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� (a) Start showing the image at 10am for 10 minutes.� (b) Start showing the image sometime between 9.58am and 10.03am and show it till the audiois played out.The �rst statement is a hard temporal speci�cation, with the time instant and duration of pre-sentation of the image �xed (at 10am and for 10 minutes, respectively). In contrast, the secondspeci�cation is more exible in that it allows the start time instant to vary within a range of 5 min-utes. A similar exibility is allowed for the duration of presentation of the object also, by showingthe image till the audio is played out. The temporal constraint speci�cation, in other words, helpsin the derivation of a presentation schedule that describes the starting times and durations of thepresentations of the objects composing the multimedia document. Note that if the speci�cations arehard, the presentation schedule would be the same as the temporal constraint speci�cation. Flexi-ble temporal speci�cations imply that the presentation of the multimedia document can be exible,i.e., one can have a set of presentation schedules that satisfy the given temporal constraints. Eachmember of this presentation schedule set describes one possible view of the multimedia document.In this work, we deal with exible temporal constraints.In a distributed multimedia presentation, the objects composing the document can be dispersedover a computer network. These objects have to be retrieved from their storage places and presentedto the user. With the storage place acting as a server and the retrieving system as a client, theretrieval process is initiated by the client (as opposed to the server just delivering the objectsfollowing some schedule of its own). Hence, the retrieval process is composed of the followingphases:� Identify a presentation schedule that satis�es the (exible) temporal speci�cation associatedwith the multimedia document.� Identify a retrieval schedule that speci�es the time instants at which the client should makea request to the server(s) for delivering the objects that compose the multimedia document.Speci�cation of the time instants for retrieving objects from the server as part of the retrievalschedule is carried out by determining the time taken to transfer the object from the server to theclient. Consider the temporal constraint speci�cation (b). We can derive a presentation schedulethat speci�es the start time of presentation of object A as 9.58am. If we know that the delayinvolved in retrieving the object A from its server is 3 minutes, then the retrieval schedule can be�xed at 9.55am. This retrieval schedule is constrained by the following factors:1. Throughput (or the bandwidth) of the communication channel between the server and theclient.2. Bu�er availability for the retrieved objects.3. Size of the object(s) that is (are) to be retrieved from the server.4. Time duration available for retrieval. 2



Here, the throughput of the communication channel, and the bu�er resources are system de-pendent. The available throughput can vary depending on the type of network and the load on thenetwork. The bu�er resources are dependent on their availability in the client system. The lasttwo constraints: size of the objects and the time available for retrieval, are application dependent.The size of the object depends on the type of media as well as the desired quality of presentation(section 2.2). For example, an image object may be retrieved as a thumbnail sketch or as a fullimage. The time available for presentation depends on the derived presentation schedule from the(exible) temporal constraints speci�cation. The retrieval schedule for a multimedia documentpresentation has to be derived based on the above four constraints.Related Work: Multimedia authoring and presentation schedule creation are studied by manyresearchers, such as [2, 5, 15, 16, 18, 19, 23]. Similarly, deriving retrieval schedules for distributedmultimedia presentation has also been studied in many works, such as [18, 16, 25, 26, 27, 28, 32]. In[18], the presentation schedule is based on Petri nets description of the temporal speci�cation. Thispresentation schedule is �xed before the generation of the retrieval schedule. The retrieval scheduleis derived by assuming a certain throughput to be provided by the network service provider. Basedon the derived retrieval schedule and the assumed network throughput, estimates for the bu�erresource requirements on the client system are made. However, the proposed algorithm does notcheck whether the estimated bu�er resources are available or not. Also, it does not handle thevariations in the throughput o�ered by the network service provider. In [16], however, Li et.al.use time-ow graphs to capture interval-based fuzzy presentation schedules, and synchronization ofindependent sources. Their algorithms guarantee that there will be no gaps in the source's schedules.However, they do not address to the issue of constraints on resources such as throughout and bu�er.As in [18], in [25, 26, 27, 28], authors use petri net model to describe temporal speci�cations, andthey base the retrieval schedules on the �xed presentation schedules. In [32], Thimm et.al. describea method which adapts the presentation schedule to the changes in the resource availability bymodifying the overall quality of the presentation.Our Approach: In this paper, we developed techniques for deriving exible object presentationand retrieval schedules for a distributed multimedia document presentation. Our approach is to useexible temporal constraint speci�cation for deriving a possible presentation schedule [5]. Based onthis presentation schedule, we suggest techniques for deriving the retrieval schedule. The derivedretrieval schedule is validated by checking whether it satis�es all the system availability constraints.If it does not, we do the following:1. Modify the retrieval schedule. We try to �nd a di�erent retrieval schedule which �ts into thepresnetation schedule at hand.2. If no such change in the retrieval schedule is possible, then modify the presentation schedule.We identify the portions of the retrieval schedule which do not satisfy the system availabil-ities. Based on the unsatis�ed retrieval schedule, we suggest a feedback for modifying thepresentation schedule appropriately. 3



