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Abstract

Conservation of migratory species exhibiting wide-ranging and multidimensional behav-
iors is challenged by management efforts that only utilize horizontal movements or
produce static spatial–temporal products. For the deep-diving, critically endangered east-
ern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries
interactions are urgently needed to prevent further population decline. We incorporated
horizontal–vertical movement model results with spatial–temporal kernel density estimates
and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically,
we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback
tracks, 2004–2007). Tracks with dive information were used to characterize turtle behav-
ior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential
with deep diving). Recent fishing effort data from Global Fishing Watch were integrated
with predicted behaviors and monthly space-use estimates to create maps of relative risk
of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest aver-
age monthly fishing effort in the study region, and risk indices showed this gear to also
have the greatest potential for high-risk interactions with turtles in a residential, deep-
diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were
added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic
management tool for this leatherback population. These modifications will refine SPTW’s
capability to provide important predictions of potential high-risk bycatch areas for turtles
undertaking specific behaviors. Our results demonstrate how multidimensional movement
data, spatial–temporal density estimates, and threat data can be used to create a unique
conservation tool. These methods serve as a framework for incorporating behavior into
similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement
behaviors.
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Incorporación del comportamiento multidimensional a una herramienta de gestión de
riesgos para una especie migratoria en peligro crítico
Resumen: La conservación de especies migratorias con comportamientos amplios
y multidimensionales se enfrenta a los esfuerzos de gestión que sólo utilizan
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movimientos horizontales o que producen resultados espaciotemporales estáticos. La tor-
tuga laúd, una especie de las profundidades en peligro crítico, necesita con urgencia
herramientas que pronostiquen los lugares en donde las tortugas tienen mayor riesgo de
interactuar con las pesquerías para prevenir una mayor declinación poblacional. Incorpo-
ramos los resultados de un modelo de movimiento horizontal-vertical a las estimaciones
de la densidad del núcleo espaciotemporal y de los datos de amenaza (equipo de pesca
específico) para desarrollar mapas mensuales del riesgo espacial. De manera más concreta,
aplicamos modelos ocultos multiestado de Markov a un conjunto de datos de biotelemetría
(n=28 rastros de tortugas laúd, 2004-2007). Usamos los rastros con información de inmer-
sión para caracterizar el comportamiento de las tortugas como uno de tres estados: en
tránsito, inmersión mixta o por residencia e inmersión profunda o por residencia. Inte-
gramos los datos recientes del esfuerzo de pesca tomados de Global Fishing Watch a los
comportamientos pronosticados y las estimaciones del uso mensual del espacio para crear
mapas del riesgo relativo de las interacciones tortuga-pesquería. La pesca con palangre de
deriva (pelágica) tuvo el promedio mensual más alto de esfuerzo de pesca en la región de
estudio. Los índices de riesgo indicaron que este equipo también tiene el potencial más ele-
vado de interacciones de alto riesgo con las tortugas en estado residencial o de inmersión
profunda. Añadimos los comportamientos y las superficies de riesgo relativo mensuales
a South Pacific Turtle Watch (SPTW) (https://www.upwell.org/sptw), una herramienta
dinámica para la gestión de esta población de laúdes. Estos cambios pulirán la capacidad
de SPTW para proporcionar predicciones importantes de las áreas con potencial alto de
riesgo de pesca accesoria para las tortugas con comportamientos específicos. Nuestros
resultados demuestran cómo los datos de movimiento multidimensional, las estimaciones
de densidad espaciotemporal y los datos de amenaza pueden ser usados para crear una
herramienta única de conservación. Estos métodos sirven como marco para incorporar el
comportamiento a herramientas similares para otros taxones acuáticos, aéreos y terrestres
con comportamientos multidimensionales.

PALABRAS CLAVE

biotelemetría, comportamiento multidimensional, especie migratoria, gestión de riesgos ecológicos, modelos
ocultos de Markov, tortuga laúd
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INTRODUCTION

For animals that traverse long distances between habitats, con-
servation efforts relying on fixed management measures, such
as static spatial area closures, are often ineffective because of
spatial and temporal mismatches with animals’ behavior and
habitat use (Bolger et al., 2008; Bull et al., 2013; Meisingset et al.,
2018; Runge et al., 2014). Successfully conserving a migratory
species depends not only on alleviating harm in the habitats
where they face significant threat, but also on understanding
their movement ecology (Fraser et al., 2018; Westley et al.,
2018). Furthermore, conservation involving animals with ver-
tical dimensions to their behavior (e.g., flying, arboreal, diving)
can be improved through the application of predictive models
of threat risk in relation to vertical behaviors.

