ABSTRACT
Title of Thesis: PASSIVE STAND-OFF LAYER DAMPING TREATMENT: THEORY AND EXPERIMENTS
Degree candidate: Atif H. Chaudry
Degree and year: Master of Science, 2006
Thesis directed by: Professor Amr Baz
Department of Mechanical Engineering

One of the techniques used to enhance the damping characteristics of constrained damping treatments utilizes a spacer layer, called a "stand-off" layer, which is sandwiched between the viscoelastic layer and the base structure. This "stand-off" layer acts as a strain magnifier that magnifies the shear strain in the viscoelastic layer by virtue of increasing the distance between the viscoelastic layer and the neutral axis of the base structure. The "stand-off" layer must have high shear stiffness and must not significantly affect the bending stiffness of the composite structure in order to achieve high damping characteristics. Slotted "stand-off" layers are used to achieve such high shear stiffness and low bending stiffness. In these slotted "stand-off" layer, the geometry of the slots play a very important role in determining the effectiveness of the damping treatment. It is therefore the purpose of this dissertation to model the dynamics and damping characteristics of Passive Stand-off damping treatments using distributed-parameter approach as well as the finite element method. The predictions of the developed models
are validated against the predictions of commercially available finite element software (ANSYS) and against experimental results. Close agreements are found between the predictions of the developed models, ANSYS models, and the experimental results.

The developed models present accordingly a valuable means for designing effective and optimal passive stand-off damping treatments for beams. The models can be easily extended to passive stand-off damping treatments for more complex structures such as plates and shells.

PASSIVE STAND-OFF LAYER DAMPING TREATMENT: THEORY AND EXPERIMENTS

by
Atif H. Chaudry
Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Master of Science
2006

Advisory Committee: 1
Professor Amr Baz, Chair/Advisor
Professor Balakumar Balachandran
Assistant Professor Miao Yu

©Copyright by
Atif Hussain Chaudry

Acknowledgements

All praise is due to Allaah, I praise him, seek His help, and ask for his forgiveness. Peace and Blessings of Allah be upon His Slave and His Messenger, Prophet Mohammed. Thanks to Allaah, the most Merciful, the most Gracious, for all the uncountable bounties He has granted me and for helping me to successfully finish my research.

Special thanks are offered to Dr. Amr Baz for his encouragement, advice, and guidance throughout my graduate study as well as in completing this research.

I also would like to express my thanks to all my friends at Islamic Center of Maryland and Dar-us-Salaam for their support and encouragement.

I deeply appreciate the help of my friend and colleague Dr. Adel ElSabbagh for his support whenever I most needed it and to all my friends at the University of Maryland.

Finally, this thesis is dedicated to my grandfather, now diagnosed with terminal cancer, for his love and unfailing support and patience, who perhaps has lost his ability to listen and communicate, who I hope recovers from his illness so I can give him the news that he waited for so long to hear. May Allaah give him recovery and grant him good of this world and hereafter.

TABLE OF CONTENTS

Acknowledgements ii
List Of Tables v
List Of Figures vi
Nomenclature x

1. Introduction 1
1.1 Passive Damping 1
1.2 Literature Review 8
1.3 Thesis Oultine 9
1.4 Summary 10
2. Derivation of Equations of Motion 11
2.1 Assumptions 11
2.2 Kinematic Equations 12
2.3 Constitutive Equations 14
2.4 Equilibrium Equations 16
2.5 Moment Equilibrium Equations 19
2.6 Boundary Conditions 27
2.7 Summary 28
3. Distributed Transfer Function Solution Method 29
3.1 Solution By Distributed Parameter Systems Transfer Function Method 29
3.2 Equations In State Space Form 31
3.3 Boundary Conditions 33
3.4 Solution. 34
3.5 Summary 35
4. Finite Element Model 36
4.1 Solution By Finite Element Method 36
4.2 Derivation Of Element Equations 37
4.3 Interpolation Functions. 39
4.4 Assembly Of Matrices 45
4.5 Application of the Boundary Conditions 47
4.6 Summary 49
5. Computer Implementation 50
5.1 Distributed Transfer Function Method 50
5.2 Finite Element Method. 56
5.3 Slotted Psol Finite Element Model Matlab Program. 63
5.4 Summary 64
6. ANSYS Modeling and Comparison 65
6.1 Overview 65
6.2 Damping In Ansys 65
6.3 Modeling In Ansys 67
6.4 Comparison 68
6.5 Summary 73
7. Experimental Verification 74
7.1 Experimental Setup 74
7.2 Summary 92
8. Effect of PSOL Parameters on its Damping Characteristics. 93
8.1 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is Undamped 95
8.2 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is Damped 96
8.3 Effect Of Young's Modulus Of Vem And Sol Layers When Sol Layer Is Damped. 97
8.4 Effect Of Thickness And Strength Of Constraining Layer 99
8.5 Effect Of Elastic And Shear Modulii Of The Stand-Off Layer When Loss Factor $=1$ 100
8.6 Effect Of Thickness And Strength Of The Stand-Off Layer When Loss Factor $=0$ 102
8.7 Summary 103
9. Conclusions and Recommendations 104
Appendix 110
Computer Program Codes 110
References 128

List Of Tables

Table (1) - The main geometrical and physical parameters of the tested PSOL treatments

Table (2) - Comparison between the theoretical and experimental modal characteristics of the 5 mm thick plain beam

Table (3) - Comparison between the theoretical and experimental modal characteristics of the 3 mm thick plain beam

Table (4) - Comparison between the theoretical and experimental modal characteristics of the 3.5 mm thick beam with unslotted SOL

Table (5) - Comparison between the theoretical and experimental modal characteristics of the 3.5 mm thick beam with slotted SOL near free end 86

Table (6) - Comparison between the theoretical and experimental modal characteristics of a beam with slotted PSOL machined near free end 88

Table (7) - Comparison between the theoretical and experimental modal characteristics of a beam with 27-slot PSOL 90

Table (8) - Comparison between the theoretical and experimental modal characteristics of a beam with 40 -slot PSOL

List Of Figures

Figure Page
Figure (1) - Unconstrained viscoelastic damping. 2
Figure (2) - Stress profile of a beam cross-section subjected to axial load 3
Figure (3) - Constrained Layer Damping 4
Figure (4) - Shear in Viscoelastic Layer due to Constraining Layer 4
Figure (5) - PSOL Damping 5
Figure (6) - Increased elastic strength due to high stiffness Stand-off layer 6
Figure (7) - Reduced shear in viscoelastic layer due to low stiffness stand-off layer 6
Figure (8) - Slotted PSOL Damping 7
Figure (9) - Axial Deflection of layers 12
Figure (10) - Total Axial Deflection of layers 13
Figure (11) - Base Beam and stand-off Layer Axial Forces 17
Figure (12) - Constraining Layer Axial Force 17
Figure (13) - Base Beam and stand-off Layer Lateral Forces 18
Figure (14) - Viscoelastic Layer Lateral Forces 18
Figure (15) - Constraining Layer Lateral Forces 19
Figure (16) - Base beam\& stand off layer equilibirium 19
Figure (17) - Viscoelastic layer equilibirium 20
Figure (18) - Constraining layer equilibirium 20
Figure (19) - Damping in ANSYS 66
Figure (20) - Modeling in ANSYS 67
Figure (21) - Meshed Model in ANSYS 67
Figure (22) - Response of plain beam using the distributed transfer function method 68
Figure (23) - Response of the plain beam using the developed FEM 69
Figure (24) - Response of the plain beam using the developed ANSYS 69Figure (25) - Comparison between the response of plain beam using the differentmethods70
Figure (26) - Response of a beam with SOL using the distributed transfer functionmethod71
Figure (27) - Response of a beam with SOL using the developed FEM 72
Figure (28) - Response of a beam with SOL using ANSYS 72
Figure (29) - Comparison between the response of a beam with SOL using the
different methods 73
Figure (30) - Temperature-loss factor characteristics for Acrylic 75
Figure (31) - Temperature-storage modulus characteristics for Acrylic 75
Figure (32) - Master Curves for Acrylic 76
Figure (33) - Experimental Setup 77
Figure (34) - 5 mm thick plain beam (model 1) 79
Figure (35) - Comparison between the theoretical and experimental frequency response of 5 mm thick plain beam 80
Figure (36) - 3 mm thick plain beam (model 2) 81

Figure (37) - Comparison between the theoretical and experimental frequency response of 5 mm thick plain beam 82

Figure (38) - 3.5 mm thick beam with unslotted SOL (model 3)
Figure (39) - Response for beam model 3 with unslotted stand-off layer treated in middle84

Figure (40) - 3.5 mm thick beam with slotted PSOL (model 4) 85
Figure (41) - Frequency response of a beam with slotted PSOL machined at the center 86
Figure (42) - 3.5 mm thick beam with slotted PSOL machined at free end (model 5) 87
Figure (43) - Frequency response of a beam with slotted PSOL machined at free end 88
Figure (44) - 3.125 mm thick beam with a 40-slot PSOL (model 6) 89
Figure (45) - Frequency response of a beam with a 27-slot PSOL 90
Figure (46) - 3.125 mm thick beam with a 40-slot PSOL (model 7) 91
Figure (47) - Frequency response of a beam with a 40-slot PSOL 92
Figure (48) - A typical frequency response of a beam with PSOL defining the performance index AUC

Figure (49) - Iso-contours of the AUC as a function of the thickness of the VEM and SOL Layers when the SOL layer is undamped

Figure (50) - Iso-contours of the AUC as a function of the thickness of the VEM and SOL Layers when the SOL layer is damped

Figure (51) - Iso-contours of the AUC as a function of the strength of the VEM and SOL Layers when the SOL layer is damped

Figure (52) - Iso-contours of the AUC as a function of the strength and thickness of the constraining layer

99

Figure (53) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL Layer when the loss factor $=1$

Figure (54) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL Layer when the loss factor $=0$103

Figure (55) - Passive constrained layer plate with stand-off layer patches 106
Figure (56) - Cylindrical Shell with Slotted Stand-off layer 107
Figure (57) - Variation of geometry of layers along the length of the 108
Figure (58) - Passive stand-off layer treated beam with lateral strain in the layers 109

Nomenclature

A	cross sectional area
b	width of all layers
E	Modulus of Elasticity
f	Externally applied surface loads
G	Complex shear Modulus
h_{b}	thickness of base beam
h_{c}	thickness of constraining layer
h_{v}	thickness of viscoelastic layer
h_{s}	thickness of stand-off layer
I	Second moment of area
K	curvature of composite beam
l	length of all layers
p	internal normal forces
q	Externally applied body loads
T	Axial Tension
$u_{b}{ }^{\prime}$	axial deflection in base beam at neutral axis
u_{b}	normalized axial deflection in base beam at neutral axis
$u_{c}{ }^{\prime}$	axial deflection in constraining layer

u_{c}	normalized axial deflection in constraining layer
V	Lateral Force
w^{\prime}	lateral deflection of the composite beam
w	normalized lateral deflection of the composite beam
y	Distance from N.A. in composite beam
y_{b}	$=\frac{h_{b}}{2}$

Greek Symbols

$\varepsilon_{0} \quad$ Axial Strain at neutral axis of base beam
$\varepsilon_{x} \quad$ Axial Strain across composite beam
$\gamma^{\prime} \quad$ Angular deformation at viscoelastic layer
$\gamma \quad$ Normalized angular deformation at viscoelastic layer
$\rho \quad$ mass per unit length
$\psi^{\prime} \quad$ Angular deformation at stand-off layer
$\psi \quad$ Normalized angular deformation at stand-off layer
$\tau \quad$ Shear Stress
subscripts
b, s, v, c base beam, stand-off layer, viscoelastic material, and constraining layer respectively.

CHAPTER 1

Introduction

1.1 Passive Damping

Vibration damping is used to control and reduce undesirable vibration so that its harmful and unwanted effects are minimized. The energy dissipating mechanism of vibration control systems is known as damping. For passive damping treatments, viscoelastic materials are used as effective means for dissipating energy. Two types of methods are generally employed for the control of vibrations. These methods are namely: passive and active vibration control. In the Passive damping approach, damping layers are added to the structure in order to enhance its energy dissipation characteristics [1]. In the Active damping approach energy is dissipated from vibrating system through the use of external systems, such as control actuator, etc. Active vibration control systems are more expensive and less reliable than the passive damping systems.

Hence, the emphasis is placed in this dissertation on the intelligent use of viscoelastic damping treatments bonded to the base structure. Figure (1) shows the simplest approach of using viscoelastic treatments in their unconstrained form.

Viscoelastic Layer

Base Structure

Figure (1) - Unconstrained viscoelastic damping

The viscoelastic material dissipates energy of the base structure when it is subject to acceleration, velocity or deflections. The viscoelastic material affects both the damping and stiffness of the system in a complex fashion as its properties vary with frequency and the operating temperature. The dissipation of energy is both due to direct strain and shear strain of the damping layer. In the case of plate and beam bending, the direct strain varies linearly as the distance from the neutral axis of the base beam/plate as shown in Figure (2). The greatest direct strain occurs at the farthest surfaces from the neutral surface. Therefore damping treatments are attached to those surfaces of the base structure that are as far as possible from the neutral axis. The bending stress and therefore the direct strain at the neutral axis of the viscoelastic treated beam are zero and are very small around the neutral axis [1].

Figure (2) - Stress profile of a beam cross-section subjected to axial load

When the viscoelastic layer is attached alone to the outer surface of the beam, it is called unconstrained layer damping. Generally the properties of the viscoelastic materials are such that they tend to dissipate more energy when subjected to shear strain and direct strain. The transverse shear strain in a vibrating beam is greatest at the neutral axis and zero at the edges. Therefore, a viscoelastic layer bonded to the surface of the beam experiences negligible shear stress. Hence, the beam damping characteristics remain largely unchanged. To increase the shear strain in the viscoelastic material, the viscoelastic layer is sandwiched between two layers, the beam and the constraining layer plate. Thus both high direct and shear strains are thought to be produced in the viscoelastic layer, resulting in increased energy dissipation. This type of damping is called constrained layer damping as shown in Figures (3) and (4).

base beam
Figure (3) - Constrained Layer Damping

Both constrained and unconstrained layer damping treatments have advantages and disadvantages. Constrained layer damping treatment results in greater energy dissipation and can rely in its operation on low stiffness viscoelastic material.

Figure (4) - Shear in Viscoelastic Layer due to Constraining Layer

Unconstrained layer damping treatment produces less energy dissipation and requires high stiffness viscoelastic material but it can be used for extensional damping and can be easily
applied to the surface of the base structure. It can be added to the surface in the form of tiles or sheets or can even be sprayed on the surface for some applications.

One of the techniques used to increase the distance between the viscoelastic layer and the neutral axis of the base structure is the introduction of a spacer layer between the viscoelastic layer and the base structure as shown in Figure (5). Such an increase increases the strain and therefore the damping. This spacer layer is called "stand -off" layer and acts as a strain magnifier [2].

(a) - undeformed

Figure (5) - PSOL Damping

This arrangement is called the Passive Stand-Off Layer (PSOL) Damping. In the PSOL, the
spacer layer must have high shear stiffness and at the same time must not significantly affect the bending stiffness of the composite beam. If the stand-off layer has high bending stiffness it will have no other effect than increasing the flexural rigidity of the constrained layer beam and thus will negatively affect the damping performance of the constrained layer treatment as shown in Figure (6).

Figure (6) - Increased elastic strength due to high stiffness Stand-off layer

If the stiffness of the stand-off layer is weak then the strain will be absorbed in the weak layer and the viscoelastic layer will not experience enough strain to induce significant damping as illustrated in Figure (7).

Figure (7) - Reduced shear in viscoelastic layer due to low stiffness stand-off layer

One method of avoiding this increase in flexural strength of the treated beam is to use slotted stand-off layer of very high shear strength compared to the viscoelastic material as shown in Figure (8).

Figure (8) - Slotted PSOL Damping

In the slotted stand-off layer treatment, the geometry of the slots should be such that the stand-off layer does not significantly contributed to the flexural rigidity of the base structure but also has enough shear strength such that it does not absorb shear deformation that is desired to be passed on to the viscoelastic layer (i.e., it should pass on the shear stress to the viscoelastic layer).

1.2 Literature Review

The stand-off layer concept was first introduced by Whittier [2], who suggested that a spacer layer be introduced between the viscoelastic layer and the vibrating structure. The spacer layer moves the viscoelastic layer away from the neutral axis of the base structure. The shear strain is magnified by this displacement of the viscoelastic layer away from the neutral axis where the strain is a minimum. Most of the studies on passive stand-off layer damping assume ideal conditions of the stand-off layer, i.e. the stand-off layer is assumed to have infinite shear stiffness. Therefore, the SOL does not exhibit shear strain and permits the shear stress to be passed to the viscoelastic layer. Furthermore, the SOL is assumed to have zero bending stiffness and accordingly it does not contribute to the flexural rigidity of the beam. Some of theses studies include theoretical and experimental work by Roger and Parin [3], Falugi [4], Falugi et al. [5], and Parin et al. [6] on slotted stand-off layer damping partially applied to airplane wings and plates. Garrison et al. [7] presented an analytical model of a beam treated passive stand-off layer damping. Tao et al. [8] confirmed with experimental and finite element analysis the effectiveness of slotted stand-off layer with the above mentioned assumptions

The first attempt to include shear strain of the stand-off layer was done by Mead [1] which considers shear stiffness and internal loss in the stand-off layer but his model did not include the affect of the stand-off layer on the bending characteristics and strength of the composite beam.

Yellin, et al. [9] developed an analytical model for the passive stand-off layer damping treatment
using the distributed transfer function method. They treated the base beam and stand-off layer as a composite beam and the stand-off layer is assumed to be modeled as a Euler-Bernoulli beam. However, their model can not handle slotted stand-off layers.

This thesis attempts to develop a finite element model in order to extend the applicability of the model developed by Yellin, et al. [9] to include the geometry of the slots. The developed finite element model accounts for finite bending stiffness and shear strength and allows for variability in the properties of stand-off layer across the length of layer.

1.3 Thesis Oultine

This thesis attempts to analytically model the dynamics and damping characteristics of passive stand-off layer treatment using the Distributed Transfer Function Method developed by Yang and Tan [10]. Furthermore, a finite element model of the stand-off layer constrained damping treatment will also be developed. The finite element model of the PSOL damping treatment is altered to include slots in the stand-off layer. The model enables investigation of the effect of the geometry of the slots, the thickness of the viscoelastic layer, stand-off layer and the constraining. The predictions of the finite element model are checked and compared by modeling of the passive stand-off layer damping treatment on the commercial finite element software ANSYS. Shape and geometry of the slotted stand-off layer for the optimal damping treatment are determined. Finally the prototypes of slotted stand-off layer treatment are manufactured and tested experimentally. The experimental results are compared with the theoretical predictions.

Therefore, the thesis is organized in eight chapters. In chapter 1, a brief introduction is presented. Chapter 2 presents the equations of motion of PSOL and in Chapter 3, the performance is obtained using the distributed transfer function method. In chapter 4, the finite element model (FEM) of the PSOL is developed and Chapter 5 presents the computer implementation of the FEM. Chapter 6 presents comparisons between the predictions of the FEM and the predictions obtained by commercial finite element software (ANSYS). Chapter 7 presents comparisons with experimental results and Chapter 8 presents the effect of the parameters of the SOL on its performance characteristics. Chapter 9 summarizes the conclusions and recommendations for future work.

1.4 Summary

This chapter has presented briefly the concept of passive stand-off layer (PSOL) damping treatments as a simple and effective means for enhancing the damping charactersitics of constrained layer damping. The outline of the thesis dissertation is presented and a brief review of the literature is summarized in an attampt to justify the need and emphasize the importance of the present study.

CHAPTER 2

Derivation of Equations of Motion

2.1 Assumptions

The following is breif summary of the basic assumptions considered in the analysis of passive stand-off layers.

- Small displacement amplitudes
- Lateral deflection for all layers remains the same.
- No shear deformation in the base beam and the constraining layer.
- The viscoelastic layer is assumed to have no bending stiffness and therefore deforms only in pure shear.
- System has steady state response to the external harmonic excitation. Therefore Complex modulus can be used for viscoelastic and standoff layers
- Standoff layer is continuous and solid in the initial model.
- Stand Off layer and base beam layer are modeled as asymmetric composites so that planes remain planes under combined bending and axial loads.
- Stand off layer has finite shear stiffness, hence Shear deformation occurs in stand off layer when shear loads are present.
- Bending and shear stiffness of stand Off layer is less than that of the base beam and
constraining layer.
This assumption is made to simplify the model by assuming that all shear deformations occur in two core layers.

2.2 Kinematic Equations

SHEAR ANGLE FOR STAND OFF LAYER \& VISCOELASTIC LAYER.

The shear deformation in the two layers is due to the

- Difference in axial deformation of the base beam and the constraining layer
- Lateral deflection of the beam

The deformation for the two cases are calculated separately and then add to determine the total deflection.

Deformation due to deformation of the base beam and the constraining layer in axial direction.
As shown in Figure(9), it is given by

$$
\begin{equation*}
u_{c}{ }^{\prime}-u_{b}^{\prime} \tag{1}
\end{equation*}
$$

Figure (9) - Axial Deflection of layers
where $u_{b}{ }^{\prime}$ and $u_{c}{ }^{\prime}$ are the axial deflections of the beam and the constraining layers respectively.

