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One of the techniques used to enhance the damping characteristics of constrained
damping treatments utilizes a spacer layer, called a “stand-off” layer, which is
sandwiched between the viscoelastic layer and the base structure. This “stand-off” layer
acts as a strain magnifier that magnifies the shear strain in the viscoelastic layer by virtue
of increasing the distance between the viscoelastic layer and the neutral axis of the base
structure. The “stand-off” layer must have high shear stiffness and must not significantly
affect the bending stiffness of the composite structure in order to achieve high damping
characteristics.  Slotted “stand-off” layers are used to achieve such high shear stiffness
and low bending stiffness. In these slotted “stand-off” layer, the geometry of the slots
play a very important role in determining the effectiveness of the damping treatment. It is
therefore the purpose of this dissertation to model the dynamics and damping
characteristics of Passive Stand-off damping treatments using distributed-parameter

approach as well as the finite element method. The predictions of the developed models



are validated against the predictions of commercially available finite element software
(ANSYS) and against experimental results. Close agreements are found between the
predictions of the developed models, ANSYS models, and the experimental results.

The developed models present accordingly a valuable means for designing
effective and optimal passive stand-off damping treatments for beams. The models can be
easily extended to passive stand-off damping treatments for more complex structures such

as plates and shells.
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CHAPTER 1

Introduction

1.1 Passive Damping

Vibration damping is used to control and reduce undesirable vibration so that its harmful and
unwanted effects are minimized. The energy dissipating mechanism of vibration control systems
is known as damping. For passive damping treatments, viscoelastic materials are used as
effective means for dissipating energy. Two types of methods are generally employed for the
control of vibrations. These methods are namely: passive and active vibration control. In the
Passive damping approach, damping layers are added to the structure in order to enhance its
energy dissipation characteristics [1]. In the Active damping approach energy is dissipated from
vibrating system through the use of external systems, such as control actuator, etc. Active

vibration control systems are more expensive and less reliable than the passive damping systems.

Hence, the emphasis is placed in this dissertation on the intelligent use of viscoelastic damping
treatments bonded to the base structure. Figure (1) shows the simplest approach of using

viscoelastic treatments in their unconstrained form.



Viscoelastic Layer

Base Structure
Figure (1) - Unconstrained viscoelastic damping

The viscoelastic material dissipates energy of the base structure when it is subject to acceleration,
velocity or deflections. The viscoelastic material affects both the damping and stiffness of the
system in a complex fashion as its properties vary with frequency and the operating temperature.
The dissipation of energy is both due to direct strain and shear strain of the damping layer. In the
case of plate and beam bending, the direct strain varies linearly as the distance from the neutral
axis of the base beam/plate as shown in Figure (2). The greatest direct strain occurs at the
farthest surfaces from the neutral surface. Therefore damping treatments are attached to those
surfaces of the base structure that are as far as possible from the neutral axis. The bending stress
and therefore the direct strain at the neutral axis of the viscoelastic treated beam are zero and are

very small around the neutral axis [1].



Bending Stress Shear Stress

Figure (2) - Stress profile of a beam cross-section subjected to axial load

When the viscoelastic layer is attached alone to the outer surface of the beam, it is called
unconstrained layer damping. Generally the properties of the viscoelastic materials are such
that they tend to dissipate more energy when subjected to shear strain and direct strain. The
transverse shear strain in a vibrating beam is greatest at the neutral axis and zero at the edges.
Therefore, a viscoelastic layer bonded to the surface of the beam experiences negligible shear
stress. Hence, the beam damping characteristics remain largely unchanged. To increase the
shear strain in the viscoelastic material, the viscoelastic layer is sandwiched between two layers,
the beam and the constraining layer plate. Thus both high direct and shear strains are thought to
be produced in the viscoelastic layer, resulting in increased energy dissipation. This type of

damping is called constrained layer damping as shown in Figures (3) and (4).
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viscoelastic layer

base beam

Figure (3) - Constrained Layer Damping
Both constrained and unconstrained layer damping treatments have advantages and

disadvantages. Constrained layer damping treatment results in greater energy dissipation and can

rely in its operation on low stiffness viscoelastic material.

shear anole

|
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\ e

Figure (4) - Shear in Viscoelastic Layer due to Constraining Layer

Unconstrained layer damping treatment produces less energy dissipation and requires high

stiffness viscoelastic material but it can be used for extensional damping and can be easily



applied to the surface of the base structure. It can be added to the surface in the form of tiles or
sheets or can even be sprayed on the surface for some applications.

One of the techniques used to increase the distance between the viscoelastic layer and the neutral
axis of the base structure is the introduction of a spacer layer between the viscoelastic layer and
the base structure as shown in Figure (5). Such an increase increases the strain and therefore the

damping. This spacer layer is called "stand —off" layer and acts as a strain magnifier [2].

Viscoelastic layer Constraining layer

Stand-off layer
Base Structure _
(a) — undeformed

High shear strain Viscoelastic Layer

This arrangement is called the Passive Stand-Off Layer (PSOL) Damping. In the PSOL, the

(b) - deformed

Figure (5) - PSOL Damping



spacer layer must have high shear stiffness and at the same time must not significantly affect the
bending stiffness of the composite beam. If the stand-off layer has high bending stiffness it will
have no other effect than increasing the flexural rigidity of the constrained layer beam and thus

will negatively affect the damping performance of the constrained layer treatment as shown in

Figure (6).

Figure (6) - Increased elastic strength due to high stiffness Stand-off layer

If the stiffness of the stand-off layer is weak then the strain will be absorbed in the weak layer
and the viscoelastic layer will not experience enough strain to induce significant damping as

illustrated in Figure (7).

Low shear Strain
in visceoasltcic layer

N

High shear Strain
in SOL layer

Figure (7) - Reduced shear in viscoelastic layer due to low stiffness stand-off layer



One method of avoiding this increase in flexural strength of the treated beam is to use
slotted stand-off layer of very high shear strength compared to the viscoelastic material as

shown in Figure (8).

Viscoelastic Layer Slotted SOL Constraining Layer

Base Beam

Figure (8) - Slotted PSOL Damping

In the slotted stand-off layer treatment, the geometry of the slots should be such that the stand-off
layer does not significantly contributed to the flexural rigidity of the base structure but also has
enough shear strength such that it does not absorb shear deformation that is desired to be passed

on to the viscoelastic layer (i.e., it should pass on the shear stress to the viscoelastic layer).



1.2 Literature Review

The stand-off layer concept was first introduced by Whittier [2], who suggested that a
spacer layer be introduced between the viscoelastic layer and the vibrating structure. The spacer
layer moves the viscoelastic layer away from the neutral axis of the base structure. The shear
strain is magnified by this displacement of the viscoelastic layer away from the neutral axis
where the strain is a minimum. Most of the studies on passive stand-off layer damping assume
ideal conditions of the stand-off layer, i.e. the stand-off layer is assumed to have infinite shear
stiffness. Therefore, the SOL does not exhibit shear strain and permits the shear stress to be
passed to the viscoelastic layer. Furthermore, the SOL is assumed to have zero bending stiffness
and accordingly it does not contribute to the flexural rigidity of the beam. Some of theses studies
include theoretical and experimental work by Roger and Parin [3], Falugi [4], Falugi et al. [5],
and Parin ef al. [6] on slotted stand-off layer damping partially applied to airplane wings and
plates. Garrison et al. [7] presented an analytical model of a beam treated passive stand-off layer
damping. Tao et al. [8] confirmed with experimental and finite element analysis the

effectiveness of slotted stand-off layer with the above mentioned assumptions

The first attempt to include shear strain of the stand-off layer was done by Mead [1] which

considers shear stiffness and internal loss in the stand-off layer but his model did not include the

affect of the stand-off layer on the bending characteristics and strength of the composite beam.

Yellin, et al. [9] developed an analytical model for the passive stand-off layer damping treatment



using the distributed transfer function method. They treated the base beam and stand-off layer as
a composite beam and the stand-off layer is assumed to be modeled as a Euler-Bernoulli beam.

However, their model can not handle slotted stand-off layers.

This thesis attempts to develop a finite element model in order to extend the applicability
of the model developed by Yellin, et al. [9] to include the geometry of the slots. The developed
finite element model accounts for finite bending stiffness and shear strength and allows for

variability in the properties of stand-off layer across the length of layer.

1.3 Thesis Oultine

This thesis attempts to analytically model the dynamics and damping characteristics of passive
stand-off layer treatment using the Distributed Transfer Function Method developed by Yang and
Tan [10]. Furthermore, a finite element model of the stand-off layer constrained damping
treatment will also be developed. The finite element model of the PSOL damping treatment is
altered to include slots in the stand-off layer. The model enables investigation of the effect of the
geometry of the slots, the thickness of the viscoelastic layer, stand-off layer and the constraining.
The predictions of the finite element model are checked and compared by modeling of the
passive stand-off layer damping treatment on the commercial finite element software ANSYS.
Shape and geometry of the slotted stand-off layer for the optimal damping treatment are
determined. Finally the prototypes of slotted stand-off layer treatment are manufactured and

tested experimentally. The experimental results are compared with the theoretical predictions.



Therefore, the thesis is organized in eight chapters. In chapter 1, a brief introduction is
presented. Chapter 2 presents the equations of motion of PSOL and in Chapter 3, the
performance is obtained using the distributed transfer function method. In chapter 4, the finite
element model (FEM) of the PSOL is developed and Chapter 5 presents the computer
implementation of the FEM. Chapter 6 presents comparisons between the predictions of the
FEM and the predictions obtained by commercial finite element software (ANSYS). Chapter 7
presents comparisons with experimental results and Chapter 8 presents the effect of the
parameters of the SOL on its performance characteristics. Chapter 9 summarizes the conclusions

and recommendations for future work.

1.4 Summary

This chapter has presented briefly the concept of passive stand-off layer (PSOL) damping
treatments as a simple and effective means for enhancing the damping charactersitics of
constrained layer damping. The outline of the thesis dissertation is presented and a brief review
of the literature is summarized in an attampt to justify the need and emphasize the importance of

the present study.

10



CHAPTER 2

Derivation of Equations of Motion

2.1 Assumptions

The following is breif summary of the basic assumptions considered in the analysis of passive
stand-off layers.
e Small displacement amplitudes
e Lateral deflection for all layers remains the same.
e No shear deformation in the base beam and the constraining layer.
e The viscoelastic layer is assumed to have no bending stiffness and therefore deforms
only in pure shear.
e System has steady state response to the external harmonic excitation. Therefore
Complex modulus can be used for viscoelastic and standoff layers
e Standoff layer is continuous and solid in the initial model.
e Stand Off layer and base beam layer are modeled as asymmetric composites so that
planes remain planes under combined bending and axial loads.
e Stand off layer has finite shear stiffness, hence Shear deformation occurs in stand off
layer when shear loads are present.

e Bending and shear stiffness of stand Off layer is less than that of the base beam and

11



constraining layer.

This assumption is made to simplify the model by assuming that all shear deformations occur in

two core layers.

2.2 Kinematic Equations

SHEAR ANGLE FOR STAND OFF LAYER & VISCOELASTIC LAYER.

The shear deformation in the two layers is due to the
e Difference in axial deformation of the base beam and the constraining layer
e Lateral deflection of the beam

The deformation for the two cases are calculated separately and then add to determine the total

deflection.

Deformation due to deformation of the base beam and the constraining layer in axial direction.

As shown in Figure(9), it is given by

U U, (1)

<+— Constraining layer

<+<—— Viscoelastic layer
<— Stand-off layer

<«— Base beam

Figure (9) - Axial Deflection of layers

12



where u,'and u,'are the axial deflections of the beam and the constraining layers respectively.

Axial Deformation due to lateral deflection of the base beam and constraining layer,

ow' M he
8x'(2+hs+hv+2)

(2)
Hence, the total deformation &, shown in Figure (10), is given by
ow' h
5:(uc '_ub ')+—,(Tc+hs +hv +yb)
ox (3)

which is the sum of the defomrations due to axial and lateral deformations.

Note that w'and x' denote the transverse deflection of the composite beam and the axial
coordinate along the beam. Furthermore, /4; denotes the thickness of the i layer where the
subscript i=c=constraining layer, i=v=viscoelastic layer, i=s=stand-off layer, and i=b=beam.

Note that the primes denote non-normalized variables.

!
y 1] 'Y
u h, Constraining layer
c
N S
h, <—— Viscoelastic layer
—+—
15 hs ~<«—— Stand-off layer
' hy Base beam
u,
A o
!/
w
!

Figure (10) - Total Axial Deflection of layers

For small displacement magnitudes the deformation can be expressed in terms of angular

13



displacement as
1 1

where »’ and y' denote the shear strains in the viscoelastic and stand-off layers.

