simulate only 1 Å cantilever oscillations, which are 

readily attainable with stiff probes such as a qPlus sensor and have become common in 

high-resolution scanning probe techniques [126]. For the systems studied here, the linear 

Morse potential results in force curves that are well-behaved over a sufficient range for 

simulating small cantilever oscillations. From these force curves, frequency shift and 

higher harmonics images were simulated using Dürig’s Fourier treatment of the tip 

motion [2, 3, 32]. For a cantilever oscillation described by  
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the amplitudes of the higher harmonics can be calculated from the tip-sample force 

curves via 
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for n ≠ 1, where an is the amplitude of the nth harmonic (the fundamental oscillation 

amplitude, a1, is required input), k is the cantilever stiffness, and Tn(u) is the nth 
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Chebychev polynomial of the first kind. The images that follow were simulated using a 

cantilever oscillation amplitude of a1 = 1 Å and a stiffness k = 1800 N/m. With these 

inputs, the effective frequency (and hence frequency shift) is calculated via 

 

( )
1

0 0 11 2
1

1 2
1 (1 ) .

1
ts

u
F z a u du

k a u
ω ω

π −
= − + +

−
∫  (7.4) 

 

Because the aim of this work is to connect the images formed from experimental 

observables to the electronic structure of the tip, we examine the electron densities as 

calculated by DFT prior to discussing the simulated frequency shift and higher harmonics 

images. 

 

7.3.  – Simulation Results and Discussion 

 

In addition to providing the data needed to develop tip-sample force curves, the 

DFT calculations can provide us with insight into the electron density of each system. 

Panels (a-c) of Figure 7.3 show the dρ = 0.08 e-/Å3 isosurface of the change in electron 

density for the He-W(110), He-W(111), and He-W(001) systems, respectively. In each 

case, the helium atom is directly below the front atom of the tip, with the tip-sample 

distance zts = 4.00 Å for the He-W(110) system (Figure 7.3a), and zts = 3.50 Å for both 

the He-W(111) and He-W(001) systems (Figures 7.3b and c). These images are provided 

in order to give spatial perspective to the more instructive constant-height slices of dρ at 

the foremost atom for each of the three tungsten tips, shown in Figure 7.3(d-f). In each 
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density slice, the relative sizes and positions of the first two layers of the tips’ tungsten 

atoms are drawn as black circles (dashed lines across the image). For the W(110) and 

W(001) tips, increased density (dark red) is seen between the front tip atom and the atoms 

to which it is bonded. These areas of increased density reveal the two- and four-fold 

symmetry representative of each tip’s crystallographic orientation. For the W(111) tip, 

the areas of increased density do not reveal the three-fold symmetry that one would 

expect, although such symmetry does appear in the density decreases between the atoms 

(dark blue). Further, as seen in Figure 7.4, a look at the W(111) structure from a bottom-

up view reveals that there is a three-fold nature to the increased density, but it does not 

occur at the forefront of the atom, a result likely attributable to the low planar density of a 

(111) BCC crystal. The spatial orientation of the W(111) tip’s electron density is an 

important point that will be revisited later in this chapter. 
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Figure 7.3 – The dρ = 0.08 e-/Å3 isosurface of the change in electron density for the (a) He-W(110), (b) 

He-W(111), and (c) He-W(001) systems. In each case, the helium atom is directly below the front 

atom of the tip, with the tip-sample distance zts = 4.00 Å for the He-W(110) system and zts = 3.50 Å for 

both the He-W(111) and He-W(001) systems. (d-e) Constant height slices through the density 

corresponding to the systems above. In each density slice, the relative sizes and positions of the first 

two layers of the tips’ tungsten atoms are drawn as black circles (dashed lines across the images). For 

the W(110) and W(001) tips, increased density (dark red) is seen between the front tip atom and the 

atoms to which it is bonded. These areas of increased density reveal the two- and four-fold symmetry 

representative of each tip’s crystallographic orientation. For the W(111) tip, the areas of increased 

density do not reveal the three-fold symmetry that one would expect, although such symmetry does 

appear in the density decreases between the atoms (dark blue). 
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Figure 7.4 – A bottom-up view of the W(111) tip reveals that there is a three-fold nature to the 

increased density (0.08 e-/Å3 isosurface shown), but it does not occur at the forefront of the atom, a 

result likely attributable to the low planar density of a (111) BCC crystal. 

 
The short-range force curves for all five tip-sample systems are shown in Figure 

7.5 (each panel shows all of the force curves for the specified system). The vertical 

dotted line through each set of curves indicates the tip-sample distance (zts) that 

corresponds to the simulated constant-height images of Figure 7.6. This distance is zts = 

3.60 Å for all systems except He-W(110), where images were simulated for zts = 3.90 Å.  