Axial Deformation due to lateral deflection of the base beam and constraining layer,

$$
\begin{equation*}
\frac{\partial w^{\prime}}{\partial x^{\prime}}\left(\frac{h_{b}}{2}+h_{s}+h_{v}+\frac{h_{c}}{2}\right) \tag{2}
\end{equation*}
$$

Hence, the total deformation δ, shown in Figure (10), is given by

$$
\begin{equation*}
\delta=\left(u_{c}^{\prime}-u_{b}^{\prime}\right)+\frac{\partial w^{\prime}}{\partial x^{\prime}}\left(\frac{h_{c}}{2}+h_{s}+h_{v}+y_{b}\right) \tag{3}
\end{equation*}
$$

which is the sum of the defomrations due to axial and lateral deformations.
Note that w^{\prime} and x^{\prime} denote the transverse deflection of the composite beam and the axial coordinate along the beam. Furthermore, h_{i} denotes the thickness of the $i^{\text {th }}$ layer where the subscript $i=c=$ constraining layer, $i=v=$ viscoelastic layer, $i=s=$ stand-off layer, and $i=b=$ beam. Note that the primes denote non-normalized variables.

Figure (10) - Total Axial Deflection of layers
For small displacement magnitudes the deformation can be expressed in terms of angular
displacement as

$$
\begin{equation*}
h_{s} \psi^{\prime}+h_{v} \gamma^{\prime} \tag{4}
\end{equation*}
$$

where γ^{\prime} and ψ^{\prime} denote the shear strains in the viscoelastic and stand-off layers.

Comparing the above two equations

$$
\begin{equation*}
h_{s} \psi^{\prime}+h_{v} y^{\prime}=\left(h_{s}+h_{v}+\frac{h_{c}}{2}+y_{b}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}}+\left(u_{c}^{\prime}-u_{b}^{\prime}\right) \tag{5}
\end{equation*}
$$

Rearranging in terms of ψ^{\prime} gives

$$
\begin{equation*}
\psi^{\prime}=\frac{u_{c}^{\prime}-u_{b}^{\prime}}{h_{s}}+\left(1+\frac{h_{c}+2 h_{v}+2 y_{b}}{2 h_{s}}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}} \tag{6}
\end{equation*}
$$

2.3 Constitutive Equations

For Base Beam and Stand-off layer

Using the composite beam theory for base beam and SOL, then the axial strain ε_{o} at the neutral axis of the base beam is given by

$$
\begin{equation*}
\varepsilon_{o}=\frac{\partial u_{b}^{\prime}}{\partial x^{\prime}} \tag{7}
\end{equation*}
$$

and the curvature κ of composite beam

$$
\begin{equation*}
\kappa=\frac{\partial^{2} \omega^{\prime}}{\partial x^{\prime 2}} \tag{8}
\end{equation*}
$$

Therefore, the axial strain ε_{x} across the composite beam (i.e., the base beam and SOL) is given by:

$$
\begin{equation*}
\varepsilon_{x}=\varepsilon_{o}-y \kappa \tag{9}
\end{equation*}
$$

Hence, the stress σ_{x} in the axial direction for base beam becomes:

$$
\begin{equation*}
\sigma_{x}=E_{b}\left(\varepsilon_{o}-y \kappa\right) \tag{10}
\end{equation*}
$$

and for the SOL

$$
\begin{equation*}
\sigma_{x}=E_{s}\left(\varepsilon_{o}-y \kappa\right) \tag{11}
\end{equation*}
$$

The total axial force $T_{b s}$ across the base beam and SOL can be determined by integrating across the cross-section to give:

$$
\begin{equation*}
T_{b s}=\int_{b, s} \sigma_{x} A=(E A)_{b s} \varepsilon_{o}-(E Q)_{b s} \kappa \tag{12}
\end{equation*}
$$

where (EA) $)_{\text {bs }}$ is axial rigidity of the composite base beam/stand-off layer

$$
\begin{equation*}
(E A)_{b s}=E_{b} A_{b}+E_{s} A_{s} \tag{13}
\end{equation*}
$$

and $(E Q)_{\mathrm{bs}}$ is product of first moment of area of each layer and its Elastic Modulus.

$$
\begin{equation*}
(E Q)_{b s}=E_{b} Q_{b}+E_{s} Q_{s} \tag{14}
\end{equation*}
$$

Similarly, the total moment $M_{b s}$ acting across the composite of base beam/stand-off layers can be determined from

$$
\begin{equation*}
M_{b, s}=-\int_{b, s} \sigma_{x} y d A=-(E Q)_{b s} \varepsilon_{o}+(E I)_{b s} \kappa \tag{15}
\end{equation*}
$$

where fluexural rigidity $\left(E I_{b s}\right.$ is defined as

$$
\begin{equation*}
\left(E I_{b s}=E_{b} I_{b}+E_{s} I_{s}\right. \tag{16}
\end{equation*}
$$

The moments the base beam and stand-off layer $\boldsymbol{M}_{\boldsymbol{b}, \boldsymbol{s}}$ are taken from the neutral axis of the base beam.

For Constraining Layer

The internal axial tension T_{c} in the constraining layer can be found by the equation

$$
\begin{equation*}
\mathrm{T}_{c}=\mathrm{E}_{c} h_{c} b \frac{\partial u_{c}{ }^{\prime}}{\partial x^{\prime}} \tag{17}
\end{equation*}
$$

The bending moment M_{c} of the constraining layer is give by the equation

$$
\begin{equation*}
\mathrm{M}_{c}=\frac{\mathrm{E}_{c} b h_{c}^{3}}{12} \frac{\partial^{2} w^{\prime}}{\partial x^{\prime 2}} \tag{18}
\end{equation*}
$$

For Viscoelastic and stand-off Layer

The constitutive equations for the viscoelastic layer and the stand-off layer in the Laplace transform domain are given as

$$
\begin{equation*}
\tau_{v}=G_{v} \gamma^{\prime} \text { and } \tau_{s}=G_{s} \psi^{\prime} \tag{19}
\end{equation*}
$$

where Gv and Gs denote the shear modulii of the viscoelastic layer and the SOL.

2.4 Equilibrium Equations

Axial Direction
a. base beam and stand-off layer composite

From Figure (11), Newton's second law gives

$$
\begin{equation*}
\frac{d \mathrm{~T}_{b s}}{d x^{\prime}}+\tau_{s} b+f_{b s}=\left(\rho_{b}+\rho_{s}\right) \ddot{u}_{b}^{\prime} \tag{20}
\end{equation*}
$$

Figure (11) - Base Beam and stand-off Layer Axial Forces
b. constraining layer in axial direction

From Figure (12), Newton's second law gives

$$
\begin{equation*}
\frac{d \mathrm{~T}_{c}}{d x^{\prime}}+\tau_{v} b+f_{c}=\rho_{c} \ddot{u}_{c}^{\prime} \tag{21}
\end{equation*}
$$

Figure (12) - Constraining Layer Axial Force

Lateral Direction

The following equations are results of the application of Newton's scond law applied in the lateral direction
a.Base beam and stand-off layer:

From Figure (13),

$$
\begin{equation*}
\frac{d V_{b s}}{d x^{\prime}}-p_{s}+q_{b s}=\left(\rho_{b}+\rho_{s}\right) \ddot{w}^{\prime} \tag{22}
\end{equation*}
$$

Figure (13) - Base Beam and stand-off Layer Lateral Forces
b. Viscoelastic Layer:

From Figure (14),

$$
\begin{equation*}
\frac{d V_{v}}{d x^{\prime}}-p_{c}+p_{s}+q_{v}=\rho_{v} \ddot{w}^{\prime} \tag{23}
\end{equation*}
$$

Figure (14) - Viscoelastic Layer Lateral Forces
c. Constraining layer

From Figure (15),

$$
\begin{equation*}
\frac{d V_{c}}{d x^{\prime}}+p_{c}+q_{c}=\rho_{c} \ddot{w}^{\prime} \tag{24}
\end{equation*}
$$

Figure (15) - ConstrainingLayer Lateral Forces

2.5 Moment Equilibrium Equations

a. Base Beam and stand-off layer

From Figure (16),

$$
\begin{equation*}
\frac{d \mathrm{M}_{b s}}{d x^{\prime}}+V_{b s}-\tau_{s} b\left(h_{s}+y_{b}\right)=0 \tag{25}
\end{equation*}
$$

Figure (16) - Base beam\& stand off layer equilibirium
b. Viscoelastic Layers

From Figure (17),

$$
\begin{equation*}
V_{v}=\tau_{v} b h_{v} \tag{26}
\end{equation*}
$$

Figure (17) - Viscoelasticlayer equilibirium
c.Constraining layer

$$
\begin{equation*}
\frac{d M_{c}}{d x^{\prime}}+V_{c}+\tau_{v} b \frac{h_{c}}{2}=0 \tag{27}
\end{equation*}
$$

Figure (18) - Constraining layerequilibirium

In equations (20) through (27), \boldsymbol{b} denotes the beam width, τ_{i} is the shear stress, $\boldsymbol{p}_{\boldsymbol{i}}$ defines the internal normal forces per unit length, \boldsymbol{q}_{i} is the externally applied body forces per unit length, $\boldsymbol{V}_{\boldsymbol{i}}$ and $\boldsymbol{M}_{\boldsymbol{i}}$ denote the shear force and moment acting on $i^{\text {th }}$ layer, also ρ_{i} denotes the density of the $i^{\text {th }}$ layer with $(i=c, v, s, b)$.

For axial equilibrium of the viscoelastic layer

$$
\begin{equation*}
\tau_{v}=\tau_{S} \tag{28}
\end{equation*}
$$

From Equations (19) and (28)

$$
\begin{equation*}
\psi^{\prime}=\frac{G_{v}}{G_{s}} \gamma^{\prime} \tag{29}
\end{equation*}
$$

From Equations (6) and (29)

$$
\begin{equation*}
\psi^{\prime}=\left(\frac{G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(u_{c}^{\prime}-u_{b}^{\prime}\right)+\left(\frac{G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(\frac{2 h_{s}+h_{c}+2 h_{v}+2 y_{b}}{2}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}} \tag{30}
\end{equation*}
$$

From Equations (19) and (28)

$$
\begin{equation*}
\tau_{v}=\left(\frac{G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(u_{c}^{\prime}-u_{b}^{\prime}\right)+\left(\frac{G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(\frac{2 h_{s}+h_{c}+2 h_{v}+2 y_{b}}{2}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}} \tag{31}
\end{equation*}
$$

From Equations (26) and (31)

$$
\begin{equation*}
V_{v}=\left(\frac{b h_{v} G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)+1 / 2\left(\frac{b h_{v} G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(2 h_{s}+2 h_{v}+h_{c}+2 y_{b}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}} \tag{32}
\end{equation*}
$$

From Equations (2).and (32)

$$
\begin{aligned}
& \left(\frac{b h_{v} G_{s} G_{v}}{h_{c} G_{v}+h_{v} G_{s}}\right)\left(\frac{\partial u_{c}^{\prime}}{\partial x^{\prime}}-\frac{\partial u_{b}^{\prime}}{\partial x^{\prime}}\right)+\left(\frac{b h_{v} G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(\frac{2 h_{c}+2 h_{v}+h_{c}+2 y_{b}}{2}\right) \frac{\partial^{2} w^{\prime}}{\partial x^{\prime 2}} \\
& +p_{s}+p_{c}+q_{v}=\rho_{v} \ddot{w}^{\prime}
\end{aligned}
$$

From Equation (25)

$$
\begin{align*}
& -(\mathrm{E} Q)_{b s} \frac{\partial^{2} u_{b}}{\partial x^{\prime 2}}+(\mathrm{EZ})_{b s} \frac{\partial^{3} w^{\prime}}{\partial x^{\prime 3}}+V_{b s}-G_{s} b\left(h_{s}+y_{b}\right)\left(\frac{G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(u_{c}^{\prime}-u_{b}{ }^{\prime}\right) \\
& -\frac{G_{s} b\left(h_{s}+y_{b}\right) G_{v}}{2}\left(\frac{2 h_{s}+2 h_{v}+h_{c}+2 y_{b}}{h_{s}+G_{v}+h_{v} G_{s}}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}}=0 \tag{34}
\end{align*}
$$

From Equations (22) and (34)

$$
\begin{align*}
& (\mathrm{E} Q)_{b s} \frac{\partial^{3} u_{b}^{\prime}}{\partial x^{\prime 3}}-(\mathrm{E} I)_{b s} \frac{\partial^{4} w^{\prime}}{\partial x^{\prime 4}}+\frac{G_{s} b\left(h_{s}+y_{b}\right) G_{v}}{h_{s} G_{v}+h_{s} G_{s}}\left(\frac{\partial u_{c}^{\prime}}{\partial x^{\prime}}-\frac{\partial u_{b}^{\prime}}{\partial x^{\prime}}\right) \\
& +\frac{G_{s} b\left(h_{s}+y_{b}\right) G_{v}}{2}\left(\frac{2 h_{s}+2 h_{v}+h_{c}+2 y_{b}}{h_{s} G_{v}+h_{v} G_{s}}\right) \frac{\partial^{2} w^{\prime}}{\partial x^{\prime 2}}-p_{s}+q_{b s}=\left(\rho_{b}+\rho_{s}\right) \ddot{w}^{\prime} \tag{35}
\end{align*}
$$

From Equation (27)

$$
\begin{align*}
& \frac{E_{c} b h_{c}^{3}}{12} \frac{\delta^{3} w^{\prime}}{\delta x^{13}}+V_{c}-\frac{h_{c} G_{s} G_{v} b}{2\left(h_{c} G_{v}+h_{v} G_{s}\right)}\left(u_{c}{ }^{\prime}-u_{b}{ }^{\prime}\right)-\left(\frac{2 h_{c} b G_{v} G_{s}}{h_{c} G_{v}+h_{v} G_{s}}\right) \\
& \left(\frac{2 h_{c}+2 h_{v}+h_{c}+2 y_{b}}{4}\right) \frac{\partial w^{\prime}}{\partial x^{\prime}}=0 \tag{36}
\end{align*}
$$

From Equations (24) and (36)

$$
\begin{align*}
& -\frac{E_{c} b h^{3}}{12} \frac{\partial^{4} w^{\prime}}{\partial x^{\prime 4}}+\frac{h_{c} G_{s} G_{v} b}{2\left(h_{c} G_{v}+h_{v} G_{s}\right)}\left(\frac{\partial u_{c}^{\prime}}{\partial x^{\prime}}-\frac{\partial u_{b}^{\prime}}{\partial x^{\prime}}\right) \\
& +\left(\frac{h_{c} b G_{v} G_{s}}{h_{s} G_{v}+h_{v} G_{s}}\right)\left(\frac{2 h_{c}+2 h_{v}+h_{c}+2 y_{b}}{4}\right) \frac{\partial^{2} w^{\prime}}{\partial x^{\prime 2}}+p_{c}+q_{c}=\rho_{c} \ddot{w}^{\prime} \tag{37}
\end{align*}
$$

Adding Equations (33), (35) and (37)

$$
\begin{align*}
& \left.\frac{G_{S} G_{v} b}{\left(h_{S} G_{v}+h_{v} G_{S}\right.}\right)\left(\frac{h_{v}+h_{S}+2 h_{v}+h_{c}}{2}\right)\left(h_{c}+h_{s}+y_{b}+\frac{h_{c}}{2}\right)\left(\frac{\delta^{2} w^{\prime}}{\delta x^{\prime}}-\frac{\delta u_{b}^{\prime}}{\delta x^{\prime}}\right) \\
& \left.+\frac{G_{S} G_{v} b}{\left(h_{s} G+h_{v} G_{S}\right.}\right)\left(\frac{2 h_{s}+2 h_{v}+2 y_{b}+h_{c}}{2}\right)\left(h_{c}+h_{s}+y_{b}+\frac{h_{c}}{2}\right) \frac{\delta^{2} w^{\prime}}{\delta x^{\prime 2}}=\left(\rho_{b}+\rho_{s}+\rho_{v}+\rho_{c}\right) \ddot{w}^{\prime} \tag{38}
\end{align*}
$$

Let

$$
\begin{gathered}
\alpha \equiv y_{b}+h_{s}+h_{v}+\frac{h_{c}}{2} \quad \rho=\rho_{b}+\rho_{s}+\rho_{v}+\rho_{c} \\
q=q_{b s}+q_{v}+q_{c}
\end{gathered}
$$

Then, equation (38) reduces to

$$
\begin{align*}
& \frac{G_{s} G_{v} b}{\left(h_{s} G_{s}+G_{s} h_{v}\right)} \alpha\left(\frac{\partial u_{c}^{\prime}}{\partial x^{\prime}}-\frac{\partial u_{b}{ }^{\prime}}{\partial x^{\prime}}\right)+\frac{G_{s} G_{v} b}{\left(h_{s} G_{s}+h_{v} G_{s}\right)} \alpha^{2} \frac{\partial^{2} w^{\prime}}{\partial x^{2}}+ \\
& (\mathrm{E} Q)_{b s} \frac{\partial^{3} u_{b}^{\prime}}{\partial x^{\prime 3}}-(\mathrm{EI})_{b s} \frac{\partial^{4} w^{\prime}}{\partial x^{\prime 4}}-\left(\mathrm{E}_{c} \mathrm{I}_{c}\right) \frac{\partial^{4} w^{\prime}}{\partial x^{\prime 4}}+\left(q_{b s}+q_{c}+q_{c}\right)=\rho \ddot{w}^{\prime} \tag{39}
\end{align*}
$$

Substituting in above

$$
D_{t}=(\mathrm{EI})_{b s}+(\mathrm{E} I)_{c}
$$

We get the following equation

$$
\begin{align*}
& \left(-\frac{G_{s} G_{v} b \alpha}{h_{s} G_{s}+G_{s} h_{v}} \frac{\delta}{\delta x^{\prime}}+(\mathrm{E} Q)_{b s} \frac{\delta^{3}}{\delta x^{\prime 3}}\right) u^{\prime}{ }_{b}+\left(\frac{G_{s} G_{v} b \alpha}{h_{s} G_{v}+h_{v} G_{s}} \frac{\delta}{\delta x^{\prime}}\right) u^{\prime}{ }_{c} \\
& +\left(\frac{G_{s} G_{v} b \alpha^{2}}{h_{s} G_{v}+h_{v} G_{s}} \frac{\delta^{2}}{\delta x^{\prime 2}}-D_{t} \frac{\delta^{4}}{\delta x^{\prime 4}}\right) w^{\prime}-\rho \ddot{w}=-q \tag{40}\\
& \left(D_{t} \frac{\delta^{4}}{\delta x^{\prime 4}}-\frac{G_{s} G_{v} b \alpha^{2}}{h_{s} G_{v}+h_{v} G_{s}} \frac{\delta^{2}}{\delta x^{\prime 2}}\right) w^{\prime}-\left(\frac{b \alpha G_{s} G_{v}}{h_{s} G_{v}+G_{s} h_{v}} \frac{\delta}{\delta x^{\prime}}\right) u^{\prime}{ }_{c} \\
& +\left(-(\mathrm{E} Q)_{b s} \frac{\delta^{3}}{\delta x^{\prime 3}}+\frac{G_{s} G_{v} b \alpha}{G_{s} h_{v}+G_{v} h_{s}} \frac{\delta}{\delta x^{\prime}}\right) u^{\prime}{ }_{b}+\rho \ddot{w^{\prime}=q} \tag{41}
\end{align*}
$$

From Equation (20)

$$
\begin{align*}
& -(\mathrm{E} Q)_{b s} \frac{\partial w^{\prime 3}}{\partial x^{\prime 3}} w^{\prime}+(\mathrm{EA})_{b s} \frac{\partial^{2}}{\partial x^{\prime 2}} u_{b}^{\prime}+\left(\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right)+\left(u_{c}^{\prime}-u_{b}^{\prime}\right)+ \\
& f_{b s}+\left(\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right) \alpha \frac{\partial w^{\prime}}{\partial x^{\prime}}=\left(\rho_{b}+\rho_{s}\right) \ddot{u}_{b}^{\prime} \tag{42}\\
& \left((\mathrm{E} Q)_{b s} \frac{\partial^{3}}{\partial x^{\prime 3}}-\frac{b \alpha G_{s} G_{v}}{\left(h_{s} G_{v}+h_{v} G_{s}\right)} \frac{\partial}{\partial x^{\prime}}\right) w^{\prime}+\left(-(\mathrm{EA})_{b s} \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right) u_{b}^{\prime} \\
& -\left(\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right) u_{c}^{\prime}+\left(\rho_{b}+\rho_{s}\right) \ddot{u}_{b}^{\prime}=f_{b s} \tag{43}
\end{align*}
$$

From Equation (21)

$$
\begin{equation*}
\mathrm{E}_{c} h_{c} b \frac{\partial^{2} u_{c}^{\prime}}{\partial x^{\prime 2}}-\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\left(u_{c}^{\prime}-u_{b}^{\prime}\right)-\left(\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right) \alpha \frac{\partial w^{\prime}}{\partial x^{\prime}}-\rho_{c} \ddot{u}_{c}^{\prime}=f_{c} \tag{44}
\end{equation*}
$$

$$
\begin{align*}
& \left(\frac{G_{v} G_{s} b}{h_{s} G_{v}+h_{v} G_{s}} \alpha \frac{\partial}{\partial x^{\prime}}\right) w^{\prime}-\left(\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{s} G_{v}}\right) u_{b}^{\prime}+ \\
& \left(-\mathrm{E}_{c} h_{c} b \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{s} G_{v}}{h_{s} G_{v}+h_{v} G_{s}}\right) u_{c}^{\prime}+\rho_{c} \ddot{u}_{c}^{\prime}=f_{c} \tag{45}
\end{align*}
$$

