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Microprocessors are increasingly being used in a variety of applications from

small computers to life critical applications. With increasing dependence on mi-

croprocessor based systems in critical applications, greater importance needs to be

given not only to performance but also to correctness and dependability. Research

has shown that microprocessors and structures of the microprocessors such as mi-

croarchitectural logic state elements and memories are vulnerable to alpha particle

impacts (Single Event Upsets) and timing errors which will lead to Soft errors and

affect program correctness and reliability.

In this thesis, we have modified the Razor flip-flops and explored the use of

these Modified Razor flip-flops in the Instruction Queue (IQ), the Reorder Buffer

(ROB), the Level 1 Data Cache (DL1), the Load Queue (LQ) and the Store Queue

(SQ) to increase their respective reliability and hence the overall reliability of the

microprocessor. Modified Razor flip-flops detect soft errors and along with archi-

tectural modifications, ensure correctness of the microprocessor operation, thus re-

sulting in decrease of vulnerability and increase of reliability. We have adopted



Architecturally Correct Execution (ACE) time based techniques to measure the

Architecture Vulnerability Factor (AVF) of high performance microprocessors and

their internal structures using the SPEC 2000 integer benchmarks. The contribu-

tion of individual bit-fields of the structures towards the overall AVF is computed,

and the fields with higher contribution towards the overall ACE Time are identi-

fied. We have computed the reduction in AVF with the introduction of Modified

Razor flip-flops for various combinations of fields that have high vulnerability. How-

ever, introduction of Modified Razor flip-flops results in higher area requirement on

the die and higher power consumption. We have developed RTL models for IQ,

ROB, LQ, and SQ to measure the increase in area and average power consumption.

Area requirement and power consumption estimates for the data cache are done

using Cacti-based techniques. We have identified the most cost-effective solution by

identifying the fields of these microarchitectural structures - where Modified Razor

flip-flops are introduced - that result in the highest percentage decrease in AVF per

unit area-power product.

We observe that, by introducing Modified Razor flip flops selectively in fields

with the highest percentage decrease in AVF per unit area-power (identified by

our work as opcode and destination operand field of IQ, destination operand and

destination operand value field of ROB, tag array of DL1, address field of LQ and

SQ), the overall AVF of the micro-processor decreases by 32.23%, but the area

requirement increases by 16.99% and the average power consumption increases by

10.33%.
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Chapter 1

Introduction

Continuous improvement in CMOS technology has provided a steady increase

in processor performance. However, due to scaling in feature size, voltage, den-

sity, microprocessors are vulnerable to soft errors. Soft errors are predicted to be

the largest contributors of vulnerability of microprocessors and have emerged as a

key challenge to reliability [1]. Technology trends have caused soft error rates in

microprocessors to increase to levels that require changes to the design and imple-

mentation of present and future computing systems [2].

1.1 Soft Errors and Single Event Upsets

Soft errors are bit errors induced primarily due to Single Event Upsets (SEUs).

The primary cause of SEUs are external radiations such as alpha particles and high

energy neutrons from packaging materials, which trigger a change in the logic state

of a semiconductor device. Secondary causes of soft errors include transient faults

caused due to dynamic voltage scaling, voltage drops in the power supply networks,

temperature fluctuations, and gate-length and doping concentration variations due

to noise etc [3]. Soft errors do not cause or reflect a permanent fault in the device

but introduce logical errors in the circuit’s operation. Soft errors have made an

impact on the industry and important microprocessor manufacturers because they
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have caused random crashes in major customer sites [4].

1.2 Reliability, Vulnerability and Quantifying Vulnerability

Reliable operation and correctness are among the crucial concerns, apart from

performance, for designing and manufacturing viable microprocessors. Soft errors

are a major source of decrease in the reliability of microprocessors. Memory and

microarchitectural logic state elements of the processors are vulnerable to soft er-

rors. Techniques have been developed to estimate the soft error rates for various

structures in microprocessors [1, 5]. Not all soft errors affect the correctness of

the program outcome and hence it is important to quantify the vulnerability of

structures to errors that result in user-visible program errors. Prior research has

developed Architecturally Correct Execution (ACE) bit based analysis to measure

Architecture Vulnerability Factor (AVF) as a measure of vulnerability [6]. AVF

denotes the probability that a fault in a particular structure of the processor will

result in a user-visible error [6]. Techniques also exist to compute AVF for address

based structures [7].

1.3 Reducing Architecture Vulnerability Factor

A variety of techniques exist to prevent program incorrectness caused by soft

errors and thus reduce the probability of generation of user-visible errors. Schemes

such as Radiation hardened circuit design [8], localized error detection and correc-

tion [9], tri-modular [10] and bi-modular [11] redundant schemes, DIVA dynamic
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verification [12], and checker process based schemes [13] have been developed to re-

duce the Architecture Vulnerability Factor. Each of the above methods reduce the

vulnerability of the processor and its structures thereby reducing the Architecture

Vulnerability Factor. Most of the schemes also introduce overheads in area, power,

performance, and cost. Precise vulnerability estimates are required for designers to

identify the correct tradeoff between reduction of vulnerability and cost.

1.4 Our Contribution

In this thesis, we have explored the use of Modified Razor flip-flops in the mi-

croarchitectural logic state elements of microprocessors viz. the Instruction Queue

(IQ), the Reorder Buffer (ROB), the Data Cache (DL1), the Load Queue (LQ),

and the Store Queue (SQ). Modified Razor flip-flops are designed to detect soft er-

rors caused in microarchitectural logic state elements and storage structures within

the microprocessor. Techniques involving Razor flip-flops were used to detect and

correct timing errors in high-speed pipelines using delayed clocks [3]. We have mod-

ified the design of Razor flip-flops in order to be used in microarchitectural logic

state elements and storage structures of any high performance out-of-order micro-

processor. Soft errors, if any, will be detected by the Modified Razor flip-flops and

hence the probability of generating user-visible program errors is minimized, which

reflects in the reduction in the Architecture Vulnerability Factor of the processor.