Comparing the above two equations

' ' h aw' ' '
hw'+th,y'= (hg + h, +—+ yp)—+ (u.'-up") (5)
2 ox
Rearranging in terms of v’ gives
,ou ! h.+2h,+2y,

ow'
=——+(+
== o ar (6)

N N

2.3 Constitutive Equations

For Base Beam and Stand-off layer

Using the composite beam theory for base beam and SOL, then the axial strain &, at the

neutral axis of the base beam is given by

. aub'
" o g

and the curvature x of composite beam

B o’
K= PWE )

14



Therefore, the axial strain &_across the composite beam (i.e., the base beam and SOL) is given
by:
& =&, ~ K 9)

Hence, the stress o in the axial direction for base beam becomes:

o, =E(¢,— yK) (10)
and for the SOL
o, =E (¢, — yK) (11)

The total axial force T} across the base beam and SOL can be determined by integrating across

the cross-section to give:

Tbs = b[ axA = (EA)bsgo - (EQ)bSK (12)
,S

where (EA)ys is axial rigidity of the composite base beam/stand-off layer
(EA)bs = EbAb + ESAS (13)
and (EQ)ys 1s product of first moment of area of each layer and its Elastic Modulus.

(EQ)ss = EvQp + EQy (14)

Similarly, the total moment M, acting across the composite of base beam/stand-off layers can be

determined from

Mb,s :—bjsaxydAz—(EQ)bggo +(EDZ)9K (15)

b

15



where fluexural rigidity (E7) is defined as

(El)bs = Eb[b + Evls (16)

The moments the base beam and stand-off layer M} are taken from the neutral axis of the base
beam.

For Constraining Layer

The internal axial tension 7 in the constraining layer can be found by the equation

'
ou,

'

T.=E_hb
Oox (17)

The bending moment M, of the constraining layer is give by the equation

_E bk, *w
c 12 ax-Z (13)

For Viscoelastic and stand-off Layer

The constitutive equations for the viscoelastic layer and the stand-off layer in the Laplace

transform domain are given as
T =Gy T =Gy 9
v v?/ and s Sl// (19)

where Gv and Gs denote the shear modulii of the viscoelastic layer and the SOL.

2.4 Equilibrium Equations

Axial Direction

a. base beam and stand-off layer composite

16



From Figure (11), Newton's second law gives

b

dr, "
' +st+fbs:(pb+ps)ub
dx

(20)
T.dx’
—
T bs
T bs+dT bs
Figure (11) - Base Beam and stand-off Layer Axial Forces
b. constraining layer in axial direction
From Figure (12), Newton's second law gives
dT.
' +Tvb+~][c :pcuc
* 21)

. — I — .

T, dx ’

Figure (12) - Constraining Layer Axial Force

Lateral Direction

The following equations are results of the application of Newton's scond law applied in

the lateral direction

17



a.Base beam and stand-off layer:

From Figure (13),
Wy _ +q,, =(p, + p )W
dxl ps qbs pb ps (22)

psdx’

E———
i

Vbs q bsdx ’ Vbs +d Vbs

Figure (13) - Base Beam and stand-off Layer Lateral Forces

b. Viscoelastic Layer:

From Figure (14),

\4

dx'

—-p.+p,+q,=pW (23)

pedx’ qvdx’

1l 111
I

v, psdx’ V,+dV,

Figure (14) - Viscoelastic Layer Lateral Forces

18



c. Constraining layer

From Figure (15),

C

dx'

+p.+q,=p (24)

q.dx’

i
-

m———— .,

pedx’

Figure (15) - ConstraininglLayer Lateral Forces

2.5 Moment Equilibrium Equations

a. Base Beam and stand-off layer

From Figure (16),

aM,, +V, —7b(h,+y,)=0

dx' (25)

wbdx’

M, bs  Vbs l ! bs +d Vbs M, bs +dM, bs

Figure (16) - Base beam& stand off layer equilibirium

19



b. Viscoelastic Layers

From Figure (17),
V,=rt,bh, 26)
,bdx’
l I
Wy - V,+dv,
bdx’
Figure (17) - Viscoelasticlayer equilibirium
c.Constraining layer
dM h
“+V.+7,0==0
X 2 (27)

M. l !c TVchch M +dM.

4—
T,bdx’

Figure (18) - Constraining layerequilibirium

20



In equations (20) through (27), b denotes the beam width, 7, is the shear stress, p; defines
the internal normal forces per unit length, ¢; is the externally applied body forces per unit length,
V; and M; denote the shear force and moment acting on i”" layer, also p, denotes the density of the
i" layer with (i=c,v,s, b).

For axial equilibrium of the viscoelastic layer

TV = TS (28)

From Equations (19) and (28)

! GV !
V= G Y
s (29)
From Equations (6) and (29)

o G, (u " ,)+ G, 2h, +h, +2h, +2y, j o'
VG, G )T\ G, v G 2 o G0
From Equations (19) and (28)

GG, . GG, 2hy +h, +2h, + 2y, \ o'
el T A A~ (“c U )"' 31)
h,G, + h,G, h,G, + h,G, 2 ox'
From Equations (26) and (31)
bh G .G bh,G.G ow'
Vo=|—— vy U Ty Op 42k +h 42
” (hst ¥ hVGSJ e (hSGV +hG. ]( A O (32)

From Equations (2).and (32)
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bh,G,G, \(ou,' o'\ (_bhG.G, | 2h +2h, +h, +2y,)%W
h,G,+h,G, \ ox'  ox' ) \hG,+h,G, 2 ox'

+ps+p.t+q,=p,W

(33)
From Equation (25)
O’u ow G, o
-(EQ),, ax,zb +(E2),, e +V,, —G.blh, +y, ){m](% —u,')
_G.blh, +3,)G, (2h, +2h, +h +2p, oW _
2 h,+G, +hG, ox'
S S (34)
From Equations (22) and (34)
ou; o*w  G.b(h,+y,)G, (ou,' ou,'
E b EI + K s b v c b
(EQ), ox'? (L), 't hG +h G, o' o
G.b(h +y,)G, (2h +2h, +h, +2y, \&*W
+ -p,.+q, =\p, +
7 h G N h G ax'z Py 4 ps (pb ps )W
S v v N (35)
From Equation (27)
E.bh,> 8w h,G.Gb N [ 2mbGG,
13 + Vc - (uc b )_
12 & 2(h.G, +h,G,) hG,+hG,
2h, +2h, +h, +2y, j w _, (36)
4 ox'

From Equations (24) and (36)
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_Ebh’ o'W hGGb (8uc'_8ub'j
12 ax'  2(h,G,+hG ) ox' o'

( h.bG,G, j(zhc +2h, +h +2y, ] *w'
; +pC +qc :pCW

’ hG, +h G 4 Ox'?
N v + v N x (3 7)

Adding Equations (33), (35) and (37)

GGb (h +h +2h +h h\ 52w '
Y v s v ¢ h+h+yb+c _
G +h G| 2 ¢S 2 ) & &

s Vv Vv S

GG b (2h +2h +2y, +h ho\ 52
Sy —— € hc+hs+yb+7€——(pb+p‘g+pv+pc)v"v'

hG+h G ) 2 52
(38)
Let
h, _
CZEyb-f-hS-f'hv‘f'? P=pP, tPp,+p,+p,
q - Qbs + qV + qC
Then, equation (38) reduces to
G,G,b ou,'  Ouy' G,G,b , O*w'
o — + a +
(h,G, +Gh) \ax' &' ) (hG, +hG,) ox
831/1' 84Wv 84W' (39)
EQ s—b_ El s~ 4 EcIc — s tq.14q.)= W
(EQ), e (E1), i ( )ax"‘ (Gps + 9. +4.)= piv

Substituting in above

D, =(EI), +(EI),
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We get the following equation

G,G,ba & 5, G,Gba &),
[ + (EQ)bc 5 '3 ju b+( Ju c
X

G, +Gh, &' hG, +h,G, &'

2 2 4
J{ GGba® & 5 J

hG,+h,G, &% &

( §*  G,G,ba’ 52] [ baG G, 5},
D - u',

a4 7 W o
o' h,G, +h,G, &' h,G, +Gh, o

5° G,G,ba &5
+| —(E + Lt — '+ W' =
( (BO) 53 G.h, +G.h, 5x'J b=

From Equation (20)

13 2
C(B0), 2w (EA), 2 ( bG.G, j()

ox' ax'z hst +hsz
bG,G, ow' . ’
+ a—=(p, +
S (hSGv+hszj Pl IR

03 baG.G 0 0° bG.G
E _ sy '+ —(EA sy '
[( 2 o®  (h,G, +h,G,) 8x'JW J{ (BA) o’ hG. +hG. J””

_( bG,G,

hst +hvGS Juc'—i_(pb +ps)12b'=fbs

From Equation (21)

o’u,’' bG .G bG,G o' .
u sy (ucv_ bv)_( sy j w _pcuc':fc

E hb—0f— a
ox'"  hG,+hG, hG,+hG, ) Ox'
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(42)

(43)
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G,G.b o), bG,G, ,
oa— (W— ub +
h,G,+h,G, Ox' h,G, +h,G,
2
bG.G (45)
_Echcb 0 + — uc'+pciic':fc
5)('2 hst + hvGS
Equations (41), (43) and (45) are combined in the following matrix form
| 50 GG @ GG 0 () &, baGG, 2 |
‘ot G +Gh, x> G,h, +G,h, ox' "o Gh +Gh, &
boG,G, & EA & . GG, _ bGG,
Gh,+G.h, ox' ““a? Gh+Gh, Gh, +Gh,
o boGG 0 bGG o bG.G
(BQ), — L% 0 __bGG ~(EA)y 24
i o Gh +Gh, ox Gh,+Gh, " Gh+Gh, |
p 0 0
+5%0 p. 0
O O /Ob+/0s
W! (x ' , S l) q 1
(s | = | s
— 1 ! 1 1 (46)
Uy (x > § ) S s
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The equations of motion can now be normalized by using the following substitutions:

w(x,s) = w'(x',s") u (x,5) = ', (x',s') i, (x,5) = 'y (x',s")
9 hb sYe 9 hb s“p 9 hb
x=£,sz p—ﬂs'
I D, @
yl4 ' l4 ' l4
quq)h ach]l;ch ’fbsE];)bSh
t"b t'*h t'"h (48)

The following dimensionless parameters and constants are used to simplify equations of motion

ba’G.G.I?
)= e e

Dt (GVhS + GShV)
0215& 022 _ Pyt Ps
p P
[ — (EQbsl)
p=— a4 = D
a t
_EAL (EA), I
Ay =—"7"" az = )
D, D, (49)

The normalized equations of motion take the following form
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o' ba’GG, & __baG,G, O
"ovt Gh +Gh ox? G,h, +G.h, ox'
2
baGVGS i _ ECAC a + bGVGS
G,h, +G.h, ox' ox'? Gh +Gh,
o baGG, D bG.G,
(EQ)p— - s —
i ox”  Gh,+Gh, ox G,h, +G,h,
p 0 0
+s%0 p. 0
0 0 pb +ps
W' (xv ,S') qV
7, (x',s') == [,
ﬁb'(x',s') S b

2.6 Boundary Conditions

The normalized boundary conditions for a cantilever beam excited at its base are as

follows:

For the fixed end (x=0) are:

For the free end (x=1) :

0

ax|

o ,_baG,G,

x® Gh+Gh,
bG, G

G, +G,h,

& bGG,

o Gh,+Gh,

(EQ),,

- (EA),,

(50)

w(0,s)=P(s) 51)
dW(O,S):u (0 S)_dMC(O,S):O

dx A dx (52)
d*w(l,s) _0

dx? (53)
du,(1,5) _ duy(1,5) _0

dx dx , (54)
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d*w(l d’u, (1, dw(1

), g Pl ), (-0
dx dx dx

The above equations and boundary conditions are now solved using Distributed Transfer

Function Method and Finite Element Method and the two solutions are compared.

2.7 Summary

This chapter formulates the equations of motion of the passive stand off layer treated
cantilever beam subjected to dynamic loading at the fixed end with the assumptions given in the
beginning of the chapter. The equations of motion constitute one variable (lateral deflection of
beam) with 4™ order differential equation and two variables (axial deflections of base beam and

constraining layer) with 2™ order differential equation of motion.
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CHAPTER 3

Distributed Transfer Function Solution

Method

3.1 Solution By Distributed Parameter Systems Transfer Function Method

The PSOL beam is solved analytically by the distributed transfer function method
developed by Yang and Tan [10].
Equation (50) gives the simplified equations of motion in the Laplace Domain and

Equations (51) to (55) give the boundary conditions.
3
Since the first equation in the Equation (51) has the terma u%c ; , therefore this equation has to

be modified in order to be solved by the distributed transfer function method.