Equations (41), (43) and (45) are combined in the following matrix form

$$
\left\{\begin{array}{l}
\left\{\begin{array}{ccc}
D_{t} \frac{\partial^{4}}{\partial x^{\prime 4}}-\frac{b \alpha^{2} G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial^{2}}{\partial x^{\prime 2}} & -\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -(\mathrm{EQ})_{b s} \frac{\partial^{3}}{\partial x^{\prime 3}}+\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} \\
\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -\mathrm{E}_{c} \mathrm{~A}_{c} \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} & -\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \\
(\mathrm{E} Q)_{b s} \frac{\partial^{3}}{\partial x^{\prime 3}}-\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} & -(\mathrm{EA})_{b s} \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}}
\end{array}\right] \\
+\left[\begin{array}{lll}
\rho & 0 & 0 \\
0 & \rho_{c} & 0 \\
0 & 0 & \rho_{b}+\rho_{s}
\end{array}\right] \\
\left(\begin{array}{l}
\bar{w}^{\prime}\left(x^{\prime}, s^{\prime}\right) \\
\bar{u}_{c}^{\prime}\left(x^{\prime}, s^{\prime}\right) \\
\bar{u}_{b}^{\prime}\left(x^{\prime}, s^{\prime}\right)
\end{array}\right)=-\left(\begin{array}{c}
q^{\prime} \\
f^{\prime} \\
c \\
f^{\prime} \\
b s
\end{array}\right)
\end{array}\right.
$$

The equations of motion can now be normalized by using the following substitutions:

$$
\begin{align*}
& w(x, s) \equiv \frac{\bar{w}^{\prime}\left(x^{\prime}, s^{\prime}\right)}{h_{b}}, u_{c}(x, s) \equiv \frac{\bar{u}_{c}^{\prime}\left(x^{\prime}, s^{\prime}\right)}{h_{b}}, u_{b}(x, s) \equiv \frac{\bar{u}_{b}^{\prime}\left(x^{\prime}, s^{\prime}\right)}{h_{b}} \\
& x=\frac{x^{\prime}}{l}, s \equiv \sqrt{\frac{\rho l^{4}}{D_{t}} s^{\prime}} \tag{47}\\
& q \equiv \frac{q^{\prime} l^{4}}{D_{t} h_{b}}, f_{c} \equiv \frac{f_{c}^{\prime} l^{4}}{D_{t} h_{b}}, f_{b s} \equiv \frac{{f^{\prime}}_{b s} l^{4}}{D_{t} h_{b}} \tag{48}
\end{align*}
$$

The following dimensionless parameters and constants are used to simplify equations of motion

$$
\begin{array}{ll}
\varepsilon(s) \equiv \frac{b \alpha^{2} G_{v} G_{s} l^{2}}{D_{t}\left(G_{v} h_{s}+G_{s} h_{v}\right)} & \\
c^{2}{ }_{1} \equiv \frac{\rho_{c}}{\rho} & c_{2}^{2} \equiv \frac{\rho_{b}+\rho_{S}}{\rho} \\
\beta \equiv \frac{l}{\alpha} & a_{1} \equiv \frac{\left(\mathrm{E} Q_{b s} l\right)}{D_{t}} \\
a_{2} \equiv \frac{\mathrm{E}_{c} \mathrm{~A}_{c} l^{2}}{D_{t}} & a_{3} \equiv \frac{(\mathrm{EA})_{b s} l^{2}}{D_{t}}
\end{array}
$$

The normalized equations of motion take the following form

$$
\left\{\begin{array}{l}
{\left[\begin{array}{ccc}
D_{t} \frac{\partial^{4}}{\partial x^{\prime 4}}-\frac{b \alpha^{2} G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial^{2}}{\partial x^{\prime 2}} & -\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -(\mathrm{E} Q)_{b s} \frac{\partial^{3}}{\partial x^{\prime 3}}+\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} \\
\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -\mathrm{E}_{c} \mathrm{~A}_{c} \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} & -\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \\
(\mathrm{E} Q)_{b s} \frac{\partial^{3}}{\partial x^{\prime 3}}-\frac{b \alpha G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} \frac{\partial}{\partial x^{\prime}} & -\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}} & -(\mathrm{EA})_{b s} \frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{b G_{v} G_{s}}{G_{v} h_{s}+G_{s} h_{v}}
\end{array}\right]+} \\
+s^{\prime 2}\left[\begin{array}{ccc}
\rho & 0 & 0 \\
0 & \rho_{c} & 0 \\
0 & 0 & \rho_{b}+\rho_{s}
\end{array}\right] \\
\left(\begin{array}{l}
\bar{w}^{\prime}\left(x^{\prime}, s^{\prime}\right) \\
\bar{u}_{c}^{\prime}\left(x^{\prime}, s^{\prime}\right) \\
\bar{u}_{b^{\prime}}^{\prime}\left(x^{\prime}, s^{\prime}\right)
\end{array}\right)=-\left\{\begin{array}{c}
q^{\prime} \\
f_{c}^{\prime} \\
f_{c}^{\prime}
\end{array}\right\}
\end{array}\right.
$$

2.6 Boundary Conditions

The normalized boundary conditions for a cantilever beam excited at its base are as follows:

For the fixed end $(x=0)$ are:

$$
\begin{align*}
& w(0, s)=\mathrm{P}(s) \tag{51}\\
& \frac{d w(0, s)}{d x}=u_{b}(0, s)=\frac{d u_{c}(0, s)}{d x}=0 \tag{52}
\end{align*}
$$

For the free end ($\mathrm{x}=1$) :

$$
\begin{align*}
& \frac{d^{2} w(1, s)}{d x^{2}}=0 \tag{53}\\
& \frac{d u_{c}(1, s)}{d x}=\frac{d u_{b}(1, s)}{d x}=0 \tag{54}
\end{align*}
$$

$$
\begin{equation*}
-\frac{d^{3} w(1, s)}{d x^{3}}+a_{1} \frac{d^{2} u_{b}(1, s)}{d x^{2}}+\varepsilon(s)\left\{\frac{d w(1, s)}{d x}+\beta u_{c}(1, s)-\beta u_{b}(1, s)\right\}=0 \tag{55}
\end{equation*}
$$

The above equations and boundary conditions are now solved using Distributed Transfer Function Method and Finite Element Method and the two solutions are compared.

2.7 Summary

This chapter formulates the equations of motion of the passive stand off layer treated cantilever beam subjected to dynamic loading at the fixed end with the assumptions given in the beginning of the chapter. The equations of motion constitute one variable (lateral deflection of beam) with $4^{\text {th }}$ order differential equation and two variables (axial deflections of base beam and constraining layer) with $2^{\text {nd }}$ order differential equation of motion.

CHAPTER 3

Distributed Transfer Function Solution

Method

3.1 Solution By Distributed Parameter Systems Transfer Function Method

The PSOL beam is solved analytically by the distributed transfer function method developed by Yang and Tan [10].

Equation (50) gives the simplified equations of motion in the Laplace Domain and Equations (51) to (55) give the boundary conditions.

Since the first equation in the Equation (51) has the term $\partial^{3} u_{b} / \partial x^{3}$, therefore this equation has to be modified in order to be solved by the distributed transfer function method.

Partially differentiating the third equation in (50) with respect to x, gives

$$
\begin{align*}
& \left(a_{1} \frac{\partial^{4}}{\partial x_{4}}-\beta \frac{\partial^{2}}{\partial x^{2}} \varepsilon(s)\right) w+\left(-\beta \frac{\partial^{2}}{\partial x^{2}} \varepsilon(s)\right) w+\left(-\beta^{2} \varepsilon(s) \frac{\partial}{\partial x}\right) u_{c}+ \\
& \left(-a_{3} \frac{\partial^{3}}{\partial x^{3}}+c_{2}^{2} s^{2} \frac{\partial}{\partial x}+\beta^{2} \varepsilon(s) \frac{\partial}{\partial x}\right) u_{b}=-\frac{\partial}{\partial x} f_{b s} \tag{56}
\end{align*}
$$

Multiply the above equation by $-\alpha_{1} / \alpha_{3}$ yields

$$
\begin{align*}
& \left(-\frac{a_{1}^{2}}{a_{3}} \frac{\partial^{4}}{\partial x^{4}}+\beta \frac{a_{1}}{a_{3}} \varepsilon(s) \frac{\partial^{2}}{\partial x^{2}}\right) w+\left(\frac{a_{1} \beta^{2}}{a_{3}} \varepsilon(s) \frac{\partial}{\partial x}\right) u_{c}+ \\
& \left(a_{1} \frac{\partial^{3}}{\partial x^{3}}-\frac{a_{1}}{a_{3}} c_{2}^{2} s^{2} \frac{\partial}{\partial x}-\frac{a_{1} \beta^{2}}{a_{3}} \varepsilon(s) \frac{\partial}{\partial x}\right) u_{b}=+\frac{a_{1}}{a_{3}} \frac{\partial f_{b s}}{\partial x} \tag{57}
\end{align*}
$$

Adding this equation to the first equation in Equation (50) gives

$$
\begin{align*}
& \left(\left(1+\frac{a_{1}^{2}}{a_{3}}\right) \frac{\partial^{4}}{\partial x^{4}}+s^{2}+\beta \frac{a_{1}}{a_{3}} \varepsilon(s) \frac{\partial^{2}}{\partial x^{2}}-\varepsilon(s) \frac{\partial^{2}}{\partial x^{2}}\right) w+\left(\left(\frac{a_{1}}{a_{3}} \beta^{2}-\beta\right) \varepsilon \frac{\partial}{\partial x}\right) u_{c} \\
& +\left(-\frac{a_{1}}{a_{3}} c_{2}^{2} s^{2} \frac{\partial}{\partial x}+\varepsilon\left(\beta-\frac{a_{1}}{a_{3}} \beta^{2}\right) \frac{\partial}{\partial x}\right) u_{b}=-q+\frac{a_{1}}{a_{3}} \frac{\partial f_{b s}}{\partial x} \tag{58}
\end{align*}
$$

As all external forces are zero and the beam is excited dynamically at its fixed end, then the modified equations of motion are given by:

$$
\left\{\left[\begin{array}{ccc}
\left(1-\frac{a_{1}^{2}}{a_{3}}\right) \frac{\partial^{4}}{\partial x^{4}}+s^{2} & 0 & -\frac{a_{1}}{a_{3}} c_{2}^{2} s^{2} \frac{\partial}{\partial x} \\
0 & -a_{2} \frac{\partial^{2}}{\partial x^{2}}+c_{1}^{2} s^{2} & 0 \\
a_{1} \frac{\partial^{3}}{\partial x^{3}} & 0 & -a_{3} \frac{\partial^{2}}{\partial x^{2}}+c_{2}^{2} s^{2}
\end{array}\right]+\right.
$$

$\varepsilon(s) x\left[\begin{array}{ccc}\left(\beta \frac{a_{1}}{a_{3}}-1\right) \frac{\partial^{2}}{\partial x^{2}} & \left(\frac{\beta^{2} a_{1}}{a_{3}}-\beta\right) \frac{\partial}{\partial x} & \left(\beta-\frac{\beta^{2} a_{1}}{a_{3}}\right) \frac{\partial}{\partial x} \\ \beta \frac{\partial}{\partial x} & \beta^{2} & -\beta^{2} \\ -\beta \frac{\partial}{\partial x} & -\beta^{2} & \beta^{2}\end{array}\right]\left\{\begin{array}{c}w(x, s) \\ u_{c}(x, s) \\ u_{b}(x, s)\end{array}\right)=\left(\begin{array}{c}-q+\frac{\partial f_{b s}}{\partial x} \\ -f_{c} \\ -f_{b s}\end{array}\right)$

For the sake of simplicity, all the initial conditions are assumed to be zero.

3.2 Equations In State Space Form

The equations of motion can be written in the state space form as follows

$$
\begin{equation*}
\frac{\partial}{\partial x} y(x, s)=F(s) y(x, s)+q(x, s), \ldots \ldots \ldots \ldots . . x \in(0,1) \tag{60}
\end{equation*}
$$

where $y(x, s), q(s)$, and $F(s)$ are given by

$$
\begin{align*}
& y(x, s)=\left\{\begin{array}{llllllll}
w & \frac{\partial w}{\partial x} & \frac{\partial^{2} w}{\partial x^{2}} & \frac{\partial^{3} w}{\partial x^{3}} & u_{c} & \frac{\partial}{\partial x} u_{c} & u_{b} & \frac{\partial}{\partial x} u_{b}
\end{array}\right\}^{T}, \tag{61}\\
& q(x, s)=\left\{\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right\}^{T}, \tag{62}
\end{align*}
$$

and

$$
F(s)=\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-s^{2}\left(\frac{a_{3}}{a_{3}-a_{1}^{2}}\right) & 0 & \frac{a_{3}}{\left(a_{3}-a_{1}^{2}\right)}\left[\varepsilon-\frac{\beta \varepsilon a_{1}}{a_{3}}\right] & 0 & 0 & \frac{a_{3}}{\left(a_{3}-a_{1}^{2}\right)}\left[\varepsilon \beta-\frac{\varepsilon \beta^{2} a_{1}}{a_{3}}\right] & 0 & \frac{a_{3}}{\left(a_{3}-a_{1}^{2}\right)}\left[\frac{c_{2}^{2} s^{2} a_{1}}{a_{3}}+\frac{\beta^{2} \varepsilon a_{1}}{a_{3}}-\beta \varepsilon\right] \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{+\varepsilon \beta}{a_{2}} & 0 & 0 & \frac{c_{1}^{2} s^{2}+\varepsilon \beta^{2}}{a_{2}} & 0 & \frac{-\varepsilon \beta^{2}}{a_{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & \frac{-\beta \varepsilon}{a_{3}} & 0 & \frac{a_{1}}{a_{3}} & \frac{-\varepsilon \beta^{2}}{a_{3}} & 0 & \frac{c_{2}^{2} s^{2}+\varepsilon \beta^{2}}{a_{3}} & 0
\end{array}\right]
$$

3.3 Boundary Conditions

The boundary condition indicating the shear force equilibrium at the free end of cantilever beam has to be modified to enable it to be incorporated into the State Space model Equation (55) which is given by

$$
\begin{equation*}
-\frac{d^{3} w(1, s)}{d x^{3}}+a_{1} \frac{d^{2} u_{b}(1, s)}{d x^{2}}+\varepsilon(s)\left\{\frac{d w(1, s)}{d x}+\beta u_{c}(1, s)-\beta u_{b}(1, s)\right\}=0 \tag{63}
\end{equation*}
$$

is converted to the following from in order to eliminate $\partial^{2} u_{b} / \partial x^{2}$

$$
\begin{equation*}
\left(\frac{a_{1}^{2}}{a_{3}}-1\right) \frac{d^{3} w}{d x^{3}}+\varepsilon\left(1-\beta \frac{a_{1}}{a_{3}}\right) \frac{d w}{d x}+\left(1-\beta \frac{a_{1}}{a_{3}}\right) \varepsilon \beta u_{c}+\left(\beta \frac{a_{1}}{a_{3}}-1\right) \varepsilon \beta u_{b}=0 \tag{64}
\end{equation*}
$$

Hence, the boundary conditions can be formulated as

$$
\begin{equation*}
\mathrm{M}(s) y(0, s)+\mathrm{N}(s) y(1, s)=\gamma(s) \tag{65}
\end{equation*}
$$

where

$$
M(s)=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
N(s)=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & \varepsilon\left(1-\frac{\beta a_{1}}{a_{3}}\right) & 0 & -\frac{1}{\mathrm{~K}} & \varepsilon\left(\beta-\frac{\beta^{2} a_{1}}{a_{3}}\right) & 0 & \varepsilon\left(\frac{\beta^{2} a_{1}}{a_{3}}-\beta\right) & 0
\end{array}\right],
$$

and

$$
\gamma(s)=\left\{\begin{array}{llllllll}
P(s) & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right\}^{T}
$$

3.4 Solution

The solution to the above system of equations is given as follows

$$
\begin{equation*}
y(x, s)=\int_{0}^{1} G(x, \varepsilon, s) q(\varepsilon, s) d \varepsilon+\mathrm{H}(x, s) \gamma(s), x \in(0,1) \tag{66}
\end{equation*}
$$

where

$$
G(x, \varepsilon, s)=\left\{\begin{array}{c}
e^{F(s) x}\left(\mathrm{M}(s)+\mathrm{N}(s) e^{F(s)}\right)^{-1} \mathrm{M}(s) e^{-F(s) \varepsilon}, \varepsilon<x \tag{67}\\
-e^{F(s) x}\left(\mathrm{M}(s)+\mathrm{N}(s) e^{F(s)}\right)^{-1} \mathrm{~N}(s) e^{F(s)(1-\varepsilon)}, \varepsilon>x
\end{array}\right.
$$

$$
\begin{equation*}
\mathrm{H}(x, s)=e^{F(s) x}\left(\mathrm{M}(s)+\mathrm{N}(s) e^{F(s)}\right)^{-1} \tag{68}
\end{equation*}
$$

As all the external forces are zeros, the solution reduces to

$$
\begin{equation*}
y(x, s)=H(x, s) \gamma(s), x \in(0,1) \tag{69}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{w}(x, s)=\sum_{j=1}^{n} h_{1 j}(x, s) \bar{\gamma}_{j}(s) \tag{70}
\end{equation*}
$$

The matrix $e^{F(s) x}$ is called the fundamental matrix of $F(s)$. The fundamental matrix can be evaluated by the following MATLAB command $\operatorname{expm}(\boldsymbol{F})$

3.5 Summary

A transfer function model of the PSOL treated beam treatment has been developed. The equations of motion have been modified to facilitate the formulation. The transfer function method will then be used to validate the predictions of the finite element method. The transfer function model is modeled only for uniform stand-off layer which is bonded along the length of the beam.

CHAPTER 4

Finite Element Model

4.1 Solution By Finite Element Method

The development of the finite element solution of the system of equations and boundary conditions given by Equations (50) to (55), requires that the equations are transformed to the form given by the equation (59)

$$
\left\{\begin{array}{l}
{\left[\begin{array}{ccc}
\left(1-\frac{a_{1}^{2}}{a_{3}}\right) \frac{\partial^{4}}{\partial x^{4}}+s^{2} & 0 & -\frac{a_{1}}{a_{3}} c_{2}^{2} s^{2} \frac{\partial}{\partial x} \\
0 & -a_{2} \frac{\partial^{2}}{\partial x^{2}}+c_{1}^{2} s^{2} & 0 \\
a_{1} \frac{\partial^{3}}{\partial x^{3}} & 0 & -a_{3} \frac{\partial^{2}}{\partial x^{2}}+c_{2}^{2} s^{2}
\end{array}\right]+} \\
\left.\left.\left.\varepsilon(s) x\left[\begin{array}{cc}
\left(\beta \frac{a_{1}}{a_{3}}-1\right) \frac{\partial^{2}}{\partial x^{2}} & \left(\frac{\beta^{2} a_{1}}{a_{3}}-\beta\right) \frac{\partial}{\partial x} \\
\beta \frac{\partial}{\partial x} & \beta^{2} \\
-\beta \frac{\partial}{\partial x} & -\beta^{2}
\end{array}\right]\right\} \begin{array}{l}
\beta^{2} a_{1} \\
a_{3}
\end{array}\right) \frac{\partial}{\partial x}\right] \\
\left(\begin{array}{l}
w(x, s) \\
u_{c}(x, s) \\
u_{b}(x, s)
\end{array}\right)=\left(\begin{array}{c}
-\beta^{2} \\
-q+\frac{\partial f_{b s}}{\partial x} \\
-f_{c} \\
-f_{b s}
\end{array}\right)
\end{array}\right.
$$

4.2 Derivation Of Element Equations

In this step, a typical element is considered and a weak form of the equations of motion is constructed over the element. The weak form of the above equations over an element is derived after defining the following terms:

$$
\begin{aligned}
& \mathrm{K}_{1}=1-\frac{a_{1}^{2}}{a_{3}} \\
& \mathrm{~K}_{2}=\frac{a_{1}}{a_{3}} \beta \varepsilon-\varepsilon \\
& \mathrm{K}_{3}=\beta^{2} \varepsilon \frac{a_{1}}{a_{3}}-\beta \varepsilon \\
& \mathrm{K}_{4}=\beta \varepsilon-c_{2}^{2} s^{2} \frac{a_{1}}{a_{3}}-\beta^{2} \varepsilon \frac{a_{1}}{a_{3}}, \\
& \mathrm{~K}_{5}=c_{1}^{2} s^{2}+\beta^{2} \varepsilon, \\
& \mathrm{~K}_{6}=-\beta^{2} \varepsilon, \\
& \mathrm{~K}_{7}=c_{2}^{2} s^{2}+\beta^{2} \varepsilon, \text { and } \\
& \mathrm{K}_{8}=-\beta \varepsilon
\end{aligned}
$$

Substituting these terms in the equations of motion, gives

$$
\left\{\left[\begin{array}{ccc}
K_{1} \frac{\partial^{4}}{\partial x^{4}}+K_{2} \frac{\partial^{2}}{\partial x^{2}}+s^{2} & K_{3} \frac{\partial}{\partial x} & K_{4} \frac{\partial}{\partial x} \\
-K_{8} \frac{\partial}{\partial x} & -a_{2} \frac{\partial^{2}}{\partial x^{2}}+K_{5} & K_{6} \\
a_{1} \frac{\partial^{3}}{\partial x^{3}}+K_{8} \frac{\partial}{\partial x} & K_{6} & -a_{3} \frac{\partial^{2}}{\partial x^{2}}+K_{7}
\end{array}\right]\right\}\left(\begin{array}{l}
w(x, s) \\
u_{c}(x, s) \\
u_{b}(x, s)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The following Hermite Interpolation functions are used for the normalized lateral deflection and Lagrange interpolation functions are employed for the axial deflections.

$$
\begin{aligned}
& w=u_{1}^{e} v_{1}+u_{2}^{e} v_{2}+u_{3}^{e} v_{3}+u_{4}^{e} v_{4} \\
& u_{1}=w\left(x_{e}\right), \cdots, u_{2}=-\left.\frac{d w}{d x}\right|_{x_{e}}, \cdots, u_{3}=w\left(x_{e+1}\right), \cdots, u_{4}=-\left.\frac{d w}{d x}\right|_{x_{e+1}} \\
& u_{c}^{e}=u_{5}^{e} \theta_{1}+u_{6}^{e} \theta_{2}, \text { and } \\
& u_{b}^{e}=u_{7}^{e} \Phi_{1}+u_{8}^{e} \Phi_{2}
\end{aligned}
$$

where v_{i}, θ_{i} and Φ_{i} are interpolation functions to be defined in Section 4.3.

