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REDUCED BASIS COLLOCATION METHODS FOR PARTIAL
DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS ∗
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Abstract. The sparse grid stochastic collocation method is a new method for solving partial differ-
ential equations with random coefficients. However, when the probability space has high dimensionality,
the number of points required for accurate collocation solutions can be large, and it may be costly to
construct the solution. We show that this process can be mademore efficient by combining collocation
with reduced-basis methods, in which a greedy algorithm is used to identify a reduced problem to which
the collocation method can be applied. Because the reduced model is much smaller, costs are reduced
significantly. We demonstrate with numerical experiments that this is achieved with essentially no loss
of accuracy.
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1. Introduction. Let (Ω,Σ,P) be a complete probability space, whereΩ is the
sample space,Σ ∈ 2Ω theσ-algebra, andP : Σ→ [0, 1] the probability measure. Let
D ⊂ R

d (d=1,2,3) be a bounded and connected domain with a polygonal boundary
∂D. We consider the problem of finding a random functionu(~x, ω) ∈ D × Ω → R,
such thatP-a.e. inΩ,

L(~x, ω; u(~x, ω)) = f (~x ) ∀~x ∈ D,(1.1)

b(~x, ω; u(~x, ω)) = g(~x ) ∀~x ∈ ∂D,(1.2)

whereL is a partial differential operator andb is a boundary operator, both of which
can have random coefficients. In order to solve (1.1)–(1.2) numerically, the ran-
dom coefficients in the operators should be represented by a finite number of random
variablesξ = [ξ1(ω), ..., ξM(ω)]T . This could come from a variety of sources, for
example, a truncated Karhunen-Loève (KL) expansion [2, 11], some partitioning of
D into subdomains, or uncertain boundary conditions. Letting Γi := [ai , bi ] denote
the image ofξi(ω) andΓ :=

∏M
i=1 Γi the image ofξ, (1.1)–(1.2) can be rewritten as:

find a functionu(~x, ξ) ∈ D × Γ, such that

L
(
~x, ξ; u

(
~x, ξ

))
= f (~x ) ∀

(
~x, ξ

)
∈ D × Γ,(1.3)

b
(

~x, ξ; u
(

~x, ξ
))

= g(~x ) ∀
(

~x, ξ
)

∈ ∂D × Γ,(1.4)

whereL andb are assumed to beaffinely dependent onξ. It is of interest to identify
moments and cumulative distributions associated with the solution u(~x, ξ). Our aim

∗This work was supported in part by the U. S. Department of Energy under grant
DEFG0204ER25619 and by the U. S. National Science Foundation under grant DMS1115317.

†Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, USA. (Email: elman@cs.umd.edu).

‡Department of Computer Science, University of Maryland, College Park, MD 20742, USA. (Email:
qliao@umd.edu).

1



2

in this study is to develop a variant of thesparse grid collocation methodfor con-
structing solutions to (1.3)–(1.4), usingreduced-basis methodsto enhance efficiency.

The sparse grid collocation method [21, 32] for stochastic partial differential
equations (PDEs) is an example of a spectral method, in whichdiscrete solutions
are constructed using polynomials in the random variableξ in combination with stan-
dard (e.g., finite element) spatial discretization. Collocation shares with Monte Carlo
methods the feature that only solutions of a set of spatiallydiscrete problems at a
set of sample points{ξ(k)} are required, and it exhibits rapid convergence (nearly ex-
ponential in the number of sample points [21]), which makes it more efficient than
Monte Carlo methods when the dimensionM of the sample space is modest, say, on
the order of 100 or smaller [18, 19]. However, the number of sample (collocation)
points needed may still be large when accuracy requirementsare strong, and if this is
coupled with fine discretization for spatial accuracy, thenthe costs of stochastic collo-
cation may be high. To address this issue, we combine collocation with reduced-basis
methods[4, 13, 20], in which parameterized discrete PDEs are projected into spaces
of significantly smaller dimension. The reduced-basis methodology is designed to de-
crease the cost of simulation of parameter-dependent models; in this study, we show
that this idea can be used with stochastic collocation to thesame effect.

An outline of the rest of the paper is as follows. In Sections 2and 3, we re-
view the collocation and reduced basis methods, and in Section 4, we present our
algorithm for combining them. In Sections 5 and 6, we demonstrate the efficiency
of the combined method for solving stochastic versions of the diffusion equation and
the incompressible Navier-Stokes equations. Finally, in Section 7 we make some
concluding remarks.

2. Stochastic collocation on sparse grids.The main idea of stochastic colloca-
tion methods is to seek a numerical approximation to the exact solution of (1.3)–(1.4)
in the form

usc (~x, ξ
)

:=
∑

ξ(k)∈Θ

uc

(

~x, ξ(k)
)

L̃ξ(k) (ξ) ,(2.1)

whereΘ ⊂ Γ is a given sample set,{L̃ξ(k)(ξ)} are some global interpolation polynomi-
als defined inΓ (e.g., Lagrange polynomials) and each coefficient functionuc(~x, ξ(k))
is the solution of a deterministic problem corresponding toa given realizationξ(k) of
the random variableξ,

L
(

~x, ξ(k); u
(

~x, ξ(k)
))

= f (~x ) ∀~x ∈ D,(2.2)

b

(

~x, ξ(k); u
(

~x, ξ(k)
))

= g(~x ) ∀~x ∈ ∂D.(2.3)

We will be concerned with sparse grid collocation as described in Xiu and Hes-
thaven [32], which is based on the methodology of sparse gridinterpolation. We
begin with a brief review of this interpolation technique. Without loss of general-
ity, the image ofξ is assumed in this section to beΓ∗ := [−1, 1]M , since any finite
Γ =

∏M
i=1[ai , bi ] can be mapped toΓ∗. First, we consider a one-dimensional setting.
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Introducing a level indexi ∈ N, letΘi
1 = {ξ

i
j , j = 1 : mi} be a partitioning of the inter-

val [−1, 1], wheremi is the number of partitioning points. For an arbitrary function
v(ξ) ∈ C([−1, 1]), its Lagrange interpolant is

U i(v) =
mi∑

j=1

v
(

ξij

)

Li
j (ξ) ,

where

Li
j (ξ) =

mi∏

k=1,k, j

ξ − ξik

ξ
j
k − ξ

i
k

.

A straightforward generalization for a function ofM variablesv(ξ) ∈ C(Γ∗) is the
tensor-product interpolant

(

U i1 ⊗ · · · ⊗ U iM
)

(v) =

mi1∑

j1=1

· · ·

miM∑

jM=1

v
(

ξi1j1, · · · , ξ
iM
jM

)

Li1
j1

(ξ1) · · · LiM
j1

(ξM) .

