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One of the techniques used to enhance the damping characteristics of constrained 

damping treatments utilizes a spacer layer, called a “stand-off” layer, which is 

sandwiched between the viscoelastic layer and the base structure.  This “stand-off” layer 

acts as a strain magnifier that magnifies the shear strain in the viscoelastic layer by virtue 

of increasing the distance between the viscoelastic layer and the neutral axis of the base 

structure. The “stand-off” layer must have high shear stiffness and must not significantly 

affect the bending stiffness of the composite structure in order to achieve high damping 

characteristics.   Slotted “stand-off” layers are used to achieve such high shear stiffness 

and low bending stiffness.  In these slotted “stand-off” layer, the geometry of the slots 

play a very important role in determining the effectiveness of the damping treatment.  It is 

therefore the purpose of this dissertation to model the dynamics and damping 

characteristics of Passive Stand-off damping treatments using distributed-parameter 

approach as well as the finite element method.  The predictions of the developed models 



2

are validated against the predictions of commercially available finite element software 

(ANSYS) and against experimental results.  Close agreements are found between the 

predictions of the developed models, ANSYS models, and the experimental results. 

The developed models present accordingly a valuable means for designing 

effective and optimal passive stand-off damping treatments for beams. The models can be 

easily extended to passive stand-off damping treatments for more complex structures such 

as plates and shells. 
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CHAPTER 1 

Introduction 

 

1.1 Passive Damping 

 

Vibration damping is used to control and reduce undesirable vibration so that its harmful and 

unwanted effects are minimized.  The energy dissipating mechanism of vibration control systems 

is known as damping.  For passive damping treatments, viscoelastic materials are used as 

effective means for dissipating energy. Two types of methods are generally employed for the 

control of vibrations.  These methods are namely: passive and active vibration control.  In the 

Passive damping approach, damping layers are added to the structure in order to enhance its 

energy dissipation characteristics [1].  In the Active damping approach energy is dissipated from 

vibrating system through the use of external systems, such as control actuator, etc.  Active 

vibration control systems are more expensive and less reliable than the passive damping systems. 

 

Hence, the emphasis is placed in this dissertation on the intelligent use of viscoelastic damping 

treatments bonded to the base structure.  Figure (1) shows the simplest approach of using 

viscoelastic treatments in their unconstrained form. 
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Base Structure 
 

Viscoelastic Layer 

Base Structure 
Figure (1) - Unconstrained viscoelastic damping 

 

The viscoelastic material dissipates energy of the base structure when it is subject to acceleration, 

velocity or deflections.   The viscoelastic material affects both the damping and stiffness of the 

system in a complex fashion as its properties vary with frequency and the operating temperature.  

The dissipation of energy is both due to direct strain and shear strain of the damping layer.  In the 

case of plate and beam bending, the direct strain varies linearly as the distance from the neutral 

axis of the base beam/plate as shown in Figure (2).  The greatest direct strain occurs at the 

farthest surfaces from the neutral surface.  Therefore damping treatments are attached to those 

surfaces of the base structure that are as far as possible from the neutral axis.  The bending stress 

and therefore the direct strain at the neutral axis of the viscoelastic treated beam are zero and are 

very small around the neutral axis [1].   
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Bending Stress    Shear Stress  
 

Figure (2) - Stress profile of a beam cross-section subjected to axial load 

 

When the viscoelastic layer is attached alone to the outer surface of the beam, it is called 

unconstrained layer damping. Generally the properties of the viscoelastic materials are such 

that they tend to dissipate more energy when subjected to shear strain and direct strain.   The 

transverse shear strain in a vibrating beam is greatest at the neutral axis and zero at the edges.  

Therefore, a viscoelastic layer bonded to the surface of the beam experiences negligible shear 

stress.  Hence, the beam damping characteristics remain largely unchanged.  To increase the 

shear strain in the viscoelastic material, the viscoelastic layer is sandwiched between two layers, 

the beam and the constraining layer plate.  Thus both high direct and shear strains are thought to 

be produced in the viscoelastic layer, resulting in increased energy dissipation.  This type of 

damping is called constrained layer damping as shown in Figures (3) and (4).   
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Figure (3) - Constrained Layer Damping 

Both constrained and unconstrained layer damping treatments have advantages and 

disadvantages.  Constrained layer damping treatment results in greater energy dissipation and can 

rely in its operation on low stiffness viscoelastic material.  

 

Figure (4) - Shear in Viscoelastic Layer due to Constraining Layer 

Unconstrained layer damping treatment produces less energy dissipation and requires high 

stiffness viscoelastic material but it can be used for extensional damping and can be easily 

shear angle

viscoelastic layer constraining layer 

base beam 
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High shear strain Viscoelastic Layer

applied to the surface of the base structure.  It can be added to the surface in the form of tiles or 

sheets or can even be sprayed on the surface for some applications. 

One of the techniques used to increase the distance between the viscoelastic layer and the neutral 

axis of the base structure is the introduction of a spacer layer between the viscoelastic layer and 

the base structure as shown in Figure (5). Such an increase increases the strain and therefore the 

damping. This spacer layer is called "stand –off" layer and acts as a strain magnifier [2].    

 

(a) – undeformed 
 

(b) - deformed 
 

Figure (5) - PSOL Damping 
 

This arrangement is called the Passive Stand-Off Layer (PSOL) Damping. In the PSOL, the 

Constraining layerViscoelastic layer 

Stand-off layer 

Base Structure 
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spacer layer must have high shear stiffness and at the same time must not significantly affect the 

bending stiffness of the composite beam.  If the stand-off layer has high bending stiffness it will 

have no other effect than increasing the flexural rigidity of the constrained layer beam and thus 

will negatively affect the damping performance of the constrained layer treatment as shown in 

Figure (6).   

 

Figure (6) - Increased elastic strength due to high stiffness Stand-off layer 
 

If the stiffness of the stand-off layer is weak then the strain will be absorbed in the weak layer 

and the viscoelastic layer will not experience enough strain to induce significant damping as 

illustrated in Figure (7). 

 

Figure (7) - Reduced shear in viscoelastic layer due to low stiffness stand-off layer 

Low shear Strain 
in visceoasltcic layer 

High shear Strain 
in SOL layer 
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Slotted SOL 

Base Beam 

Viscoelastic Layer Constraining Layer 

 

One method of avoiding this increase in flexural strength of the treated beam is to use 

slotted stand-off layer of very high shear strength compared to the viscoelastic material as 

shown in Figure (8).  

 

Figure (8) - Slotted PSOL Damping 

 

In the slotted stand-off layer treatment, the geometry of the slots should be such that the stand-off 

layer does not significantly contributed to the flexural rigidity of the base structure but also has 

enough shear strength such that it does not absorb shear deformation that is desired to be passed 

on to the viscoelastic layer (i.e., it should pass on the shear stress to the viscoelastic layer).  
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1.2 Literature Review 

The stand-off layer concept was first introduced by Whittier [2], who suggested that a 

spacer layer be introduced between the viscoelastic layer and the vibrating structure.  The spacer 

layer moves the viscoelastic layer away from the neutral axis of the base structure.  The shear 

strain is magnified by this displacement of the viscoelastic layer away from the neutral axis 

where the strain is a minimum.  Most of the studies on passive stand-off layer damping assume 

ideal conditions of the stand-off layer, i.e. the stand-off layer is assumed to have infinite shear 

stiffness. Therefore, the SOL does not exhibit shear strain and permits the shear stress to be 

passed to the viscoelastic layer. Furthermore, the SOL is assumed to have zero bending stiffness 

and accordingly it does not contribute to the flexural rigidity of the beam.  Some of theses studies 

include theoretical and experimental work by Roger and Parin [3], Falugi [4], Falugi et al. [5], 

and Parin et al. [6] on slotted stand-off layer damping partially applied to airplane wings and 

plates.  Garrison et al. [7] presented an analytical model of a beam treated passive stand-off layer 

damping.  Tao et al. [8] confirmed with experimental and finite element analysis the 

effectiveness of slotted stand-off layer with the above mentioned assumptions 

 

The first attempt to include shear strain of the stand-off layer was done by Mead [1] which 

considers shear stiffness and internal loss in the stand-off layer but his model did not include the 

affect of the stand-off layer on the bending characteristics and strength of the composite beam.   

 

Yellin, et al. [9] developed an analytical model for the passive stand-off layer damping treatment 
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using the distributed transfer function method.  They treated the base beam and stand-off layer as 

a composite beam and the stand-off layer is assumed to be modeled as a Euler-Bernoulli beam.  

However, their model can not handle slotted stand-off layers.   

 

This thesis attempts to develop a finite element model in order to extend the applicability 

of the model developed by Yellin, et al. [9] to include the geometry of the slots. The developed 

finite element model accounts for finite bending stiffness and shear strength and allows for 

variability in the properties of stand-off layer across the length of layer. 

 

1.3 Thesis Oultine 

This thesis attempts to analytically model the dynamics and damping characteristics of passive 

stand-off layer treatment using the Distributed Transfer Function Method developed by Yang and 

Tan [10].  Furthermore, a finite element model of the stand-off layer constrained damping 

treatment will also be developed.  The finite element model of the PSOL damping treatment is 

altered to include slots in the stand-off layer.  The model enables investigation of the effect of the 

geometry of the slots, the thickness of the viscoelastic layer, stand-off layer and the constraining. 

The predictions of the finite element model are checked and compared by modeling of the 

passive stand-off layer damping treatment on the commercial finite element software ANSYS.  

Shape and geometry of the slotted stand-off layer for the optimal damping treatment are 

determined.  Finally the prototypes of slotted stand-off layer treatment are manufactured and 

tested experimentally. The experimental results are compared with the theoretical predictions.   
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Therefore, the thesis is organized in eight chapters.  In chapter 1, a brief introduction is 

presented.  Chapter 2 presents the equations of motion of PSOL and in Chapter 3, the 

performance is obtained using the distributed transfer function method.  In chapter 4, the finite 

element model (FEM) of the PSOL is developed and Chapter 5 presents the computer 

implementation of the FEM.  Chapter 6 presents comparisons between the predictions of the 

FEM and the predictions obtained by commercial finite element software (ANSYS).  Chapter 7 

presents comparisons with experimental results and Chapter 8 presents the effect of the 

parameters of the SOL on its performance characteristics.  Chapter 9 summarizes the conclusions 

and recommendations for future work. 

 

1.4 Summary  

This chapter has presented briefly the concept of passive stand-off layer (PSOL) damping 

treatments as a simple and effective means for enhancing the damping charactersitics of 

constrained layer damping.  The outline of the thesis dissertation is presented and a brief review 

of the literature is summarized in an attampt to justify the need and emphasize the importance of 

the present study. 
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CHAPTER 2 

Derivation of Equations of Motion 

2.1 Assumptions 

 

The following is breif summary of the basic assumptions considered in the analysis of passive 

stand-off layers.  

• Small displacement amplitudes 

• Lateral deflection for all layers remains the same. 

• No shear deformation in the base beam and the constraining layer. 

• The viscoelastic layer is assumed to have no bending stiffness and therefore deforms 

only in pure shear. 

• System has steady state response to the external harmonic excitation.  Therefore  

Complex modulus can be used for viscoelastic and standoff layers 

• Standoff layer is continuous and solid in the initial model. 

• Stand Off layer and base beam layer are modeled as asymmetric composites so that 

planes remain planes under combined bending and axial loads. 

• Stand off layer has finite shear stiffness, hence Shear deformation occurs in stand off 

layer when shear loads are present. 

• Bending and shear stiffness of stand Off layer is less than that of the base beam and 
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constraining layer.  

This assumption is made to simplify the model by assuming that all shear deformations occur in 

two core layers.  

 
2.2 Kinematic Equations 

SHEAR ANGLE FOR STAND OFF LAYER & VISCOELASTIC LAYER.

The shear deformation in the two layers is due to the  

• Difference in axial deformation of the base beam and the constraining layer 

• Lateral deflection of the beam 

The deformation for the two cases are calculated separately and  then add to determine the total 

deflection. 

 

Deformation due to deformation of the base beam and the constraining layer in axial direction. 

As shown in Figure(9), it is given by 

 '' bc uu − (1)  
 

Figure (9) -   Axial Deflection of layers 

uc’-ub’

uc’

ub’

Constraining layer 
 

Viscoelastic layer 
 

Stand-off layer 
 

Base beam 
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where  bu ′ and  cu ′ are the axial deflections of the beam and the constraining layers respectively.   

 

Axial Deformation due to lateral deflection of the base beam and constraining layer,

)
22

(
'
' c

vs
b hhhh

x
w +++
∂
∂

(2) 
Hence, the total deformation δ , shown in Figure (10), is given by 

2( ' ') ( )c
c b s v b

hwu u h h y
x

δ
′∂

= − + + + +
′∂ (3) 

which is the sum of the defomrations due to axial and lateral deformations. 