3. If everything else fails, then modify the quality of presentation. Such a modi�cation is possiblein the case of certain objects like gif formatted images, etc. Also, the reduced quality ofpresentation should be acceptable to the viewer.2 Multimedia Document PresentationA multimedia document is composed of objects that are to be presented at di�erent time instancesand for di�erent time durations. Based on the way the objects are to be retrieved from the server(s),we classify them as:� Atomic Objects: These objects need to be received at the client side as a whole before thepresentation starts. For example, still image �les are atomic objects.� Stream Objects: These objects can be presented to the viewer as soon as some portionof them is received. The rest of the object is then continuously fed to the viewer. Videoand audio objects are generally considered to be stream objects. However, in systems whichcannot handle display-while-retrieving operation, video can be retrieved as a whole, and bedisplayed afterwards. In such systems, video objects must be considered as atomic objects.Atomic objects must be present in the bu�ers of the client as a whole at the start of theirpresentations. Then, they can be consumed from the bu�ers during the presentation (as in the caseof atomic-video objects) or can be kept in the bu�ers as a whole till the end of the presentation (asin the case of the still images). We use ca(o) to denote the consumption rate of an atomic objecto from the bu�ers. Note that for objects like still images ca(o) = 0.Stream objects do not need to be delivered as a whole before their presentations. However, inorder to reduce jitter and in to smooth their display, such objects usually require some fraction toarrive at the display site before the start of their presentations. In this paper, we use binit(o) todenote the size of this fraction for a stream object o, and we use cs(o) to denote the consumptionrate of a stream object o from the bu�ers. Note that in order to prevent the underow of the bu�erB(o), the consumption rate cs(o) must be equal to the average delivery rate (throughput) of theobject o (throughput of an object o is denoted as th(o)). However, if the network is not capableof providing the consumption rate, then we can reduce the throughput requirement by bu�eringa larger portion of the object at the client site. This process will be explained in more details insection 7.1.2.1 Flexible Multimedia PresentationIn practical circumstances, one may encounter a situation where the derived retrieval schedulecannot be satis�ed. For example, the network service provider might o�er a very low throughputfor the application. The retrieval schedule based on the throughput o�ered by the network serviceprovider may overshoot the bu�er availability on the client. Hence, the derived retrieval schedule4



cannot be used for the multimedia presentation. However, we may be able to modify the retrievalschedule by relaxing (one or both of) the application dependent constraints. For example, one canreduce the size of the multimedia objects to be retrieved by reducing the quality of the presentation(if the reduced quality is acceptable to the viewer). If the reduction in the quality of the presentationis not acceptable, then we can modify the time duration for retrieving the objects. This can beperformed by selecting a di�erent presentation schedule satisfying the given set of (exible) temporalconstraints.As an example, consider the (previously described) temporal constraint speci�cation (b): startshowing the image sometime between 9.58am and 10.03am and show it for a duration of 10 minutes.Let the chosen presentation schedule be such that the image presentation starts at 9.58am. Ifwe �nd that the retrieval schedule based on this presentation schedule does not satisfy all thesystem constraints, then we can try another presentation schedule, say: image presentation startsat 10.03am. This change in the presentation schedule gives more time for the retrieval of the object(in this example, it gives 5 more minutes for retrieval). We can derive a new retrieval schedulebased on the modi�ed presentation schedule and check whether the new retrieval schedule satis�esall the constraints.In the above example, we (seem to have) arbitrarily picked up another value for the start ofpresentation of the image. Instead, we can use feedback from the retrieval schedule to give us anidea of which temporal values can be changed by what factor. In other words, we can use theexibility of the multimedia presentation to �nd other solutions within the application dependentconstraints, such as the quality of presentation and the presentation schedule. This new solutionfor the retrieval schedule is selected in such a way that it can handle the changes in the systemdependent constraints such as throughput o�ered by the network and the bu�er resources availableon the client.2.2 Quality of the PresentationIn this paper, we suggest the use of the quality reduction as a method for satisfying the systemresources. Note that this method is used only when there is no other way to satisfy the constraints.The quality of a presentation has two main aspects:� Response time of the presentation: The response time is de�ned as the amount of timethat elapses between the time at which the �rst object request is issued by the system andthe time at which the presentation starts. The smaller this value is, the higher the quality ofthe presentation.� Quality of the objects: In this paper we assume that a quality is associated with eachobject, and a reduction in the size of the object is accompanied by a reduction in its quality.Di�erent media types observe di�erent quality reductions when their size is reduced. A tableof the following form provides a means by which the system relates quality with reduction inobject size: 5
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constraints such as available throughput and the size of the objects, the retrieval schedule generatordetermines a possible retrieval schedule. The schedules are checked by the schedule validator todetermine whether all the associated constraints (bu�er availability, throughput) are satis�ed. Ifsome of the constraints are not satis�ed, one or more of the following modi�cations are made inorder to satisfy all the constraints.� Change the bu�er resource distribution.� Pick a di�erent presentation or retrieval schedule.� Change the quality of the presentationIn the above modi�cations, modifying the bu�er resource distribution is most desirable whilechanging the quality of presentation is the least desirable one. Based on this discussion, we can saythat the input and output of the exible multimedia presentation system are as follows.Input: The input to the system consists of� a set of temporal speci�cations.� a list of available system resources: throughput and bu�er.� a list of object sizes and object locations.� a list of presentation quality requirements.� a list of object priorities.Output: The output is a presentation and a retrieval schedule which satisfy the input speci�-cations, and requirements.Flexible Multimedia Presentation System Components:1. Presentation Schedule Generator: This component of the system provides a solution tothe given temporal speci�cations. It picks a schedule which satis�es the temporal speci�ca-tions. In [5], we have described the details of such a temporal constraint solver. We providea brief overview of the temporal constraint solver in Section 4.2. Retrieval Schedule Generator: The Retrieval Schedule Generator takes the presentationschedule, the list of available system resources, and the object sizes, and it outputs a retrievalschedule. Section 5 describes how the retrieval schedule is generated from the listed inputs.3. Schedule Validator: Given a temporal schedule, system constraints, and a retrieval sched-ule, this module checks the validity of the generated retrieval schedule based on the inputconstraints. If the schedules are valid with respect to the speci�ed constraints, then the val-idator returns them as the �nal solution. However, if the schedules do not satisfy the systemconstraints, this module suggests modi�cations that can be made to the current solution in7