It is important to note that the introduction of Modified Razor flip-flops into the

microprocessors would lead to increased area requirement and power consumption.
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In our work, we have investigated the use of Modified Razor flip-flops in se-

lected bit fields of the microarchitectural logic state elements and the data cache

that will result in the highest percentage decrease in the overall AVF of the micro-

processor with the least increase in the area requirement and power consumption.

The rest of our effort is divided into three steps. First, we compute the AVF for

microarchitectural logic state elements and the data cache using the out-of-order

SimAlpha functional simulator and SPEC 2000 integer benchmarks. Further, we

compute the contribution of each field of the IQ, ROB, DL1, LQ, and SQ towards

the overall vulnerability of the respective structure so as to identify the fields of

the microarchitectural logic state elements having high vulnerabilities. Second, we

introduce our Modified Razor flip-flops for different combinations of the bit fields

in each microarchitectural logic state element that would yield us the maximum

reduction in overall AVF. As the third and final step of our work, for each of the

combinations of fields identified in the second step, we compute the increase in area

requirement and power consumption. We have developed RTL models to measure

the exact increase in area requirement and power consumption for microarchitec-

tural logic state elements. Area and power measurements for cache are done using

Cacti [14]. We calculate the percentage decrease in AVF per unit area-power prod-

uct for each of the microarchitectural logic state element and for the data cache to

identify the best possible bit fields where Modified Razor flip-flops can be used and

also remain cost effective.
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the back-

ground and terminology related to soft errors and Architecture Vulnerability Factor.

Chapter 3 describes the AVF computation of the microprocessor and its microar-

chitectural logic state elements viz. the IQ, ROB, LQ, SQ and the DL1. Chapter

4 discusses Razor flip-flops and our modifications to the design of Razor flip-flops.

Chapter 5 presents the experimental setup and the results and Chapter 6 summa-

rizes and concludes our work.
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Chapter 2

Soft Errors and Architecture Vulnerability Factor

2.1 Overview

This chapter describes the background and soft error terminology that is fol-

lowed throughout the thesis. The chapter also discusses the background on Archi-

tecture Vulnerability Factor and computation of AVF for structures under consid-

eration.

2.2 Soft Errors and Impact on Industry

Bit errors are mainly caused from energized particles such as neutrons from

cosmic rays and alpha particles from packaging material, generating electron hole

pairs as they pass through the semiconductor device. Transistor source and diffusion

nodes can collect these charges. A sufficient amount of accumulated charge may

invert the logic state of a device such as an SRAM cell, a gate, or a flip-flop [15].

Because these types of errors do not reflect a permanent failure of the device, they are

termed as Soft errors. Soft error rates in microprocessors have become an increasing

burden in the industry. One of the main reasons for the increase in soft errors

and transient errors is a significant decrease in the feature size of transistors with

new technologies facilitating the an exponential increase in the number of on-chip
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transistors. Soft errors rates are also high in ultra low power microprocessors which

use techniques like Dynamic Voltage scaling, that lead to reduction in operating and

supply voltage levels.

Soft errors have caused a serious impact on the industry. There are a handful

of documented events in the industry to substantiate the effect of soft errors. In the

fifth generation SPARC64 processor, Fujitsu has protected 80% of the total 200K

latches by parity check error detection, to counter cosmic ray strikes. The mul-

tiply/divide units are protected with residue check and parity prediction circuits

[9]. Boeing Research has published several incidents of cosmic ray strikes in 1996

[16]. Sun Microsystems had acknowledged, in the year 2000, that cosmic ray strikes

on unprotected L2 cache memories on UltraSPARC IIs caused its Ultra Enterprise

servers to crash randomly at several customer sites (AOL, eBay, Verisign, and num-

berous other corporations were affected) [4]. Sun’s UltraSPARC T1 processor has

its integer and floating point register files protected by ECC, an extensive level of

protection matched only by mainframe-class processors [17].

2.3 Silent Data Corruption and Detected Unrecoverable Errors

Figure 2.1 illustrates the possible outcomes of a single bit error. The flow chart

also depicts the scenarios where errors are detected and corrected. From the flow

chart it can be inferred that some bit errors do not cause a change in the program

outcome. Detected Unrecoverable Errors (DUE) are those errors which cannot be

corrected. DUEs can in turn be classified as True DUE and False DUE. As the

7



Figure 2.1: Soft Error Classification and Outcome.

names imply, True DUEs cause errors in the program outcome while False DUEs do

not. Silent Data Corruption (SDC) is a scenario where a bit error causes a change

in the program output, and is the most insidious form of errors. In order to enhance

reliability, the errors have to be identified and corrected so as to prevent errors in

program correctness.

2.4 Measuring Soft Error Rates

Currently the industry specifies soft error rates in terms of SDC and DUE

numbers, and these are typically expressed using different metrics by vendors. Tra-

ditionally, Mean Time To Failure (MTTF) is used as the appropriate metric to

measure system reliability. Other units commonly used are Failure In Time (FIT)
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and Mean Time Between Failures (MTBF). MTBF is based on the interval between

failures. MTBF of a component, as the name suggests, is the average time between

failures. FIT is inversely related to MTBF. One FIT specifies one error in one bil-

lion operating hours. A zero error rate implies infinite MTBF and zero FIT. The

overall FIT rate of a chip is calculated as the sum of the effective FIT rates of all the

structures on-chip. Currently, typical FIT rate numbers for latches and SRAM cells

vary from 0.001 FIT/bit to 0.01 FIT/bit at sea level and are projected to remain

the same in the next several technology generations [18, 19, 16, 6].