Partially differentiating the third equation in (50) with respect to x, gives

Tt T E | A Y R

(56)

o° P AN d
—ay——+ —+ — |y, =——
( as N €287 B 8(8)8)6 Uy == Sbs
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Multiply the above equation by — % yields
3

a, Ox a, a, X
57
0 &b 220 @B )0 _ 4, ©D
‘o' a4y 1 x a ox )’ a, ox

Adding this equation to the first equation in Equation (50) gives

2\ A4 2 2
a” |0 a 0 0 a 0
1+ | =+ 52+ L e(s) —&(s wH|| LB =B le=—|u
[( a3]6x4 et e U | bl B e 2

(58)
+ —ﬂczzszi+8 ﬂ—ﬂﬂz 9 u, =—q+ﬂ%
Ox ay ox

az a, Ox

As all external forces are zero and the beam is excited dynamically at its fixed end, then the

modified equations of motion are given by:

_ , ) _
o 79
a, )ox as X
62
3 0 —a2—2+01232 0 +
ox
63 2 5
a— 0 —a3;—+¢ s’
ox X
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| o (p 5 Ba )6
(ﬁ?‘l]a_z (aal‘ﬂjax [ﬁ—]a—
3 ] 3 3 w(x,s)
sk p s - B u.(x,5) |=
X
= - p o)
ox

For the sake of simplicity, all the initial conditions are assumed to be zero.

3.2 Equations In State Space Form

The equations of motion can be written in the state space form as follows

%y(x’s) = F(s)y(x,8)+ q(x,8)seeeenc... xe(0,1)

where y (x,s), g(s), and F{(s) are given by

(xs):{w ow  Jw Ow u iu u iu y
YA Ox o  ox’ A ;

g(x,5)={0 0 0 0 0 0 0 0,

and
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F(s)=

0 0

0 0 1

0

_P 0 4 . |: o Peay
=TI U

0 0 0

0 +&f 0
a4

0 0 0

0o 0
a;
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3.3 Boundary Conditions

The boundary condition indicating the shear force equilibrium at the free end of cantilever

beam has to be modified to enable it to be incorporated into the State Space model

Equation (55) which is given by

) d3W(§’S)+a1 uy (1), () {dw(l,s)+ S (Ls)— ﬂub(l,s)}zo
dx dx

2
is converted to the following from in order to eliminate 0 u% )
X

2 3
(“1_ JQ‘}JFE(I—,B%JWJ{I—,B%}IB”C +(,5al—1j5ﬂ“b =0
as dx as ) dx ds3 a3

Hence, the boundary conditions can be formulated as

M(s)(0,5)+ N(s)y(L,5) = »(s)

where

M(s) =

S O O O O O O O
S O O O O O O O
S O O O O O O O
S O O O O O O O

S O O O O o o =
S O O O O o = O
S O O O O = O O
oS O O O = O O O
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(64)

(65)



N(s)=

S O O O o o o O
S O O O O o O
o o o = O O O O
S O O O O o o O
S O O O O O O
—_ O O O O O O

I
W|HOOOOOOO

)
7~ N\
[E—

I
RIS
N——

3)
7\
ey
[N}
<
|
™
N—
(e

and

¥(s)={P(s) 0 0 0 0 0 0 0}

3.4 Solution

The solution to the above system of equations is given as follows

y(x, s) = j-G(x, £, s)q(g, s)de + H(x, s)y(s), XE€ (O,l)

where

34

(66)

(67)



H(x,s)=e ) (M(s) +N(s)e” (S))_l (68)

As all the external forces are zeros, the solution reduces to

y(x,s) = H(x,s)y(s),x € (O,l) 69)

or

Z_:st)y )

(70)

F(s)x

The matrix e is called the fundamental matrix of F(s). The fundamental matrix can be

evaluated by the following MATLAB command expm(F)

3.5 Summary

A transfer function model of the PSOL treated beam treatment has been developed. The
equations of motion have been modified to facilitate the formulation. The transfer function
method will then be used to validate the predictions of the finite element method. The transfer
function model is modeled only for uniform stand-off layer which is bonded along the length of

the beam.
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CHAPTER 4

Finite Element Model

4.1 Solution By Finite Element Method

The development of the finite element solution of the system of equations and boundary
conditions given by Equations (50) to (55), requires that the equations are transformed to the

form given by the equation (59)

- 2N 4 .
[ —alJa“+s2 0 _ﬁ022s2ﬁ
as |ox a ox
0 R
a,—5+¢’s 0 +
o ’ 2.2
a, o 0 —a, 2 +c,°s
( a & (P 0 Ba ) o |
1 |——
(ﬂ% jaz ( a, d Ox p a, )ox w(x,s) q+a§m
5 X
0
e(s)x ,6’5 B’ ~-p’ u (x,s)|=| —f.
P , , uy (x,5) s
B i g
s
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4.2 Derivation Of Element Equations

In this step, a typical element is considered and a weak form of the equations of motion is
constructed over the element. The weak form of the above equations over an element is derived

after defining the following terms:

2

a
K, = -
as
a
K,="1pBs-¢
as
K, :ﬂzgfl pe
as

Substituting these terms in the equations of motion, gives
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wlx,s 0
K1£;+K2—2+S2 K3§ 1<4é .s)
at o & B u.(x,s) =0
0 & u, | x,s 0
y —Kggc —%ngKs Ks b (9)
& 0 &
a1—3+K8— Kﬁ —(13—2+K7

The following Hermite Interpolation functions are used for the normalized lateral

deflection and Lagrange interpolation functions are employed for the axial deflections.

e e e e
W= vty vy Uy vyt vy

B _dw B _dw
up =w(x,) - u, T sy = W(X, ), Uy T
Xe xe+1’
e e
ue=us 6 +ug 0, 4

up =u, O +ug O,
where v;, 6, and @, are interpolation functions to be defined in Section 4.3.

Hence, the weak form of the first equation is given by

4 2
I K16_+K26_+S2 w+ K3i u, + K4i u, [vdx=0
ox ox? 0x Ox

or
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- 3 2 3
—Kld—v;ﬂ+ sz—?}+S2w+K3 du, +K4% v |dx + vKl—dVSV rerl _
J dx’ dx dx dx dx dx
. 2 2 2 d J
K, d Wﬂ+ K, d W+s2w+K3 Ye +K, LI Y
’ dx? dx? dx? dx dx
3 2 xc+1
WK d W 1ﬂd w _0
> dx dx? o
2 2 J p
J’ g, Awdw g dwdv) Lok, Pe ik, D g+
dx? dx? dx dx dx dx
3 2
VKldw— lﬂd w Kzﬂ xc+1_0
dx’ dx x? dx .

Similarly, the weak form of the second equation becomes

dzuc

or X

+ Ksu, + Kqu, )0dx =0

And the weak form of the third equation reduces to

dw

I(al i

or

J

4.3

d*w d
(ald—CD Kgd—wcp + Ko, ® +a; —2

Interpolation Functions

+Ku, —
dx

2
a, d—uzb + K. u, )Ddx =0

du

duy d© K7ub®)dx+{a2 <
dx

dx

0

|

The interpolation functions and their derivatives are given as
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X
O =b, =1-=—
1 1 7

X
9 :(D = —
2 27
do, _d®; _ _
dx dx
@_d@z_l
dx dx

dx? h? h
d’v, 12
dc®>  h’
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2 h? h
dv, 12
dx? h?

Hence, the finite element model of the equations can be written in the form

[Klu}={Fi+{o}
where [K] = Stiffness matrix [K] is givenby [ K]=[KI K2 K3 K4 K5 K6 K7 K8]. The

elements Ki are defined below. Also, {F} =0, and {Q} =0 except at the boundaries where it will
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incorporate boundary conditions

The elements Ki are given by:

d*v, d*v,
@ dé
X dzv1 d2v2
P
Pig

K

—Ks

Ki= | %5 >

dv, v,

2

dx

v,

2
—=—=+sVn

2 dx dx

42

-



4949 . x g0,
“ e

| Kshd>




d*v, d*v, dv, dv, -
K—"+K——L+swy d*v, d*v v
&’ K~ K st
& di dx
K d's d'vy oi, By o v, & &
e —— — S WV v, V.
161;2} 22 3V 1 dx; dxzz sz_Jrsszz
_[(8_361 dv,
& K =
dx
&y av 3
O —2h+K— ¢ 3 dv dvy
& dx 11— A+ Ky n
d*v, dv, v, ) da;i v W
K5= Klyy 2 T | K= Klﬁ dx; 2;4—+S2v4\/3
&, dv y d*v, d* v
](lﬁ dx; +K2$4 571 lﬁﬁ s — st
v v
&y dv v dv,
@ ﬁ@jLKSi@ g 34¢z+ Sj%
[ de | [ d i
K g
4o d
K K
de, do
a e — Ks6,6, Kot
dx g dgy |
Keoodh B g b
do, dg,
K7=| K e , and  K8= K70
dé dg,
K K
do, do K. 4,0
dx dx dgp dpy .
Koo | B g e Kt |

Hence, the finite element model takes the following form
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K K K9 K49 K9 K9 K497 Ko ||u9 ‘1 ‘I
K% K% K% K% K% K% K¢ Ks||lu® ) )
K% K% K93 K% K% K% K% K%s||us “3 ‘3
K K K K K% K% K% Ks|ju| | f% N ‘4
K K¢ K¢ K% K% K% K Kosl|luss| |5 ‘s
K K% K9 K% K% K% K% KC%s||u‘ ‘6 ‘6
K1 K K% K% K% K% K¢ K¢ ||u® ‘7 ‘7

K% K% K% K% K% K% K% Ks||us °s ‘s

or, in a compact matrix form:

(KU = 1{Fi+i0]

4.4 Assembly Of Matrices

For illustration purposes, the assembly of the matrices of two elements will take the form

& v j=1F j+ {0}

where {F}=0.
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and [K] for two elements is given by:

K'ss Ksa Kss+KA
Koz Kos Kos+Ki
K7 Ko Kos+K
Kz Klss Klss+K41

S O O O

le +Q12
0' +Q22
0'7+0%
0's+0%
0’
0%
0%
0%

b

I<11 5
Kbs
K’s
Klas

K1
K61
K71
K1

I<ll 6
I<126
I<13 6
I<146

Klse+K12
Klo6+K2
K6+K22
Klse+K22

K>
K262
K72
K2
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K7
Kb
K57
Kl47
K's7+K3
Klo7+K3
K77+K%3
Kls7+K%3
K3

Ks
Khs
Kis
Kls
Klss+K14
Klos+K4
Khs+K24
Klss-+K44
Ks4
Ko
K274
Kisa




4.5 Application of the Boundary Conditions

At x=0, i.e., at the first node of the first element, there are four boundary conditions

w(0,s)=P(s)

aw(0,s) — 1, (0,5)= du,(0,5)
dx dx

=0

Substituting the value of w(0) =1, and deleting the first row and moving all entries of the first

column to the right hand side gives:

{ng Hu;)} _ {F; +0! - K;P(s)}

L dw(O, s) . .
Similarly for p: =0,and u, (O,s) =0, the rows and columns for u, and u, are deleted
x

du_ (0, ) ) .
For e ( S) =0, substitute this value in
dx
du
1 =la c
Q3 |: ? dx j|x0
toget O =0.
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At x=1, we have the following boundary conditions

du,(1,5) _ duy(1,5)
dx dx

=0

The terms for the last element in the overall matrix equation are

o [§ e =4 e 107
K ||ug Fy oy

where

0; =|a, du, to get 07 =0,
L dx dx=1
0O; = a2%0 toget Of =0,
L dx x=1
d*w(l,
W(2 S) =0, and
dx

Imposing these boundary conditions, the overall equation is simplified to

d*w dw
_Klﬁ_KZE_Kﬂ’tc_Kﬂ’tb:O
d*w dv d*w dw
"=0! =| VK, —— ——+ VK, —
Qs =0s b " dx dx? za’xl=1

or
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; ; d*w dw
Qs :Qs :{K1F+Kz_}
X x=1

or

Qs =07 =—Ku,—K,u,

Finally, {F} = {0} as there are no external forces acting on the system except for dynamic

displacement excitation applied at the fixed end.

4.6 Summary

A finite element model of the PSOL treated beam has been developed. Hermite
interpolation functions have been used for the 4™ order variable (lateral deflection) and
Lagrangian interpolation functions have been used for the 2" order variables (axial deflections of

the base beam and stand-off layer).
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CHAPTER 5

Computer Implementation

In this chapter, MATLAB codes are developed to determine the response of beams treated with
PSOL using both the distributed transfer function method and the developed finite element
model. A step-by-step development of the codes is presented for beams that have been analyzed

by Yellin et al. [9] in order to validate the predictions of the developed models.