 Note that w′ and x′ denote the transverse deflection of the composite beam and the axial 

coordinate along the beam.  Furthermore, hi denotes the thickness of the ith layer where the 

subscript i=c=constraining layer, i=v=viscoelastic layer, i=s=stand-off layer, and i=b=beam. 

Note that the primes denote non-normalized variables. 

 

Figure (10) -  Total Axial Deflection of layers 

For small displacement magnitudes the deformation can be expressed in terms of angular 

x′

hv

Constraining layer 
 
Viscoelastic layer 
 
Stand-off layer 
 
Base beam 

hs

hc

hb

w′

cu ′

w
x
′∂
′∂

δ

bu ′

γ
'ψ'

y′
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displacement as  

 '' γψ vs hh + (4)  

where γ ′ and ψ ′ denote the  shear strains in the viscoelastic and stand-off layers. 

 

Comparing the above two equations 

 )''(
'
')

2
('' bcb

c
vsvs uu

x
wyhhhyhh −+
∂
∂

+++=+ψ (5) 

Rearranging in terms of ψ ′ gives 

 '
')

2
221('''

x
w

h
yhh

h
uu

s

bvc

s

bc

∂
∂++

++
−

=ψ (6) 

 

2.3 Constitutive Equations 

For Base Beam and Stand-off layer

Using the composite beam theory for base beam and SOL, then the axial strain  oε at the 

neutral axis of the base beam is given by 

 '
'

x
ub

o ∂
∂

=ε (7)  

and the curvature κ of composite beam 

2

2

'
'

x∂
∂

=
ωκ (8) 
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Therefore, the axial strain xε across the composite beam (i.e., the base beam and SOL) is given 

by: 

 x o yε ε κ= − (9) 

Hence, the stress xσ in the axial direction for base beam becomes: 

 ( )x b oE yσ ε κ= − (10) 

and for the SOL 

 ( )x s oE yσ ε κ= − (11) 

 

The total axial force Tbs across the base beam and SOL can be determined by integrating across 

the cross-section to give: 

 ( ) ( )
,

A EA EQbs x bs o bs
b s

Τ σ ε κ= = −∫ (12)  

where   (EA)bs is axial rigidity of the composite base beam/stand-off layer 

 (EA)bs = EbAb + EsAs (13) 

and (EQ)bs is product of first moment of area of each layer and its Elastic Modulus. 

 (EQ)bs = EbQb + EsQs (14) 

 

Similarly, the total moment Mbs acting across the composite of base beam/stand-off layers can be 

determined  from  

 ( ) ( ),
,

yd Q EIb s x bs o bs
b s

Μ σ Α Ε ε κ=− =− +∫ (15) 
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where fluexural rigidity (EI)bs is defined as 

 (EI)bs = EbIb + EsIs (16) 

 

The moments the base beam and stand-off layer Mb,s are taken from the neutral axis of the base 

beam. 

For Constraining Layer

The internal axial tension Tc in the constraining layer can be found by the equation 

 '
'

x
ubh c

ccc ∂
∂

Ε=Τ
(17) 

The bending moment Mc of the constraining layer is give by the equation 

 2

23

'
'

12 x
wbhcc

c
∂

∂Ε
=Μ (18) 

 

For Viscoelastic and stand-off Layer

The constitutive equations for the viscoelastic layer and the stand-off layer  in the Laplace 

transform domain are given as 

 γτ ′= vGv and ψτ ′= sGs (19) 

where  Gv  and Gs  denote the shear modulii of the viscoelastic layer and the SOL.

2.4 Equilibrium Equations 

Axial Direction

a. base beam and stand-off layer composite 
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From Figure (11), Newton's second law gives 

 
bsbbss

bs ufb
xd

d ′+=++
′

Τ
&&)( ρρτ

(20) 

 

Figure (11)  - Base Beam and stand-off Layer Axial Forces 

 

b. constraining layer in axial direction 

From Figure (12), Newton's second law gives 

cccv
c ufb

dx
d ′=++
Τ

&&ρτ
' (21)  

 

Figure (12) - Constraining Layer Axial Force 

 

Lateral Direction

The following equations are results of the application of Newton's scond law applied in 

the lateral direction 

τsdx’ 

Tbs+dTbs 

Tbs 

τv dx 

Tc+dTcTc
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a.Base beam and stand-off layer: 

 From Figure (13),  

 ( )bs
s bs b s

dV p q w
dx

ρ ρ ′− + = +
′

&& (22) 

 psdx’ 

 

vbs  qbsdx’        Vbs+dVbs 

 Figure (13) - Base Beam and stand-off Layer Lateral Forces 

 

b. Viscoelastic Layer: 

From Figure (14),  

 '
v

c s v v
dV p p q w
dx

ρ ′− + + = && (23) 

 

pcdx’               qvdx’  

 

Vv psdx’            Vv+dVv

Figure (14) - Viscoelastic Layer Lateral Forces 
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c. Constraining layer 

From Figure (15), 

'
c

c c c
dV p q w
dx

ρ ′+ + = && (24) 

 qcdx’ 

Vc Vc+dVc

pcdx’ 

Figure (15) - ConstrainingLayer Lateral Forces 

 

2.5 Moment Equilibrium Equations 

a. Base Beam and stand-off layer 

From Figure (16),  

0)(
'

=+−+
Μ

bssbs
bs yhbV

dx
d τ

(25) 

 

Mbs vbs  Vbs+dVbs  Mbs+dMbs 

Figure (16) - Base beam& stand off layer equilibirium 

 

τsbdx’ 
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b. Viscoelastic Layers 

From Figure (17),  

 vvv bhV τ= (26) 

 

Vv Vv+dVv

Figure (17) - Viscoelasticlayer equilibirium 

 

c.Constraining layer 

 
0

2'
=++ c

vc
c hbV

dx
dM τ

(27) 

 

Mc Vc Vc+dVc Mc+dMc

Figure (18) - Constraining layerequilibirium 

 

τsbdx’ 

τvbdx’ 

τvbdx’ 
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In equations (20) through (27), b denotes the beam width, iτ is the shear stress, pi defines 

the internal normal forces per unit length, qi is the externally applied body forces per unit length, 

Vi and Mi denote the shear force and moment acting on ith layer, also iρ denotes the density of the 

ith layer with (i=c,v,s, b).  

For axial equilibrium of the viscoelastic layer 

 sv ττ = (28) 

From Equations (19) and (28) 

 

'' γψ
s

v

G
G

=
(29) 

From Equations (6) and (29) 

( )
'
'

2
222'''

x
wyhhh

GhGh
Guu

GhGh
G bvcs

svvs

v
bc

svvs

v

∂
∂







 +++








+

+−







+

=ψ (30) 

From Equations (19) and (28) 

( )
'
'

2
222''

x
wyhhh

GhGh
GGuu

GhGh
GG bvcs

svvs

vs
bc

svvs

vs
v ∂

∂






 +++








+

+−







+

=τ (31) 

From Equations (26) and (31) 

( )
x
wyhhh

GhGh
GGbh

GhGh
GGbhV bcvs

svvs

vsv

svvs

vsv
v ′∂

′∂
+++








+

+







+

= 2222
1 (32) 

 

From Equations (2).and (32)   
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'
2
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'
'

'
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2
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wqpp
x
wyhhh

GhGh
GGbh

x
u

x
u
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GGbh
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
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(33) 

From Equation (25) 

( ) ( ) ( ) ( )''
'

'
' 3
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2
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bssbsbs

b
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GhGh
G
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x
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(34) 

 

From Equations (22) and (34) 
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
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From Equation (27) 
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From Equations (24) and (36) 
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
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43

x
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Adding Equations (33), (35) and (37) 
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(38) 

 

Let 

 2
c

vsb
h

hhy +++≡α cvsb ρρρρρ +++=

cvbs qqqq ++=

Then, equation (38) reduces to  
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'
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'
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Substituting in above 

 
( ) ( )cbst ID Ε+ΕΙ=
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We get the following equation  
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From Equation (20) 
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From Equation (21) 
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Equations (41), (43) and (45) are combined in the following matrix form  
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The equations of motion can now be normalized by using the following substitutions: 
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c
c
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The following dimensionless parameters and constants are used to simplify equations of motion 
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The normalized equations of motion take the following form 
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(50) 
 

2.6 Boundary Conditions 

The normalized boundary conditions for a cantilever beam excited at its base are as 

follows: 

For the fixed end (x=0) are: 

 ( ) ( )ssw Ρ=,0 (51) 

 

( ) ( ) ( ) 0,0,0,0
===

dx
sdusu

dx
sdw c

b
(52) 

For the free end (x=1) :

( ) 0,1
2

2
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(53) 
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==

dx
sdu

dx
sdu bc

, (54) 
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( ) ( ) ( ) ( ) ( ) ( ) 0,1,1,1,1,1
2
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=

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



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b ββε (55) 

 

The above equations and boundary conditions are now solved using Distributed Transfer 

Function Method and Finite Element Method and the two solutions are compared. 

 

2.7 Summary 

 This chapter formulates the equations of motion of the passive stand off layer treated 

cantilever beam subjected to dynamic loading at the fixed end with the assumptions given in the 

beginning of the chapter. The equations of motion constitute one variable (lateral deflection of 

beam) with 4th order differential equation and two variables (axial deflections of base beam and 

constraining layer) with 2nd order differential equation of motion.
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CHAPTER 3 

 

Distributed Transfer Function Solution 

Method  

 

3.1 Solution By Distributed Parameter Systems Transfer Function Method 

 

The PSOL beam is solved analytically by the distributed transfer function method 

developed by Yang and Tan [10]. 

Equation (50) gives the simplified equations of motion in the Laplace Domain and 

Equations (51) to (55) give the boundary conditions. 

Since the first equation in the Equation (51) has the term
3

3
bu

x
∂

∂
, therefore this equation has to 

be modified in order to be solved by the distributed transfer function method.   

Partially differentiating the third equation in (50) with respect to x, gives 
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Multiply the above equation by 1
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Adding this equation to the first equation in Equation (50) gives 
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As all external forces are zero and the beam is excited dynamically at its fixed end, then the 

modified equations of motion are given by: 
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For the sake of simplicity, all the initial conditions are assumed to be zero. 

 

3.2 Equations In State Space Form 

The equations of motion can be written in the state space form as follows 
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where y (x ,s), q(s), and F(s) are given by 

 ( )
2 3

2 3, { }T
c c b b

w w wy x s w u u u u
x x x x x
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂

, (61) 
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3.3 Boundary Conditions 

The boundary condition indicating the shear force equilibrium at the free end of cantilever 

beam has to be modified to enable it to be incorporated into the State Space model 

Equation (55) which is given by 
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Hence, the boundary conditions can be formulated as 
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3.4 Solution 

The solution to the above system of equations is given as follows 
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As all the external forces are zeros, the solution reduces to 

 ( ) ( ) ( ) ( )1,0,,, ∈= xssxHsxy γ (69) 

or 

( ) ( ) ( )ssxhsxw j

n

j
j γ∑

=

=
1

1 ,,
(70) 

 

The matrix eF(s)x is called the fundamental matrix of F(s).  The fundamental matrix can be 

evaluated by the following MATLAB command  expm(F)

3.5 Summary 

A transfer function model of the PSOL treated beam treatment has been developed.  The 

equations of motion have been modified to facilitate the formulation.  The transfer function 

method will then be used to validate the predictions of the finite element method.  The transfer 

function model is modeled only for uniform stand-off layer which is bonded along the length of 

the beam.  
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CHAPTER 4 

 

Finite Element Model 

 

4.1 Solution By Finite Element Method 

 

The development of the finite element solution of the system of equations and boundary 

conditions given by Equations (50) to (55), requires that the equations are transformed to the 

form given by the equation (59) 
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4.2 Derivation Of Element Equations 

In this step, a typical element is considered and a weak form of the equations of motion is 

constructed over the element.  The weak form of the above equations over an element is derived 

after defining the following terms: 

3
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1 1
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,

εβ 222
15 +=Κ sc ,

εβ 2
6 −=Κ ,

εβ 222
27 +=Κ sc , and 

 
βε−=Κ8

Substituting these terms in the equations of motion, gives 
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The following Hermite Interpolation functions are used for the normalized lateral 

deflection and Lagrange interpolation functions are employed for the axial deflections. 
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where vi, iθ and iΦ are interpolation functions to be defined in Section 4.3. 
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4.3 Interpolation Functions 
 
The interpolation functions and their derivatives are given as 
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Hence, the finite element model of the equations can be written in the form  