order to satisfy the system constraints. These suggestions are used by the Schedule Modi�ermodule to �nd a modi�ed solution that can satisfy the constraints. Section 6 describes indetail the functionality of the schedule validator module.4. Schedule Modi�er: This module modi�es the current solution for retrieval and presentationschedules, based on the suggestions made by the Schedule Validator module. The modi�edsolution is given back to the Validator module to check the solution against the systemconstraints. We discuss the details of the Schedule Modi�er in Section 7.2.This process of solution-feedback and validation is repeated till a valid schedule is generated.In case a valid schedule cannot be arrived at, then the best schedule found so far can beused as the solution. Objects whose schedules do not satisfy the system constraints can bedropped from the presentation, provided the viewer agrees to it.3.1 Segmented Validation of SchedulesIn our approach, we �rst generate a presentation schedule based on the speci�ed temporal con-straints. Then we generate a retrieval schedule for a segment of time (the duration of the timesegment is chosen based on the implementation requirements). The process of segmented retrievalschedule generation (and validation) is done for the following reasons.� In the case of a long presentation (say, a 1 hour presentation), system constraints such asthroughput and bu�er can vary considerably. Hence, an initial schedule generated for theentire presentation may become invalid at a later point in time.� Creating a complete schedule for the whole presentation can be time consuming. It mightlead to a long wait time for the user before the presentation can start. (And after all that,the schedules might become invalid!)The retrieval schedule for the time segment is then validated with respect to the system con-straints. If the retrieval schedule is found valid, then the multimedia document presentation forthe validated time segment is started. (Otherwise, we go through the process of solution-feedbackto generate another schedule, as discussed above). Then, the retrieval schedule for the next timesegment is generated and validated. Hence, we follow a segmented validation of the generatedschedules.It should be noted here the segmentation of the presentation is done with respect to the presen-tation schedules. The retrieval schedule for a segment might fall into the previous segment. Thiscan modify the throughput and bu�er requirements. In our approach, we allow these segments tooverlap by a chosen time duration, say t. For example, if SEi�1 denotes the end of segment i� 1,then SSi, the segment start time of the ith segment will be: SSi = SEi�1� t. While validating onesegment, its overlap with the previous segment gets revalidated. Hence, it takes care of the overlapof the retrieval schedules.Figure 2 shows an example of this segmented validation of a one hour presentation. Thedocument is divided into 5 segments of size 12 minutes each, and each of the segments are handled8
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Figure 2: Segmented Validation: An ExampleSymbol MeaningThmax Maximum throughput available at a communication line.Thtot The total throughput required by the objects sharing a communication line.th(o) The amount of throughput used by object o.Bufmax Maximum bu�er available for the objects sharing a communication line.Buftot(t) The total bu�er required at time t by the objects sharing a communicationline.buf(o; t) The amount of bu�er used by object o at time t.binit(o) The size of the bu�er required by object o before the start of its presentation.st(o) The time at which the display of object o starts.et(o) The time at which the display of object o ends.req(o) The time at which the request for the object o is issued by the client.rec(o) The time at which the �rst bit of the object o is received at the client.sz(o) The size of the object o.Figure 3: Notations and terminologyseparately. The consecutive segments have an overlap of three minutes: the schedule of the lastthree minutes of segments are reprocessed at the beginning of the following segments, as discussedabove.3.2 Notation Used in the PaperThe major symbols we use in this paper are explained in �gure 3.4 Presentation Schedule GenerationIn [5], we developed a framework that supports the creation and incremental modi�cation of multi-media documents. We showed that spatial and temporal speci�cations can be uniformly describedwithin a small class of the language of real valued linear constraints, called di�erence constraints.9