5.1 Distributed Transfer Function Method

The following table gives the properties of the materials that are used to illustrate the computer

implementation of several test numerical examples.

Beam material Al6061
SOL material DYAD 606
VEM material ISD 112
Constraining layer material Al

Beam thickness (/) 2.29 mm
SOL thickness (k) 2.64 mm
VEM thickness (h,) 127 mm
Constraining layer (A1) .203 mm
Width (b) 11.75 mm
Length (/) 150 mm

The complex modulii G, and G, for the viscoelastic and PSOL layer are assumed to be 1e°(1+).
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Also, these parameters are assumed to be constant through the frequency range.

Defining the constants (used in the code listed in Appendix A.1)

Excitation Function
P=1;

z=0;

Length

1=.15;

Width

b=.01175;

Stand off layer Height
hs=.264*1e-3;
Constraining Layer
hc=.203*1e-3;
Viscoelasitc layer
hv=.127*1e-3;

Base beam
hb=2.29*1e-3;
Viscoelastic layer
Gv=le5*(1+1);

Stand off layer Height
Gs=le5*(1+1),

Mass/unit length of base beam
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pb=2850*b*hb;
Constraining Layer
pc=2850*b*hc;

Viscoelastic layer
pv=1100*b*hv;
Stand off layer Height
ps=1100*b*hs;

Eb=72¢9;

Ec=72¢9;

Es=Gs*2.9;

Ev=Gv*2.9;

(EA)bs = EbAp + EsAs
EAbs=Eb*(hb*b)+Es*(hs*b);
(EDps = Eply + El
Elbs=Eb*(b*hb"3/12)+Es*(b*hs"3/12+b*hs*(hs/2+hb/2)"2);
(EQ)os = EnQp + EsQs
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;
Elc=Ec*(b*hc"3/12);
P=PpTPs TPy TP
p=pstpc+pv+pb;

D, = (E1),, +(EI),

Dt=Elbs+ElIc;
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a=y,+hg+h, +%C

alpha=hv-+hs+(hb+hc)/2;

E(S) bavaGslz
Dt (ths + Gshv)

E=b*alpha"2*Gv*Gs*1"2/(Dt*(Gv*hs+Gs*hv));

¢t = Pe
yo,

cl=pc/p;

¢t = Pe
o,

c2=(pb+tps)/p;

[
p==

(04
B=l/alpha;
a, = (EQsz )

D,
al=EQbs*1/Dt;

E A
Dl‘

a,

a2=EAc*1*1/Dt;

(EA)bs 12

as =
Dt

a3=EAbs*1*1/Dt;
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Implementation of the program with for loop

for sr = 1:5:5000

4

IS

'

S = N

D,

s=sr*1*(p*1°4/Dt)*.5*pi*2;

F(s) =
0 1
0 0
0 0
S 0
a3—a’1
0 0
o I
)
0 0
0 ;ﬂg
L a3

F=[ 0,1,0,0,0,0,0,0;
0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0;

S = O O

o O

S O o <o

0

st +eff

@

0
~¢f

]

0 0 0
0 0 0
0 0 0
f— &fa 0 a, | s’y + Lay ),
a (‘13 —al % %
1 0 0
0 —h 0
)
0 , 20 1
0 chas® +eff 0

-s"2*k,0,(E-B*E*al/a3)*k,0,0,(E*B-E*B"2*al/a3)*k,0,(c2*s"2*al/a3...

+B"2*E*al/a3-B*E)*k;
0,0,0,0,0,1,0,0;

0,E*B/a2,0,0,(c1*s"2+E*B"2)/a2,0,-E*B"2/a2,0;

0,0,0,0,0,0,0,1;

0,-B*E/a3,0,al/a3,-E*B"2/a3,0,(c2*s"2+E*B"2)/a3,0];

M(s) =

S O O O O O O -

S O O O O O = O

S O O O O O o O

S O O O O O O O

S O O O O O o O

S O O O O = O O

S O O O = O O O

S O O O O O O O
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1,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0;
0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0];

N(s)=

S O O O O o o O
S O O O o O O

=[  0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0;
0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1;

5(1—&

as

|

S O O = O O O O

SO O O O O O O

S O O O O o o O

=,
S

—

0,E*(1-B*al/a3),0,-1/k,E*(B-B*2*al/a3),0,-E*(B-B"2*al/a3),0];

y(s)=+{P(s) 0

0

0

Gamma=[P 0000000 ];

efs=expm(F);

H(x,s)= oF ) (M(s)+ N(S)eF(s))ﬂ

H=efs*(M+N*efs)"-1;

0

0

0

0}
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HO=eye(8)/(M+N*efs)*-1;

y(x,s) = H(x, s))/(s), X € (0,1)
eta=H*Gamma,;

eta0=HO0*Gamma;

z=z+1;

splot(z)=sr;
w(z)=abs(real(eta(1))/real(eta0(1)));
end

Plotting

semilogy(splot,w)

A complete listing of the MATLAB code is given in Section A.1 of the appendix.

5.2 Finite Element Method

Provide number of elements

nem=11;

Define constants (used in the code listed in Appendix A.2)
Excitation Function

P=1;

z=0;
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Width

b=.01175;

Stand off layer Height
hs=.264*1e-3;
Constraining Layer
hc=.203*1e-3;
Viscoelasitc layer
hv=.127*1e-3;

Base beam
hb=2.29*1e-3;
Viscoelastic layer
Gv=le5*(1+1);

Stand off layer Height
Gs=le5*(1+1);
Mass/unit length of base beam
pb=2850*b*hb;
Constraining Layer
pc=2850*b*hc;
Viscoelastic layer
pv=1100*b*hv;

Stand off layer Height
ps=1100*b*hs;

Eb=72¢9;
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Ec=72¢9;

Es=Gs*2.9;

Ev=Gv*2.9;

(EA)bs = EbAp + EsAs
EAbs=Eb*(hb*b)+Es*(hs*b);

(EDps = Eply + El
Elbs=Eb*(b*hb"3/12)+Es*(b*hs"3/12+b*hs*(hs/2+hb/2)"2);
(EQ)os = EnQp + EsQs
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;

Elc=Ec*(b*hc"3/12);

P=PptPs TPyt P

p=ps+pct+pv-+pb;

D, = (EL),, +(EI),

Dt=Elbs+ElIc;

h
a=y,+h,+h, +—=

2
alpha=hv-+hs+(hb+hc)/2;

E(S) bavaGslz
Dt (ths + Gshv)

E=b*alpha™2*Gv*Gs*1"2/(Dt*(Gv*hs+Gs*hv));

=L
o,

58



cl=pc/p;

¢t Pe
o,

c2=(pb+ps)/p;

[
p=—

o
B=l/alpha;
a, = (EQsz )

D,
al=EQbs*1/Dt;

E.Al°
Dt

a,

a2=EAc*1*1/Dt;

(EA )bx [ ’

035
Dt

a3=EAbs*1*1/Dt;

splot=0;

syms X
Define length of each element
h=1/nem;

Define interpolation functions.



X 2 X 3
V1:1—3(Zj +2(Zj

v1=1-3*(x/h)"2+2%(x/h)"3;

)2
v, = —x(l _h)

v2=-x*(1-x/h)"2;

2 3
X X

V3 :3]172_2]173

v3=3*(x/h)2-2*(x/h)"3;

! ok

v4=-x*(x"2/h"2-x/h);,

X
th1=1-x/h;
X
th2=x/h;

for sr=1:100:5000
s=sr*1*(p*1°4/Dt)*.5*pi*2;

2.2
1.9

K,=1-—
as

k1=(1-al"2/a3);



K, = ﬂﬁg -
as
k2=(al/a3*B*E-E);

K :ﬂzgﬂ_ﬂg
as

k3=B"2*E*al/a3-B*E;

_ 229 2.9
as as

k4=B*E-c2*s"2*al/a3-B"2*E*al/a3;

k8=-B*E;

K, =¢ s>+ f’¢
k5=c1*s"2+B"2*E;
Kg = _ﬂzg
k6=-B"2*E;

K, = czzs2 + fe

k7=c2*s"2+B"2*E;
Define the elements of the K Matrix

Assembly of the K Matrix
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K K% K4 K4 K% K4 K7
K K K% K% K% K% K¢;7
K% K% K% K9 K% K% K€y
K K K% K% K% K% K¢
K% K% K% K% K% K% Kz
K% K% K% K% K% K% K7
K1 K¢ K% K K% K% K77

_Kes1 K% K% K% K% K% K%

KK =[ K11, K12, K15, K17, K13, K14, K16, K18;

K21, K22, K25, K27, K23, K24, K26, K28;

K51, K52, K55, K57, K53, K54, K56, K58;

K71, K72,K75, K77, K73, K74, K76, K78;

K31, K32, K35, K37, K33, K34, K36, K38;

K41, K42, K45, K47, K43, K44, K46, K48;

K61, K62, K65, K67, K63, K64, K66, K68;
K81, K82, K85, K87, K83, K84, K86, K&8];

Integrating the K Matrix over the element

K=int(KK,x,0,h);
K=double(K);

Assembly of the overall K Matrix
KO=zeros((nem+1)*4);

for n=1:nem

KO(n*4-3:n*4+4,n*4-3:n*4+4)=KO(n*4-3:n*4+4 n*4-3:n*4+4)+K;

end

K¢
K*2s
K*38
Ks
K*“sg
K*s
K¢

e
K3 |

ui
u 2
us3
us
us
ue
us

e
u s

e

1

e
2

e

3

e

4

e
5

e

6

e

7

e
8

Reducing the overall K Matrix by incorporating the boundary conditions

KK=zeros(nem*4+1);

KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);

KK(1,1)=KO(3,3);
KK(1,2:5)=K0(3,5:8);
KK(2:5,1)=KO(5:8,3);

e

1

e
2

e

3

e

4

e
5

e

6

e

7

e
8

Incorporating the last boundary condition (shear force equilibrium at the free end)
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KK((nem-1)*4+2,(nem*4))=KK((nem-1)*4+2,(nem*4))+k3;
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4;

Defing the F Matrix
F=[-KO(1,3);-K0O(1,5);-KO(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)];
Calculating the nodal variable values

X=KKA*-1*F;

Plotting

splot=splot+1;

w(splot)=abs(real(X(nem*4-2)));

ww(splot)=sr;

end

A complete listing of the MATLAB code is given in Section A.2 of the appendix.

5.3 Slotted Psol Finite Element Model Matlab Program

This model consists of 11 elements with every second element slotted, i.e. with no
modulus of elasticity.

The inclusion of the slots in the model can be achieved by varying the properties of the
stand off layer of the elements. In fact, variation of properties of other layers is also possible.
The matrices of the elements with different properties have to be computed separately and then
combined in the overall matrix. If the properties of the layers are varied excessively, then a large

number of matrices need to be integrated which leads to a large increase in computing time.

The following if-else statement is used for combining the matrices

K1 = Integrated matrix for full element
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K2= Integrated matrix for slotted element
For Element No. =1 : No. of Elements
if Element = Slotted
Overall Stiffness Matrix = Overall Stiffness Matrix + K2
Else
if Element = Full
Overall Stiffness Matrix = Overall Stiffness Matrix + K1

End

A complete listing of the MATLAB code is given in Section A.3 of the appendix.

5.4 Summary

MATLAB programs for the distributed transfer function method and finite element
method have been developed. The finite element program has been further modified to
incorporate the slots in stand off layer (by varying the properties) along the length of the beam.
However, slots in the viscoelastic and constraining layers can also be included. The full code of

the programs is given in the index of program codes in the index of computer programs.
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CHAPTER 6

ANSYS Modeling and Comparison

6.1 Overview

In this chapter, the predictions of the developed finite element model and the distributed
transfer function method are compared with the predictions of the commercial software package

ANSYS.

6.2 Damping In Ansys

In the implementation of the ANSYS simulation, it is very critical to account for the

damping of the viscoelastic and the beam materials accurately.

Damping in ANSYS Version 8.0 is classified into two broad categories: Viscous damping
and Structural damping. This can be done by two different analysis methods called the full
method and the mode-superposition method. Figure (19) illustrates the various damping input

functions in ANSYS
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Figure (19) - Damping in ANSYS

The DMPRAT command is used to define constant damping ratios throughout the

considered frequency range.
The MDAMP command is used however to define the modal damping ratios in which
damping is specified for each mode independent of frequency.

The ALPHAD command defines damping ratios which are inversely proportional to

frequency.

The BETAD command defines damping ratios which are directly proportional to

frequency.

Finally, the MP,DAMP command represents stiffness multiplier in full analysis method
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and it represents structural damping or constant damping ratio.