[ ]{ } { } { }QFUK +=

where [K] = Stiffness matrix [K] is given by   [ K] = [K1  K2  K3  K4  K5  K6  K7  K8] . The 

elements Ki are defined below.  Also, {F} = 0, and {Q} =0 except at the boundaries where it will 



42

incorporate boundary conditions 

The elements Ki are given by: 
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1 2
2 5 1 2

6 1 2

d
v

dx
d

v
dx

d d
a

dx dx

d
v

dx
d

v
dx

d d
a

dx dx

θ
Κ

θ
Κ

θ θ
Κ θ θ

Κ θ φ
θ

Κ

θ
Κ

θ θ
Κ θ θ

Κ θ φ

 
 
 
 
 
 
 + 
 
 
 
 
 
 
 
 
 

+ 
 
  

, K4=

1
4 1

1
4 2

6 1 1

1 1
3 7 1 1

1
4 3

1
4 4

6 1 2

1 2
3 7 2 1

d
v

dx
d

v
dx

d d
a

dx dx
d

v
dx
d

v
dx

d d
a

dx dx

φ
Κ

φ
Κ

Κ φθ
φ φ

Κ φ φ

φ
Κ

φ
Κ

Κ φθ
φ φ

Κ φ φ

 
 
 
 
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 +  

,
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K5=

2 2
23 1 4 1

1 2 3 12 2

2 2
23 2 4 2

1 2 3 22 2

3
8 1

3
3 3 3
1 1 8 13

2 2
23 3 34

1 2 3 32 2

2 2
23 4 4 4

1 2 3 42 2

3
8 2

3
3 3
1 23

d v d v dv dv
s v v

dx dxdx dx
d v d v dv dv

s v v
dx dxdx dx

dv
dx

d v dv
a

dxdx
d v d v dvdv

s v v
dx dxdx dx

d v d v dv dv
s v v

dx dxdx dx
dv
dx

d v
a

dx

Κ Κ

Κ Κ

Κ θ

φ Κ φ

Κ Κ

Κ Κ

Κ θ

φ Κ

+ +

+ +

−

+

+ +

+ +

−

+ 3
8 2

dv
dx
φ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

, K6=

2 2
24 1 4 1

1 2 4 12 2

2 2
24 2 4 2

1 2 4 22 2

4
8 1

3
3 4 4
1 1 8 13

22
23 34 4

1 2 4 32 2

2 2
24 4 4 4

1 2 4 42 2

4
8 2

3
3 4
1 23

d v d v dv dv
s v v

dx dxdx dx
d v d v dv dv

s v v
dx dxdx dx

dv
dx

d v dv
a

dxdx
d v dvd v dv

s v v
dx dxdx dx

d v d v dv dv
s v v

dx dxdx dx
dv
dx

d v
a

dx

Κ Κ

Κ Κ

Κ θ

φ Κ φ

Κ Κ

Κ Κ

Κ θ

φ Κ

+ +

+ +

−

+

+ +

+ +

−

+ 4
8 2

dv
dx

φ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

,

K7=

2
3 1

2
3 2

2 1
2 5 2 1

6 2 1

2
3 3

2
3 4

2 2
2 5 2 2

6 2 2

d
v

dx
d

v
dx

d d
a

dx dx

d
v

dx
d

v
dx

d d
a

dx dx

θ
Κ

θ
Κ

θ θ
Κ θ θ

Κ θ φ
θ

Κ

θ
Κ

θ θ
Κ θ θ

Κ θ φ

 
 
 
 
 
 
 + 
 
 
 
 
 
 
 
 
 

+ 
 
  

, and       K8=

2
4 1

2
4 2

6 2 1

2 1
3 7 2 1

2
4 3

2
4 4

6 2 2

2 2
3 7 2 2

d
v

dx
d

v
dx

d d
a

dx dx
d

v
dx

d
v

dx

d d
a

dx dx

φ
Κ

φ
Κ

Κ φ θ
φ φ

Κ φ φ

φ
Κ

φ
Κ

Κ φ θ
φ φ

Κ φ φ

 
 
 
 
 
 
 
 
 +
 
 
 
 
 
 
 
 
 
 +  

Hence, the finite element model takes the following form 
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



































+























































=



















































ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
ΚΚΚΚΚΚΚΚ
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6

5
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3

2

1

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

8887868584838281

7877767574737271

6867666564636261

5857565554535251

4847464544434241

3837363534333231

2827262524232221
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e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

Q
Q
Q
Q
Q
Q
Q
Q

f
f
f
f
f
f
f
f

u
u
u
u
u
u
u
u

or, in a compact matrix form:  
 

[ ]{ } { } { }QFUK +=

4.4 Assembly Of Matrices 

For illustration purposes, the assembly of the matrices of  two elements will take the form  

 [ ]{ } { } { }QFUK +=

where  {F} = 0 .
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



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









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









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
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
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5
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2
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2
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1
2

2
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1
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1
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1
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1
2
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1

Q
Q
Q
Q

QQ
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QQ
QQ

Q
Q
Q
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Q

u

b

,

and [K] for two elements is given by: 
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
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

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

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

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28
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1
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22
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4.5 Application of the Boundary Conditions  

 

At x=0, i.e., at the first node of the first element, there are four boundary conditions  

 ( ) ( )ssw Ρ=,0

( ) ( ) ( )
0

,0
,0,0

===
dx

sdusu
dx

sdw c
b

Substituting the value of ( ) 1
10w u= and deleting the first row and moving all entries of the first 

column to the right hand side gives: 

 







 +

=






 =









......
)(

.........

...... 1
1

1
1

1
1

1
11 QFsPuK







 −+

=
















...
)(

...
)

.........

...... 1
21

1
2

1
2

1
2

1
22 sPKQFuK

Similarly for 
( )0,

0
dw s

dx
= , and  ( )0, 0bu s = , the rows and columns for  1

2u and  1
4u are deleted 

 

For 
( )0,

0cdu s
dx

= , substitute this value in 

 0
2

1
3

=




=

x

c

dx
duaQ θ

to get  1
3 0Q = .
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At x=1, we have the following boundary conditions 

 

( ) ( ) 0,1,1
==

dx
sdu

dx
sdu bc

The terms for the last element in the overall matrix equation are     
















+
















=

































n

n

nnn Q
Q

FuK 8

7

8888

...
......

......
......
...

 

where 

 7 2
1

n c

x

duQ a
dx

θ
=

 =   
to get  7 0nQ = ,

8 2
1

n b

x

duQ a
dx

θ
=

 =   
to get  8 0nQ = ,

( )2

2

1,
0

d w s
dx

= , and          

 

( ) ( ) ( ) ( ) ( ) ( ) 0,1,1,1,1,1
2

2

13

3
=







 −+++− susu

dx
sdws

dx
suda

dx
swd

bc
b ββε

Imposing these boundary conditions, the overall equation is simplified to  

 
04323

3

1 =−−−− bc uKuK
dx
dwK

dx
wdK

1
22

2

13

3

156
=









Κ+Κ−Κ==

x

nn

dx
dwv

dx
wd

dx
dv

dx
wdvQQ

or 
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1
23

3

156
=









Κ+Κ==

x

nn

dx
dw

dx
wdQQ

or 

 buKuKQQ c
nn

4356 −−==

Finally, {F} = {0} as there are no external forces acting on the system except for dynamic 

displacement excitation applied at the fixed end. 

 

4.6 Summary 

A finite element model of the PSOL treated beam has been developed.  Hermite 

interpolation functions have been used for the 4th order variable (lateral deflection) and 

Lagrangian interpolation functions have been used for the 2nd order variables (axial deflections of 

the base beam and stand-off layer). 
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CHAPTER 5 

 

Computer Implementation   

In this chapter, MATLAB codes are developed to determine the response of beams treated with 

PSOL using both the   distributed transfer function method and the developed finite element 

model.   A step-by-step development of the codes is presented for beams that have been analyzed 

by Yellin et al. [9] in order to validate the predictions of the developed models.  

 

5.1 Distributed Transfer Function Method 

 

The following table gives the properties of the materials that are used to illustrate the computer 

implementation of several test numerical examples. 

 
Beam material  Al6061 
SOL material DYAD 606 
VEM material ISD 112 
Constraining layer material Al 
Beam thickness (hb) 2.29 mm 
SOL thickness (hs) 2.64 mm 
VEM thickness (hv) .127 mm 
Constraining layer (hc) .203 mm 
Width (b) 11.75 mm 
Length (l) 150 mm 

The complex modulii Gv and Gs for the viscoelastic and PSOL layer are assumed to be 1e5(1+i).  
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Also, these parameters are assumed to be constant through the frequency range. 

 

Defining the constants (used in the code listed in Appendix A.1) 

Excitation Function 

P=1; 

z=0 ; 

Length  

l=.15; 

Width 

b=.01175; 

Stand off layer Height 

hs=.264*1e-3; 

Constraining Layer 

hc=.203*1e-3; 

Viscoelasitc layer 

hv=.127*1e-3; 

Base beam 

hb=2.29*1e-3; 

Viscoelastic layer 

Gv=1e5*(1+i); 

Stand off layer Height 

Gs=1e5*(1+i); 

Mass/unit length of base beam 
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pb=2850*b*hb; 

Constraining Layer 

pc=2850*b*hc; 

Viscoelastic layer 

pv=1100*b*hv; 

Stand off layer Height 

ps=1100*b*hs; 

Eb=72e9; 

Ec=72e9; 

Es=Gs*2.9; 

Ev=Gv*2.9; 

 (EA)bs = EbAb + EsAs

EAbs=Eb*(hb*b)+Es*(hs*b); 

 (EI)bs = EbIb + EsIs

EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2); 

(EQ)bs = EbQb + EsQs

EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2); 

EAc=Ec*b*hc; 

EIc=Ec*(b*hc^3/12); 

cvsb ρρρρρ +++=

p=ps+pc+pv+pb; 

( ) ( )cbst ID Ε+ΕΙ=

Dt=EIbs+EIc; 
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2
c

vsb
hhhy +++≡α

alpha=hv+hs+(hb+hc)/2; 

( ) ( )vssvt

sv

hGhGD
lGGbs

+
≡

22αε

E=b*alpha^2*Gv*Gs*l^2/(Dt*(Gv*hs+Gs*hv)); 

ρ
ρcc ≡1

2

c1=pc/p; 

ρ
ρcc ≡1

2

c2=(pb+ps)/p; 

α
β l
≡

B=l/alpha; 

( )
t

bs

D
lQa Ε

≡1

a1=EQbs*l/Dt; 

t

cc

D
la

2

2
ΑΕ

≡

a2=EAc*l*l/Dt; 

( )
t

bs

D
la

2

3
ΕΑ

≡

a3=EAbs*l*l/Dt; 
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Implementation of the program with for loop 

for sr = 1:5:5000 

'
4

s
D
ls
t

ρ
≡

s=sr*i*(p*l^4/Dt)^.5*pi*2; 

 
F(s) =  
 

( ) ( ) ( )







































+−−

−++









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−








−

−







−

−
−












−

0000

10000000

00000

00100000

0000

00001000
00000100
00000010

3

22
2

2

3

2

3

1

3

2

2

2

22
1

2

2

3

1
2

3

1
2

2
2

1
2

3

3

3

1
2

2
13

3

3

1
2
13

32

12
3

3

a
sc

aa
a

a

aa
sc

a

a
a

a
asc

aa
a

a
a

aa
a

a
a

aa
as

aa
a

εβεββε

εβεβεβ

βεεβεβεββεε

F=[   0,1,0,0,0,0,0,0; 
 0,0,1,0,0,0,0,0; 
 0,0,0,1,0,0,0,0; 
 -s^2*k,0,(E-B*E*a1/a3)*k,0,0,(E*B-E*B^2*a1/a3)*k,0,(c2*s^2*a1/a3... 
 +B^2*E*a1/a3-B*E)*k; 
 0,0,0,0,0,1,0,0; 
 0,E*B/a2,0,0,(c1*s^2+E*B^2)/a2,0,-E*B^2/a2,0; 
 0,0,0,0,0,0,0,1; 
 0,-B*E/a3,0,a1/a3,-E*B^2/a3,0,(c2*s^2+E*B^2)/a3,0];   
 

































=

00000000
00000000
00000000
00000000
01000000
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)(sM



55

M=[ 1,0,0,0,0,0,0,0; 
 0,1,0,0,0,0,0,0; 
 0,0,0,0,0,1,0,0; 
 0,0,0,0,0,0,0,1; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0]; 
 













































−










−

Κ
−








−

=

001010

10000000
00010000
00000100
00000000
00000000
00000000
00000000

)(

3

1
2

3

1
2

3

1 ββεββεβε
a

a
a

a
a
a

sN

N=[ 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,1,0,0,0,0,0; 
 0,0,0,0,0,1,0,0; 
 0,0,0,0,0,0,0,1; 
 0,E*(1-B*a1/a3),0,-1/k,E*(B-B^2*a1/a3),0,-E*(B-B^2*a1/a3),0]; 
 

tsPs }0000000)({)( =γ

Gamma=[ P 0 0 0 0 0 0 0 ]'; 
 
efs=expm(F); 
 
( ) ( ) ( ) ( ) ( )( ) 1

,
−

Ν+Μ=Η sFxsF essesx

H=efs*(M+N*efs)^-1; 
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H0=eye(8)/(M+N*efs)^-1; 
 
( ) ( ) ( ) ( )1,0,,, ∈= xssxHsxy γ

eta=H*Gamma; 
 
eta0=H0*Gamma; 
 
z=z+1; 
 
splot(z)=sr; 
 
w(z)=abs(real(eta(1))/real(eta0(1))); 
 
end 
 
Plotting 
 
semilogy(splot,w) 
 

A complete listing of the MATLAB code is given in Section A.1 of the appendix. 