While generalized linear constraints [12] have the forma1x1 + a2x2 + � � �+ anxn � b (1)where a1; : : : ; an; b are rational numbers (positive and negative), and x1; : : : ; xn range over the realnumbers (positive and negative), di�erence constraints have the formx1 � x2 � b: (2)Thus, di�erence constraints are a special case of linear constraints where:1. There are only two variables (i.e. n = 2 in Equation 1), and2. One variable has coe�cient 1 (i.e. a1 = 1) while the other has coe�cient �1 (i.e. a2 = �1).Due to the fact that di�erence constraints have a very tightly restricted syntactic form, it turnsout that they are very easy to solve. Using di�erence constraints, we showed [5] how it is possibleto determine if a given set of media objects can be scheduled in a way that satis�es the desiredspeci�cation{ if no such schedule exists, then this means that the speci�cation demanded by theauthors of the document are inconsistent. Our algorithms checked for such inconsistencies. We alsoshowed how an inconsistent set of constraints may be relaxed so as to restore consistency [5].Associated with each object O in a multimedia document D, we associate a set, TO, of temporalconstraints. As is customary in operations research[12], constraints are constructed from variables.In the case of multimedia documents, we associate, with each multimedia object O in the document,the following temporal variables:� st(O): Denotes the start time of the display of the object O� et(O): Denotes the end time of the display of the object O� req(O): Denotes the time when the request for the object O is issuedThe last variable (req(O)) did not exist in the original framework, but it is easy to enlarge theframework to include this new variable. The framework is also capable of specifying constraints insubobject level (for instance, authors can specify synchronization of two video clips on frame byframe level). However, here, for the sake of simplicity, we will consider only the synchronization ofwhole objects.There are four types of temporal constraints:� T (o)� t � �t � T (o)� t � �t� t� T (o) � �t � t � T (o) � �twhere: 10