6.3 Modeling In Ansys

A Two-dimensional model is developed using ANSYS commercial software package. In
that model, PLANE element 183 is used to discretize the cantilever beam which is subjected to
harmonic excitation at its fixed end. Figures (20) and (21) display the ANSYS solid and meshed

models respectively.

Figure (20) - Modeling in ANSYS

AN

NN\ | W W W . N

Figure (21) - Meshed Model in ANSYS
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6.4 Comparison

a. plain beam

The response of plain base beams as predicted by the developed finite element model and
the distributed transfer function method are compared with the predictions of the commercial
software package ANSYS. The considered base beam is made of aluminum whose length = .15
m, width = .01175m, and height = .00229m.

Figures (22), (23), and (24) display such responses and Figure (25) presents a comparison
between all the three different methods. Close agreement is evident between the predictions of

all the three methods.

Response
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Figure (22) — Response of plain beam using the distributed transfer function method
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Figure (23) - Response of plain beam using the developed FEM
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Figure (24) - Response of plain beam using ANSYS
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Figure ( 25) - Comparison between the response of a plain beam using the different methods

b. beam with passive SOL

The main properties of the considered beam which is treated with passive SOL are:
Base Material = Aluminum , Length = .15 m, Width =.01175m, Height = .00229m
SOL Material = Aluminum, Height = .00264m
VEM Material Properties, Modulus Elasticity =15 N/m?
Damping Ratio = le-4 x © x frequency (linearly dependent on frequency), Height = .000127m,
and Density = 1100 Kg/m’

Constraining Layer = Aluminum, Height = .000203 m.
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Figures (26), (27), and (28) display such responses and Figure (29) presents a comparison
between all the three different methods. Close agreement is evident between the predictions of

all the three methods.

Response
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Figure (26) - Response of a beam with SOL using the distributed transfer function method
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Figure (27) - Response of a beam with SOL using the developed FEM
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Figure (28) - Response of a beam with SOL using ANSYS
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Figure (29) - Comparison between the response of a beam with SOL using the different
methods

Note that the discrepancy between ANSYS model and the other two method is due to the
fact that ANSYS considers the VEM to have bending moment while the Distributed Transfer
Function and Finite Element Methods do not take into account the bending moment in the

Viscoelastic layer.

6.5 Summary

A comparison between the results obtained from the while Distributed Transfer Function
and Finite Element Methods has been presented for different types of models. The results from
ANSYS conform with those obtained by the developed methods for plain beams. However, due
to the assumption that there is no bending stiffness in viscoelastic layer, the predictions are not

exactly same for beams with SOL treatment.
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CHAPTER 7

Experimental Verification

7.1 Experimental Setup

Several experiments were performed to substantiate the results obtained by the analytical
models. For this purpose, acrylic was chosen as the base material and as stand-off layer whereas
aluminum was used as the constraining layer. Dyad 606 was used as viscoelastic material.
Figures (30) and (31) display the loss factor and the storage modulus of the acrylic as obtained
by the Dynamic, Mechanical, and Thermal Analyzer (DMTA) at different operating temperatures

and excitation frequencies.
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Figure (30) - Temperature-loss factor characteristics for Acrylic
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Figure (31) - Temperature-Storage Modulus characteristics for Acrylic
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The following master curves were produced for acrylic.
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Figure (32) - Master Curves for Acrylic
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For the experiments, a cantilever beam model was subject to excitation at its fixed end was made

and the input from the free end of the beam was fed to a signal analyzer. The resulting plots

were recorded and compared.

—

Beam/PSOL

Amplifier

~

.

Shaker

Figure (33) - Experimental Setup
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c. Test beams

Table (1) lists the considered test specimens along with their main geometrical and

physical parameters.

Table (1) - The main geometrical and physical parameters of the tested PSOL treatments

MODEL 1 2 3 4 5 6 7
Beam Acrylic | Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic
SOL Material - - Acrylic Acrylic Acrylic Acrylic Acrylic
VEM - - DYAD DYAD DYAD DYAD | DYAD
606 606 606 606 606
Constraining - - Al Al Al Al Al
Layer
Beam 5.00 3.00 3.50 3.50 3.50 3.125 3.125
thickness
(mm)
Beam Length | 280 280 280 280 280 125 125
(mm)
Beam Width 25 25 25 25 25 25 25
(mm)
SOL thickness - - 2.0 2.0 2.0 3.125 3.125
(mm)
SOL length - - 125 125 205.5 125 125
(mm)
Slot width - - 0 (solid) 6.26 6.26 2.38 1.6
(mm)
VEM - - 1.15 1.15 1.15 1.15 1.15
thickness
(mm)
Constraining - - 0.64 0.64 0.64 0.64 0.64
layer thickness|
(mm)
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Experimental Model 1

Thick Plain Beam

The main geometrical and physical parameters of the considered 5 mm thick beam are

given in Table 1 and shown in Figure (34).

|
Y

Figure (34) — 5 mm thick plain beam (model 1)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily
represented by:
Elasticity Modulus = 3¢’ [1+ 0.04 i] N/m’
Figure (35) displays a comparison between the theoretical and experimental frequency
response characteristics of the 5 mm thick plain beam. Table (2) lists also a comparison between
the theoretical and experimental modal characteristics of the plain beam. It is evident that there

is a close agreement between theory and experiments.
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Figure (35) — Comparison between the theoretical and experimental frequency response of Smm
thick plain beam

Table (2) - Comparison between the theoretical and experimental modal characteristics of
the Smm thick plain beam

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 16 14 Sl na
2 116 102 .043 .20
3 321 328 .041 .07
4 631 642 .041 .053
5 1046 1056 .040 .047
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Experimental Model 2

Thin Solid Beam
The main geometrical and physical parameters of the considered 3 mm thick beam are

given in Table 1 and shown in Figure (36).

28 cm

Figure (36) — 3 mm thick plain beam (model 2)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily
represented by:

Elasticity Modulus = 3¢’ [1+ 0.04 i] N/m’

Figure (37) displays a comparison between the theoretical and experimental frequency
response characteristics of the 3 mm thick plain beam. Table (3) lists also a comparison between
the theoretical and experimental modal characteristics of the plain beam. It is evident that there

is a close agreement between theory and experiments.
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Figure (37) - Comparison between the theoretical and experimental frequency response of 3mm
thick plain beam

In Figure (37), the effect of including the material loss factor of the acrylic beam on the

accurate prediction of the frequency response of the beam is evident.

Table (3) - Comparison between the theoretical and experimental modal characteristics of
the 3mm thick plain beam

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 11 na .56 na
2 61 56 10 13
3 172 174 10 .20
4 339 342 .08 .09
5 567 575 .09 .09
6 835 857 .09 .09
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Experimental Model 3

Beam with unslotted PSOL

The main geometrical and physical parameters of the considered 3.5 mm thick beam with

2 mm thick SOL are given in Table 1 and shown in Figure (38).

— —
- —

Figure (38) — 3.5 mm thick beam with unslotted SOL (model 3)

. The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily
represented by:
Elasticity Modulus = 3¢’ [1+ 0.04 i] N/m’
Figure (39) displays a comparison between the theoretical and experimental frequency
response characteristics of the 3.5 mm thick beam with unslotted. Table (4) lists also a
comparison between the theoretical and experimental modal characteristics of the plain beam. It

is evident that there is a close agreement between theory and experiments.
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Deflection
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Figure (39) - Response for beam model 3 with unslotted stand-off layer treated in middle

Table (4) - Comparison between the theoretical and experimental modal characteristics of
the 3.5mm thick beam with unslotted SOL

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 20 n/a 45 Na
2 105 120 19 .09
3 315 315 14 .09
4 620 605 13 .08
5 1015 1005 14 A1
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Experimental Model 4

Beam with a slotted PSOL machined in middle

The main geometrical and physical parameters of the considered 3.5 mm thick beam with

2 mm thick SOL are given in Table 1 and shown in Figure (40).

Figure (40) — 3.5 mm thick beam with slotted PSOL (model 4)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily
represented by:
Elasticity Modulus = 3¢’ [1+ 0.04 i] N/m’

Figure (41) displays a comparison between the theoretical and experimental frequency
response characteristics of a beam with slotted PSOL machined at the beam center. Table (5)
lists also a comparison between the theoretical and experimental modal characteristics of the
plain beam. In this case, the theoretical predictions are qualitatively similar to the experimental
results. But, there are quantitative discrepancies between theory and experiments particularly as

far as the amplitude of deflections.
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Figure (41) - Frequency response of a beam with slotted PSOL machined at the center

Table (5) - Comparison between the theoretical and experimental modal characteristics of
the 3.5mm thick beam with slotted SOL near free end

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 17 13 38 52
2 136 125 15 .08
3 365 350 22 .08
4 720 755 18 .06
5 1200 1150 na .06

86




Experimental Model 5

Beam with a slotted PSOL machined at free end

The main geometrical and physical parameters of the considered 3.5 mm thick beam with

2 mm thick SOL are given in Table 1 and shown in Figure (42).

- 20.55 cm

[ 28 cm -

Figure (42) — 3.5 mm thick beam with slotted PSOL machined at free end (model 5)

Figure (43) displays a comparison between the theoretical and experimental frequency
response characteristics of a beam with slotted PSOL machined at the free end. Table (6) lists
also a comparison between the theoretical and experimental modal characteristics of the plain
beam. In this case, the theoretical predictions are in good agreement with the experimental

results.
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Figure (43) - Frequency response of a beam with slotted PSOL machined at free end

Table (6)- Comparison between the theoretical and experimental modal characteristics of a
beam with slotted PSOL machined near free end

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 15 10 .56 Y
2 136 123 A2 14
3 440 450 .084 062
4 1015 1015 .08 .06
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Experimental Model 6

Beam with a 27-slot PSOL

The main geometrical and physical parameters of the considered 3.125 mm thick beam

with 3.125 mm thick SOL that has 27 slots are given in Table (1) and shown in Figure (44).

< 12.5cm >

2.38x3.125mm

Figure (44) — 3.125 mm thick beam with a 40-slot PSOL (model 6)

Figure (45) displays a comparison between the theoretical and experimental frequency
response characteristics of the beam with a 27-slot PSOL. Table (7) lists also a comparison
between the theoretical and experimental modal characteristics of the plain beam. In this case,

the theoretical predictions are in adequate agreement with the experimental results.
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Deflection

Table (7) - Comparison between the theoretical and experimental modal characteristics of a
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Figure (45) — Frequency response of a beam with a 27-slot PSOL

beam with 27-slot PSOL

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 100 50 0.3 0.3
2 700 750 0.08 0.05
3 1800 1750 0.21 0.18
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Experimental Model 7

Beam with a 40-slot PSOL

The main geometrical and physical parameters of the considered 3.125 mm thick beam

with 3.125 mm thick SOL that has 40 slots are given in Table 1 and shown in Figure (46).

< 130 mm >

1.6x3.125mm

Figure (46) — 3.125 mm thick beam with a 40-slot PSOL (model 7)

Figure (47) displays a comparison between the theoretical and experimental frequency
response characteristics of the beam with a 40-slot PSOL. Table (8) lists also a comparison
between the theoretical and experimental modal characteristics of the plain beam. In this case,

the theoretical predictions are in adequate agreement with the experimental results.
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Figure (47) — Frequency response of a beam with a 40-slot PSOL

Table (8)- Comparison between the theoretical and experimental modal characteristics of a
beam with 40-slot PSOL

Mode Frequency (Hz) Damping Ratio
Theory Exp Theory Exp
1 100 50 0.3 0.3
2 700 660 0.08 0.11
3 1800 1660 0.21 0.18

7.2  Summary

The chapter has presented the experimental frequency response of beams with PSOL of
different configurations along with comparisons with the theoretical predictions. It is found that
the experimental results are in close agreement with the predictions of the developed finite

element model.
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Chapter 8

Effect of PSOL Parameters on its Damping

Characteristics

In this chapter, the effect of changing the parameters of the different layers on the
damping characteristics of beams treated with PSOL is presented. For this study, the base beam
is assumed to have a total length = 0.15m, thickness = 2.29mm, and Young’s modulus E=70e9
N/m’.

The effect of varying the design parameters on the damping characteristics is quantified

using the following performance index AUC denoting the area under the curve:

AUC = j w(l)dw (71)
=0
where w(/) = lateral deflection at the free end of the cantilever beam when it is subjected to
sinusoidal excitation at its fixed end. Figure (48) shows a typical frequency response

characteristics of a beam with PSOL and the hatched area defines the performance index AUC

which will be used as a metric for optimizing the performance of the PSOL.
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AUC= j w(l)dw
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Figure (48) - A typical frequency response of a beam with PSOL defining the performance index
AUC

In this chapter, the effect of changing the thickness and the strength of the viscoelastic
material (VEM), stand-off layer (SOL), and constraining layer on the performance index AUC is
investigated in an attempt to find the combination of the design parameters that minimizes the

AUC. Furthermore, the effect of changing the bending and shear strength of the PSOL on the

AUC is also studied for damped and undamped SOL.
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8.1 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is
Undamped

In this regard, the strength of the VEM and SOL are assumed constant and are given by:

SOL (E) = le5 N/m” and VEM (E) = 1e5(1+i) N/m’

Figure (49) shows the iso-contours of the performance index AUC as a function of the
thickness of the VEM and SOL Layers. It is evident that the minimum values of the AUC occur

when the VEM and SOL are of equal thicknesses and lie in the range between 0.4-0.8 mm.

