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In this thesis, which consists of three parts, we investigate problems related

to systems biology and collective behavior in complex systems.

The first part studies genetic networks that are inferred using gene expression

data. Here we use established transcriptional regulatory interactions (TRIs) in com-

bination with microarray expression data from both Escherichia coli (a prokaryote)

and Saccharomyces cerevisiae (a eukaryote) to assess the accuracy of predictions of

coregulated gene pairs and TRIs from observations of coexpressed gene pairs. We

find that highly coexpressed gene pairs are more likely to be coregulated than to

share a TRI for Saccharomyces cerevisiae, while the incidence of TRIs in highly

coexpressed gene pairs is higher for Escherichia coli. The data processing inequality

(DPI) of information theory has previously been applied for the inference of TRIs.

We consider the case where a transcription factor gene is known to regulate two genes



(one of which is a transcription factor gene) that are known not to regulate one an-

other. According to the DPI if certain conditions hold, the non-interacting gene

pairs should have the smallest mutual information among all pairs in the triplets.

While we observe that this is sometimes the case for Escherichia coli, we find that

it is almost always not the case for Saccharomyces cerevisiae, thus indicating that

the assumed conditions under which the DPI was derived do not hold.

The second part of this dissertation is related to the dynamical process of

epigenetic heritability. Epigenetic modifications to histones may promote either ac-

tivation or repression of the transcription of nearby genes. Recent experimental

studies show that the promoters of many lineage-control genes in stem cells have

bivalent domains in which the nucleosomes contain both active (H3K4me3) and

repressive (H3K27me3) marks. Here we formulate a mathematical model to in-

vestigate the dynamic properties of bivalent histone modification patterns, and we

predict some interesting and potentially experimental observable features.

The third part of this dissertation studies dynamical systems in which a large

number N of identical Landau-Stuart oscillators are globally coupled via a mean-

field. Previously, it has been observed that this type of system can exhibit a variety

of different dynamical behaviors including clumped states (in which each oscillator

is in one of a small number of groups for which all oscillators in each group have

the same state which is different from group to group), as well as extensive chaos (a

situation in which all oscillators have different states and the macroscopic dynamics

of the mean field is chaotic). One of our foci is the transition between clumped states

and extensive chaos as the system is subjected to slow adiabatic parameter change.



We observe and analyze explosive discontinuous transitions between the clumped

states and the extensively chaotic states. Also, we study the fractal structures of

the extensively chaotic attractors.
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Chapter 1: Introduction

This thesis is divided into three parts. The first and second parts apply tools

from non-linear dynamics and complex networks to questions in systems biology.

For the first part, we consider gene networks inferred using experimental gene ex-

pression data and an information theoretical approach. We investigate how these

expression inferred networks compare to other, much higher quality and more ex-

pensive experimentally inferred networks obtained by other means. For the second

part, we formulate a model to study pattern formation and heritability in the dy-

namics of epigenetic processes. In the third part, we study the emergent dynamical

behaviors in large interconnected oscillator systems. In particular, we consider a

mean-field coupled system of Landau-Stuart oscillators, and study the dynamical

states of this system and the transition between these states.

1.1 Chapter 2: Interpreting Patterns of Gene Expression

In cells, genes can be transcribed to mRNA molecules, which are then trans-

lated to proteins. Some of the proteins can, in turn, regulate some of the genes.

Thus genes can be regarded as interacting with each other via a network. It is

important to recover the structure of gene interaction networks in order to help
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elucidate underlying genetic regulatory processes. We refer this as ‘reconstruction

of gene networks’.

Mutual information and related metrics have been applied to gene expression

data to infer previously unknown interactions in genetic networks. In Chapter 2, we

investigate the implications of high mutual information between two genes in their

occurrence of expression. Such high mutual information may imply that one of the

genes directly regulates the other gene, or it is possible that they are both regulated

by a third gene, or even something else entirely. To address this issue, we consider E.

coli and S. cerevisiae for which reliable regulatory gene interactions have previously

been determined. We demonstrate that a gene pair with high mutual information

does not necessarily imply a transcriptional regulatory link between them. We show

that these misleading correlations commonly occur due to joint regulation by a third

gene. The work in this chapter was published in PLoSOne in 2012 [1].

1.2 Chapter 3: Modeling Dynamics of Histone Modifications

Epigenetic factors are mechanisms which can change gene activity heritably

without changing the underlying DNA sequence. In a cell nucleus, DNA is wrapped

around proteins called histones, which can undergo several kinds of epigenetic mod-

ifications, either activating or repressing the expression of target genes. Modified

histones are believed to catalyze similar modifications in nearby histones, leading

to complex dynamics and pattern formation. DNA regions wrapped around his-

tones with multiple modifications control certain steps in embryonic development.
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However, the mechanisms by which this occurs remain unclear.

In Chapter 3, we proposed and studied a dynamical model of histone modi-

fication which, unlike previous models, treats multiple types of modification simul-

taneously. Our model predicts interesting, potentially experimentally observable

features of bivalent domains (such as their slow formation but rapid decay) and

suggests that cell differentiation may be due to the existence of several dynamical

attractors. The work in this chapter was published in PLoSOne in 2013 [2].

1.3 Chapter 4: A Mean-Field Coupled System of Landau-Stuart Os-

cillators

Understanding the emergence of macroscopic collective behavior and its na-

ture is important in many scientific disciplines. Here we considered, as a model of

such behavior, an interconnected system of oscillators. In this system, all oscillators

are assumed to be identical and globally coupled via a mean field. Previously, it has

been observed that this type of system can exhibit a variety of different dynamical

behaviors, including “clumped states” and extensively chaotic states. For a clumped

state attractor, there is a small number of different clumps, and oscillators in each

clump behave identically. On the other hand, in extensively chaotic states, each

oscillator behaves differently and moves chaotically. In Chapter 4, we investigate

the dynamics of mean-field coupled systems of oscillators and how they change with

continuous variation of the coupling strength between oscillators. We also study the

fractal structures of the extensively chaotic attractors. The qualitative results of

3



our study should also apply to many types of systems in which a large number of

dynamical units are globally coupled.
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Chapter 2: Interpreting Patterns of Gene Expression: Signatures of

Coregulation, the Data Processing Inequality, and Triplet

Motifs

This work in this chapter was published in PLoSOne in 2012 [1].

2.1 Introduction

If two genes share a transcriptional regulatory interaction (TRI), one or both

of them must be a transcription factor gene (TF gene) which can produce a protein

called a transcription factor (TF) that regulates the mRNA expression of the other

gene. The collection of genes and TRIs work as a dynamic network enabling cells

to function and cope with changes in their environment [3]. The increased avail-

ability of high-throughput gene expression data has lead to a variety of approaches

for inferring TRIs [4–8]. A typical assumption of these approaches is that strongly

correlated mRNA expression profiles (coexpressed profiles) indicate TRIs between

two genes if one or both genes is a TF gene. More sophisticated methods of inferring

TRIs integrate gene expression with other information, e.g. position weight matrices

from sequence motif analysis, as in [9]. Here, we study the use of gene expression
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alone in determining TRIs. In particular, we focus on the z-score metric used in the

CLR algorithm (described in section 2.2). This metric has been argued to give good

performance in inferring TRIs [4]. On the other hand, it has been shown in the case

of Saccharomyces cerevisiae that gene pairs with a high degree of positive coexpres-

sion according to the Pearson correlation coefficients may indicate coregulation by

TFs [10]. This raises the question of how to biologically interpret high levels of coex-

pression between gene pairs, particularly in the case of non-time-course data. In this

study, we use publicly available prokaryotic bacterium Escherichia coli (E.coli) and

eukariotic Saccharomyces cerevisiae (yeast) microarray expression data (these data

are collected under different experimental conditions) along with established TRIs

to evaluate the accuracy of different predicted gene pairs. In particular, we consider

gene pairs that are coexpressed above a selected threshold level. By comparing

these gene pairs to the TRIs in the established networks, we obtain estimates of the

precision and recall for the prediction that these pairs are TRIs and the alternate

prediction that these pairs are coregulated. Our goal is to provide researchers with

information that will aid them in evaluating the reliability of using coexpression

data to predict transcriptional regulatory interactions and/or coregulation.

In addition, we will also study and classify fan-out motifs [3]: subgraphs

composed of a TF gene that coregulates two genes that do not interact directly. In

some algorithms using coexpressed profile data to infer TRIs, these coregulated gene

pairs are identified as TRIs if they have coexpressed profiles and one of the genes

is a TF gene. Different approaches have been applied to identify non-interacting

gene pairs in triplets of significantly coexpressed genes, where the main motivation
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has been to lower the false positive rate of inferring TRIs [5, 11–14]. In this study,

we compare the performances of two prominent approaches. One approach is based

on application of the data processing inequality (DPI) [5,15]. The DPI is a general

result that can be rigorously derived and states that if, gene X2 interacts with

both genes X1 and X3 and X1and X3 do not interact, then the mutual information

between X1 andX3 is smaller than the mutual informations of either of the other two

gene pairs. (we emphasize that the satisfaction of the technical condition1 of non-

interaction of X1 and X3 is not clear for actual gene interactions and we will discuss

this subsequently in section 2.3.) In contrast, another approach claims that the

non-interacting gene pairs in fan-out motifs have the maximum mutual information

of gene pairs in the triplet [14]. Although [16] points out that application of the

DPI in the former approach can fail when mRNA and protein levels of the TF are

weakly correlated, this does not necessarily imply the failure of that approach, and

the DPI continues to be used by some researchers [5,15]. One purpose of our study

is to address the extent to which the DPI is useful in this context by evaluating its

performance using both gene expression and established TRI data. Given these data,

we extract fan-out motifs in which at least one of the two non-interacting genes is a

TF gene (as is the case when the DPI is commonly applied) and coexpression levels

of all gene pairs are above certain thresholds. For each such threshold, we calculate

the fraction of the non-interacting gene pairs having the largest, intermediate and

smallest mutual information of all pairs in the triplet.

1More formally, if x1, x2, x3 are the expression levels of genes X1, X2, X3, then the probability

densities for simultaneously observing expression levels x1 and x3 given x2 satisfy P (x1, x3|x2) =
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A previous study showed that coregulated gene pairs with a high degree of

coexpression tend to be positively correlated [10]. We also explore whether a similar

tendency exists in expression correlations between the TF gene and each of the

coregulated genes in the datasets we study. In this case, we consider fan-out motifs

regardless of whether or not the two coregulated genes interact directly and look

for patterns in expression correlations among genes in these three gene subgraphs.

To do this, we divide these subgraphs into different types according to the signs

of Pearson correlations between gene pairs in the subgraph. There are six such

possibilities which we call 8correlation motifs′. Also, we investigate the classification

of these motifs in relation to our obtained mutual information and z-score metrics.

In the following, we first describe the data and the z-score similarity measure.

Next, we compare the performance of using coexpression to infer TRIs to that of

using coexpresssion to infer coregulated gene pairs. We then investigate the DPI in

fan-out motifs, and we classify these motifs on the basis of the correlations between

pairs of genes in the motifs. Conclusions are drawn in section 2.4.

We emphasize that our study focuses on testing the validity of the DPI

method for pruning indirect interactions, and we have not attempted to test other

pruning methods, although our testing techniques could possibly be applied them.

For example, alternative proposed pruning techniques include MRNET [11], condi-

tional mutual information [12], and conditional independence [13]. Also, see Ref. [17]

for a comparison of DPI with some of these method.

P (x1|x2)P (x3|x2). That is, for fixed x2, the expression levels x1 and x3 are uncorrelated, and the

probability of measuring an expression level x1 (or x3) depends only on x2 and not on x3 (or x1).

8



2.2 Methods

2.2.1 Microarray Expression Data

We use gene expression microarray data from the Many Microbe Microarray

Database (M3D) [18] to analyze both E.coli and yeast. The expression data consist

of a compendium of 445 E.coli and 247 yeast Affymetrix Antisense2 microarray

expression profiles for 4345 and 5520 genes, respectively. These microarray data were

collected under different experimental conditions: different genetic backgrounds,

media, growth conditions and perturbing chemicals.

2.2.2 Known Transcriptional Regulatory Interactions

We use RegulonDB for the established network for E. coli and four databases

for yeast. We summarize these databases in Table.2.1.

Table 2.1: The number of TFs, regulated genes and edges in our established TRI

data set of known TRIs for E.coli and yeast.

Species Data set of known TRIs No. of TFs No. of regulated genes No. of edges

E.coli RegulonDB 171 1410 3458

yeast Lee 02A (Chip-chip) 96 2007 3747

yeast Harbison 04 (Chip-chip/Sequence motif) 99 1732 3186

yeast Milo 02 (Compilation) 106 451 801

yeast Lee 02B (Compilation) 114 536 1017

For E.coli, we obtain an established network of TRIs from RegulonDB ver-

sion 6 [19]. 2% of the genes involving in TRIs from RegulonDB cannot be found in
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our microarray data. We remove interactions related to those genes from our TRI

established network, as well as self-regulatory TRIs. This results in a TRI estab-

lished network data set consisting of 3458 interactions between 171 TF genes and

1410 genes.

For yeast, a single, generally accepted standard TRI database (analogous to

RegulonDB for E.coli) has not been established. Therefore, we use four sources of

infered TRIs. As with E.coli, we filter out self-regulatory interactions and interac-

tions with genes that are not found in our microarry data.

The first database (Lee 02A (Chip-chip)) [20] was obtained using the tech-

nology of chromatin immunoprecipitations in vivo with microarray (Chip-chip) to

identify the binding of TFs to promoter regions in yeast. This database contains

3747 links (bindings) between 96 TFs and 2007 target genes. (Note that the physi-

cal bindings of a TF to the promoter regions of a gene does not necessarily imply a

regulatory relationship between the TF producing gene and target gene.)

The second yeast database (Harbison 04 (Chip-chip/Sequence motif)) [21]

was constructed via several steps. First, cis-regulatory sequences, which may act as

recognition sites for TFs were identified by combining information from genome-wide

location data by Chip-chip, phylogenetically conserved sequences and previously

published evidence. Motif discovery methods were applied to these regions in order

to discover significant TF-related sequence motifs. Two standards have to be met

for these significant motifs in order to conclude the binding of a TF to a promoter

region: first, the binding pair is required to have been assigned a high confidence

score (p ≤ 0.001) by Chip-chip; second, the promoter sequences are required to be
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conserved among sensu stricto Sccharomyces species. The data set thus obtained

includes 3186 interactions between 99 TF genes and 1732 genes.

The third yeast database (Milo 02 (Compilation)) [22] was extracted from

the Yeast Proteome Database (YPD) [23]. This data set, a compilation from various

sources in the literature, provides a list of TRIs including 800 interactions between 73

TF genes and 550 genes and is available to download at www.weizmann.ac.il/mcb/UriAlon.

The forth yeast database (Lee 02B (Compilation)) [20] is also a compilation

of previously discovered TF-gene bindings (proved by in vivo binding, in vitro bind-

ing, indirect binding and sequence analysis). This collection of interactions is used

to compare with the TF-gene binding data from Chip-chip experiments. The result

yields 1017 TRIs between 87 TF genes and 400 target genes and can be downloaded

at web.wi.mit.edu/young/regulator/ network.

Among our four TRI yeast databases, we believe that the first two (Chip-

chip and Chip-chip/Sequence motif) are of generally better quality. We also note

that these first two database (in contrast to the other two) cover almost the whole

genome. However, since the four yeast databases may reflect different aspects of the

true TRIs, we will give results of analyses using all four.

2.2.3 Quantifying the Similarity of Expression Profiles

For each pair of genes, we characterize the similarity between their mRNA

expression profiles by three metrics: Pearson correlation (r), mutual information

(MI), and z-score (z). The z-score is used by the CLR algorithm and is related to
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the empirical distribution of MI values. We here provide a brief review of these

metrics.

The Pearson correlation r. Given m genes (including all TF genes), we

compute an estimate of the m(m− 1)/2 Pearson correlations between gene Xi and

Xj, r(Xi, Xj), using

r(Xi, Xj) =

∑n
k=1(xik − x̄i)(xjk − x̄j)

(n− 1)sisj
,

where xik(xjk) is the gene expression level of gene Xi(Xj) in the kth experimental

condition, and n denotes the number of conditions. x̄i(x̄j) and si(sj) are the mean

and stardard deviation of the gene expression level of gene Xi(Xj).

The mutual information, MI. We compute an estimate of the mutual infor-

mation between genes Xi and Xj based on the formula,

MI(Xi;Xj) =
∑

xi∈Xi

∑

xj∈Xj

p(xi, xj) log
p(xi, xj)

p1(xi)p2(xj)
, (2.1)

where xi(xj) is the variable denoting the expression level of gene Xi(Xj). Also,

p(xi, xj) is the joint probability distribution, and p1(xi) and p2(xj) are the marginal

probability distribution function for each gene. The expression levels from our

databases are continuous variables. To compute the mutual information between

continuous random variables, we use a B-spline mutual information estimation code

from M3D website [18], where this code used a B-spline smoothing and discretiza-

tion method with 10 bins and third order B-spline to estimate the probabilities in

(2.1) [18, 24].

The z-score. The CLR algorithm is an extension of the Relevance network

method based on mutual information [5] and uses the z-score between two genes to
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infer TRIs. The z-score, Z(Xi;Xj), is defined as

Z(Xi;Xj) =
√
Z2

i + Z2
j ,

where

Zi =
MI(Xi;Xj)−MIi

σi
;

MIi and σi are the mean and standard deviation of the set of values of MI(Xi;Xk),

k = 1, ..., m.