2.5 Architecture Vulnerability Factor

Figure 2.1 illustrates that not all faults in a microarchitectural structure affect

the final outcome of a program. To illustrate with an example, a bit error in a

branch predictor will not affect the sequence or results of any committed instruc-

tions. Architectural Vulnerability Factor (AVF) is the probability that a fault in a

processor structure will result in a visible error in the final output of a program.

Thus, the branch predictor’s AVF is 0%. In contrast, a single-bit fault in the com-

mitted program counter will cause the wrong instructions to be executed, almost

certainly affecting the program’s result. Hence, the AVF for the committed program

counter is effectively 100%. Many structures will have an AVF that is in between

these two extremes.

There are two important significance of AVF estimates. First, AVF gives the

designers a measure of reliability of the processor and it does not depend on the
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raw error rates which in turn depends on the two factors - application where the

microprocessor is used and various environmental and fabrication factors. Second,

the error rate of a microarchitectural logic state element is the product of its raw

bit error rate and its AVF [6]. These overall error rates are used by designers and

architects to ensure that over protection is not built into the structures for error

detection and correction even where bit errors in these structures do not cause

errors in program outcomes. For these structures, the estimated AVF will be low.
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Chapter 3

Computation of Architecture Vulnerability Factor

3.1 Overview

This chapter describes the computation of AVF for the microarchitectural

structures viz. the Instruction Queue (IQ), the Reorder Buffer (ROB), the Data

Cache (DL1), the Load Queue (LQ), and the Store Queue (SQ). Also discussed is

the accurate computation of the contribution of the bit fields of each of the above

microstructural logic state elements towards the overall AVF of structures.

3.2 ACE Bits and AVF

The AVF of the overall structure is computed by analyzing each individual bit

of every microarchitectural logic state element under consideration. Architecturally

Correct Execution (ACE) bits will cause a visible error in the program outcome if a

bit error is caused in them. Under real time analysis conditions, program outcome

reflects the values conveyed to I/O structures. However, we define program outcome

as the vales that get committed back to structures of the processor. Non-ACE bits

are opposite to the ACE bits, which implies that a visible program error does not

occur if a bit error is caused. The time a particular bit of a microarchitectural

structure holds an ACE bit is defined as ACE Time or Residency of the Bit. The
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AVF of the bit under consideration is the ratio of ACE Time to Total time for which

the bit is analyzed. The AVF can equivalently be defined as the fraction of the time

the microarchitectural storage bit under consideration can be classified as an ACE

bit.

AV F of bit =
ACE Time of Bit (in Cycles) × 100

Total T ime (in Cycles)
(3.1)

The AVF of the microarchitectural structures like IQ, ROB, DL1, LQ and SQ is

defined as

AV F of the structure =

[
∑

For all Bits

ACE Time of Bit (in Cycles))] × 100

Total T ime (in Cycles) × Total Number of Bits
(3.2)

Equation 3.2 can be extended to all the microarchitectural structures of the micro-

processor to compute the overall AVF of the microprocessor.

3.3 Identifying Control Path ACE and Non-ACE bits

An important aspect of computing AVF is to identify which of the microar-

chitectural storage bits are ACE and Non-ACE bits in the correct path instruction

execution. All microarchitectural storage bits are conservatively assume as ACE

bits unless proved otherwise. Architectural ACE and Non-ACE bits refer to the

ACE and Non-ACE bits that are present in the correct path instruction execution.

For example, an alpha particle strike on an IQ entry in the operand field of a NOP

instruction will not affect the program outcome. Hence, corresponding bits of that

IQ entry which holds the operand field can be considered as Non-ACE and the op-

code field can be considered as ACE. The following four sources are considered for

identifying ACE and Non-ACE bits.
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• NOP instructions - Most instruction sets have NOP instructions which do not

affect the architectural state of the processor. NOP instructions are inserted

for a number of reasons such as to align instructions to address boundaries or

to fill VLIW style instruction templates. Depending on the instruction set,

the opcode field or the destination register specifier are the ACE bits for a

NOP instruction and the remaining bits are considered Non-ACE.

• Performance enhancing instructions - Most modern processors include perfor-

mance enhancing instructions like the prefetch instructions. A single bit error

in a non-opcode field will cause wrong data to be fetched but the architectural

state of the processor will not be affected. Hence, opcode or equivalent fields

are ACE and the rest of the part of the is Non-ACE.

• Dynamically Dead instructions - Dynamically dead instructions are those

whose results are not used by other instructions. Instructions whose results

simply do not get read are called First-level Dynamically Dead (FDD) in-

structions. Transitively Dynamically Dead (TDD) are the instructions whose

results are used only by the FDD instructions or other TDD instructions.

The opcode and destination operand register specifier fields of the FDD and

TDD are considered as ACE bits and the remaining fields are considered as

Non-ACE.

• Trivial Instructions - Logical masking in the operand chains of Trivial instruc-

tions cause a source of Non-ACE bits under certain circumstances. Two types

of Trivial instructions are identified. The first type of Trivial instructions have
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two source register operands and the operand is masked with an immediate

value. Depending on the type of masking and the value of the mask, some

bits can be considered Non-ACE. For example, let us consider the following 2

instructions :

ORI RA, RB, 0xFF00

ANDI RA, RB, 0xFF00

The above ORI instruction performs a bitwise OR operation on the contents of

the RB register with 0xFF00. The 32-16 bits of the register RB are Non-ACE

because an alpha particle attack on these bits do not affect the architectural

state. Similar arguments holds for the ANDI instruction. The second type

of Trivial instructions have one source operand and immediate value. For

example, we consider a multiply instruction with the source operand and an

immediate value. If the value of the source operand is equal to 0, this will

make the bits of the immediate value Non-ACE.

3.4 Identifying Data Path ACE and Non-ACE Bits

Computing AVF for address based structures such as the Data Cache, the

Load Queue and the Store Queue is split into two parts [7].