 

5.2 Finite Element Method 
 

Provide number of elements  
 
nem=11; 
 
Define constants (used in the code listed in Appendix A.2) 

 
Excitation Function 
P=1; 

z=0 ; 

Length  

l=.15; 
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Width 

b=.01175; 

Stand off layer Height 

hs=.264*1e-3; 

Constraining Layer 

hc=.203*1e-3; 

Viscoelasitc layer 

hv=.127*1e-3; 

Base beam 

hb=2.29*1e-3; 

Viscoelastic layer 

Gv=1e5*(1+i); 

Stand off layer Height 

Gs=1e5*(1+i); 

Mass/unit length of base beam 

pb=2850*b*hb; 

Constraining Layer 

pc=2850*b*hc; 

Viscoelastic layer 

pv=1100*b*hv; 

Stand off layer Height 

ps=1100*b*hs; 

Eb=72e9; 
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Ec=72e9; 

Es=Gs*2.9; 

Ev=Gv*2.9; 

 (EA)bs = EbAb + EsAs

EAbs=Eb*(hb*b)+Es*(hs*b); 

 (EI)bs = EbIb + EsIs

EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2); 

(EQ)bs = EbQb + EsQs

EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2); 

EAc=Ec*b*hc; 

EIc=Ec*(b*hc^3/12); 

cvsb ρρρρρ +++=

p=ps+pc+pv+pb; 

( ) ( )cbst ID Ε+ΕΙ=

Dt=EIbs+EIc; 

2
c

vsb
hhhy +++≡α

alpha=hv+hs+(hb+hc)/2; 

( ) ( )vssvt

sv

hGhGD
lGGbs

+
≡

22αε

E=b*alpha^2*Gv*Gs*l^2/(Dt*(Gv*hs+Gs*hv)); 

ρ
ρcc ≡1

2
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c1=pc/p; 

ρ
ρcc ≡1

2

c2=(pb+ps)/p; 

α
β l
≡

B=l/alpha; 

( )
t

bs

D
lQa Ε

≡1

a1=EQbs*l/Dt; 

t

cc

D
la

2

2
ΑΕ

≡

a2=EAc*l*l/Dt; 

( )
t

bs

D
la

2

3
ΕΑ

≡

a3=EAbs*l*l/Dt; 

 
splot=0; 
 

syms  x  
 
Define length of each element 

h=1/nem; 

Define interpolation functions. 
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32

1 231 





+






−=

h
x

h
xv

v1=1-3*(x/h)^2+2*(x/h)^3; 

2

2 1 





 −−=

h
xxv

v2=-x*(1-x/h)^2; 

3

3

2

2

3 23
h
x

h
xv −=

v3=3*(x/h)^2-2*(x/h)^3; 









−−=

h
x

h
xxv 2

2

4

v4=-x*(x^2/h^2-x/h); 

h
x

−=Φ= 111θ

th1=1-x/h; 

h
x

=Φ= 22θ

th2=x/h; 

 

for sr=1:100:5000 

 s=sr*i*(p*l^4/Dt)^.5*pi*2; 

3

2
1

1 1
a
a

−=Κ

k1=(1-a1^2/a3); 
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εβε −=Κ
3

1
2 a

a

k2=(a1/a3*B*E-E); 

βεεβ −=Κ
3

12
3 a

a

k3=B^2*E*a1/a3-B*E; 

3

12

3

122
24 a

a
a
asc εββε −−=Κ

k4=B*E-c2*s^2*a1/a3-B^2*E*a1/a3; 

βε−=Κ8

k8=-B*E; 

εβ 222
15 +=Κ sc

k5=c1*s^2+B^2*E; 

εβ 2
6 −=Κ

k6=-B^2*E; 

εβ 222
27 +=Κ sc

k7=c2*s^2+B^2*E; 

 
Define the elements of the K Matrix 
 

Assembly of the K Matrix 
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
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
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u

KK =[ K11, K12, K15, K17, K13, K14, K16, K18; 
 K21, K22, K25, K27, K23, K24, K26, K28; 
 K51, K52, K55, K57, K53, K54, K56, K58; 
 K71, K72, K75, K77, K73, K74, K76, K78; 
 K31, K32, K35, K37, K33, K34, K36, K38; 
 K41, K42, K45, K47, K43, K44, K46, K48; 
 K61, K62, K65, K67, K63, K64, K66, K68; 
 K81, K82, K85, K87, K83, K84, K86, K88]; 
 
Integrating the K Matrix over the element 
 
K=int(KK,x,0,h); 
 K=double(K); 
 
Assembly of the overall K Matrix 
 
KO=zeros((nem+1)*4); 

 for n=1:nem 

KO(n*4-3:n*4+4,n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+K; 

 end 

 
Reducing the overall K Matrix by incorporating the boundary conditions 
 
KK=zeros(nem*4+1); 
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4); 
KK(1,1)=KO(3,3); 
KK(1,2:5)=KO(3,5:8); 
KK(2:5,1)=KO(5:8,3); 
 
Incorporating the last boundary condition (shear force equilibrium at the free end) 
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KK((nem-1)*4+2,(nem*4))=KK((nem-1)*4+2,(nem*4))+k3; 
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4; 
 
Defing the F Matrix 
 
F=[-KO(1,3);-KO(1,5);-KO(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)]; 
 
Calculating the nodal variable values 
 
X=KK^-1*F; 
 
Plotting 
 
splot=splot+1; 
w(splot)=abs(real(X(nem*4-2))); 
ww(splot)=sr; 
end 
 
A complete listing of the MATLAB code is given in Section A.2 of the appendix. 

 

5.3 Slotted Psol Finite Element Model Matlab Program 
 

This model consists of 11 elements with every second element slotted, i.e.  with no 

modulus of elasticity. 

The inclusion of the slots in the model can be achieved by varying the properties of the 

stand off layer of the elements.  In fact, variation of properties of other layers is also possible.  

The matrices of the elements with different properties have to be computed separately and then 

combined in the overall matrix.  If the properties of the layers are varied excessively, then a large 

number of matrices need to be integrated which leads to a large increase in computing time. 

 

The following if-else statement is used for combining the matrices 

K1 = Integrated matrix for full element 
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K2= Integrated matrix for slotted element  

 For Element No.  = 1 : No. of Elements 

 if Element = Slotted  

Overall Stiffness Matrix =  Overall Stiffness Matrix + K2 

 Else 

 if Element = Full 

Overall Stiffness Matrix =  Overall Stiffness Matrix + K1 

 End 

 

A complete listing of the MATLAB code is given in Section A.3 of the appendix. 

 

5.4 Summary 

MATLAB programs for the distributed transfer function method and finite element 

method have been developed.  The finite element program has been further modified to 

incorporate the slots in stand off layer (by varying the properties) along the length of the beam.  

However, slots in the viscoelastic and constraining layers can also be included. The full code of 

the programs is given in the index of program codes in the index of computer programs.   
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CHAPTER 6 

 

ANSYS Modeling and Comparison 

 

6.1 Overview 

In this chapter, the predictions of the developed finite element model and the distributed 

transfer function method are compared with the predictions of the commercial software package 

ANSYS. 

 

6.2  Damping In Ansys 

In the implementation of the ANSYS simulation, it is very critical to account for the 

damping of the viscoelastic and the beam materials accurately. 

 

Damping in ANSYS Version 8.0 is classified into two broad categories: Viscous damping 

and Structural damping.  This can be done by two different analysis methods called the full 

method and the mode-superposition method. Figure (19) illustrates the various damping input 

functions in ANSYS 
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Figure (19) -  Damping in ANSYS 

 

The DMPRAT command is used to define constant damping ratios throughout the 

considered frequency range. 

The MDAMP command is used however to define the modal damping ratios in which 

damping is specified for each mode independent of frequency. 

The ALPHAD command defines damping ratios which are inversely proportional to 

frequency. 

The BETAD command defines damping ratios which are directly proportional to 

frequency. 

Finally, the MP,DAMP command represents stiffness multiplier in full analysis method 
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and it represents structural damping or constant damping ratio. 

 

6.3 Modeling In Ansys 

A Two-dimensional model is developed using ANSYS commercial software package.  In 

that model, PLANE element 183 is used to discretize the cantilever beam which is subjected to 

harmonic excitation at its fixed end. Figures (20) and (21) display the ANSYS solid and meshed 

models respectively. 

X
Y
Z

Figure (20) - Modeling in ANSYS 

 

X

Figure (21) - Meshed Model in ANSYS 
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6.4 Comparison 

a. plain beam 

The response of plain base beams as predicted by the developed finite element model and 

the distributed transfer function method are compared with the predictions of the commercial 

software package ANSYS.  The considered base beam is made of aluminum whose length = .15 

m, width = .01175m, and height = .00229m. 

Figures (22), (23), and (24) display such responses and Figure (25) presents a comparison 

between all the three different methods.  Close agreement is evident between the predictions of 

all the three methods. 

 

Response 

Frequency - Hz 

Figure (22) – Response of plain beam using the distributed transfer function method 
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Response 

Frequency - Hz 

Figure (23) - Response of plain beam using the developed FEM  

Response 

Frequency - Hz 
 

Figure (24) -  Response of plain beam using ANSYS  
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Response 

Frequency - Hz 

Figure ( 25) -  Comparison between the response of  a plain beam using the different methods 
 

b. beam with passive SOL 

 The main properties of the considered beam which is treated with passive SOL are: 

Base Material = Aluminum , Length = .15 m, Width = .01175m, Height = .00229m 

SOL Material = Aluminum, Height = .00264m  

VEM Material Properties, Modulus Elasticity =1e5 N/m2

Damping Ratio = 1e-4 x π x frequency     (linearly dependent on frequency), Height = .000127m, 

and Density = 1100 Kg/m3

Constraining Layer = Aluminum, Height = .000203 m. 
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Figures (26), (27), and (28) display such responses and Figure (29) presents a comparison 

between all the three different methods.  Close agreement is evident between the predictions of 

all the three methods. 

 

Response 

Frequency - Hz 

Figure (26)  - Response of a beam with SOL using the distributed transfer function method 
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Response 

 
Frequency - Hz 

Figure (27) - Response of a beam with SOL using the developed FEM  
 

Response 

Frequency - Hz 
 

Figure (28) -  Response of a beam with SOL using ANSYS  
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Response 

Frequency - Hz 

Figure (29) - Comparison between the response of  a beam with SOL using the different 
methods 

 

Note that the discrepancy between ANSYS model and the other two method is due to the 

fact that ANSYS considers the VEM to have bending moment  while the Distributed Transfer 

Function and Finite Element Methods do not take into account the bending moment in the 

Viscoelastic layer.   

 

6.5 Summary 

A comparison between the results obtained from the while Distributed Transfer Function 

and Finite Element Methods has been presented for different types of models.  The results from 

ANSYS conform with those obtained by the developed methods for plain beams.  However, due 

to the assumption that there is no bending stiffness in viscoelastic layer, the predictions are not 

exactly same for beams with SOL treatment. 
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CHAPTER 7 

Experimental Verification 

 

7.1 Experimental Setup 

 

Several experiments were performed to substantiate the results obtained by the analytical 

models.  For this purpose, acrylic was chosen as the base material and as stand-off layer whereas 

aluminum was used as the constraining layer.  Dyad 606 was used as viscoelastic material. 

Figures (30) and (31) display the loss factor and the storage modulus of the acrylic as obtained  

by the Dynamic, Mechanical, and Thermal Analyzer (DMTA) at different operating temperatures 

and excitation frequencies. 
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Figure (30) - Temperature-loss factor characteristics for Acrylic 

Figure (31) - Temperature-Storage Modulus characteristics for Acrylic 
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The following master curves were produced for acrylic. 
 

Figure (32) -  Master Curves  for Acrylic 

Temp.-Deg. C  80    70         40          30 
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For the experiments, a cantilever beam model was subject to excitation at its fixed end was made 

and the input from the free end of the beam was fed to a signal analyzer.  The resulting plots 

were recorded and compared.  