2.2.4 Error Bars on A Fraction

For a sample population of size N , and Ñ < N of these measured to have

some specific property, the standard error of Ñ/N is estimated to be

[Ñ(N − Ñ)]1/2/N3/2. (2.2)

2.3 Results

As detailed in section 2.2, we obtain microarray expression data for E.coli

and yeast from M3d [18], and established transcriptional regulatory interaction data

sets from RegulonDB [19] for E.coli and from four data sets [20–22] for yeast. We

use these data in two different types of analyses. In the first type of analysis, we use

the z-score metric (described in section 2.2) to determine strongly coexpressed gene

pairs, and we compare these with gene pairs in our established TRI data sets. In the

second type of analysis, we use the established TRI data together with expression
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correlation values (using different metrics) to obtain different types of three-gene

interaction motifs.

2.3.1 Signatures of Coregulation

There is a question as to whether the degree of coexpression is a predictor of

a transcriptional regulatory interaction (TRI), a coregulated gene pair, or both. A

high degree of coexpression, as measured by Pearson correlation, has been claimed to

indicate coregulated gene pairs [10]. We also note that, a high degree of coexpression

between expression profiles of TF-gene pairs, as measured by a high z-score, has been

argued to represent TRIs between TF genes and target genes [4]. A benefit of using

the z-score to measure the degree of coexpression is that it takes into account the

noise in gene expression levels and is therefore considered to be a better measure

of coexpression than raw MI. In what follows, we use the z-score to investigate the

above question. We find that a high degree of coexpression is more likely to predict

coregulated gene pairs for yeast, while it is more likely to predict TRIs for E.coli.

When using coexpression to infer TRIs, a TRI is predicted when a gene

pair has at least one TF gene and a z-score above a chosen cutoff. When using

coexpression to infer coregulation, a gene pair is predicted to be coregulated if its

z-score is above a chosen cutoff. To evaluate the quality of these predictions, we

use several quantitative measures, namely, the precision (pr), the recall (re), and

the F-score. For coregulated gene pairs/TRIs, the precision (pr) is defined as the

ratio of the number of correctly predicted coregulated gene pairs/TRIs to the total
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number of predicted coregulated gene pairs/TRIs. The recall (re) is defined as the

ratio of the number of correctly predicted coregulated gene pairs/TRIs to the total

number of coregulated gene pairs/TRIs. Then F-score defined as 2Pr × Re/(Pr +

Re), is a measure of the quality of the prediction that reflects the tradeoff between

precision and recall. Figure 2.1 shows plots of F-score versus z-score cutoff for

E.coli (Fig. 2.1A) and for yeast (Figs. 2.1B-E) for three different predictions (the

red, green and blue curves). For E.coli (Fig. 2.1A), the F-score for the prediction of

coregulated gene pairs (blue curve) is larger than that for TRIs (red curve) when the

z-score cutoff is smaller than 3. However, when the z-score cutoff is greater than 3,

prediction of TRIs performs better. For the four established TRI data sets of yeast

(Figs. 2.1B-E), F-score values for the prediction of coregulated gene pairs (blue

curves) are significantly larger than those for the prediction of TRIs (red curves)

for all z-score cutoff, so indicating that the performance of using z-score to predict

coregulated gene pairs is better than that of using z-score to predict TRIs. Also,

for both predictions of coregulated gene pairs and TRIs (Figs. 2.1D-E), the plots

corresponding to the Milo02 and Lee02B TRI data sets have F-score peaks around

z-score cutoffs of 3-4 while the other two plots have their maximum F-score at z-

score cutoffs of 1. This is an indication for the differences among the TRIs in the

four established TRI data sets.

In addition to exploring the incidence of coregulation in all gene pairs with

z-score above a certain value, we separately consider only the set of gene pairs

with at least one TF gene and z-score above said value. The corresponding F-score

curves are plotted in green in Fig. 2.1 for both E.coli and yeast. For E.coli, this
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Figure 2.1: F-score vs. z-score cutoff F-score versus z-score cutoff for prediction

of coregulated gene pairs and TRIs are plotted in blue and red resepectively. Also,

the F-score curves for the prediction of coregulated gene pairs in coexpression gene

pairs with at least one TF gene is plotted in green. The five subplots correspond to

the five established TRI data sets for E.coli and yeast(Table.2.1), A) RegulonDB,

B) Lee et al. 2002(Chip-chip), C) Harbison et al. 2004 (Chip-chip/sequence motif),

D) Milo et al. 2002 (Compilation) and E) Lee et al. 2002 (Compilation).
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green F-score curve is always below that of prediction of coregulated gene pairs

from non-restricted coexpressed gene pairs (blue curve). Also, it is below the red

F-score curve for prediction of TRIs when z-score cutoff is greater than 2. For

yeast, considering Figs. 2.1B and 2.1C, we see that the F-score curve for prediction

of coregulated gene pairs from restricted coexpressed gene pairs is below that of

prediction of coregulated gene pairs from non-restricted coexpressed gene pairs, but

above the F-score curve for prediction of TRIs. This indicates that, for both E.coli

and yeast, coregulated gene pairs with at least one TF are likely to have smaller

z-score compared to the unrestricted coregulated gene pairs. We have also studied

the precision-recall graphs for all the prediction for both E.coli and yeast and the

same results are obtained (Fig. 2.2). Our studies reveal that when we go from E.coli

to yeast, the performance of predicting TRIs using z-score degrades. However, the

performance of using z-score to predict coregulated gene pairs from coexpressed gene

pairs without restriction is reasonable for both E.coli and yeast.

Because the microarray sample size for E. coli is much larger than that for

yeast, we also employed a sampling approach to demonstrate that the difference in

sample sizes does not bias the above conclusions. Specifically, we have recomputed

Fig. 2.1A using randomly selected sets of E. coli samples comparable in size to that

for our yeast results (Figs. 2.1B-E). This result, given in Fig. 2.3B, shows that the

E.coli patterns using the smaller sample size are virtually identical to that in Fig.

2.1A.

Also, TRIs are relatively easier to justify for E. coli than for yeast since E.

coli is a much simpler organism than yeast. This might suggest that the yeast TRI
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Figure 2.2: Precision vs. recall. A-E) Precision versus recall for prediction

of coregulated gene pairsand TRIs are plotted in blue and red, resepectively. Also,

the precision-recall curve for the prediction of coregulated gene pairs in coexpression

gene pairs with at least one TF gene is plotted in green. The five subplots correspond

to the five established TRI data sets for E.coli and yeast(Table. 2.1), A)RegulonDB,

B) Lee et al. 2002(Chip-chip), C) Harbison et al. 2004 (Chip-chip/sequence motif),

D) Milo et al. 2002(Compilation) and E) Lee et al. 2002 (Compilation).

18



Figure 2.3: F-score vs. z-score cutoff for E. coli. F-score versus z-score cutoff for pre-

diction of coregulated gene pairs and TRIs are plotted in blue and red, resepectively.

Also, the F-score curves for the prediction of coregulated gene pairs in coexpression

gene pairs with at least one TF gene is plotted in green. A B-spline estimator is

used to calculate the mutual information. The three subplots, A, B and C, corre-

spond to different number of samples, A) uses 445 samples (this figure is the same

as Fig. 2.1A), B) uses 194 samples, and C) uses 194 samples and adds noise. The

number 194 is derived from 247 (samples for yeast in the data used to derive Figs.

2.1B-E) 4345 (E.coli genes) 5520 (yeast genes)=194. For B), the smaller number

of samples was obtained by random selecting from the 445 E. coli RegulonDB sam-

ples used in A). For C), the number of sample is the same as B), and 10% of the

links in RegulonDB are deleted and each deleted link is replaced by a link from a

randomly selected TF gene to a randomly selected gene. The fact that these figures

are virtually identical confirms that any difference between our result in A) with the

corresponding yeast results (Figs. 2.1B-E) is not due to the larger sample size of the

E. coli microarray database or to lower noise in the RegulonDB database relative

to our yeast databases.
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databases are more noisy than the RegulonDB database. In order to demonstrate

that noise in yeast TRI databases does not bias our conclusions, we recompute the

E. coli result (Fig. 2.3B) by randomly deleting 10% of the links in RegulonDB and

then replacing each deleted link by a link from a randomly selected TF gene to a

randomly selected gene. This result, given in Fig. 2.3C, shows that the E. coli

patterns in Fig. 2.1A are robust to adding noise to the TRI database.

The above tests (decrease of the E. coli sample size and addition of noise to

RegulonDB) confirm the robustness of our conclusion (based on Fig. 2.1) that when

we go from E.coli to yeast, the performance of predicting TRIs using z-score degrades

while the performance of predicting coregulated gene pairs from coexpressed gene

pairs without restriction is reasonable for both E.coli and yeast.

2.3.2 MI-motifs

Given an established TRI data set, we can identify all fan-out motifs, where

a fan-out motif is defined as a subgraph formed by two non-interacting genes and

a TF gene that coregulates them. Here we only consider fan-out motifs in which

one of the two coregulated genes is itself a TF gene. The three gene pairs in each

fan-out motif are assigned values according to their respective mutual information

values. Then we define the three types of MI-motifs shown in Fig. 2.4A, MI1,

MI2 and MI3, which refer to the case that the value of MI of the non-interacting

gene pair is the largest, intermediate and smallest as compared to that of the two

TF-gene pairs respectively. If more fan-out motifs are identified as MI3-motifs, the
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data processing inequality(DPI) is a good tool for inferring the non-interacting gene

pairs in fan-out motifs. Conversely, if MI1-motifs dominate, the non-interacting gene

pairs predominantly have the largest MI values within their fan-out motifs, and one

might predict that the largest MI indicates coregulation in such a situation, we call

this the 8max MI approach′. [14].

In order to address the utility of the DPI in this context, we compare the

relative abundances of the three MI-motifs in the set of fan-out motifs described

above, and we assess how the coexpression levels of gene pairs in fan-out motifs is

related to these relative abundances. To do this, we generate different groups of

fan-out motifs as we vary the z-score cutoff. For each z-score cutoff, we include

only those fan-out motifs in which all gene pairs have a z-score above the cutoff.

For each group of fan-out motifs, we compare the relative abundance of the three

MI-motifs. We plot the fractions of the three MI-motifs found as a function of

the z-score cutoff on all gene pairs. Figs. 2.4B-F show results for both E.coli and

yeast. For E.coli (Fig. 2.4B), the relative abundance of MI3-motif is always higher

than 40% while that of MI1-motif is always lower than 25%. When the z-score

cutoff is larger than 2, the relative abundances of MI1, MI2 and MI3-motifs have

no distinguishable differences. For the analyses of the Lee02A, Harbison04 and

Lee02B data sets of yeast (Figs. 2.4C,D and F), the relative abundances of MI3-

motif are always lower than 30% while those of MI1-motif are always higher than

40%. Especially, for the analyses of the Lee02A and Harbison 04 data sets, the

relative abundances of MI1-motif are always around 50%. However, for the analysis

of the Milo02 data set (Fig. 2.4C), the relative abundances of the three MI-motifs
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Figure 2.4: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs. Non-interacting gene pairs in fan-out motifs are restricted to gene

pairs with at least one TF gene. A)MI-motifs in which the non-interacting gene

pair has the largest, intermediate and smallest MI. Fractions of MI1, MI2 and MI3-

motifs are plotted in blue, red and green respectively for B)E.coli and C-F)yeast.

The five subplots correspond to the five established TRI data sets for E.coli and

yeast(Table.1), B) RegulonDB, C) Lee et al. 2002(Chip-chip), D) Harbison et al.

2004 (Chip-chip/sequence motif), E) Milo et al. 2002 (Compilation) and F) Lee et

al. 2002 (Compilation).
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are similar and cannot be distinguished. For all four yeast databases, there is no

obvious increasing/decreasing trend for these relative abundances with increasing

z-score cutoff. This implies that the DPI in the case of E.coli works better than

the max MI approach and the random prediction for inferring non-interacting gene

pairs in fan-out motifs (relative abundance of each MI-motif is equal to one-third

in random prediction). However, the performances of the DPI and the max MI

approaches are the opposite for yeast. The max MI approach works better than the

random case while the DPI fails in inferring non-interacting gene pairs in fan-out

motifs (i.e., the DPI prediction is more often false than a random unweighted guess

of the non-interacting links).

Similar to Fig. 2.3, we show in Fig. 2.5 that the main important features of

Fig. 2.4B are robust to decrease of the E.coli sample size to be comparable to the

yeast sample size, and also robust to add noise to the E. coli TRI database.

In order to demonstrate that our results are not snesitive to the method used

for mutual information estimation (a B-spline estimator), we have recomputed Fig.

2.4B for E.coli and Figs. 2.4C-F for yeast using both empirical [11] and Miller-

Madow [25] estimators with both equal-width and equal-frequency binning (10 bins

for both). We choose these two estimators because it has been shown that the

ARACNE inference method (a method based on DPI) gives the better performance

when using these two estimators with equal-frequency binning [17]. The results are

given (Figs. 2.6-2.10), and show that both the E.coli and yeast results recomputed

using the empirical and Miller-Madow mutual information estimators with both

equal-width and equal-frequency are similar to those in Fig. 2.4B and Figs. 2.4C-F.
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In particular as before, for E. coli the DPI approach for pruning the non-interacting

links in fan-out motifs works better than random and the max MI approach, but it

works worse than random in yeast in general.

Regarding the strikingly poor performance in yeast, we note that the DPI,

while a rigorous result, only applies when the hypothesis under which it was derived

applies (see section 2.1), and it is unclear to what expect this is the case for gene

expression data. One mechanism violating the necessary hypothesis is the possible

imperfect correlation between a TF’s mRNA level and the production rate of its

protein (see Ref. [16]). Another mechanism that would have an equivalent effect is

that it can take considerable time for mRNA to be translated into its protein, and

thus there can be a significant time lag between the expression levels of a TF and

that of its target genes. Still another mechanism that might be relevant is that the

expression of target genes may be dependent, not only on the presence of the TF

protein involved in the fan-out motif considered, but may also be strongly influenced

by other fluctuating factors. Our results suggest that at least one mechanism like

those above is most often operative in yeast, but not in E.coli. Therefore, the

applicability of the data processing inequality may be organism-dependent.

2.3.3 Correlation-motifs

A previous study showed that coregulated gene pairs with a large magnitude

of Pearson correlation coefficient between their expression profiles tend to be posi-

tively correlated [10,26]. In our study, instead of using Pearson correlation, we will
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Figure 2.5: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for E. Coli. Non-interacting gene pairs in fan-out motifs are restricted

to gene pairs with at least one TF gene. A) MI-motifs in which the non-interacting

gene pair has the largest (MI1 schematic), intermediate (MI2 schematic) and small-

est (MI3 schematic) MI. Fractions of MI1, MI2 and MI3 motifs are plotted in blue,

red, and green, respectively. A B-spline estimator is used to calculate the mutual

information. As in Fig. 2.3, the three subplots, B, C and D, correspond to B) 445

samples (this is the same as Fig. 2.4B), C) 194 samples, and D) 194 samples plus

noise.
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Figure 2.6: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for E. Coli with using different MI estimators as in Fig. 2.4B.

A) MI-motifs in which the non-interacting gene pair has the largest, intermediate

and smallest MI. Fractions of MI1, MI2 and MI3 - motifs are plotted in blue, red

and green respectively. The five subplots correspond to the use of different MI

estimators and discretization method, B) B-spline (the same figure as in Fig.2.5C),

C) Empirical [9] and equal width (eqw), D) Miller- Madow (MM) [24] and equal

width (eqw), E) Empirical and equal frequency (eqf) and F) Miller- Madow (MM)

and equal frequency (eqf). These plots show that the conclusion that the green plot

is generally above the red and blue plots is independent of the MI estimator that is

employed.
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Figure 2.7: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for Lee02A (Chip-chip) of yeast as in Fig. 2.4C. A) MI-motifs in

which the non-interacting gene pair has the largest, intermediate and smallest MI.

Fractions of MI1, MI2 and MI3 - motifs are plotted in blue, red and green respectively.

The five subplots correspond to the use of different MI estimators and discretization

method, B) B-spline (the same figure as in Fig. 2.4C), C) Empirical[9] and equal

width (eqw), D) Miller- Madow (MM)[24] and equal width (eqw), E) Empirical and

equal frequency (eqf) and F) Miller- Madow (MM) and equal frequency (eqf). These

plots show that (in contrast to Fig. 2.6) the green plot is consistently below the

blue plot independent of the MI estimator that is employed.
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Figure 2.8: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for Harbison 04 (Chip-chip/Sequence Motif) of yeast as in

Fig. 2.4D. A) MI-motifs in which the non-interacting gene pair has the largest,

intermediate and smallest MI. Fractions of MI1, MI2 and MI3 - motifs are plotted in

blue, red and green respectively. The five subplots correspond to the use of different

MI estimators and discretization method, B) B-spline (the same figure as in Fig.

2.4D), C) Empirical[9] and equal width (eqw), D) Miller- Madow (MM)[24] and

equal width (eqw), E) Empirical and equal frequency (eqf) and F) Miller- Madow

(MM) and equal frequency (eqf). These plots show that (in contrast to Fig. 2.6)

the green plot is consistently below the blue plot independent of the MI estimator

that is employed.
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Figure 2.9: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for Milo 02 (Compilation) of yeast as in Fig. 2.4E. A) MI-motifs

in which the non-interacting gene pair has the largest, intermediate and smallest MI.

Fractions of MI1, MI2 and MI3 - motifs are plotted in blue, red and green respectively.