This requires the function values at
∏M

i=1 mi nodes, which is of exorbitant size for
large M andmi. The number of nodes can be reduced dramatically using a sparse
grid (Smolyak) operator [3],

A(q,M) :=
∑

q−M+1≤|i|≤q

(−1)q−|i|
(

M − 1
q− |i|

)
(

U i1 ⊗ · · · ⊗ U iM
)

,(2.4)

wherei ∈ N
M, |i| = i1 + · · · + iM and the indexq ≥ M is called the sparse grid level.

The sparse grid operator depends on function values at thesparse grid points

Θq :=
⋃

q−M+1≤|i|≤q

(

Θ
i1
1 ⊗ · · · ⊗ Θ

iM
1

)

.

The size of the sample set (i.e., the number of sparse grid points) |Θq| can typically be
chosen to be much smaller than

∏M
i=1 mi without significantly sacrificing interpolation

accuracy [3].
Different choices of the one-dimensional partitioning sets{Θi

1} lead to different
sparse grid operators, e.g., nested Clenshaw-Curtis abscissae [3, 32] and non-nested
Gauss abscissae [8]. When nested abscissae are used,A(q,M)(v) is an interpolant
of v(ξ) for any arbitraryv(ξ) ∈ C(Γ). This is not true in general when non-nested
abscissae are used.

In this study, we consider Clenshaw-Curtis interpolation,whose abscissae are the
extrema of Chebyshev polynomials (see [32]), andΘq refers to the set consisting of
Clenshaw-Curtis sparse grids. From [32],|Θq| ≈ 2q−M q!

M!(q−M)! �
∏M

i=1 mi. For this
interpolation rule,

A(q,M)(v) ∈
∑

|i|=q

(

Pmi1−1 ⊗ · · · ⊗ PmiM−1

)

,
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wherePmi−1 is the set of polynomials with degree at mostmi − 1 and

mi =

{

1 i = 1,
2i−1 + 1 i > 1.

In addition, A(q,M)(v) = v wheneverv ∈
∑

|i|=q

(

Pmi1−1 ⊗ · · · ⊗ PmiM−1

)

. Like the
generic form of collocation solutions (2.1), the specific form for sparse grid sampling
is denoted by

usc
q

(

~x, ξ(k)
)

:=
∑

ξ(k)∈Θq

uc

(

~x, ξ(k)
)

Lξ(k) (ξ) ,(2.5)

where the interpolation polynomials{Lξ(k)} come from the definition of the Smolyak
operator (2.4).1

We can also use the sparse grid formulation to perform quadrature to approximate
the moments ofusc

q . For example, the Clenshaw-Curtis quadrature rule (see [22] for
details) computes the mean ofusc

q (~x, ξ),

E

(

usc
q

(

~x, ξ
))

:=
∫

Γ

usc
q

(

~x, ξ
)

ρ (ξ) dξ,

in the form

Ẽ

(

usc
q

(
~x, ξ

))

:=
∑

ξ(k)∈Θq

uc

(

~x, ξ(k)
)

ρ
(

ξ(k)
)

wξ(k) ,(2.6)

where{wξ(k)} are the weights of the Clenshaw-Curtis sparse grid quadrature. It can be
seen that the evaluation of the mean function (2.6) does not entail evaluation of the
interpolation polynomialsLξ(k) in (2.5). An estimate for the variance can be computed
in the same way.

Note that this Clenshaw-Curtis quadrature rule with levelq is exact for polyno-
mials in the space ∑

|i|=q

(

Pmi1
⊗ · · · ⊗ PmiM

)

.

This impliesE(usc
q (~x, ξ)) = Ẽ(usc

q (~x, ξ)) whenξ is uniformly distributed, i.e., when
the density functionρ(ξ) is a constant.

3. Discretization and reduced basis approximation.In this section, we dis-
cuss finite element approximation and reduced basis methodsfor the problem (2.2)–
(2.3). To simplify the presentation in this section, we willassume the problem sat-
isfies homogeneous Dirichlet conditions. It is straightforward to generalize the ap-
proach to nonhomogeneous conditions, which will be discussed in Section 6.

In general, we denote the weak form of the deterministic problem (2.2)–(2.3)
corresponding to a given realization ofξ by

Bξ(u(·, ξ), v) = l(v).

1We refer to the MATLAB toolbox SPINTERP [16] for evaluatingLξ(k) (ξ).
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Let Xh be a spatial finite element approximation space (e.g., piecewise linear or
quadratic polynomial spaces) of dimensionNh. A finite element formulation seeks
an approximationuh(·, ξ) ∈ Xh such that

Bξ (uh (·, ξ) , v) = l(v) ∀v ∈ Xh.(3.1)

In the following, for anyξ, the finite element solutionuh (·, ξ) is referred to as a
snapshot associated withξ. Grouping solutions of (3.1) with respect to allξ ∈ Γ
together, we define a set consisting of all snapshots

SΓ := {uh (·, ξ) , ξ ∈ Γ} .

We will refer to this as thefull snapshot set. Similarly, for a given finite setΘ ⊂ Γ,
we define a finite snapshot set

SΘ := {uh (·, ξ) , ξ ∈ Θ} .

The matrix form ofSΘ is denoted bySΘ ∈ R
Nh×|Θ|, i.e., each column ofSΘ is the

vector of nodal point values of a finite element solution.
In this study, we assume that the spatial mesh is sufficiently fine so that the fi-

nite element discretization error is acceptable (we refer to standard a posteriori error
estimation techniques, e.g., [1, 10, 29]). With this assumption, the Galerkin equa-
tion (3.1) typically has many degrees of freedom. On the other hand, the size of the
sample set|Θq| approximately equals 2q−M q!

M!(q−M)! [32]. Although this may be much
smaller than the size of the tensor sample set, it may still bevery large if high ac-
curacy with respect to collocation error is needed. The combination of large-scale
spatial discretization and large numbers of sample (collocation) points can cause the
cost of sparse grid collocation to be unacceptably high. Oneaim hence is to show
that these costs can be reduced through the use of reduced basis methods.