 

Figure (33) - Experimental Setup 

 

Accelerometers 

Shaker 

Analyzer 

Beam/PSOL 

Amplifier 
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c. Test beams 

 

Table (1) lists the considered test specimens along with their main geometrical and 

physical parameters. 

 
Table (1) - The main geometrical and physical parameters of the tested PSOL treatments 

 

MODEL 
 

1 2 3 4 5 6 7

Beam Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic 

SOL Material - - Acrylic Acrylic Acrylic Acrylic Acrylic 

VEM - - DYAD 
606 

DYAD 
606 

DYAD 
606 

DYAD 
606 

DYAD 
606 

Constraining 
Layer 

- - Al. Al. Al. Al. Al. 

Beam 
thickness 

(mm) 

5.00 3.00 3.50 3.50 3.50 3.125 3.125 

Beam Length 
(mm) 

280 280 280 280 280 125 125 

Beam Width 
(mm) 

25 25 25 25 25 25 25 

SOL thickness 
(mm) 

- - 2.0 2.0 2.0 3.125 3.125 

SOL length 
(mm) 

- - 125 125 205.5 125 125 

Slot width 
(mm) 

- - 0 (solid) 6.26 6.26 2.38 1.6 

VEM 
thickness 

(mm) 

- - 1.15 1.15 1.15 1.15 1.15 

Constraining 
layer thickness 

(mm) 

- - 0.64 0.64 0.64 0.64 0.64 

.
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Experimental Model 1 

 

Thick Plain Beam 

The main geometrical and physical parameters of the considered 5 mm thick beam are 

given in Table 1 and shown in Figure (34).  

 

Figure (34) – 5 mm thick plain beam (model 1) 
 

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily 

represented by: 

Elasticity Modulus = 3e9 [1+ 0.04  i] N/m2

Figure (35) displays a comparison between the theoretical and experimental frequency 

response characteristics of the 5 mm thick plain beam.  Table (2) lists also a comparison between 

the theoretical and experimental modal characteristics of the plain beam.  It is evident that there 

is a close agreement between theory and experiments. 

28 cm 
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Figure (35) – Comparison between the theoretical and experimental frequency response of 5mm 
thick plain beam  

 

Table (2) - Comparison between the theoretical and experimental modal characteristics of 
the 5mm thick plain beam 

Mode Frequency (Hz)  Damping Ratio 
Theory Exp Theory Exp 

1 16 14 .51 na 
2 116 102 .043 .20 
3 321 328 .041 .07 
4 631 642 .041 .053 
5 1046 1056 .040 .047 

Experimental 
 

FE Model 
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Experimental Model 2 

 

Thin Solid Beam 

The main geometrical and physical parameters of the considered 3 mm thick beam are 

given in Table 1 and shown in Figure (36).   

 

Figure (36) – 3 mm thick plain beam (model 2) 
 

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily 

represented by: 

Elasticity Modulus = 3e9 [1+ 0.04  i] N/m2

Figure (37) displays a comparison between the theoretical and experimental frequency 

response characteristics of the 3 mm thick plain beam.  Table (3) lists also a comparison between 

the theoretical and experimental modal characteristics of the plain beam.  It is evident that there 

is a close agreement between theory and experiments. 

28 cm 
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Frequency - Hz 
 

Figure (37) -  Comparison between the theoretical and experimental frequency response of 3mm 
thick plain beam  

 

In Figure (37), the effect of including the material loss factor of the acrylic beam on the 

accurate prediction of the frequency response of the beam is evident. 

 

Table (3) - Comparison between the theoretical and experimental modal characteristics of 
the 3mm thick plain beam 

Frequency (Hz) Damping Ratio Mode 
Theory Exp Theory Exp 

1 11 na .56 na 
2 61 56 .10 .13 
3 172 174 .10 .20 
4 339 342 .08 .09 
5 567 575 .09 .09 
6 835 857 .09 .09 
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Experimental Model 3 

 

Beam with unslotted PSOL 

 

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 

2 mm thick SOL are given in Table 1 and shown in Figure (38). 

 

Figure (38) – 3.5 mm thick beam with unslotted SOL (model 3)  
 

. The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily 

represented by: 

Elasticity Modulus = 3e9 [1+ 0.04  i] N/m2

Figure (39) displays a comparison between the theoretical and experimental frequency 

response characteristics of the 3.5 mm thick beam with unslotted.  Table (4) lists also a 

comparison between the theoretical and experimental modal characteristics of the plain beam.  It 

is evident that there is a close agreement between theory and experiments. 

 

28 cm 

12.5 cm 



84

Frequency - Hz 
 

Figure (39) -  Response for beam model 3 with unslotted stand-off layer treated in middle 

Table (4) - Comparison between the theoretical and experimental modal characteristics of 
the 3.5mm thick beam with unslotted SOL 

Frequency (Hz) Damping Ratio Mode 
Theory Exp Theory Exp 

1 20 n/a .45 Na 
2 105 120 .19 .09 
3 315 315 .14 .09 
4 620 605 .13 .08 
5 1015 1005 .14 .11 

Experimental 
 

FE Model 

D
ef

le
ct

io
n
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Experimental Model 4 

 

Beam with a slotted PSOL machined in middle 

 

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 

2 mm thick SOL are given in Table 1 and shown in Figure (40). 

 

Figure (40) – 3.5 mm thick beam with slotted PSOL (model 4)  
 

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily 

represented by: 

Elasticity Modulus = 3e9 [1+ 0.04  i] N/m2

Figure (41) displays a comparison between the theoretical and experimental frequency 

response characteristics of a beam with slotted PSOL machined at the beam center.  Table (5) 

lists also a comparison between the theoretical and experimental modal characteristics of the 

plain beam.  In this case, the theoretical predictions are qualitatively similar to the experimental 

results.  But, there are quantitative discrepancies between theory and experiments particularly as 

far as the amplitude of deflections. 

 

0.625 cm 

28 cm 

12.5 cm 

0.625 cm 



86

Frequency - Hz 

 

Figure (41) -  Frequency response of a beam with slotted PSOL machined at the center 

Table (5) - Comparison between the theoretical and experimental modal characteristics of 
the 3.5mm thick beam with slotted SOL near free end 

Mode Frequency (Hz) Damping Ratio 
Theory Exp Theory Exp 

1 17 13 .38 .52 
2 136 125 .15 .08 
3 365 350 .22 .08 
4 720 755 .18 .06 
5 1200 1150 na .06 

Experimental 
 

FE Model 

D
ef

le
ct

io
n
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Experimental Model 5 

 

Beam with a slotted PSOL machined at free end 

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 

2 mm thick SOL are given in Table 1 and shown in Figure (42). 

 

Figure (42) – 3.5 mm thick beam with slotted PSOL machined at free end (model 5) 

 

Figure (43) displays a comparison between the theoretical and experimental frequency 

response characteristics of a beam with slotted PSOL machined at the free end.  Table (6) lists 

also a comparison between the theoretical and experimental modal characteristics of the plain 

beam.  In this case, the theoretical predictions are in good agreement with the experimental 

results.   

 

28 cm 

20.55 cm 
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Frequency - Hz 

Figure (43) - Frequency response of a beam with slotted PSOL machined at free end 

 

Table (6)- Comparison between the theoretical and experimental modal characteristics of a 
beam with slotted PSOL machined near free end 

 
Mode Frequency (Hz) Damping Ratio 

Theory Exp Theory Exp 
1 15 10 .56 .7 
2 136 123 .12 .14 
3 440 450 .084 .062 
4 1015 1015 .08 .06 
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Experimental Model 6 

 

Beam with a 27-slot PSOL  

The main geometrical and physical parameters of the considered 3.125 mm thick beam 

with 3.125 mm thick SOL that has 27 slots are given in Table (1) and shown in Figure (44). 

 

Figure (44) – 3.125 mm thick beam with a 40-slot PSOL (model 6) 

 

Figure (45) displays a comparison between the theoretical and experimental frequency 

response characteristics of the beam with a 27-slot PSOL.  Table (7) lists also a comparison 

between the theoretical and experimental modal characteristics of the plain beam.  In this case, 

the theoretical predictions are in adequate agreement with the experimental results.   
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2.38x3.125mm
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Frequency – Hz 
 

Figure (45) – Frequency response of a beam with a 27-slot PSOL 

Table (7) - Comparison between the theoretical and experimental modal characteristics of a 
beam with 27-slot PSOL  

 
Mode Frequency (Hz) Damping Ratio 

Theory Exp Theory Exp 
1 100 50 0.3 0.3 
2 700 750 0.08 0.05 
3 1800 1750 0.21 0.18 
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Experimental Model 7 

 

Beam with a 40-slot PSOL  

The main geometrical and physical parameters of the considered 3.125 mm thick beam 

with 3.125 mm thick SOL that has 40 slots are given in Table 1 and shown in Figure (46). 

 

Figure (46) – 3.125 mm thick beam with a 40-slot PSOL (model 7) 

 

Figure (47) displays a comparison between the theoretical and experimental frequency 

response characteristics of the beam with a 40-slot PSOL.  Table (8) lists also a comparison 

between the theoretical and experimental modal characteristics of the plain beam.  In this case, 

the theoretical predictions are in adequate agreement with the experimental results.   

 

130 mm

1.6x3.125mm
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Frequency – Hz 
 

Figure (47) – Frequency response of a beam with a 40-slot PSOL 

Table (8)- Comparison between the theoretical and experimental modal characteristics of a 
beam with 40-slot PSOL  

 
Mode Frequency (Hz) Damping Ratio 

Theory Exp Theory Exp 
1 100 50 0.3 0.3 
2 700 660 0.08 0.11 
3 1800 1660 0.21 0.18 

7.2 Summary 

The chapter has presented the experimental frequency response of beams with PSOL of 

different configurations along with comparisons with the theoretical predictions.  It is found that 

the experimental results are in close agreement with the predictions of the developed finite 

element model.  
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Chapter 8 

 

Effect of PSOL Parameters on its Damping 

Characteristics 

 

In this chapter, the effect of changing the parameters of the different layers on the 

damping characteristics of beams treated with PSOL is presented. For this study, the base beam 

is assumed to have a total length = 0.15m, thickness = 2.29mm, and Young’s modulus E=70e9 

N/m2.

The effect of varying the design parameters on the damping characteristics is quantified 

using the following performance index AUC denoting the area under the curve: 

 AUC =  
0

( )w l d
ω

ω
∞

=
∫ (71) 

where w(l) = lateral deflection at the free end of the cantilever beam when it is subjected to 

sinusoidal excitation at its fixed end.  Figure (48) shows a typical frequency response 

characteristics of a beam with PSOL and the hatched area defines the performance index AUC 

which will be used as a metric for optimizing the performance of the PSOL. 
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Figure (48) - A typical frequency response of a beam with PSOL defining the performance index 
AUC 

 

In this chapter, the effect of changing the thickness and the strength of the viscoelastic 

material (VEM), stand-off layer (SOL), and constraining layer on the performance index AUC is 

investigated in an attempt to find the combination of the design parameters that minimizes the 

AUC.  Furthermore, the effect of changing the bending and shear strength of the PSOL on the 

AUC is also studied for damped and undamped SOL. 
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8.1 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is 
Undamped  

 
In this regard, the strength of the VEM and SOL are assumed constant and are given by: 

SOL (E) = 1e5 N/m2 and VEM (E) = 1e5(1+i) N/m2

Figure (49) shows the iso-contours of the performance index AUC as a function of the 

thickness of the VEM and SOL Layers.  It is evident that the minimum values of the AUC occur 

when the VEM and SOL are of equal thicknesses and lie in the range between 0.4-0.8 mm. 