• AVF and ACE Time for the data bits - Periods of time when the bit is Non-

ACE state are identified. For example, Figure 3.1 shows the sequence of

operations on a cache block. The cache data block can be considered Non-

ACE in the period between two consecutive writes with no reads in between.
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Figure 3.1: Example of Cache Operation and ACE Time between States.

Similar techniques are employed to identify Non-ACE bits for the data bits of

the Load Queue and Store Queue.

• AVF and ACE Time for the tag bits - The second part involves the computa-

tion of ACE Time of the tag bits. The ACE Time of a tag array is measured

by comparing the value of the tag array with the incoming tag bits. If the

hamming distance between the incoming bits and the stored tag array value

is 1 bit, the bits of that tag array are conspired ACE because if a single bit

error occurs in these tag entries, a cache hit will occur and hence would create

a false positive and may cause an error in the program outcome. Conversely,

if the hamming distance is more than 1, a false positive created by an alpha

particle impact will not result in an error in the program outcome and hence

the corresponding tag bits can be considered Non-ACE.

3.5 Computation of ACE Time and AVF

The ACE Time of a bit in a microarchitectural structure is the sum of all the

cycles when the bit under consideration is ACE. ACE Bits and Non-ACE Bits are
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identified for each cycle. ACE Time of a bit is the total number of cycles that the

considered bit is ACE.

• ACE Time of IQ and ROB - Based on the type of instruction stored in the IQ,

particular fields of the IQ are considered ACE or Non-ACE. The ACE Time

of the IQ and the fields of the IQ are computed by multiplying the residency

of an instruction in the IQ with the Number of ACE Bits for that instruction.

For example, the ACE Time contribution by an instruction is given by the

following equation -

ACE Time = (TotalBW − NonACEBW ) × Residency (in Cycles) (3.3)

where the
TotalBW - Total Bit width
NonACEBW - Bit width of all NonACE Bits

Instruction Non-ACE fields Non-ACE fields

Type of IQ of ROB

Dynamically All Source Operand Destination Operand

Dead register specifiers Value

Prefetch and All fields except Status All fields except Status

NOP bits and Opcode bits and Opcode

Trivial 1 One of the Source None

Operands

Trivial 2 Immediate Value or One None

of Source Operands

Table 3.1: Non-ACE fields of IQ and ROB for Instructions.
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Table 3.5 enlists the different type of instructions and for each type of instruc-

tion, the fields of the IQ and ROB that are Non-ACE. All other fields are

conservatively assumed to be ACE when the ACE Time contribution from the

instruction is computed.

• ACE Time of Data cache, LQ, and SQ - The ACE time for the data array is

calculated based on the lifetime analysis presented in the previous section. The

number of cycles between the following state transitions for the data arrays of

the LQ, SQ and the Level 1 Data Cache are considered Non-ACE - idle, fill-to-

write, fill-to-evict, read-to-write, read-to-evict, write-to-write, write-to-evict,

evict-to-fill. The ACE Time of the tag array is calculated by identifying all

possible ACE tags for a particular incoming tag using the hamming distance

analysis and adding the residency of the corresponding bits.

The AVF of microarchitectural structures can be computed using Equations 3.1 and

3.2 after ACE Time has been calculated. The overall AVF of the microprocessor

can also be found by extending equation 3.2 for all the structures.
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Chapter 4

Modified Razor Flip-Flops

In this chapter we discuss the design of Modified Razor flip-flops and the use

of Modified Razor flip-flops to prevent Silent Data Corruption and reduce the AVF

of the microprocessor.

4.1 Razor Flip-flops: Background

Razor flip-flops were proposed to detect and correct transient errors that are

caused due to lowering voltage margins as a part of Dynamic Voltage Scaling (DVS)

algorithms [3]. It is necessary to scale voltages as low as possible while ensuring

correct operation of the processor. The critical voltage is chosen such that under

a worst-case scenario of process and environmental variations, the processor always

operates correctly. However, this approach leads to a very conservative supply

voltage, because such a worst-case combination of different variabilities will be very

rare. Razor flip-flops are introduced to detect and correct timing errors that are

caused by lowering voltage margins to very low values. A Razor flip-flop double

samples pipeline stage values, once with a fast clock and again with a delayed clock.

A metastability-tolerant comparator then validates latch values sampled with the

fast clock. In the event of a timing error, a modified pipeline mispeculation recovery

mechanism restores correct program state.
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Figure 4.1: Razor Flip-flops between Logic Stages.

Figure 4.2: Razor Flip-flop Operation.
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Razor relies on a combination of architectural and circuit level techniques for

efficient error detection and correction of transient errors. The concept of Razor is

illustrated in 4.1 for a pipeline stage. Each flip-flop in the design is augmented with

a Shadow Latch which is controlled by a delayed clock. The operation of a Razor

flip-flop is illustrated in 4.2.

In clock cycle 1, the combinational logic L1 meets the setup time by the rising

edge of the clock and both the main flip-flop and the shadow latch will latch the

correct data. In cycle 2, the combinational logic exceeds the intended delay due to

subcritical voltage scaling and hence the data is not latched by the main flip-flop,

but since the shadow-latch operates using a delayed clock, it successfully latches the

data some time in cycle 3. By comparing the valid data of the shadow latch with

the data in the main flip-flop, an error signal is then generated in cycle 3 and in

the subsequent cycle, cycle 4, the valid data in the shadow latch is restored into the

main flip-flop and becomes available to the next pipeline stage L2. The local error

signals Error L are ORed together to ensure that the data in all flip-flops is restored

even when only one of the Razor flip-flops generates an error.