Dynamic management (DM), whereby risk assessment and
mitigation interventions are based on data and models that gen-
erate real- (or near real-) time predictions (Bull et al., 2013;
Hobday & Hartog, 2014; Lewison et al., 2015), has become
popular for migratory species conservation. Dynamic manage-
ment has been applied to a variety of taxa, including blue
whales (Hazen et al., 2017), sharks and tuna (White et al.,
2019), sea turtles (Degenford et al., 2021), shorebirds (John-
ston et al., 2020), and manatees (Udell et al., 2019). However,
DM approaches often rely on horizontal species distribution
or presence/presence–absence-based models to predict habitat
use. These approaches do not include multidimensional move-
ment models, which allow for understanding where a target
species is with respect to threats and the motivation (why, how,
when, and where) of their movement with respect to those
threats (Allen & Singh, 2016; Nathan et al., 2008).

Hidden Markov models (HMMs) encompass a suite of sta-
tistical models for time-series data that can be applied to
movement tracks for inference on behaviors without direct
detection (as is often the case with long-distance migrants).
These models describe 2 stochastic processes: an observed,
state-dependent process of telemetry data and accompanying
metrics (e.g., locational positions, speeds, or turning angles
between successive locations) and a hidden process consisting
of N-discrete, unobservable states or behaviors that ultimately
result in observed telemetry metrics (Patterson et al., 2009).
Application of HMMs has progressed rapidly, with recent devel-
opments allowing for more complex movement models in
multiple dimensions (Adam et al., 2019; Conners et al., 2021;
DeRuiter et al., 2017; Leos-Barajas et al., 2017).

These HMMs can be paired with DM approaches to create
integrative conservation tools, expanding beyond static conser-
vation methods. For example, Bedriñana-Romano et al. (2021)
paired a species distribution model (SDM) for blue whales
(Balaenoptera musculus) with a fast-fitting movement model and
marine vessel traffic data to determine significant areas of over-
lap. This comprehensive approach can be adapted for other DM
tools lacking multidimensional movement in risk predictions.
The TurtleWatch approach has been used to mitigate Hawaiian
pelagic longline fisheries interactions with loggerhead (Caretta

caretta) and leatherback (Dermochelys coriacea) turtles (Howell et al.,
2008, 2015). It has been modified to incorporate multiple envi-

ronmental predictors and has been applied in other areas to
predict residence time of critically endangered eastern Pacific
(EP) leatherbacks (Hoover et al., 2019) across their range in the
entire southeastern Pacific (South Pacific Turtlewatch [SPTW]
[upwell.org/sptw]) (Degenford et al., 2021; Hoover et al., 2019;
Liang et al., 2023). The cryptic, highly migratory, and deep
diving nature of leatherbacks has created challenges for under-
standing their movement ecology and protecting them from the
most acute threats at sea. EP leatherbacks, more than other
leatherback populations, likely spend extensive amounts of time
searching for food at depth in the oligotrophic South Pacific
(SP) Gyre (Bailey, Benson, et al., 2012; Bailey, Fossette, et al.,
2012; Schick et al., 2013; Shillinger et al., 2011). Therefore,
previous movement models using only horizontal movement
metrics have likely underrepresented the numbers and locations
of foraging and residential behaviors.

We extended SPTW to determine risk of interaction of turtles
with different fishing gears during their migration and foraging
in international waters, using multidimensional EP leatherback
tracking data and publically-available commercial fishing effort
data. Our approach builds on the methods of similar studies
(Bedriñana-Romano et al., 2021; Roe et al., 2014), which allowed
us to estimate risk by combining layers on gear-specific fishing
effort, spatial intensities of notable movement behaviors, and
kernel density estimates of overall population space use. Ours is
a novel modification, incorporating both horizontal and vertical
movement data to infer behavior. We developed a fast-fitting
and simple multidimensional HMM easily adapted to future
studies on other taxa. Additionally, we employed a multidimen-
sional approach to estimate space use of our population over
time, applying the product kernel estimator algorithm to the
movement tracks to estimate monthly utilization distributions
(UDs) (Keating & Cherry, 2009). We demonstrated these tech-
niques with a biotelemetry data set from Shillinger et al. (2008),
proposing a DM framework for integrating movement, multi-
dimensional behavior, and threat data to determine risk. This
novel approach can be applied to a wide range of urgent con-
servation issues for sea turtles and other migrating species in
dynamic risk environments.