 

Figure (49) – Iso-contours of the AUC as a function of the thickness of the VEM and SOL 
Layers when the SOL layer is undamped 



96

8.2 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is 
Damped 

 

If the strengths of the SOL and VEM layers are assumed to be given by SOL strength = 

1e5(1+i) N/m2 and  VEM strength = 1e5(1+i)N/m2 such that the SOL layer is damped and has a 

loss factor =1, then the AUC iso-contours become as shown in Figures (50a) and (50b).  It is 

evident that the minimum values of the AUC occur as the thickness of both the VEM and SOL is 

increased. 
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Figure (50) – Iso-contours of the AUC as a function of the thickness of the VEM and SOL 
Layers when the SOL layer is damped 

 

8.3 Effect Of Young’s Modulus Of Vem And Sol Layers When Sol Layer Is 
Damped 

 

Figures (51a) and (51b) show the AUC iso-contours as affected by the Young’s modulii 

of both the VEM and SOL layers when the SOL layer has a loss factor =1.  It is evident that the 

minimum values of the AUC occur as the Young’s modulus of both the VEM and SOL is 

increased. 
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Figure (51) - Iso-contours of the AUC as a function of the strength of the VEM and SOL Layers 
when the SOL layer is damped 

 



99

8.4 Effect Of Thickness And Strength Of Constraining Layer 
 

Figure (52) shows the AUC iso-contours as affected by the thickness and strength of the 

constraining layer.  It is evident that the minimum values of the AUC occur as the thickness of 

the constraining layer is increased and the strength is about 50E9N/m2.
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Figure (52) - Iso-contours of the AUC as a function of the strength and thickness of the 
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8.5 Effect Of Elastic And Shear Modulii Of The Stand-Off Layer  When 
Loss Factor = 1 

 

Figures (53a) and (53b) show the AUC iso-contours as affected by the elastic and shear 

modulii of the SOL when it has a loss factor of 1. The figures indicate that the minimum values 

of the AUC occur when the elastic modulus of the SOL is much higher than its shear modulus. 
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Figure (53) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL 
Layer when the loss factor =1 
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8.6 Effect Of Thickness And Strength Of The Stand-Off Layer When Loss 
Factor =0  

 

Figures (54a) and (54b) show the AUC iso-contours as affected by the elastic and shear 

modulii of the SOL when it has a loss factor of 0. The figures indicate that the minimum values 

of the AUC occur when the elastic modulus of the SOL is much smaller than its shear modulus. 
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Figure (54) -  Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL 
Layer when the loss factor =0 

 

8.7 Summary  

This chapter has presented a parametric study of the effect of changing the design 

parameters of the different layers of the PSOL on its damping characteristics. The results 

obtained suggest that a strong SOL layer with high damping gives the best results but for 

undamped SOL it is essential that the elastic modulus of the SOL be much smaller than its shear 

modulus.  Furthermore, increasing the strength and thickness of the constraining layer is also 

effective up to a certain point but further increase would adversely affect damping performance.  
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Chapter 9 

 

Conclusions and Recommendations 

 

9.1 Conclusions 

 

This dissertation has presented briefly the concept of passive stand-off layer (PSOL) 

damping treatments as a simple and effective means for enhancing the damping characteristics of 

constrained layer damping.  In this dissertation, a review of the literature is presented in an 

attempt to justify the need and emphasize the importance of the present study. 

 

A formulation of the equations of motion of the passive stand off layer treated cantilever 

beam subjected to dynamic loading at the fixed end is presented. The obtained equations of 

motion consist of 4th order differential equation in the lateral deflection of beam  and two 2nd 

order differential equation in the axial deflections of the base beam and constraining layer.  

 

A transfer function model of the PSOL treated beam treatment has been developed.  The 

equations of motion have been modified to facilitate the formulation of a finite element model 

which constitutes the major contribution of this dissertation.  Hermite interpolation functions 
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have been used to describe the lateral deflection and Lagrangian interpolation functions have 

been used to define the axial deflections of the base beam and constraining layer. 

 

MATLAB programs for the distributed transfer function method and finite element 

method have been developed.  The finite element program has been further modified to 

incorporate the slots in stand off layer (by varying the properties) along the length of the beam.  

However, slots in the viscoelastic and constraining layers can also be included. The full code of 

the programs is given in the appendix.   

 

A comprehensive experimental evaluation of the performance of the PSOL has been 

conducted to investigate the effect of various configurations of the SOL on its damping 

characteristics.  Furthermore, the obtained experimental results have been used to validate the 

predictions of the developed finite element model. 

 

. The results obtained suggest that the predictions of the developed finite element model 

are in close agreement with the experimental results as well as with the predictions of an ANSYS 

model of the PSOL.   

The results indicate also that  a strong SOL layer with high damping gives the best results 

but for undamped SOL it is essential that the elastic modulus of the SOL be much smaller than 

its shear modulus.  Furthermore, increasing the strength and thickness of the constraining layer is 

also effective up to a certain point but further increase would adversely affect damping 

performance.  
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9.2 Recommendations 

 

Although this study has focused on the development of PSOL for one-dimensional 

cantilever beams, it is essential to note that the presented concepts can be equally extended  to 

multiple dimensions for using plate and shell elements as shown in Figures (55) and (56) 

respectively.   

 

Figure (55) -  Passive constrained layer plate with stand-off layer patches 

 

base plate  

stand off layer 

viscoelastic+constraining layers 
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Figure (56) -  Cylindrical Shell with Slotted Stand-off layer  
 

base cylindrical shell
Slotted stand off 
layer  

viscoelastic layer 

constraining layers 
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Furthermore, in this dissertation it was assumed that all layers experience the same lateral 

deflection.  Accordingly, a natural extension to this work would be to take into account variable 

lateral deflection across the layers PSOL as shown in Figure (57).  

 

Furthermore, a finite element model can be developed along the same lines as outlined in 

this thesis to incorporate thickness variation of the layers and can also count for variations in 

geometry of layers in axial direction. 

Figure (57) - Passive stand-off layer treated beam with lateral strain in the layers 

 

Another natural extension of the present work would be to develop finite element models 

that can be easily used to incorporate slots in viscoelastic and constraining layers by simply 

 Variation in layer 
thickness across the 
beam length
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varying the material properties of the element as shown in Figure (58).  Even the base beam can 

be made to vary along its length as long as singularities in the overall stiffness matrix are 

avoided. To avoid singularities, none of the material properties in the first and last elements 

should be zero, i.e., the slots should not be at the ends of the beam.  This geometry of the slots in 

constraining, viscoelastic and stand-off layers can then be varied stepwise and the model 

analyzed until the optimum performance is achieved.  This would provide a method of finding 

the optimal shape and geometry of slots for best damping performance. 
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110

Appendix 

Computer Program Codes 

A.1.  Distributed Transfer Function Method 

P=1; 
z=0 ; 
l=.15; 
b=.01175; 
hs=.264*1e-3; 
hc=.203*1e-3; 
hv=.127*1e-3; 
hb=2.29*1e-3; 
Gv=1e5*(1+i); 
Gs=1e5*(1+i); 
pb=2850*b*hb; 
pc=2850*b*hc; 
pv=1100*b*hv; 
ps=1100*b*hs; 
Eb=72e9; 
Ec=72e9; 
Es=Gs*2.9; 
Ev=Gv*2.9; 
EAbs=Eb*(hb*b)+Es*(hs*b); 
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2); 
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2); 
EAc=Ec*b*hc; 
EIc=Ec*(b*hc^3/12); 
p=ps+pc+pv+pb; 
Dt=EIbs+EIc; 
alpha=hv+hs+(hb+hc)/2; 
E=b*alpha^2*Gv*Gs*l^2/(Dt*(Gv*hs+Gs*hv)); 
c1=pc/p; 
c2=(pb+ps)/p; 
B=l/alpha; 
a1=EQbs*l/Dt; 
a2=EAc*l*l/Dt; 
a3=EAbs*l*l/Dt; 
 
for sr = 1:5:5000 
s=sr*i*(p*l^4/Dt)^.5*pi*2; 
F=[   0,1,0,0,0,0,0,0; 
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0,0,1,0,0,0,0,0; 
 0,0,0,1,0,0,0,0; 
 -s^2*k,0,(E-B*E*a1/a3)*k,0,0,(E*B-E*B^2*a1/a3)*k,0,(c2*s^2*a1/a3... 
 +B^2*E*a1/a3-B*E)*k; 
 0,0,0,0,0,1,0,0; 
 0,E*B/a2,0,0,(c1*s^2+E*B^2)/a2,0,-E*B^2/a2,0; 
 0,0,0,0,0,0,0,1; 
 0,-B*E/a3,0,a1/a3,-E*B^2/a3,0,(c2*s^2+E*B^2)/a3,0];   
M=[ 1,0,0,0,0,0,0,0; 
 0,1,0,0,0,0,0,0; 
 0,0,0,0,0,1,0,0; 
 0,0,0,0,0,0,0,1; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0]; 
 
N=[ 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,0,0,0,0,0,0; 
 0,0,1,0,0,0,0,0; 
 0,0,0,0,0,1,0,0; 
 0,0,0,0,0,0,0,1; 
 0,E*(1-B*a1/a3),0,-1/k,E*(B-B^2*a1/a3),0,-E*(B-B^2*a1/a3),0]; 
 
Gamma=[ P 0 0 0 0 0 0 0 ]'; 
 
efs=expm(F); 
 
H=efs*(M+N*efs)^-1; 
H0=eye(8)/(M+N*efs)^-1; 
 
eta=H*Gamma; 
eta0=H0*Gamma; 
z=z+1; 
splot(z)=sr; 
w(z)=abs(real(eta(1))/real(eta0(1))); 
end 
 
Plotting 
semilogy(splot,w) 
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A.2. Finite Element Method for PSOL beam 

 
nem=11; 
l=.15; 
b=.01175; 
hs=.264*1e-3; 
hc=.203*1e-3; 
hv=.127*1e-3; 
hb=2.29*1e-3; 
Gv=1e5*(1+i); 
Gs=1e5*(1+i); 
pb=2850*b*hb; 
pc=2850*b*hc; 
pv=1100*b*hv; 
ps=1100*b*hs; 
Eb=72e9; 
Ec=72e9; 
Es=Gs*2.9; 
Ev=Gv*2.9; 
EAbs=Eb*(hb*b)+Es*(hs*b); 
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2); 
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2); 
EAc=Ec*b*hc; 
EIc=Ec*(b*hc^3/12); 
p=ps+pc+pv+pb; 
Dt=EIbs+EIc; 
alpha=hv+hs+(hb+hc)/2; 
E=b*alpha^2*Gv*Gs*l^2/(Dt*(Gv*hs+Gs*hv)); 
c1=pc/p; 
c2=(pb+ps)/p; 
B=l/alpha; 
a1=EQbs*l/Dt; 
a2=EAc*l*l/Dt; 
a3=EAbs*l*l/Dt; 
 
splot=0; 
 
syms  x  
 
h=1/nem; 
 
v1=1-3*(x/h)^2+2*(x/h)^3; 
v2=-x*(1-x/h)^2; 
v3=3*(x/h)^2-2*(x/h)^3; 
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v4=-x*(x^2/h^2-x/h); 
th1=1-x/h; 
th2=x/h; 
 
for sr=1:100:5000 
 s=sr*i*(p*l^4/Dt)^.5*pi*2; 
 
k1=(1-a1^2/a3); 
k2=(a1/a3*B*E-E); 
k3=B^2*E*a1/a3-B*E; 
k4=B*E-c2*s^2*a1/a3-B^2*E*a1/a3; 
k8=-B*E; 
k5=c1*s^2+B^2*E; 
k6=-B^2*E; 
k7=c2*s^2+B^2*E; 
 

K11=k1*diff(v1,2)*diff(v1,2)+k2*diff(v1,1)*diff(v1,1)+s^2*v1*v1; 
K21=k1*diff(v1,2)*diff(v2,2)+k2*diff(v1,1)*diff(v2,1)+s^2*v1*v2; 
K31=k1*diff(v1,2)*diff(v3,2)+k2*diff(v1,1)*diff(v3,1)+s^2*v1*v3; 
K41=k1*diff(v1,2)*diff(v4,2)+k2*diff(v1,1)*diff(v4,1)+s^2*v1*v4; 
 
K12=k1*diff(v2,2)*diff(v1,2)+k2*diff(v2,1)*diff(v1,1)+s^2*v2*v1; 
K22=k1*diff(v2,2)*diff(v2,2)+k2*diff(v2,1)*diff(v2,1)+s^2*v2*v2; 
K32=k1*diff(v2,2)*diff(v3,2)+k2*diff(v2,1)*diff(v3,1)+s^2*v2*v3; 
K42=k1*diff(v2,2)*diff(v4,2)+k2*diff(v2,1)*diff(v4,1)+s^2*v2*v4; 
 
K13=k1*diff(v3,2)*diff(v1,2)+k2*diff(v3,1)*diff(v1,1)+s^2*v3*v1; 
K23=k1*diff(v3,2)*diff(v2,2)+k2*diff(v3,1)*diff(v2,1)+s^2*v3*v2; 
K33=k1*diff(v3,2)*diff(v3,2)+k2*diff(v3,1)*diff(v3,1)+s^2*v3*v3; 
K43=k1*diff(v3,2)*diff(v4,2)+k2*diff(v3,1)*diff(v4,1)+s^2*v3*v4; 
 
K14=k1*diff(v4,2)*diff(v1,2)+k2*diff(v4,1)*diff(v1,1)+s^2*v4*v1; 
K24=k1*diff(v4,2)*diff(v2,2)+k2*diff(v4,1)*diff(v2,1)+s^2*v4*v2; 
K34=k1*diff(v4,2)*diff(v3,2)+k2*diff(v4,1)*diff(v3,1)+s^2*v4*v3; 
K44=k1*diff(v4,2)*diff(v4,2)+k2*diff(v4,1)*diff(v4,1)+s^2*v4*v4; 
 