Hence, the weak form of the first equation is given by

$$
\int\left(\left(\mathrm{K}_{1} \frac{\partial^{4}}{\partial x^{4}}+\mathrm{K}_{2} \frac{\partial^{2}}{\partial x^{2}}+s^{2}\right) w+\left(\mathrm{K}_{3} \frac{\partial}{\partial x}\right) u_{c}+\left(\mathrm{K}_{4} \frac{\partial}{\partial x}\right) u_{b}\right) v d x=0
$$

or

$$
\begin{aligned}
& \int\left(-\mathrm{K}_{1} \frac{d^{3} w}{d x^{3}} \frac{d v}{d x}+\left(\mathrm{K}_{2} \frac{d^{2} w}{d x^{2}}+s^{2} w+\mathrm{K}_{3} \frac{d u_{c}}{d x}+\mathrm{K}_{4} \frac{d u_{b}}{d x}\right) v\right) d x+\left[v \mathrm{~K}_{1} \frac{d^{3} w}{d x^{3}}\right]_{x c}^{x c+1}=0 \\
& \int\left(\mathrm{~K}_{1} \frac{d^{2} w}{d x^{2}} \frac{d^{2} v}{d x^{2}}+\left(\mathrm{K}_{2} \frac{d^{2} w}{d x^{2}}+s^{2} w+\mathrm{K}_{3} \frac{d u_{c}}{d x}+\mathrm{K}_{4} \frac{d u_{b}}{d x}\right) v\right) d x+ \\
& \int\left(v \mathrm{~K}_{1} \frac{d^{3} w}{d x^{3}}-\mathrm{K}_{1} \frac{d v}{d x} \frac{d^{2} w}{d x^{2}}\right]_{x c}^{x c+1}=0 \\
& \left(\left(\mathrm{~K}_{1} \frac{d^{2} w}{d x^{2}} \frac{d^{2} v}{d x^{2}}-\mathrm{K}_{2} \frac{d w}{d x} \frac{d v}{d x}\right)+v\left(s^{2} w+\mathrm{K}_{3} \frac{d u_{c}}{d x}+\mathrm{K}_{4} \frac{d u_{b}}{d x}\right)\right) d x+ \\
& {\left[v \mathrm{~K}_{1} \frac{d^{3} w}{d x^{3}}-\mathrm{K}_{1} \frac{d v}{d x} \frac{d^{2} w}{d x^{2}}+v \mathrm{~K}_{2} \frac{d w}{d x}\right]_{x c}^{x c+1}=0}
\end{aligned}
$$

Similarly, the weak form of the second equation becomes

$$
\begin{aligned}
& \int\left(-K_{8} \frac{d w}{d x}-a_{2} \frac{d^{2} u_{c}}{d x^{2}}+K_{5} u_{c}+K_{6} u_{b}\right) \theta d x=0 \\
& \int\left(-K_{8} \frac{d w}{d x} \theta+a_{2} \frac{d u_{c}}{d x} \frac{d \theta}{d x}+K_{5} u_{c} \theta+K_{6} u_{b} \theta\right) d x-\left[a_{2} \frac{d u_{c}}{d x} \theta\right]=0
\end{aligned}
$$

And the weak form of the third equation reduces to

$$
\int\left(a_{1} \frac{d^{3} w}{d x^{3}}+K_{8} \frac{d w}{d x}+K_{6} u_{c}-a_{3} \frac{d^{2} u_{b}}{d x^{2}}+K_{7} u_{b}\right) \Phi d x=0
$$

or

$$
\int\left(a_{1} \frac{d^{3} w}{d x^{3}} \Phi+K_{8} \frac{d w}{d x} \Phi+K_{6} u_{c} \Phi+a_{3} \frac{d u_{b}}{d x} \frac{d \Phi}{d x}+K_{7} u_{b} \Phi\right) d x+\left[a_{2} \frac{d u_{c}}{d x} \Phi\right]=0
$$

4.3 Interpolation Functions

The interpolation functions and their derivatives are given as

$$
\begin{aligned}
& \theta_{1}=\Phi_{1}=1-\frac{x}{h} \\
& \theta_{2}=\Phi_{2}=\frac{x}{h} \\
& \frac{d \theta_{1}}{d x}=\frac{d \Phi_{1}}{d x}=-1 \\
& \frac{d \theta_{2}}{d x}=\frac{d \Phi_{2}}{d x}=1 \\
& v_{1}=1-3\left(\frac{x}{h}\right)^{2}+2\left(\frac{x}{h}\right)^{3} \\
& \frac{d v_{1}}{d x}=-\frac{6}{h^{2}} x\left(1-\frac{x}{h}\right) \\
& \frac{d^{2} v_{1}}{d x^{2}}=-\frac{6}{h^{2}}\left(1-2 \frac{x}{h}\right)^{3} \\
& \frac{d^{3} v_{1}}{d x^{3}}=\frac{12}{h^{3}} \\
& v_{2}=-x\left(1-\frac{x}{h}\right)^{2} \\
& \frac{d v_{2}}{d x}=-1\left[1+\frac{3 x^{2}}{h^{2}}-4 \frac{x}{h}\right] \\
& \frac{d^{2} v_{2}}{d x^{2}}=-\frac{2}{h}\left(\frac{3 x}{h}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{3} v_{2}}{d x^{3}}=-\frac{6}{h^{2}} \\
& v_{3}=3 \frac{x^{2}}{h^{2}}-2 \frac{x^{3}}{h^{3}} \\
& \frac{d v_{3}}{d x}=\frac{6}{h^{2}} x\left(1-\frac{x}{h}\right) \\
& \frac{d^{2} v_{3}}{d x^{2}}=+\frac{6}{h^{2}}\left(1-\frac{2 x}{h}\right) \\
& \frac{d^{3} v_{3}}{d x^{3}}=-\frac{12}{h^{3}} \\
& v_{4}=-x\left(\frac{x^{2}}{h^{2}}-\frac{x}{h}\right) \\
& \frac{d v_{4}}{d x}=-\frac{x}{h}\left(3 \frac{x}{h}-2\right) \\
& \frac{d^{2} v_{4}}{d x^{2}}=-\frac{2}{h}\left(3 \frac{x}{h}-2\right) \\
& \frac{d^{3} v_{4}}{d x^{3}}=-\frac{6}{h^{2}}
\end{aligned}
$$

Hence, the finite element model of the equations can be written in the form

$$
[K]\{U\}=\{F\}+\{Q\}
$$

where $[K]=$ Stiffness matrix $[K]$ is given by $[K]=\left[\begin{array}{llllllll}K 1 & K 2 & K 3 & K 4 & K 5 & K 6 & K 7 & K 8\end{array}\right]$. The elements $K i$ are defined below. Also, $\{\mathrm{F}\}=0$, and $\{\mathrm{Q}\}=0$ except at the boundaries where it will
incorporate boundary conditions
The elements $K i$ are given by:

$$
\boldsymbol{K 1}=\left[\begin{array}{l}
K_{1} \frac{d^{2} v_{1}}{d x^{2}} \frac{d^{2} v_{1}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{1}}{d x}+s^{2} v_{1} v_{1} \\
K_{1} \frac{d^{2} v_{1}}{d x^{2}} \frac{d^{2} v_{2}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{2}}{d x}+s^{2} v_{1} v_{2} \\
-K_{8} \frac{d v_{1}}{d x} \theta_{1} \\
a_{1} \frac{d^{3} v_{1}}{d x^{3}} \phi_{1}+K_{8} \frac{d v_{1}}{d x} \phi_{1} \\
K_{1} \frac{d^{2} v_{1}}{d x^{2}} \frac{d^{2} v_{3}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{3}}{d x}+s^{2} v_{1} v_{3} \\
K_{1} \frac{d^{2} v_{1}}{d x^{2}} \frac{d^{2} v_{4}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{4}}{d x}+s^{2} v_{1} v_{4} \\
-K_{8} \frac{d v_{1}}{d x} \theta_{2} \\
a_{1} \frac{d^{3} v_{1}}{d x^{3}} \phi_{2}+K_{8} \frac{d v_{1}}{d x} \phi_{2}
\end{array}\right],
$$

$$
\left.\begin{array}{l}
\left.\boldsymbol{K} \mathbf{2}=\left[\begin{array}{l}
K_{1} \frac{d^{2} v_{2}}{d x^{2}} \frac{d^{2} v_{1}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{1}}{d x}+s^{2} v_{2} v_{1} \\
K_{1} \frac{d^{2} v_{2}}{d x^{2}} \frac{d^{2} v_{2}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{2}}{d x}+s^{2} v_{2} v_{2} \\
-K_{8} \frac{d v_{2}}{d x} \theta_{1} \\
a_{1} \frac{d^{3} v_{2}}{d x^{3}} \phi_{1}+K_{8} \frac{d v_{2}}{d x} \phi_{1} \\
K_{1} \frac{d^{2} v_{2}}{d x^{2}} \frac{d^{2} v_{3}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{3}}{d x}+s^{2} v_{2} v_{3} \\
K_{1} \frac{d^{2} v_{2}}{d x^{2}} \frac{d^{2} v_{4}}{d x^{2}}+K_{2} \frac{d v_{2}}{d x} \frac{d v_{4}}{d x}+s^{2} v_{2} v_{4} \\
-K_{8} \frac{d v_{2}}{d x} \theta_{2} \\
a_{1} \frac{d^{3} v_{2}}{d x^{3}} \phi_{2}+K_{8} \frac{d v_{2}}{d x} \phi_{2} \\
K_{3} \frac{d \theta_{1}}{d x} v_{4} \\
a_{2} \frac{d \theta_{1}}{d x} \frac{d \theta_{2}}{d x}+K_{5} \theta_{1} \theta_{2} \\
K_{6} \theta_{1} \phi_{2}
\end{array}\right], \begin{array}{l}
K_{3} \frac{d \theta_{1}}{d x} v_{1} \\
K_{3} \frac{d \theta_{1}}{d x} v_{2} \\
a_{2} \frac{d \theta_{1}}{d x} \frac{d \theta_{1}}{d x}+K_{5} \theta_{1} \theta_{1} \\
K_{6} \theta_{1} \phi_{1} \\
K_{3} \frac{d \theta_{1}}{d x} v_{3} \\
K_{3} \\
K_{4} \frac{d \phi_{1}}{d x} v_{3} \\
K_{4} \frac{d \phi_{1}}{d x} v_{4} \\
K_{6} \phi_{1} \theta_{2} \\
a_{3} \frac{d \phi_{1}}{d x} \frac{d \phi_{2}}{d x}+K_{7} \phi_{2} \phi_{1}
\end{array}\right] \\
a_{4} \frac{d \phi_{1}}{d x} v_{1} \\
K_{4} \frac{d \phi_{1}}{d x} v_{2} \\
K_{6} \phi_{1} \theta_{1} \\
a_{3} \frac{d \phi_{1}}{d x}+K_{7} \phi_{1} \phi_{1} \\
K_{2}
\end{array}\right],
$$

$$
\begin{aligned}
& \boldsymbol{K} 5=\left[\begin{array}{l}
K_{1} \frac{d^{2} v_{3}}{d x^{2}} \frac{d^{2} v_{1}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{1}}{d x}+s^{2} v_{3} v_{1} \\
K_{1} \frac{d^{2} v_{3}}{d x^{2}} \frac{d^{2} v_{2}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{2}}{d x}+s^{2} v_{3} v_{2} \\
-K_{8} \frac{d v_{3}}{d x} \theta_{1} \\
a_{1}^{3} \frac{d^{3} v_{3}}{d x^{3}} \phi_{1}+K_{8} \frac{d v_{3}}{d x} \phi_{1} \\
K_{1} \frac{d^{2} v_{3}}{d x^{2}} \frac{d^{2} v_{3}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{3}}{d x}+s^{2} v_{3} v_{3} \\
K_{1} \frac{d^{2} v_{3}}{d x^{2}} \frac{d^{2} v_{4}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{4}}{d x}+s^{2} v_{3} v_{4} \\
-K_{8} \frac{d v_{3}}{d x} \theta_{2} \\
a_{1}^{3} \frac{d^{3} v_{3}}{d x^{3}} \phi_{2}+K_{8} \frac{d v_{3}}{d x} \phi_{2}
\end{array}\right], \boldsymbol{K} \boldsymbol{6}=\left[\begin{array}{l}
K_{1} \frac{d^{2} v_{4}}{d x^{2}} \frac{d^{2} v_{1}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{1}}{d x}+s^{2} v_{4} v_{1} \\
K_{1} \frac{d^{2} v_{4}}{d x^{2}} \frac{d^{2} v_{2}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{2}}{d x}+s^{2} v_{4} v_{2} \\
-K_{8} \frac{d v_{4}}{d x} \theta_{1} \\
a_{1}^{3} \frac{d^{3} v_{4}}{d x^{3}} \phi_{1}+K_{8} \frac{d v_{4}}{d x} \phi_{1} \\
K_{1} \frac{d^{2} v_{4}}{d x^{2}} \frac{d^{2} v_{3}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{3}}{d x}+s^{2} v_{4} v_{3} \\
K_{1} \frac{d^{2} v_{4}}{d x^{2}} \frac{d^{2} v_{4}}{d x^{2}}+K_{2} \frac{d v_{4}}{d x} \frac{d v_{4}}{d x}+s^{2} v_{4} v_{4} \\
-K_{8} \frac{d v_{4}}{d x} \theta_{2} \\
a_{1}^{3} \frac{d^{3} v_{4}}{d x^{3}} \phi_{2}+K_{8} \frac{d v_{4}}{d x} \phi_{2}
\end{array}\right], \\
& \boldsymbol{K} \mathbf{7}=\left[\begin{array}{l}
K_{3} \frac{d \theta_{2}}{d x} v_{1} \\
K_{3} \frac{d \theta_{2}}{d x} v_{2} \\
a_{2} \frac{d \theta_{2}}{d x} \frac{d \theta_{1}}{d x}+K_{5} \theta_{2} \theta_{1} \\
K_{6} \theta_{2} \phi_{1} \\
K_{3} \frac{d \theta_{2}}{d x} v_{3} \\
K_{3} \frac{d \theta_{2}}{d x} v_{4} \\
a_{2} \frac{d \theta_{2}}{d x} \frac{d \theta_{2}}{d x}+K_{5} \theta_{2} \theta_{2} \\
K_{6} \theta_{2} \phi_{2}
\end{array}\right],\left[\begin{array}{l}
K_{4} \frac{d \phi_{2}}{d x} v_{1} \\
K_{4} \frac{d \phi_{2}}{d x} v_{2} \\
K_{6} \phi_{2} \theta_{1} \\
a_{3} \frac{d \phi_{2}}{d x} \frac{d \phi_{1}}{d x}+K_{7} \phi_{2} \phi_{1} \\
K_{4} \frac{d \phi_{2}}{d x} v_{3} \\
K_{4} \frac{d \phi_{2}}{d x} v_{4} \\
K_{6} \phi_{2} \theta_{2} \\
a_{3} \frac{d \phi_{2}}{d x} \frac{d \phi_{2}}{d x}+K_{7} \phi_{2} \phi_{2}
\end{array}\right]
\end{aligned}
$$

Hence, the finite element model takes the following form
or, in a compact matrix form:

$$
[K]\{U\}=\{F\}+\{Q\}
$$

4.4 Assembly Of Matrices

For illustration purposes, the assembly of the matrices of two elements will take the form

$$
[K]\{U\}=\{F\}+\{Q\}
$$

where $\{F\}=0$.

$$
Q=\left\{\begin{array}{c}
Q^{1}{ }_{1} \\
Q^{1}{ }_{2} \\
Q^{1}{ }_{3} \\
Q^{1}{ }_{4} \\
Q^{1}{ }_{5}+Q^{1}{ }_{2} \\
Q^{1}{ }_{6}+Q^{2}{ }_{2} \\
Q^{1}{ }_{7}+Q^{2}{ }_{b} \\
Q^{1}{ }_{8}+Q^{2}{ }_{u} \\
Q^{2}{ }_{5} \\
Q^{2}{ }_{6} \\
Q^{2}{ }_{7} \\
Q^{2}{ }_{8}
\end{array}\right\},
$$

and $[K]$ for two elements is given by:
$[\mathrm{K}]=\left[\begin{array}{cccccccccccc}\mathrm{K}_{11}^{1} & \mathrm{~K}_{12}^{1} & \mathrm{~K}_{13}^{1} & \mathrm{~K}_{14}^{1} & \mathrm{~K}_{15}^{1} & \mathrm{~K}_{16}^{1} & \mathrm{~K}_{17}^{1} & \mathrm{~K}_{18}^{1} & 0 & 0 & 0 & 0 \\ \mathrm{~K}_{21}^{1} & \mathrm{~K}_{22}^{1} & \mathrm{~K}_{23}^{1} & \mathrm{~K}_{24}^{1} & \mathrm{~K}_{25}^{1} & \mathrm{~K}_{26}^{1} & \mathrm{~K}_{27}^{1} & \mathrm{~K}_{28}^{1} & 0 & 0 & 0 & 0 \\ \mathrm{~K}_{31}^{1} & \mathrm{~K}_{32}^{1} & \mathrm{~K}_{33}^{1} & \mathrm{~K}_{34}^{1} & \mathrm{~K}_{35}^{1} & \mathrm{~K}_{36}^{1} & \mathrm{~K}_{37}^{1} & \mathrm{~K}_{38}^{1} & 0 & 0 & 0 & 0 \\ \mathrm{~K}_{41}^{1} & \mathrm{~K}_{42} & \mathrm{~K}_{43}^{1} & \mathrm{~K}_{44}^{1} & \mathrm{~K}_{45}^{1} & \mathrm{~K}_{46} & \mathrm{~K}_{47}^{1} & \mathrm{~K}_{48}^{1} & 0 & 0 & 0 & 0 \\ \mathrm{~K}_{51}^{1} & \mathrm{~K}_{52}^{1} & \mathrm{~K}_{53}^{1} & \mathrm{~K}_{54}^{1} & \mathrm{~K}_{55}^{1}+\mathrm{K}_{11}^{2} & \mathrm{~K}_{56}^{1}+\mathrm{K}_{12}^{2} & \mathrm{~K}_{57}^{1}+\mathrm{K}_{13}^{2} & \mathrm{~K}_{58}^{1}+\mathrm{K}_{14}^{2} & \mathrm{~K}_{15}^{2} & \mathrm{~K}_{16}^{2} & \mathrm{~K}_{17}^{2} & \mathrm{~K}_{18}^{2} \\ \mathrm{~K}_{61}^{1} & \mathrm{~K}_{62}^{1} & \mathrm{~K}_{63}^{1} & \mathrm{~K}_{64}^{1} & \mathrm{~K}_{65}^{1}+\mathrm{K}_{21}^{2} & \mathrm{~K}_{66}^{1}+\mathrm{K}_{22}^{2} & \mathrm{~K}_{67}^{1}+\mathrm{K}_{23}^{2} & \mathrm{~K}_{68}^{1}+\mathrm{K}_{24}^{2} & \mathrm{~K}_{25}^{2} & \mathrm{~K}_{26}^{2} & \mathrm{~K}_{27}^{2} & \mathrm{~K}_{28}^{2} \\ \mathrm{~K}_{71}^{1} & \mathrm{~K}_{72}^{1} & \mathrm{~K}_{73}^{1} & \mathrm{~K}_{74}^{1} & \mathrm{~K}_{75}^{1}+\mathrm{K}_{31}^{2} & \mathrm{~K}_{76}^{1}+\mathrm{K}_{32}^{2} & \mathrm{~K}_{77}^{1}+\mathrm{K}_{33}^{2} & \mathrm{~K}_{78}^{1}+\mathrm{K}_{34}^{2} & \mathrm{~K}_{35}^{2} & \mathrm{~K}_{36}^{2} & \mathrm{~K}_{37}^{2} & \mathrm{~K}_{29}^{2} \\ \mathrm{~K}_{81}^{1} & \mathrm{~K}_{82}^{1} & \mathrm{~K}_{83}^{1} & \mathrm{~K}_{84}^{1} & \mathrm{~K}_{85+}^{1}+\mathrm{K}_{41}^{2} & \mathrm{~K}_{86}^{1}+\mathrm{K}_{42}^{2} & \mathrm{~K}_{87}^{1}+\mathrm{K}_{43}^{2} & \mathrm{~K}_{88}^{1}+\mathrm{K}_{44}^{2} & \mathrm{~K}_{45}^{2} & \mathrm{~K}_{37}^{2} & \mathrm{~K}_{47}^{2} & \mathrm{~K}_{39}^{2} \\ 0 & 0 & 0 & 0 & \mathrm{~K}_{51} & \mathrm{~K}_{52}^{2} & \mathrm{~K}_{53}^{2} & \mathrm{~K}_{54} & \mathrm{~K}_{55}^{2} & \mathrm{~K}_{56}^{2} & \mathrm{~K}_{57}^{2} & \mathrm{~K}_{58}^{2} \\ 0 & 0 & 0 & 0 & \mathrm{~K}_{61}^{2} & \mathrm{~K}_{62}^{2} & \mathrm{~K}_{63}^{2} & \mathrm{~K}_{64}^{2} & \mathrm{~K}_{65}^{2} & \mathrm{~K}_{66}^{2} & \mathrm{~K}_{67}^{2} & \mathrm{~K}_{68}^{2} \\ 0 & 0 & 0 & 0 & \mathrm{~K}_{71}^{2} & \mathrm{~K}_{72}^{2} & \mathrm{~K}_{73}^{2} & \mathrm{~K}_{74}^{2} & \mathrm{~K}_{75}^{2} & \mathrm{~K}_{76}^{2} & \mathrm{~K}_{77}^{2} & \mathrm{~K}_{78}^{2} \\ 0 & 0 & 0 & 0 & \mathrm{~K}_{81}^{2} & \mathrm{~K}_{82}^{2} & \mathrm{~K}_{83}^{2} & \mathrm{~K}_{84}^{2} & \mathrm{~K}_{85}^{2} & \mathrm{~K}_{86}^{2} & \mathrm{~K}_{87}^{2} & \mathrm{~K}_{88}^{2}\end{array}\right]$

4.5 Application of the Boundary Conditions

At $x=0$, i.e., at the first node of the first element, there are four boundary conditions

$$
\begin{aligned}
& w(0, s)=\mathrm{P}(s) \\
& \frac{d w(0, s)}{d x}=u_{b}(0, s)=\frac{d u_{c}(0, s)}{d x}=0
\end{aligned}
$$

Substituting the value of $w(0)=u_{1}^{1}$ and deleting the first row and moving all entries of the first column to the right hand side gives:

$\left[\begin{array}{ccc}K_{22}^{1} & \ldots & \ldots \\ \ldots & \ldots & \ldots\end{array}\right]\left\{\begin{array}{c}\left.u_{2}^{1}\right) \\ \ldots\end{array}\right\}=\left\{\begin{array}{c}F_{2}^{1}+Q_{2}^{1}-K_{21}^{1} P(s) \\ \ldots\end{array}\right\}$

Similarly for $\frac{d w(0, s)}{d x}=0$, and $u_{b}(0, s)=0$, the rows and columns for u_{2}^{1} and u_{4}^{1} are deleted

For $\frac{d u_{c}(0, s)}{d x}=0$, substitute this value in

$$
Q_{3}^{1}=\left[a_{2} \frac{d u_{c}}{d x} \theta\right]_{x=0}
$$

to get $Q_{3}^{1}=0$.