1. T (o) 2 fst(o);st(o)g and2. t 2 Sjfet(oj);et(oj)gSfstp;etpg and3. stp and etp denote the start and end of the presentation respectively.Example 4.1 Let us assume that there exist two objects o1 and o2 that we want to display simul-taneously, i.e. we want them to start and �nish simultaneously. This requirement can be describedusing the following constraints: st(o1)�st(o2) � 0st(o2)�st(o1) � 0et(o1)�et(o2) � 0et(o2)�et(o1) � 0 2Note that using these constraints, not only can we specify Allen's 13 temporal relationships[1]between events, but also specify more complex quantitative relationships that cannot be expressedin Allen's framework. Suppose D is any document and TD is the set of temporal constraintsassociated with D. With this set of di�erence constraints, we may associate a graph G = (V;E)de�ned as follows:1. Vertices: For each constraint variable �i occurring in the set of di�erence constraints TD , Vcontains a vertex vi representing that variable. In addition, V contains two special verticesvs (document \start" node) and ve (document \end" node).2. Edges: If �j��i � �t is a constraint in the set of di�erence constraints being considered, thenE contains an edge from vi to vj and the weight associated with this edge is �t. Furthermore,for each node vi, there is an edge from vi to vs with weight 0 and ........ (!!)Thus, given any document D, we have one graph associated with its temporal speci�cations.In [], we showed that the shortest path solution of this graph results in a schedule that satis�es thetemporal speci�cation. Example 4.2 shows how the solution works.Example 4.2 Let us assume that there exist two objects o1 (50 seconds) and o2 (40 seconds). Wewant to display one after the other (i.e. o2 after o1). But, we also want that the display of o2start within 10 seconds after o1 �nishes. This requirement can be described using the followingconstraints: st(o1)�et(o1) � �50et(o1)�st(o1) � 50st(o2)�et(o2) � �40et(o2)�st(o2) � 40et(o1)�st(o2) � 0st(o2)�et(o1) � 10Figure 4 shows the corresponding graph, and the corresponding shortest path solution. At theend, the vertices of the graph has the following values:11
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th(O1) = Thmax=2th(O2) = Thmax=2th(O3) = Thmax=3th(O4) = Thmax=3th(O5) = Thmax=3th(O6) = Thmax=2Each object O is assigned a throughput of Thmax=n where n is the maximum number of objectsthat simultaneously overlap during the presentation time of O (i.e. from st(O) to et(O)). The corre-sponding bu�er requirements, req(O), and rec(O), then, can be calculated using these throughputvalues. However, the throughput values used for the above calculation are only estimates. These(heuristic and initial) estimates are made on the basis of the overlap of the presentation times of theobjects. When the values for req(O) are determined, one might �nd that the object retrieval timeoverlaps in a di�erent manner from their presentation times. Figure 6(b) shows the overlap of theretrieval schedules of the objects in Figure 6(a). Hence, the summation of the throughput estimatesin the retrieval schedules has to be checked to ensure that the maximum o�ered throughput Thmax(by the network service provider) is not exceeded. A similar discussion applies to bu�er estimatesalso. Checking the throughput and bu�er estimates can be done for each time interval. We cande�ne a time interval (a; b) as the time period between the occurrence of two successive events a,b occur. The events may be:� Request time of an object O (req(O)).� Presentation start time of an objects O (st(O)).� Presentation end time of an object O (et(O)).For each time interval, the constraints that must be obeyed by the schedules of all the objectssharing the same communication path are the following:� Throughput: th(o1) + : : :+th(on) � Thmax� Bu�er: buf(o1; t) + : : :+ buf(on; t) � BufmaxExample 5.1 Consider the two stream objects o1 and o2 that are scheduled as in �gure 7.The throughput requirement of the system can be calculated as follows:� interval (0-1): No information is being transmitted on the connection line. Hence, the totalthroughput Thtot is 0.� interval (1-2): The initial fraction of the stream object o1 is being retrieved. Hence, as-suming that binit(o) � Bufmax, the total throughput requirement isThtot= binit(o1)(st(o1)�rec(o1))The bu�er requirement, on the other hand, is15
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Server 3Figure 8: Parallel, Multiple Object Retrieval From Multiple ServersThtot=cs(o2)and binit(o2) �Bufmax. 2Parallel, Multiple Object Retrieval From Multiple Servers: Figure 8 shows how objectscomposing a multimedia document presentation have to be retrieved from di�erent servers. Here,separate network connections will be used for retrieving the objects from di�erent servers. Thethroughput constraints for multiple object retrieval has to be satis�ed for each network connectionseparately. However, the bu�er constraint is the same because the entire retrieval is handled bythe client.Interaction Between Throughput and Bu�er Constraints: Both throughput and bu�erare resources provided by the system: the �rst is provided by the network service provider and thelatter by the client system. When a certain throughput is o�ered by the network service provider,the required bu�er resources become an estimate based on this o�ered throughput. The estimatedbu�er requirement, then, has to be checked to ensure that it can be provided by the client system.In order to achieve this, we go through a process of validating the retrieval schedule that wasgenerated based on the above discussion.6 Retrieval Schedule ValidationAs discussed above, the generated retrieval schedule has to be checked to see whether it satis�es thesystem constraints such as throughput and bu�er. This validity is checked for every time intervalin the generated retrieval schedule. It should be noted here that the retrieval schedule generationand validation process is done for every time segment in the entire multimedia presentation, asdiscussed in Section 3.1. In case, modi�cations to the presentation or the retrieval schedules arenecessary, it is easier to start from the end of the segment and work backwards. Working backwardsfrom the segment end time helps in redoing already validated schedules. The following algorithmshows how the presentation and retrieval schedules for a given segment s is validated.17



Input: A segment s, the tentative presentation and retrieval schedules for s, the throughputand bu�er availability constraints that the system must obey.Output: Validity or otherwise of the presentation and retrieval schedules for the segment s.The algorithm starts from the last interval of the segment, and it proceeds towards the earlierintervals. This enables the system to �rst �x the starting times and then the retrieval times. As aresult, the system tries to change the presentation schedule only if it can not change the retrievalschedule. We chose this order because, as mentioned earlier, sticking to the presentation scheduleis more desirable than sticking to the retrieval schedule.Algorithm:1. Sort the events (time instances at which changes in requirements occur), and identify thenumber of intervals (numint).2. Set the borders of the intervals as unmarked. (When a border is marked, the event thatcorresponds to the border can not be changed).3. Satisfied = True;4. ThisInterval = last interval;5. while Satisfied and (ThisInterval � FirtInterval) do(a) Check if the interval ThisInterval is valid(b) while ThisInterval is not valid and doi. Create a feedback (section 7). Note that the values that are already marked mustbe kept constant in the feedback.ii. Send the feedback to the schedule modi�er.iii. while schedule modi�er returns no schedule and (ThisInterval < last interval) doA. ThisInterval = ThisInterval+ 1;B. Set the borders of the interval ThisInterval as notmarkedC. Create a feedback (section 7). Note that the values that are already markedmust be kept constant in the feedback.D. Send the feedback to the schedule modi�er.iv. Check if the interval ThisInterval is valid(c) if interval ThisInterval is valid theni. Set the borders of the interval as markedii. ThisInterval = ThisInterval� 1(d) elsei. Satisfied = False6. if Satisfied then(a) return the schedules 18