METHODS

Data sets and processing

Biotelemetry data were from 28 postnesting, migratory adult
female leatherbacks from the EP population in Playa Grande,
Costa Rica (Shillinger et al., 2008; Appendix S1). Individuals
were tagged while nesting in January and February of each
year (2004, 2005, 2007). Sea Mammal Research Unit Satellite
Relay Data Logger tags transmitted surface locations via the
ARGOS satellite system. These provided additional pressure-
sensor dive information (e.g., total dive duration, maximum
dive depth, and dive profiles, including intermediate depth
and duration points), with dives categorized as vertical move-
ments when depth reached was >10 and <1500 m. Each
track was processed to obtain daily locations with current-
corrected persistence velocities (Copernicus Marine Service
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[https://marine.copernicus.eu/]), total dive counts, and counts
of deep versus shallow dive types (D1, deep; D2, shallow [Bar-
bour et al, 2023]) (version 4.2.0 [R Core Team, 2022]) (further
processing details in Appendix S2).

Behavioral intensity and hidden Markov
movement models

To predict behavioral and multidimensional states of move-
ment, we developed an HMM that consisted of 3 hidden,
discrete states of vertical (diving) and horizontal (surface) move-
ment for each time series (individual movement tracks): a
transiting behavior state (S1, shallow dives, fast and directed
horizontal movement) and 2 different residential behavior states
(S2, mixture of dive depths, slower and less directed horizon-
tal movement; S3, deep dives, intermediate speeds, and partially
directed horizontal movement). Three states were used because
a previous model that had only 2 behavior states and hori-
zontal data made it difficult to discern foraging and residential
behavior (Bailey, Fossette, et al., 2012). Each behavior also had
relevance for fisheries interaction. Slow, more tortuous move-
ments can result in longer residence times and increased area
usage that increase the risk of interaction with fishing vessels in
the same area; dive depths can increase the risk if turtles are div-
ing at the same depth and area as fishing gear. Each state was
defined by a unique set of values for mean daily move persis-
tence velocity (horizontal movement, the tendency of turtles to
persist in a given direction, obtained by multiplying daily swim-
ming speeds by the cosine of the turning angles), mean daily
number of dives, and daily proportion of D1 (deeper) and D2
shallower) (Barbour et al, 2023) dives. The HMMs were fit with
a Markov chain Monte Carlo algorithm and were implemented
using the Bayesian programing language Stan and its R interface,
rstan (Stan Development Team, 2022). Details on the HMM
specification and fitting are in Appendix S3.

Several R packages have recently been developed to
quickly and easily fit HMMs to time-series movement data
(e.g., moveHMM [Michelot et al., 2016] and momentuHMM
[McClintock & Michelot, 2018]). However, these packages
have little room for user parameter modification and can
result in problems with convergence, identifiability, and bio-
logically meaningful inference (Auger-Méthé et al., 2016).
Modifying the structure of our HMM requires the user to
have a reasonable understanding of HMMs, Bayesian meth-
ods, and the coding software used (e.g., R, Stan). However,
example code and data to replicate methods and simi-
lar results are available on GitHub (https://github.com/
barb3800/ExampleFilesandCode_Barbour_etal). Therein, we
highlight where users can modify model parameters and input
data, perform essential checks for convergence problems, and
determine optimal model structures through model selection
and comparison.

Behavioral intensity and surface creation

To create behavioral intensity spatial surfaces used in an over-
lap analysis, each unique HMM behavioral state prediction was
aggregated across individuals into a 1◦ resolution grid for the
study area by summing each behavioral state in each grid cell for
all tracks combined. This resolution captured a suitable number
of positions, which were on average 28 km apart. The prod-
uct was 3 spatial layers of behavioral intensity (B) in our study
region, 1 for each movement state (s), with each being a matrix
of size m × n (see also Appendix S4):

B(s)
=

⎡
⎢⎢⎣

b
(s)
11 ⋯ b

(s)
1n

⋮ ⋱ ⋮

b
(s)
m1 … b

(s)
mn

⎤
⎥⎥⎦
. (1)

Monthly kernel density estimates

To effectively estimate the probability density function (UD) in
time and space, we used the product kernel estimator algorithm,
developed by Keating and Cherry (2009), on the regularized
location data. The R package adehabitatHR and its kernelkcbase
function (Calenge, 2006) were used for these purposes.