4.2 Modified Razor flip-flops

We have modified the design of the Razor flip-flops to be used for soft error

detection in microarchitectural logic state elements viz. the IQ, the ROB, the LQ,

and the SQ. An SRAM cell with similar error detecting capability is designed for the

cache. Modified Razor flip-flops also rely on architectural and circuit level techniques
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Figure 4.3: Modified Razor Flip-flop.

for efficient error detection and reduction in AVF of the microprocessor. The design

of the Modified Razor flip-flop is shown in Figure 4.3. The logic state stored in a

flip-flop is double sampled and stored in a redundant flip-flop as shown. At any

given instance, both the flip-flops store the same logic state. If a soft error is caused

due to an alpha particle impact, the logic state of one of the flip-flops changes. An

XOR comparator is included in the Modified Razor flip-flop that will generate an

Error signal. This operation is illustrated in Figure 4.4.

In clock cycle 1, the data from D in is sampled in both the flip-flops - the Main

flip-flop and Redundant flip-flop. In clock cycle 2, there is a change in the logic state

of the Main flip-flop which may be caused by an alpha particle impact or any other

cause of a soft error. When the logic state of the Main flip-flop changes, the local

error signal Error L is generated by the XOR comparator signaling an error in the
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Figure 4.4: Modified Razor Flip-flop Operation.

logic state. Depending on the structure in which the Modified Razor flip-flop is used,

architectural changes can be made such that the Error signal can be used to take

appropriate actions to maintain program correctness. Figure 4.5 illustrates how the

Modified Razor flip-flops can be used in the Opcode, Valid and Destination operand

fields of one entry of the Instruction Queue. The Error signals from the Modified

Razor flip-flops are used to reset the Valid bit of the IQ entry. Architectural changes

to maintain correct program execution may include re-fetching the instruction for

the IQ, re-fetching the data for the Data cache, re-executing certain instructions for

the ROB, LQ, or the SQ.
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Figure 4.5: Instruction Queue with Modified Razor Flip-flop in Valid,
Operand and Destination Operand fields.

4.3 Reduction in AVF

We have discussed AVF computation for microarchitectural structures in Chap-

ter 3. The storage bits which are considered in the computation of AVF are consid-

ered always vulnerable to attack and a soft error in the bit may cause an error in

the program outcome, hence increasing the Architecture Vulnerability Factor of the

bit and also of the microprocessor. We have designed the Modified Razor flip-flops,

which have the capability to detect errors caused in storage bits. The error detec-

tion capability of the Modified flip-flops and appropriate architectural techniques for

error handling ensures that the program outcome is never erroneous. If a Modified

Razor flip-flop is introduced into a storage bit instead of a normal flip-flop, we can

safely conclude that, even with single event upsets, a soft error in that bit will never

cause an error in the program outcome. Hence, that particular bit can always be

considered as Non-ACE and the ACE Time contributed by that bit will be 0. The
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equation for calculating the AVF of a microarchitectural element is

AV F =

[
∑

For all non−Modified Razor FF Bits

ACE Time of Bit (in Cycles))] × 100

Total T ime (in Cycles) × Total Number of Bits

(4.1)

Non-Modified Razor FF Bits in Equation 4.1 refers to those storage bits that do not

have Modified Razor Flip-flops and hence do not have error detection capabilities.

The principle of AVF reduction is that when the Modified Razor flip-flops are

used for storage bits that have high ACE Time contributions, the reduction in AVF

is considerable, which we have shown in this thesis. In Chapter 5, we show how the

AVF of the structures and also of the overall microprocessor reduce with the use of

Modified Razor flip-flops in the IQ, ROB, DL1, LQ. and the SQ.

4.4 Power and Area Overhead

Modified Razor flip-flops lead to increased power consumption and area over-

head due to built in error detection capabalities. Increase in area is due to the

redundant flip-flop and the comparator that enable error detection capabilities. In-

creased area can also result in additional width of current driving elements whch

drive two flip-flops - main and redunctant flip-flops. Increased power consumption

is mainly due to the doubling of capacitance on the line that drives the input to the

Modified Razor flip-flops. Other forms of power due to static and leakage currents

also increase with introduction of an additional flip-flop. In Chapter 5, we have

quantified the increase in Area and Power with the introduction of Modified Razor

flip-flops into microarchitectural logic state elements viz. the IQ, the ROB, the the
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DL1, the LQ and the SQ.
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Chapter 5

Experimental Results

5.1 Simulation Model

For microarchitectural simulations, the SimSODA simulator, which is based

on the SimAlpha 2.0, is used [20, 21]. We have modified the SimSODA simulator to

introduce the capability to obtain ACE Time and AVF estimates for each individual

field of the microarchitectural structures. The IQ, ROB, LQ and SQ were modified

and the fields of these structures were modeled. The techniques for computation of

the ACE Time for these fields were added into the model. The IQ, ROB, LQ, and

SQ are modeled based on the microarchitecture of the Compaq DEC Alpha 21264

processor [22]. An out-of-order processor is simulated to obtain the AVF estimates.

Table 5.1 enlists the significant system parameters of the simulated processor.

For simulations, the SPEC 2000 Integer Benchmark suite is used [23]. The fol-

lowing integer benchmarks are used : bzip2, crafty, eon, gap, gcc, gzip, mcf, parser,

perlbmk, twolf, vortex and vpr. We have concentrated our efforts on the integer

benchmarks as the simulation with SimAlpha for integer benchmarks are reported

to be more accurate than the floating point benchmarks [21, 24]. To reduce simula-

tion time while still maintaining representative program behavior, SimPoint analysis

is used on the twelve integer points selected [25]. Table 5.1 presents the number of

instructions to be skipped and the input data set selected. Each benchmark is then
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System Parameter Value

ROB Size 80 entries

Integer IQ Size 20 entries

Floating Point IQ Size 15 entries

LQ Size 32 entries

SQ Size 32 entries

L1 Cache : Split I and D 64KB, 2 way set associative

Fetch Width 4 instruction/cycle

Decode Width 4 instruction/cycle

Integer Issue Width 4 instruction/cycle

Floating Point Issue Width 2 instruction/cycle

Functional Units 4 Integer Execution Units

1 Floating Point Exec Units

Cluster 1 Integer Cluster

1 Floating Point Cluster

Table 5.1: Processor Configuration.

simulated for 100 million instructions.