That is, suppose we have a set of basis functionsQ = {q1, ..., qN} ⊂ Xh, where
N � Nh. In the Galerkin formulation of the reduced basis method, weseek an
approximate solutionuR(~x, ξ) ∈ span(Q) such that

Bξ (uR (·, ξ) , v) = l(v) ∀v ∈ span(Q).(3.2)

The reduced problem (3.2) tends to be much smaller than the full problem (3.1)
[4, 20, 30]. Because of this, it is also likely to be cheaper tosolve, especially if
the computation is done carefully using precomputed quantities when possible. In
the following, we demonstrate this approach using two typesof benchmark prob-
lems. For the first, we use the diffusion equation as a prototypical example of a linear
problem; the approach considered is generally applicable to linear problems, such as
the Stokes equations. For the second, we explore the methodology for quadratic prob-
lems as examplified by the Navier-Stokes equations. For highly nonlinear operators,
we refer to [7].
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3.1. Linear operators. When the operatorL of (1.3) is linear as a spatial dif-
ferential operator, the discrete weak formulation (3.1) leads to a linear system

Aξuξ = f(3.3)

of orderNh. SinceL is linear,Aξ is independent ofuξ, and by assumption it is affinely
dependent on the parameterξ ∈ Γ. That is, it has the form

Aξ =
K∑

i=1

φi (ξ) Ai ,(3.4)

where{Ai} are parameter-independent matrices andφi(ξ) ∈ R.
For qi ∈ Q, let qi be the vector of nodal coefficient values associated withqi ,

and letQ = [q1, ..., qN] ∈ R
Nh×N be the matrix representation ofQ. Then the linear

system associated with the reduced problem (3.2) can be written as

QTAξQũξ = QT f .(3.5)

With the expansion (3.4), (3.5) can be written as
( K∑

i=1

φi (ξ) QTAiQ
︸  ︷︷  ︸

AR,i

)

ũξ = QT f
︸︷︷︸

fR

.(3.6)

Once the parameter-independent reduced matrices{AR,i} and vectorfR are precom-
puted, the reduced problem (3.5) for any arbitrary pointξ ∈ Γ can be assembled
with O(N2) operations. ForuR defined by (3.2), we will also need an estimate for a
norm of the erroreξ := uh(·, ξ) − uR(·, ξ), which we would also like to compute with
complexity dependent only onN and notNh. This means that standard a posteriori
error estimators [1, 14, 17] for finite element methods should be excluded, since they
would incur a cost proportional toNh. An effective alternative is thedual-basedin-
dicator developed in [25, 30, 31], which depends on an estimate for the coercivity
constant associated with the problem. If only a rough error estimate is required, we
can use a simple residual indicator

ηQ, ξ :=
‖AξQũξ − f‖2
‖f‖2

.(3.7)

We will use this in our experiments. It can be computed efficiently using the relation

‖AξQũξ − f‖22 =
(

AξQũξ − f ,AξQũξ − f
)

=
(

AξQũξ,AξQũξ
)

− 2
(

AξQũξ, f
)

+ (f , f )

=









K∑

i=1

φiAi




Qũξ,





K∑

i=1

φiAi




Qũξ




− 2









K∑

i=1

φiAi




Qũξ, f




+ (f , f )

= ũT
ξ





K∑

i=1

K∑

j=1

φiφ jQTAT
i A jQ




ũξ − 2ũT

ξ

K∑

i=1

(

φiQTAT
i f

)

+ fT f .(3.8)

Once the matrices{QTAT
i A jQ}, vectors{QTAT

i f } andfT f are precomputed, the cost
for computingηQ, ξ is O(N2). Similar economies can be achieved with dual-based
estimators [30, 31]. We refer to the reduced dense matrices and vectors{AR,i}, fR in
(3.6), and{QTAT

i A jQ}, {QTAT
i f }, fT f in (3.8) asoffline reduced matrices and vectors.
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3.2. Quadratic operators. WhenL depends quadratically on the solutionu, the
algebraic form of the discrete problem (3.1) can be written as

Au, ξu = f ,(3.9)

whereAu, ξ is linearly dependent onu, i.e., if the solution takes the formu =
∑

i ciui,
then

Au, ξ =
∑

i

ciAui , ξ.(3.10)

Solving (3.9) requires a nonlinear iteration that entails the solution of a linearized
problem at every step, for example, as in Picard and Newton iterations [10, pp. 327–
329]. At iteration stepn, the linearized problem for computing the solution at step
n+ 1 can be written as

Aun, ξun+1 = f .(3.11)

Like (3.5), the reduced version of (3.11) is

QTAun, ξQũn+1 = QT f ,(3.12)

whereun = Qũn =
∑N

i=1 ũn
i qi with ũn = [ũn

1, ..., ũ
n
N]T andQ = [q1, ..., qN]. Using

(3.10), we can rewrite (3.12) as




N∑

i=1

ũn
i QTAqi , ξQ




ũn+1 = QTf .(3.13)

Under the assumption thatAqi , ξ is affinely parameter-dependent, which implies

Aqi ,ξ =

K∑

j=1

φ j (ξ) Aqi , j ,(3.14)

the reduced linear system for quadratic operators can be finally stated as
( N∑

i=1

K∑

j=1

φ j (ξ) ũn
i QTAqi , jQ
︸     ︷︷     ︸

Ãi, j

)

ũn+1 = QTf .(3.15)

Once the parameter-independent and solution-independentmatrices{Ãi, j} are pre-
computed, the reduced system (3.15) can be assembled with a costO(N3). Similarly
to (3.8), we can also develop a reduced version of the residual indicator

ηQ, ξ, n :=
‖Aun, ξQũn − f‖2

‖f‖2
.(3.16)

With some precomputed offline reduced matrices and vectors as discussed in Section
3.1, it can be verified that computing the reduced residual indicator for quadratic
operators also costsO(N3). Cf. [30] for efficient methods for computing dual-based
error estimates.

In the next section, a systematic way for constructing the reduced basisQ to-
gether with computing the collocation solution is introduced.
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4. Reduced basis collocation.We introduce a reduced basis collocation method
for cheaply computing the collocation solutionusc

q (·, ξ) in (2.5). Our main idea is to
useuR, the solution of the reduced problem (3.2), to serve in placeof the collocation
coefficient functionuc(·, ξ) in (2.5) wherever possible. That is, given a collocation
point ξ(k), we computeuR(·, ξ(k)) and an error indicator such as (3.7) or (3.16). If this
error indicator is smaller than some specified tolerance, weuseuR(·, ξ(k)); if the error
indicator is too large, then we compute the snapshotuh(·, ξ(k)) and use it asuc(·, ξ) in
(2.5). In the latter case, we also augment the reduced basis with this snapshot. Our
strategy is described in detail as follows.

1. Starting with levelp = M (the setΘM has only one point, which is denoted
by ξ(0)), compute the snapshotuh(·, ξ(0)). Initialize the reduced basisQ =
{uh(·, ξ(0))}. In addition, useuh(·, ξ(0)) to serve as the coefficient function
uc(·, ξ(0)) in (2.5).

2. Consider one higher level, i.e.p+ 1. Looping over sparse grid points in level
p+1, for each pointξ(k), compute the reduced solutionuR(·, ξ(k)) in (3.2) and
estimate a norm of the erroreξ(k) = uh(·, ξ(k)) − uR(·, ξ(k)).
(a) If the estimated error is smaller than a given tolerance,useuR(·, ξ(k)) to

serve as the coefficient functionuc(·, ξ(k)) in (2.5).
(b) If the estimated error is larger than the tolerance, compute the snapshot

uh(·, ξ(k)) and augment the reduced basisQ with it. Then, useuh(·, ξ(k))
to serve as the coefficient functionuc(·, ξ(k)) in (2.5).

3. Update the sparse grid level (i.e. letp = p + 1), and repeat step 2, until the
level p reaches the given maximum levelq.