To create a leatherback probability density distribution at
the same temporal scale as the currently existing SPTW tool,
monthly UDs were estimated for each turtle. A smoothing
parameter (h) must be specified to determine these UDs. This
value is somewhat subjective (Keating & Cherry, 2009), and we
chose an h of 3◦ for the spatial dimension (X, Y) and 30 days for
the third dimension, time. This was based on an initial explo-
ration of values for h that yielded a sufficiently heterogeneous
surface and an understanding of the resolution of our data, with
respect to our goal of estimating monthly surfaces.

To obtain population-level monthly UD surfaces, monthly
UD surfaces were averaged across individuals. Following a
migratory corridor into lower latitudes, these turtles have high
regional densities in the months following their release from
the nesting beach in Playa Grande, Costa Rica (Shillinger et al.,
2008). To prevent these track sections from biasing other
monthly UD surface results and to aid in visualizations of
UDs for each month independent of other months, values
for each monthly UD surface were normalized between 0 and
1.

Each UD surface was estimated on an m × n-sized grid equiv-
alent to that of the 3 behavioral state intensity layers. This grid
was converted to a matrix format, resulting in a final product of
12 UD surface layers (U), 1 for each unique month (t).

U(t ) =

⎡
⎢⎢⎣

u
(t )
11 ⋯ u

(t )
1n

⋮ ⋱ ⋮

u
(t )
m1 … u

(t )
mn

⎤
⎥⎥⎦
. (2)
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Monthly fishing effort

To create layers of monthly fishing effort, we utilized open-
source data from Global Fishing Watch (GFW), an online
database that provides high-resolution (1/100th◦) global data
sets on fishing effort across different gear types (Global Fishing
Watch Inc. [https://globalfishingwatch.org/]).

Data for vessels included location and gear type. Fishing
effort is reported with automatic identification system devices
deployed on industrial fishing vessels (6–146 m) and measured
in hours fishing in a grid cell (Kroodsma et al., 2018). Average
fishing effort (2018–2020) was used to best capture recent high
fishing effort, aggregated to the same spatial resolution as the
behavior and UD layers.

To match SPTW’s monthly temporal resolution already pro-
duced for EP leatherbacks, fishing effort was further separated
by month (t). To assess gear-specific interactions, fishing effort
was categorized by gear type (g), of which there were 8 unique
categories (drifting longline, fishing, purse seines, pole and line,
set gillnets, set longlines, squid jigger, trawlers, and tuna purse
seines). Each gear-specific and monthly fishing effort raster was
converted into an m × n matrix (F).

F(t ,g)
=

⎡
⎢⎢⎣

f
(t ,g)

11 ⋯ f
(t ,g)

1n
⋮ ⋱ ⋮

f
(t ,g)

m1 … f
(t ,g)

mn

⎤
⎥⎥⎦
. (3)

Relative risk of interaction

To determine the relative risk of gear-specific bycatch in multi-
ple dimensions, we applied an overlap analysis. This consisted of
using elementwise multiplication of the individual turtle behav-
ior matrices (B), monthly fishing effort surfaces for each gear
(F), and monthly UD estimates (U). A higher empirical over-
lap or risk of interaction would occur when a particular cell had
more of a particular behavior, a higher effort for a particular
gear type, a higher population density, or any combination of
the 3.

All matrix layers were first scaled to have the same nonzero,
positive range (values 1–5). Elementwise cell multiplication
(Appendix S4) was used to find the resulting monthly overlap
matrices (O) between fishing effort, UD estimates, and turtle
behavioral states. This resulted in 324 initial overlap matrices
(one for each unique combination of month, fishing gears, and
behavioral state) (Equation 4). To create a matrix of relative risk
(R) (Equation 5), the value of each cell in the initial overlap
matrix, O, was divided by the sum of all cells within O, repre-
senting the proper weight of each cell in the matrix. Each final
matrix, R, was then visualized as part of a monthly heat map of
relative risk of interaction and incorporated into SPTW online
monthly maps.

O(t ,s,g)
=

⎡
⎢⎢⎣

f
(t ,g)

11 b
(s)
11u

(t )
11 ⋯ f

(t ,g)
1n

b
(s)
1n

u
(t )
1n

⋮ ⋱ ⋮

f
(t ,g)

m1 b
(s)
m1u

(t )
m1 … f

(t ,g)
mn b

(s)
mnu

(t )
mn

⎤
⎥⎥⎦
, (4)

R(t ,s,g)
=

1
∑m

i=1

∑n

j=1 f
(,g)

i j b
(s)
i j u

(t )
i j

O(t,s,g). (5)

To create a temporal index of high relative risk of interaction,
values within the 75th to 100th quantiles for each final matrix,
R, were extracted and summed across each unique combina-
tion of variables (behavioral state, month, gears), providing a
quantitative table of the relative risk of significant overlap.