The five subplots correspond to the use of different MI estimators and discretization

method, B) B-spline (the same figure as in Fig. 2.4E), C) Empirical[9] and equal

width (eqw), D) Miller- Madow (MM)[24] and equal width (eqw), E) Empirical and

equal frequency (eqf) and F) Miller- Madow (MM) and equal frequency (eqf). These

plots show that (in contrast to Fig. 2.6) the green plot is consistently below the

blue plot independent of the MI estimator that is employed.
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Figure 2.10: Fractions of MI-motifs vs. the z-score cutoff of non-interacting

gene pairs for Lee 02B (Compilation) of yeast as in Fig. 2.4F. A) MI-motifs

in which the non-interacting gene pair has the largest, intermediate and smallest MI.

Fractions of MI1, MI2 and MI3 - motifs are plotted in blue, red and green respectively.

The five subplots correspond to the use of different MI estimators and discretization

method, B) B-spline (the same figure as in Fig. 2.4F), C) Empirical[9] and equal

width (eqw), D) Miller- Madow (MM)[24] and equal width (eqw), E) Empirical and

equal frequency (eqf) and F) Miller- Madow (MM) and equal frequency (eqf). These

plots show that (in contrast to Fig. 2.6) the green plot is consistently below the

blue plot independent of the MI estimator that is employed.
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use the z-score metric to measure the degree of coexpression. An initial question is

whether the previously found pattern in expression correlation of coregulated gene

pairs [10,26] also appears when the z-score metric is used to quantify coexpression.

Figure 2.11 shows a plot of Pearson correlation versus z-score for E.coli. In this

figure, gene pairs that are coregulated and not coregulated according to RegulonDB

compilation are plotted as blue and red dots respectively (plots for yeast turn out

to show similar features to the plot for E.coli and are not shown here). To mean-

ingfully represent relative densities of coregulated (blue) and not coregulated (red)

pairs in the presence of overlapping of the printed points, we plot points one by

one, alternating between blue and red and selecting the gene pairs in the chosen

group (blue and red) randomly. This plot shows that a high z-score (z-score >6) is

associated with positive correlation and that high z-score gene pairs are likely to be

coregulated [the density of blue dots (coregulated gene pairs) is higher than that of

red dots (gene pairs that are not coregulated) when the z-score is high]. Motivated

by this finding, we consider the situation when a TF gene regulates two other genes,

and we ask whether other patterns exist in expression correlation between the TF

gene and each of the coregulated genes when coregulated gene pairs have a high

degree of coexpression.

We refer to the TF gene and the two genes that it regulates as a coregula-

tion subgraph and we identify these subgraphs from the established TRI databases.

However, in contrast to fan-out motifs (discussed in section 2.3.2), coregulated genes

in these coregulation subgraphs may or may not interact directly. To further ex-

plore the correlation and coexpression among genes in coregulation subgraphs, we
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Figure 2.11: Pearson correlation vs. z-score. Gene pairs that are coregulated

are represented by blue dots and those that are not coregulated are represented by

red dots for E.coli.
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define six correlation-motifs (C-motifs) by classifying the coregulation subgraphs

into different types according to the combinations of the signs of Pearson corre-

lation between the expression of coregulation subgraph genes. There are six such

types as shown in Figs. 2.12A and 2.12G, where C denotes the TF gene and the

other two genes are denoted A and B. The + and − signs on the links denote pos-

tive and negative Pearson correlation. We apply Fisher’s z-transformation to the

coefficients of Pearson correlation and obtain the 95% confidence intervals for all

coefficients [27]. Among all coregulation subgraphs, we only consider cases where

all Pearson correlation coefficients have confidence intervals indicating they have

less than a 5% probability to be of the opposite sign.

Next we investigate how the relative abundances of the six C-motifs depends

on the z-score between the A and B genes. We first generate different groups of

coregulation subgraphs using different z-score cutoffs on the coregulated gene pairs,

and for each group, we calculate the relative abundances of the six C-motifs amongst

all coregulation subgraphs. Figures 2.12B-F show plots of the fractions of different

C-motifs as a function of the z-score cutoff on coregulated gene pairs for both E.coli

and yeast. Only the fractions of C1, C2 and C3-motifs are shown (respectively

plotted in red, blue and green) as those of the other C-motifs (Fig. 2.12G) are very

small at all z-score cutoffs. For E.coli (Fig. 2.12B), when the z-score cutoff is above

2, the fractions of C1 and C2-motifs are always about 75% and 18% respectively,

and the fraction of C3-motifs are always lower than those of C1 and C2-motifs and

decreases to near zero around a z-score cutoff of 5. For yeast (Figs. 2.12C-F),

the C1 and C2-motifs are again the most abundant, while C3-motifs are the least
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Figure 2.12: Fractions of C-motifs in a group of subgraphs of coregulation

vs. z-score cutoff on coregulated gene pairs in the group. A) C1, C2 and C3-

motifs. B-F) The fractions of C1, C2 and C3-motifs are plotted in red, blue and green

(solid lines) respectively. The five subplots correspond to the five established TRI

data sets for E.coli and yeast(Table.2.1), B) RegulonDB, C) Lee et al. 2002(Chip-

chip), D) Harbison et al. 2004 (Chip-chip/sequence motif), E) Milo et al. 2002

(Compilation) and F) Lee et al. 2002 (Compilation). G) C4, C5 and C6-motifs.
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abundant and their fractions decrease to near zero when the z-score cutoffs are high

enough (around 6). In particular, for the analysis using the Lee02A TRI data set

(Fig. 2.12C), C1-motifs are more abundant than C2-motifs when the z-score cutoff

is higher than about 5.5, but they are less abundant than C2-motifs when the z-

score cutoff is lower than 5.5. For the analyses using the other three TRI yeast

data sets (Figs. 2.12D, 2.12E and 2.12F), C1-motifs are generally more abundant

than C2-motifs (except for Fig. 2.12F for the cutoffs greater than 8, where they

are approximately equal). The observed differences between the analyses of the

four different yeast TRI data sets indicates that there may be significant differences

in coregulated genes in different data sets. Overall, results from both E.coli and

yeast are consistent with our Fig. 2.11 in that coregulated gene pairs with a high

degree of coexpression are more likely to be positively correlated. In addition, these

results also imply that when coregulated gene pairs have a large enough z-score,

the correlations between the TF gene and the two other genes in the coregulation

subgraphs both have the same correlation sign (i.e., they are C1 or C2 motifs).

We now further characterize the difference between the coregulated gene pairs

in C1 and C2-motifs used in the plots of Figs. 2.12B-F. For each coregulated gene

pair, we find their respective mutual information and z-score. Then we construct

scatter plots of mutual information versus z-score for all these coregulated gene pairs

for both E.coli and yeast (Fig. 2.13) where points corresponding to C1-motifs are

plotted in red and those corresponding to C2 motifs are plotted in blue. There are

more C2-motifs (blue) than C1-motifs (red). Since overlapping is present, the order

in which we plot the points is significant (as for our previous figure, Fig. 2.11).
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In the present case we proceed as follows. We first plot randomly selected blue

(C2-motifs) points until the number of remaining unplotted C2-motifs is equal to

the number of the C1-motifs. After that, points are plotted one by one, alternating

between randomly selected C1-motifs and randomly selected C2-motifs. For E.coli,

data points for coregulated gene pairs in C1-motif are well mixed with those for

coregulated gene pairs in C2-motif in Fig. 2.13B. Thus there is no apparent distinc-

tion observed between coregulated gene pairs in C1 and C2-motifs for E.coli. Our

analyses of the Lee02A and Harbison04 yeast data sets (Figs. 2.13C and 2.13D)

show that mutual information is approximately linearly related to z-score for both

groups of coregulated gene pairs (corresponding to blue and red), and that, the

slope of the linear relationship for C2-motifs (blue)is larger than that for C1-motifs

(red). However, distinct slopes are not observed in the analyses of the other two

yeast established TRI data sets (Figs. 2.13E and 2.13F). We do not presently have a

good idea as to a mechanism leading to the observed distinctive C1 and C2 patterns

seen in Figs. 2.13C and 2.13D.

Regarding a possible reason for the presence of the splitting observed in

Figs. 2.13C and 2.13D versus the lack of such a splitting in Figs. 2.13E and 2.13F,

we note that the links in the Milo 02/ Lee 02B databases (used for Figs. 2.13E

and 2.13F) are very different from those in the Lee02A/ Harbison 04 databases

(used for Figs. 2.13C and 2.5D). In particular, the Lee02A and Harbison 04 TRI

databases are based on Chip-chip experiments, while links in Milo02 and Lee02B

are inferred by several different methods such as changing in the expression of the

target gene owing to the deletion (or mutation) of the TF gene. It has been shown
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Figure 2.13: Mutual information vs. z-score for coregulated gene pairs in

C1 and C2-motifs. A) C1 and C2-motifs. B-F) Data points for coregulated gene

pairs in C1 and C2-motifs are plotted in red and blue respectively. The five sub-

plots correspond to the five established TRI data sets for E.coli and yeast(Table.1),

B) RegulonDB, C) Lee et al. 2002(Chip-chip), D) Harbison et al. 2004 (Chip-

chip/sequence motif), E) Milo et al. 2002 (Compilation) and F) Lee et al. 2002

(Compilation).

37



that different TRI inference methods, such as Chip-chip, targeted gene disruption,

and overexpression of TFs, capture distinct facets of the transcriptional regulatory

program, and uncover disparate biological phenomena [28]. The fact that a splitting

feature is observed in Figs. 2.13C and 2.13D but not in Figs. 2.13E and 2.13F may

be because different biological processes are reflected in their database constructions.

2.4 Discussion

Our study demonstrates that the performances of predictions of coregulated

gene pairs and transcriptional regulatory interactions determined by coexpression

levels are organism dependent. For Escherichia coli, the prediction of transcriptional

regulatory interactions outperforms prediction of coregulated gene pairs when the

predictions are determined by coexpression with z-score greater than 3. However,

the situation is very different for Saccharomyces cerevisiae, with the prediction of

coregulated gene pairs outperforming the prediction of TRIs for all z-score cutoffs.

Many methods of inferring transcriptional regulatory interactions or coregulated

gene pairs have been developed and shown to give excellent performance in specific

organisms. However, based on our study, applications of these method to other

organisms should be conductd with caution as their predicting powers may depend

on the organism studied.

The Data processing inequality(DPI) has been applied to the prediction of

transcriptional regulatory interactions after excluding highly coexpressed gene pairs

that do not interact directly. The results show that the application of the DPI to
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Escherichia coli data works better than random prediction of gene pairs. However,

the performance of the application of DPI in Saccharomyces cerevisiae is worse than

that of random prediction. The strong failure of applying DPI to yeast data suggests

that factors/mechanisms exist in yeast that lead to an imperfect correlation between

the protein and mRNA levels of TFs.

In our study investigating patterns of expression correlation among genes in

coregulation subgraphs, we find two distinct types of coregulated gene pairs: one

in which the correlation between the expression of the TF gene and both its two

target correlated genes are positive and another in which they are both negative. In

particular, we present scatter plots of mutual information versus z-score for these

two types of gene pairs. The plots for yeast reveal that the two types of coregulated

gene pairs split into two parts, thus characterising the differences between these two

types of gene pairs. Further studies are needed to explain the mechanism leading

to this behavior.

Motivated by the increasing availability high-throughput gene expression

data, a variety of approaches have been developed to infer TRIs or gene coregu-

lation. Our studies in this chapter reveal that some approaches which apparently

lead to useful prediction in some model organisms may fail in other organisms.
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Chapter 3: Modeling the Dynamics of Bivalent Histone Modifica-

tions

This work in this chapter was published in PLoSOne in 2013 [2].

3.1 Introduction

Histones can undergo various types of covalent modifications, such as methy-

lation and acetylation, which serve as an additional layer of transcriptional control by

mediating the chromatin accessibility and by recruiting regulatory proteins [29,30].

Experimental studies using chromatin immunoprecipitation followed by massively

parallel sequencing (ChIP-seq) have suggested that different cell types can be char-

acterized by different histone modification patterns [31].

The molecular mechanisms underlying chromatin state establishment, main-

tenance, and heritability remain incompletely understood. A number of mechanisms

are implicated [32], including (1) sequence-specific recruitment through interactions

between chromatin regulators and DNA binding factors; (2) recruitment of chro-

matin regulators to existing histone marks; (3) histone marks deposited by tran-

scriptional machineries; (4) RNA mediated recruitment; and (5) stochasticity asso-

ciated with DNA replication. However, any single mechanism alone is insufficient
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for chromatin state establishment [32, 33].

One of the best characterized chromatin states is a bivalent domain, a seg-

ment of the nucleosome array, in which H3K4me3 (an active mark) and H3K27me3

(a repressive mark) coexist on most individual nucleosomes within the domain [34].

Bivalent domains are thought to be an important feature of stem cells. For exam-

ple, bivalent domains have been discovered in the promoters of most lineage-control

genes in embryonic stem cells, and most of these domains become monovalent upon

cell differentiation [31,34–37]. Also, a recent study observed that gene activation in

the differentiation process occurs in conjunction with the decay of repressive marks

in bivalent domains [38]. In particular, one prominent proposal [34] for the function

of bivalent domains is that the H3K27me3 marks act to repress the lineage-control

gene in stem cells, while the H3K4me3 marks poise these genes for activation upon

cell differentiation. Thus this proposal suggests that activation of these genes in

differentiated cells is determined by the existence of bivalent domains in stem cells.

These findings indicate the importance of bivalent domains and motivate further

study in order to illuminate the underlying principles and mechanisms involved in

their formation and evolution.

It has been proposed that the formation of chromatin domains is consistent

with a model that includes not only the chemical interactions between histone marks,

but also nucleation sites where domains are more likely to form [39]. The dynamics

of histone modifications have been studied both theoretically and experimentally for

some time [39–43]. In general, histone methylation marks are catalyzed by a variety

of methyltransferase enzymes which may act singly or cooperatively. For example,
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H3K27me3 marks are catalyzed by Ezh2, a core member of the Polycomb group

proteins. In addition to the normal stochastic conversion which would be expected

from each of these individual enzymes, there is also a feedback process between

the histone marks and the enzymes [44]. Existing H3K27me3 marks may attract

Polycomb group complexes, which enhance nearby methylation [45, 46]. A similar

recruitment mechanism has also been suggested for H3K4me3 via Trithorax protein

complexes (TrxG) [47]. In addition, there exists experimental evidence supporting

a negative feedback mechanism between H3K4me3 and H3K27me3 marks via the

action of histone demethylases [48–52].

Certain specific DNA sequences may serve as the docking sites of modification

enzymes and may therefore be associated with enhanced local attraction of histone

marks [32, 53]. We refer to these as nucleation sites. For example, CpG islands are

strongly enriched in bivalent domains in human and mouse embryonic stem cells [47],

and appear to be required for Polycomb binding in certain cases [54].

Recently, in silico methods have provided important additional insights for

chromatin state inheritance. Major contributions have been made by Dodd el al. [40]

and Sedighi and Sengupta [55]. These paper considered 1-dimensional lattice models

in which nucleosomes are allowed to have active or repressive modifications that

evolve stochastically and by recruitment. They found that a bistable state with

either mostly active nucleosomes or mostly repressive nucleosomes can appear and

be heritable, consistent with experimental observations. Subsequently, Hodges and

Crabtree [39] found that adding a nucleation site into a model of the above type

produces a bounded chromatin domain. Also, in a more recent paper, Binder et
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al. [56] proposed a model describing binding of catalytic enzymes to DNA and their

interaction with histone marks with one aim being explaining length distributions of

modified chromatin regions. These past studies are limited to a single type of histone

mark on a nucleosome, whereas it is well-known that gene regulation is governed by

combinatorial patterns of multiple histone marks [30, 57]. In this study, we extend

previous studies by presenting an approach to model the dynamics of combinatorial

chromatin states. This is achieved by allowing each individual nucleosome to carry

both active and repressive marks simultaneously.

In the next section we describe our model. Then, in the Results section, we

apply this model to investigate the dynamics of histone modification patterns with

the focus on bivalent domains. Discussion and Conclusions are given at the end of

the chapter.

3.2 Methods

General framework of our model. We consider a 1D lattice of N nucleosomes,

where there is a nucleosome at each lattice site i = 1, 2, ..., N . An actual nucleosome

consists of 8 histone protein moleclues, that can be regarded as two identical groups

of four each. In what follows we only consider the state of one of these four histone

group members, namely the H3 histone, which is specifically related to bivalency.

Thus, in our model, we represent the state of a nucleosome as being determined by

the states of its two H3 histone copies. There are two modification sites in each

H3 histone, one which may have an active mark (such as H3K4me3) and the other
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which may have a repressive mark (such as H3K27me3). Thus, there are 16 possible

states of a nucleosome, and each of which is determined by 4 histone modification

sites (see Figure 16 in Appendix A). As shown in the appendix A, this, together

with the restriction obtained from experiment [58] that active and repressive marks

do not occur simultaneously on the same H3 histone, leads to the six physically

distinct nucleosome states depicted in Fig. 3.1. In Fig. 3.1 the circle represents a

nucleosome and the vertical ellipses represent H3 histones. The lower case letters

within each ellipse represent the states of the two modification sites of the H3 histone

(u = unmodified, α = modified by an active mark, ρ = modified by a repressive

mark). For convenience, we assign the symbols UU , AA, RR, AU , UR, and AR to

the six possible states. From now on, when we say ‘histone’ it is to be understood

that we mean an H3 histone. We note that the state AR will play a prominent role

in subsequent considerations in Section 3.4, and we will call a nucleosome in this

state a ‘bivalent nucleosome’.