SOI height

2 4 B g 10 12
WEM height « 10

Figure (49) — Iso-contours of the AUC as a function of the thickness of the VEM and SOL
Layers when the SOL layer is undamped
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8.2 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is
Damped
If the strengths of the SOL and VEM layers are assumed to be given by SOL strength =
le5(1+i) N/m? and VEM strength = 1e5(1+)N/m” such that the SOL layer is damped and has a
loss factor =1, then the AUC iso-contours become as shown in Figures (50a) and (50b). It is
evident that the minimum values of the AUC occur as the thickness of both the VEM and SOL is

increased.
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Figure (50) — Iso-contours of the AUC as a function of the thickness of the VEM and SOL
Layers when the SOL layer is damped

8.3 Effect Of Young’s Modulus Of Vem And Sol Layers When Sol Layer Is
Damped

Figures (51a) and (51b) show the AUC iso-contours as affected by the Young’s modulii
of both the VEM and SOL layers when the SOL layer has a loss factor =1. It is evident that the
minimum values of the AUC occur as the Young’s modulus of both the VEM and SOL is

increased.
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Figure (51) - [so-contours of the AUC as a function of the strength of the VEM and SOL Layers

when the SOL layer is damped
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8.4 Effect Of Thickness And Strength Of Constraining Layer

Figure (52) shows the AUC iso-contours as affected by the thickness and strength of the
constraining layer. It is evident that the minimum values of the AUC occur as the thickness of

the constraining layer is increased and the strength is about SOE9N/m”.

Constraining Layer Strength

2 4 6 8 10 12

Constraining Layer Height 10"

Figure (52) - Iso-contours of the AUC as a function of the strength and thickness of the
constraining layer
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8.5 Effect Of Elastic And Shear Modulii Of The Stand-Off Layer When
Loss Factor =1

Figures (53a) and (53b) show the AUC iso-contours as affected by the elastic and shear
modulii of the SOL when it has a loss factor of 1. The figures indicate that the minimum values

of the AUC occur when the elastic modulus of the SOL is much higher than its shear modulus.
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Figure (53) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL

1

Layer when the loss factor
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8.6 Effect Of Thickness And Strength Of The Stand-Off Layer When Loss
Factor =0

Figures (54a) and (54b) show the AUC iso-contours as affected by the elastic and shear
modulii of the SOL when it has a loss factor of 0. The figures indicate that the minimum values

of the AUC occur when the elastic modulus of the SOL is much smaller than its shear modulus.

x 10

109' T

10°}
3
S -2.2
©
o
=
o L p)
= 10"}
3
LLl
10°}

10° 107

Shear Modulus

(a) — color contours

102



30

28

26

Log10( Shear Modulus)

14

12

10

Log10(Shear Modulus)

(b) — line contours

Figure (54) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL
Layer when the loss factor =0

8.7 Summary

This chapter has presented a parametric study of the effect of changing the design
parameters of the different layers of the PSOL on its damping characteristics. The results
obtained suggest that a strong SOL layer with high damping gives the best results but for
undamped SOL it is essential that the elastic modulus of the SOL be much smaller than its shear
modulus. Furthermore, increasing the strength and thickness of the constraining layer is also

effective up to a certain point but further increase would adversely affect damping performance.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

This dissertation has presented briefly the concept of passive stand-off layer (PSOL)
damping treatments as a simple and effective means for enhancing the damping characteristics of
constrained layer damping. In this dissertation, a review of the literature is presented in an

attempt to justify the need and emphasize the importance of the present study.

A formulation of the equations of motion of the passive stand off layer treated cantilever
beam subjected to dynamic loading at the fixed end is presented. The obtained equations of
motion consist of 4" order differential equation in the lateral deflection of beam and two 2™

order differential equation in the axial deflections of the base beam and constraining layer.

A transfer function model of the PSOL treated beam treatment has been developed. The
equations of motion have been modified to facilitate the formulation of a finite element model

which constitutes the major contribution of this dissertation. Hermite interpolation functions
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have been used to describe the lateral deflection and Lagrangian interpolation functions have

been used to define the axial deflections of the base beam and constraining layer.

MATLAB programs for the distributed transfer function method and finite element
method have been developed. The finite element program has been further modified to
incorporate the slots in stand off layer (by varying the properties) along the length of the beam.
However, slots in the viscoelastic and constraining layers can also be included. The full code of

the programs is given in the appendix.

A comprehensive experimental evaluation of the performance of the PSOL has been
conducted to investigate the effect of various configurations of the SOL on its damping
characteristics. Furthermore, the obtained experimental results have been used to validate the

predictions of the developed finite element model.

. The results obtained suggest that the predictions of the developed finite element model
are in close agreement with the experimental results as well as with the predictions of an ANSYS
model of the PSOL.

The results indicate also that a strong SOL layer with high damping gives the best results
but for undamped SOL it is essential that the elastic modulus of the SOL be much smaller than
its shear modulus. Furthermore, increasing the strength and thickness of the constraining layer is
also effective up to a certain point but further increase would adversely affect damping

performance.
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9.2 Recommendations

Although this study has focused on the development of PSOL for one-dimensional
cantilever beams, it is essential to note that the presented concepts can be equally extended to
multiple dimensions for using plate and shell elements as shown in Figures (55) and (56)

respectively.

viscoelastict+constraining layers

stand off layer

base plate

Figure (55) - Passive constrained layer plate with stand-off layer patches
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Slotted stand off
layer

base cylindrical shell

viscoelastic layer

constraining layers

Figure (56) - Cylindrical Shell with Slotted Stand-off layer

107



Furthermore, in this dissertation it was assumed that all layers experience the same lateral
deflection. Accordingly, a natural extension to this work would be to take into account variable

lateral deflection across the layers PSOL as shown in Figure (57).

Furthermore, a finite element model can be developed along the same lines as outlined in
this thesis to incorporate thickness variation of the layers and can also count for variations in

geometry of layers in axial direction.

Variation in layer
thickness across the
beam leneth

Figure (57) - Passive stand-off layer treated beam with lateral strain in the layers

Another natural extension of the present work would be to develop finite element models

that can be easily used to incorporate slots in viscoelastic and constraining layers by simply
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varying the material properties of the element as shown in Figure (58). Even the base beam can
be made to vary along its length as long as singularities in the overall stiffness matrix are
avoided. To avoid singularities, none of the material properties in the first and last elements
should be zero, i.e., the slots should not be at the ends of the beam. This geometry of the slots in
constraining, viscoelastic and stand-off layers can then be varied stepwise and the model
analyzed until the optimum performance is achieved. This would provide a method of finding

the optimal shape and geometry of slots for best damping performance.

Element 1

Element 2
Element 3
Element 4
Element 5
Element 6
Element 7
Element 8
Element 9
Element 10
Element 11
Element 12

Figure (58) - Variation of geometry of layers along the length of the beam
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Appendix

Computer Program Codes

A.1. Distributed Transfer Function Method

s,

=1;
z=0;

1=.15;

b=.01175;

hs=.264%*1¢-3;

hc=.203*1e-3;

hv=.127*1e-3;

hb=2.29*1e-3;

Gv=le5*(1+1);

Gs=le5*(1+),

pb=2850*b*hb;

pc=2850*b*hc;

pv=1100*b*hv;

ps=1100*b*hs;

Eb=72¢9;

Ec=72¢9;

Es=Gs*2.9;

Ev=Gv*2.9;

EAbs=Eb*(hb*b)+Es*(hs*b);
Elbs=Eb*(b*hb"3/12)+Es*(b*hs"3/12+b*hs*(hs/2+hb/2)"2);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;

Elc=Ec*(b*hc"3/12);

p=pstpctpv+pb;

Dt=Elbs+ElIc;

alpha=hv+hs+(hb+hc)/2;
E=b*alpha"2*Gv*Gs*1"2/(Dt*(Gv*hs+Gs*hv));
cl=pc/p;

c2=(pb+tps)/p;

B=l/alpha;

al=EQbs*1/Dt;

a2=EAc*1*1/Dt;

a3=EAbs*1*1/Dt;

for sr = 1:5:5000

s=sr*i*(p*1°4/Dt)N.5*pi*2;
F=[  0,1,0,0,0,0,0,0;
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0,0,1,0,0,0,0,0;

0,0,0,1,0,0,0,0;

-s"2*k,0,(E-B*E*al/a3)*k,0,0,(E*B-E*B"2*al/a3)*k,0,(c2*s"2*al/a3...

+B*2*E*al/a3-B*E)*k;

0,0,0,0,0,1,0,0;

0,E*B/a2,0,0,(c1*s"2+E*B"2)/a2,0,-E*B"2/a2,0;

0,0,0,0,0,0,0,1;

0,-B*E/a3,0,al/a3,-E*B"2/a3,0,(c2*s"2+E*B"2)/a3,0];
M=[ 1,0,0,0,0,0,0,0;

0,1,0,0,0,0,0,0;

0,0,0,0,0,1,0,0;

0,0,0,0,0,0,0,1;

0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0];

N=[ 0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0;
0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1;
0,E*(1-B*al/a3),0,-1/k,E*(B-B"2*al/a3),0,-E*(B-B"2*al/a3),0];

Gamma=[P 0000000 ];
efs=expm(F);

H=efs*(M+N*efs)"-1;
HO=eye(8)/(M+N*efs)*-1;

eta=H*Gamma,;

eta0=HO0*Gamma;

z=z+1;

splot(z)=sr;
w(z)=abs(real(eta(1))/real(eta0(1)));
end

Plotting
semilogy(splot,w)
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A.2. Finite Element Method for PSOL beam

nem=11;

1=.15;

b=.01175;

hs=.264%*1¢-3;

hc=.203*1e-3;

hv=.127*1e-3;

hb=2.29*1e-3;
Gv=le5*(1+1);
Gs=le5*(1+1);
pb=2850*b*hb;
pc=2850*b*hc;
pv=1100*b*hv;
ps=1100*b*hs;

Eb=72¢9;

Ec=72¢9;

Es=Gs*2.9;

Ev=Gv*2.9;
EAbs=Eb*(hb*b)+Es*(hs*b);
Elbs=Eb*(b*hb"3/12)+Es*(b*hs"3/12+b*hs*(hs/2+hb/2)"2);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;
Elc=Ec*(b*hc"3/12);
p=pstpctpv+pb;
Dt=Elbs+ElIc;
alpha=hv+hs+(hb+hc)/2;
E=b*alpha"2*Gv*Gs*1"2/(Dt*(Gv*hs+Gs*hv));
cl=pc/p;

c2=(pb+tps)/p;

B=l/alpha;

al=EQbs*1/Dt;
a2=EAc*1*1/Dt;
a3=EAbs*1*1/Dt;

splot=0;

syms X

h=1/nem;
v1=1-3*(x/h)"2+2*(x/h)"3;

v2=-x*(1-x/h)"2;
v3=3*(x/h)"2-2*(x/h)"3;
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v4=-x*(x"2/h"2-x/h);
th1=1-x/h;
th2=x/h;

for sr=1:100:5000
s=sr*i*(p*1"4/Dt)N.5*pi*2;

k1=(1-a1"2/a3);

k2=(al/a3*B*E-E);
k3=B"2*E*al/a3-B*E;
k4=B*E-c2*s"2*al/a3-B"2*E*al/a3;
k8=-B*E;

k5=c1*s"2+B"2*E;

k6=-B"2*E;

k7=c2*s"2+B"2*E;

K11=k1*diff(v1,2)*diff(v1,2)+k2*diff(v1,1)*diff(v1,1)+s 2*vI*v1;
K21=k1*diff(v1,2)*diff(v2,2)+k2*diff(v1,1)*diff(v2,1)+s 2*v1 #v2;
K31=k1*diff(v1,2)*diff(v3,2)+k2*diff(v1,1)*diff(v3,1)+s 2*v1 *v3;
K41=k1*diff(v1,2)*diff(v4,2)+k2*diff(v1,1)*diff(v4, | )+s 2*v1 *v4;