RESULTS

Behavioral intensity and hidden Markov
movement models

The HMMs converged for each individual, for a total of 28
successful models. The 3 hidden states were distinct with
respect to the means and standard deviations of their state-
dependent parameters (Table 1; Figure 1a), indicating that the
HMM successfully identified 3 distinct behavioral states for the
parameters of daily move persistence velocity (high persistence
velocity: high speeds, low turning angles; low persistence veloc-
ity: low speeds, high turning angles) and daily proportion of
deep dives.

Population-level inferences were obtained by examining the
distribution of horizontal and vertical movement variables for
each predicted behavioral state. On average, turtles spent 62%
(SD 19) of their time in S1 behaviors (shallower dives, high
move persistence velocities), 19% (10) in S2 behaviors (mix-
ture of dive depths, low move persistence velocities), and 20%
(14) in S3 behaviors (deeper dives, intermediate move persis-
tence velocities) (Table 2). When in an S1 state, turtles had a
mean dive count (over the entire study period) of 444 dives
(332) versus 128 (120) and 209 (233) times, respectively, in
S2 and S3 states. Turtles moved with an average move persis-
tence velocity of 27.8 km/day (16.3) in an S1 state, versus 17.9
(15.1) and 22.0 (13.2) km/day in S2 and S3 states, respectively,
(Table 2).

The behavioral states also showed strong latitudinal and tem-
poral trends. The S1 behaviors were dominant around the
equator, through the migratory corridor in latitudes north of
the equator (Shillinger et al., 2008), and throughout the middle
of the SP Gyre (15–35◦ S) (Figure 2a). The S2 and S3 behav-
iors peaked at low latitudes (∼5◦N), mid-latitudes south of the
equator (5–20◦ S), and along the edges of the gyre into higher
latitudes (20–30◦ S) (Figure 2a). Plotting the monthly propor-
tion of each behavioral state indicated the highest proportions
of S1 behaviors in December and February through April; S2
behaviors in May and January; and S3 behaviors in May and
November (Figure 1b). Density histograms of behavioral states
by month and latitude showed S2 and S3 behaviors had the
largest peaks in mid-latitudes (5–20◦ S) from April to August
(Figure 2b), with another March peak in areas north of the equa-
tor (0–10◦ N). The S1 behaviors had the largest peaks following
departure from nesting beaches in latitudes north of the equa-
tor in February and March and in lower latitudes (∼30◦ S) in
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TABLE 1 Population-level parameter means and standard deviations for behavioral states (S1, S2, S3)a of individually fit hidden Markov models for 28
individuals in the eastern Pacific leatherback population.

Parameterb State 1 (SD) State 2 (SD) State 3 (SD)

μ 30 (9.9) 2.0 (1.3) 21 (8.4)

σ 8.9 (3.0) 5.9 (4.6) 4.8 (3.2)

P 0.16 (0.048) 0.68 (0.096) 0.84 (0.048)

λ 8.1 (4.8) 8.1 (4.8) 8.1 (4.8)

aStates: S1, shallow dives, fast and directed horizontal movement; S2, mixture of dive depths, slower and less directed horizontal movement; S3, deep dives, intermediate speeds, and partially
directed horizontal movement.
bDescriptions: μ and σ (Cauchy distribution), move persistence; P (Poisson distribution), proportion of deep type dives; λ (Poisson distribution, a constant [Appendix S3]), mean number of
dives per day.

FIGURE 1 (a) For eastern Pacific leatherback turtles, individual means and standard deviations for hidden Markov model (HMM) parameters for move
persistence velocity (μ) as a function of the parameters for the proportion of deep D1 (Barbour et al., 2023) dives (P) and (b) monthly proportions of HMM-derived
behavioral states ( S1, transiting behavior; S2, residential or foraging behavior; S3, deep diving and exploratory behavior) for 28 leatherback turtles in the eastern
Pacific.
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FIGURE 2 (a) Location and (b) monthly densities of hidden-Markov-model-derived behavioral states (S1, transiting behavior; S2, residential or foraging
behavior; S3, deep diving or exploratory behavior) as a function of latitude for daily positions of 28 leatherback turtles in the eastern Pacific (gray dashed line,
equator).