At $x=1$, we have the following boundary conditions

$$
\frac{d u_{c}(1, s)}{d x}=\frac{d u_{b}(1, s)}{d x}=0
$$

The terms for the last element in the overall matrix equation are

$$
\left[\begin{array}{rrc}
& & \\
& \ldots & \ldots \\
& \ldots & \ldots \\
\ldots & \ldots & K_{88}^{n}
\end{array}\right]\left\{\begin{array}{c}
\\
\ldots \\
u_{8}^{n}
\end{array}\right\}=\left\{\begin{array}{c}
\\
F_{8}^{n}
\end{array}\right\}+\left\{\begin{array}{c}
\ldots \\
Q_{7}^{n} \\
Q_{8}^{n}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& Q_{7}^{n}=\left[a_{2} \frac{d u_{c}}{d x} \theta\right]_{x=1} \text { to get } Q_{7}^{n}=0 \\
& Q_{8}^{n}=\left[a_{2} \frac{d u_{b}}{d x} \theta\right]_{x=1} \text { to get } Q_{8}^{n}=0, \\
& \frac{d^{2} w(1, s)}{d x^{2}}=0, \text { and } \\
& -\frac{d^{3} w(1, s)}{d x^{3}}+a_{1} \frac{d^{2} u_{b}(1, s)}{d x^{2}}+\varepsilon(s)\left\{\frac{d w(1, s)}{d x}+\beta u_{c}(1, s)-\beta u_{b}(1, s)\right\}=0
\end{aligned}
$$

Imposing these boundary conditions, the overall equation is simplified to

$$
\begin{aligned}
& -K_{1} \frac{d^{3} w}{d x^{3}}-K_{2} \frac{d w}{d x}-K_{3} u_{c}-K_{4} u_{b}=0 \\
& Q_{6}^{n}=Q_{5}^{n}=\left[v \mathrm{~K}_{1} \frac{d^{3} w}{d x^{3}}-\mathrm{K}_{1} \frac{d v}{d x} \frac{d^{2} w}{d x^{2}}+v \mathrm{~K}_{2} \frac{d w}{d x}\right]_{x=1}
\end{aligned}
$$

or

$$
Q_{6}^{n}=Q_{5}^{n}=\left[\mathrm{K}_{1} \frac{d^{3} w}{d x^{3}}+\mathrm{K}_{2} \frac{d w}{d x}\right]_{x=1}
$$

or

$$
Q_{6}^{n}=Q_{5}^{n}=-K_{3} u_{c}-K_{4} u_{b}
$$

Finally, $\{F\}=\{0\}$ as there are no external forces acting on the system except for dynamic displacement excitation applied at the fixed end.

4.6 Summary

A finite element model of the PSOL treated beam has been developed. Hermite interpolation functions have been used for the $4^{\text {th }}$ order variable (lateral deflection) and Lagrangian interpolation functions have been used for the $2^{\text {nd }}$ order variables (axial deflections of the base beam and stand-off layer).

CHAPTER 5

Computer Implementation

In this chapter, MATLAB codes are developed to determine the response of beams treated with PSOL using both the distributed transfer function method and the developed finite element model. A step-by-step development of the codes is presented for beams that have been analyzed by Yellin et al. [9] in order to validate the predictions of the developed models.

5.1 Distributed Transfer Function Method

The following table gives the properties of the materials that are used to illustrate the computer implementation of several test numerical examples.

Beam material	Al6061
SOL material	DYAD 606
VEM material	ISD 112
Constraining layer material	Al
Beam thickness $\left(\boldsymbol{h}_{\boldsymbol{b}}\right)$	2.29 mm
SOL thickness $\left(\boldsymbol{h}_{\boldsymbol{s}}\right)$	2.64 mm
VEM thickness $\left(\boldsymbol{h}_{\boldsymbol{v}}\right)$.127 mm
Constraining layer $\left(\boldsymbol{h}_{\boldsymbol{c}}\right)$.203 mm
Width (\boldsymbol{b})	11.75 mm
Length (\boldsymbol{l})	150 mm

The complex modulii G_{v} and G_{s} for the viscoelastic and PSOL layer are assumed to be $1 \mathrm{e}^{5}(1+\mathrm{i})$.

Also, these parameters are assumed to be constant through the frequency range.

Defining the constants (used in the code listed in Appendix A.1)
Excitation Function
$\mathrm{P}=1$;
$\mathrm{z}=0$;

Length
$\mathrm{l}=.15$;

Width
$\mathrm{b}=.01175$;

Stand off layer Height
hs=.264*1e-3;

Constraining Layer
hc= $203 * 1 \mathrm{e}-3$;

Viscoelasitc layer
$h v=.127^{*} 1 \mathrm{e}-3$;

Base beam
$h b=2.29^{*} 1 \mathrm{e}-3$;

Viscoelastic layer
$\mathrm{Gv}=1 \mathrm{e} 5^{*}(1+\mathrm{i}) ;$

Stand off layer Height
$\mathrm{Gs}=1 \mathrm{e} 5^{*}(1+\mathrm{i}) ;$

Mass/unit length of base beam
$\mathrm{pb}=2850 * \mathrm{~b}$ *hb;

Constraining Layer

$\mathrm{pc}=2850 *{ }^{*}{ }^{*} \mathrm{hc}$;

Viscoelastic layer

$\mathrm{pv}=1100^{*} \mathrm{~b}^{* h v}$;

Stand off layer Height

$\mathrm{ps}=1100$ * ${ }^{*} \mathrm{hs}$;
$\mathrm{Eb}=72 \mathrm{e} 9$;
$\mathrm{Ec}=72 \mathrm{e} 9$;
$\mathrm{Es}=\mathrm{Gs} * 2.9$;
$\mathrm{Ev}=\mathrm{Gv} * 2.9$;
$(E A)_{b s}=E_{b} A_{b}+E_{s} A_{s}$
EAbs=Eb*(hb*b)+Es*(hs*b);
$(E I)_{b s}=E_{b} I_{b}+E_{s} I_{s}$
Elbs $=E b^{*}\left(b^{*} h b^{\wedge} 3 / 12\right)+E s^{*}\left(b^{*} \mathrm{hs}^{\wedge} 3 / 12+b^{*} h s^{*}(\mathrm{hs} / 2+h b / 2)^{\wedge} 2\right) ;$
$(E Q)_{b s}=E_{b} Q_{b}+E_{s} Q_{s}$
EQbs $=\mathrm{Eb}^{*}(0) * \mathrm{hb} / 4+\mathrm{Es} *(\mathrm{hs} * \mathrm{~b}) *(\mathrm{hb} / 2+\mathrm{hs} / 2)$;
$\mathrm{EAc}=\mathrm{Ec}^{*} \mathrm{~b}^{*} \mathrm{hc}$;
$\mathrm{EIc}=\mathrm{Ec} *\left(\mathrm{~b}^{*} \mathrm{hc}^{\wedge} 3 / 12\right)$;
$\rho=\rho_{b}+\rho_{s}+\rho_{v}+\rho_{c}$
$\mathrm{p}=\mathrm{ps}+\mathrm{pc}+\mathrm{pv}+\mathrm{pb} ;$

$$
D_{t}=(\mathrm{EI})_{b s}+(\mathrm{E} I)_{c}
$$

$\mathrm{Dt}=\mathrm{EIbs}+\mathrm{EIc}$;
$\alpha \equiv y_{b}+h_{s}+h_{v}+\frac{h_{c}}{2}$
alpha $=\mathrm{hv}+\mathrm{hs}+(\mathrm{hb}+\mathrm{hc}) / 2$;
$\varepsilon(s) \equiv \frac{b \alpha^{2} G_{v} G_{s} l^{2}}{D_{t}\left(G_{v} h_{s}+G_{s} h_{v}\right)}$
$\mathrm{E}=\mathrm{b} * \mathrm{alpha}{ }^{\wedge} 2^{*} \mathrm{Gv}^{*} \mathrm{Gs}^{*}{ }^{\wedge} \wedge 2 /(\mathrm{Dt} *(\mathrm{Gv} * \mathrm{hs}+\mathrm{Gs} * \mathrm{hv})) ;$
$c^{2}{ }_{1} \equiv \frac{\rho_{c}}{\rho}$
$\mathrm{c} 1=\mathrm{pc} / \mathrm{p} ;$
$c^{2}{ }_{1} \equiv \frac{\rho_{c}}{\rho}$
$\mathrm{c} 2=(\mathrm{pb}+\mathrm{ps}) / \mathrm{p} ;$
$\beta \equiv \frac{l}{\alpha}$
$\mathrm{B}=1 / \mathrm{alpha} ;$
$a_{1} \equiv \frac{\left(\mathrm{E} Q_{b s} l\right)}{D_{t}}$
al=EQbs*1/Dt;
$a_{2} \equiv \frac{\mathrm{E}_{c} \mathrm{~A}_{c} l^{2}}{D_{t}}$
$\mathrm{a} 2=\mathrm{EAc} *{ }^{*}$ * $1 / \mathrm{Dt} ;$
$a_{3} \equiv \frac{(\mathrm{EA})_{b s} l^{2}}{D_{t}}$
a3 $=$ EAbs ${ }^{*}$ 1*1/Dt;

Implementation of the program with for loop

for $\mathrm{sr}=1: 5: 5000$

$$
s \equiv \sqrt{\frac{\rho l^{4}}{D_{t}} s^{\prime}}
$$

$$
\mathrm{s}=\mathrm{sr}^{*} \mathrm{i}^{*}\left(\mathrm{p} * 1^{\wedge} 4 / \mathrm{Dt}\right)^{\wedge} .5 * \mathrm{pi} * 2
$$

$F(s)=$

$\mathrm{F}=[\quad 0,1,0,0,0,0,0,0$; 0,0,1,0,0,0,0,0; 0, $, 0,1,0,0,0,0$; $-s^{\wedge} 2^{*} k, 0,\left(E-B^{*} E^{*} \mathrm{a} 1 / \mathrm{a} 3\right) * k, 0,0,\left(\mathrm{E}^{*} \mathrm{~B}-\mathrm{E}^{*} \mathrm{~B}^{\wedge} 2^{*} \mathrm{a} 1 / \mathrm{a} 3\right) * \mathrm{k}, 0,\left(\mathrm{c} 2^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{a} 1 / \mathrm{a} 3 \ldots\right.$ $\left.+\mathrm{B}^{\wedge} 2^{*} \mathrm{E}^{*} \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B} * \mathrm{E}\right)^{*} \mathrm{k}$; $0,0,0,0,0,1,0,0$;
$0, \mathrm{E}^{*} \mathrm{~B} / \mathrm{a} 2,0,0,\left(\mathrm{c} 1^{*} \mathrm{~s}^{\wedge} 2+\mathrm{E}^{*} \mathrm{~B}^{\wedge} 2\right) / \mathrm{a} 2,0,-\mathrm{E}^{*} \mathrm{~B}^{\wedge} 2 / \mathrm{a} 2,0 ;$ $0,0,0,0,0,0,0,1$; $\left.0,-B^{*} \mathrm{E} / \mathrm{a} 3,0, \mathrm{a} 1 / \mathrm{a} 3,-\mathrm{E}^{*} \mathrm{~B}^{\wedge} 2 / \mathrm{a} 3,0,\left(\mathrm{c} 2{ }^{*} \mathrm{~s}^{\wedge} 2+\mathrm{E}^{*} \mathrm{~B}^{\wedge} 2\right) / \mathrm{a} 3,0\right] ;$
$M(s)=\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \mathrm{M}=[\quad 1,0,0,0,0,0,0,0 ; \\
& \text { 0,1,0,0,0,0,0,0; } \\
& \text { 0,0,0,0,0,1,0,0; } \\
& 0,0,0,0,0,0,0,1 \text {; } \\
& \text { 0,0,0,0,0,0,0,0; } \\
& 0,0,0,0,0,0,0,0 \text {; } \\
& \text { 0,0,0,0,0,0,0,0; } \\
& \text { 0,0,0,0,0,0,0,0]; }
\end{aligned}
$$

```
H0=eye(8)/(M+N*efs)^-1;
y(x,s)=H(x,s)\gamma(s),x\in(0,1)
eta=H*Gamma;
eta0=H0*Gamma;
z=z+1;
splot(z)=sr;
w(z)=abs(real(eta(1))/real(eta0(1)));
end
Plotting
semilogy(splot,w)
```

A complete listing of the MATLAB code is given in Section A. 1 of the appendix.

5.2 Finite Element Method

Provide number of elements

nem=11;
Define constants (used in the code listed in Appendix A.2)

Excitation Function

$\mathrm{P}=1$;
$\mathrm{z}=0$;
Length
l=.15;

Width

$\mathrm{b}=.01175$;
Stand off layer Height
hs=.264* $1 \mathrm{e}-3$;

Constraining Layer

$h c=.203 * 1 \mathrm{e}-3$;

Viscoelasitc layer
$h v=.127 * 1 \mathrm{e}-3$;

Base beam
$h b=2.29^{*} 1 \mathrm{e}-3$;
Viscoelastic layer
$\mathrm{Gv}=1 \mathrm{e} 5^{*}(1+\mathrm{i}) ;$
Stand off layer Height
$\mathrm{Gs}=1 \mathrm{e} 5^{*}(1+\mathrm{i}) ;$
Mass/unit length of base beam
$\mathrm{pb}=2850 *{ }^{*}{ }^{* h b}$;

Constraining Layer
$\mathrm{pc}=2850 *{ }^{*}{ }^{*} \mathrm{hc}$;

Viscoelastic layer
$\mathrm{pv}=1100 * \mathrm{~b}$ *hv;

Stand off layer Height
$\mathrm{ps}=1100 *{ }^{*}{ }^{*} \mathrm{hs}$;
$\mathrm{Eb}=72 \mathrm{e} 9$;
$\mathrm{Ec}=72 \mathrm{e} 9$;
$\mathrm{Es}=\mathrm{Gs} * 2.9$;
$\mathrm{Ev}=\mathrm{Gv} * 2.9$;
$(E A)_{b s}=E_{b} A_{b}+E_{s} A_{s}$
$E A b s=E b *(h b * b)+E s^{*}(h s * b) ;$
$(E I)_{b s}=E_{b} I_{b}+E_{s} I_{s}$
EIbs $=\mathrm{Eb}^{*}\left(\mathrm{~b}^{*} \mathrm{hb}{ }^{\wedge} 3 / 12\right)+E s^{*}\left(\mathrm{~b}^{*} \mathrm{hs}^{\wedge} 3 / 12+\mathrm{b}^{*} \mathrm{hs*}(\mathrm{hs} / 2+\mathrm{hb} / 2)^{\wedge} 2\right)$;
$(E Q)_{b s}=E_{b} Q_{b}+E_{s} Q_{s}$
$\mathrm{EQbs}=\mathrm{Eb}^{*}(0) * \mathrm{hb} / 4+E s^{*}(\mathrm{hs} * \mathrm{~b}) *(\mathrm{hb} / 2+\mathrm{hs} / 2)$;
$\mathrm{EAc}=\mathrm{Ec}^{*} \mathrm{~b}^{*} \mathrm{hc}$;
$\mathrm{EIc}=\mathrm{Ec} *\left(\mathrm{~b}^{*} \mathrm{hc}^{\wedge} 3 / 12\right)$;
$\rho=\rho_{b}+\rho_{s}+\rho_{v}+\rho_{c}$
$\mathrm{p}=\mathrm{ps}+\mathrm{pc}+\mathrm{pv}+\mathrm{pb} ;$

$$
D_{t}=(\mathrm{EI})_{b s}+(\mathrm{E} I)_{c}
$$

$\mathrm{Dt}=\mathrm{EIbs}+\mathrm{EIc}$;
$\alpha \equiv y_{b}+h_{s}+h_{v}+\frac{h_{c}}{2}$
alpha $=\mathrm{hv}+\mathrm{hs}+(\mathrm{hb}+\mathrm{hc}) / 2$;
$\varepsilon(s) \equiv \frac{b \alpha^{2} G_{v} G_{s} l^{2}}{D_{t}\left(G_{v} h_{s}+G_{s} h_{v}\right)}$
$\mathrm{E}=\mathrm{b}^{*}$ alpha^2*Gv*Gs*1^2/(Dt*(Gv*hs+Gs*hv));
$c^{2}{ }_{1} \equiv \frac{\rho_{c}}{\rho}$
$\mathrm{c} 1=\mathrm{pc} / \mathrm{p} ;$
$c^{2}{ }_{1} \equiv \frac{\rho_{c}}{\rho}$
$\mathrm{c} 2=(\mathrm{pb}+\mathrm{ps}) / \mathrm{p} ;$
$\beta \equiv \frac{l}{\alpha}$
$\mathrm{B}=1 /$ alpha;
$a_{1} \equiv \frac{\left(\mathrm{E} Q_{b s} l\right)}{D_{t}}$
al=EQbs*1/Dt;
$a_{2} \equiv \frac{\mathrm{E}_{c} \mathrm{~A}_{c} l^{2}}{D_{t}}$
$\mathrm{a} 2=\mathrm{EAc} *{ }^{*}{ }^{*} / \mathrm{Dt} ;$
$a_{3} \equiv \frac{(\mathrm{EA})_{b s} l^{2}}{D_{t}}$
a3 $=$ EAbs ${ }^{*}$ 1*1/Dt;
splot $=0$;
syms x
Define length of each element
$\mathrm{h}=1 / \mathrm{nem}$;
Define interpolation functions.

$$
v_{1}=1-3\left(\frac{x}{h}\right)^{2}+2\left(\frac{x}{h}\right)^{3}
$$

$\mathrm{v} 1=1-3 *(\mathrm{x} / \mathrm{h})^{\wedge} 2+2 *(\mathrm{x} / \mathrm{h})^{\wedge} 3 ;$
$v_{2}=-x\left(1-\frac{x}{h}\right)^{2}$
$\mathrm{v} 2=-\mathrm{x} *(1-\mathrm{x} / \mathrm{h})^{\wedge} 2 ;$
$v_{3}=3 \frac{x^{2}}{h^{2}}-2 \frac{x^{3}}{h^{3}}$
$\mathrm{v} 3=3^{*}(\mathrm{x} / \mathrm{h})^{\wedge} 2-2^{*}(\mathrm{x} / \mathrm{h})^{\wedge} 3 ;$
$v_{4}=-x\left(\frac{x^{2}}{h^{2}}-\frac{x}{h}\right)$
$\mathrm{v} 4=-\mathrm{x}^{*}\left(\mathrm{x}^{\wedge} 2 / \mathrm{h}^{\wedge} 2-\mathrm{x} / \mathrm{h}\right)$;
$\theta_{1}=\Phi_{1}=1-\frac{x}{h}$
th $1=1-\mathrm{x} / \mathrm{h}$;
$\theta_{2}=\Phi_{2}=\frac{x}{h}$
th $2=x / h ;$
for $\mathrm{sr}=1: 100: 5000$

$$
\mathrm{s}=\mathrm{sr}^{*} \mathrm{i}^{*}\left(\mathrm{p} * 1^{\wedge} 4 / \mathrm{Dt}\right)^{\wedge} .5 * \mathrm{pi} * 2
$$