K12=k1*diff(v2,2)*diff(v1,2)+k2*diff(v2, 1 *diff(v1,1)+s 2*v2*v1;
K22=k1*diff(v2,2)*diff(v2,2)+k2*diff(v2, 1 *diff(v2,1)+s 2*v2*v2;
K32=k1*diff(v2,2)*diff(v3,2)+k2*diff(v2, 1 ) *diff(v3,1)+s 2*v2*v3;
K42=k1*diff(v2,2)*diff(v4,2)+k2*diff(v2, 1 *diff(v4, | )+s 2*v2*v4;

K13=k1*diff(v3,2)*diff(v1,2)+k2*diff(v3,1)*diff(v1,1)+s 2*v3*v1;
K23=k1*diff(v3,2)*diff(v2,2)+k2*diff(v3,1)*diff(v2,1)+s 2*v3*v2;
K33=k1*diff(v3,2)*diff(v3,2)+k2*diff(v3,1)*diff(v3,1)+s 2*v3*v3;
K43=k1*diff(v3,2)*diff(v4,2)+k2*diff(v3,1)*diff(v4, 1 )+s 2*v3*v4;

K14=k1*diff(v4,2)*diff(v1,2)+k2*diff(v4, 1 *diff(v1,1)+s 2*va*v1;
K24=k1*diff(v4,2)*diff(v2,2)+k2*diff(v4, 1 *diff(v2, 1 )+s 2*va*v2;
K34=k1*diff(v4,2)*diff(v3,2)+k2*diff(v4, 1 *diff(v3,1)+s 2*va*v3;
K44=k1*diff(v4,2)*diff(v4,2)+k2*diff(v4, 1 *diff(v4, | )+s 2*va*v4;

K15=k3*diff(th1,1)*v1;
K25=k3*diff(th1,1)*v2;
K35=k3*diff(th1,1)*v3;
K45=k3*diff(th1,1)*v4;

K16=k3*diff(th2,1)*v1;

K26=k3*diff(th2,1)*v2;
K36=k3*diff(th2,1)*v3;
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K46=k3*diff(th2,1)*v4;

K17=k4*diff(th1,1)*v1;
K27=k4*diff(th1,1)*v2;
K37=k4*diff(th1,1)*v3;
K47=k4*diff(th1,1)*v4;

K18=k4*diff(th2,1)*v1;
K28=k4*diff(th2,1)*v2;
K38=k4*diff(th2,1)*v3;
K48=k4*diff(th2,1)*v4;

K51=-k8*diff(v1,1)*th1;
K61=-k8*diff(v1,1)*th2;

K52=-k8*diff(v2,1)*th1;
K62=-k8*diff(v2,1)*th2;

K53=-k8*diff(v3,1)*th1;
K63=-k8*diff(v3,1)*th2;

K54=-k8*diff(v4,1)*th1;
K64=-k8*diff(v4,1)*th2;

K55=a2*diff(th1,1)*diff(th1,1)}+k5*th1*thl;
K65=a2*diff(th1,1)*diff(th2, 1 +k5*th1*th2;

KS56=a2*diff(th2,1)*diff(th1,1)}+k5*th2*th1;
K66=a2*diff(th2,1)*diff(th2, 1 +k5*th2*th2;

K57=k6*th1*th1;
K67=k6*th1*th2;

K58=k6*th2*th1;
K68=k6*th2*th2;

K71=(al*diff(v1,3)+k8*diff(v1,1))*th1;
K81=(al*diff(v1,3)+k8*diff(v1,1))*th2;

K72=(al*diff(v2,3)+k8*diff(v2,1))*th1;
K82=(al*diff(v2,3)+k8*diff(v2,1))*th2;

K73=(al*diff(v3,3)+k8*diff(v3,1))*thl;
K83=(al*diff(v3,3)+k8*diff(v3,1))*th2;
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K74=(al*diff(v4,3)+k8*diff(v4,1))*th1;
K84=(al*diff(v4,3)+k8*diff(v4,1))*th2;

K75=k6*th1*th1;
K85=k6*th1*th2;

K76=k6*th2*th1;
K86=k6*th2*th2;

K77=a3*diff(th1,1)*diff(th1,1)+k7*th1*th1;
K87=a3*diff(th1,1)*diff(th2, 1 }+k7*th1*th2;

K78=a3*diff(th2,1)*diff(th1,1)+k7*th2*th1;
K88=a3*diff(th2,1)*diff(th2, 1 +k7*th2*th2;

KK =[ K11, K12, K15, K17, K13, K14, K16, K18;
K21, K22, K25, K27, K23, K24, K26, K28;
K51, K52, K55, K57, K53, K54, K56, K58;
K71, K72, K75, K77, K73, K74, K76, K78;
K31, K32, K35, K37, K33, K34, K36, K38;
K41, K42, K45, K47, K43, K44, K46, K48;
K61, K62, K65, K67, K63, K64, K66, K68;
K81, K82, K85, K87, K83, K84, K86, K&8];

K=int(KK,x,0,h);
K=double(K);

KO=zeros((nem+1)*4);

for n=1:nem
KO(n*4-3:n*4+4 n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+K;
end
KK=zeros(nem*4-+1);
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);
KK(1,1)=KO(3,3);
KK(1,2:5)=K0(3,5:8);
KK(2:5,1)=K0O(5:8,3);

KK((nem-1)*4+2 (nem*4))=KK((nem-1)*4+2,(nem*4))+k3;
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4;

F=[-KO(1,3);-K0O(1,5);-KO(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)];

X=KKA-1*F;

115



splot=splot+1;
w(splot)=abs(real(X(nem*4-2)));
ww(splot)=sr;

end

semilogy(ww,w)

A.3. Finite Element Method for slotted PSOL beam

%nem=input('nem")
nem=11;

1=.15;

b=.01175;

hs=.264%*1¢-3;

hc=.203*1e-3;

hv=.127*1e-3;

hb=2.29*1e-3;

Gv=le5*(1+1);

Gs=le5*(1+1);

CCGs=0;

pb=2850*b*hb;

pc=2850*b*hc;

pv=1100*b*hv;

ps=1100*b*hs;

Eb=72¢9;

Ec=72¢9;

Es=Gs*2.9;

CCEs=0

Ev=Gv*2.9;

EAbs=Eb*(hb*b)+Es*(hs*b);
CCEADbs=Eb*(hb*b);
Elbs=Eb*(b*hb"3/12)+Es*(b*hs"3/12+b*hs*(hs/2+hb/2)"2);
CCEIbs=Eb*(b*hb"3/12);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
CCEQbs=0

EAc=Ec*b*hc;

Elc=Ec*(b*hc"3/12);

p=pstpctpv+pb;

Dt=Elbs+ElIc;

CCDt=CCElIbs+EIc;
alpha=hv-+hs+(hb+hc)/2;
E=b*alpha"2*Gv*Gs*1"2/(Dt*(Gv*hs+Gs*hv));
CCE=b*alpha"2*Gv*CCGs*1"2/(CCDt*(Gv*hs+CCGs*hv));
cl=pc/p;
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c2=(pb+tps)/p;

B=l/alpha;

al=EQbs*1/Dt;

CCal=0

a2=EAc*1*1/Dt;
CCa2=EAc*1*1/CCDt;
a3=EAbs*1*1/Dt;
CCa3=CCEAbs*1*I/CCDt;

splot=0

syms X

h=1/nem;
v1=1-3*(x/h)"2+2*(x/h)"3;
v2=-x*(1-x/h)"2;
v3=3*(x/h)"2-2*(x/h)"3;
v4=-x*(x"2/h"2-x/h);
th1=1-x/h;

th2=x/h;
Y%ow=w1*vI+w2*v2+w3*v3+w4*v4;
%uc=ucl*thl+uc2*th2;
%ub=ub1*th1+ub2*th2;

%sr=1
for sr=1:10:5000
s=sr*i*(p*1°4/Dt)N.5*pi*2;

k1=(1-al”2/a3);

cckl=1;
k2=(al/a3*B*E-E);
cck2=-CCE;
k3=B"2*E*al/a3-B*E;
cck3=-B*CCE;
k4=B*E-c2*s"2*al/a3-B"2*E*al/a3;
cck4=B*CCE;

k8=-B*E;
cck8=-B*CCE;
k5=c1*s"2+B"2*E;
cck5=c1*s"2+B"2*CCE;
k6=-B"2*E;
cck6=-B"2*CCE;
k7=c2*s"2+B"2*E;
cck7=c2*s"2+B"2*CCE;

K11=k1*diff(v1,2)*diff(v1,2)+k2*diff(v1,1)*diff(v1,1)+s 2*v1*v1;
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K21=k1*diff(v1,2)*diff(v2,2)+k2*diff(v1,1)*diff(v2, 1 )+s 2*v1 *v2;
K31=k1*diff(v1,2)*diff(v3,2)+k2*diff(v1,1)*diff(v3, 1 +s 2*v1*v3;
K41=k1*diff(v1,2)*diff(v4,2)+k2*diff(v1,1)*diff(v4, | )+s 2*v1 *v4;

K12=k1*diff(v2,2)*diff(v1,2)+k2*diff(v2, 1 *diff(v1,1)+s 2*v2*v1;
K22=k1*diff(v2,2)*diff(v2,2)+k2*diff(v2, 1 ) *diff(v2, 1 )+s 2*v2*v2;
K32=k1*diff(v2,2)*diff(v3,2)+k2*diff(v2, 1 ) *diff(v3,1)+s 2*v2*v3;
K42=k1*diff(v2,2)*diff(v4,2)+k2*diff(v2, 1 *diff(v4, 1 )+s 2*v2*v4;

K13=k1*diff(v3,2)*diff(v1,2)+k2*diff(v3,1)*diff(v1,1)+s 2*v3*v1;
K23=k1*diff(v3,2)*diff(v2,2)+k2*diff(v3,1)*diff(v2,1)+s 2*v3*v2;
K33=k1*diff(v3,2)*diff(v3,2)+k2*diff(v3,1)*diff(v3,1)+s 2*v3*v3;
K43=k1*diff(v3,2)*diff(v4,2)+k2*diff(v3,1)*diff(v4, 1 )+s 2*v3*v4;

K14=k1*diff(v4,2)*diff(v1,2)+k2*diff(v4, 1 *diff(v1,1)+s 2*va*v1;
K24=k1*diff(v4,2)*diff(v2,2)+k2*diff(v4, 1 *diff(v2, 1 )+s 2*va*v2;
K34=k1*diff(v4,2)*diff(v3,2)+k2*diff(v4, 1 *diff(v3,1)+s 2*va*v3;
K44=k1*diff(v4,2)*diff(v4,2)+k2*diff(v4, 1 *diff(v4, | )+s 2*va*v4;

K15=k3*diff(th1,1)*v1;
K25=k3*diff(th1,1)*v2;
K35=k3*diff(th1,1)*v3;
K45=k3*diff(th1,1)*v4;

K16=k3*diff(th2,1)*v1;
K26=k3*diff(th2,1)*v2;
K36=k3*diff(th2,1)*v3;
K46=k3*diff(th2,1)*v4;

K17=k4*diff(th1,1)*v1;
K27=k4*diff(th1,1)*v2;
K37=k4*diff(th1,1)*v3;
K47=k4*diff(th1,1)*v4;

K18=k4*diff(th2,1)*v1;
K28=k4*diff(th2,1)*v2;
K38=k4*diff(th2,1)*v3;
K48=k4*diff(th2,1)*v4;

K51=-k8*diff(v1,1)*th1;
K61=-k8*diff(v1,1)*th2;

K52=-k8*diff(v2,1)*th1;
K62=-k8*diff(v2,1)*th2;
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K53=-k8*diff(v3,1)*th1;
K63=-k8*diff(v3,1)*th2;

K54=-k8*diff(v4,1)*th1;
K64=-k8*diff(v4,1)*th2;

K55=a2*diff(th1,1)*diff(th1,1)}+k5*th1 *thl;
K65=a2*diff(th1,1)*diff(th2, 1 +k5*th1*th2;

KS56=a2*diff(th2,1)*diff(th1,1)}+k5*th2*th1;
K66=a2*diff(th2,1)*diff(th2, 1 +k5*th2*th2;

K57=k6*th1*th1;
K67=k6*th1*th2;

K58=k6*th2*th1;
K68=k6*th2*th2;

K71=(al*diff(v1,3)+k8*diff(v1,1))*th1;
K81=(al*diff(v1,3)+k8*diff(v1,1))*th2;

K72=(al*diff(v2,3)+k8*diff(v2,1))*th1;
K82=(al*diff(v2,3)+k8*diff(v2,1))*th2;

K73=(al*diff(v3,3)+k8*diff(v3,1))*th1;
K83=(al*diff(v3,3)+k8*diff(v3,1))*th2;

K74=(al*diff(v4,3)+k8*diff(v4,1))*th1;
K84=(al*diff(v4,3)+k8*diff(v4,1))*th2;