5.2 RTL Models

We developed RTL models for the IQ, ROB, LQ and SQ to accurately measure

the increase in area and power. We used Verilog 2000 to design the RTL models.

Synopsys Design Compiler is used for simulation, synthesis and analysis of the design
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Benchmark Instructions skipped

in Millions

bzip2-source 63

crafty 124

eon-rushmeier 215

gap 88

gcc-166 30

gzip-graphic 1

mcf 143

parser-dict 1771

perlbmk-splitmail 1

twolf 312

vortex-3 47

vpr-route 3

Table 5.2: Instructions skipped in SPEC 2000 Benchmarks.

of the structures [26]. The lsi 10k ASIC standard cell library is used for synthesis.

Power and area reports from the Synopsys Design Compiler are obtained by choosing

the highest level of optimization and highest detail of analysis. Figures 5.1, 5.2 and

5.3 depict the Register Transfer level design of the microarchitectural structures

under consideration and the fields of each of the structures.

Figure 5.1 illustrates the structure of the Instruction Queue. The IQ is modeled

to have 20 entries with each entry having a bit width to hold one instruction (which
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Figure 5.1: RTL Model of Instruction Queue with Modified Razor flip-flops.

includes the opcode, destination and source operand register specifiers) and other

bits which involve execution unit selection bits and a Valid bit. The error signals

from the Modified Razor flip-flops of an IQ entry are ORed and is used to reset

the Valid bit of that IQ. The model for the ROB is similar to the IQ model and is

illustrated in Figure 5.2.Each entry of the ROB has the following fields : the valid

and complete bits, the program counter, the opcode bits, the destination operand

register specifier and the destination operand value. The ROB is modeled to have 80

entries. The model for the LQ/SQ is shown in figure 5.3. Each entry of the LQ/SQ

have valid and complete bits, destination/source address bits and destination/source

value bits. The LQ/SQ is modeled to have 32 entries.

5.3 AVF and ACE Time

AVF computation is done using the techniques described in Chapter 3. The

ACE Time for all the fields are computed. The residency of each committed instruc-

tion in a given structure is measured and accumulated to obtain the ACE Time of
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Figure 5.2: RTL Model of Reorder Buffer with Modified Razor flip-flops.

Figure 5.3: RTL Model of Load/Store Queue with Modified Razor flip-flops.
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Figure 5.4: AVF of Instruction Queue.

the structure. Figures 5.4, 5.5, 5.6, 5.7 and 5.8 show the AVF values for the IQ, the

ROB, the DL1, the LQ and the SQ respectively. Each graph shows the AVF for all

SPEC 2000 integer benchmarks. We see that the Average AVFs of IQ, ROB, DL1,

LQ and SQ are 16.98%, 30.37%, 31.66%, 21.65% and 29.28% respectively.

In order to understand the contribution of ACE Time from the individual fields

of the structures towards the overall AVF, we look the ACE Time contribution from

the individual fields for each structure. Figures 5.9, 5.10, 5.11, 5.12 and 5.13 show

the ACE Time distribution from the IQ, the ROB, the DL1, the LQ, and the SQ.

From the graphs below, we see that Average ACE Time contributions of Operand

field of IQ (37.72%), Program counter field of ROB (61.68%), Data Array of Data

Cache (67.61%), Address field of Load Queue (56.08%) and Address field of Store
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Figure 5.5: AVF of Reorder Buffer.

Figure 5.6: AVF of Level 1 Data Cache.
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Figure 5.7: AVF of Load Queue.

Figure 5.8: AVF of Store Queue.
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Figure 5.9: ACE Time distribution of Instruction Queue.

Queue (59.35%) towards their respective structures are significant. As these fields

have significant contributions towards overall AVF and towards the AVF of their

respective structures, we introduce Modified Razor flip-flops into these fields and

into a combination of fields which high ACE Time contributions.

5.4 Reduction in AVF with Modified Razor flip-flops

Figures 5.9, 5.10, 5.11, 5.12 and 5.13 illustrate the contributions of each in-

dividual field towards the ACE Time of the overall structure, which in-turn is the

reflection of the contribution of each field towards the AVF of the structure. We saw

that the contributions of some fields are significant and we introduce the Modified

Razor flip-flops into these fields to decrease the AVF. The AVF is calculated for
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Figure 5.10: ACE Time distribution of Reorder Buffer.

Figure 5.11: ACE Time distribution of Level 1 Data Cache.
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Figure 5.12: ACE Time distribution of Load Queue.

Figure 5.13: ACE Time distribution of Store Queue.
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Figure 5.14: AVF of Instruction Queue with Modified Razor flip-flops.

the structures with Modified Razor flip-flops as presented in the Chapter 4. We

have computed the reduction in the AVF of the structures when our Modified Razor

flip-flops are introduced in fields that have a high contribution of ACE Time. In

order to reduce AVF further, we have explored the introduction of these Modified

Razor flip-flops in more than one fields.

Figures 5.9 shows a scenario where our Modified Razor flip-flops are intro-

duced in the various fields of the IQ. We introduce Modified flip-flops in the opcode

field, the destination and source operand fields and combinations of these fields.

In Figure 5.14, we see that Modified Razor flip-flops are introduced in the Op-

code field (IQ wo opcode), the Source and Destination Operand fields (IQ wo opr1,

IQ wo opr2 and IQ wo dest). Figure 5.16 shows the percentage decrease in the
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Figure 5.15: AVF of Instruction Queue with Modified Razor flip-flops.