January (Figure 2b). For both latitude and month, S2 and S3
behaviors were mostly co-distributed with respect to patterns in
the horizontal dimension.

Monthly kernel density estimates

Monthly UD estimates for leatherbacks in our region revealed
variation in core-use areas over time (Appendix S5). Turtles ini-
tially had a single peak in their probability density surface during

February and March, due to their departure from the nesting
beach and their following of a migration corridor into more
southerly latitudes. Around April, they passed into their forag-
ing region (south of 8.27◦ S) and began to radiate out into the
SP Gyre, where multiple core-use areas emerged. Their distribu-
tion peaked near the Galapagos Islands (equator) in April and
May; in the center of the gyre May through July; along the east-
ern edge of the gyre (∼90◦W) in May, June, and September; and
near the southern edges of the gyre (30◦ S) in November and
December.
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Monthly fishing effort

Throughout the study area, fishing effort distribution varied
by month and by gear type (Appendices S6 & S7; also see
globalfishingwatch.org/map). Of the 8 fishing gears, drifting
longline and squid jigger gears had very high average monthly
fishing effort relative to the others (Appendix S5). Average
fishing effort for drifting longline gear peaked in September
through December. Average fishing effort for tuna purse seines
exhibited a smaller peak in October. In contrast, squid jig-
ger gear exhibited reduced fishing effort in September through
November but had bimodal peaks in January through February
and July to August.

Aggregated across gears, total monthly fishing effort was
quite variable spatially and monthly (Appendix S7). In Febru-
ary through March, effort had broader spatial distributions, with
concentrations in latitudes south of the equator (∼10–20◦ S).
Effort was focused around the equator in January and May
through July. Effort occurred in hotspots slightly south of the
equator (∼5◦ S) and toward the eastern edge of the SP Gyre in
April and September through December.

Relative risk of interaction

We produced monthly relative risk of interaction maps between
behavior states and fishing gears, where monthly predictions of
relative risk were visualized for each gear and behavior com-
bination. The full product is available online as an overlay on
the SPTW interactive map (upwell.org/sptw). For brevity, we
only provide resulting monthly maps of relative risk of interac-
tion between drifting longline gear and leatherbacks performing
deep-diving behaviors (behavior S3) (Figure 3). Other behav-
iors (S1, S2) are available for comparison in Appendix S8.
Results showed temporal and spatial differences in relative risk
for leatherbacks performing S3 behaviors, with peaks in lat-
itudes north of the equator in February through March; in
the center of the SP Gyre (∼10–20◦ S) in May through June
and September through November; and along the eastern and
southern edges of the gyre in June and November through
December.

These results were further reflected in the developed indices
representing high relative risk, which were summarized across
the unique groupings of month, behavioral state, and fishing
gear (Table 3). Drifting longline gear had the highest risk values
with deep-diving leatherbacks in October through November
and the lowest risk values in January. Across gears, the highest
risk values were seen for turtles performing a mixture of dive
types (D1, deeper; D2, shallower), with lower move persistence
(S2) in March and May. For turtles performing transiting behav-
iors with shallower dives (S1), risk values peaked in March and
July. Other notable high risk values were seen for set longline,
and trawler gears with turtles displaying transiting (S1) behav-
iors in May. Gear totals across all months and behavioral states
showed drifting longline gear had the highest total relative risk
of interaction with leatherbacks, followed by set longline gear.
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DISCUSSION

Our results demonstrate how multidimensional movement data
for a critically endangered and migratory species can be inte-
grated with spatial–temporal data on overlapping threats to
produce a risk management tool. This approach can be used
by conservationists and managers to target areas on a cho-
sen temporal (e.g., monthly) and spatial scale where species
are performing behaviors that put them at risk for harmful
interactions with threats. Additionally, we provide a method
for creating a risk index that extends these predictions beyond
illustrative maps of interactions, allowing for the level of
overlap of a species performing particular behaviors to be
quantified with respect to time and threat type. Our results
provide a novel addition to the dynamic management tool
for EP leatherbacks, SPTW (Hoover et al., 2019). We mod-
eled this approach with anticipation of application to similar
conservation studies on other taxa, especially those with cryp-
tic, multidimensional behaviors that have challenged previous
initiatives.