We then allow each nucleosome state to evolve according to a discrete time

(t) model, in which from time t to time t+1, a nucleosome state changes from state

σ to state σ
′

with probability πσσ
′ . Since the time step t → t + 1 is regarded as

small, we assume that, at most, only one modification site may change on each time

step. Thus, there are 12 possible transitions among the 6 distinct states (see Fig.

3.2 which shows the possible transitions).

Reduced model The general framework above can lead to a relatively complex

class of models and has many parameters. Thus, for the simulations that we report in

this study, we have adopted the somewhat modest goal of illustrating different types
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Figure 3.1: 6-state model. Illustration of the states in the 6-state model. Circles

represent nucleosomes. A nucleosome contains two histones copies represented by

the vertically oriented ellipses. Each histone has two sites, one site (represented by

the upper half of the ellipse) that can be either unmodified (symbolized by u) or have

an active mark (symbolized by α), and another site (represented by the lower half

of the ellipse) that can be either unmodified (symbolized by u) or have a repressive

mark (symbolized by ρ). (Note that the physical nucleosome states labeled AU , UR

and AR could be just as well depicted by interchanging the left and right ellipses

within the respective circles.)
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Figure 3.2: Transitions for the 6-state model. Transitions among the 6 distinct

states in the 6-state model are indicated by arrows. The time step is supposed to

be chosen small enough that only one site of the four nucleosome modification sites

shown in Fig. 3.1 may change on each time step.
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of dynamics that can arise when different nucleosome states interact and compete.

With this goal in mind, we now seek an illustrative, but still somewhat plausible,

reduction of our general 6-state model. Our reduction is based on the assumption,

motivated in Appendix A, that the occurrence of nucleosome states having either

active marks on both histones (AA in Fig. 3.1) or repressive marks on both histones

(RR in Fig. 3.1) are unlikely. Thus we consider the idealized case where AA and

RR states do not occur. Hence each nucleosome of the reduced model is in only one

of 4 nucleosome states, namely AU , UR, AR and UU (see Fig. 3.3A). Referring to

Fig. 3.1, we see that the four states have the following meanings.

AU : One histone has an active mark and the nucleosome’s other three sites are

unmodified.

UR: One histone has a repressive mark and the nucleosome’s other three sites are

unmodified.

AR: One histone has an active modification, while its other site is unmodified. The

other histone has a repressive modification, while its other site is unmodified.

UU : All four sites of the nucleosome are unmodified.

Model Dynamics. During a cell cycle, we consider the time t states of modeled

nucleosomes on our one dimensional lattice and update these states to new states at

time t+1 through two probabilistic processes that we call “recruitment conversion”

and “exchange conversion”. At the conclusion of a cell cycle, “replication” occurs,

following which a new cycle begins.
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Table 3.1: Summary of parameters

Parameters Physical description Biological process simulated

riUR, r
i
UA Coefficient determining the probability

of U converting to R/A via recruitment

by the surrounding R/A marks

Histone methylation spreading:

existing H3K27me3/H3K4me3 recruits

methylase to methylate nearby nucleo-

somes.

riRU , r
i
AU Coefficient determining the probability

of R/A converting to U via recruitment

by the surrounding A/R marks

Crosstalk between A and R: ex-

isting H3K27me3/H3K4me3 recruits

demethylase to demethylate nearby

H3K4me3/H3K27me3.

piUR, p
i
UA Probability of U converting to R/A in-

dependent of the states of other nearby

nucleosomes

Nucleation : continuous random hi-

stone marks placements at nucleosome

site i

piRU , p
i
AU Probability of R/A converting to U in-

dependent of the states of other nearby

nucleosomes

Histone turnover rate : histone

marks can also be lost by random

demethylation.

f i
R, f

i
A Fraction of R/A marks in nucleosomes

within the recruitment range l of site i

We assume that the probability of re-

cruitment (involved in the methyla-

tion spreading and crosstalk processes

above) is proportional to the local den-

sity of the recruiting mark.

τ The cell-cycle DNA replication period Cell cycle

l The nucleosome interaction distance Recruitment Range
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Figure 3.3: Transitions for the reduced 4-state model. (A) Transitions among

the 4 distinct nucleosome states (i.e., AR, UR, AU , and UU) in the 4-state model.

The time step is small enough that at most only one modification site of a nucleosome

may change on each time step. (B) Transition probabilities between nucleosome

states via recruitment conversions, where X can either be A or U while Y can either

be R or U . kX (kY )=2 if X (Y ) is U , otherwise kX (kY )= 1. Thus, as an example,

the transition probability from the AR state to the AU state is the same as that

from the UR state to the UU state. (C) Transition probabilities between nucleosome

states via exchange conversions, where X can either be A or U while Y can either

be R or U .
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• Recruitment. This refers to the recruitment of histone marks to a nucleosome

through interaction with neighboring nucleosomes. Recruitment at a site i

depends on the states of the nucleosomes in an interval of length 2l centered

at i, and we refer to l as the range of recruitment. We define f i
X as the fraction

of nucleosomes in this interval which carry a type-X histone mark, where the

subscript f i
x isX = A,R. If l 6 i 6 N−l, then the recruitment range will span

2l + 1 nucleosomes on our lattice. However, if i is too close to the beginning

or the end of the lattice (i.e., 1 6 i < l or N − l < i 6 N , respectively), then

the recruitment range will include ‘phantom’ sites j not on the lattice (j < 1

and j > N , respectively), and for the purpose of determining f i
X , we consider

such phantom sites j to be in the UU state. The probability of recruitment

conversion from U to X at site i is taken to be given by f i
XrUX

, where r
UX

is a constant describing the strength of the recruitment interaction. On the

other hand, the probability of recruitment conversion from X to U (i.e., mark

removal) depends on the concentration of histone marks which are opposite

(rather than similar) to X (where we regard A and R as opposites). In this

case, the conversion probability is taken to be given by f i
Y rXU

, where Y is R

if X is A and vice versa (see Fig. 3.3B). Note that in our model we allow r
XU

to differ from r
UX

because different enzymes are recruited for the addition and

removal of histone marks.

• Exchange. Unlike the recruitment process, the exchange process refers to

histone modifications which occur spontaneously, independent of the states of
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nearby nucleosomes. The probabilities for exchange conversion are denoted

by p
UA

, p
UR

, p
AU

, and p
RU

(see Fig. 3.2C). In particular, we think of p
AU

and p
RU

as corresponding to the histone turnover process, and p
UA

and p
UR

as

corresponding to processes involving nucleation sites (See Table 3.1).

• DNA replication. When DNA replication occurs, we imagine that in the real

situation the parental nucleosomes are randomly assigned to one of the two

daughter strands at the same site as that which they occupied on the parental

strand, while the corresponding site on the other strand is assigned an un-

modified nucleosome (i.e., a nucleosome in the UU state). This scenario is

supported by an experimental observation [59]. In our model, we do not fol-

low both daughter strands. Rather we follow just one. Thus, with probability

1/2, our model replication process randomly replaces each nucleosome with

an unmodified (UU) nucleosome. This model DNA replication occurs period-

ically with a period equal to the ‘cell cycle time’ τ . This is similar to how

replication is modeled in [40].

In accord with the above recruitment and exchange processes, during a cell cycle, our

model gives appropriate equations for the probabilities P i
XY (t+1) that nucleosome i

is in state XY = UU,AU, UR,AR at time t+1, given the state of the lattice at time

t. After the probabilites P i
XY (t+1) are determined the state (UU , AU , UR or AR)

of each nucleosome i is randomly chosen according to the probabilities P i
XY (t + 1),

thus determining the state at time t + 1. Letting δiXY (t) = 1 if nucleosome i is in

state XY , and δiXY (t) = 0 if nucleosome i is not in state XY , our model equations
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for the probabilities are

P i
AU(t + 1) = 2[f i

A(t)rUA
+ pi

UA
]δiUU(t) + [f i

A(t)rRU
+ p

RU
]δiAR(t)

+ {1− [f i
R(t)(rAU

+ r
UR

) + p
AU

+ pi
UR

]}δiAU(t),

P i
UR(t + 1) = 2[f i

R(t)rUR
+ pi

UR
]δiUU(t) + [f i

R(t)rAU
+ p

AU
]δiAR(t)

+ {1− [f i
A(t)(rRU

+ r
UA

) + p
RU

+ pi
UA

]}δiUR(t),

P i
AR(t + 1) = [f i

R(t)rUR
+ pi

UR
]δiAU(t) + [f i

A(t)rUA
+ pi

UA
]δiUR(t)

+ {1− [f i
A(t)rRU

+ f i
R(t)rAU

+ p
RU

+ p
AU

]}δiAR(t),

P i
UU(t + 1) = 1− {P i

AU(t + 1) + P i
UR(t+ 1) + P i

AR(t + 1)}.

Consistent with our assumption that at most one site on a nucleosome can change

state in one time step, our choice of parameters satisfies r
XY

, p
XY

≪ 1. Note that

f i
A(t) and f i

R(t) depend on the lattice state in a neighborhood of site i within the

range of recruitment specified in the second bullet above.

In section 3.3.3, where we treat localization of AR states, we allow the ex-

change transitions probabilities pi
XY

to vary from site to site, but everywhere else

we consider pi
XY

to be the same at each site, pi
XY

= p
XY

.

Simulation Parameters. To assign roughly reasonable values to the parame-

ters r
XY

and p
XY

, we first consider that our model time step, t → t+1, corresponds

to a real time step ∆t = 2 min. We have numerically verified that our simulation

results are independent of our choice of ∆t so long as ∆t is sufficiently small. To

estimate a rough range for the parameters r
XY

and p
XY

, we set p
XY

, r
XY

≈ (∆t/T ),

where T is the characteristic time scale of the relevant process (see Table 3.1), and,
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as required, the ∆t that we have chosen is such that ∆t/T is small compared to

one for all such processes. We fix as many parameters (Table 3.1) as possible using

experimental information (see Table 3.2). Because the authors are not aware of any

experimental measurements of the characteristic time for recruitment demethylation

and methylation via exchange, we will consider these probabilities as free parame-

ters in our numerical simulations below. Previous work [60] suggests that the loss

of active marks is faster than the loss of repressive marks. In particular, it has been

shown that nucleosome turnover is faster in regions bound by trithorax-group pro-

teins. Therefore, we selected the model parameters so that all rates associated with

active mark are faster than those associated with the repressive mark. Specifically,

we assume that r
UR

/r
UA

= p
UR

/p
UA

= r
RU

/r
AU

= p
RU

/p
AU

= 0.5 in the simulation

(when nonzero). Regarding the cell cycle, for embryonic stem cells the cell cycle

length is about 12 hours, which, with our ∆t = 2 min, corresponds to 360 time

steps of our discrete time model per cell cycle. Finally, motivated by Ref. [59], we

take l = 2, corresponding to a fairly short range of recruitment.

3.3 Results

We now illustrate the utility of our model by employing it to investigate dy-

namic changes of histone modification patterns. As described in the Introduction,

both nucleation sites and recruitment of methylation may be involved in the estab-

lishment of bivalent domains. As noted above, we suggest that certain nucleosomes

act as nucleation sites during the early stages of development. These nucleation
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sites may be instrumental in the formation of bivalent domains. We incorporate

nucleation sites into our model by assigning them a higher value of p
UA

and p
UR

than other sites, and we model the absence of nucleation sites by lowering its value

of p
UA

and p
UR

.

In Sections 3.3.1 and 3.3.2, we discuss the formation and decay of AR states

with different initial conditions in the absence of nucleation sites. In Section 3.3.3,

we study the effect of nucleation sites on dynamics of the formation of AR states.

Finally, in Section 3.3.4, we consider how varying the cell-cycle length affects AR

states. Taken together, these analyses demonstrate the utility or our model for

systematic investigation of the dynamic properties of bivalent domains.

3.3.1 Formation of AR States

The formation of bivalent domains has been experimentally observed in stud-

ies of the early stages of embryogenesis [64] and in studies of cell reprogramming [65].

In particular, studies of cell reprogramming observe this formation process to be

gradual [66].

In this section we use our model to simulate the formation of regions that

are dense with AR states, and we identify such regions with bivalent domains. In

the simulations, we take p
UA

= p
UR

= 0 for all nucleosomes and fix r
UA

= 0.046

(corresponding to an H3K4me3 methylation timescale of 30 mins) and p
AU

= 0.005.

Also, r
AU

and r
RU

are considered to be very small (for simplicity, we set r
AU

=

r
RU

=0), so that the AR states can be established and persist for a long time.
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For the initial state of the lattice in the simulations, we consider a situation where

there are a relatively small number of nucleosomes in AR states, with all other

nucleosomes initially in the UU state. In particular, we choose the initial number

of AR nucleosomes to be five (out of the 80 nucleosomes on the lattice), and we

study how AR states spread to other nucleosomes on the lattice. To investigate the

effect of the initial spatial distribution of AR nucleosomes, we consider two extreme

cases: the localized case in which all five initial AR state nucleosomes are located

at five consecutive nucleosome sites in the center of the lattice, and the delocalized

case in which the five initial AR state nucleosomes are located at equally spaced

sites spanning the entire lattice (at sites 1, 20, 40, 60, 80).

Fig. 3.4 shows results for the space-time evolution of the distribution of

nucleosomes for both localized (left column of figure panels ) and delocalized (right

column of figure panels) initial states. Fig. 3.4C shows space-time plots for the four

types of nucleosomes in a typical single run, while Figs. 3.4A-B show average space-

time plots of the level of AU and AR nucleosomes, that is, the fraction of runs for

which the nucleosome is in the indicated state. The average level of UR nucleosomes

(not plotted) is low everywhere all the time (dark blue, in terms of the color scale of

Figs. 3.4A and B). Note that, in Figs. 3.4A-B, the regular drops of the levels of the

indicated nucleosomes every 360 time steps (corresponding to the start of a new cell

cycle) are due to the inserted of UU nucleosomes in the DNA replication process.

In Fig. 3.4A, for the localized case (corresponding to the left panel figure), the AR

nucleosomes spread over the lattice via a propagating front [55] manifested by the

approximately straight lines of the color transition boundaries emanating from the
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Table 3.2: Model parameters

Dynamical processes Parameters Characteristic time References

Adding H3K4me3 marks via recruitment r
UA

0.5 -6 hours [61, 62]

Adding H3K27me3 marks via recruitment r
UR

0.5- 6 hours [61, 62]

Removing both H3K4me3 and H3K27me3 marks via exchange p
AU

and p
RU

1-24 hours [61, 62]

Adding both H3K4me3 and H3K27me3 marks via exchange p
UA

and p
UR

not known ——–

Removing both H3K4me3 and H3K27me3 marks via Recruitment r
AU

and r
RU

not known ——–

Cell cycle length in human embryonic stem cells τ 12 hours [63]

Cell cycle length in human adult cells τ 24 hours [63]
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Figure 3.4: Space-time plots for the formation of AR states. Space-time plots

of the average level of AR and AU nucleosomes for the localized and delocalized ini-

tial conditions are shown in (A) and (B). Here by ‘level’ we mean the fraction of

runs for which the nucleosome is in the indicated state. These levels are computed

by counting the indicated type of nucleosome in all runs at each position and time,

and averaging over 2000 runs. The red color indicates a higher level of the indicated

type of nucleosome while the blue color indicates a lower level of that type of nucle-

osome. (C) Space-time plots for a single run for the localized and delocalized initial

conditions. AR, AU , UR, and UU nucleosomes are plotted in red, yellow, green,

and blue, respectively. 57



space-time point at the center of the lattice at time t = 0. For the delocalized case

(right panel of Fig. 3.4A), AR nucleosomes spread over the lattice via individual

propagating fronts emanating from the five initial AR sites. These fronts merge near

the end of the first cell-cycle (time ≈ 300), but the system takes longer time (time ≈

1250) to reach a final equilibrium distribution. The model results show that, while

the space time evolution of the distribution of AR nucleosomes is dependent upon

the initial condition, the time it takes to establish a final equilibrium distribution is

comparable and relatively long for both the localized and delocalized cases. This may

have relevance to the experimental observation of Ref. [66] that the establishment

of bivalent domains is gradual.

For the localized case, there appears to be two fronts, a fast UU → AU

front (corresponding to the blue to yellow transition in the left panel of Fig. 3.4C),

followed by a AU → AR front (yellow to red transition in the left panel of Fig. 3.4C)

that propagates at a slower speed than the UU → AU front. The slow AU → AR

front is clearly seen in the left panels of Figs. 3.4A and B, while the UU → AU front

is evident in the left panel of Fig. 3.4B. These two fronts propagate symmetrically in

space in the average space-time plots (Fig. 3.4A and 3.4B) but, due to fluctuations,

more asymmetrically in space in the single run plot (see left panel of Fig. 3.4C).

Examining a range of parameters, we find that the fastest front corresponds to either

a UU → AU transition (as in Fig. 3.4B) or a UU → RU transition (not shown).

For the delocalized case, we also observe that the spreading of the active marks is

faster than that of the repressive marks. This can be easily seen from the typical

single run plot in the right panel of Fig. 3.4C.
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Finally, we also studied the effects of varying the number of AR nucleosomes

in the initial condition on the above simulations. Using the same parameters values

as above, we plot (Fig. 3.5) the final average fraction of AR nucleosome at the end

of the final simulated cell cycle ( 10 cell cycles) as function of the initial number m

of AR nucleosomes which are taken to occupy the m nucleosome sites in the center

of the lattice. As shown in Fig. 3.5, the average fraction of final AR nucleosomes

initially increases with increasing m. We observe that past m ≥ 4 the value is

essentially constant up to m = 80 with AR nucleosomes spanning the whole lattice.

