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Abstract

This paper investigates the use of local receptive
field networks (LRFN) in detecting sensor failures of
a control system in the presence of model-plant mis-
match. Simulation results indicate that LRFNs hold
An-
other issue discussed in this paper is a method to

significant promise in sensor failure detection.

prune redundant nodes. A simple scheme which uses
singular value decomposition (SVD) is developed to
identify and remove excess nodes. Comparable clas-
sification performance is obtained using reduced and
standard LRFN.

1 Introduction

Neural networks have been shown to be use-
ful and successful in many areas of engineering
applications, especially in the field of informa-
tion processing. This paper investigates the use
of local receptive field networks (LRFN) in de-
tecting sensor failures in a control system and
distinguishing them from the effects of model
error. In previous work (Naidu et al, 1989),
we demonstrated that for a single-input single-
output (SISO) example, a standard backprop-
agation network (BPN) gives a more accurate
prediction of supercritical sensor failures than a
robust detection algorithm with a finite integral
squared error criterion and the Nearest Neighbor
method. Despite these promising results, there
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are several unanswered theoretical problems that
need to be addressed before standard BPN can
be an effective paradigm for engineering applica-
tions. Such problems include the determination
of the learning rate, momentum factor, number
of neural nodes, and scaling of input and output
space. As a result, heuristic trial-and-error ap-
proaches tailored to particular applications are
often used. An alternative network structure
that has been shown to perform equally or better
than BPN in a variety of applications is the lo-
cal receptive field network introduced by Moody
and Darken (1988, 1989). An important reason
for using LRFN is the simplicity of the network
structure which makes it amenable to rigorous
mathematical analysis.

4

In the following sections, a brief review of the
important concepts of LRFN is given. Another
issue discussed in the paper is the implemen-
tation of a simple scheme to remove redundant
neural nodes. This scheme utilizes singular value
decomposition (SVD) to determine the appro-
priate number of nodes in LRFN. A rigorous
derivation of which nodes to prune is also demon-
strated. Finally, a summary of simulation results
for both training and test data sets is presented.
The results indicate that LRFN can be a promis-
ing and useful neural network in detecting sensor
failure in the presence of model-plant mismatch.
The results also show that reduced LRFN and
regular LRFN have about the same classification
performance.



2 Localized Receptive Field
Networks

The schematic diagram of the LRFN architec-
ture is shown in Fig. 1. The LRFN has a single
internal layer which maps a real valued function
f i+ R* — R°. The overall response function for
the LRFN with one output, o = 1, is given by:

wiR;(7;) i=12,..,p (1)

where R;s are radially symmetric functions, e.g.,

R,(F.) = exp(——*f-%iﬂ-) In (1), the LREN has
m nodes, f(T;)1s the predicted output for agiven
real input vector 7., and R, is the jt* recep-
tive field response function. This function ;s also
known as a radial basis function where Z; and
o; are the cluster center and width, respectively.
The variable, w,, is known as the weighting func-
tion.

f(x)
SRR Y
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121 original number of nodes

Figure 1. Schematic diagram of LRFN.

The training of LRFN is a hybrid of two learn-
ing methods, unsupervised and supervised, and
it involves a 3-stage procedure.. The first and
second stages involve the determination of clus-
ter centers and widths using unsupervised learn-
ing. A standard k-means clustering algorithm
15 used to determine m cluster centers of the
LREN. After the centers are obtained, cluster

widths (o;) are calculated using the “P near-
est neighbors” heuristic. This heuristic basically
solves for cluster widths such that the equation

= 0.5 Sy [T hesreet(18e — Takl)?/(0)? = PP
is mmlmlzed where P is known as an overlap
parameter and the T s are the P nearest neigh-
bor to &;;. The purpose of this heuristic is to
ensure that the radial basis functions form a
smooth interpolation of those regions of the in-
put space they represent. For a more detailed
discussion of cluster center and width determina-
tion, the reader is referred to Moody and Darken
(1988). In the third and final stage, supervised
learning is used to determine the weighting func-
tions. Moody and Darken recommended the use
of a Quasi-Newton method to iteratively locate
weights which would minimize the total sum of
squared error between p actual and predicted
output values given by:

DICIE

where f*(&;) is the actual ouput for a given train-
ing pattern ;.