K15=k3*diff(th1,1)*v1; 
K25=k3*diff(th1,1)*v2; 
K35=k3*diff(th1,1)*v3; 
K45=k3*diff(th1,1)*v4; 
 
K16=k3*diff(th2,1)*v1; 
K26=k3*diff(th2,1)*v2; 
K36=k3*diff(th2,1)*v3; 
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K46=k3*diff(th2,1)*v4; 
 
K17=k4*diff(th1,1)*v1; 
K27=k4*diff(th1,1)*v2; 
K37=k4*diff(th1,1)*v3; 
K47=k4*diff(th1,1)*v4; 
 
K18=k4*diff(th2,1)*v1; 
K28=k4*diff(th2,1)*v2; 
K38=k4*diff(th2,1)*v3; 
K48=k4*diff(th2,1)*v4; 
 
K51=-k8*diff(v1,1)*th1; 
K61=-k8*diff(v1,1)*th2; 
 
K52=-k8*diff(v2,1)*th1; 
K62=-k8*diff(v2,1)*th2; 
 
K53=-k8*diff(v3,1)*th1; 
K63=-k8*diff(v3,1)*th2; 
 
K54=-k8*diff(v4,1)*th1; 
K64=-k8*diff(v4,1)*th2; 
 
K55=a2*diff(th1,1)*diff(th1,1)+k5*th1*th1; 
K65=a2*diff(th1,1)*diff(th2,1)+k5*th1*th2; 
 
K56=a2*diff(th2,1)*diff(th1,1)+k5*th2*th1; 
K66=a2*diff(th2,1)*diff(th2,1)+k5*th2*th2; 
 
K57=k6*th1*th1; 
K67=k6*th1*th2; 
 
K58=k6*th2*th1; 
K68=k6*th2*th2; 
 
K71=(a1*diff(v1,3)+k8*diff(v1,1))*th1; 
K81=(a1*diff(v1,3)+k8*diff(v1,1))*th2; 
 
K72=(a1*diff(v2,3)+k8*diff(v2,1))*th1; 
K82=(a1*diff(v2,3)+k8*diff(v2,1))*th2; 
 
K73=(a1*diff(v3,3)+k8*diff(v3,1))*th1; 
K83=(a1*diff(v3,3)+k8*diff(v3,1))*th2; 
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K74=(a1*diff(v4,3)+k8*diff(v4,1))*th1; 
K84=(a1*diff(v4,3)+k8*diff(v4,1))*th2; 
 
K75=k6*th1*th1; 
K85=k6*th1*th2; 
 
K76=k6*th2*th1; 
K86=k6*th2*th2; 
 
K77=a3*diff(th1,1)*diff(th1,1)+k7*th1*th1; 
K87=a3*diff(th1,1)*diff(th2,1)+k7*th1*th2; 
 
K78=a3*diff(th2,1)*diff(th1,1)+k7*th2*th1; 
K88=a3*diff(th2,1)*diff(th2,1)+k7*th2*th2; 
 

KK =[ K11, K12, K15, K17, K13, K14, K16, K18; 
 K21, K22, K25, K27, K23, K24, K26, K28; 
 K51, K52, K55, K57, K53, K54, K56, K58; 
 K71, K72, K75, K77, K73, K74, K76, K78; 
 K31, K32, K35, K37, K33, K34, K36, K38; 
 K41, K42, K45, K47, K43, K44, K46, K48; 
 K61, K62, K65, K67, K63, K64, K66, K68; 
 K81, K82, K85, K87, K83, K84, K86, K88]; 
 

K=int(KK,x,0,h); 
 K=double(K); 
 
KO=zeros((nem+1)*4); 
 for n=1:nem 
KO(n*4-3:n*4+4,n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+K; 
 end 
 
KK=zeros(nem*4+1); 
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4); 
KK(1,1)=KO(3,3); 
KK(1,2:5)=KO(3,5:8); 
KK(2:5,1)=KO(5:8,3); 
 
KK((nem-1)*4+2,(nem*4))=KK((nem-1)*4+2,(nem*4))+k3; 
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4; 
 
F=[-KO(1,3);-KO(1,5);-KO(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)]; 
 
X=KK^-1*F; 
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splot=splot+1; 
w(splot)=abs(real(X(nem*4-2))); 
ww(splot)=sr; 
end 
semilogy(ww,w) 
 
A.3. Finite Element Method for slotted PSOL beam 

%nem=input('nem') 
nem=11; 
 
l=.15; 
b=.01175; 
hs=.264*1e-3; 
hc=.203*1e-3; 
hv=.127*1e-3; 
hb=2.29*1e-3; 
Gv=1e5*(1+i); 
Gs=1e5*(1+i); 
CCGs=0; 
pb=2850*b*hb; 
pc=2850*b*hc; 
pv=1100*b*hv; 
ps=1100*b*hs; 
Eb=72e9; 
Ec=72e9; 
Es=Gs*2.9; 
CCEs=0 
Ev=Gv*2.9; 
EAbs=Eb*(hb*b)+Es*(hs*b); 
CCEAbs=Eb*(hb*b); 
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2); 
CCEIbs=Eb*(b*hb^3/12); 
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2); 
CCEQbs=0 
EAc=Ec*b*hc; 
EIc=Ec*(b*hc^3/12); 
p=ps+pc+pv+pb; 
Dt=EIbs+EIc; 
CCDt=CCEIbs+EIc; 
alpha=hv+hs+(hb+hc)/2; 
E=b*alpha^2*Gv*Gs*l^2/(Dt*(Gv*hs+Gs*hv)); 
CCE=b*alpha^2*Gv*CCGs*l^2/(CCDt*(Gv*hs+CCGs*hv)); 
c1=pc/p; 
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c2=(pb+ps)/p; 
B=l/alpha; 
a1=EQbs*l/Dt; 
CCa1=0 
a2=EAc*l*l/Dt; 
CCa2=EAc*l*l/CCDt; 
a3=EAbs*l*l/Dt; 
CCa3=CCEAbs*l*l/CCDt; 
 
splot=0 
syms  x  
h=1/nem; 
v1=1-3*(x/h)^2+2*(x/h)^3; 
v2=-x*(1-x/h)^2; 
v3=3*(x/h)^2-2*(x/h)^3; 
v4=-x*(x^2/h^2-x/h); 
th1=1-x/h; 
th2=x/h; 
%w=w1*v1+w2*v2+w3*v3+w4*v4; 
%uc=uc1*th1+uc2*th2; 
%ub=ub1*th1+ub2*th2; 
 
%sr=1 
for sr=1:10:5000 
 s=sr*i*(p*l^4/Dt)^.5*pi*2; 
 
k1=(1-a1^2/a3); 
cck1=1; 
k2=(a1/a3*B*E-E); 
cck2=-CCE; 
k3=B^2*E*a1/a3-B*E; 
cck3=-B*CCE; 
k4=B*E-c2*s^2*a1/a3-B^2*E*a1/a3; 
cck4=B*CCE; 
k8=-B*E; 
cck8=-B*CCE; 
k5=c1*s^2+B^2*E; 
cck5=c1*s^2+B^2*CCE; 
k6=-B^2*E; 
cck6=-B^2*CCE; 
k7=c2*s^2+B^2*E; 
cck7=c2*s^2+B^2*CCE; 
 

K11=k1*diff(v1,2)*diff(v1,2)+k2*diff(v1,1)*diff(v1,1)+s^2*v1*v1; 
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K21=k1*diff(v1,2)*diff(v2,2)+k2*diff(v1,1)*diff(v2,1)+s^2*v1*v2; 
K31=k1*diff(v1,2)*diff(v3,2)+k2*diff(v1,1)*diff(v3,1)+s^2*v1*v3; 
K41=k1*diff(v1,2)*diff(v4,2)+k2*diff(v1,1)*diff(v4,1)+s^2*v1*v4; 
 
K12=k1*diff(v2,2)*diff(v1,2)+k2*diff(v2,1)*diff(v1,1)+s^2*v2*v1; 
K22=k1*diff(v2,2)*diff(v2,2)+k2*diff(v2,1)*diff(v2,1)+s^2*v2*v2; 
K32=k1*diff(v2,2)*diff(v3,2)+k2*diff(v2,1)*diff(v3,1)+s^2*v2*v3; 
K42=k1*diff(v2,2)*diff(v4,2)+k2*diff(v2,1)*diff(v4,1)+s^2*v2*v4; 
 
K13=k1*diff(v3,2)*diff(v1,2)+k2*diff(v3,1)*diff(v1,1)+s^2*v3*v1; 
K23=k1*diff(v3,2)*diff(v2,2)+k2*diff(v3,1)*diff(v2,1)+s^2*v3*v2; 
K33=k1*diff(v3,2)*diff(v3,2)+k2*diff(v3,1)*diff(v3,1)+s^2*v3*v3; 
K43=k1*diff(v3,2)*diff(v4,2)+k2*diff(v3,1)*diff(v4,1)+s^2*v3*v4; 
 
K14=k1*diff(v4,2)*diff(v1,2)+k2*diff(v4,1)*diff(v1,1)+s^2*v4*v1; 
K24=k1*diff(v4,2)*diff(v2,2)+k2*diff(v4,1)*diff(v2,1)+s^2*v4*v2; 
K34=k1*diff(v4,2)*diff(v3,2)+k2*diff(v4,1)*diff(v3,1)+s^2*v4*v3; 
K44=k1*diff(v4,2)*diff(v4,2)+k2*diff(v4,1)*diff(v4,1)+s^2*v4*v4; 
 
K15=k3*diff(th1,1)*v1; 
K25=k3*diff(th1,1)*v2; 
K35=k3*diff(th1,1)*v3; 
K45=k3*diff(th1,1)*v4; 
 
K16=k3*diff(th2,1)*v1; 
K26=k3*diff(th2,1)*v2; 
K36=k3*diff(th2,1)*v3; 
K46=k3*diff(th2,1)*v4; 
 
K17=k4*diff(th1,1)*v1; 
K27=k4*diff(th1,1)*v2; 
K37=k4*diff(th1,1)*v3; 
K47=k4*diff(th1,1)*v4; 
 
K18=k4*diff(th2,1)*v1; 
K28=k4*diff(th2,1)*v2; 
K38=k4*diff(th2,1)*v3; 
K48=k4*diff(th2,1)*v4; 
 
K51=-k8*diff(v1,1)*th1; 
K61=-k8*diff(v1,1)*th2; 
 
K52=-k8*diff(v2,1)*th1; 
K62=-k8*diff(v2,1)*th2; 
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K53=-k8*diff(v3,1)*th1; 
K63=-k8*diff(v3,1)*th2; 
 
K54=-k8*diff(v4,1)*th1; 
K64=-k8*diff(v4,1)*th2; 
 
K55=a2*diff(th1,1)*diff(th1,1)+k5*th1*th1; 
K65=a2*diff(th1,1)*diff(th2,1)+k5*th1*th2; 
 
K56=a2*diff(th2,1)*diff(th1,1)+k5*th2*th1; 
K66=a2*diff(th2,1)*diff(th2,1)+k5*th2*th2; 
 
K57=k6*th1*th1; 
K67=k6*th1*th2; 
 
K58=k6*th2*th1; 
K68=k6*th2*th2; 
 
K71=(a1*diff(v1,3)+k8*diff(v1,1))*th1; 
K81=(a1*diff(v1,3)+k8*diff(v1,1))*th2; 
 
K72=(a1*diff(v2,3)+k8*diff(v2,1))*th1; 
K82=(a1*diff(v2,3)+k8*diff(v2,1))*th2; 
 
K73=(a1*diff(v3,3)+k8*diff(v3,1))*th1; 
K83=(a1*diff(v3,3)+k8*diff(v3,1))*th2; 
 
K74=(a1*diff(v4,3)+k8*diff(v4,1))*th1; 
K84=(a1*diff(v4,3)+k8*diff(v4,1))*th2; 
 
K75=k6*th1*th1; 
K85=k6*th1*th2; 
 
K76=k6*th2*th1; 
K86=k6*th2*th2; 
 
K77=a3*diff(th1,1)*diff(th1,1)+k7*th1*th1; 
K87=a3*diff(th1,1)*diff(th2,1)+k7*th1*th2; 
 