For a given m, each simulation can be categorized into two groups, (1) the final

spatial average level of AR nucleosomes is approximately equal to the corresponding

large m limiting value, or (2) all AR nucleosomes vanish. Thus at low m, the value

plotted on the vertical axis of Fig. 3.5 can be thought of as the limiting larger-m

value (basically the value at m = 4) multiplied by the fraction of runs in category

(1). In the early stage of a simulation, the spreading of histone marks compete with

the loss of histone marks via histone turnover. If either type of mark is lost totally,

it cannot recover (i.e., the run is in category 2). On the other hand, we find that

histone marks do not die out if there are enough of them on the lattice (the run is

then in category 1). As a result, the average fraction of AR nucleosomes is larger

with larger m, and with smaller p
AU

and p
RU

(compare the red and blue plots in Fig.

3.5). The above simulations suggest that in order for AR states to form when p
UA

and p
UR

are small, a sufficient number of initial AR nucleosomes is required. Taken

together, these results have shown that the formation of bivalent domains undergoes

two distinct phases: expansion and stabilization. In the expansion phase, the border
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Figure 3.5: Average final fraction of AR nucleosomes vs. the number of

initial AR nucleosomes. The average final fraction of AR nucleosomes is plotted

as a function of m (the number of initial AR nucleosomes) for (p
AU

, p
RU

) being

(0.003, 0.0015)(red) and (0.005, 0.0025)(blue). These levels of AR nucleosomes are

computed by averaging the final number of AR nucleosomes in the simulations over

2000 runs.
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of bivalent domains expands to neighboring nucleosomes. The expansion process is

relatively fast (>10 nucleosomes per cell-cycle in our simulation) but quite noisy. As

a result, only a sparse subset of nucleosomes are marked with the AR state. During

the stabilization phase, the nucleosome state configuration is further refined and

eventually reaches an equilibrium. Even then, the state of individual nucleosomes

is still highly dynamic and equilibrium is only reached in the statistical sense.

3.3.2 Decay of AR States

In this section we use our model to simulate the decay of AR states. All

parameters are the same as in section 3.3.1 except that r
AU

and r
RU

are taken to be

non-zero. This is motivated by experimental findings that recruitment of demethy-

lases is important for the decay of bivalent domains [50, 51], and occurs during cell

differentiation. Also, we consider an initial condition in which all nucleosomes are

in AR states. Results are shown in Figs. 3.6-3.8 for different values of r
AU

and r
RU

keeping their ratio fixed at r
AU

/r
RU

= 2.

Fig. 3.6 shows results for the space-time evolution of the distribution of all

four nucleosome states AR, UR, AU , and UU for three values of r
AU

≡ 2r
RU

. In

Fig. 3.6A, for the case r
AU

= 0.004, the initial level of AR nucleosomes rapidly

(in about one cell-cycle) drops to a lower level of AR nucleosomes, but there still

remains a substantial presence of AR nucleosomes which persists to the end of the

run. In contrast, for both r
AU

= 0.016 and r
AU

= 0.034, where there is again similar

very rapid decreases of the level of AR nucleosomes, now the final level is essentially
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zero. In addition, it is seen that the level of AR nucleosomes takes longer to fully

decay for r
AU

= 0.016 than for r
AU

= 0.034. The latter case is consistent with

the experimental observations [38, 66] that an essentially complete loss of bivalent

domain can occur very rapidly. To further explore how the decay of AR states

depends on the recruitment demethylation rates, we plot the fraction of simulation

runs that have at least one AR nucleosome on the lattice as a function of time in Fig.

3.7, and the final average fraction of AR nucleosomes (averaged over 1000 runs) as

a function of r
AU

in Fig. 3.8. Comparing Fig. 3.6A to Fig. 3.7, we observe that the

fraction of runs with at least one AR nucleosome plotted in Fig. 3.7 shows a slower

decay compared to the decay of AR levels in Fig. 3.6A. This suggests that lineage-

control genes in bivalent domains may become active without the full destruction of

repressive marks. In Fig. 3.8, as might be anticipated, we observe that, in general,

smaller histone turnover (p
AU

) and smaller recruitment demethylation rate give a

higher final average fraction of AR nucleosomes. Also, the value of r
AU

at which

the average fraction of AR nucleosomes drops to zero is lower for larger p
AU

. Our

results suggest that a large recruitment demethylation rate in a cell is important for

cell differentiation. This is consistent with experimental findings [50, 51].

In a real situation, a change from low to high values of the recruitment

demethylation rates during cell differentiation will take place by processes not in-

cluded in our model, and these processes may take some time. Thus our simulation

use of constant non-zero initial r
AU

and r
RU

results in a determination of the char-

acteristic decay time associated only with processes that are included in our model,

and the true decay rate of AR state nucleosomes may be longer than this time due
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Figure 3.6: Space-time plots for the decay of AR states. In these plots, all

nucleosomes are initially (t = 0) in the AR state. Space-time plots of the average

level of AR, UR, and AU nucleosomes for r
AU

= 0.004, 0.016, and 0.034 are shown

in (A), (B), and (C), respectively. These plots are similar to Figure 3.4A and B.

Here by level we mean the fraction of runs for which the nucleosomes is the indicated

state. (D) Space-time plots for a single run with r
AU

= 0.004, 0.016, 0.034. AR, AU ,

UR, and UU nucleosomes are plotted in red, yellow, green, and blue, respectively.
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Figure 3.7: Fraction of runs that have at least one AR nucleosome vs. time.

The fraction of runs that have at least one AR nucleosome on the lattice is plotted

as a function of time for r
AU

= 0.004, 0.016, and 0.034.

64



0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 o

f 
A

R
 n

u
c
le

o
s
o
m

e
s

r
AU

=2r
RU

 

 

p
AU

=0.005, p
RU

=0.0025

p
AU

=0.003, p
RU

=0.0015

Figure 3.8: Fraction of runs that have at least one AR nucleosome vs.

time. The average level of AR nucleosomes is plotted as a function of r
AU

for both

p
AU

= 0.003 and 0.005. These levels of AR nucleosomes are computed by averaging

the final number of AR nucleosomes in the simulations over all the runs and the

whole lattice.
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to the finite time for r
AU

and r
RU

to change. Overall, we observe that the decay

determined from our model of AR state nucleosomes in response to high initial value

of recruitment demethylation rate is relatively fast, as compared to the time that

it takes to establish AR states spanning the lattice in Section 3.3.1. We conclude

from this that processes included in our model do not prevent rapid decay of AR

state nucleosomes, and that rapid decay, as seen in experiments [38], can occur in

response to rapid increase of r
AU

and r
RU

.

In addition, it is interesting to emphasize the probabilistic nature of these

results. For example, Fig. 3.6D shows results of typical single realizations. This

figure also shows that the final state for r
AU

= 0.016 is different from that for r
AU

=

0.034. For the case r
AU

= 0.016, we observe that AU nucleosomes are dominant in

the lattice at the end of the simulation (see also the second panels of Figs. 3.6B

and 3.6C). However, for the case of r
AU

= 0.034 at long time, green regions of UR

nucleosomes form at the upper edge (see third panel of Fig. 3.6D), while the AU

nucleosomes are at the lower edges. This is because the AU and UR states can both

be stable for this combination of parameters (see third panels of Figs. 3.6B and

3.6C). Our results suggest that the strength of the recruitment demethylation (i.e.,

the values of r
AU

and r
RU

) is not only important for the decay of bivalent domains,

but also strongly influences the possible final state following decay.
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3.3.3 The Localization of AR States

The next issue that we discuss is the effect of nucleation sites (i.e., in our

model, p
UA

= p
UR

> 0 at these sites). The existence of such sites is suggested by

the finding [32, 53] that DNA specific sequences can recruit protein binding factors

like TF which in turn recruit histone marks to the DNA. In section 3.3.1, we took

p
UA

= p
UR

= 0, and we found that AR nucleosomes either span the whole lattice or

disappear. Although similar broad bivalent domains are observed, narrow bivalent

domains are also detected in some experiments [31,52]. Although a recent model [39]

has previously been used to simulate the dynamics of localized histone modification

domains, that model allowed only a single type of histone modification, and therefore

it cannot address the dynamics of bivalent domains. Using our model, we will be able

to analyze interactions among the placements of active and repressive histone marks,

histone turnover rate, and crosstalk between active and repressive histone marks. We

consider p
UA

and p
UR

> 0 for the central nucleosome (corresponding to the case that

the central nucleosome is a nucleation site). For the initial condition, we consider

that there are five AR nucleosomes located at the five consecutive nucleosome sites in

the center of the lattice, with all other nucleosomes initially in UU state. Using our

previous parameter ratios (i.e., r
UR

/r
UA

= p
UR

/p
UA

= r
RU

/r
AU

= p
RU

/p
AU

= 0.5),

we explore the parameter space regions for which our model reproduces narrow and

broad distributions of AR nucleosomes.

We consider cases of both relatively small and relatively large recruitment

demethylation rates (r
AU

and r
RU

). The former and latter choices are meant to
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simulate cell environments far before, and during, cell differentiation, respectively.

We run the simulations for four cell-cycles such that the averaged nucleosome state

configuration reaches an equilibrium. In particular, a steady spatial distribution of

AR nucleosomes seems to be reached within the first cell-cycle, and change very

little thereafter. Therefore, the time for establishment of a highly localized AR

distribution (< 1 cell-cycle) is much shorter compared to that of establishing a

very broad and uniform AR distribution (about 5 cell-cycles and see Figure 3.4A).

For the case of small recruitment demethylation rate, Figs. 3.9A-B show plots

of the fraction of AR nucleosomes averaged over 2000 simulations. Figs. 3.9A-B

demonstrate narrow (left panels of Figs. 3.9A and 3.9B) and broad (right panels of

Figs. 3.9A and 3.9B) distributions of AR nucleosomes. The widths of these bounded

distributions reflect the balance between the continuous placement of histone marks

on the nucleation site, the spreading of histone marks by the recruitment process,

and the destruction of histone marks via exchange [39]. From the simulations, we

find that the width of the distributions of AR nucleosomes depends more on p
AU

and p
RU

, which they are inversely related to the width of the AR distribution. On

the other hand, the amplitude of the distributions depends more on p
UA

and p
UR

(i.e., the continuous placements of histone marks on the center nucleosome) (Figs.

3.9A-B).

Next, we did simulations using the same parameters as in Fig. 3.9A but with

larger recruitment demethylation rates (r
AU

and r
RU

). The results are shown in Fig.

3.9C. Both of the corresponding distributions in Fig. 3.9A become narrower in Fig.

3.9C. In particular, the changes in the broad distribution (right panel) is particularly
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Figure 3.9: Distributions of AR nucleosomes. Distributions of AR nucleosomes

are plotted at the final time of the simulations (time = 1800).
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dramatic. This suggests that it may be easier to see changes in the broad bivalent

domain than the narrow one during cell differentiation in experiments. Overall, our

results demonstrate that nucleation sites can be responsible for the onset of bounded

domains of AR nuclesomes. Also, narrow distributions can be obtained via either

enhanced histone demethylation via exchange or via enhanced recruitment. We

have also studied the distributions of AR nucleosomes, active marks, and repressive

marks, using other reasonable parameter choices (see Figure 17 in Appendix A and

the correponding texts). Taken together, these results suggest that highly localized

bivalent domain patterns can be established surrounding nucleation sites, similar to

the one-mark scenario described in previous study [39]. However, the local dynamics

is more complex because multiple states are involved in the competition. The end

configuration is an equilibrium resulting from the balance of multiple molecular

forces.

3.3.4 The Effects of Cell-Cycle Length on the Stability of AR States

During DNA replication, the nucleosomes, along with their associated his-

tone marks, must be dissociated from the mother strand. How these marks are

reassembled to the newly synthesized strands remains poorly understood. Recent

studies suggest that the nucleosome, along with their associated marks, are ran-

domly distributed to daughter strands [59]. In this section, we use our model to

study the impact of DNA replication on the level of AR nucleosomes.

We choose parameters which correspond to cell environments during the
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formation of bivalent domains (see Fig. 3.10). Also, we assume that nucleation

sites lose their properties at the very beginning of the simulations, so that there are

no nucleation sites. We then vary the cell cycle lengths from 6 hours to 24 hours,

which corresponds to varying the cell cycle length from that in stem cell to that in

differentiated cells. We run the simulations for 10 cell cycles such that the average

level of AR nucleosomes over a cell cycle reaches a stable value. Fig. 3.10 shows

the average level of AR nuclesomes as a function of cell cycle length, where these

levels are computed by averaging the number of AR nucleosomes at the end of the

simulations over the lattice and over all simulation runs. Fig. 3.10 shows that the

average level of AR nucleosomes is, in general, larger for longer cell-cycle. This

result is expected, since there is more time for the lattice to recover from the loss

of AR nucleosomes, caused by DNA replication, when the cell-cycle is longer. But

the significance of cell-cycle length seems to be weaker for strong bivalent domains

(blue curve in Fig. 3.10). This result is consistent with the experimental finding

that higher levels of histone marking are observed when the length of the cell cycle

increases [67].

3.4 Discussion

Development of computational models of bivalent domain dynamics can help

to elucidate the mechanism of chromatin domain formation, and give insight for

formulating and analyzing experimental studies. In this study we introduce a

model that incorporates multiple histone marks on a nucleosome and the inter-
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Figure 3.10: Average AR nucleosome level vs. cell-cycle length. The average
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actions among these marks. We have illustrated the potential use of our model by

employing it to investigate the dynamics of bivalent domains, with the following

results.

Our main conclusion is that the formation of bivalent domains are highly

stochastic at individual nucleosomes, but reproducible patterns can been obtained

by averaging a large number of simulations. Dynamic changes of these patterns are

maintained by the subtle balance of the multiple factors including the exchange rate,

recruitment, distribution of nucleation sites, and cell-cycle length, resulting high

degree of plasticity which might be advantageous for facilitating smooth transitions

between cell-states during development.

Our analysis suggests that the formation of bivalent domains is in general a

slow, two-step process, which can be divided into an expansion and a stabilization

phase. In contrast, the decay of bivalent domains, induced by demethylase activities,

is much faster. This asymmetry between formation and decay dynamics may be

an important feature for development control and perhaps needs to be taken into

consideration into development epigenetic-based therapeutic approaches.

Specific epigenetic patterns can be established through targeted recruitment

of chromatin regulators to specific genomic sequences. The effect of such nucleation

sites on the establishment of highly localized epigenetic patterns has been studied

via computational models in a number of previous studies [39, 68]. We have ex-

tended these investigations by considering multiple histone marks in our model. As

expected, we found that the strength of a nucleation site plays an important role

in maintenance of localized bivalent domains. In the absence of nucleation sites,
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the bivalent domains either expands to the whole nucleosome array or disappears

entirely. Our analysis is consistent with numerous experiment studies, which show

that GC-rich DNA sequences are required for establishment of bivalent domains [54].

One limitation of our current model is that many kinetic parameters remain

unknown, preventing us from making more quantitative predictions. Nevertheless,

the major conclusions described above are robust with respect to parameter value

changes therefore may reflect true biological principles. It will be interesting to test

these principles by conducting quantitative experimental measurements.
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Chapter 4: Dynamical Transitions in large Systems of Mean-Field-

Coupled Landau-Stuart Oscillators: Extensive Chaos and

Clumped States

4.1 Introduction

By a complex system we mean a system composed of a large number of inter-

connected dynamical units for which the overall macroscopic behavior is ‘emergent’

in that it is dependent crucially on interactions, and is not simply deducible from

examination of the properties of the constituent uncoupled units. Understanding

of the behavior of complex systems is a key issue in many fields, including physics,

chemistry, neuroscience, social science, economics and biology. Thus there has been

much activity in the quest for basic underlying phenomena, tools, and principles

capable of advancing the study of such systems. One approach toward building up

understanding is to investigate classes of systems that are particularly simple in

some aspect. One of these classes is that of systems of N identical dynamical units

(N ≫ 1) that are coupled by a mean-field. For this class of systems, if each one

of the coupled units has a real, time t, vector state denoted x j(t) (j = 1, 2, ..., N),

then the time evolution of x j for t ≥ t0 depends on m(t) and x j(t0), where m(t) is
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a mean field vector that is determined from some form of average of the x j(t) over

j. While the study of such systems can be viewed as a stepping-stone in the effort

to understand complex systems with more complicated coupling, we also empha-

sized that mean-field-type coupling is a good approximation to many real situations

(e.g., see [69–83]). In general, systems of identical mean-field coupled units can be

represented as

ẋ j = F (x j(t),m(t),p); j = 1, 2, ...N, (4.1)

where p is a parameter vector.

Here we will study a particular instance of Eq.(4.1). However, we believe

that the phenomena we find may be typical to many systems of the form (4.1).

In particular, the system we study is that of mean-field-coupled Landau-Stuart

oscillators [69], previously considered, e.g., in Refs. [84–92],

Ẇj = Wj − (1 + iC2)|Wj |
2Wj +K(1 + iC1)(W̄ −Wj), (4.2)

where Wj is a complex number (corresponding to x j in (4.1) being two dimensional),

and the parameter vector corresponds to p = [C1, C2, K]T . W̄ represents the mean

field (analogous to m in (4.1)),

W̄ = N−1
∑

j

Wj. (4.3)

A fundamental question that we address is that of whether the dynamics

is intensive (also referred to as low dimensional) or extensive; i.e., whether the

attractor dimension D remains limited by a constant bound as N → ∞ (intensive),

or whether, in contrast, D/N approaches a constant as N → ∞ (extensive). For the
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case of coupled Landau-Stuart oscillators, different dynamics which we claim can be

viewed as including both intensive and extensive attractors, has been observed. More

generally relevant to the dynamics of identical mean field coupled systems, Kaneko

[93, 94], who considered large systems of identical coupled maps, found a intensive

collective behavior called ‘clustering’, in which all the state components split into

a small number of different clumps and in which the components in each clump

behave identically. The dynamics in this clumped phase can be regarded as low

dimensional (intensive) since the system state can be specified by giving the states

of the small number of clumps. Also, for some parameter values, collective behavior

can emerge in which each component behaves differently and in an irregular manner

(e.g., Refs. [84–87] for Eqs. (4.2)), which we identify (Sec. 4.5) as corresponding to

extensive chaos .