As expected, the tips’ interactions with the inert helium atom exhibit very small 

attractive and repulsive force interactions, with the maximum attractive forces on the 

order of 10 pN. The interaction of the W(001) tip with the larger argon atom (radius 

~1.06 Å compared to helium, radius ~0.28 Å) produced larger forces in both the 

attractive and repulsive regimes, reaching maximum attractive forces of 60 pN. Finally, 

the H-W(001) interaction remained completely attractive over the same tip-sample 

distance range, with maximum attractive forces reaching 3 nN – a reflection of the 

hydrogen atom’s desire to form a bond. This difference in bonding behavior between 
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hydrogen and the noble gas atoms will be shown to be extremely relevant to the 

simulated images produced. 

 

 

Figure 7.5 – All short-range force curves for the five tip-sample systems. The vertical dotted line 

through each set of curves indicates the tip-sample distance (zts) that corresponds to the simulated 

constant-height images of Figure 7.6. This distance is zts = 3.60 Å for all systems except He-W(110), 

where images were simulated for zts = 3.90 Å. Note the larger attractive and repulsive forces exerted 

by the argon atom relative to the helium systems, as well as the fact that the forces for the H-W(001) 

system remain attractive over the range studied here, with the maximum attractive force 

approximately two orders of magnitude higher than the He-W(001) system. 

 

As discussed in the Section 7.2, the force curves calculated from DFT data 

(Figure 7.5) were used to calculate the theoretical harmonics amplitudes from the theory 
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of Dürig for a fundamental oscillation of 1 Å and a cantilever stiffness of 1800 N/m 

(values inspired by a qPlus sensor). Figure 7.6 shows constant height slices through the 

force (1st row), frequency shift (2nd row), and amplitude of the first harmonic (3rd row) for 

each tip-sample system, where the height in each case is illustrated by the dotted vertical 

line in the corresponding panel of Figure 7.5. This distance is zts = 3.60 Å for all systems 

except W(110), for which the distance examined is 3.90 Å. (For the frequency shift and 

first harmonics images, zts refers to the closest approach between tip and sample during 

cantilever oscillation.) Note that we have plotted the amplitude of the first harmonic, 

which is a departure from the original method of simulating the higher harmonics images 

as voltage maps [2, 3] in order to mimic the experimental procedure of Hembacher et al. 

In simulation, converting the amplitude to a voltage is a simple matter of scaling, but 

such scaling is dependent on the experimental measurement system. Thus plotting the 

amplitude offers more fundamental insight, while also emphasizing the challenge of 

measuring sub-picometer oscillations. Note also that the blank corners in the He-W(111) 

images are a result of the triangular grid symmetry used for the DFT calculations (refer to 

Figure 7.2b). 
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Figure 7.6 – Constant height slices through the force (1st row), frequency shift (2nd row), and 

amplitude of the first harmonic (3rd row) for each tip-sample system, where the height in each case is 

illustrated by the dotted vertical line in the corresponding panel of Figure 7.5. This distance is zts = 

3.60 Å for all systems except W(110), for which the distance examined is 3.90 Å. For the frequency 

shift and first harmonics images, zts refers to the closest approach between the tip and the sample 

during cantilever oscillation. Note that we have plotted the amplitude of the first harmonic, which is a 

departure from the original method of simulating the higher harmonics images as rms voltage maps. 

 
The data in Figure 7.6 will be discussed in two parts, distinguished by the blue 

and red rectangular groupings. First, the helium atom simulations (blue grouping): The 

force, frequency shift, and first harmonics images for the three crystallographic 

orientations of tungsten – each probed by a helium atom (panels a-i) – reveal symmetry 

features that resemble the bonding of the front tip atom (see Figure 7.1). The frequency 

shift images show a clear correlation to the tip-sample force cross sections, with the slight 

differences in image contrast attributable to the fact that frequency shift is calculated over 

the full oscillation range of the cantilever. The force ranges are on the order of 10 pN, 
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corresponding to frequency shifts on the order of 10-1 Hz. The first harmonic images are 

inconsistent, in that the contrast for the W(110) and W(001) tip systems (panels c and i, 

respectively) seems diminished with respect to the frequency shift, while for W(111) it is 

enhanced (panel f).  

 In all cases, the symmetry features appear within the diameter of a tungsten atom; 

however, comparison to the cross section of dρ at the front of the W(111) tungsten tip 

atom (Figure 7.3e) suggests that the force, frequency shift, and first harmonic maps are 

not a direct result of the density. Instead, these quantities appear to map the bonding 

symmetry of the front layers of the tip apex. For each system, the weak forces between 

the tip and sample atom are influenced by the relative stiffness of the front tip atom’s 

bonds to the layer above. When the surface probe atom is in a position beneath one of 

these bonds, Pauli repulsion causes the tip-sample force to become less attractive, 

suggesting that the inert helium atom is acting as a “bump in the road” that reveals the 

structure of the tip as it passes over. Interestingly, the total forces remain attractive for the 

W(110) and W(001) tips but become repulsive in the case of W(111). We discuss these 

results further by turning to the second part of the Figure 7.6 data – the three W(001) 

systems (red grouping; panels g-o). 