K78=a3*diff(th2,1)*diff(th1,1)+k7*th2*th1; 
K88=a3*diff(th2,1)*diff(th2,1)+k7*th2*th2; 
 
cK11=cck1*diff(v1,2)*diff(v1,2)+cck2*diff(v1,1)*diff(v1,1)+s^2*v1*v1; 
cK21=cck1*diff(v1,2)*diff(v2,2)+cck2*diff(v1,1)*diff(v2,1)+s^2*v1*v2; 
cK31=cck1*diff(v1,2)*diff(v3,2)+cck2*diff(v1,1)*diff(v3,1)+s^2*v1*v3; 
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cK41=cck1*diff(v1,2)*diff(v4,2)+cck2*diff(v1,1)*diff(v4,1)+s^2*v1*v4; 
 
cK12=cck1*diff(v2,2)*diff(v1,2)+cck2*diff(v2,1)*diff(v1,1)+s^2*v2*v1; 
cK22=cck1*diff(v2,2)*diff(v2,2)+cck2*diff(v2,1)*diff(v2,1)+s^2*v2*v2; 
cK32=cck1*diff(v2,2)*diff(v3,2)+cck2*diff(v2,1)*diff(v3,1)+s^2*v2*v3; 
cK42=cck1*diff(v2,2)*diff(v4,2)+cck2*diff(v2,1)*diff(v4,1)+s^2*v2*v4; 
 
cK13=cck1*diff(v3,2)*diff(v1,2)+cck2*diff(v3,1)*diff(v1,1)+s^2*v3*v1; 
cK23=cck1*diff(v3,2)*diff(v2,2)+cck2*diff(v3,1)*diff(v2,1)+s^2*v3*v2; 
cK33=cck1*diff(v3,2)*diff(v3,2)+cck2*diff(v3,1)*diff(v3,1)+s^2*v3*v3; 
cK43=cck1*diff(v3,2)*diff(v4,2)+cck2*diff(v3,1)*diff(v4,1)+s^2*v3*v4; 
 
cK14=cck1*diff(v4,2)*diff(v1,2)+cck2*diff(v4,1)*diff(v1,1)+s^2*v4*v1; 
cK24=cck1*diff(v4,2)*diff(v2,2)+cck2*diff(v4,1)*diff(v2,1)+s^2*v4*v2; 
cK34=cck1*diff(v4,2)*diff(v3,2)+cck2*diff(v4,1)*diff(v3,1)+s^2*v4*v3; 
cK44=cck1*diff(v4,2)*diff(v4,2)+cck2*diff(v4,1)*diff(v4,1)+s^2*v4*v4; 
 
cK15=cck3*diff(th1,1)*v1; 
cK25=cck3*diff(th1,1)*v2; 
cK35=cck3*diff(th1,1)*v3; 
cK45=cck3*diff(th1,1)*v4; 
 
cK16=cck3*diff(th2,1)*v1; 
cK26=cck3*diff(th2,1)*v2; 
cK36=cck3*diff(th2,1)*v3; 
cK46=cck3*diff(th2,1)*v4; 
 
cK17=cck4*diff(th1,1)*v1; 
cK27=cck4*diff(th1,1)*v2; 
cK37=cck4*diff(th1,1)*v3; 
cK47=cck4*diff(th1,1)*v4; 
 
cK18=cck4*diff(th2,1)*v1; 
cK28=cck4*diff(th2,1)*v2; 
cK38=cck4*diff(th2,1)*v3; 
cK48=cck4*diff(th2,1)*v4; 
 
cK51=-cck8*diff(v1,1)*th1; 
cK61=-cck8*diff(v1,1)*th2; 
 
cK52=-cck8*diff(v2,1)*th1; 
cK62=-cck8*diff(v2,1)*th2; 
 
cK53=-cck8*diff(v3,1)*th1; 
cK63=-cck8*diff(v3,1)*th2; 
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cK54=-cck8*diff(v4,1)*th1; 
cK64=-cck8*diff(v4,1)*th2; 
 
cK55=CCa2*diff(th1,1)*diff(th1,1)+cck5*th1*th1; 
cK65=CCa2*diff(th1,1)*diff(th2,1)+cck5*th1*th2; 
 
cK56=CCa2*diff(th2,1)*diff(th1,1)+cck5*th2*th1; 
cK66=CCa2*diff(th2,1)*diff(th2,1)+cck5*th2*th2; 
 
cK57=cck6*th1*th1; 
cK67=cck6*th1*th2; 
 
cK58=cck6*th2*th1; 
cK68=cck6*th2*th2; 
 
cK71=(CCa1*diff(v1,3)+cck8*diff(v1,1))*th1; 
cK81=(CCa1*diff(v1,3)+cck8*diff(v1,1))*th2; 
 
cK72=(CCa1*diff(v2,3)+cck8*diff(v2,1))*th1; 
cK82=(CCa1*diff(v2,3)+cck8*diff(v2,1))*th2; 
 
cK73=(CCa1*diff(v3,3)+cck8*diff(v3,1))*th1; 
cK83=(CCa1*diff(v3,3)+cck8*diff(v3,1))*th2; 
 
cK74=(CCa1*diff(v4,3)+cck8*diff(v4,1))*th1; 
cK84=(CCa1*diff(v4,3)+cck8*diff(v4,1))*th2; 
 
cK75=k6*th1*th1; 
cK85=k6*th1*th2; 
 
cK76=k6*th2*th1; 
cK86=k6*th2*th2; 
 
cK77=CCa3*diff(th1,1)*diff(th1,1)+cck7*th1*th1; 
cK87=CCa3*diff(th1,1)*diff(th2,1)+cck7*th1*th2; 
 
cK78=CCa3*diff(th2,1)*diff(th1,1)+cck7*th2*th1; 
cK88=CCa3*diff(th2,1)*diff(th2,1)+cck7*th2*th2; 
 
KK =[ K11, K12, K15, K17, K13, K14, K16, K18; 
 K21, K22, K25, K27, K23, K24, K26, K28; 
 K51, K52, K55, K57, K53, K54, K56, K58; 
 K71, K72, K75, K77, K73, K74, K76, K78; 
 K31, K32, K35, K37, K33, K34, K36, K38; 
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K41, K42, K45, K47, K43, K44, K46, K48; 
 K61, K62, K65, K67, K63, K64, K66, K68; 
 K81, K82, K85, K87, K83, K84, K86, K88]; 
 K=int(KK,x,0,h); 
 K=double(K); 
 
cKK =[ cK11, cK12, cK15, cK17, cK13, cK14, cK16, cK18; 
 cK21, cK22, cK25, cK27, cK23, cK24, cK26, cK28; 
 cK51, cK52, cK55, cK57, cK53, cK54, cK56, cK58; 
 cK71, cK72, cK75, cK77, cK73, cK74, cK76, cK78; 
 cK31, cK32, cK35, cK37, cK33, cK34, cK36, cK38; 
 cK41, cK42, cK45, cK47, cK43, cK44, cK46, cK48; 
 cK61, cK62, cK65, cK67, cK63, cK64, cK66, cK68; 
 cK81, cK82, cK85, cK87, cK83, cK84, cK86, cK88]; 
 cK=int(cKK,x,0,h); 
 cK=double(cK); 
 
KO=zeros((nem+1)*4); 
 
for n=1:nem 
 if rem(n,2)==0 
KO(n*4-3:n*4+4,n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+cK; 
 else 
KO(n*4-3:n*4+4,n*4-3:n*4+4)=KO(n*4-3:n*4+4,n*4-3:n*4+4)+K; 
 end 
 end 
KK=zeros(nem*4+1); 
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4); 
KK(1,1)=KO(3,3); 
KK(1,2:5)=KO(3,5:8); 
KK(2:5,1)=KO(5:8,3); 
 
KK((nem-1)*4+2,(nem*4))=KK((nem-1)*4+2,(nem*4))+k3; 
KK((nem-1)*4+2,(nem*4+1))=KK((nem-1)*4+2,(nem*4+1))+k4; 
 
F=[-KO(1,3);-KO(1,5);-KO(1,6);-KO(1,7);-KO(1,8);zeros(nem*4-4,1)]; 
X=KK^-1*F; 
splot=splot+1; 
w(splot)=abs(real(X(nem*4-2))); 
ww(splot)=sr; 
 
end 
semilogy(ww,w)  
A.4. ANSYS program  
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/PREP7   
ET,1,PLANE183    
KEYOPT,1,3,3 
KEYOPT,1,6,0 
KEYOPT,1,10,0    
DOF,DELETE   
DOF,UX,UY,ROTZ   
R,1,.01175,  
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,1,,2700  
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,70E9    
MPDATA,PRXY,1,,.35   
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,2,,1100  
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,2,,2.9E5   
MPDATA,PRXY,2,,.45   
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DAMP,2,,1e-5 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,3,,1100  
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,3,,2.9E8   
MPDATA,PRXY,3,,.45   
K,1,,,,  
K,2,.15,,,   
K,3,0.15,.00229,,    
K,4,0,0.00229,,  
K,5,0,0.00493,,  
K,6,0.15,0.00493,,   
K,7,0.15,0.005057,,  
K,8,0,0.005057,, 
K,9,0,0.00526,,  
K,10,0.15,0.00526,,  
K,10,0.15,0.00526,,  
LSTR,       1,       2   
LSTR,       2,       3   
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LSTR,       3,       4   
LSTR,       4,       1   
LSTR,       4,       5   
LSTR,       5,       6   
LSTR,       6,       3   
LSTR,       5,       8   
LSTR,       8,       7   
LSTR,       7,       6   
LSTR,       8,       9   
LSTR,       9,      10   
LSTR,      10,       7   
FLST,2,4,4   
FITEM,2,1    
FITEM,2,2    
FITEM,2,3    
FITEM,2,4    
AL,P51X  
FLST,2,4,4   
FITEM,2,3    
FITEM,2,5    
FITEM,2,6    
FITEM,2,7    
AL,P51X  
FLST,2,4,4   
FITEM,2,6    
FITEM,2,8    
FITEM,2,9    
FITEM,2,10   
AL,P51X  
FLST,2,4,4   
FITEM,2,9    
FITEM,2,11   
FITEM,2,12   
FITEM,2,13   
AL,P51X  
TYPE,   1    
MAT,       1 
REAL,       1    
ESYS,       0    
SECNUM,  
FLST,2,2,5,ORDE,2    
FITEM,2,1    
FITEM,2,4    
AESIZE,P51X,.001,    
MSHAPE,0,2D  
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MSHKEY,1 
FLST,5,2,5,ORDE,2    
FITEM,5,1    
FITEM,5,4    
CM,_Y,AREA   
ASEL, , , ,P51X  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
TYPE,   1    
MAT,       2 
REAL,       1    
ESYS,       0    
SECNUM,  
FLST,2,1,5,ORDE,1    
FITEM,2,2    
AESIZE,P51X,0.001,   
CM,_Y,AREA   
ASEL, , , ,       2  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
TYPE,   1    
MAT,       2 
REAL,       1    
ESYS,       0    
SECNUM,  
FLST,2,1,5,ORDE,1    
FITEM,2,3    
AESIZE,P51X,0.001,   
CM,_Y,AREA   
ASEL, , , ,       3  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
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CMDELE,_Y1   
CMDELE,_Y2   
ACLEAR,       2  
TYPE,   1    
MAT,       3 
REAL,       1    
ESYS,       0    
SECNUM,  
FLST,2,1,5,ORDE,1    
FITEM,2,2    
AESIZE,P51X,0.001,   
TYPE,   1    
MAT,       3 
REAL,       1    
ESYS,       0    
SECNUM,  
/UI,MESH,OFF 
/PREP7   
TYPE,   1    
MAT,       3 
REAL,       1    
ESYS,       0    
SECNUM,  
FLST,2,1,5,ORDE,1    
FITEM,2,2    
AESIZE,P51X,.001,    
CM,_Y,AREA   
ASEL, , , ,       2  
CM,_Y1,AREA  
CHKMSH,'AREA'    
CMSEL,S,_Y   
AMESH,_Y1    
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2   
/UI,MESH,OFF 
FINISH 
 

/SOL 
ANTYPE,3 
FLST,2,2,3,ORDE,2    
FITEM,2,1    
FITEM,2,4    
/GO  
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DK,P51X, ,0, ,0,UX,ROTZ, , , , , 
FLST,2,1,3,ORDE,1    
FITEM,2,1    
/GO  
DK,P51X, ,1, ,0,UY, , , , , ,    
HARFRQ,0,5000,   
NSUBST,50,   
KBC,1    
SOLVE    
FINISH   
 

/POST26  
FINISH   
/POST1   
INRES,BASIC  
FILE,'file','rst','.'    
SET,LAST 
FINISH   
/POST26  
FILE,'file','rst','.'    
/UI,COLL,1   
NUMVAR,200   
SOLU,191,NCMIT   
STORE,MERGE  
FILLDATA,191,,,,1,1  
REALVAR,191,191  
NSOL,3,2,U,Y,UY_3    
STORE,MERGE  
FINISH   
/SOL 
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