7. else(a) return empty scheduleExample 6.1 Consider the two stream objects o1 and o2 that are scheduled as in �gure 7.Assume that the segment in example 5.1 is fed into the schedule validator. Let us also assumethat the throughput and the bu�er constraints of the system is also as speci�ed in Section 5.The algorithm will start from the last interval, i.e. (9-17). It will check the throughput and thebu�er constraints as speci�ed in example 5.1. Let us assume that this interval does not violate anycosntraints. Then, the algorithm marks the variables et(o2) and et(o1), that is it declares that thevalues of these variables should not change with subsequent operations.The algorithm, then, will try to validate interval (7-9). Let us assume that the throughputrequired for this operation is more than the available throughput. One solution to this problem isto reduce the stream throughput of the object o2 and to move its request time to an earlier pointin time (the details of this operation is described in gerater detail in section 7). Let us assume thatthe system decides to apply this solution, and it moves the req(o2) from 5 to 4. Hence, as a result,the interval (5-7) changes to interval (4-7), and similarly the interval (2-5) changes to interval (2-4).At the end of this step the variable st(o2), which denotes the start of the interval (7-9), is markedby the system.In the subsequent iterations, the intervals (4-7), (2-4), (1-2), and (0-1) are going to be validatedin a similar fashion. 2In the next section we show how the feedback is generated, and how it is used by the system.7 Feedback Generation and Schedule Modi�cationAs discussed above, the schedule validator checks for the satis�ability of the two system constraints:throughput and bu�er. If the throughput or bu�er required by the schedules exceed the upperbounds, then the schedule validator declares the generated retrieval schedule invalid. In such cases,the schedules (retrieval or presentation or both) have to be modi�ed such that the system constraintsare satis�ed. If schedule modi�cations are not possible, then the quality of the presentation can bereduced.The schedule validator generates feedback for modifying the schedules, depending on how thesystem constraints were violated. In this section, we discuss how the schedule validator generatesappropriate feedbacks. 19



7.1 Throughput ViolationIn Section 5, we showed that the total throughput needed for multimedia objects retrieval in a timeinterval can be expressed asThtot= c1(st(o1)� rec(o1)) + : : :+ cn(st(on)� rec(on))| {z }non�stream + d1 + : : :+ dm| {z }stream ,where c1 through cn are constants denoting the sizes of the non-stream information (atomic objects,or the initial bu�er requirements of the stream objects), and d1 through dm are constants denotingthe throughput requirements of the objects with constant consumption rate (stream objects).If the total required throughput (Thtot) exceeds the available throughput(Thmax), then we needto reduce the throughput requirement by�thru =Thtot�Thmax= �thru1 + : : :+ �thrun| {z }non�stream + �thru1 + : : :+ �thrum| {z }stream .Here �s come from the atomic components, and �s come from stream components of the aboveequation. The amount of reduction required (�thru) is distributed on �s and �s using their priorities.7.1.1 Handling Non-Stream RetrievalsFor reducing the throughput utilized by the non-stream information (i.e., the throughput of theform c(st(o)�rec(o)) , we need either to increase the time of retrieval (st(o) � rec(o)) or decrease thesize of the object c. In other words, we have the following options:� Modify the retrieval schedule by changing rec(o).� Modify the presentation schedule by changing st(o).� Modify the quality of the presentation by reducing the size c.Changing the retrieval schedule or the presentation schedule involves modi�cation of the valueof rec(o) (time at which the object has to arrive in the client side) and st(o) (the presentation starttime). The modi�cation of retrieval schedule is the most desirable option since it does not involveany change in the presentation schedule or the quality of presentation.The desired reduction in the throughput for non-stream information of size cj , then, can beexpressed as: cj(st(oj)�rec(oj)) � cj(st0(oj)�rec0(oj)) � �thruj ,where st and rec denote the current values of the presentation start time and the receive time,st0 and rec0 denote the corresponding new values, and �thruj is a positive real number. The aboveequation can also be rewritten as 20