As a variation from the recommended method
for the final stage, we use an approach similar
to Renals and Rohwer (1989). This method has
the advantage of being computatipnally more ef-
ficient than the former.
tion of error is required to calculate the weights.
In addition, this approach enables us to develop a
simple procedure that allows one to reduce net-
work nodes by means of linear algebra opera-
tions. Rewriting equation (2) in matrix notation

yields: .

1]2

(2)

No iterative minimiza-

mmE—OS(J~Rw) (¥~ Rw) (3)

where 7 is the px1 vector of desired outputs
f*(%:), R is the pxm matrix containing all the
radial basis functions, and & is the mxl vector
of output weights. To minimize this overall error,
the gradient of the error at that point must be
zero and the Hessian must be positive definite.
To satisfy the first condition, the gradient of the
total error with respect to the vector weights is

set equal to zero, i.e.,

VE = -RTy +RTRw—o (4)



Note that the coefficient of 1 is the Hessian (H).
In order for H to be positive definite (W Hw > 0
for all @ # 0), it is necessary that R be nonsin-
gular. It is worth noting that R also has to be
nonsingular for (3) to have a unique solution.
The assumption that R is nonsingular is gener-
ally valid when p >> m. In other words, when
the number of training patterns is far greater
than the number of nodes, the likelihood of hav-
ing a singular I becomes small. Rearranging (4),
we obtain

RTRw = RTy

Direct inversion of the Hessian in (5), yields

(5)

@ = (RTR)"'RTy= H'RT§=R*7 (6)

Thus, the determination of the LRFN weights
becomes a problem of computing the inverse of
H or the pseudo-inverse RT of R. To take the
inverse of H, we recommend the use of SVD, not
only because it is a numerically good technique,
but also because information obtained from it is
helpful in estimating the appropriate number of
nodes. In addition, the right singular vectors of
H are useful in identifying nodes to prune.

3 Reduction of

Nodes

Network

One of the main objectives of this research is
the optimal determination of neural nodes. If the
number of nodes is small, its ability to general-
ize the map of the function may not be sufficient.
On the other hand, when the number of nodes is
too high, computational efficiency of the network
is significantly reduced. Furthermore, the net-
work may need a larger database than necessary
in order to satisfy the condition that p >> m.
Our goal is to develop a mathematically rigor-
ous method to determine the necessary nodes.
To accomplish this, we have developed a simple
scheme by means of linear algebra methods. In
particular, we use SVD to determine and remove
redundant nodes. Recently, Xue et al. (1990),
also attempted to address the problem of remov-
ing redundant nodes in a BPN by using SVD to

approximate the rank of the output covariance
matrix of the BPN. A problem with their ap-
proach is the analysis of the covariance matrix
of the hidden unit outputs when the neurons are
nonlinear (sigmoidal) functions. Also, the iden-
tification of redundant nodes is not straight for-
ward and a a semi-heuristic approach has to be
used.

As pointed out earlier, H = RT R was assumed
to be nonsingular when taking the inverse of /1.
Although H is full rank, from our experience it is
highly ill-conditioned. An ill-conditioned matrix
is nearly singular. As a result, (3) has essentially
infinite solutions. Suppose that H is singular
with rank[H] = r and r < m. One can closely
approximate and determine the rank of H by
checking its singular values. Since H is not full
rank, RTRw = RT§ is underdetermined. Note
that singularity of H implies singularity of R and
rank[R] = r. This means that the set of linear
equations has more unknown variables than the
number of independent equations. Thus the so-
lution to the set of linear equations has infinitely
many possible solutions, given by
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(7)
where Wy is a particular mx1 vector solution. A
particular solution Wy can easily be calculated
from an SVD of R. For instance, let the SVD
of R be R = U121V1T, where Uy and V; are px»
and mxr unitary matrices (UL U, = V{I'V; = I.
Y, is a diagonal matrix of dimension r whose
elements are the non-zero singular values of R.
Then using the properties of Uy, V1, one can eas-
ily verify that the following g, is a solution of
(5):

@o = Vi(21) T 0T (8)

The variable Ny is an mx(m — r) matrix whose
columns form a basis of the null space of the rank
deficient H. An orthonormal basis for the null
space of H can be formed by the last (m — 1)
columns of the right singular vectors of H (see,
e.g. Horn and Johnson, 1985). The variable # is
any (m — r)x1 vector.

Our next task is to determine values of # such
that (m—r) elements of @ will be set to zero, thus
removing thq corresponding redundant nodes.