This strategy is stated more formally in Algorithm 1 below. Here,tol stands for
a given tolerance and the orthogonal complementT(uξ(k)) is defined as

T(uξ(k)) = uξ(k) − ΠQ(uξ(k)),

whereΠQ(uξ(k)) is the image ofuξ(k) under theL2-projection fromR
Nh to span{qi}

N
i=1.

T(uξ(k)) can be computed using the Gram–Schmidt process, as implemented in the
MATLAB function qr . In the sequel, the sparse grid collocation solution associated
with Algorithm 1 is denoted byursc

q , and the full sparse grid collocation solution
whose coefficient functions are standard finite element solutions, is denoted byuhsc

q .
In general, computingursc

q should be much less expensive than computinguhsc
q , and

as we will show in the following sections, the accuracy of thereduced solution is
often comparable to that of the full solution.

5. Numerical study for diffusion problems. In this section, we consider diffu-
sion problems, whose governing equations are

−∇ · a (·, ξ)∇u (·, ξ) = 1 in D × Γ,(5.1)

u (·, ξ) = 0 on ∂DD × Γ,(5.2)
∂u (·, ξ)
∂n

= 0 on ∂DN × Γ,(5.3)



9

Algorithm 1 Reduced basis collocation, homogeneous boundary conditions
ComputeSΘM (ΘM contains only one point).
Initialize the reduced basis matrixQ := SΘM/‖SΘM‖2.
Construct the offline reduced matrices and vectors.
for p = 1 : q do

for k = 1 : |ΘM+p| do
Computeũξ(k) by solving (3.6) and compute an error indicator, e.g.,ηQ, ξ(k) of
(3.7).
if ηQ, ξ(k) < tol then

Use the reduced solution derived from̃uξ(k) to serve asuc(·, ξ(k)) in (2.5).
else

Compute the full solution vectoruξ(k) by solving (3.3).
Use the full solution derived fromuξ(k) to serve asuc(·, ξ(k)) in (2.5).
ComputeT(uξ(k)), the orthogonal complement ofuξ(k) with respect toQ.
Augment the reduced basis matrixQ := [Q,T(uξ(k))].
Reconstruct the offline reduced matrices and vectors.

end if
end for

end for

where∂D = ∂DD ∪ ∂DN. The weak formulation is to findu(·, ξ) ∈ H1
0(D) such that

(a∇u,∇v) = (1, v) for all v ∈ H1
0(D). We discretize in space using a bilinear (Q1)

finite element approximation [5, 10].
To assess the accuracy of solutions obtained using the full and reduced basis

collocation methods, we use the differences between the means of the solutions and
that of a reference solution. In particular, we introduce the quantities

εh :=
∥
∥
∥
∥Ẽ

(

uhsc
q

)

− Ẽ

(

uhsc
r

)∥∥
∥
∥

0

/∥
∥
∥
∥Ẽ

(

uhsc
r

)∥∥
∥
∥

0
,(5.4)

εR :=
∥
∥
∥
∥Ẽ

(

ursc
q

)

− Ẽ

(

uhsc
r

)∥∥
∥
∥

0

/∥
∥
∥
∥Ẽ

(

uhsc
r

)∥∥
∥
∥

0
,(5.5)

where thereference collocation solution uhsc
r is a full collocation solution with a

large grid levelr (we taker ≥ q + 2) and the norm is the functionalL2-norm. We
will also examine the performance of Monte Carlo simulationusing a sample setΘmc

consisting of|Θmc| realizations ofξ, where the Monte Carlo error is measured as

εmc :=

∥
∥
∥
∥
∥
∥
∥
∥





1
|Θmc|

∑

ξ∈Θmc

uh (·, ξ)




− Ẽ

(

uhsc
r

)

∥
∥
∥
∥
∥
∥
∥
∥

0

/∥
∥
∥
∥Ẽ

(

uhsc
r

)∥∥
∥
∥

0
.(5.6)

We note that reduced basis methods can also be combined with Monte Carlo methods,
as discussed in [4].

5.1. Test problem 1: piecewise constant diffusion coefficient. We consider the
diffusion problem posed on the spatial domainD = (−1, 1)× (−1, 1), divided intoND
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equal-sized subdomains. A pure Dirichlet condition is applied (i.e.,∂DN = ∅). Figure
5.1 illustrates two cases of domain partitionings. The permeability coefficienta(·, ξ)
is defined to be constant on each subdomain, i.e.,

a (·, ξ)|Dk
= ξk, k = 1 : ND

where the random variableξ = [ξ1, .., ξk, ..., ξND]T is independently and uniformly
distributed inΓ := [0.01, 1]ND . It is also assumed that the fluxa(·, ξ)∇u(·, ξ) is con-
tinuous across subdomain interfaces. We consider two variants of this example, one
where the domains consist of vertical strips, the other using squares (see Figure 5.1).

D1 DND...

...

...

...

..

.
..
.

..

.

D11 DÑ1

D1Ñ DÑÑ

(a) case 1:ND subdomains (b) case 2:ND = Ñ × Ñ subdomains

Fig. 5.1.Domain partitionings.

It follows from (3.2) that the reduced basis method seeks a solution in the space
span(Q). If each function in the full snapshot setSΓ can be approximated well by a
linear combination of a finite set of linearly independent functions (referred to as a
“basis” of SΓ), then with this set as the reduced basisQ, the reduced solutionuR(·, ξ)
is close to the finite element solutionuh(·, ξ). The size of this basis (we refer to it
below as the “rank” ofSΓ) is then crucial. If the rank ofSΓ is much smaller thanNh,
then Algorithm 1 can cheaply compute an accurate reduced collocation solution (i.e.,
ursc

q ≈ uhsc
q ).

For this test problem, we check the rank ofSΓ as follows. We first generate a
sample setΘ consisting of 3000 random points inΓ and construct the corresponding
snapshot setSΘ.2 We use the MATLAB functionrank to compute the rank ofSΘ
(the matrix ofSΘ, see Section 3). Due to the large number of sample points, this rank
can serve an estimate of the rank of the full snapshot setSΓ.

Tables 5.1 and 5.2 show the estimated ranks for the two variants of the benchmark
diffusion problems, using three different mesh sizes for the spatial discretization. It
can be seen that the ranks tend to increase linearly with the number of subdomains,
and they exhibit little dependence on the size of the grid. This suggests that the rank
depends on properties of the underlying PDE and it indicatesthat fine-grid discrete
problems can be projected into subspaces of significantly smaller dimensions with-
out sacrificing accuracy. (Although for largeND, in the cases of 36 or more square

2We have repeated this test more than ten times for different random sets, and no significantly
different results were found.
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Table 5.1
Estimated rank for the full snapshot set SΓ of test problem 1, case 1.