$\mathrm{K}_{1}=1-\frac{a_{1}{ }^{2}}{a_{3}}$ $\mathrm{k} 1=\left(1-\mathrm{a} 1^{\wedge} 2 / \mathrm{a} 3\right) ;$

$$
\begin{aligned}
& \mathrm{K}_{2}=\frac{a_{1}}{a_{3}} \beta \varepsilon-\varepsilon \\
& \mathrm{k} 2=\left(\mathrm{a} 1 / \mathrm{a} 3 * \mathrm{~B}^{*} \mathrm{E}-\mathrm{E}\right) \text {; } \\
& \mathrm{K}_{3}=\beta^{2} \varepsilon \frac{a_{1}}{a_{3}}-\beta \varepsilon \\
& \mathrm{k} 3=\mathrm{B}^{\wedge} 2^{*} \mathrm{E} * \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B} * \mathrm{E} ; \\
& \mathrm{K}_{4}=\beta \varepsilon-c_{2}^{2} s^{2} \frac{a_{1}}{a_{3}}-\beta^{2} \varepsilon \frac{a_{1}}{a_{3}} \\
& \mathrm{k} 4=\mathrm{B}^{*} \mathrm{E}-\mathrm{c} 2{ }^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B}^{\wedge} 2^{*} \mathrm{E}^{*} \mathrm{a} 1 / \mathrm{a} 3 ; \\
& \mathrm{K}_{8}=-\beta \varepsilon \\
& \mathrm{k} 8=-\mathrm{B} * \mathrm{E} \text {; } \\
& \mathrm{K}_{5}=c_{1}^{2} s^{2}+\beta^{2} \varepsilon \\
& \mathrm{k} 5=\mathrm{c} 1 *_{\mathrm{s}^{\wedge}} 2+\mathrm{B}^{\wedge} 2 * \mathrm{E} ; \\
& \mathrm{K}_{6}=-\beta^{2} \varepsilon \\
& \mathrm{k} 6=-\mathrm{B}^{\wedge} 2^{*} \mathrm{E} \text {; } \\
& \mathrm{K}_{7}=c_{2}{ }^{2} s^{2}+\beta^{2} \varepsilon \\
& \mathrm{k} 7=\mathrm{c} 2 *^{*}{ }^{\wedge} 2+\mathrm{B}^{\wedge} 2^{*} \mathrm{E} ;
\end{aligned}
$$

Define the elements of the K Matrix

Assembly of the K Matrix

Integrating the K Matrix over the element

$\mathrm{K}=\operatorname{int}(\mathrm{KK}, \mathrm{x}, 0, \mathrm{~h})$;
$\mathrm{K}=$ double(K);

Assembly of the overall K Matrix

$\mathrm{KO}=\operatorname{zeros}((\mathrm{nem}+1) * 4)$;
for $\mathrm{n}=1$:nem
$\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)=\mathrm{KO}\left(\mathrm{n} * 4-3: \mathrm{n}^{*} 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4\right)+\mathrm{K} ;$
end

Reducing the overall K Matrix by incorporating the boundary conditions

$K K=z e r o s(n e m * 4+1)$;
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);
$\operatorname{KK}(1,1)=\mathrm{KO}(3,3)$;
$\operatorname{KK}(1,2: 5)=\mathrm{KO}(3,5: 8)$;
$\operatorname{KK}(2: 5,1)=\mathrm{KO}(5: 8,3)$;
Incorporating the last boundary condition (shear force equilibrium at the free end)
$\mathrm{KK}(($ nem-1)*4+2,(nem*4))$=\mathrm{KK}(($ nem-1)*4+2,(nem*4))+k3;
$K K(($ nem -1$) * 4+2,($ nem $* 4+1))=K K((n e m-1) * 4+2,(n e m * 4+1))+\mathrm{k} 4 ;$

Defing the F Matrix

$\mathrm{F}=[-\mathrm{KO}(1,3) ; \mathrm{KO}(1,5) ;-\mathrm{KO}(1,6) ;-\mathrm{KO}(1,7) ;-\mathrm{KO}(1,8) ;$ zeros(nem*4-4,1)];

Calculating the nodal variable values

$X=K K^{\wedge}-1 * F ;$
Plotting

```
splot=splot+1;
w(splot)=abs(real(X(nem*4-2)));
ww(splot)=sr;
end
```

A complete listing of the MATLAB code is given in Section A. 2 of the appendix.

5.3 Slotted Psol Finite Element Model Matlab Program

This model consists of 11 elements with every second element slotted, i.e. with no modulus of elasticity.

The inclusion of the slots in the model can be achieved by varying the properties of the stand off layer of the elements. In fact, variation of properties of other layers is also possible. The matrices of the elements with different properties have to be computed separately and then combined in the overall matrix. If the properties of the layers are varied excessively, then a large number of matrices need to be integrated which leads to a large increase in computing time.

The following if-else statement is used for combining the matrices
K1 = Integrated matrix for full element

K2 = Integrated matrix for slotted element
For Element No. = 1 : No. of Elements
if Element $=$ Slotted
Overall Stiffness Matrix $=$ Overall Stiffness Matrix +K 2

Else
if Element $=$ Full

Overall Stiffness Matrix $=$ Overall Stiffness Matrix + K1

End

A complete listing of the MATLAB code is given in Section A. 3 of the appendix.

5.4 Summary

MATLAB programs for the distributed transfer function method and finite element method have been developed. The finite element program has been further modified to incorporate the slots in stand off layer (by varying the properties) along the length of the beam. However, slots in the viscoelastic and constraining layers can also be included. The full code of the programs is given in the index of program codes in the index of computer programs.

CHAPTER 6

ANSYS Modeling and Comparison

6.1 Overview

In this chapter, the predictions of the developed finite element model and the distributed transfer function method are compared with the predictions of the commercial software package ANSYS.

6.2 Damping In Ansys

In the implementation of the ANSYS simulation, it is very critical to account for the damping of the viscoelastic and the beam materials accurately.

Damping in ANSYS Version 8.0 is classified into two broad categories: Viscous damping and Structural damping. This can be done by two different analysis methods called the full method and the mode-superposition method. Figure (19) illustrates the various damping input functions in ANSYS

Figure (19) - Damping in ANSYS

The DMPRAT command is used to define constant damping ratios throughout the considered frequency range.

The MDAMP command is used however to define the modal damping ratios in which damping is specified for each mode independent of frequency.

The ALPHAD command defines damping ratios which are inversely proportional to frequency.

The BETAD command defines damping ratios which are directly proportional to frequency.

Finally, the MP,DAMP command represents stiffness multiplier in full analysis method
and it represents structural damping or constant damping ratio.

6.3 Modeling In Ansys

A Two-dimensional model is developed using ANSYS commercial software package. In that model, PLANE element 183 is used to discretize the cantilever beam which is subjected to harmonic excitation at its fixed end. Figures (20) and (21) display the ANSYS solid and meshed models respectively.

Figure (20) - Modeling in ANSYS

Figure (21) - Meshed Model in ANSYS

6.4 Comparison

a. plain beam

The response of plain base beams as predicted by the developed finite element model and the distributed transfer function method are compared with the predictions of the commercial software package ANSYS. The considered base beam is made of aluminum whose length $=.15$ m, width $=.01175 \mathrm{~m}$, and height $=.00229 \mathrm{~m}$.

Figures (22), (23), and (24) display such responses and Figure (25) presents a comparison between all the three different methods. Close agreement is evident between the predictions of all the three methods.

Response

Frequency - Hz

Figure (22) - Response of plain beam using the distributed transfer function method

Response

Figure (23) - Response of plain beam using the developed FEM

Response

Figure (24) - Response of plain beam using ANSYS

Response

Frequency - Hz
Figure (25) - Comparison between the response of a plain beam using the different methods

b. beam with passive SOL

The main properties of the considered beam which is treated with passive SOL are:

Base Material $=$ Aluminum, Length $=.15 \mathrm{~m}$, Width $=.01175 \mathrm{~m}$, Height $=.00229 \mathrm{~m}$
SOL Material $=$ Aluminum, Height $=.00264 \mathrm{~m}$
VEM Material Properties, Modulus Elasticity $=1 \mathrm{e} 5 \mathrm{~N} / \mathrm{m}^{2}$
Damping Ratio $=1 \mathrm{e}-4 \mathrm{x} \pi \mathrm{x}$ frequency \quad (linearly dependent on frequency), Height $=.000127 \mathrm{~m}$, and Density $=1100 \mathrm{Kg} / \mathrm{m}^{3}$

Constraining Layer $=$ Aluminum, Height $=.000203 \mathrm{~m}$.

Figures (26), (27), and (28) display such responses and Figure (29) presents a comparison between all the three different methods. Close agreement is evident between the predictions of all the three methods.

Response

Figure (26) - Response of a beam with SOL using the distributed transfer function method

Response

Figure (27) - Response of a beam with SOL using the developed FEM

Response

Figure (28) - Response of a beam with SOL using ANSYS

Response

Frequency - Hz

Figure (29) - Comparison between the response of a beam with SOL using the different methods

Note that the discrepancy between ANSYS model and the other two method is due to the fact that ANSYS considers the VEM to have bending moment while the Distributed Transfer Function and Finite Element Methods do not take into account the bending moment in the Viscoelastic layer.

6.5 Summary

A comparison between the results obtained from the while Distributed Transfer Function and Finite Element Methods has been presented for different types of models. The results from ANSYS conform with those obtained by the developed methods for plain beams. However, due to the assumption that there is no bending stiffness in viscoelastic layer, the predictions are not exactly same for beams with SOL treatment.

CHAPTER 7

Experimental Verification

7.1 Experimental Setup

Several experiments were performed to substantiate the results obtained by the analytical models. For this purpose, acrylic was chosen as the base material and as stand-off layer whereas aluminum was used as the constraining layer. Dyad 606 was used as viscoelastic material. Figures (30) and (31) display the loss factor and the storage modulus of the acrylic as obtained by the Dynamic, Mechanical, and Thermal Analyzer (DMTA) at different operating temperatures and excitation frequencies.

Figure (30) - Temperature-loss factor characteristics for Acrylic

Figure (31) - Temperature-Storage Modulus characteristics for Acrylic

The following master curves were produced for acrylic.

Figure (32) - Master Curves for Acrylic

For the experiments, a cantilever beam model was subject to excitation at its fixed end was made and the input from the free end of the beam was fed to a signal analyzer. The resulting plots were recorded and compared.

Figure (33) - Experimental Setup

c. Test beams

Table (1) lists the considered test specimens along with their main geometrical and physical parameters.

Table (1) - The main geometrical and physical parameters of the tested PSOL treatments

MODEL	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Beam	Acrylic						
SOL Material	-	-	Acrylic	Acrylic	Acrylic	Acrylic	Acrylic
VEM	-	-	DYAD 606				
Constraining Layer	-	-	Al.	Al.	Al.	Al.	Al.
Beam thickness (mm)	5.00	3.00	3.50	3.50	3.50	3.125	3.125
Beam Length (mm)	280	280	280	280	280	125	125
Beam Width (mm)	25	25	25	25	25	25	25
SOL thickness (mm)	-	-	2.0	2.0	2.0	3.125	3.125
SOL length (mm)	-	-	125	125	205.5	125	125
Slot width (mm)	-	-	0 (solid)	6.26	6.26	2.38	1.6
VEM thickness (mm)	-	-	1.15	1.15	1.15	1.15	1.15
Constraining ayer thickness (mm)	-	-	0.64	0.64	0.64	0.64	0.64

Experimental Model 1

Thick Plain Beam

The main geometrical and physical parameters of the considered 5 mm thick beam are given in Table 1 and shown in Figure (34).

Figure (34) - $\mathbf{5} \mathbf{~ m m}$ thick plain beam (model 1)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily represented by:

$$
\text { Elasticity Modulus }=3 \mathrm{e}^{9}[1+0.04 \mathrm{i}] \quad \mathrm{N} / \mathrm{m}^{2}
$$

Figure (35) displays a comparison between the theoretical and experimental frequency response characteristics of the 5 mm thick plain beam. Table (2) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. It is evident that there is a close agreement between theory and experiments.

Figure (35) - Comparison between the theoretical and experimental frequency response of 5 mm thick plain beam

Table (2) - Comparison between the theoretical and experimental modal characteristics of the 5 mm thick plain beam

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	16	14	.51	na
2	116	102	.043	.20
3	321	328	.041	.07
4	631	642	.041	.053
5	1046	1056	.040	.047

Experimental Model 2

Thin Solid Beam

The main geometrical and physical parameters of the considered 3 mm thick beam are given in Table 1 and shown in Figure (36).

Figure (36) - $\mathbf{3} \mathbf{~ m m}$ thick plain beam (model 2)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily represented by:

$$
\text { Elasticity Modulus }=3 \mathrm{e}^{9}[1+0.04 i] \quad \mathrm{N} / \mathrm{m}^{2}
$$

Figure (37) displays a comparison between the theoretical and experimental frequency response characteristics of the 3 mm thick plain beam. Table (3) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. It is evident that there is a close agreement between theory and experiments.

Figure (37) - Comparison between the theoretical and experimental frequency response of 3 mm thick plain beam

In Figure (37), the effect of including the material loss factor of the acrylic beam on the accurate prediction of the frequency response of the beam is evident.

Table (3) - Comparison between the theoretical and experimental modal characteristics of the 3 mm thick plain beam

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	11	na	.56	na
2	61	56	.10	.13
3	172	174	.10	.20
4	339	342	.08	.09
5	567	575	.09	.09
6	835	857	.09	.09

Experimental Model 3

Beam with unslotted PSOL

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 2 mm thick SOL are given in Table 1 and shown in Figure (38).

Figure (38) - $\mathbf{3 . 5} \mathbf{~ m m}$ thick beam with unslotted SOL (model 3)
. The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily represented by:

$$
\text { Elasticity Modulus }=3 \mathrm{e}^{9}[1+0.04 \mathrm{i}] \quad \mathrm{N} / \mathrm{m}^{2}
$$

Figure (39) displays a comparison between the theoretical and experimental frequency response characteristics of the 3.5 mm thick beam with unslotted. Table (4) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. It is evident that there is a close agreement between theory and experiments.

Figure (39) - Response for beam model 3 with unslotted stand-off layer treated in middle

Table (4) - Comparison between the theoretical and experimental modal characteristics of the 3.5 mm thick beam with unslotted SOL

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
$\mathbf{1}$	20	n / a	.45	Na
$\mathbf{2}$	105	120	.19	.09
$\mathbf{3}$	315	315	.14	.09
$\mathbf{4}$	620	605	.13	.08
$\mathbf{5}$	1015	1005	.14	.11

Experimental Model 4

Beam with a slotted PSOL machined in middle

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 2 mm thick SOL are given in Table 1 and shown in Figure (40).

Figure (40) - $\mathbf{3 . 5} \mathbf{m m}$ thick beam with slotted PSOL (model 4)

The complex modulus of the test beam is shown in Figures (30)-(32) and can be easily represented by:

$$
\text { Elasticity Modulus }=3 \mathrm{e}^{9}[1+0.04 i] \quad \mathrm{N} / \mathrm{m}^{2}
$$

Figure (41) displays a comparison between the theoretical and experimental frequency response characteristics of a beam with slotted PSOL machined at the beam center. Table (5) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. In this case, the theoretical predictions are qualitatively similar to the experimental results. But, there are quantitative discrepancies between theory and experiments particularly as far as the amplitude of deflections.

Figure (41) - Frequency response of a beam with slotted PSOL machined at the center

Table (5) - Comparison between the theoretical and experimental modal characteristics of the 3.5 mm thick beam with slotted SOL near free end

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	17	13	.38	.52
2	136	125	.15	.08
3	365	350	.22	.08
4	720	755	.18	.06
5	1200	1150	na	.06

Experimental Model 5

Beam with a slotted PSOL machined at free end

The main geometrical and physical parameters of the considered 3.5 mm thick beam with 2 mm thick SOL are given in Table 1 and shown in Figure (42).

Figure (42) - 3.5 mm thick beam with slotted PSOL machined at free end (model 5)

Figure (43) displays a comparison between the theoretical and experimental frequency response characteristics of a beam with slotted PSOL machined at the free end. Table (6) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. In this case, the theoretical predictions are in good agreement with the experimental results.

Frequency - Hz
Figure (43) - Frequency response of a beam with slotted PSOL machined at free end

Table (6)- Comparison between the theoretical and experimental modal characteristics of a beam with slotted PSOL machined near free end

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	15	10	.56	.7
2	136	123	.12	.14
3	440	450	.084	.062
4	1015	1015	.08	.06

Experimental Model 6

Beam with a 27-slot PSOL

The main geometrical and physical parameters of the considered 3.125 mm thick beam with 3.125 mm thick SOL that has 27 slots are given in Table (1) and shown in Figure (44).

Figure (44) - $\mathbf{3 . 1 2 5} \mathbf{m m}$ thick beam with a 40-slot PSOL (model 6)

Figure (45) displays a comparison between the theoretical and experimental frequency response characteristics of the beam with a 27 -slot PSOL. Table (7) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. In this case, the theoretical predictions are in adequate agreement with the experimental results.

Figure (45) - Frequency response of a beam with a 27-slot PSOL

Table (7) - Comparison between the theoretical and experimental modal characteristics of a beam with 27 -slot PSOL

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	100	50	0.3	0.3
2	700	750	0.08	0.05
3	1800	1750	0.21	0.18

Experimental Model 7

Beam with a 40-slot PSOL

The main geometrical and physical parameters of the considered 3.125 mm thick beam with 3.125 mm thick SOL that has 40 slots are given in Table 1 and shown in Figure (46).

Figure (46) - $\mathbf{3 . 1 2 5} \mathbf{~ m m}$ thick beam with a 40-slot PSOL (model 7)

Figure (47) displays a comparison between the theoretical and experimental frequency response characteristics of the beam with a 40 -slot PSOL. Table (8) lists also a comparison between the theoretical and experimental modal characteristics of the plain beam. In this case, the theoretical predictions are in adequate agreement with the experimental results.

Figure (47) - Frequency response of a beam with a 40-slot PSOL

Table (8)- Comparison between the theoretical and experimental modal characteristics of a beam with 40 -slot PSOL

Mode	Frequency (Hz)		Damping Ratio	
	Theory	Exp	Theory	Exp
1	100	50	0.3	0.3
2	700	660	0.08	0.11
3	1800	1660	0.21	0.18

7.2 Summary

The chapter has presented the experimental frequency response of beams with PSOL of different configurations along with comparisons with the theoretical predictions. It is found that the experimental results are in close agreement with the predictions of the developed finite element model.

Chapter 8

Effect of PSOL Parameters on its Damping

Characteristics

In this chapter, the effect of changing the parameters of the different layers on the damping characteristics of beams treated with PSOL is presented. For this study, the base beam is assumed to have a total length $=0.15 \mathrm{~m}$, thickness $=2.29 \mathrm{~mm}$, and Young's modulus $\mathrm{E}=70 \mathrm{e} 9$ $\mathrm{N} / \mathrm{m}^{2}$.

The effect of varying the design parameters on the damping characteristics is quantified using the following performance index AUC denoting the area under the curve:

$$
\begin{equation*}
\mathbf{A U C}=\int_{\omega=0}^{\infty} w(l) d \omega \tag{71}
\end{equation*}
$$

where $w(l)=$ lateral deflection at the free end of the cantilever beam when it is subjected to sinusoidal excitation at its fixed end. Figure (48) shows a typical frequency response characteristics of a beam with PSOL and the hatched area defines the performance index AUC which will be used as a metric for optimizing the performance of the PSOL.

Frequency - Hz
Figure (48) - A typical frequency response of a beam with PSOL defining the performance index AUC

In this chapter, the effect of changing the thickness and the strength of the viscoelastic material (VEM), stand-off layer (SOL), and constraining layer on the performance index AUC is investigated in an attempt to find the combination of the design parameters that minimizes the AUC. Furthermore, the effect of changing the bending and shear strength of the PSOL on the AUC is also studied for damped and undamped SOL.

8.1 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is Undamped

In this regard, the strength of the VEM and SOL are assumed constant and are given by:

$$
\operatorname{SOL}(\mathrm{E})=1 \mathrm{e} 5 \mathrm{~N} / \mathrm{m}^{2} \text { and } \operatorname{VEM}(\mathrm{E})=1 \mathrm{e} 5(1+\mathrm{i}) \mathrm{N} / \mathrm{m}^{2}
$$

Figure (49) shows the iso-contours of the performance index AUC as a function of the thickness of the VEM and SOL Layers. It is evident that the minimum values of the AUC occur when the VEM and SOL are of equal thicknesses and lie in the range between $0.4-0.8 \mathrm{~mm}$.

Figure (49) - Iso-contours of the AUC as a function of the thickness of the VEM and SOL Layers when the SOL layer is undamped

8.2 Effect Of Thickness Of Vem And Sol Layers When Sol Layer Is Damped

If the strengths of the SOL and VEM layers are assumed to be given by SOL strength $=$ $1 \mathrm{e} 5(1+\mathrm{i}) \mathrm{N} / \mathrm{m}^{2}$ and VEM strength $=1 \mathrm{e} 5(1+\mathrm{i}) \mathrm{N} / \mathrm{m}^{2}$ such that the SOL layer is damped and has a loss factor $=1$, then the AUC iso-contours become as shown in Figures (50a) and (50b). It is evident that the minimum values of the AUC occur as the thickness of both the VEM and SOL is increased.

(a) - color contours

Figure (50) - Iso-contours of the AUC as a function of the thickness of the VEM and SOL Layers when the SOL layer is damped

8.3 Effect Of Young's Modulus Of Vem And Sol Layers When Sol Layer Is Damped

Figures (51a) and (51b) show the AUC iso-contours as affected by the Young's modulii of both the VEM and SOL layers when the SOL layer has a loss factor $=1$. It is evident that the minimum values of the AUC occur as the Young's modulus of both the VEM and SOL is increased.

Figure (51) - Iso-contours of the AUC as a function of the strength of the VEM and SOL Layers when the SOL layer is damped

8.4 Effect Of Thickness And Strength Of Constraining Layer

Figure (52) shows the AUC iso-contours as affected by the thickness and strength of the constraining layer. It is evident that the minimum values of the AUC occur as the thickness of the constraining layer is increased and the strength is about $50 \mathrm{E} 9 \mathrm{~N} / \mathrm{m}^{2}$.

Figure (52) - Iso-contours of the AUC as a function of the strength and thickness of the constraining layer

8.5 Effect Of Elastic And Shear Modulii Of The Stand-Off Layer When Loss Factor = 1

Figures (53a) and (53b) show the AUC iso-contours as affected by the elastic and shear modulii of the SOL when it has a loss factor of 1 . The figures indicate that the minimum values of the AUC occur when the elastic modulus of the SOL is much higher than its shear modulus.