The product we produced with this analysis is immedi-
ately and urgently applicable. A recent population viability
assessment (PVA) (Philip Miller, IUCN SSC Conservation Plan-
ning Specialist Group) indicated a high probability (>90%) of
extirpation for the Costa Rica EP leatherback subpopulation
(<45 years), with the Mexico subpopulation and the combined
metapopulation facing extirpation in <55 years ( Copsey et al.,
2021). Another PVA (Laúd OPO Network, 2020) estimated EP
leatherbacks will be extirpated by the year 2059 if bycatch is
not significantly reduced. Our results highlight drifting (pelagic)
longlines to have a high relative risk of interaction with EP
leatherbacks while they are performing S2 (foraging, resting)
and S3 (deep-diving, exploratory) behaviors in productive areas
of the ocean gyre (Table 3; Figure 3). Given the low likeli-
hood of another tagging data set of equivalent size ever being
acquired for this population, the method we provide to produce
dynamic risk maps will contribute to existing products for EP
leatherbacks (e.g., SPTW) and may help slow their decline in
concert with ongoing ex situ (e.g., head-starting) and in situ (e.g.,
nest protections) conservation efforts.

The results from our HMMs and monthly UDs showed EP
leatherbacks have multidimensional behaviors varying in space
and time and latitudinal differences in monthly space use and
identified behaviors (S1, S2, S3) consistent with past findings.
Previous dynamic time warp clustering analyses showed that
dives for turtles in this population can be classified into unique
categories (D1 [deeper dives] or D2 [shallower dives]), each rep-
resenting different vertical behaviors (Barbour et al., 2023). The
S3 behavioral state identified by the HMMs likely represents the
use of deep dives (D1) to shed excess heat gained from trav-
eling through warm equatorial waters (Okuyama et al., 2021;
Shillinger et al., 2010, 2011; Wallace & Jones, 2008) and prey
search in the nutrient-poor SP Gyre, where zooplankton prey
is dispersed at depth (Saba et al., 2008; Shillinger et al., 2011;
Stromberg et al., 2009). The S2 behavioral state is likely more of
a traditional foraging or residential state, where turtles are using
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FIGURE 3 Example monthly areas of relative risk for eastern Pacific leatherbacks interacting with drifting longline gear while they are in a deep diving
behavioral state (S3, deep diving and exploratory behavior). Relative risk is shown on a 1 ̊ resolution grid found through elementwise multiplication of monthly
matrices of S3 behavioral intensities, drifting longline fishing effort, and utilization distributions. Maps are currently incorporated in the online tool, South Pacific
TurtleWatch (upwell.org/sptw).

slower speeds and more tortuous movements to perform diur-
nal dives (deeper D1 dives during the day, shallower D2 dives
at night) to forage on prey patches near more productive gyre
areas (Bailey, Fossette, et al., 2012; Fernandez-Alamo & Farber-
Lorda, 2006; Okuyama et al., 2021; Saba et al., 2008; Shillinger
et al., 2011; Barbour et al., 2023).

The S1 behaviors were the shallowest (primarily D2 dives)
and had the highest move persistence (fast and straight move-
ments), corresponding to a transiting behavioral state. S1
behaviors had peaks north of the equator, where turtles are
known to be migrating within a corridor into the SP Gyre
(Shillinger et al., 2008), and peaks in southern latitudes (∼20–
35◦ S), corresponding to a couple of divergent tracks transiting
through the oligotrophic gyre center (Figure 2a). The UD esti-
mates of monthly population-level turtle space use reflected
patterns seen in the HMMs, with hotspots near the Galapagos
Islands (∼5◦ N latitude), along the eastern (∼90–100◦ W) and
southern (south of 30◦ S) edges of the gyre, and in the region
around 10◦ S latitude (Figure 2a; Appendix S5). These corre-
spond to potential foraging areas, due to equatorial and island
upwelling, frontal and convergence zones, and a shallower ther-
mocline and nutricline compared to other gyre areas (Bailey,
Fossette, et al., 2012; Fernandez-Alamo & Farber-Lorda, 2006;
Saba et al., 2008).

Priority conservation areas were identified from the combi-
nation of monthly UD surfaces for each behavioral state (S1,

S2, S3) with fishing effort. Of the 8 fishing gears analyzed, drift-
ing longlines and squid jiggers greatly surpassed other gear in
their average monthly fishing effort in the region (Appendix S6).
However, the overlap analysis with turtles showed leatherbacks
are most at risk of interaction with drifting longlines because of
spatial and temporal overlap (Table 3). The index of relative risk
showed drifting or pelagic longline gear had the most high-value
risk indices, especially where turtles are moving slower or diving
deeper (S2 and S3 behaviors) (Table 3). For S2 behaviors, where
turtles likely have higher residence times and increased area cov-
erage due to lower move persistence velocities (e.g., foraging or
residential behavior), risk of interaction with fishing gears may
be increased when they overlap spatially and temporally with
vessels similarly targeting productive fishing areas.