Consequently, we need to find any (m~r) rows of
N that are linearly independent. This task can
be accomplished by indexing all rows of Ny, and
applving Gaussian elimination (keeping track of
the corresponding indices) until the row-echelon
form of Vg is obtained. All index numbers which
correspond to nonzero rows in the row-echelon
form are one of the many set of independent rows
of Ny. Using the set of linear independent rows,
we solve the following equation:

Nylz = —wf (9)
where the superscript I indicates the selected set
of (m — r) rows that are linearly independent.
By solving the above equation for Z and using it
in (7), we get a new o that has (m — r) zero ele-
ments, making the corresponding nodes of LRFN
redundant.

4 Classification Performance

of LRFN

4.1 Control System Studied

To verify the LRFN’s ability to classify deci-
sion functions, the SISO control system investi-
gated by Naidu et al. (1989) is used as an ex-
ample. The block diagram for this SISO control
svstem with sensor failure detection scheme is
shown in Fig. 2. The plant is a stable, first order
linear time invariant system with high model un-
certainty. It should be pointed out that the con-
troller is designed using the standard Internal
Model Control (IMC) procedure and it is equiv-
alent to a PI feedback controller. Although the
control system used in this investigation is sim-
ple, it has all the necessary features to test the
efficacy of LRFN for monitoring sensor failure in
the presence of plant-model mismatch. In fact,
the main objective of this work is to test the
feasiblity of using LRFN as an alternative algo-
rithm in discerning diagnostic signals caused by
plant-model mismatch from sensor failures. The
diagnostic signal is given by:

s=[I+(P-P)QI" o+ (P-P)Qr] (10)

where P, P, Q, r, ¢ correspond to the plant,
model, IMC controller, setpcint change, and sen-
sor failure respectively. For the purpose of sim-
plicity, only 40% uncertainty in the process gain
is considered for the plant-model mismatch. It
should be noted that the method can be ap-
plied to other uncertainty descriptions between
the plant and the model.

Supercritical Sensor Fallure
Subcritical Sensor Fallure

Figure 2. Block diagram of IMC controller with
sensor fault detection.

According to the degree of deviation from de-
sired value, the sensor failure detected by LRFN
from the diagnostic signals is classified into two
classes: supercritical sensor failures and subcrit-
ical ones. A supercritical failure occurs when its
magnitude of exceeds the predetermined critical
value of 0.03. This value is the result of the spec-
ification of no more than 5% steady state offset,
a reference value of 1 for the plant output, and
a +40% operating range. This type of failure
is not tolerated and requires action to eliminate
the sensor fault. When the magnitude of the
sensor failure is less than 0.03, the signal caused
by sensor failiure is considered to be subcritical.
This type of failure is considered acceptable and
allowed to persist in the system operation.

4.2 Training and Results of LRFN

To train the LRFEN in classifying supercrit-
ical sensor 'failures from subcritical ones, 7500
diagnostics signals uniformly distributed on the
sample space were used. The five parameters




of this space are: a) magnitude of sensor fail-
ure, b} time, within the window of observation,
when the sensor failure occurs, c¢) magnitude
of setpoint change, d) time when the set point
changes, and e) steady state gain of the “un-
certain” plant. For more details, see equations
(3) to (7) in Naidu et al. (1989). The coeffi-
cients of the cosine Fourier series of the diagnos-
tic signal serve as input vectors for the LRFN. In
this work, only 15 Fourier coefficients are used
as inputs instead of 24 Fourier coefficients em-
ployed in Naidu et al. (1989). We found that
the smaller number is sufficient and it also helps
reduce the computational load in training the
LRFN. In defining the output of LRFN, a value
of .95 is set for supercritical sensor failures while
a value of .05 is set for subcritical sensor failures.
In locating cluster centers using k-mean cluster-
ing algorithm, 125 initial clustering centers are
arbitrarily used. After the algorithm converged,
4 clusters are found to contain no members. This
implies that the 4 clusters are in a region where
data are unlikely to be located; thus these 4 clus-
ter centers are removed. In applying the “P
nearest neighbor” heuristic, a value of P = 1
or P = 2is typically used. In this work, we have
chosen P = 2 to calculate the necessary cluster
widths for the LRFN. After both cluster centers
and widths are obtained, weights of the LRFN
are calculated by minimizing (2). The classifi-
cation performance of LRFN on the training set
is shown in Table 1. Note that pij 1s a mea-
sure of classification performance, where i and
J represent the actual and predicted fault sta-
tus of the control system. In particular, p,; is a
performance measure of correctly predicting su-
percritical sensor failures, while pgg corresponds
to correctly predicting subcritical sensor failure.
The last two performance measures, po; and piq,
represent a false alarm (raising the alarm for sub-
critical failures) and a miss on supercritical sen-
sor failure, respectively. To check LRFN clas-
sification performance with data different from
the training set, 5000 randomly generated diag-
nostic signals within the given sample space are
used as test data set. The corresponding simula-
tion results are also shown in Table 1. The total
error using LRFN is only around 7%, which is