 Separate simulations were carried out for the W(001) tip model interacting with a 

helium, argon, and hydrogen atom. For helium, as discussed above, the calculated force, 

frequency shift, and first harmonic amplitude images exhibit four-fold symmetry features 

within the diameter of a single tungsten atom. However, these features disappear for both 

the argon and hydrogen systems, which exhibit spherical symmetry. In the case of argon, 

the loss of contrast is explained from a geometric perspective. Shown in Figure 7.7 are 
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the He-W(001) and Ar-W(001) interactions for the same tip-sample distance of 3.50 Å, 

however instead of ball-and-stick models, the atoms have been plotted as solid vdW 

spheres in order to compare their relative sizes. Also shown are the corresponding 

constant-height frequency shift images. For the He-W(001) system, this is the image of 

Figure 7.6h with the relative size of helium indicated by a dotted white circle. For Ar-

W(001), the contour scaling has been reduced to cover a frequency shift range 

comparable to that of He-W(001), and the relative size of argon indicated by a dotted 

pink circle. Though both helium (radius ~0.28 Å) and argon (radius ~1.06 Å) atoms are 

spherically symmetric and have closed valence shells, Figure 7.7 suggests that the larger 

argon atom cannot resolve the small, spatially confined differences in bonding stiffness at 

the front of the tip (W radius ~1.39 Å), even at larger tip-sample distances than shown 

here. This result is analogous to early contact mode AFM experiments which could not 

achieve atomic resolution due to the large contact area between tip and sample – the 

argon interaction is comparable to imaging with a blunt tip. 

For the H-W(001) system, an examination of the system’s electron density 

suggests a possible reason for the loss of contrast. Figure 7.8 compares isosurfaces of 

both total (ρ; shown in gray) and change-in (dρ; shown in yellow) electron density for 

both the He-W(001) and H-W(001) systems (isovalue ρ = dρ = 0.04 e-/ Å3). In each, the 

“surface” atom is in the same position below the front atom of the tungsten tip at a 

distance zts = 3.50 Å. In the case of hydrogen, we see clear evidence of the onset of bond 

formation, which is apparent in all grid positions in the vicinity of the front tungsten atom 

(see Figure 7.9). Because bonding is ultimately governed by the spatial overlap of atomic 

wavefunctions, imaging with a probe atom that significantly alters the electronic density 
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of the tip will directly affect the ability of that atom to resolve the tip’s bonding 

symmetry. In other words, the measurement technique impacts that which is to be 

measured.  

 

 

Figure 7.7 – (a) He-W(001) and (b) Ar-W(001) interactions for the same tip-sample distance of 3.50 

Å, where the atoms have been plotted as solid vdW spheres in order to compare their relative sizes. 

Also shown are the corresponding constant-height frequency shift images. For the He-W(001) 

system, this is the image of Figure 7.6h with the relative size of helium indicated by a dotted white 

circle. For Ar-W(001), the contour scaling has been reduced to cover a frequency shift range 

comparable to that of He-W(001), and the relative size of argon indicated by a dotted pink circle. 
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Figure 7.8 – Isosurfaces of both total (ρ; shown in gray) and change-in (dρ; shown in yellow) electron 

density for both the (a) He-W(001) and (b) H-W(001) systems (isovalue ρ = dρ = 0.04 e-/ Å3). In each, 

the “surface” atom is in the same position below the front atom of the tungsten tip at a distance zts = 

3.50 Å. In the case of hydrogen, we see the onset of bond formation, which is apparent in all grid 

positions in the vicinity of the front tungsten atom (see Figure 7.9) and is responsible for the spherical 

symmetry observed in the simulated experimental images. 
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Figure 7.9 – Clear evidence of the onset of bond formation shown in Figure 7.8 is apparent at all 

simulation grid positions in the vicinity of the front tungsten atom. 