P
P

P
P

P
P

P
PP

Grid
ND 2 3 4 5 6 7 8 9 10

332 = 1089 3 12 18 30 40 53 55 76 84
652 = 4225 3 12 18 30 40 48 55 70 87

1292 = 16641 3 12 18 28 39 48 55 72 81

Table 5.2
Estimated rank for the full snapshot set SΓ of test problem 1, case 2.

P
P

P
P

P
P

P
PP

Grid
ND 4 9 16 25 36 49 64

332 = 1089 27 121 193 257 321 385 449
652 = 4225 28 148 290 465 621 769 897

1292 = 16641 28 153 311 497 746 1016 1298

subdomains (see Table 5.2), the ranks are growing as the meshis refined, they also
appear to be tending to a limit with increasing number of gridpoints.) We also note
that for some of these cases (of largeND), the large ranks will make the reduced
problems expensive to solve, although these costs would be smaller than those of the
full system solves for fine enough spatial discretization.

Next, we use Algorithm 1 to compute the collocation solutions for a collection
of examples of test problem 1. Tables 5.3–5.4 show results for case 1 (vertical sub-
domains) and Tables 5.5–5.6 for case 2 (square subdomains);all these experiments
used a 65×65 discrete spatial grid. The tables show the number of full system solves
Nf ull solve and the size of the sample set|Θq|. For example, in the case of 2× 2 sub-
domains andtol = 10−4 (Table 5.5), there are seven full system solves at the sparse
grid levelq = 5, which means that the residual error indicator is above thetolerance
at seven sparse grid points among the total of nine sparse grid collocation points.
This is not surprising, since the size of the reduced basis isvery small at this stage
(it grows from 1 to 8), and in this trivial case, there is no advantage for the reduced
basis. For higher levels of sparse grids, however, the advantages become clear. At
levelq = 6, there are 41 sparse grid points, and full system solves areneeded at 12 of
them, and at levelq = 7, full solves are needed at just 3 of 137 sparse grid points. For
levels higher than 7, no full system solve is needed, which means that the reduced
basis with sizeN = 23 can provide as accurate (with respect to the error indicator)
a solution as the full collocation solution. This trend holds for all the examples: the
number of full system solves required to generate the reduced collocation solution is
dramatically smaller than the number of collocation points. Moreover, the required
number of full system solves needed for the the reduced basisis comparable to the
ranks of the sets of full snapshots shown in Tables 5.1–5.2. For example, with four
(2× 2) square subdomains, the rank is 28.



12

Table 5.3
Number of full system solves for test problem 1, case 1, with5 × 1 subdomains (ND = 5) and a

65× 65 spatial grid.

q 5 6 7 8 9 10 11 12 13 16
H

H
H

H
HH

tol
|Θq| 1 11 61 241 801 2433 6993 19313 51713 869505

10−3 1 10 9 0 0 0 0 0 0 0
10−4 1 10 11 1 0 0 0 0 0 0

10−5 1 10 13 0 0 0 0 0 0 0

Table 5.4
Number of full system solves for test problem 1, case 1, with9×1 subdomains (ND = 9), tol = 10−4

and a65× 65 spatial grid.

q 9 10 11 12 13 14 15 16 17
|Θq| 1 19 181 1177 6001 26017 100897 361249 1218049

Nf ull solve 1 18 34 2 1 1 0 0 0

For the cases of 5× 1 and 2× 2 subdomains, Figure 5.2 provides a more refined
assessment of accuracy, using the relative mean function errors (5.5) (fortol = 10−4),
where the reference levels are taken to ber = 18 for five vertical subdomains and
r = 17 for four square subdomains. The figure also shows similar quantities for the
Monte Carlo method,εmc of (5.6). The errors for the full collocation means (εh of
(5.4)) are also plotted, but there is no visual difference betweenεh andεR. Thus, the
reduced collocation solution is as accurate as the full collocation solution, and it is
considerably more accurate than the Monte Carlo solution.

5.2. Test problem 2: truncated KL expansion coefficients. The spatial do-
main for this test problem isD = (0, 1) × (0, 1). Mixed boundary conditions are ap-
plied – the condition (5.2) is applied on the left (x = 0) and right (x = 1) boundaries,
and (5.3) is applied on the top and bottom boundaries. The problem is discretized in
space on a uniform 65× 65 grid.

The diffusion coefficient for this test problem is assumed to be a random field
with mean functiona0(~x ), constant varianceσ and covariance functionC(~x, ~y ),

C(~x, ~y ) = σ exp

(

−
|x1 − y1|

c
−
|x2 − y2|

c

)

,(5.7)

wherec is the correlation length. This random field can be approximated by a trun-
cated Karhunen–Loève expansion [2, 8, 11]

a(~x, ξ) ≈ a0(~x ) +
M∑

k=1

√

λkak(~x )ξk

whereak(~x ) andλk are the eigenfunctions and eigenvalues of (5.7), and the random
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Table 5.5
Number of full system solves for test problem 1, case 2, with2 × 2 subdomains (ND = 4) and a

65× 65 spatial grid.

q 4 5 6 7 8 9 10 11 12 15
H

H
H

H
HH

tol
|Θq| 1 9 41 137 401 1105 2929 7537 18945 271617

10−3 1 7 11 3 0 0 0 0 0 0
10−4 1 7 12 3 0 0 0 0 0 0
10−5 1 7 13 2 3 0 0 0 0 0

Table 5.6
Number of full system solves for test problem 1, case 2, with4×4subdomains (ND = 16), tol = 10−4

and a65× 65 spatial grid.

q 16 17 18 19 20 21
|Θq| 1 33 545 6049 51137 353729

Nf ull solve 1 32 168 27 3 4

variables{ξk} are assumed to be independently and uniformly distributed in Γ :=
[−1, 1]M .

The error associated with truncation of the Karhunen–Loève expansion depends
on the amount of total variance captured,δKL := (

∑M
k=1 λk)/(|D|σ2) [6, 26]. We chose

M to be large enough so thatδKL > 95%. The correlation length has an effect on this
requirement – smallc leads to largeM.

For our experiments, we seta0(~x ) = 1 andσ = 0.5 and examine two values of
the correlation length:c = 4 with M = 5 andc = 2.5 with M = 8. Tables 5.7 and 5.8
show the numbers of full system solves needed in Algorithm 1,for various choices of
the levelq and tolerancetol. Figure 5.3 shows the relative errorsεh, εR andεmc. The
reference solutions correspond to reference levelsr = 12 for M = 5 andr = 15 for
M = 8.

The results for this example are consistent with those for problem 1. As the tol-
erancetol decreases or the sparse grid levelq increases, somewhat more full systems
need to be solved, but as above the number of such solves is dramatically lower than
is needed for full collocation. Moreover, the sizes of the reduced basis are very small,
so the reduced system solves are inexpensive. In particular, for the extreme cases in
the two examples, the full collocation method required 2433and 15713 solves re-
spectively, in contrast to at most 62 and 115 for reduced basis collocation. Figure
5.3 shows again that that there is little significant difference between the full colloca-
tion and reduced collocation solutions, and that mild tolerances for constructing the
reduced basis can achieve acceptable accuracy in the reduced collocation solution.