(a) - color contours

(b) - line contours

Figure (53) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL Layer when the loss factor $=1$

8.6 Effect Of Thickness And Strength Of The Stand-Off Layer When Loss Factor $=0$

Figures (54a) and (54b) show the AUC iso-contours as affected by the elastic and shear modulii of the SOL when it has a loss factor of 0 . The figures indicate that the minimum values of the AUC occur when the elastic modulus of the SOL is much smaller than its shear modulus.

(a) - color contours

(b) - line contours

Figure (54) - Iso-contours of the AUC as a function of the Elastic and Shear Modulii of the SOL Layer when the loss factor $=0$

8.7 Summary

This chapter has presented a parametric study of the effect of changing the design parameters of the different layers of the PSOL on its damping characteristics. The results obtained suggest that a strong SOL layer with high damping gives the best results but for undamped SOL it is essential that the elastic modulus of the SOL be much smaller than its shear modulus. Furthermore, increasing the strength and thickness of the constraining layer is also effective up to a certain point but further increase would adversely affect damping performance.

Chapter 9

Conclusions and Recommendations

9.1 Conclusions

This dissertation has presented briefly the concept of passive stand-off layer (PSOL) damping treatments as a simple and effective means for enhancing the damping characteristics of constrained layer damping. In this dissertation, a review of the literature is presented in an attempt to justify the need and emphasize the importance of the present study.

A formulation of the equations of motion of the passive stand off layer treated cantilever beam subjected to dynamic loading at the fixed end is presented. The obtained equations of motion consist of $4^{\text {th }}$ order differential equation in the lateral deflection of beam and two $2^{\text {nd }}$ order differential equation in the axial deflections of the base beam and constraining layer.

A transfer function model of the PSOL treated beam treatment has been developed. The equations of motion have been modified to facilitate the formulation of a finite element model which constitutes the major contribution of this dissertation. Hermite interpolation functions
have been used to describe the lateral deflection and Lagrangian interpolation functions have been used to define the axial deflections of the base beam and constraining layer.

MATLAB programs for the distributed transfer function method and finite element method have been developed. The finite element program has been further modified to incorporate the slots in stand off layer (by varying the properties) along the length of the beam. However, slots in the viscoelastic and constraining layers can also be included. The full code of the programs is given in the appendix.

A comprehensive experimental evaluation of the performance of the PSOL has been conducted to investigate the effect of various configurations of the SOL on its damping characteristics. Furthermore, the obtained experimental results have been used to validate the predictions of the developed finite element model.
. The results obtained suggest that the predictions of the developed finite element model are in close agreement with the experimental results as well as with the predictions of an ANSYS model of the PSOL.

The results indicate also that a strong SOL layer with high damping gives the best results but for undamped SOL it is essential that the elastic modulus of the SOL be much smaller than its shear modulus. Furthermore, increasing the strength and thickness of the constraining layer is also effective up to a certain point but further increase would adversely affect damping performance.

9.2 Recommendations

Although this study has focused on the development of PSOL for one-dimensional cantilever beams, it is essential to note that the presented concepts can be equally extended to multiple dimensions for using plate and shell elements as shown in Figures (55) and (56) respectively.
viscoelastic+constraining layers

Figure (55) - Passive constrained layer plate with stand-off layer patches

Figure (56) - Cylindrical Shell with Slotted Stand-off layer

Furthermore, in this dissertation it was assumed that all layers experience the same lateral deflection. Accordingly, a natural extension to this work would be to take into account variable lateral deflection across the layers PSOL as shown in Figure (57).

Furthermore, a finite element model can be developed along the same lines as outlined in this thesis to incorporate thickness variation of the layers and can also count for variations in geometry of layers in axial direction.

Figure (57) - Passive stand-off layer treated beam with lateral strain in the layers

Another natural extension of the present work would be to develop finite element models that can be easily used to incorporate slots in viscoelastic and constraining layers by simply
varying the material properties of the element as shown in Figure (58). Even the base beam can be made to vary along its length as long as singularities in the overall stiffness matrix are avoided. To avoid singularities, none of the material properties in the first and last elements should be zero, i.e., the slots should not be at the ends of the beam. This geometry of the slots in constraining, viscoelastic and stand-off layers can then be varied stepwise and the model analyzed until the optimum performance is achieved. This would provide a method of finding the optimal shape and geometry of slots for best damping performance.

Figure (58) - Variation of geometry of layers along the length of the beam

Appendix

Computer Program Codes

A.1. Distributed Transfer Function Method

```
P}=1
z=0;
l=.15;
b}=.01175
hs=.264*1e-3;
hc=.203*1e-3;
hv=.127*1e-3;
hb=2.29*1e-3;
Gv=1e5*(1+i);
Gs=1e5*(1+i);
pb=2850*b*hb;
pc=2850*b*hc;
pv=1100*b*hv;
ps=1100*b*hs;
Eb=72e9;
Ec=72e9;
Es=Gs*2.9;
Ev=Gv*2.9;
EAbs=Eb*(hb*b)+Es*(hs*b);
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;
EIc=Ec*(b*hc^3/12);
p=ps+pc+pv+pb;
Dt=EIbs+EIc;
alpha=hv+hs+(hb+hc)/2;
E=b*alpha^2*Gv*Gs*1^2/(Dt*(Gv*hs+Gs*hv));
cl=pc/p;
c2=(pb+ps)/p;
B=1/alpha;
al=EQbs*1/Dt;
a2=EAc*1*1/Dt;
a3=EAbs*1*l/Dt;
for sr = 1:5:5000
s=sr*i*(p*1^4/Dt)^.5*pi*2;
F=[ 0,1,0,0,0,0,0,0;
```

```
    0,0,1,0,0,0,0,0;
    0,0,0,1,0,0,0,0;
    -s^2*k,0,(E-B*E*a1/a3)*k,0,0,(E*B-E*B^2*a1/a3)*k,0,(c2*s^2*a1/a3...
    +B^2*E*a1/a3-B*E)*k;
    0,0,0,0,0,1,0,0;
    0,E*B/a2,0,0,(c1*s^2+E*B}\mp@subsup{}{}{\wedge}2)/\textrm{a}2,0,-\mp@subsup{E}{}{*}\mp@subsup{B}{}{\wedge}2/\textrm{a}2,0
    0,0,0,0,0,0,0,1;
    0,-B*E/a3,0,a1/a3,-E*B^2/a3,0,(c2*s^2+E*B^2)/a3,0];
M=[ 1,0,0,0,0,0,0,0;
    0,1,0,0,0,0,0,0;
    0,0,0,0,0,1,0,0;
    0,0,0,0,0,0,0,1;
    0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0];
N=[ 0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0;
    0,0,1,0,0,0,0,0;
    0,0,0,0,0,1,0,0;
    0,0,0,0,0,0,0,1;
    0,E*(1-B*a1/a3),0,-1/k,E*(B-B^2*a1/a3),0,-E*(B-B^2*a1/a3),0];
Gamma=[ P Prrlllllll
efs=expm(F);
H=efs*(M+N*efs)^-1;
H0=eye(8)/(M+N*efs)^-1;
eta=H*Gamma;
eta0=H0*Gamma;
z=z+1;
splot(z)=sr;
w(z)=abs(real(eta(1))/real(eta0(1)));
end
```

Plotting
semilogy(splot,w)

A.2. Finite Element Method for PSOL beam

```
nem=11;
l=.15;
b=.01175;
hs=.264*1e-3;
hc=.203*1e-3;
hv=.127*1e-3;
hb=2.29*1e-3;
Gv=1e5*(1+i);
Gs=1e5*(1+i);
pb=2850*b*hb;
pc=2850*b*hc;
pv=1100*b*hv;
ps=1100*b*hs;
Eb=72e9;
Ec=72e9;
Es=Gs*2.9;
Ev=Gv*2.9;
EAbs=Eb*(hb*b)+Es*(hs*b);
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
EAc=Ec*b*hc;
EIc=Ec*(b*hc^3/12);
p=ps+pc+pv+pb;
Dt=EIbs+EIc;
alpha=hv+hs+(hb+hc)/2;
E=b*alpha^2*Gv*Gs*1^2/(Dt*(Gv*hs+Gs*hv));
c1=pc/p;
c2=(pb+ps)/p;
B=1/alpha;
al=EQbs*1/Dt;
a2=EAc*1*1/Dt;
a3=EAbs*l*l/Dt;
splot=0;
syms x
h=1/nem;
v1=1-3*(x/h)^2+2*(x/h)^3;
v2=-x*(1-x/h)^2;
v3=3*(x/h)^2-2*(x/h)^3;
```

```
v4=-x*(x^2/h^2-x/h);
th1=1-x/h;
th2=x/h;
```

for $\mathrm{sr}=1: 100: 5000$
$\mathrm{s}=\mathrm{sr} \mathrm{i}^{*}\left(\mathrm{p}^{*} 1^{\wedge} 4 / \mathrm{Dt}\right)^{\wedge} .5^{*} \mathrm{pi} * 2$;
$\mathrm{k} 1=\left(1-\mathrm{a} 1^{\wedge} 2 / \mathrm{a} 3\right)$;
$\mathrm{k} 2=(\mathrm{a} 1 / \mathrm{a} 3 * \mathrm{~B} * \mathrm{E}-\mathrm{E})$;
$\mathrm{k} 3=\mathrm{B}^{\wedge} 2^{*} \mathrm{E} * \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B} * \mathrm{E}$;
$\mathrm{k} 4=\mathrm{B}^{*} \mathrm{E}-\mathrm{c} 2{ }^{*} \mathrm{~s}^{\wedge} 2 * \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B}^{\wedge} 2 * \mathrm{E}$ *a1/a3;
$\mathrm{k} 8=-\mathrm{B} * \mathrm{E}$;
$\mathrm{k} 5=\mathrm{c} 1 * \mathrm{~s}^{\wedge} 2+\mathrm{B}^{\wedge} 2^{*} \mathrm{E}$;
$\mathrm{k} 6=-\mathrm{B}{ }^{\wedge} 2^{*} \mathrm{E}$;
$\mathrm{k} 7=\mathrm{c} 2 * \mathrm{~s}^{\wedge} 2+\mathrm{B}^{\wedge} 2 * \mathrm{E}$;
$\mathrm{K} 11=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2^{*}{ }^{\mathrm{v}} 1^{*}{ }^{\mathrm{v}} 1$;
$\mathrm{K} 21=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 2$;
$\mathrm{K} 31=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2)^{*} \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 3 ;$
$\mathrm{K} 41=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 4 ;$
$\mathrm{K} 12=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2)^{*} \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 1$;
$\mathrm{K} 22=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 2 ;$
$\mathrm{K} 32=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 3$;
$\mathrm{K} 42=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 4 ;$
$\mathrm{K} 13=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 1 ;$
$\mathrm{K} 23=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 2 ;$
$\mathrm{K} 33=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 3$;
$\mathrm{K} 43=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2)^{*} \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 4 ;$
$\mathrm{K} 14=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 *{ }^{2} 4 * \mathrm{v} 1$;
$\mathrm{K} 24=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 4 * \mathrm{v} 2 ;$
$\mathrm{K} 34=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 4 * \mathrm{v} 3 ;$
$\mathrm{K} 44=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 *{ }^{*} 4 * \mathrm{v} 4 ;$
$\mathrm{K} 15=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 1$;
$\mathrm{K} 25=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 2$;
$\mathrm{K} 35=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 3$;
$\mathrm{K} 45=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 4$;
K16=k3*diff(th2,1)*v1;
$\mathrm{K} 26=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 2,1) *$ v2;
$\mathrm{K} 36=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 3$;

```
K46=k3*diff(th2,1)*v4;
```

$\mathrm{K} 17=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 1$;
$\mathrm{K} 27=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 2$;
K37=k4*diff(th1,1)*v3;
$\mathrm{K} 47=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 4$;
$\mathrm{K} 18=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v}$;
K28=k4*diff(th2,1)*v2;
$\mathrm{K} 38=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 3$;
$\mathrm{K} 48=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 4$;
K51=-k8*diff(v1,1)*th1;
$\mathrm{K} 61=-\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1)$ *th2;
K52=-k8*diff(v2,1)*th1;
$K 62=-k 8 * \operatorname{diff}(\mathrm{v} 2,1) *$ th2;
$\mathrm{K} 53=-\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 3,1)^{*}$ th1;
$K 63=-k 8 * \operatorname{diff}(\mathrm{v} 3,1)^{*}$ th2;
K54=-k8*diff(v4,1)*th1;
K64=-k8*diff(v4,1)*th2;
K55=a2*diff(th1,1)*diff(th1,1)+k5*th1*th1;
$\mathrm{K} 65=\mathrm{a} 2 * \operatorname{diff}(\mathrm{th} 1,1) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 5 *$ th $1 *$ th 2 ;
K56=a2*diff(th2,1)*diff(th1,1)+k5*th2*th1;
$\mathrm{K} 66=\mathrm{a} 2 * \operatorname{diff}(\mathrm{th} 2,1) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 5 *$ th $2 *$ th 2 ;
K57=k6*th1*th1;
K67=k6*th1*th2;
K58=k6*th2*th1;
K68=k6*th2*th2;
$\mathrm{K} 71=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 1,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1))^{*}$ th1;
$\mathrm{K} 81=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 1,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1))^{*} \mathrm{th} 2$;
$\mathrm{K} 72=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 2,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 2,1))^{*} \mathrm{th} 1$;
$\mathrm{K} 82=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 2,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 2,1)) *$ th2;
$\mathrm{K} 73=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 3,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 3,1))^{*} \mathrm{th} 1$;
$\mathrm{K} 83=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 3,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 3,1)) * \mathrm{th} 2$;
$\mathrm{K} 74=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 4,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 4,1)) *$ th 1 ;
$K 84=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 4,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 4,1))^{*} \mathrm{th} 2$;
K75=k6*th1*th1;
K85=k6*th1*th2;
K76=k6*th2*th1;
K86=k6*th2*th2;
$\mathrm{K} 77=\mathrm{a} 3 * \operatorname{diff}($ th 1,1$) * \operatorname{diff}(\mathrm{th} 1,1)+\mathrm{k} 7 *$ th $1 *$ th $1 ;$
$\mathrm{K} 87=\mathrm{a} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 7 *$ th $1 *$ th 2 ;
$\mathrm{K} 78=\mathrm{a} 3 * \operatorname{diff}($ th2,1)*diff(th1,1)+k7*th2*th1;
$\mathrm{K} 88=\mathrm{a} 3 * \operatorname{diff}($ th 2,1$) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 7 *$ th $2 *$ th 2 ;
$\mathrm{KK}=[\mathrm{K} 11, \mathrm{~K} 12$, K15, K17, K13, K14, K16, K18;
K21, K22, K25, K27, K23, K24, K26, K28;
K51, K52, K55, K57, K53, K54, K56, K58;
K71, K72, K75, K77, K73, K74, K76, K78;
K31, K32, K35, K37, K33, K34, K36, K38;
K41, K42, K45, K47, K43, K44, K46, K48;
K61, K62, K65, K67, K63, K64, K66, K68;
K81, K82, K85, K87, K83, K84, K86, K88];
$\mathrm{K}=\operatorname{int}(\mathrm{KK}, \mathrm{x}, 0, \mathrm{~h})$;
K=double(K);
$\mathrm{KO}=\operatorname{zeros}((\mathrm{nem}+1) * 4)$;
for $\mathrm{n}=1$:nem
$\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)=\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)+\mathrm{K}$;
end
$K K=z e r o s(n e m * 4+1) ;$
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);
$\mathrm{KK}(1,1)=\mathrm{KO}(3,3)$;
$\mathrm{KK}(1,2: 5)=\mathrm{KO}(3,5: 8)$;
$\operatorname{KK}(2: 5,1)=\mathrm{KO}(5: 8,3)$;
$\mathrm{KK}(($ nem -1$) * 4+2,(\mathrm{nem} * 4))=\mathrm{KK}((\mathrm{nem}-1) * 4+2,(\mathrm{nem} * 4))+\mathrm{k} 3$;
$\operatorname{KK}(($ nem -1$) * 4+2,($ nem $* 4+1))=\mathrm{KK}(($ nem -1$) * 4+2,($ nem $* 4+1))+\mathrm{k} 4 ;$
$\mathrm{F}=[-\mathrm{KO}(1,3) ;-\mathrm{KO}(1,5) ;-\mathrm{KO}(1,6) ;-\mathrm{KO}(1,7) ;-\mathrm{KO}(1,8) ;$ zeros(nem*4-4,1)];
$X=K K^{\wedge}-1 * F ;$

```
splot=splot+1;
w(splot)=abs(real(X(nem*4-2)));
ww(splot)=sr;
end
semilogy(ww,w)
```


A.3. Finite Element Method for slotted PSOL beam

```
%nem=input('nem')
nem=11;
l=.15;
b}=.01175
hs=.264*1e-3;
hc=.203*1e-3;
hv=.127*1e-3;
hb=2.29*1e-3;
Gv=1e5*(1+i);
Gs=1e5*(1+i);
CCGs=0;
pb=2850*b*hb;
pc=2850*b*hc;
pv=1100*b*hv;
ps=1100*b*hs;
Eb=72e9;
Ec=72e9;
Es=Gs*2.9;
CCEs=0
Ev=Gv*2.9;
EAbs=Eb*(hb*b)+Es*(hs*b);
CCEAbs=Eb*(hb*b);
EIbs=Eb*(b*hb^3/12)+Es*(b*hs^3/12+b*hs*(hs/2+hb/2)^2);
CCEIbs=Eb*(b*hb^3/12);
EQbs=Eb*(0)*hb/4+Es*(hs*b)*(hb/2+hs/2);
CCEQbs=0
EAc=Ec*b*hc;
EIc=Ec*(b*hc^3/12);
p=ps+pc}+\textrm{pv}+\textrm{pb}
Dt=EIbs+EIc;
CCDt=CCEIbs+EIc;
alpha=hv+hs+(hb+hc)/2;
E=b*alpha^2*Gv*Gs*1^2/(Dt*(Gv*hs+Gs*hv));
CCE=b*alpha^2*Gv*CCGs*1^2/(CCDt*(Gv*hs+CCGs*hv));
cl=pc/p;
```

```
c2=(pb+ps)/p;
B=1/alpha;
a1=EQbs*1/Dt;
CCa1=0
a2=EAc*1*1/Dt;
CCa2=EAc*1*1/CCDt;
a3=EAbs*1*l/Dt;
CCa3=CCEAbs*1*1/CCDt;
```