Risk may also be increased for turtles moving with interme-
diate move persistence velocities and diving at depth (behavior
S3) in areas where fishing gear, such as deep drifting longlines,
is deployed at similar depths (Table 3; Figure 3). Pelagic long-
lines pose a danger to leatherbacks at depth (Moore et al., 2009;
Spotila et al., 2000; Wallace et al., 2010; Appendix S9), but previ-
ous risk models have not accounted for vertical behavior in their
predictions of spatial–temporal overlap between leatherbacks
and longlines (Roe et al., 2014).

Conservation efforts for this population can use our monthly
surface maps and quantitative indices of risk to disseminate
monthly products to managers and fishers. These can serve
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as spatial–temporal predictions of the most beneficial fishing
avoidance areas (Welch et al., 2019), with maps made available to
users through an interactive online interface (upwell.org/sptw).
Application can be further extended to identify which fishing
gears could employ gear modifications to increase target prey
catches while reducing bycatch (Sales et al., 2010; Watson et al.,
2005).

Dynamic management methods have become increasingly
useful and accessible for marine migratory species. Such species
often utilize international waters outside the feasible scope of
static management approaches, which are limited by national
jurisdictions and physical boundaries. Dynamic management
approaches, however, typically use presence–absence data of
target species in relation to environmental covariates (Lewison
et al, 2015; Maxwell et al., 2015) without integrating models
of movement and/or multidimensional behaviors. Our appli-
cation of HMMs to horizontal and vertical movement data
allowed for a comprehensive understanding of space use over
time. Although dynamic management approaches have pri-
marily been developed for marine species, many terrestrial
migratory species (e.g., elevational migrants, such as birds, bats,
and ungulates [Hsiung et al., 2018]) demonstrate multidimen-
sionality and temporal complexity to their spatial movements.
These species could benefit from incorporating multidimen-
sional, multistate movement models into conservation efforts,
including the identification of priority conservation areas.

For species that migrate thousands of kilometers, the mas-
sive spatial scale of their movements, combined with individual
variability in habitat use and behavior, can make highlight-
ing priority conservation areas challenging. These challenges
are further magnified for critically endangered species: rapidly
shrinking populations inherently limit how many animals can be
observed or tagged over time, potentially biasing understand-
ing of recent habitat use and behavior. Our movement data
are the largest tracking data set for the EP leatherback popula-
tion. Therefore, we were limited to using biotelemetry data that
did not overlap temporally with recent fishing effort data, and
we assumed EP leatherbacks currently follow the same behav-
ioral and spatial–temporal patterns at the time of data collection
(2004–2007). This assumption is not implausible because pre-
vious research supports that turtles use a migratory corridor as
they depart their nesting beaches for their foraging region in the
SP Gyre (Shillinger et al., 2008), and it is hypothesized, based on
round-trip migration data from other populations, that adults
and subadults will return to foraging sites interannually with
fidelity (James et al., 2005; Saba et al., 2008). However, future
risk models for this population could be refined by addition-
ally using simulations of migratory movements for multiple age
classes (Gaspar et al., 2012), incorporating data for male turtles,
and adding multidimensional abiotic data (Barbour et al, 2023).

Although our approach serves as a useful risk model of
monthly interactions between turtle behavior and fishers in the
SP, it could be further advanced by incorporating relationships
with environmental or habitat covariates; creating higher reso-
lution predictions of risk and behavior using higher resolution
movement data; estimating population-level UDs while simul-

taneously accounting for autocorrelation and duration bias in
movement tracks; and using abiotic and movement data at depth
to create three-dimensional product maps of risk. We provide
this product as an initial assessment of EP leatherback risk
of interaction with key fisheries. Future modifications include
updating monthly predictions with new fisheries effort data as it
becomes available and modifying the model structure to address
stakeholder (managers, nonprofit organizations, fishers) input
and needs.

We present this holistic application of risk management for a
critically endangered population of leatherback turtles, with the
immediate goal of informing current conservation approaches.
We provide a framework for integrative risk management that
can be modified to benefit both aquatic and terrestrial species
that demonstrate multidimensional and cryptic behaviors.
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