5.3. Tolerance and error indicator in Algorithm 1. We discuss some issues
related to the use of the residual error indicator (3.7) and the tolerancetol in Algo-
rithm (1). For the error indicator, first, as observed above,an advantage of (3.7) is
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Fig. 5.2.Test problem 1,εR (for tol = 10−4), εh andεmc.

Table 5.7
Number of full system solves for c= 4 with M = 5 in test problem 2.

q 5 6 7 8 9 10
H

H
H

H
HH

tol
|Θq| 1 11 61 241 801 2433 Total

10−5 1 9 8 3 0 2 23
10−6 1 10 12 10 2 1 36

10−7 1 10 21 9 7 2 50
10−8 1 10 26 18 5 2 62

that it can be computed at cost independent ofNh using (3.8). However, this advan-
tage holds only if the tolerance is not too small. In particular, since (3.8) requires
a subtraction, the floating point computation will be accurate only if it not strongly
affected by cancellation, which is true only when the square of the residual norm is
significantly larger than the machine precision. Thus, we can use this (economical)
strategy only if the tolerance is not too small, on the order of 10−7 or larger.

For the results shown in Tables 5.3, 5.7 and 5.8, we found (3.8) to be reliable for
the tolerances above the dotted lines. For the results belowthese lines, we computed
the residual norm directly, which incurs a cost proportional to Nh. Our expectation is
that this cost can be avoided through use of a more effective error indicator such as
the dual-based method of [25, 30].

Tables 5.3–5.8 together with Figures 5.2 and 5.3 show the impact of thetol on
the performance of Algorithm 1. For test problem 1, Figure 5.2 shows that with a
modest valuetol = 10−4, the errors for reduced collocation are virtually identical
to those for full collocation, and (for both methods) as the level q is increased, the
relative errors are reduced by approximately six orders of magnitude. We also found
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Table 5.8
Number of full system solves for c= 2.5 with M = 8 in test problem 2.

q 8 9 10 11 12 13
H

H
H

H
HH

tol
|Θq| 1 17 145 849 3937 15713 Total

10−5 1 14 16 4 1 1 37
10−6 1 16 27 6 10 2 62

10−7 1 16 50 9 8 2 86
10−8 1 16 69 16 5 8 115
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Fig. 5.3.Test problem 2:εh andεR.

there to be virtually no difference between these results and those fortol = 10−3 or,
for 2 × 2 subdomains,tol = 10−5. Performance for test problem 2 is more sensitive
to tolerance (Figure 5.3). A tolerance of 10−6 produces solutions with approximately
six digits of accuracy for fine enough sparse grid, although more stringent tolerance
is needed for accuracy comparable to that of the full collocation method.

6. Numerical study for incompressible flow problems. We next consider a
nonlinear example, the steady-state Navier-Stokes equations

−ν (·, ξ)∇2~u (·, ξ) + ~u (·, ξ) · ∇~u (·, ξ) + ∇p (·, ξ) = 0 in D × Γ,(6.1)

∇ · ~u (·, ξ) = 0 in D × Γ,(6.2)

~u (·, ξ) = ~g (·, ξ) on ∂D × Γ.(6.3)

The notation in (6.1)–(6.3) is standard:~u(·, ξ) is the flow velocity,p(·, ξ) is the scalar
pressure andν(·, ξ) > 0 is the fluid viscosity parameter. We assume that there may
be some uncertainty in the viscosity parameterν(·, ξ) (for example, in models of
multiphase flows [15, 23, 28]) or the boundary data~g(·, ξ).

6.1. Specification of the problem.As discussed in Section 2, stochastic collo-
cation methods solve a deterministic problem at each samplepoint ξ ∈ Θq. With the
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standard function space notation

Hk := Hk(Ω)2, k ∈ N, H1
E :=

{

~u ∈ H1 |~u = ~g (·, ξ) on ∂Ω
}

,

H1
0 :=

{

~u ∈ H1 |~u = ~0 on ∂Ω
}

, L2
0(Ω) :=

{

q ∈ L2(Ω)|
∫

Ω
q dΩ = 0

}

,

the weak form of the deterministic problem associated with (6.1)–(6.3) is: find~u ∈
H1

E andp ∈ L2
0(D), such that

(ν∇~u,∇~v ) + (~u · ∇~u,~v ) − (p,∇ · ~v ) = 0 ∀~v ∈ H
1
0,(6.4)

(∇ · ~u, q) = 0 ∀q ∈ L2
0(D).(6.5)

Mixed finite element approximation of (6.4)–(6.5) is obtained by choosing finite di-
mensional subspacesXh

E, Xh
0 andMh of H1

E, H1
0 andMh, respectively. This leads to

the discrete Galerkin formulation: find~u ∈ Xh
E and p ∈ Mh such that (6.4) holds for

all v ∈ Xh
0 and (6.5) holds for allq ∈ Mh. We use the div-stableQ2–P−1 (biquadratic

velocity – linear discontinuous pressure [10]) spatial discretization and denote the
dimensions ofXh

0 andMh, i.e., the numbers of velocity and pressure degrees of free-
dom, byNh,u andNh,p respectively.

To handle the quadratic term (~u · ∇~u,~v ) in (6.4), we use a Picard iteration as
discussed in [10, pp. 324–327] and implemented in the IFISS software package [9,
27]; it is straightforward to extend the results in this section to Newton iteration. To
start the Picard iteration, we can solve a discrete Stokes problem to obtain an initial
guess: find~u0 ∈ Xh

E andp0 ∈ Mh such that

(∇~u0,∇~v ) − (p0,∇ · ~v ) = 0 ∀~v ∈ Xh
0,(6.6)

(∇ · ~u0, q) = 0 ∀q ∈ Mh.(6.7)

The Picard iteration then computes a sequence of corrections at stepn: find δ~u ∈ Xh
0

andδp ∈ Mh, such that

(ν∇δ~u,∇~v ) + (~un · ∇δ~u,~v ) − (δp,∇ · ~v )

= −(ν∇~un,∇~v ) − (~un · ∇~un,~v ) + (pn,∇ · ~v ) ∀~v ∈ Xh
0,(6.8)

(∇ · δ~u, q) = −(∇ · ~un, q) ∀q ∈ Mh.(6.9)

The velocity and pressure are then updated by

~un+1 = ~un + δ~u, pn+1 = pn + δp.