One key issue is the possible existence of dynamical phase transitions from

an intensive phase (clustering) to an extensive chaotic phase. The possibility of this

type of dynamical phase transition was originally pointed out in the early 1990’s

by Nakagawa and Kuramoto [84–86] in the particular context of coupled Landau-

Stuart oscillators (see also [87]), but, to the best of our knowledge, it has not received

further attention. In particular, in our paper, we will be interested in following a

specific identified attractor as a parameter is continuously varied with the goal of

seeing how this identified attractor evolves as the parameter varies. We emphasize

that the question of how our identified attractor evolves with continuous parameter

change cannot be fully addressed by the common procedure of investigating the

attractor (or attractors) that result from some given initial condition (or set of
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initial conditions) that remains fixed as many simulations are independently run

from t = 0 with different parameter values.

Related to the above point, another fundamental question for such systems

concerns the clumped dynamical phase. While clump dynamics is inherently low

dimensional, for large N , even considering the number of clumps as fixed, there

can be very many attractors corresponding to different population fractions of the

N dynamical units in each clump. One might then ask whether there are circum-

stances that lead to selection of particular population distributions among clumps

(i.e., selection of a particular attractor). Here we will show that, when there are

two clumps and the system is subject to slow adiabatic parameter change, such

population distribution selection can occur by a mechanism that we refer to as

‘marginal stability’. Furthermore, we show that this mechanism is the key ingredi-

ent needed for understanding an explosive transition from low dimensional behavior

to extensive chaos. Finally, we use an analogy to low-dimensional randomly forced

systems [95, 96] to apply the Kaplan-Yorke dimension formula [97, 98] to a suitable

reduced set of Lyapunov exponents, and we show that the resulting prediction of

the extensive dimensionality (D/N for large N) is consistent with numerical com-

putations of the information dimension of the attractor.

4.2 Background and Formulation

In this study, we consider mean-field coupling of a large number of identical

Landau-Staurt oscillators, as described by Eqs. (4.2) and (4.3) with the oscillators

78



all identical (i.e., K, C1 and C2 are the same for all j). In our numerical experiments,

we explore the types of attractors that occur and how the system behavior changes

with change of a parameter. Specifically, we set C1 = −7.5 and C2 = 9.0, and vary

K.

We now give a brief overview of our numerical experiments and main findings.

Our numerical experiments reveal system behaviors similar to the previous studies

[84–87]. Some representative results are given in Fig. 4.1 which shows the states of

each of the N = 3000 oscillators in the complex plane for three different parameter

values K = 0.1, K = 0.74 and K = 0.95, plotted at some fixed time (a ‘snapshot’).

For K smaller than about 0.4, the system is in an incoherent state (i.e., W̄ ∼= 0)

which is shown in Fig. 4.1(a). In the incoherent state, |Wj| ∼= (1 − K) for each

oscillator j = 1, 2, ..., N , and
∑

Wj = W̄ ∼= 0, since the phases of the oscillators are

apparently distributed randomly with uniform density in [0, 2π]. In contrast, for K

very large, a single locked state exists where all oscillators have the same identical

behavior (i.e., Wj = eiC2t = W̄ for all j). These incoherent states and locked states

have been discussed in previous studies [86, 87]. In particular, the stability of these

states can be calculated analytically. At K = 0.74, we observed the existence of

what we call the extensively chaotic state in which all oscillators behave differently

(Fig. 4.1(b)) and the macroscopic mean field W̄ varies irregularly in time. As shown

in Sec. 4.5, the extensively chaotic state is high-dimensional, and we can observe

what appears to be a fractal distribution in the snapshot of the oscillator states (for

a more detailed discussion see Sec. 4.5). (Previous work in Refs. [85–87] considered

parameter values for which fractal structure was much less apparent and was not
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explicitly noted.) At K = 0.95, we observed the existence of a clumped state (Fig.

4.1(c)). In the clumped state of Fig. 4.1(c), there are two clumps, where oscillators

in the same clump all behave identically. We will discuss and analyze clumped states

in the next section [97].

The dynamics of the attractors can be quantified by Lyapunov exponents.

Consider a system that is governed by Eq. (4.2), and has a solution

Wj(t) = Wj,0(t). (4.4)

To calculate its Lyapunov exponents, we initially perturb Wj,0 to Wj,0 + δWj. Con-

sidering δWj to be infinitesimal, we obtain a set of perturbation equations for δWj ,

˙δWj = [1− 2(1 + iC2)|Wj,0|
2 −K(1 + iC1)]δWj (4.5)

−(1 + iC2)W
2
j,0δW

∗
j +K(1 + iC1)δW̄ ,

where j = 1, 2, ..., N and δW̄ = N−1
∑

j δWj. The Lyapunov exponents (λ) are

given by

λ = lim
t→∞

1

t
ln

δ(t)

δ(0)
, (4.6)

where δ(t) =
√∑

j |δWj(t)|2. Depending on the initial set of perturbations {δWj(0)|j =

1, 2, ..., N}, the Lyapunov exponent in (4.6) can in principle take on 2N possi-

ble values. However, for a typical random choice of the initial condition δWj(0)

(j = 1, 2, ..., N), Eq. (4.6) will give the largest Lyapunov exponent.

In the clumped states, we also divide the Lyapunov exponents into two types,

one of which determines the internal stability of a clump, while the other determines

the stability of the clump orbits. For the case of two clump states which we will
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Figure 4.1: These figures show three snapshot attractors which are simulated by

using different values of K; (a) correspond to an incoherent state at K = 0.1; (b)

corresponds to an extensive chaotic state at K = 0.74; (c) corresponds to a two-

clump states at K = 0.95.
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henceforth focus on, we distinguish the two clumps by the labels a and b, where

we take the larger clump (i.e., the clump with the most oscillators) to be clump a,

while we take the smaller one to be clump b, and Wj is either equal to Wa or Wb for

all j. As a result, Eqs. (4.2) and (4.3) show that the motions of these clumps are

governed by a reduced set of two equations,

Ẇa = Wa − (1 + iC2)|Wa|
2Wa + (1 + iC1)(W̄ −Wa),

Ẇb = Wb − (1 + iC2)|Wb|
2Wb + (1 + iC1)(W̄ −Wb), (4.7)

where W̄ = faWa + fbWb. Here fa and fb are the fractions of oscillators in clumps

a and b, respectively (i.e., fa,b = Na,b/N where Na and Nb are the numbers of

oscillators in clumps a and b, and fa > fb). In the following, we call the system

described by Eq. (4.7) the ‘two-clump system’, while the system described by Eqs.

(4.2) and (4.3) is called the ‘full system’.

To determine the internal stability of a clump, say clump a, we perturb

the states of each oscillator in clump a, Wj(t) = Wa(t) + δWj(t), and we choose

the initial perturbations to oscillators in clump a to statisfy
∑

j δWj(0) = 0 with

δWj = 0 for all oscillators in clump b. Inserting this into the full system Eq. (4.3)

and linearizing with respect to δWj , we find, by summing over j in clump a, that

δW̄ = N−1
∑

j δWj remains zero for all time, and that each of the δWj satisfies

the same equation. Using the notation δW̃a to denote any one of these oscillator

perturbations for clump a, the evolution of δW̃a(t) is governed by the equation,

δ
˙̃

Wa = δW̃a −K(1 + iC1)δW̃a − (1 + iC2)[2|Wa|
2δW̃a +W 2

a δW̃
∗
a ], (4.8)

where δW̃ ∗
a denotes the complex conjugate of δW̃a. It is convenient to regard δW̃a
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and δW̃ ∗
a as if they were independent and to rewrite Eq. (4.8) in the form,




δ
˙̃

Wa

δ
˙̃

W ∗
a


 = M




δW̃a

δW̃ ∗
a


 . (4.9)

Similarly, we can derive the same perturbation equation for δW̃b corresponding to

pertubations of oscillators in clump b. We call the Lyapunov exponents derived from

Eq. (4.9), the clump integrity exponents, λσ
CI , where σ = a or b corresponding the

exponents for clumps a or b, respectively. λa
CI and λb

CI each have two values for the

two-clumped states (because δW̃a and W̃b are complex and hence two-dimensional).

We find (see next section) that, for the two clump solutions that we investigate,

there are two types of clumped states: (i) a state in which Wa(t) = Da exp(iΩt),

Wb(t) = Db exp(iΩt) where Ω is a real constant and Da,b are complex constants; this

case corresponds to a fixed point solution in the frame rotating with the frequency

Ω; and (ii) a solution in which |Wa,b(t)| varies periodically with time, and, again

transforming to a suitable rotating frame at some frequency Ω, the transformed

Wa(t) and Wb(t) are periodic. Assuming that this type of rotation transformation

has been performed, M is constant (periodic) in time for case (i) (case (ii)). For

the case where M in Eq. (4.9) is time-independent, the two λCI are equal to the

magnitudes of the eigenvalues of M . For the case that M is time-dependent, the

largest λσ
CI can be computed by Eq. (4.6) with δ(t) = |δWσ|. The sum of the larger

and smaller λσ
CI is equal to the time average of the divergence of the ‘flow’ given by

Eq.(9). This divergence is

∂δ
˙̃

Wσ

∂δW̃σ

+
∂δ

˙̃
W ∗

σ

∂δW̃ ∗
σ

= 2(1−K)− 4|Wσ|
2. (4.10)
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Therefore, we can calculate the smaller λσ
CI by subtracting the larger λσ

CI from

2(1 −K) − 4〈|Wσ|
2〉, where 〈...〉 denotes the time average. Note that if the larger

Lyapunov exponent for internal clump stability satisfies λσ
CI > 0, then clump σ

tends to fly apart (loose its integrity). (Referring back to Eqs. (4.5) and (4.6) where

we noted that there were 2N solutions for λ, and observing that
∑

j δWj = 0 for j

in clump a represents two real constraints on the 2Na real variables Re(δWj) and

Im(δWj), we conclude that λa
CI has multiplicity (2Na − 2), and similarly that λb

CI

has multiplicity (2Nb−2), thus together accounting for (2N −4) of the 2N possible

Lyapunov exponents.)

For the other type of Lyapunov exponent, we derive the perturbation equa-

tion similar to the derivation of Eq. (4.8), but now setting all the δWj in a clump

to be equal, δWj = δWa for all oscillators j in clump a, and δWj = δWb for all

oscillators in clump b. In this case, δW̄ = faδWa + fbδWb 6= 0, and we can interpret

δWa and δWb as displacement perturbations of the whole clump a and of the whole

clump b, respectively. We call these Lyapunov exponents the clump system orbit

stability exponents (λSO). There are four possible values of λSO, corresponding to

the four real perturbation variables Re(δWa,b) and Im(δWa,b).

Rather than working directly with Eq. (4.7), to calculate all the λSO for the

two clump states, we first reduce the number of real equations from four to three.

We let Wa = ρae
iθa and Wb = ρbe

iθb , where ρa, ρb, θa, and θb are all real. Also, we

define the relative phase difference φ = θa − θb. As a result, Eq. (4.7) yields three

coupled equations (as opposed to the four coupled equations that would result from
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taking the real and imaginary parts of Eq. (4.7)),

ρ̇a = [Kfa −K + 1]ρa − ρ3a +Kfbρb(cosφ+ C1 sinφ), (4.11)

ρ̇b = [Kfb −K + 1]ρb − ρ3b +Kfaρa(cosφ− C1 sinφ),

φ̇ = KC1(fa − fb)− C2(ρ
2
a − ρ2b) +KC1 cos φ

(
fbρb
ρa

−
faρa
ρb

)
−K sinφ

(
fbρb
ρa

+
faρa
ρb

)
.

Similar to Eq. (4.8), we can derive the perturbation equations for δρ̇a, δρ̇b , and

δφ̇. There are three λSO that result, corresponding to the three equations in (4.11).

(There is also a forth Lyapunov exponent of zero for the original four dimensional

system (4.7) that corresponds to an infinitesimal rigid phase rotation of the system

(δθa, δθb)→(δθa + δη,δθb + δη) which we note, does not change the value of δφ.

This extra exponent does not affect our discussion and will henceforth be ignored.

Correspondingly, we also note that, by use of the variable φ = θa − θb, any constant

rotation of Wa and Wb in the complex plane (i.e., a common factor of eiΩt) is

removed.) The largest λSO is computed by Eq. (4.6), with δ(t) =
√

δρ2a + δρ2b + δφ2.

To calculate the negative of the smallest λSO, we integrate the perturbation equation

derived from (4.11) with a typical initial perturbation following a saved forward

unperturbed orbit on the attractor backwards in time. Similar to the calculation

of λσ
CI , we can compute the divergence for the perturbation equations derived from

(4.11), and the middle λSO can then be obtained by subtracting the sum of the

largest and smallest λSO from the time average of the divergence.
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4.3 Two-Clump State Attractors

In this section, we focus on the ‘two-clump system’ described by Eqs. (4.11).

In particular, we study the possible two clump attractors in the (fa, K) parame-

ter space. To do this, we solve the two-clump system in Eq. (4.11) numerically

and compute λSO for these solutions. We observed both fixed-point solutions and

periodic-orbit solutions, but no chaotic solutions. We emphasize that such solutions

of the two clump system may be unphysical, since the individual clumps may or

may not be internally stable; i.e., it may be the case that one of the λa
CI or λb

CI is

positive. In this section we do not consider λσ
CI . Thus, when we refer to stability

in this section, we are refering to stability as determined by λSO (clump internal

stability, as determined by λCI , is considered in Sec. 4.4).

To find the fixed point solutions of Eq. (4.11), we set φ̇ = ρ̇a = ρ̇b = 0, for

which Eqs. (4.11) become

0 = [Kfa −K + 1]ρa − ρ3a +Kfbρb(cosφ+ C1 sin φ), (4.12)

0 = [Kfb −K + 1]ρb − ρ3b +Kfaρa(cos φ− C1 sinφ),

0 = KC1(fa − fb)− C2(ρ
2
a − ρ2b) +KC1 cos φ

(
fbρb
ρa

−
faρa
ρb

)
−K sin φ

(
fbρb
ρa

+
faρa
ρb

)
.

Note that a possible solution to Eqs. (4.12) occurs for ρa = ρb = 1, φ = 0, which

corresponds to a single clump fixed point solution. However, we are interested in

solutions of (4.12) representing two clump states. We reduce the number of equations

in Eq. (4.12) by eliminating the variable φ. To do this, we first solve for cosφ and

sinφ from the first two equations in (4.12). We then substitute these solutions into
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the relation, cos2 φ+ sin2 φ = 1, to obtain

4C2
1K

2f 2
af

2
b xy = C2

1 [fax
2 + fby

2 − fax− fby +Kfafb(x+ y)]2 (4.13)

+ [fax
2 − fby

2 − fax+ fby +Kfafb(x− y)]2,

where we have introduced x = ρ2a and y = ρ2b . Also, we substitute the solutions of

cosφ and sin φ into the third equation in Eq. (4.12), to obtain

2C1fafbxy[C2(x− y)−KC1(fa − fb)] (4.14)

= C2
1(fby − fax)[fax

2 + fby
2 − fax− fby +Kfafb(x+ y)]

− (fby + fax)[fax
2 − fby

2 − fax+ fby +Kfafb(x− y)].

Two clump fixed point solutions can occur at the intersection of y versus x plots of

Eqs. (4.13) and (4.14). An example with fa = 0.82, K = 0.78 is shown in Fig. 4.2

in which Eqs. (4.13) and (4.14) are plotted in red and blue, respectively. There is an

intersection point at x = 1 and y = 1 corresponding to a single clump state. There

are three other intersection points (shown in the figure as black dots) that are also

consistent with Eqs. (4.12) and that thus correspond to two-clump state solutions.

Stability analysis reveals that only the two intersection points labeled A and C are

stable solutions of the two clump system (4.11), i.e., all λSO for these solutions are

negative.

We determine fixed point solutions (e.g., as done in Fig. 4.2) and their

stability (i.e., by calculating λSO) for different K and fa. Results are shown in Fig.

4.3, where we denote the fixed point solutions A or C by fpA or fpC , respectively.

Referring to Fig. 4.3(a), fpA is stable in the region above the solid and dashed blue
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Figure 4.2: Plots of Eq. (4.13) (red) and (4.14) (blue) for fa = 0.82 and K = 0.79.
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lines. Below these blue solid and dashed lines, a stable solution for fpA does not

exist. In particular, the solid blue line corresponds to a saddle-node bifurcation of

fpA, while the dashed line corresponds to a Hopf bifurcation of fpA. [A co-dimension

two bifurcation occurs at the point where the saddle-node bifurcation coincides with

the Hopf-bifurcation. At this point, one λSO is zero while the real parts of the other

two λSO are zero.] Similarly, as shown in Fig. 4.3(b), fpC is stable (unstable) in the

region above (below) the solid green line, at which a Hopf-bifurcation occurs.