 

7.4. – Conclusions 

 The results presented in the previous section demonstrate the important role 

played by the surface atom used to probe the AFM tip. Clearly a small, non-reactive atom 

is necessary for resolving subatomic features. Most importantly, the results of the He-

W(111) system suggest that the observed features are not a direct reflection of the 

electron density at the AFM tip’s front atom. Instead, the features represent a measure of 

the bonding stiffness between the tip’s front atom and the atoms in the layer above, and 

thus they still appear in a symmetric pattern that reveals the crystallographic orientation 

of the tip apex.  
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8. Conclusions and Outlook 

 
 
 

8.1.  – Intellectual Contributions 

 
 Despite the significant implications of Hembacher’s 2004 experiment for the 

progress of surface science and nanotechnology, this dissertation represents the first 

theoretical feasibility study of subatomic imaging via higher harmonics atomic force 

microscopy (AFM). To perform such a study, we designed a novel method for simulating 

higher harmonics imaging in noncontact AFM (nc-AFM) experiments. The method 

development itself revealed challenges unique to the simulation of higher harmonics 

imaging. These issues were addressed in a manner that allowed fundamental conclusions 

to be drawn regarding the ability of higher harmonics nc-AFM to resolve subatomic 

features. Ultimately, this dissertation work yielded the following major intellectual 

contributions:  

 

1. The application of our simulation method to the tungsten/graphite system studied 

by Hembacher et al. revealed that the bonding lobes of increased charge density 

are in fact present at the tungsten tip’s apex atom and that the corresponding 

higher harmonics images can exhibit subatomic features similar to those observed 

experimentally. Thus, we demonstrated fundamental feasibility. 
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2. We showed that the filtering process used to experimentally measure the 

harmonics does not introduce imaging artifacts, which was the primary alternate 

interpretation of the 2004 experimental results. 

3. We further determined that harmonics averaging (rms measurement) is not an 

appropriate method for enhancing image contrast. We then suggested an 

alternative approach: the individual mapping of the first two harmonics, which 

dominate the rms image contrast under the experimental conditions studied. 

4. We demonstrated the important role played by the surface atom used to probe the 

AFM tip. Specifically, we showed that a small, non-reactive atom is necessary for 

resolving subatomic features. 

5. Most importantly, we determined that the observed subatomic features are not a 

direct reflection of the electron density at the AFM tip’s front atom. Instead, they 

represent a measure of the bonding stiffness between the tip’s front atom and the 

atoms in the layer above, which is why they reveal the symmetry representative of 

the tip apex’s crystallographic orientation. 

 

The first of these contributions was published in Nano Letters in 2011 [2]. The 

second and third were published in Applied Physics Letters earlier this year (2012) [3], 

while the last two are currently being prepared for publication. Additionally, all of these 

results have been presented at the last two International Conferences on nc-AFM (2011 

and 2012) – the most prestigious conference in the field – held in Lindau, Germany, and 

Český Krumlov, Czech Republic, respectively. This exposure has helped establish the 
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University of Maryland as one of the major US institutions working in nc-AFM, and has 

played a role in bringing the 16th International Conference on nc-AFM to UMD in 2013. 

Aside from these major contributions to the field, this dissertation has laid the 

groundwork for future research on higher harmonics imaging in nc-AFM. Nonetheless, it 

is important to note that the simulation method presented herein is broadly applicable in 

the sense that it is not limited to higher harmonics imaging. As demonstrated in Chapter 7, 

specifically, the method can provide insight into the tip-sample forces and frequency 

shifts measured in any nc-AFM experiment. This important point is discussed further in 

the next section. 

 

8.2. – Outlook 

 
 Building on the work presented here to a full theoretical treatment of 

Hembacher’s 2004 experiment will require the following: i) an investigation of the 

effects of simultaneous STM/AFM on the electronic states of the tip-sample system, and 

ii) continuum simulation to study the dynamics of the oscillating cantilever. The future 

direction of this work will undoubtedly involve the simulation of new tip-sample 

systems. 

 The difficulty in assigning a physical source to the contrast that appears in maps 

of higher harmonics in nc-AFM, combined with recent developments in 3-dimensional 

(3D) force spectroscopy [88, 126, 127], have prompted a departure from higher 

harmonics imaging. Recently, single carbon monoxide (CO) molecules have been utilized 

for high resolution imaging [108, 118, 123, 126]. It is relatively simple to attach a single 
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CO molecule to either the end of a probe tip or to a sample surface, and once attached, its 

spatial confinement is able to provide excellent image contrast. Very recently, Welker 

and Giessibl performed 3D force spectroscopy for a tungsten tip imaging a CO molecule 

adsorbed onto a Cu(111) surface [126]. The experiment was again simultaneous 

STM/FM-AFM, and while the tunneling current images revealed atomic resolution, the 

high-resolution 3D force maps (measured in parallel) revealed symmetry features that 

were attributed to the bonding symmetry of the tungsten tip apex. In this case, however, 

the features did not appear within the diameter of a single tungsten atom. Though the 

authors acknowledge that the lateral bending of the CO molecule on the surface may play 

a role in the larger “spread” of these features, they maintain that the symmetry is only 

influenced by the crystallographic orientation of the tungsten tip apex. This experimental 

report provides an excellent tip-sample system to study next with our developed 

simulation method. 
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