K75=k6*th1*th1;
K85=k6*th1*th2;

K76=k6*th2*th1;
K86=k6*th2*th2;

K77=a3*diff(th1,1)*diff(th1,1)}+k7*th1*th1;
K87=a3*diff(th1,1)*diff(th2, 1 }+k7*th1*th2;

K78=a3*diff(th2,1)*diff(th1,1)+k7*th2*th1;
K88=a3*diff(th2,1)*diff(th2, 1 +k7*th2*th2;

cK1l=cckl*diff(v1,2)*diff(v1,2)+cck2*diff(v1,1)*diff(vl,1)+s"2*v1*vl;

cK21=cck1*diff(v1,2)*diff(v2,2)+cck2*diff(v1,1)*diff(v2, 1)+ 2*v1*v2;
K3 1=cck1*diff(v1,2)*diff(v3,2)+cck2*diff(v1,1)*diff(v3,1)+s 2*vI*v3;
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cK41=cckl*diff(v1,2)*diff(v4,2)+cck2*diff(v1,1)*diff(v4,1)+s"2*v1*v4;

cK 12=cck 1 *diff(v2,2)*diff(v1,2)+cck2*diff(v2, 1) *diff(v1,1)+s*2*v2*v1;
cK22=cck 1 *diff(v2,2)*diff(v2,2)+cck2*diff(v2, 1) *diff(v2, 1)+ 2*v2*v2;
cK32=cck 1 *diff(v2,2)*diff(v3,2)+cck2*diff(v2, 1) *diff(v3,1)+s 2*v2*v3;
cK42=cck 1 *diff(v2,2)*diff(v4,2)+cck2*diff(v2, 1) *diff(vd, 1+ 2*v2*vd;

cK13=cck 1 *diff(v3,2)*diff(v1,2)+cck2*diff(v3,1)*diff(v1,1)+s*2*v3*v1;
cK23=cck 1 *diff(v3,2)*diff(v2,2)+cck2*diff(v3,1)*diff(v2, 1)+ 2*v3*v2;
cK33=cck 1 *diff(v3,2)*diff(v3,2)+cck2*diff(v3,1)*diff(v3,1)+s 2*v3*v3;
cK43=cck 1 *diff(v3,2)*diff(v4,2)+cck2*diff(v3,1)*diff(vd, |+ 2*v3*vd;

cK 14=cck 1 *diff(v4,2)*diff(v1,2)+cck2*diff(v4, 1) *diff(v1,1)+s 2*v4*v1;
cK24=cck 1 *diff(v4,2)*diff(v2,2)+cck2*diff(v4, 1) *diff(v2, 1)+s 2*vA*v2;
cK34=cck 1 *diff(v4,2)*diff(v3,2)+cck2*diff(v4, 1) *diff(v3,1)+s 2*v4*v3;
cKdd=cck 1 *diff(v4,2)*diff(v4,2)+cck2*diff(v4, 1) *diff(vd, | +s 2*vA*vd;

cK15=cck3*diff(th1,1)*v1;
cK25=cck3*diff(th1,1)*v2;
cK35=cck3*diff(th1,1)*v3;
cK45=cck3*diff(th1,1)*v4;

cK16=cck3*diff(th2,1)*v1;
cK26=cck3*diff(th2,1)*v2;
cK36=cck3*diff(th2,1)*v3;
cK46=cck3*diff(th2,1)*v4;

cK17=cckd*diff(th1,1)*v1;
cK27=cckd*diff(th1,1)*v2;
cK37=cckd*diff(th1,1)*v3;
cK47=ccka*diff(th1,1)*v4;

cK18=cckd*diff(th2,1)*v1;
cK28=ccka*diff(th2,1)*v2;
cK38=cckd*diff(th2,1)*v3;
cK48=cckd*diff(th2,1)*v4;

cK51=-cck8*diff(v1,1)*th1;
cK61=-cck8*diff(v1,1)*th2;

cK52=-cck8*diff(v2,1)*th1;
cK62=-cck8*diff(v2,1)*th2;

cK53=-cck8*diff(v3,1)*th1;
cK63=-cck8*diff(v3,1)*th2;
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cK54=-cck8*diff(v4,1)*th1;
cK64=-cck8*diff(v4,1)*th2;

cK55=CCa2*diff(th1,1)*diff(th1,1)+cck5*th1 *thl;
cK65=CCa2*diff(th1,1)*diff(th2,1)+cck5*th1 *th2;

cK56=CCa2*diff(th2,1)*diff(th1,1)+cck5*th2*thl;
cK66=CCa2*diff(th2,1)*diff(th2,1)+cck5*th2*th2;

cK57=cck6*th1*thl;
cK67=cck6*th1*th2;

cK58=cck6*th2*th1;
cK68=cck6*th2*th2;

cK71=(CCal*diff(v1,3)+cck8*diff(v1,1))*thl;
cK81=(CCal*diff(v1,3)+cck8*diff(v1,1))*th2;

cK72=(CCal*diff(v2,3)+cck8*diff(v2,1))*th1;
cK82=(CCal*diff(v2,3)+cck8*diff(v2,1))*th2;

cK73=(CCal*diff(v3,3)+cck8*diff(v3,1))*thl;
cK83=(CCal*diff(v3,3)+cck8*diff(v3,1))*th2;

cK74=(CCal*diff(v4,3)+cck8*diff(v4,1))*th1;
cK84=(CCal*diff(v4,3)+cck8*diff(v4,1))*th2;

cK75=k6*th1*thl;
cK85=k6*th1*th2;

cK76=k6*th2*th1;
cK86=k6*th2*th2;

cK77=CCa3*diff(th1,1)*diff(th1,1)+cck7*th1 *thl;
cK87=CCa3*diff(th1,1)*diff(th2,1)+cck7*th1 *th2;

cK78=CCa3*diff(th2,1)*diff(th1,1)+cck7*th2*th1;
cK88=CCa3*diff(th2,1)*diff(th2,1)+cck7*th2*th2;

KK =[ K11, K12, K15, K17, K13, K14, K16, K18;
K21, K22, K25, K27, K23, K24, K26, K28;
K51, K52, K55, K57, K53, K54, K56, K58;
K71, K72, K75, K77, K73, K74, K76, K78;
K31, K32, K35, K37, K33, K34, K36, K38;
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K41, K42, K45, K47, K43, K44, K46, K48;
K61, K62, K65, K67, K63, K64, K66, K68;
K81, K82, K85, K87, K83, K84, K86, K88];
K=int(KK,x,0,h);

K=double(K);

cKK =[ cK11, cK12, cK15, cK17, cK13, cK14, cK16, cK18;
cK21, cK22, cK25, cK27, cK23, cK24, cK26, cK28;

cK51, cK52, cK55, cK57, cK53, cK54, cK56, cK58;

cK71, cK72, cK75, cK77, cK73, cK74, cK76, cK78;

cK31, cK32, cK35, cK37, cK33, cK34, cK36, cK38;

cK41, cK42, cK45, cK47, cK43, cK44, cK46, cK48;

cK61, cK62, cK65, cK67, cK63, cK64, cK66, cK68;

cK81, cK82, cK85, cK87, cK83, cK84, cK86, cK88];
cK=int(cKK,x,0,h);

cK=double(cK);

KO=zeros((nem+1)*4);

for n=1:nem
if rem(n,2)==0

KO(n*4-3:n*4+4 n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+cK;
else

KO(n*4-3:n*4+4 n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+K;
end

end

KK=zeros(nem*4-+1);

KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);

KK(1,1)=KO(3,3);

KK(1,2:5)=K0(3,5:8);

KK(2:5,1)=KO0O(5:8,3);

KK((nem-1)*4+2,(nem*4))=KK((nem-1)*4+2,(nem*4))+k3;
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4;

F=[-KO(1,3);-K0O(1,5);-K0O(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)];
X=KKA*-1*F;

splot=splot+1;

w(splot)=abs(real(X(nem*4-2)));

ww(splot)=sr;

end

semilogy(ww,w)
A.4. ANSYS program
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/PREP7
ET,1,PLANEIS83
KEYOPT,1,3,3
KEYOPT,1,6,0
KEYOPT,1,10,0
DOF,DELETE
DOF,UX,UY,ROTZ
R,1,.01175,
MPTEMP,,,.,,..
MPTEMP, 1,0
MPDATA,DENS, 1,,2700
MPTEMP,,,.,,..
MPTEMP, 1,0
MPDATA,EX, 1,,70E9
MPDATA,PRXY,1,,.35
MPTEMP,,.,,..
MPTEMP, 1,0
MPDATA,DENS,2,,1100
MPTEMP,,.,,..
MPTEMP, 1,0
MPDATA,EX,2,,2.9E5
MPDATA,PRXY,2,,.45
MPTEMP,,.,,..
MPTEMP, 1,0
MPDATA,DAMP,2, 1e-5
MPTEMP,,.,,..
MPTEMP, 1,0
MPDATA,DENS,3,,1100
MPTEMP,,.,,..
MPTEMP, 1,0
MPDATA,EX,3,,2.9E8
MPDATA,PRXY,3,,.45
K1,,

K.2..15,,
K.,3,0.15,.00229,,
K.,4,0,0.00229,,
K.,5,0,0.00493,,
K.,6,0.15,0.00493,,
K,7,0.15,0.005057,,
K.8,0,0.005057,,
K.,9,0,0.00526,,
K,10,0.15,0.00526,,
K,10,0.15,0.00526,,
LSTR, 1, 2
LSTR, 2, 3
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LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR,
LSTR, 10,
FLST,2,4,4
FITEM,2,1
FITEM,2,2
FITEM,2,3
FITEM,2,4
AL,P51X
FLST,2,4,4
FITEM,2,3
FITEM,2,5
FITEM,2,6
FITEM,2,7
AL,P51X
FLST,2,4,4
FITEM,2,6
FITEM,2.8
FITEM,2,9
FITEM,2,10
AL,P51X
FLST,2,4,4
FITEM,2,9
FITEM,2,11
FITEM,2,12
FITEM,2,13
AL,P51X
TYPE, 1

MAT, 1
REAL, 1
ESYS, 0
SECNUM,
FLST,2,2,5,0RDE,2
FITEM,2,1
FITEM,2,4
AESIZE,P51X,.001,
MSHAPE,0,2D

- - “

“

- - “

OO\]OOM\’O\M-P-PW
O N Q00 WONWn — N

“

o
[S—
= O
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MSHKEY, 1
FLST,5,2,5,0RDE,2
FITEM,S5,1
FITEM,5,4

CM, Y,AREA
ASEL, , , ,P51X
CM, Y1,AREA
CHKMSH, AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
CMDELE, Y1
CMDELE, Y2
TYPE, 1

MAT, 2
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,0RDE, 1
FITEM,2,2
AESIZE,P51X,0.001,
CM, Y,AREA
ASEL,,,, 2
CM, Y1,AREA
CHKMSH, AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
CMDELE, Y1
CMDELE, Y2
TYPE, 1

MAT, 2
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,0RDE, 1
FITEM,2,3
AESIZE,P51X,0.001,
CM, Y,AREA
ASEL,,,, 3
CM, Y1,AREA
CHKMSH, AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
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CMDELE, Y1
CMDELE, Y2
ACLEAR, 2
TYPE, 1

MAT, 3
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,0RDE, 1
FITEM,2,2
AESIZE,P51X,0.001,
TYPE, 1

MAT, 3
REAL, 1
ESYS, 0
SECNUM,
/ULLMESH,OFF
/PREP7
TYPE, 1

MAT, 3
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,0RDE, 1
FITEM,2,2
AESIZE,P51X,.001,
CM, Y,AREA
ASEL,,,, 2
CM, Y1,AREA
CHKMSH,'AREA'
CMSEL,S, Y
AMESH, Y1
CMDELE, Y
CMDELE, Y1
CMDELE, Y2
/ULLMESH,OFF
FINISH

/SOL

ANTYPE,3
FLST,2,2,3,0RDE,2
FITEM,2,1
FITEM,2,4

/GO
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DK,P51X, ,0, ,0,UX,ROTZ, ,, ,,
FLST,2,1,3,0RDE, 1

FITEM,2,1

/GO

DK,P51X,,1,,0,UY,,,,,,
HARFRQ,0,5000,

NSUBST, 50,

KBC,1

SOLVE

FINISH

/POST26

FINISH

/POST1
INRES,BASIC

FILE, 'file','rst',".’
SET,LAST

FINISH

/POST26

FILE, 'file','rst',".
/ULLCOLL,1
NUMVAR,200
SOLU,191,NCMIT
STORE,MERGE
FILLDATA,191,,,,1,1
REALVAR,191,191
NSOL,3,2,U,Y,UY 3
STORE,MERGE
FINISH

/SOL
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