st0(oj)� rec0(oj) � cj��thruj+ cj(st(oj)�rec(oj)) .Modifying the retrieval schedule: The retrieval schedule rec(o) can be modi�ed by keepingthe presentation start time unchanged (i.e., st0(o) = st(o)). Hence, the new value for rec0(o) isrec0(oj) � st(o)� cj��thruj+ cj(st(oj)�rec(oj )) .If this change in the retrieval schedule is not acceptable (for example, if it leads to a longer waittime before the presentation can be started), then the presentation schedule st(o) can be modi�edas follows.Modifying the presentation schedule: To modify the presentation start time of an object,we need to keep the retrieval schedule rec(o) unchanged (i.e., rec0(o) = rec(o)). When we substituterec0(oj) = rec(oj) in the equation, we getst0(oj) � rec(oj) + cj��thruj+ cj(st(oj)�rec(oj)) .The range for the new presentation start time of the object oj can be fed into a presentationschedule modi�er (discussed in section 7.2) in order to �nd another feasible value for st(oj). Themodi�er generates a new presentation schedule with the new presentation start time for object oj ,such that the values of the already validated presentation schedule variables are kept unchanged.Section 7.2 discusses this issue in more detail.In both the above cases (modifying the presentation schedule and modifying the retrieval sched-ule), there will be a change in the intervals of the segment. Since the validation process is carriedout backwards starting from the segment end time, and since, the values of the already validatedintervals are kept unchanged, there is no need for backtracking in the validation process. Theinterval changes will a�ect only the non-validated parts of the segment.Modifying the quality of presentation: If the above modi�cations of retrieval and presen-tation schedules are not feasible, then the quality of the presentation must be modi�ed as a lastresort. Reduction in the quality of an object implies a reduction in the size of the information tobe retrieved. A smaller sized object than be retrieved with a smaller throughput. As describedin section 2.2, this operation can be performed by using a look-up table to see what the smallestfeasible reduction in the object quality is.7.1.2 Handling Stream RetrievalsThe stream retrieval part deals with the throughput requirements of the stream objects after theobject presentation has started. For reducing the throughput required for stream object retrieval,we have the following options: 21



B
uf

to
t

Bmax

Already validated intervals

Current Interval

Time

Segment to be validated

Lifetime of object O j

bufinc
j

Oj

st(Oj) et(Oj)

VALIDATION

the objects use.

Total amount of buffer

Total amount of buffer
the objects use.
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7.1.3 Bu�er ViolationThe other system resource that may be inadequate, is the bu�er. In section 5, we showed that thetotal bu�er requirement at a time instant t isBuftot= c1(st(o1)� rec(o1)) � (t� rec(o1)) + : : :+ cn(st(on)� rec(on)) � (t� rec(on))| {z }non�stream + e1 + : : :+ em| {z }stream ,where c1 through cn are constants denoting the sizes of the non-stream information being retrieved,and e1 through em are constants denoting the bu�er requirements of the stream objects.If we consider an interval of the form < tstart; tend >, the total bu�er requirement at the end ofthe time interval isBuftot= c1(st(o1)� rec(o1)) � (tend � rec(o1)) + : : :+ cn(st(on)� rec(on)) � (tend � rec(on))| {z }non�stream + e1 + : : :+ em| {z }stream .Note that the maximum bu�er requirement within an interval occurs at the end of the inter-val. Hence, the above equation also gives the maximum bu�er requirement within the interval< tstart; tend >. If Buftot calculated as above exceeds the available bu�er space (Bufmax) of thesystem, then we must reduce the bu�er usage by�buf =Buftot�Bufmax.Note that �buf can also be written as�buf = �buf 1 + : : :+ �buf n + �buf 1 + : : :+ �bufm.As in the discussion for throughput violation, the above equation comprises of two components:� (non-stream) Bu�er requirements for atomic objects and initial chunk retrieval of streamobjects.� (stream) Bu�er requirements during the presentation of stream objects.7.1.4 Handling Non-stream RetrievalsTo reduce the bu�er requirements during the retrieval of the atomic objects and the initial chunkretrieval of stream objects (i.e., the component c(st(o)�rec(o))�(t�rec(o)), we need to either increasethe retrieval time (st(o)� rec(o)) or reduce the size of the object c. This in e�ect results in one ormore of the following:� Modi�cation of the retrieval schedule (rec(o)).23



� Modi�cation of the presentation schedule (st(o)).� Modi�cation of the presentation quality (c).Changing the retrieval or presentation schedule involves modi�cation of the value of rec(o) andst(o), i.e., the time at which the object has to arrive in the client side and the presentation starttime. The modi�cation of retrieval schedule is most desirable since it does not involve any changein the presentation schedule or the quality of presentation. The desired reduction in the bu�errequirement for an object oj can be expressed ascj(st(oj)�rec(oj)) � (tend � rec(oj))� cj(st0(oj)�rec0(oj)) � (tend � rec0(oj)) � �buf jwhere st and rec denote the current values of these variables, st0 and rec0 denote the values thatwe are searching for, and �buf j is a positive real number. The above equation can be rewritten ascj(st0(oj)�rec0(oj)) � (tend � rec0(oj)) � ��buf j + cj(st(oj)�rec(oj)) � (tend � rec(oj)).Modifying the retrieval schedule: This involves a change in the value of rec(o). To changerec(o), we should keep the presentation start time unchanged (i.e., st0(o) = st(o)). Substitutingst0(oj) = st(oj) in the above equation, we getcj(st(oj)�rec0(oj)) � (tend � rec0(oj)) � ��buf j + cj(st(oj)� rec(oj)) � (tend � rec(oj))| {z }( � cj)� rec0(oj) � ( � st(oj))� (cj � tend)8<: rec0(oj) � (�st(oj))�(cj�tend)(�cj) for( � cj) > 0rec0(oj) � (�st(oj))�(cj�tend)(�cj) for( � cj) < 08<: rec0(oj)� rec(oj) � (�st(oj))�(cj�tend)(�cj) � rec(oj) for( � cj) > 0rec0(oj)� rec(oj) � (�st(oj))�(cj�tend)(�cj) � rec(oj) for( � cj) < 0The above set of equations gives a range (rec(oj � rec0(oj)) in which the retrieval schedule canbe suitably modi�ed.Modifying the presentation schedule: This involves a change in the value of st(o). To dothis, we should keep the object retrieval time unchanged (i.e., rec(oj) = rec0(oj)). Substitutingrec(oj) = rec0(oj) in the above equation, we getcj(st(0oj)�rec(oj)) � (tend � rec(oj)) � ��buf j � cj(st(oj)� rec(oj)) � (tend � rec(oj))| {z }24