AVF of the IQ for each case. To further decrease the AVF, we introduce our

Modified Razor flip-flops in combinations of the above fields. Figure 5.14 shows

the reduced AVFs when the Modified Razor flip-flops are introduced in the Op-

code and Source Operand 2 fields (IQ wo opcode opr2), the Opcode and Source

Operand 1 fields (IQ wo opcode opr1) and the Opcode and Destination Operand

fields (IQ wo opcode dest). Figure 5.17 shows the percentage reduction in AVF

when the Modified Razor flip-flops are introduced in the combination of fields of the

IQ. We see that the when we introduce the Modified Razor flip-flops in Opcode and

Destination Operand fields, the average AVF reduces to 9.06%, which is a 46.87%

reduction from the initial value.

Similar analysis is done for the ROB as shown in Figures 5.18 and 5.19.
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Figure 5.16: Percentage decrease in AVF of Instruction Queue with Mod-
ified Razor flip-flops.
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Figure 5.17: Percentage decrease in AVF of Instruction Queue with Mod-
ified Razor flip-flops.
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Figure 5.18: AVF of Reorder Buffer with Modified Razor flip-flops.

Modified Razor flip-flops are introduced in the following fields - the Destination

Operand register specifier field (ROB wo destopr), the Destination Operand Value

field (ROB wo destopr value) and the Program Counter field (ROB wo PC). We

see that when our Modified Razor flip-flops are introduced in the Program Counter

field of the ROB, the average AVF reduces by 61.88% and the reduced value of the

average AVF is 11.58%.

Figures 5.20 and 5.21 show the reduced average AVFs and percentage re-

duction in average AVFs when the Modified Razor flip-flops are introduced in the

following fields of the Data Cache - Tag array (DL1 wo tag) and the Data array

(DL1 wo data). We see that the maximum reduction in the AVF of the data cache

is when our Modified Razor flip-flops are introduced in data array. The average
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Figure 5.19: Percentage decrease in AVF of Reorder Buffer with Modified
Razor flip-flops.

42



Figure 5.20: AVF of Level 1 Data Cache with Modified Razor flip-flops.

AVF of the data cache reduces by 72.14% to a new value of 9.14%.

Figures 5.22 and 5.23 show the reduced average AVFs for the Load Queue and

the Store Queue. Figures 5.24 and 5.25 show the percentage reduction in the average

AVF of the respective structures after Modified Razor flip-flops are introduced. We

see that for both the structures, we obtain a maximum reduction (56.73% reduction

for LQ and 55.77% reduction for SQ) in the average AVF when our Modified Razor

flip-flops are introduced in the address fields of the structures. The reduced average

AVFs are 8.98% and 13.43% for the LQ and the SQ respectively.
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Figure 5.21: Percentage decrease in AVF of Level 1 Data Cache with
Modified Razor flip-flops.
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Figure 5.22: AVF of Load Queue with Modified Razor flip-flops.

Figure 5.23: AVF of Store Queue with Modified Razor flip-flops.

45



Figure 5.24: Percentage decrease in AVF of Load Queue with Modified
Razor flip-flops.
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Figure 5.25: Percentage decrease in AVF of Store Queue with Modified
Razor flip-flops.
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5.5 Increase in Area and Power

Introduction of of Modified Razor flip-flops also cause a decrease in the AVF of

the microarchitectural structure and also the overall processor. However, introduc-

tion Modified Razor flip-flops cause an increase in the area requirement and power

consumption for the microarchitectural structures because of reasons explained in

Chapter 4. We have modeled the microarchitectural elements in RTL to measure

the exact increase in area and power by introducing Modified Razor flip-flops in

some fields of the microarchitectural elements viz. IQ, ROB, LQ and SQ. The area

and power estimates for the Data Cache are obtained using Cacti [14]. Figures 5.26,

5.27, 5.28, and 5.29 show the area and power estimates for each of the microar-

chitectural structure under consideration. We have measured the area requirement

and power consumption by introducing Modified Razor flip-flops in different fields

which results in reduction in AVF. In addition to the fields identified in previous sec-

tion, we have estimated the increase in area and power consumption by introducing

Modified Razor flip-flops in all the fields of the microarchitectural structures under

consideration. This would result in an 100% reduction of AVF but we observed that

area and power increase by more than 100%.

From Figures 5.26(a), 5.27(a), and 5.29(a), we see that the area requirement

for both combinational and sequential elements increase. The area requirement for

sequential elements is due to the redundant flip-flop present inside our Modified

Razor flip-flop which facilitates error detection. The increase in the combinational

elements is due to the introduction of cells that implement the XOR comparotors
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Figure 5.26: (a)Area and (b)Power consumption of Instruction Queue
with Modified Razor flip-flops.

Legend - 1:IQ, 2:IQ wo operand1, 3:IQ wo operand2, 4:IQ wo dest,
5:IQ wo opcode, 6:IQ wo opcode dest, 7:IQ full

and also the ORing of the individual Error L signals from each of the Modified

Razor flip-flops.

5.6 Cost effective Percentage decrease in AVF

The main aim of the thesis is to find the most optimal choice for introducing

Modified Razor flip-flops in microarchitectural elements. We saw that AVF reduces

with the introduction of Modified Razor flip-flops but the area and power require-

ments increase which in-turn results in an increase in cost. Consider the following

scenario - From Figures 5.20 and 5.21, we saw that when Modified Razor flip-flops

are introduced in the data array of the Data Cahce, we get an average reduction

of 72.14%. From our estimates in Figure 5.28, we see that the area requirement

and power consumption for this case goes up significantly to levels which are not
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Figure 5.27: (a)Area and (b)Power consumption of Reorder Buffer with
Modified Razor flip-flops.

Legend - 1:ROB, 2:ROB wo destopr, 3:ROB wo destopr oprval,
4:ROB wo PC, 5:ROB full

Figure 5.28: (a)Area and (b)Power consumption of Level 1 Data Cache
with Modified Razor flip-flops.