Since the reduced basis methods discussed in Section 3 are built on homogeneous
Dirichlet conditions, some care must be taken in treatment of inhomogeneous condi-
tions. We use an approach described in [12], which is to first find a particular function
~u0

bc that satisfies the Dirichlet boundary conditions and then write

~u0 = ~u0
bc + ~u

0
in,
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where~u0
in satisfies homogeneous boundary conditions. We refer to~u0

in as theinterior
part of the Stokes solution. Then, for the initial step (6.6)–(6.7), we solve a modified
Stokes problem: find~u0

in ∈ Xh
0 andp0 ∈ Mh such that

(∇~u0
in,∇~v ) − (p0,∇ · ~v ) = −(∇~u0

bc,∇~v ) ∀~v ∈ Xh
0,(6.10)

(∇ · ~u0
in, q) = −(∇ · ~u0

bc, q) ∀q ∈ Mh.(6.11)

We have some flexibility in the choice of the particular function ~u0
bc. We use a simple

one in which~u0
bc is the interpolant of the boundary data~g(·, ξ); that is, we define~u0

in
and~u0

bc as

~u0
in =

{

~u0 on spatial grid points inD,
0 on spatial grid points on∂D,

(6.12)

~u0
bc =

{

0 on spatial grid points inD,
~g(·, ξ) on spatial grid points on∂D.

(6.13)

Then for the Picard iteration step, no special treatment of boundaries is needed, since
the correction functionδ~u satisfies a homogeneous boundary condition.

The algebraic equations associated with (6.10)–(6.11) canbe written as

[

A BT

B 0

] [

u0

p0

]

=

[

fξ
gξ

]

,

and for the Picard step (6.8)–(6.9), the corresponding equations are

[

Aξ + Nun, ξ BT

B 0

] [

δu
δp

]

=

[

f r
un,pn, ξ

gr
un,pn, ξ

]

,

where [un, pn]T is the solution vector at the most recent iteration step, andNun, ξ is the
quadratic term considered in (3.11).

6.2. Formulation of the reduced problem. We follow the development in Sec-
tion 3 to define the reduced versions of (6.10)–(6.11) and (6.8)–(6.9). To begin, we in-
troduce reduced basesQu := {~u1, ..., ~uNu} ⊂ Xh

0 for velocity andQp := {q1, ..., qNp} ⊂

Mh for pressure withNp < Nu � Nh,u. We then seek~u0
R ∈ span{Qu} and p0

R ∈

span{Qp} such that

(∇~u0
R,∇~v ) − (p0

R,∇ · ~v ) = −(∇~u0
bc,∇~v ) ∀~v ∈ span{Qu},(6.14)

(∇ · ~u0
R, q) = −(∇ · ~u0

bc, q) ∀q ∈ span{Qp}.(6.15)

A Picard iteration step entails findingδ~uR ∈ span{Qu} andδpR ∈ span{Qp} such that

(ν∇δ~uR,∇~v ) + (~un
R · ∇δ~uR,~v ) − (δpR,∇ · ~v )

= −(ν∇~un
R,∇~v ) − (~un

R · ∇~u
n
R,~v ) + (pn

R,∇ · ~v ) ∀~v ∈ span{Qu},(6.16)

(∇ · δ~uR, q) = −(∇ · ~un
R, q) ∀q ∈ span{Qp}.(6.17)
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With Qu andQp representing the matrix form of the reduced velocity and pres-
sure bases respectively, the linear system for the reduced problem (6.14)–(6.15) is

[

QT
u AQu QT

u BTQp

QT
pBQu 0

] [

ũ0

p̃0

]

=

[

QT
u fξ

QT
pgξ

]

;(6.18)

and for (6.16)–(6.17),
[

QT
u
(

Aξ + Nũn, ξ
)

Qu QT
u BTQp

QT
pBQu 0

] [

δũ
δp̃

]

=





QT
u f r

ũn,p̃n, ξ

QT
pgr

ũn,p̃n, ξ



 .(6.19)

where [̃un, p̃n]T is the reduced solution vector at the most recent step. The residual
error indicator is taken to be the discrete nonlinear residual associated with (6.4)–
(6.5),

ηQ, ξ, n :=

∥
∥
∥
∥
∥
∥

[

Aξ + Nũn, ξ BT

B 0

] [

Quũn

Qpp̃n

] ∥
∥
∥
∥
∥
∥

2

/ ∥
∥
∥
∥
∥
∥

[

fξ
gξ

] ∥
∥
∥
∥
∥
∥

2

.(6.20)

Using the techniques introduced in Section 3.1 and 3.2, onceoffline reduced matrices
and vectors are precomputed, the reduced linear systems (6.18) and (6.19) can be
assembled with costsO(N2

u) andO(N3
u) respectively, and for modest tolerances, the

residual indicator can be evaluated with a costO(N3
u).3

The details of reduced basis collocation for the steady-state Navier-Stokes equa-
tions are presented in Algorithm 2 below. In the algorithm,~uin

(

·, ξ(k)
)

is the interior

part of~u
(

·, ξ(k)
)

(see (6.12)). For the reduced basis, we note that the spaces generated
by a set of snapshots










~uin

(

·, ξ(1)
)

p
(

·, ξ(1)
)



 , . . . ,





~uin

(

·, ξ(N)
)

p
(

·, ξ(N)
)










do not automatically satisfy an inf-sup condition

γR := min
0,qR∈span{Qp}

max
~0,~vR∈span{Qu}

(qR,∇ · ~vR)
|~vR|1 ‖qR‖0

≥ γ∗ > 0

for γ∗ independent ofQu andQp. To ensure stability in this sense, we use an approach
described in [24], which enriches the set of velocity snapshots with {~r(·, ξ(k))}Nk=1 sat-
isfying

(

∇~r
(

·, ξ(k)
)

,∇~v
)

=
(

p
(

·, ξ(k)
)

,∇ · ~v
)

∀~v ∈ Xh
0.(6.21)

These enriching functions aresupremizersthat satisfy [24]

~r
(

·, ξ(k)
)

= arg sup
~v∈Xh

0

(

p
(

·, ξ(k)
)

,∇ · ~v
)

|~v |1
.

3In the experiments described below, the error indicator wascomputed directly at costO(Nh).
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It follows that the reduced bases generated in Algorithm 2 are stable in the sense that

γR ≥ γh := min
0,q∈Mh

max
~0,~v∈Xh

0

(q,∇ · ~v )
|~v |1 ‖q‖0

.(6.22)

In addition, it is clear thatNu = 2Np for Qu andQP generated in Algorithm 2.

Algorithm 2 Reduced basis collocation for Navier-Stokes problems

Start with levelM (ΘM = {ξ
(0)}), and compute~u(·, ξ(0)) andp(·, ξ(0)).