8<: st0(oj) � ci�(tend�rec(oj)) + rec(oj) for( > 0)st0(oj) � ci�(tend�rec(oj)) + rec(oj) for( < 0)8<: st0(oj)� st(oj) � ci�(tend�rec(oj)) + rec(oj) for( > 0)� st(oj)st0(oj)� st(oj) � ci�(tend�rec(oj)) + rec(oj) for( < 0)� st(oj)The above set of equations gives us a range (st0(oj) � st(oj)) in which the presentation starttime can be suitably modi�ed. This range has to be given to the presentation schedule modi�er(discussed in section 7.2) to generate a new schedule with the presentation start time for the objectoj in the suggested range. While generating this new presentation schedule, the schedule modi�erkeeps the values of the other presentation variables (start and end times of presentations of otherobjects) constant.Modifying the presentation quality: This involves reducing the size of the objects to beretrieved. The procedure is similar to the one discussed for handling throughput violation in section7.1.7.1.5 Handling Stream RetrievalsThe reduction in the stream components of the bu�er usage, can only be made by reducing thesize of the objects: A reduction in the object size would reduce the amount of bu�ers needed forits storage. Reduction in presentation quality can be made as a last resort. The procedure is thesame as the one discussed for handling throughput violation in section 7.1.7.2 Presentation Schedule Modi�erThe schedule modi�er module takes as input the range of values for the presentation start timesof the objects, as suggested by the feedback generator. The schedule modi�er then generates anew schedule in which only the start times of the objects suggested by the feedback generatorare modi�ed and other presentation variables (i.e., the start and end presentation times of otherobjects) are left unchanged.De�nition 7.1 (Presentation Schedule Modi�er) Let G be a weighted, directed constraintgraph which represents the temporal speci�cations of the multimedia document. Let vi denote thetemporal variables of the document, and let � denote a schedule for the document, i.e. a mappingfrom the variables into reals.Let � be a mapping from the vertex variables into (R�R)S?, where �(vi) speci�es the rangeof the change required in the value of vi. If �(vi) = ?, then the value of vi can be changed freely.Note that �(stp) must always be < 0; 0 >.� 25
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�(st(o1)) = 0 �(st(o1)) = ?�(et(o1)) = 50 �(et(o1)) =< 0; 0 >�(st(o2)) = 50 �(st(o2)) =< 2; 4 >�(et(o2)) = 90 �(et(o2)) = ?�(etp) = 90 �(etp) = ?Hence, the corresponding new constraints arestp�st(o1) � �50, andst(o1)�stp � 50.stp�st(o2) � �52, andst(o2)�stp � 54.The corresponding new graph can be seen in �gure 10(a). At the end, the vertices of the graphand the �new have the following values:etp = 0 �new(stp) = 92stp = �92 �new(etp) = 0et(o2) = 0 �new(et(o2) = 92st(o2) = �40 �new(st(o2) = 52et(o1) = �42 �new(et(o1) = 50st(o1) = �92 �new(st(o1) = 0Figure 10(b) shows the corresponding schedule. 2In [5], we showed how the additions of new constraints can be handled e�ciently. Hence, inthis paper we are not going into the details of this process.8 ConclusionA distributed multimedia document involves retrieval of objects from server(s) and their presenta-tion at the client systems. The presentation of the multimedia objects have to be carried out inaccordance with the speci�ed temporal relationships among the objects composing the presenta-tion. Flexibility in the speci�cation of the temporal relationships helps in deriving a set of possiblepresentation schedules, with each schedule representing one possible view of the document. Theretrieval of multimedia objects from the server(s) is inuenced by factors such as:� Presentation schedule of the multimedia objects.� Maximum throughput o�ered by the network service provider.� Maximum bu�er resources available on the client system.In the previous approaches [16, 18, 26, 27], the multimedia presentation schedule is �xed beforethe generation of the retrieval schedule. Based on an assumed network throughput availability, the27
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