splot=0
syms x
$\mathrm{h}=1 /$ nem;
$\mathrm{v} 1=1-3^{*}(\mathrm{x} / \mathrm{h})^{\wedge} 2+2^{*}(\mathrm{x} / \mathrm{h})^{\wedge} 3$;
$\mathrm{v} 2=-\mathrm{x} *(1-\mathrm{x} / \mathrm{h})^{\wedge} 2$;
$\mathrm{v} 3=3 *(\mathrm{x} / \mathrm{h})^{\wedge} 2-2^{*}(\mathrm{x} / \mathrm{h})^{\wedge} 3$;
$\mathrm{v} 4=-\mathrm{x}^{*}\left(\mathrm{x}^{\wedge} 2 / \mathrm{h} \wedge 2-\mathrm{x} / \mathrm{h}\right)$;
th $1=1-\mathrm{x} / \mathrm{h}$;
th $2=\mathrm{x} / \mathrm{h}$;
$\% \mathrm{w}=\mathrm{w} 1 * \mathrm{v} 1+\mathrm{w} 2 * \mathrm{v} 2+\mathrm{w} 3 * \mathrm{v} 3+\mathrm{w} 4 * \mathrm{v} 4$;
$\%$ uc=uc $1 *$ th1 + uc2*th2;
$\%$ ub $=$ ub1*th1+ub2*th2;
\%sr=1
for $\mathrm{sr}=1: 10: 5000$
$\mathrm{s}=\mathrm{sr}^{*} \mathrm{i}^{*}\left(\mathrm{p}{ }^{*} \wedge^{\wedge} 4 / \mathrm{Dt}\right)^{\wedge} .5^{*} \mathrm{pi}^{*} 2 ;$
$\mathrm{k} 1=\left(1-\mathrm{a} 1^{\wedge} 2 / \mathrm{a} 3\right)$;
cck $1=1$;
k2=(a1/a3*B*E-E);
cck $2=-\mathrm{CCE}$;
$\mathrm{k} 3=\mathrm{B}^{\wedge} 2^{*} \mathrm{E} * \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B} * \mathrm{E}$;
cck3=-B*CCE;
$\mathrm{k} 4=\mathrm{B} * \mathrm{E}-\mathrm{c} 2 * \mathrm{~s}^{\wedge} 2 * \mathrm{a} 1 / \mathrm{a} 3-\mathrm{B}^{\wedge} 2^{*} \mathrm{E}^{*} \mathrm{a} 1 / \mathrm{a} 3$;
cck $4=$ B*CCE;
k8=-B*E;
cck8=-B*CCE;
$\mathrm{k} 5=\mathrm{c} 1^{*} \mathrm{~s}^{\wedge} 2+\mathrm{B}^{\wedge} 2^{*} \mathrm{E}$;
cck5 $=\mathrm{c} 1 \mathrm{~s}^{\wedge} \mathrm{\wedge}^{\wedge}+\mathrm{B}^{\wedge} 2^{*} \mathrm{CCE}$;
$\mathrm{k} 6=-\mathrm{B} \wedge 2 * \mathrm{E}$;
cck6=-B^2*CCE;
$\mathrm{k} 7=\mathrm{c} 2{ }^{*} \mathrm{~s}^{\wedge} 2+\mathrm{B}^{\wedge} 2^{*} \mathrm{E}$;
$\mathrm{cck} 7=\mathrm{c} 2 * \mathrm{~s}^{\wedge} 2+\mathrm{B}^{\wedge} 2 * \mathrm{CCE}$;
$\mathrm{K} 11=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 1 ;$
$\mathrm{K} 21=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 2 ;$ $\mathrm{K} 31=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 3 ;$ $\mathrm{K} 41=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 4 ;$
$\mathrm{K} 12=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 *{ }^{*} 2^{*} \mathrm{v} 1$; $\mathrm{K} 22=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2)^{*} \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 2 ;$ $\mathrm{K} 32=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 3$; $\mathrm{K} 42=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 2,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 2,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 2 * \mathrm{v} 4 ;$
$\mathrm{K} 13=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 1 ;$ $\mathrm{K} 23=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 2 ;$ $\mathrm{K} 33=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 3 ;$ $\mathrm{K} 43=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 3,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 3,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 3 * \mathrm{v} 4 ;$
$\mathrm{K} 14=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2)^{*} \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 *{ }^{2} 4 * \mathrm{v} 1$;
$\mathrm{K} 24=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 *{ }^{*} 4 * \mathrm{v} 2 ;$ K34=k1*diff(v4,2)*diff(v3,2)+k2*diff(v4,1)*diff(v3,1)+s^2*v4*v3; $\mathrm{K} 44=\mathrm{k} 1 * \operatorname{diff}(\mathrm{v} 4,2) * \operatorname{diff}(\mathrm{v} 4,2)+\mathrm{k} 2 * \operatorname{diff}(\mathrm{v} 4,1) * \operatorname{diff}(\mathrm{v} 4,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 4 * \mathrm{v} 4 ;$
$\mathrm{K} 15=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v}$;
$\mathrm{K} 25=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 2$;
$\mathrm{K} 35=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 3$;
$\mathrm{K} 45=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 4$;
$\mathrm{K} 16=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 1$;
$\mathrm{K} 26=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 2$;
$\mathrm{K} 36=\mathrm{k} 3 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 3$;
K46=k3*diff(th2,1)*v4;
$\mathrm{K} 17=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 1$;
$\mathrm{K} 27=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 2$;
K37=k4*diff(th1,1)*v3;
$\mathrm{K} 47=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 1,1) * \mathrm{v} 4$;
$\mathrm{K} 18=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1)^{*} \mathrm{v} 1$;
$\mathrm{K} 28=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 2$;
$\mathrm{K} 38=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 3$;
$\mathrm{K} 48=\mathrm{k} 4 * \operatorname{diff}(\mathrm{th} 2,1) * \mathrm{v} 4$;
K51=-k8*diff(v1,1)*th1;
$\mathrm{K} 61=-\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1) *$ th 2 ;
K52=-k8*diff(v2,1)*th1;
$\mathrm{K} 62=-\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 2,1) *$ th2;
$K 53=-k 8 * \operatorname{diff}(\mathrm{v} 3,1)$ *th1;
$K 63=-k 8 * \operatorname{diff}(\mathrm{v} 3,1) *$ th2;
$\mathrm{K} 54=-\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 4,1)$ *th1;
K64=-k8*diff(v4,1)*th2;
K55 $=\mathrm{a} 2 * \operatorname{diff}($ th 1,1$) * \operatorname{diff}($ th 1,1$)+\mathrm{k} 5 *$ th1 $*$ th ;
K65 $=$ a2*diff(th 1,1$)^{*} \operatorname{diff}($ th 2,1$)+\mathrm{k} 5 *$ th $1 *$ th2;
K56=a2*diff(th2,1)*diff(th1,1)+k5*th2*th1;
$\mathrm{K} 66=\mathrm{a} 2 * \operatorname{diff}(\mathrm{th} 2,1) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 5 *$ th $2 *$ th 2 ;
K57=k6*th1*th1;
K67=k6*th1*th2;
K58 $=$ k6*th2*th1;
K68=k6*th2*th2;
$\mathrm{K} 71=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 1,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1))^{*} \mathrm{th} 1$;
$\mathrm{K} 81=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 1,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 1,1))^{*} \mathrm{th} 2 ;$
$\mathrm{K} 72=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 2,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 2,1)) *$ th $1 ;$
$\mathrm{K} 82=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 2,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 2,1)) * \mathrm{th} 2$;
$\mathrm{K} 73=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 3,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 3,1)) *$ th 1 ;
$K 83=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 3,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 3,1))^{*} \mathrm{th} 2$;
$\mathrm{K} 74=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 4,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 4,1))^{*} \mathrm{th} 1$;
$\mathrm{K} 84=(\mathrm{a} 1 * \operatorname{diff}(\mathrm{v} 4,3)+\mathrm{k} 8 * \operatorname{diff}(\mathrm{v} 4,1))^{*} \mathrm{th} 2 ;$
K75=k6*th1*th1;
K85=k6*th1*th2;
K76=k6*th2*th1;
$\mathrm{K} 86=\mathrm{k} 6 * \mathrm{th} 2 *$ th2;
$\mathrm{K} 77=\mathrm{a} 3 * \operatorname{diff}($ th 1,1$) * \operatorname{diff}(\mathrm{th} 1,1)+\mathrm{k} 7 *$ th $1 *$ th $1 ;$ $\mathrm{K} 87=\mathrm{a} 3 * \operatorname{diff}(\mathrm{th} 1,1) * \operatorname{diff}(\mathrm{th} 2,1)+\mathrm{k} 7 *$ th $1 *$ th $2 ;$
$\mathrm{K} 78=\mathrm{a} 3 * \operatorname{diff}(\mathrm{th} 2,1) * \operatorname{diff}(\mathrm{th} 1,1)+\mathrm{k} 7 *$ th2*th $1 ;$ $K 88=\mathrm{a} 3 * \operatorname{diff}($ th 2,1$) * \operatorname{diff}($ th 2,1$)+\mathrm{k} 7 *$ th2 2 th2;
$\mathrm{cK} 11=\mathrm{cck} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 1,2)+\mathrm{cck} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 1,1)+\mathrm{s}^{\wedge} 2 *{ }^{*} 1^{*} \mathrm{v} 1$;
$\mathrm{cK} 21=\mathrm{cck} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 2,2)+\mathrm{cck} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 2,1)+\mathrm{s}^{\wedge} 2 *{ }^{2}{ }^{*}{ }^{*} \mathrm{v} 2 ;$
$\mathrm{cK} 31=\mathrm{cck} 1 * \operatorname{diff}(\mathrm{v} 1,2) * \operatorname{diff}(\mathrm{v} 3,2)+\mathrm{cck} 2 * \operatorname{diff}(\mathrm{v} 1,1) * \operatorname{diff}(\mathrm{v} 3,1)+\mathrm{s}^{\wedge} 2 * \mathrm{v} 1 * \mathrm{v} 3 ;$

```
cK41=cck1*diff(v1,2)*\operatorname{diff(v4,2)+cck2*diff(v1,1)*diff(v4,1)+s^2*v1*v4;}
cK12=cck1*diff(v2,2)*diff(v1,2)+cck2*diff(v2,1)*diff(v1,1)+s^2*v2*v1;
cK22=cck1*diff(v2,2)*diff(v2,2)+cck2*diff(v2,1)*diff(v2,1)+\mp@subsup{s}{}{\wedge}2*v2*v2;
cK32=cck1*diff(v2,2)*diff(v3,2)+cck2*diff(v2,1)*diff(v3,1)+s^2*v2*v3;
cK42=cck1*diff(v2,2)*\operatorname{diff(v4,2)+cck2*diff(v2,1)*diff(v4,1)+s^2*v2*v4;}
cK13=cck1*diff(v3,2)*diff(v1,2)+cck2*diff(v3,1)*diff(v1,1)+s^2*v3*v1;
cK23=cck1*diff(v3,2)*diff(v2,2)+cck2*diff(v3,1)*diff(v2,1)+s^2*v3*v2;
cK33=cck1*diff(v3,2)*diff(v3,2)+cck2*diff(v3,1)*diff(v3,1)+s^2*v3*v3;
cK43=cck1*\operatorname{diff(v3,2)*diff(v4,2)+cck2*diff(v3,1)*diff(v4,1)+s^2*v3*v4;}
cK14=cck1*diff(v4,2)*diff(v1,2)+cck2*diff(v4,1)*diff(v1,1)+s^2*v4*v1;
cK24=cck1*diff(v4,2)*diff(v2,2)+cck2*diff(v4,1)*diff(v2,1)+s^2*v4*v2;
cK34=cck1*diff(v4,2)*diff(v3,2)+cck2*diff(v4,1)*diff(v3,1)+s^2*v4*v3;
cK44=cck1*diff(v4,2)*\operatorname{diff(v4,2)+cck2*diff(v4,1)*diff(v4,1)+s^2*v4*}\mp@subsup{}{v}{}4;
cK15=cck3*diff(th1,1)*v1;
cK25=cck3*diff(th1,1)*v2;
cK35=cck3*diff(th1,1)*v3;
cK45=cck3* diff(th1,1)*v4;
cK16=cck3*diff(th2,1)*v1;
cK26=cck3* diff(th2,1)*v2;
cK36=cck3*diff(th2,1)*v3;
cK46=cck3* diff(th2,1)*v4;
cK17=cck4* diff(th1,1)*v1;
cK27=cck4*diff(th1,1)*v2;
cK37=cck4* diff(th1,1)*v3;
cK47=cck4*diff(th1,1)*v4;
cK18=cck4* diff(th2,1)*v1;
cK28=cck4*diff(th2,1)*v2;
cK38=cck4*diff(th2,1)*v3;
cK48=cck4*diff(th2,1)*v4;
cK51=-cck8*diff(v1,1)*th1;
cK61=-cck8*diff(v1,1)*th2;
cK52=-cck8*diff(v2,1)*th1;
cK62=-cck8*diff(v2,1)*th2;
cK53=-cck8*diff(v3,1)*th1;
cK63=-cck8* diff(v3,1)*th2;
```

```
cK54=-cck8*diff(v4,1)*th1;
cK64=-cck8* diff(v4,1)*th2;
cK55=CCa2*diff(th1,1)*diff(th1,1)+cck5*th1*th1;
cK65=CCa2*\operatorname{diff}(th1,1)*diff(th2,1)+cck5*th1*th2;
cK56=CCa2*diff(th2,1)*diff(th1,1)+cck5*th2*th1;
cK66=CCa2*diff(th2,1)*diff(th2,1)+cck5*th2*th2;
cK57=cck6*th1*th1;
cK67=cck6*th1*th2;
cK58=cck6*th2*th1;
cK68=cck6*th2*th2;
cK71=(CCa1*diff(v1,3)+cck8*diff(v1,1))*th1;
cK81=(CCa1*diff(v1,3)+cck8*diff(v1,1))*th2;
cK72=(CCa1*diff(v2,3)+cck8*diff(v2,1))*th1;
cK82=(CCa1*diff(v2,3)+cck8*diff(v2,1))*th2;
cK73=(CCa1*diff(v3,3)+cck8*diff(v3,1))*th1;
cK83=(CCa1*diff(v3,3)+cck8*diff(v3,1))*th2;
cK74=(CCa1*diff(v4,3)+cck8*diff(v4,1))*th1;
cK84=(CCa1*diff(v4,3)+cck8*diff(v4,1))*th2;
cK75=k6*th1*th1;
cK85=k6*th1*th2;
cK76=k6*th2*th1;
cK86=k6*th2*th2;
cK77=CCa3*diff(th1,1)*diff(th1,1)+cck7*th1*th1;
cK87=CCa3*diff(th1,1)*diff(th2,1)+cck7*th1*th2;
cK78=CCa3*diff(th2,1)*diff(th1,1)+cck7*th2*th1;
cK88=CCa3*diff(th2,1)*diff(th2,1)+cck7*th2*th2;
KK =[ K11, K12, K15, K17, K13, K14, K16, K18;
K21, K22, K25, K27, K23, K24, K26, K28;
K51, K52, K55, K57, K53, K54, K56, K58;
K71, K72, K75, K77, K73, K74, K76, K78;
K31, K32, K35, K37, K33, K34, K36, K38;
```

```
K41, K42, K45, K47, K43, K44, K46, K48;
K61, K62, K65, K67, K63, K64, K66, K68;
K81, K82, K85, K87, K83, K84, K86, K88];
K=int(KK,x,0,h);
K=double(K);
```

$\mathrm{cKK}=[\mathrm{cK} 11, \mathrm{cK} 12$, cK15, cK17, cK13, cK14, cK16, cK18;
cK21, cK22, cK25, cK27, cK23, cK24, cK26, cK28;
cK51, cK52, cK55, cK57, cK53, cK54, cK56, cK58;
cK71, cK72, cK75, cK77, cK73, cK74, cK76, cK78;
cK31, cK32, cK35, cK37, cK33, cK34, cK36, cK38;
cK41, cK42, cK45, cK47, cK43, cK44, cK46, cK48;
cK61, cK62, cK65, cK67, cK63, cK64, cK66, cK68;
cK81, cK82, cK85, cK87, cK83, cK84, cK86, cK88];
$\mathrm{cK}=\operatorname{int}(\mathrm{cKK}, \mathrm{x}, 0, \mathrm{~h})$;
$\mathrm{cK}=$ double(cK);
$\mathrm{KO}=\operatorname{zeros}((\mathrm{nem}+1) * 4) ;$
for $\mathrm{n}=1$:nem
if rem $(n, 2)=0$
$\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)=\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)+\mathrm{cK}$;
else
$\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)=\mathrm{KO}(\mathrm{n} * 4-3: \mathrm{n} * 4+4, \mathrm{n} * 4-3: \mathrm{n} * 4+4)+\mathrm{K}$;
end
end
$\mathrm{KK}=$ zeros(nem*4+1);
KK(2:nem*4+1,2:nem*4+1)=KO(5:4*nem+4,5:4*nem+4);
$\mathrm{KK}(1,1)=\mathrm{KO}(3,3)$;
$\operatorname{KK}(1,2: 5)=\mathrm{KO}(3,5: 8)$;
$\operatorname{KK}(2: 5,1)=\mathrm{KO}(5: 8,3)$;
$K K\left((\text { nem-1) })^{*} 4+2,(\right.$ nem $\left.* 4)\right)=K K(($ nem-1) $* 4+2,($ nem $* 4))+\mathrm{k} 3$;
$K K(($ nem -1$) * 4+2,($ nem $* 4+1))=K K((n e m-1) * 4+2,(n e m * 4+1))+\mathrm{k} 4 ;$
$\mathrm{F}=[-\mathrm{KO}(1,3) ;-\mathrm{KO}(1,5) ;-\mathrm{KO}(1,6) ;-\mathrm{KO}(1,7) ;-\mathrm{KO}(1,8) ;$ zeros(nem*4-4,1)$]$;
$X=K^{\wedge}-1 *$;
splot=splot+1;
$\mathrm{w}($ splot $)=\mathrm{abs}(\operatorname{real}(\mathrm{X}($ nem*4-2) $)$);
ww(splot)=sr;
end
semilogy(ww,w)
A.4. ANSYS program
/PREP7
ET,1,PLANE183
KEYOPT,1,3,3
KEYOPT,1,6,0
KEYOPT,1,10,0
DOF,DELETE
DOF,UX,UY,ROTZ
R,1,.01175,
MPTEMP,,,,,,,,,
MPTEMP, 1,0
MPDATA,DENS,1,,2700
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,70E9
MPDATA,PRXY,1,,. 35
MPTEMP,,,,,,,,,
MPTEMP,1,0
MPDATA,DENS,2,,1100
MPTEMP,,,,,,,",
MPTEMP,1,0
MPDATA,EX,2,,2.9E5
MPDATA,PRXY,2,,. 45
MPTEMP,,,,,,,,,
MPTEMP,1,0
MPDATA,DAMP,2,,1e-5
MPTEMP,,,,,,,,
MPTEMP, 1,0
MPDATA,DENS,3,,1100
MPTEMP,,,,,,,,
MPTEMP, 1,0
MPDATA,EX,3,,2.9E8
MPDATA,PRXY,3,,.45
K, $1, \ldots$,
K, $2, .15$,,"
K,3,0.15,.00229,,
K, 4, 0, 0.00229,",
K,5,0,0.00493,,
K,6,0.15,0.00493,,
K,7,0.15,0.005057,,
K,8,0,0.005057,"
K,9,0,0.00526,,
K,10,0.15,0.00526,
K, 10, $0.15,0.00526$, ,
LSTR, 1, 2
LSTR, 2, 3

```
LSTR, 3, 4
```

LSTR, 4, 1
LSTR, 4, 5
LSTR, 5, 6
LSTR, 6, 3
LSTR, 5, 8
LSTR, 8, 7
LSTR, 7, 6
LSTR, 8, 9
LSTR, 9, 10
LSTR, 10, 7
FLST, 2,4,4
FITEM,2,1
FITEM,2,2
FITEM,2,3
FITEM,2,4
AL,P51X
FLST,2,4,4
FITEM,2,3
FITEM,2,5
FITEM,2,6
FITEM,2,7
AL,P51X
FLST,2,4,4
FITEM,2,6
FITEM,2,8
FITEM,2,9
FITEM,2,10
AL,P51X
FLST,2,4,4
FITEM,2,9
FITEM,2,11
FITEM,2,12
FITEM,2,13
AL,P51X
TYPE, 1
MAT, 1
REAL, 1
ESYS, 0
SECNUM,
FLST,2,2,5,ORDE,2
FITEM,2,1
FITEM,2,4
AESIZE,P51X,.001,
MSHAPE,0,2D

```
MSHKEY,1
FLST,5,2,5,ORDE,2
FITEM,5,1
FITEM,5,4
CM,_Y,AREA
ASEL, , ,,P51X
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
AMESH,_Y1
CMDELE,Y
CMDELE,_Y1
CMDELE,_Y2
TYPE, 1
MAT, 2
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,ORDE,1
FITEM,2,2
AESIZE,P51X,0.001,
CM,_Y,AREA
ASEL,,,, 2
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
AMESH,_Y1
CMDELE,_Y
CMDELE, Y1
CMDELE,_Y2
TYPE, 1
MAT, 2
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,ORDE,1
FITEM,2,3
AESIZE,P51X,0.001,
CM,_Y,AREA
ASEL,,,, 3
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
AMESH,_Y1
CMDELE,_Y
```

CMDELE,_Y1
CMDELE,_Y2
ACLEAR, 2
TYPE, 1
MAT, 3
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,ORDE,1
FITEM,2,2
AESIZE,P51X,0.001,
TYPE, 1
MAT, 3
REAL, 1
ESYS, 0
SECNUM, /UI,MESH,OFF /PREP7
TYPE, 1
MAT, 3
REAL, 1
ESYS, 0
SECNUM,
FLST,2,1,5,ORDE,1
FITEM,2,2
AESIZE,P51X,.001, CM,_Y,AREA
ASEL, ,, , 2
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
AMESH,_Y1
CMDELE,_Y
CMDELE,_Y1
CMDELE,_Y2
/UI,MESH,OFF
FINISH
/SOL
ANTYPE,3
FLST,2,2,3,ORDE,2
FITEM,2,1
FITEM,2,4
/GO

DK,P51X, ,0, ,0,UX,ROTZ, , , ,
FLST,2,1,3,ORDE,1
FITEM,2,1
/GO
DK,P51X, ,1, ,0,UY, , , , ,
HARFRQ,0,5000,
NSUBST,50,
KBC,1
SOLVE
FINISH
/POST26
FINISH
/POST1
INRES,BASIC
FILE,'file','rst','.'
SET,LAST
FINISH
/POST26
FILE,'file','rst','.'
/UI,COLL,1
NUMVAR,200
SOLU,191,NCMIT
STORE,MERGE
FILLDATA,191,,,1,1
REALVAR,191,191
NSOL,3,2,U,Y,UY_3
STORE,MERGE
FINISH
/SOL

References

[1] Mead, D. J., Passive Vibration Control, Wiley, London, 1998.
[2] Whittier, J. S., "The Effect of Configurational Additions using Viscoelastic Interfaces on the damping of a Cantilever Beam", Wright Air Development Center, WADC Technical Report 58-568, 1959.
[3] Rogers, L., and Parin, M., "Experimental Results for Stand-off Passive Vibration Damping Treatment," Passive Damping and Isolation, Proceedings SPIE Smart Structures and Materials, Vol. 2445, pp. 374-383, 1995.
[4] Falugi, M., "Analysis of Five Layer Viscoelastic Constrained Layer Beam", Proceedings of Damping '91, Vol. II, Paper No. CCB, 1991.
[5] Falugi, M., Moon, Y., and Arnold, R., "Investigation of a Four Layer Viscoelastic Constrained Layer Damping System," USAF/WL/FIBA/ASIAC, Report No. 189.1A, 1989.
[6] Parin, M., Rogers L., Moon Y. I., and Falugi M., "Practical Stand-Off Damping Treatment for Sheet Metal", Proceeding of Damping '89, Vol. II, Paper No. IBA., 1989.
[7] Garrison M. R., Miles R. N., Sun J., and Bao W., "Random response of a plate partially covered by a constrained layer damper", Journal of Sound and Vibration 172, pp 231245, 1994.
[8] Tao Y., Morris D. G., Spann F., Haugse E., "Low Frequency noise reducing structures using passive and active damping methods", Passive Damping and Isolation, Proceedings
of SPIE Smart Structures and Materials, Vol. 3672, 1999.
[9] Yellin J. M.,Shen I. Y.,Reinhall P. G., and Huang P., "An Analytical and Experimental Analysis for a One-Dimensional Passive Stand-Off Layer Damping Treatment", ASME Journal of Vibration and Acoustics, Vol. 122, pp. 440-447, 2000.
[10] Yang, B. and Tan, C. A., "Transfer Functions of One-Dimensional Distributed Parameter Systems", Journal of Applied Mechanics, Vol. 59, pp. 1009-1014, 1992.