Our computational procedure for investigating periodic orbit attractors is as

follows. We first obtain numerical solutions of Eqs. (4.11) using many different

initial conditions for every selected pair of fa and K. Next, we numerically track

our discovered periodic orbit attractors with the system undergoing ‘slow adiabatic

parameter change’. In our implementation of what we call slow adiabatic parame-

ter change, after we run the numerical code solving Eqs. (4.11) for a long enough

time that the orbit has settled onto a periodic orbit attractor, we then change the

parameters by a small amount, K → K+ δK, fa → fa+ δfa, and we perform a new

simulation with these shifted parameters, using for the initial condition the system

state (ρa, ρb, φ) at the end of the previous run. By repeating this procedure through

many parameter shifts, we continuously track an identified attractor through a path

in the (K, fa) parameter space. By doing this and computing the λSO of the so-

lutions, we have explored the stability boundaries of our periodic orbit attractors.

The results are shown in Fig. 4.3. In particular, we find that all the periodic attrac-

tors observed in our simulations can be thought of as originating from bifurcations

of fixed points solutions. In Fig. 4.3(a), a periodic orbit attractor denoted poA is
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Figure 4.3: These figures show the solutions of the two-clump system described by

Eq. (4.11) in the phase space of fa versus K.

90



produced via a Hopf-bifurcation of fpA, occurring as the dashed blue line is crossed

from above. We found that poA is stable in a region below the dashed blue curve

and the black curve. In Fig. 4.3(b), there is another periodic attractor denoted poC ,

which is produced by a Hopf-bifurcation of fpC as the solid green curve is crossed

from above. The orbit poC is stable in the region between the solid green and dashed

green curves. The regions of these stable solutions are plotted in Fig. 4.3(c) which

essentially overlays Figs. 4.3(a) and 4.3(b) (the region where both fpA and fpC are

stable is labeled fpA,C .)

4.4 Transitions Between the Extensively Chaotic States and the Clumped

States

In this section, we will consider the internal stability of the two clump state,

and we will discuss the transitions between the clumped state and extensive chaos. In

particular, we focus on transitions between the two-clump state and the extensively

chaotic state with slow adiabatic change in K. To investigate this, we numerically

solve the full system described by Eqs. (4.2) and (4.3), and also compute the

internal stability exponents λσ
CI of the two clump states of Eqs. (4.7) and (4.11).

We find that, if the full system is initially in a two-clump state and we decrease

the coupling strength slowly, the population of clumps changes in such a way as

to keep the clump state marginally stable with respect to the internal stability of

the clumps. Eventually, with further decrease of K, the two clump state reaches

a critical coupling strength at which adaptation to a marginally stable state is not
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possible and the clumps explode, leading to a state of extensive chaos. In what

follows, we will first discuss the internal stability analysis followed by the results

of the numerical experiments of the full system. In addition, starting at a lower

K value, in an extensively chaotic state, we will investigate how the state evolves

with adiabatic increase of K and transitions to a two-clump state. We find that

this transition is discontinuous and hysteretic, and that following this transition

there is also a type of clump population readjustment occurring for increasing K,

which is different from the marginal-internal-clump-stability-readjustment process

for decreasing K.

4.4.1 Internal Clump Stability

The internal stability of a clump is determined by λσ
CI which is obtained

from Eqs. (4.7)-(4.10). Clumps a and b are both stable if all λσ
CI are negative for

σ = a and b. We computed these exponents for all the two clump states in Fig.

4.3(c). The results are displayed in Fig. 4.4, which shows regions where the two

clump state system solutions are stable (λSO ≤ 0), and both clumps are internally

stable (λa
CI , λ

b
CI < 0). Note that the blue curves in Fig. 4.4 represents the boundary

above which there exists a stable fixed point solution fpA of Eqs. (4.11) (same as

Fig. 4.3(a)). Above the blue curves, fpA orbit is stable according to Eqs. (4.11)

(i.e., the values of λSO are negative). On the other hand, both clumps are internally

stable only in the grey region bounded by the red solid and the blue curve. For the

periodic orbit poA, the clumps are not internally stable anywhere above the blue
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curve, and poA has internally stable clumps only in the green region below the blue

curve, bounded by the red solid and dashed curves. In this figure, the red solid,

red dashed, and the blue curves represent different ways that the clumps become

internally unstable. The solid red curve corresponds to the boundary where one of

the λa
CI is zero, which is where the larger clump a becomes unstable. The dashed red

curve corresponds to the boundary where one of the λb
CI is zero, which is where the

smaller clump b becomes unstable. Different from the red solid and dashed curves,

all λCI for fpA on the dashed blue curves are negative. As the orbit fpA becomes

unstable (i.e., one of the λSO becomes positive), the two-clump system Eqs. (4.11)

goes to another attractor (either poA or fpC), for which, however, one of the clumps

is internally unstable.

4.4.2 Marginal Stability and the Explosive Transition from the Clumped

State to Extensive Chaos

Below we discuss the results of numerical experiments for the full system with

N = 1000 oscillators. We first set K = 0.9 and run our numerical code long enough

that the full system (Eqs. (4.2)) settled on a two-clump state (fpA, see Fig. 4.4).

We then track how this state varies as we decrease K adiabatically. The tracking

method is similar to that described in Sec. 3 [where we searched for the stability

boundary of the periodic orbit solutions in the two-clump system (Eqs. (4.11))]. In

partitular, the initial condition of each successive simulations is the final oscillator

states of the previous simulation together with small random noise (≈ 10−7) added
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Figure 4.4: The blue curves represents the boundary where fpA becomes unstable

(same as Fig. 4.3(a)). fpA is stable with internally stable clumps in the grey region.

poA is stable with internally stable clumps in the green region. The dashed red, and

solid red are boundaries where the large clump a and the smaller clump b become

unstable, respectively.
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to each oscillator. Note, however, that in Eqs. (4.11) the clump populations fa and

fb = 1−fa are fixed, while, in contrast, in the full system Eqs. (4.2) we follow all the

individual states Wj (for j = 1, 2, ..., N). Thus in Eqs. (4.2) the clump populations

(fa, fb) may change dynamically upon change of the coupling K → K + δK.

Results are shown in Fig. 4.5 in which the state of the full system is plotted

in green in the fa −K space. Figure 4.5 also re-plots the results of Fig. 4.4, which

shows the boundary where the orbit fpA becomes unstable (the blue lines) and the

boundary where the clumps become internally unstable (the dashed red lines). In

the range K = 0.9 to K ≈ 0.75, the full system is in the two-clump fixed point state

fpA. As we decrease K from 0.9, the population of clumps is redistributed in a way

described by the green curve in Fig. 4.5a, which nearly matches the upper section

of the red dashed curve. We refer to the mechanism of population redistribution

between the clumps as ‘marginal stability’. To understand this in more detail,

imagine that the full system is in a two-clump state with K = K
′

and fa = f
′

a such

that, in the fa −K space, it is located at a point within the grey internally stable

region in Fig. 4.4. When K
′

→ K
′

+ δK, δK < 0 (δK ∼= −10−5 in Fig. 4.5), the

population of clumps of the full system remains unchanged if K
′

+ δK and f
′

a is still

inside the grey region. This corresponds to the horizontal green lines shown Figs.

4.5b and 4.5c. On the other hand, if (K
′

+ δK, f
′

a) crosses the upper boundary

of the grey region (i.e., the upper red dashed curve), clump a becomes internally

unstable. We have made a movie of the time evolution of all the oscillators plotted

in the complex W -plane when the green line crosses the red dashed curve. In the

movie, we observe that the oscillators in clump a spread apart and interact with
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clump b which in turn leads to oscillators in clump b spreading apart. The oscillators

move in a complex manner until the system reassembles onto a new two-clumped

state. Although the process of the redistribution of oscillators appears to involve

complex chaotic dynamics, we observe that the net effect is that only one oscillator

is transferred from clump a to clump b. In order to see expulsion of oscillators, we

cannot allow all the oscillators in a clump to have the exact same states to machine

round-off of our numerical computations. Thus, based on physical considerations

and to prevent this from occurring, we have added the previously mentioned very

tiny amount of random noise (≈ 10−7) to the state of each oscillator. After the

transfer of an oscillator from clump a to clump b, the new location in (K, fa) space

becomes K = K
′

+ δK and fa = f
′

a −
1
N

which is now in the grey region. This 1/N

decrease in fa corresponds to the regular drop steps of the green line in the blow-ups

shown in Figs. 4.5(b) and 4.5(a). Thus for N → ∞ and δK → 0, we expect that

the drop steps of the green line tend to zero and that the green path followed by the

system will converge to the dashed red curve. This process of redistribution of the

clumps is repeated until K ≈ 0.75, at the ‘nose’ of the red dashed line (the point at

which dfa/dK becomes infinite). For K less than this critical value, clump a cannot

restore its stability by the transfer of an oscillator to clump b. Consequently, we

find that the two clumps solution explodes as K is reduced past the critical value

Kc ≈ 0.75, and an extensive chaotic attractor emerges. We defer discussion of the

structure and properties of the extensively chaotic attractor to Sec. 4.5. Note that,

in order to see the (1/N) drop steps of the green lines, |δK| should be small enough.

A smaller |δK| and longer numerical integration times between increments of K are
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Figure 4.5: The full system is initially in a two-clump state at K = 0.9, and the

system undergoes slow adiabatic change of K until K ≈ 0.7. The trajectory of how

the full system state changes is plotted in green. Also, the results in Fig. 4.4 is

replotted similarly but replacing the the dashed red, solid red, and dashed magneta

curves (Fig. 4.4) by the dashed red curves only in Fig. 4.5.
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used in the ‘nose’ region near K = Kc (Fig. 4.5(c)) due to the increase of the slope

of the dashed red line as K decreases toward Kc.

4.4.3 The Discontinuous Transition from Extensive Chaos to Clumps

with Increasing K

We now consider the evolution of the extensively chaotic attractor with slowly

increasing K. We first choose K = 0.7 and run the numerical code long enough

such that the system settles on an extensively chaotic attractor. We then track the

attractor similarly as we did for the case of decreasing K. We typically find that the

extensively chaotic attractor is destroyed at a coupling value K well in excess of the

value Kc found for decreasing K (previous subsection). Furthermore, the K value

where this occurs varies somewhat randomly when we repeat the computations under

conditions that are very slightly different, and, on average, tends to be smaller for

slower sweeping. Following destruction of the extensively chaotic state, a two-clump

attractor emerges. Thus the situation is hysteretic since the transitions between the

two-clump state and extensive chaos occurs at higher (lower) K when K is slowly

increased (decreased).

In order to more clearly understand the nature of the transition from the

extensively chaotic state to the two clump state with increasing K, we investigate

the evolution of the system from random initial conditions where the Wj(0) as

uniformly sprinkled in the disc |W | < 1. For a specific value of K > Kc in an

appropriate range (e.g., K = 0.86), the system rapidly comes to a state where it
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behaves chaotically, as in the infinite lifetime extensively chaotic state that exists,

e.g., in K < Kc. However, after a (possibly quite long) finite time τ , the motion

rather suddenly settles onto a two-clump state. Further, upon many repeats of this

simulation procedure for the same K value, but with many different random initial

conditions, we find that the time τ at which the system settles onto a two-clump state

is different for different trials. Figure 4.7 shows semilog plots of histogram estimates

of the probability distribution P (τ) of the lifetimes τ of the transient extensive chaos

for several different K values in the range 0.845 ≤ K ≤ 0.870. We observe that τ

is approximately exponentially distribued for large τ ; i.e., the semilog plots can be

approximated fitted by a straight line at large τ . Performing such fits to the data

in Fig. 4.7, we compute for each K a characteristic time 〈τ〉 taken to be the inverse

of the slope of the fitted lines. Figure 4.8 shows 〈τ〉 versus K for 0.845 ≤ K ≤ 0.87.

We see that these characteristic settling times can be extremely long and increase

monotonically with decreasing K. We do not currently have any principled basis

for independently deducing the functional form of the dependence of 〈τ〉 on K.

However, we note that crises in the low dimensional chaotic systems [99, 100] can

lead to chaotic transients with exponentially distributed lifetimes, roughly analogous

to what we see in our system. Motivated by this observation, we try fitting our data

for the dependence of 〈τ〉 on K to a functional form that has been found to apply to

typical crises in low dimensional systems [99,100], 〈τ〉 ∼= (const.)(K−K∗)−γ, which

we rewrite as

(1/ 〈τ〉)γ ∼= B(K −K∗), (4.15)
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where B is a constant, and K∗ is a parameter value at which the lifetime of the

chaotic transient diverges to infinity as K → K∗ (from above), with the extensive

chaos assumed to become perpetual (infinite τ) for K < K∗. In the low dimensional

context γ is called the critical exponent of the crisis and has been theoretically

analyzed in Ref [101]. Figure 4.9 shows (1/τ) versus K obtained from our data.

This data seem to roughly conform to an approximately linear dependence (dashed

line in Fig. 4.9) consistent with Eq. (4.15) and γ ∼= 1. The dashed line intercept

corresponds to a K∗ value slightly less than 0.85 and substantially larger than Kc ≈

0.74.

4.4.4 Clump Population Redistribution with Increasing K

As discussed above, asK increases, there is a crisis-like transition of extensive

chaos to a two-clump attractor. We now study the post-crisis evolution of this two

clumps attractor with increasing K. Using approximately the same step size |δK|

as that in the case of decreasing K, for K between 0.84 and 0.9 (c.f., Fig. 4.5), we

examine the evolution of the two clump attractor with δK > 0. To explain what we

observe for increasing K, assume that the system is initially in a stable two-clump

state at K = K
′

and fa = f
′

a and K is shifted to K = K
′

+ δK, where δK > 0.

If the point, K = K
′

+ δK and fa = f
′

a, is to the right of the bottom boundary of

the grey stability region shown in Fig. 4.4 (dashed red curve in Fig. 4.5 and Fig.

4.6), the full system state becomes unstable (i.e., a positive value of λSO emerges).

From the analysis of Fig. 4.4, in the range of K above the transition out of the
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Figure 4.6: The full system is initially in the exntesive chaotic state at K = 0.7, and

the system undergoes slow adiavatic change of K until K ≈ 0.9. The trajectory of

how the full system state changes is plotted in green. Also, the results in Fig. 4.4 is

replotted similarly but replacing the the dashed red, solid red, and dashed magneta

curves (Fig. 4.4) by the dashed red curves only in Fig. 4.6.
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Figure 4.7: The natural logarithm of the probability distribution P (τ) versus the

life time τ for different K, where fraction is the fraction of trials that have the

corresponding life time.
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Figure 4.8: 〈τ〉 is plotted versus K.
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extensively chaotic state (K > 0.84), the only stable attractor from K = 0.84 to

0.9 is a two-clump fixed point state. As a result, we find that, as K is increased,

the full system settles on one of these attractors, by making a number of successive

irregular rises of fa (the green curve in Fig. 4.6). We observe, however, that, unlike

the evolution for decreasing K (Fig. 4.5), these rises are typically greater than 1/N

and that their magnitudes are somewhat random.

4.5 Structure and Fractal Dimension of the Extensive Chaotic At-

tractors.

4.5.1 Snapshot Attractors

An attractor of a dynamical system with a fractal structure in its state space

is called a strange attractor. In our case, the state space of our dynamical system

of N oscillators is 2N -dimensional, corresponding to specification at each time t

of Re(Wj) and Im(Wj) for j = 1, 2, ..., N . Projecting this 2N -dimensional state

onto the two-dimensional complex W -plane by plotting the points W = Wj(t) for

j = 1, 2, ..., N , at a specific time t, we obtain a ‘snapshot’ of this projection. Our

numerical experiments for extensively chaotic cases with large N show that the

points in these snapshot projections appear to form a fractal distribution.

Let D̂ denote the fractal dimension of such a time t projected pattern for an

orbit that is on the attractor (here we will use the well-known information dimension

as our definition of dimension [102]). The fractal attractor projection at any subse-

quent time t+ T is related to the time t attractor projection by a smooth mapping

105



Figure 4.10: (a) A snapshot of the attractor is plotted with K = 0.8 and N = 50000.

(b) The blow-up of the rectangles in (a). (c) The blow-up of the rectangle in (b).
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Figure 4.11: Snapshot attractor with externally imposed W̄ (t). (a) A snapshot of

the attractor is plotted similar to Fig. 4.10(a). (b) The blow-up of the rectangles

in (a). (c) The blow-up of the rectangle in (b).
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of the W−plane that follows from the 2N -dimensional flow specified by Eqs. (4.2)

and (4.3). Thus the dimension of the fractal attractor’s projection must be the same

at time t and t + T . That is, D̂ is constant with time. Furthermore, we will argue

later in this section that the attractor dimension DA in the full 2N−dimensional

state space satisfies

DA = ND̂ (4.16)

as N → ∞. Thus we confirm that such an attractor is indeed extensive.

An example of the observation of the fractal structure of the extensively

chaotic attractors is given in Fig. 4.10 which shows the state of each of the N =

50000 oscillators in the complex W−plane for K = 0.8. Figure 4.10(a) shows a

part of the snapshot attractor. Figure 4.10(b) displays a blow-up of the rectangle in

Fig. 4.10(a), which, like Fig. 4.10(a), reveals that there exists fine-scale structure

appearing as a number of curved ”lines”. Figure 4.10(c) displays a blow-up of the

rectangle in Fig. 4.10(b), which (to within the resolution due to finite N) shows

structure qualitatively similar to that in Figs. 4.10(a) and 4.10(b). We believe that,

for N → ∞, continuation of this blow-up procedure would show that the snapshot

attractor has similar structure on arbitrarily small scale. Also, as previously men-

tioned, we have made a movie of the time evolving fractal-like pattern formed by

the N = 1000 oscillators as they move in the complex W -plane. This movie shows

continual stretching and folding dynamics, thus illustrating the mechanism by which

the chaotic dynamics is produced.