Compute the supremizer functionr(·, ξ(0)) of (6.21).
Initialize the reduced basisQu = {~uin(·, ξ(0)),~r(·, ξ(0))} andQp = {p(·, ξ(0))}.
Construct the offline reduced matrices and vectors.
for p = 1 : q do

for k = 1 : |ΘM+p| do
Compute the reduced solution and an error indicatorηQ, ξ(k), n

if ηQ, ξ(k), n < tol then
Use the reduced solution to serve asuc(·, ξ(k)) in (2.5).

else
• Compute the full solutions~u(·, ξ(k)) andp(·, ξ(k)).
• Use the full solution to serve asuc(·, ξ(k)) in (2.5).
• Compute the supremizer functionr(·, ξ(k)) of (6.21).
• AugmentQu with {~uin(·, ξ(k)),~r(·, ξ(k))} andQp with {p(·, ξ(k))},

by Gram-Schmidt orthogonalization.
• Reconstruct the offline reduced matrices and vectors.

end if
end for

end for

6.3. Test problem 3: driven cavity flow with uncertainty in viscosity. The
flow domain here is the squareD = (−1, 1)× (−1, 1). The velocity profile

u = 1− x4, v = 0,(6.23)

is imposed on the top boundary (y = 1), and all other boundaries are no-slip and
no-penetration so that~u = (0, 0). As in test problem 1, we divide the square domain
into ND subdomains and the viscosity is defined to be constant on eachsubdomain,
ν (·, ξ)|Dk

= ξk, k = 1 : ND, where the random variableξ = [ξ1, . . . , ξND ]T is uniformly
distributed inΓ = [0.01, 1]ND . Two examples are shown in Figure 6.1. In case 1,
the square domain is equally divided into two parts, and in case 2, the domain is
subdivided into an interior square centered at (0, 0) and two square annuli. Each of
the subdomains has width 0.4. Results for uniform 33× 33 and 65× 65 spatial grids
are reported below.

The number of full system solves are shown in Tables 6.1 and 6.2 for domain
case 1 and case 2 respectively, where two tolerance values (10−4 and 10−5) are tested.
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D2

D1

D1 D2 D3

(a) case 1 (b) case 2

Fig. 6.1.Domain partitionings for driven cavity flow.

Exactly as for the diffusion equations (5.4)–(5.6), we compute the mean function
errors for the velocity and pressure solutions. Figures 6.2and 6.3 show the errors,
where we used the reference levelr = 11 for both types of domain.

Table 6.1
Number of full system solves for test problem 3, domain case 1.

q 2 3 4 5 6 7 8 9
XXXXXXXXXXX
tol Grids

|Θq| 1 5 13 29 65 145 321 705 Total

10−4 33× 33 1 4 5 6 6 7 6 3 38
10−4 65× 65 1 4 5 5 5 5 5 2 32
10−5 33× 33 1 4 8 7 8 10 11 5 54
10−5 65× 65 1 4 8 7 8 9 9 3 49

Table 6.2
Number of full system solves for test problem 3, domain case 2.

q 3 4 5 6 7 8 9
XXXXXXXXXXX
tol Grids

|Θq| 1 7 25 69 177 441 1073 Total

10−4 33× 33 1 6 17 23 26 26 25 124
10−4 65× 65 1 6 16 20 21 21 18 103
10−5 33× 33 1 6 18 29 40 44 41 179
10−5 65× 65 1 6 18 27 32 40 32 156

The reduced inf-sup constantsγR for domain case 2 discretized on a 65× 65
spatial grid are shown in Table. 6.3. The square of the discrete inf-sup constant for
this element and mesh is known to beγ2

h = 0.2137 [10, p. 271]. It is evident from
Table 6.3 thatγ2

R is bounded below by 0.2137, which is consistent with (6.22). As the
size of the reduced basis increases,γ2

R becomes closer toγ2
h.
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Fig. 6.2.Mean function errors of test problem 3 with domain case 1,65× 65 grid.
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Fig. 6.3.Mean function errors of test problem 3 with domain case 2,65× 65 grid.

Table 6.3
Inf-sup constants of reduced basis for test problem 3, domain case 2.

Nu 2 4 20 50 100 200

γ2
R 0.2431 0.2430 0.2374 0.2359 0.2327 0.2292

6.4. Test problem 4: driven cavity flow with uncertain boundary conditions.
The flow domain in this section is also the squareD = (−1, 1) × (−1, 1), and the
boundary condition (6.23) is specified at the top boundary. Unlike Section 6.3 where
the other boundaries are assumed to be non-slip, we now assume there is some un-
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(a) stretched 33× 33 grid (b) stretched 65× 65 grid

Fig. 6.4.Meshes for test problem 4.

certainty on these boundaries:

u = 0, v = ξ1
(

1− y4
)

, for x = 1,

u = ξ2
(

1− x4
)

, v = 0, for y = −1,

u = 0, v = ξ3
(

1− y4
)

, for x = −1,

whereξ = [ξ1, ξ2, ξ3]T is assumed to be independently and uniformly distributed in
[−0.1, 0.1]3. The viscosity is taken to be a deterministic constant,ν = 1/500 here.
Instead of the uniform meshes used in previous examples, stretched meshes of sizes
33 × 33 and 65× 65 are used to discretizeD (see Figure 6.4).4 Table 6.4 shows
the number of full system solves for this test problem for a range of tolerances, and
Figure 6.5 shows the error in mean functions, where the reference level isr = 11.

Table 6.4
Number of full system solves for test problem 4.

q 3 4 5 6 7 8 9
XXXXXXXXXXX
tol Grids

|Θq| 1 7 25 69 177 441 1073 total

10−4 33× 33 1 3 1 1 0 0 0 6
10−4 65× 65 1 3 0 0 0 0 0 4
10−5 33× 33 1 6 7 4 1 0 0 19
10−5 65× 65 1 4 4 3 1 0 0 13
10−6 33× 33 1 6 15 10 8 2 0 42
10−6 65× 65 1 6 10 5 2 0 0 24
10−7 33× 33 1 6 17 27 18 10 5 84
10−7 65× 65 1 6 16 13 9 4 1 50

4These are generated by IFISS [27] using the default setting for mesh generation.
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Fig. 6.5.Mean function errors of test problem 4, stretched65× 65grid.

The trends for all the examples in this section (test problem4) and the preceding
one (test problem 3) are consistent with those for the diffusion equation. In particu-
lar, the number of full system solves required for reduced basis collocation does not
increase as the number of the spatial degrees of freedom increases, these numbers
are significantly smaller than what is needed for full collocation, and with moderate
values oftol (10−4 for problem 3 and 10−6 for problem 4) the reduced solutions are
as accurate as those obtained from full collocation.

7. Concluding remarks. We conclude with a brief summary of our observa-
tions from this study. The main one, seen in all the examples considered, is that the
reduced basis method can be used to significantly reduce the dimension of the dis-
crete problems that need to be solved to construct collocation solutions of stochastic
partial differential equations. Moreover, the computational results indicate that the
dimensions of the reduced bases do not depend on the sizes of the discrete spatial
problems that the reduced problems approximate. This suggests that the reduced di-
mensions depend on properties of the underlying partial differential equations and
that the combined reduced basis collocation method is of potential benefit whenever
spatial accuracy is of importance.
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