Legend - 1:DL, 2:DL wo tag, 3:DL wo data, 4:DL full
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Figure 5.29: (a)Area and (b)Power consumption of Load/Store Queue
with Modified Razor flip-flops.

Legend - 1:LQSQ, 2:LQSQ wo valid, 3:LQSQ wo addr,
4:LQSQ wo data, 5:LQSQ full

practical (183.4% increase in area and 189% increase in power). To obtain the most

cost effective choices of fields for the Modified Razor flip-flops, we have measured

the Percentage decrease in AVF per Area-Power product. Figures 5.30, 5.31, 5.32,

5.33, 5.34 show the percentage decrease in per mm2−mW for the microarchitectural

elements considered in this thesis. 5.7 shows the most optimal choice of fields in

the microarchitectural structures where the introduction Modified Razor flip-flops

results in a most cost effective reduction in AVF.

5.7 Observations

Introduction of Modified Razor flip-flops causes a reduction in the AVF of the

microarchitectural structures and hence the AVF of the processor. However, this

also causes an increase in cost factor and more specifically the area requirement and
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Figure 5.30: Percentage decrease in AVF per Area-Power product of
Instruction Queue with Modified Razor flip-flops.

Legend - 1:IQ wo opcode, 2:IQ wo dest, 3:IQ wo operand1,
4:IQ wo operand2, 5:IQ wo opcode dest, 6:IQ wo opcode opr1,
7:IQ wo opcode opr2, 8:IQ full

Figure 5.31: Percentage decrease in AVF per Area-Power product of
Reorder Buffer with Modified Razor flip-flops.

Legend - 1:ROB wo destopr, 2:ROB wo destopr oprval, 3:ROB wo PC,
4:ROB full
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Figure 5.32: Percentage decrease in AVF per Area-Power product of
Level 1 Data Cache with Modified Razor flip-flops.

Legend - 1:DL wo tag, 2:DL wo data, 3:DL full

Figure 5.33: Percentage decrease in AVF per Area-Power product of
Load Queue with Modified Razor flip-flops.

Legend - 1:LQ wo valid, 2:LQ wo addr, 3:LQ wo data, 4:LQ full

53



Figure 5.34: Percentage decrease in AVF per Area-Power product of
Store Queue with Modified Razor flip-flops.

Legend - 1:SQ wo valid, 2:SQ wo addr, 3:SQ wo data, 4:SQ full

the power consumption. We found from our experiments that, with the introduction

of our Modified Razor flip-flops in certain fields of the microarchitectural structures,

the most cost effective decrease in AVF can be achieved. The overall AVF before the

introduction of all the microarchitectural elements is 22.5%. With the introduction

of Modified flip-flops in fields shown in Table 5.7 the overall AVF reduces to 15.27%,

which gives a reduction of 32.23%. The overall increase in area is 16.99% and the

overall increase in power is 10.33%.
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Microarchitectural Field for Modified

Structure Razor flip-flop

Instruction Queue Opcode

Destination Register Specifer

Reorder Buffer Program Counter Field

Level 1 Data Cache Tag array

Load Queue Source Address field

Store Queue Destination Address field

Table 5.3: Fields for Modified Razor flip-flops.
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Chapter 6

Summary and Conclusion

6.1 Summary

Soft errors have become a key challenge in modern microprocessor design. Sin-

gle Event Upsets and transient faults are a major source of soft errors. Eventhough

the soft error rates of individual transistors are projected to remain as roughly the

same for the next several technology generations, the overall per-chip fault rates

will continue to increase exponentially in accordance to Moore’s law. As a result,

even logic elements, which were not a great concern in the reliability perspective

earlier, have become a major source of concern. In this thesis, we address the issue

of ensuring reliability in the operation of the microarchitectural elements in a cost

effective fashion.

Soft errors that cause errors can be broadly classified as those which cause

errors in program outcomes and those which do not. Errors that do not cause errors

in program outcome do not pose a threat to the reliability of the processor. The

reliability of the processor and its microarchitectural structures are measured in

terms of Architecture Vulnerability Factor (AVF). AVF is defined as the probability

that a fault in a processor structure will result in a visible error in the final output

of a program. In this thesis, we have focused our effort on performing a detailed

analysis of AVF of the microarchitectural elements viz. the Instruction Queue (IQ),
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the Reorder Buffer (ROB), the Level 1 Data Cache (DL1), the Load Queue (LQ),

and the Store Queue (SQ). We have identified the fields of these structures which

contribute most significantly towards the overall AVF.

The technique to decrease the AVF of a structure is to ensure program cor-

rectness even with single bit soft errors. In this thesis, we have made design changes

to incorporate error detection capabilities into Razor flip-flops and introduced them

into one or more fields of structures that have significant contribution towards AVF.

We have measured the resulting decrease in the AVF and also the increase in area

requirement and power consumption. In order to find the most cost effective solu-

tion, we have measured the percentage decrease in AVF per area-power product for

all the combinations of fields with Modified Razor flip-flops. We then find the most

optimal solution and measure the overall decrease in AVF and increase in area and

power.

6.2 Conclusion

In this thesis, we have proposed an approach to maintain program correctness

by using the Modified Razor flip-flops in selected fields of the microarchitectural

structures viz. the IQ, the ROB, the DL1, the LQ, and the SQ. Since this caused

an increase in area and power, we identify the most optimal choices of fields which

provide the highest percentage decrease in AVF per the area-power product. From

our work, the fields are identified as Opcode and Destination Operand fields of IQ,

Program Counter fields of ROB, Tag array of the DL1 and Address fields of the
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LQ and the SQ. We found that with Modified flip-flops in the mentioned fields, the

AVF decreases by 32.23%. The area increases by 16.99% and the power consumption

increases by 10.33%.
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