As we will soon show, a useful way of thinking about snapshots like that
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in Fig. 4.10 is to regard the time dependence of W̄ (t) as being like an externally

imposed random forcing in the equation for each oscillator j (Eq. (4.2)). That is,

we ignore the self-consistent nature of W̄ (t) which in reality is the average over all

the Wj(t). This view can be motivated as follows. Consider a specific oscillator

j = l, and delete this one oscillator from the mean field to form

W̄
′

=
1

N

∑

j 6=l

Wj = W̄ − (Wl/N). (4.17)

Now consider the dynamics of the original system (4.2), but with W̄ replaced by W̄
′

.

With this replacement the dynamics of the (N − 1) oscillators j 6= l is uncoupled

from the dynamics of oscillator l, and W̄
′

appearing in the equation for oscillator

j = l in Eq. (4.2) is thus effectively an imposed external forcing. Furthermore, for

large N , the difference W̄ − W̄
′

= Wl/N is small and approaches zero as N → ∞.

Thus we expect that, for appropriate considerations of the oscillator dynamics in the

case N ≫ 1, the behavior of an individual oscillator of the system can be regarded

as being like that of an isolated oscillator driven by an external W̄ (t). In order

to validate the view of W̄ (t) as acting like an externally imposed forcing, we save

in computer memory the time series of W̄ (t) that resulted in the snapshot of Fig.

4.10. Next we choose N = 50000 random initial conditions Wj(0) that are different

from the 50000 random initial conditions used in generating Fig. 4.10. We then use

Eqs. (4.2) to evolve these new initial conditions, but, in doing this, we replace the

self-consistent W̄ (t) by the previously computed and saved W̄ (t). Thus, in this new

computation, W̄ (t) really is externally imposed. Figure 4.11 shows the resulting

snapshot for this case determined at the same time t as in Fig. 4.10. We observe
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that the macroscopic fractal-like patterns in Figs. 4.10 and 4.11 are the same. The

only difference is that the exact placements of individual points are not the same.

Our interpretation is that, associated with the saved time-dependent W̄ , there is

an underlying time-dependent multifractal measure and that Figs. 4.10 and 4.11

represent two independent random N = 50000 samplings from this measure.

Next we consider the N−dependence of the dynamics. We have seen that

the snapshot can be regarded as resulting from an external forcing W̄ (t) and that

this determines the overall snapshot pattern. We, therefore, examine the statistical

properties of W̄ (t). Figures 4.12(a) and 4.12(b) show |W̄ (t)| for extensively chaotic

dynamics (K = 0.8) for N = 10000 and N = 50000. These look qualitatively

similar, but, to make the comparison qualitative, we show in Fig. 4.13 the correlation

function,

C(τ) = 〈[|W̄ (t)| − 〈|W̄ (t)|〉][|W̄ (t+ τ)| − 〈|W̄ (t)|〉]〉, (4.18)

where the angle brackets denote a time average. In Fig. 4.13 the results for N =

10000 and N = 50000 are plotted as solid dots and crosses, respectively. The

good agreement between these two results indicates that, at these large N values,

the statistical properties of W̄ (t) have essentially attained their N → ∞ limiting

form. As a consequence, we also conclude that the measure corresponding to the

distributions in Figs. 4.10 and 4.11 has also essentially attained its N → ∞ form.
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Figure 4.12: W̄ (t) versus t for (a) N = 10000, and (b) N = 50000.
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Figure 4.13: Correlation function C(τ) (Eq. 4.18) versus τ for N=10000 (red

crosses) and N=50000 (blue circles).
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4.5.2 Fractal Dimension

The usual definition of the information dimension DI of an attractor in an

M-dimensional space is [102]

DI = lim
ǫ→0

∑Ñ(ǫ)
i=1 µi lnµi

ln ǫ
, (4.19)

where it is supposed that the space has been divided by a rectanglular grid into equal

size M-dimensional cubes of edge length ǫ, and µi is the frequency with which a

typical orbit on the attractor visits the ith cube. The information dimension may be

thought of as quantifying how the average information content I(ǫ) =
∑

µi lnµ
−1
i , of

a measurement of the system state scales with the resolution, ǫ, of the measurement,

I(ǫ) ∼ ǫ−D1 .

We now wish to numerically estimate the information dimension D̂ for the

measure corresponding to the distributions in our snapshots. In order to accomplish

this, rather than numerically implementing a procedure based directly on division of

the W -plane into an ǫ grid, as in the definition of Eq. (4.19), we find it convenient

to use an alternate procedure that does not require formation of an ǫ-grid. Our

procedure is a variant of the idea of Grassberger and Procaccia [98] for computing

the correlation dimension, but adapted to yield the information dimension. We

proceed as follows. We consider a snapshot attractor plot of N points in the complex

W -plane at time t. We denote by Bt
ǫ,j the disc of radius ǫ centered at the point Wj ,

and by µ(Bt
ǫ,j) the fraction of oscillator state points in the snapshot that fall within
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the disc Bt
ǫ,j. We let

Zǫ = 〈
1

N

N∑

j=1

lnµ(Bt
ǫ,j)〉, (4.20)

where 〈...〉 again represents an average over time t (i.e., over snapshots).

Next we plot Zǫ versus ln ǫ. Assuming the existence of a reasonably large

linear scaling range dependence for ǫ small compared to the diameter of the snapshot

pattern, yet large compared to the average minimum distance between points, we

estimate the snapshot pattern’s information dimension (D̂) as the slope of a straight

line fit to this dependence in the appropriate range. We have numerically computed

Zǫ versus ln ǫ for the extensively chaotic attractors at K = 0.7 and K = 0.8 (Fig.

4.14), using 300 snapshots (corresponding to 300 times) each. The results are shown

as the blue curves in Fig. 4.15. We see that there is indeed a reasonable scaling

range of linear dependence. The red straight lines are obtained from a theory that

we discuss in section 4.5.3. The red line plots have slopes corresponding to values

of the information dimension of D̂ = 1.26 (Fig. 4.15(a) for K = 0.7) and D̂ = 1.30

(Fig. 4.15(b) for K = 0.8). As is evident from Fig. 4.15 these theoretical slope

values are consistent with the blue curve plots in the scaling range.

We have also repeated this calculation for patterns obtained as in Fig. 4.11

(i.e., with W̄ (t) replaced by an externally imposed time series obtained and saved

from a previous self-consistent computation with different random initial condi-

tion). The results (not shown) are virtually identical to those obtained for our

self-consistent calculations shown in Fig. 4.15, thus providing quantitative support

for the view that W̄ acts as an externally imposed driver for large N .
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Figure 4.14: Snapshot attractors for N= 50000. (a) K=0.7 and (b) K = 0.8.
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Figure 4.15: lnZǫ versus ǫ for (a) K = 0.7 and (b) K = 0.8. The information

dimension DI can be estimated by the slopes of fitted straight lines for the linear

region of blue curves. The Lyapunov dimension is shown by the slop of the red

curves.
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4.5.3 Lyapunov Dimension

Since W̄ (t) can be regarded as an externally imposed forcing and varies

chaotically, we can view each of the N equations (Eqs. (4.2)) as being identical

random dynamical systems of the general type considered by Yu et al. [95, 96]. For

such systems Yu et al. show that the Kaplan-Yorke conjecture applies to snapshots

(see also Young and Ledrappier [103]).

The Kaplan-Yorke conjecture [104–106] relates the information dimension of

an attractor to the Lyapunov exponents. Consider an M dimensional system with

Lyapunov exponents λ1 ≥ λ2 ≥ ... ≥ λM . Let Q be the largest integer such that

Q∑

q=1

λq ≥ 0. (4.21)

The Lyapunov dimension is defined by

DL = Q+
1

|λQ+1|

Q∑

q=1

λq. (4.22)

(Note that the second term in (4.21) is between 0 and 1.) The Kaplan-Yorke con-

jecture is that DI = DL for ‘typical attractors’.

To apply the Kaplan-Yorke conjecture to a randomly forced system like (2)

with W̄ regarded as externally imposed, we calculate the two Lyapunov exponents

for the variations δWj with δW̄ ≡ 0 (because, for large N , W̄ (t) is regarded as

externally imposed). Two Lyapunov exponents λ1 > 0 > λ2 are obtained, where for

the cases we consider λ1 + λ2 < 0. Thus from (21)

DL = 1 + λ1/|λ2|. (4.23)
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Note that for sufficiently long calculation times essentially the same numerical values

of the exponents are found for all j = 1, 2, ..., N . The red lines on Fig. 4.15 have

the slope given by (4.22).

4.5.4 Extensivity

We now return to the issue of how the information dimension of the snapshot

attractors D̂ is related to the attractor dimension DA of the full system in its 2N

dimensional state space. In particular, we give an argument supporting Eq. (4.16).

Going back to the definition of the information dimension in terms of the

ǫ scaling of the information associated with an ǫ-accuracy state measurement, we

note that a state measurement of all the Wj at any time t would determine the

points Wj in a snapshot. Also most of the volume of a 2N -dimensional ǫ-edge cube

in the full 2N -dimensional state space projects to an area of the W -plane with a

diameter ∼ ǫ. Thus ǫ-accuracy measurements of the positions {Wj} in the W -plane

are approximately equivalent to an ǫ-accuracy measurement of the a state in the full

state space. There are N positions of the Wj in the complex W -plane that must be

measured to determine the full state. Further, if W̄ (t) is regarded as imposed for

large N , these Wj can be regarded as uncoupled (c.f. Eq. (4.2)) when considering

the snapshot pattern and its dimension. Thus for large N the information associated

with an ǫ-accuracy measurement of the full state is N times the information of an ǫ-

accuracy measurement of one of the Wj. Hence, Eq. (4.16) follows, and we conclude

that, for our system Eqs. (4.2) and (4.3), or indeed for any system of the mean-field
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type Eq. (4.1) with N ≫ 1, observation a fractal pattern in a snapshot corresponds

to extensive chaos.

Another way of understanding Eq. (4.16) is as follows. Our system Eqs. (4.2)

and (4.3) has 2N Lyapunov exponents. For very large N each oscillator equation

can be approximately regarded as driven by an externally imposed W̄ (t), and has

Lyapunov exponents λ+ > 0 > λ−. Thus, at finite large N , we expect that a

histogram of the 2N Lyapunov exponent values will be sharply peaked at λ = λ+ and

λ = λ−, approaching delta functions at these two values in the limit asN → ∞. This

expectation is consistent with our extensivity result DA
∼= ND̂, for N ≫ 1. This

follows from the Kaplan-Yorke formula for the Lyapunov dimension. In particular,

considering that N of the exponents are approximately λ+ and N are approximately

λ−, we have that |λ−| ≥ Nλ+−(Q−N)|λ−| ≥ 0. Thus, DA
∼= Q ∼= N(1+λ+/|λ−|) =

ND̂, consistent with out previous argument.

4.6 Conclusions

In this paper we have considered the dynamics of large systems of many

identical Landau-Stuart oscillators coupled by their mean field (Eqs. (4.2) and

(4.3)). We have obtained results that we believe should also apply to other types of

mean-field coupled systems of many identical dynamical units (e.g., Eq. (4.1)). Our

results were of two types. One type of result concerned dynamical transitions: the

question of how an identified attractor evolves and bifurcates with slow adiabatic

change of a system parameter (Secs. 4.3 and 4.4). The other type of result concerned
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the structure of what we have called extensive chaos in these types of system (Sec.

4.5). We now summarize our main conclusions in these two areas.

Our conclusions with regard to dynamical transitions are the following.

1. Adiabatic variation of a parameter in a clumped state regime can lead to

redistribution of oscillators between the clumps, and two mechanisms inducing

such redistribution are marginal stability of clump integrity (as for the case

of decreasing K in the range K ≥ 0.75 in Fig. 4.5) and the crossing of the

existence boundary for stable solutions of the clump motion equations, Eqs.

(4.11) (as for the case of increasing K in the range K ≥ 0.85 in Fig. 4.6).

2. An apparently typical explosive type of dynamical transition from a clumped

state to an extensively chaotic state has been found to occur at a critical

coupling value past which maintainence of clump internal stability becomes

impossible (K ≤ 0.75 in Fig. 4.5).

3. A transition by which an extensively chaotic attractor can be destroyed has

been identified as bearing similarity to the crisis transition mechanism [99,100]

of chaotic attractors of low dimensional systems; specifically, with variation of

a system parameter, it appears that the extensively chaotic motion can assume

a transient character whereby the extensive chaos exists only for a finite time,

before, rather abruptly, moving to another type of motion (Fig. 4.8.)

Our conclusions with regard to the structure of extensive chaos in mean-field

coupled systems of many identical dynamical units (large N) are the following.
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1. These systems behave essentially like a collection of uncoupled components

with a common random-like external drive.

2. Snap-shots of the component states of the system projected onto the state

space of an individual unit (e.g., for Eqs. (2) and (3), the complex W -plane)

can display fractal structure (e.g., Fig. 4.10) whose information dimension can

be predicted by use of the Kaplan-Yorke formula.

3. The attractor dimension in the full phase space is N times the fractal dimen-

sion of a snapshot projection.
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A.1 Dynamical Model of Bivalent Histone Modification

6-state model. Refer to Fig. 16. Circles in the figure represent nucleosomes.

A nucleosome contains two histone copies represented by the vertically oriented

ellipses. Each histone has a site (represented by the upper half of the ellipse) that

can be either unmodified (symbolized by u) or have an active mark (symbolized by

α) and another site (represented by the lower half of the ellipse) that can be either

unmodified (symbolized by u) or have a repressive mark (symbolized by ρ). Each of

the four modification sites in a nucleosome can be in one of two states (modified or

unmodified), yielding the 24 = 16 possibilities that are shown in the figure panels,

(a)-(p). Panels grouped together by the curly brackets in the figure represent the

same physical nucleosome state, e.g., panels (e) and (f) are considered to represent

the same physical nucleosome state since (f) results from (e) by interchange of

the left and right histone ellipses. There are six such pairs. Thus there are 10

physically distinct nucleosome states. In addition, experiments indicate that active

and repressive marks do not occur simultaneously on the same histone [58] (i.e., α

and ρ do not occur in the same ellipse). This eliminates the possibilities depicted

in panels (d) and (k)-(p). Thus we arrive at 6 possible states. In these 6 possible

states, each histone has three distinct configurations, and we assign symbols A, U ,

R to them. They have the following meanings.

A: The histone has an active mark and the other site is unmodified.

U : All two sites are unmodified.
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R: The histone has a repressive mark and the other site is unmodified.

As a result, the six possible states can be depicted by 2 letters instead of 4 letters,

which we label UU , AA, RR, AU , UR, and AR as shown in Fig. 16.

Reduced model. We now introduce a reduction of the above 6-state model to a

more simple model. Our reduction is motivated by a limited number of simulations

of the 6-state model in which we found that the experimentally observed bivalent

nucleosome state (AR) tended to be absent unless the AA and/or RR states were

suppressed (i.e., πσσ
′ is low for the transition σ = AU → σ

′

= AA and the transition

σ = UR → σ
′

= RR). This is consistent with a recent experimentally motivated

hypothesis that the existence of the asymmetrically modified nucleosome states, AU

and UR, are important for the formation of bivalent domains [58].

One way of understanding this is to note from Fig. 3.2 that the AA state competes

with the AR state for conversion from the AU state, and the RR state similarly

competes with the AR state for conversion from the UR state. This suggests that

if we want to allow for the occurrence of the experimentally observed AR state, we

could chose parameters in our six state model such that the transition rate from

AU to AA is sufficiently smaller than the transition rate to AR. Similarly we would

want the transition rate from UR to RR to be sufficiently smaller than the tran-

sition rate to AR. Thus, to make the model more tractable, we employ a further

simplification and consider the idealized case in which AA and RR are completely
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suppressed. That is, in terms of our 6-state model, we set πσσ′ = 0 for the transition

σ = AU → σ
′

= AA and the transition σ = UR → σ
′

= RR. In this formulation,

AA and RR states do not occur, and the 6-state model reduces to a 4-state model.

Another example of localization of AR states related to our results in

Section 4.4.3

We note that our result in Fig. 3.9 is not consistent with experiment in

that in Fig. 3.9 the active marks are more extensive than the repressive marks,

while Ref. [34] shows that the opposite situation holds in experiment. We note,

however, that, as shown in Fig. 17, for other reasonable parameter choices, we can

also obtain states for which the repressive marks are more extensive than the active

marks (consistent with [34]).
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Figure 16: Illustration for the explanation of the states of the 6-state

model.
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Figure 17: Figure S2. An example of the distribution of AR nucleosomes,

active, and repressive marks. This plot illustrates that the 4-state model de-

scribed in the main text can simulate bivalent domains (blue) in which the active

mark (green) is less extensive than the repressive mark (red) (i.e., the bivalent do-

mains (blue) are buried in the repressive domains (red)). The details of simulation

can be referred to Section 3.3.3. Here, distributions of AR nucleosomes (blue),

AR+ UR nucleosomes (red), and AR+AU nucleosomes (green) are plotted at the

end of the simulation runs (time =1800). The average levels of nucleosomes are av-

eraged over 1000 simulation runs. In the simulation, pi=40
UA = 0.03 and pi=40

UR = 0.015.

The other parameters are rUA = 0.029, rUR = 0.021, pAU = 0.025, pRU = 0.015,

rAU = 0.004 and rRU = 0.002.
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