Method | p1 Po1 Poo | Pro
Training :

a) QNM | 0.563 | 0.040 | 0.360 | 0.037
b) DIH | 0.566 | 0.032 | 0.368 | 0.034
c) LVQ [ 0.546 | 0.023 | 0.377 | 0.054
Test Set

a) QNM | 0.483 | 0.058 | 0.442 | 0.017
b) DIH | 0.484 | 0.056 | 0.444 | 0.016
c) RNN [ 0.483 ] 0.063 | 0.437 | 0.017
d) LVQ | 0.445 | 0.027 | 0.473 | 0.055

Table 1: Summary of results for different meth-
ods. a) Quasi-Newton method (121 nodes) b)
Direct Inversion of the Hessian (121 nodes) c)
Reduced Node Network(101 nodes) d) Learning
Vector Quantization (121 nodes)

about one third of the error observed with stan-
dard BPN in Naidu et al. (1989). Also, no sig-
nificant change in LRFN predictive ability is ob-
served when training data set and test data set
are used. To further validate the classification
performance of LRFN, Learning Vector Quan-
tization (LVQ), introduced by Kohonen (1987),
is also considered in this study. Learning Vec-
tor Quantization is a traditional nonparametric
classifier, for which LaVigna (1989) showed that
when some conditions are satisfied, the classifi-
cation error can be made arbitrarily small.

Tsble 1 shows that LRFN has the ability to
distinguish between supercritical and subcriti-
cal sensor failures. Moreover, it illustrates that
no significant classification performance degra-
dation is observed when the original 121 nodes
were reduced to 101 nodes, according to the tech-
nique in section 3. Finally, comparable results
are obtained using Quasi-Newton (QNM) and di-
rect inversion of the Hessian (DIH) for LRFN.

Table 2 shows the performance of the vari-
ous algorithms on a test space created from the
same monitored signal sample space with one
exception; the failure parameter is set to zero,
i.e., all signals are failure free. It is clear that
the percentage of false alarms (po1/(poo + por)
falls drastically. In fact, both standard and re-
duced node LRFN correctly predict over 99%
that no sensor failure occured. This indicates



Method Number of | pgo Po1
Patterns

Test Set

a) QNM 5000 0.995 | 0.005

b) DIH 5000 0.998 | 0.002

¢) RNN 5000 0.991 | 0.009

d) LVQ 5000 0.999 | 0.001

Table 2: Summary of results when no sensor fail-
ure occurs.

that most of the false alarms of Table 1 are not
true false alarms in the sense that the neural net-
work triggered the alarm in cases where a sub-
critical failure (but still a failure) occured, which
it is not required to catch. A final comment is
needed on the usefulness of reducing the num-
ber of nodes, after a larger network has already
been designed. In sensor failure applications, our
plan is to train the network off-line with simu-
lations of both failures and failure-free data and
then continue the training on-line with presum-
ably fault-free data from a real plant. This strat-
egy was emulated with success for the BPN in
Naidu et al. (1989). Our objective is, after the
off-line training, (for which no significant com-
puting limitations are imposed) to reduce the
number of nodes so the computations during the
subsequent on-line training are speeded-up.

5 Conclusion

An attractive alternative neural network to
standard BPN, the LRFN, has been used to de-
tect control system sensor failures in the presence
of plant-model mismatch. Simulation results in-
dicate that LRFNs hold significant promise in
sensor failure detection. These results show no
significant degradation of classification perfor-
mance when a random test data set is used in-
stead of the training set.

An important advantage of LRFN over stan-
dard BPN is the simplicity of the network struc-
ture. It is this simplicity that allowed us to
develop a rigorous method to prune redundant
nodes. The proposed method uses SVD to iden-
tify and-remove such nodes. The results show

that reduced and standard LRFN have compa-
rable predictive ability, which is similar to that
of LVQ.
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