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Embedded within their genetic makeup and ecology, microbes harbor unparalleled

stories on natural selection, evolution and biomedicine. In modern biology, such stories

are elucidated through rigorous interrogation of microbial ecosystems with a variety of

theoretic and experimental techniques. These range from abstract, isolated mathemati-

cal models to high-resolution sequencing technologies that probe every single nucleotide

of a cell’s DNA. It is clear that inferences thus obtained are markedly sensitive to the

unforeseen technical variability introduced during an experiment, and are limited by the

tractability and robustness of the models in generating sound hypotheses. We have devel-

oped statistical and computational tools to advance statistical inference for microbial ge-

nomics by overcoming a subset of technical biases, and have explored certain interesting

cases of microbial interactions and their evolution by developing tractable mathematical

models.

Compositional bias induced by the sequencing machine. A DNA sequencing ma-

chine produces only percentage measurements (fraction molecules of a given type) of the



DNA molecules in its input. When contrasting measurements from different inputs, one

therefore obtains confounded inferences on absolute concentrations (molecules per unit

volume). We theoretically analyze this compositional bias problem with significant gen-

erality, and exploit it to develop an empirical Bayes approach to solve it under certain

assumptions with particular emphasis on microbial sequencing technologies.

Suicidal attributes of prokaryotic adaptive immunity. The recently discovered CRISPR

systems provide the first examples of bacterial and archaeal adaptive immune systems op-

erating against invading viruses over ecological time scales. Equally surprising as their

adaptive nature, is their ability to induce high rates of host autoimmunity. We theoretically

analyze the ecological and evolutionary dynamics of such a costly defense mechanism

in simplified models of prokaryote-phage coevolution. We show that by allowing for

regulated post-infection activation, CRISPRs can function by exploiting a dual defense

strategy of abortive infection and anti-viral resistance.

Additional statistical and analytic extensions for some related questions on cluster-

ing and multi-resolution analysis also appear.
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Part I

Sequencing technology induced systematic biases
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Chapter 1

On the fundamental role of DNA sequencing in modern biology,

and its troubling output characteristic.

That phenotypic variance in biological traits is a consequence of underlying ge-

netic changes was suggested concretely in the early 1900s by the work of G. Mendel,

T.H. Morgan, R.A. Fisher and others [10–14]. Much of this phenotypic manifestation

of genetic information is attributed to the central dogma of molecular biology [15–18],

a foundational principle based on three key players: cellular genes in deoxy-ribonucleic

acid (DNA) forms are first transcribed to their corresponding ribonucleic-acid (RNA)

forms, which are subsequently translated to protein products. Molecular biologists have

continued to disentagle the mechanistic basis of the central dogma, and in doing so, have

not only specified new roles to existing players, but have also added new players to the

story [19–22]. RNA and protein mediated regulation are examples of the former, while

the epic epigenetic machinery and their growing list of potential consequences are exam-

ples of the latter [23–27]. The players and the interactions among them are, then, well

poised to generate variability and stabilize organismal phenotypes over ecological and

evolutionary time scales [14, 28–31].
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While measurements on phenotypes are more easily obtained, the inverse problem

of identifying the underlying genotypic determinants have continued to be challenging to

this day [32]. Key experimental techniques and technologies have been developed along

the way to help researchers address their questions on the cental dogma, the genes and

their interactions efficiently. Knockout experiments are perhaps the most revealing, in

making the first steps toward causal characterizations [33–37]. By carefully generating

mutant organisms that are deficient in a target gene, and contrasting their behavior against

wild-type controls, significant progress can be made in isolating the key functional roles

played by the gene. This approach has been very effective in prokaryotes (bacteria and

archaea), flies and small animals with shorter generation times, and with phenotypes that

are largely determined by a single gene/locus in the genome [38–40]. In larger organ-

isms like humans, although derived cell lines from specific tissues still allow for effective

implementation of knockout designs, a more general approach to identifying multi-locus

traits can be envisioned if one can access the underlying genomic sequence accurately in

its entirety and measure the corresponding phenotypes. If such a procedure can be estab-

lished, it can be viewed as a natural multi-variate knockout experiment that exploits the

observed stochastic genetic variation in extant populations. Such is the utility, offered by

the remarkable Nobel-prize winning DNA sequencing technology [41–46].

Briefly, accessing genotypes with DNA sequencing works as follows. The input

genomic DNA is broken into short random pieces. Each piece is amplified at an average

gain, save some technical artifacts, and its nucleotides read off. Most laboratory machines

produce a few million such short sequences, each around three hundred base pairs length.

However, what we seek is a full description of the genomes present in our input. So one

3



resorts to algorithmically stiching the output sequences based on their overlaps, as the set

of overlaps of a given output sequence signifies its possible local neighborhoods in the

input. In this way, one obtains more relevant larger genomic segments like genes or even

entire genomes. More recent, expensive, pocketable machines can produce roughly full

length bacterial genomes, in the order of of mega base pairs of DNA.

Interestingly, a sequencer’s output is not only useful for identifying distinct se-

quences in the input, but it also allows quantification of their relative frequencies. Re-

gardless of their output statistics and costs, the fundamental input-output characteristic

of high throughput DNA sequencing machines remain the same: they produce distinct

sequences in abundances proportional to their input relative frequencies, in the sense that

if T total short sequences are generated by the machine, an input DNA sequence with a

relative frequency q is represented qT times in the output, on average [3, 47–55]. It is

this fundamental fact of sequencing based quantification that allows for much mischief

from derived technologies that exploit DNA sequencing protocols. We revisit this point

on quantification after introducing a few derived technologies next.

Remarkably, the ability to sequence DNA allows creative opportunities to identify

not only a cell’s genomic sequence, but also get a snapshot of other macromolecules and

their behavior within a cell. This is illustrated in Fig. 1.1. All the biochemist has to do

is encode the entity of interest in a DNA form so that the signal can be read off by the

DNA sequencer. For instance, the enzyme reverse transcriptase catalyzes the conversion

of RNA to DNA. If we can manage to transform the entire set of expressed RNAs in a

cell to their corresponding DNA forms with such an enzymatic reaction, then with the aid

of a DNA sequencer, one can expect to sequence and quantify the entire set of expressed

4
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Figure 1.1: Probing the central dogma with a DNA sequencer. The dashed lines map a
gene expression program regulated with a positive feedback motif. A few genomic tech-
niques that allow researchers to investigate the pathway’s distinct steps are illustrated.
Methylated cytosine residues along the gene body is indicated with tiny filled circles, and
unmethylated residues with an open circle.

RNAs in a single cell, measuring only a couple of microns. This is the idea that drives

RNAseq technologies that aim to quantify gene expression, perhaps the most exploited

technology built around DNA sequencing [3, 56–62]. Similarly, if one manages to enrich

an input sample with only segments in human DNA that are bound by a particular protein

molecule, sequencing the enriched sample with a DNA sequencer then yields information

on the identity of the protein’s binding sites. This is the idea behind the ChipSeq technol-

ogy [63–67]. In fact, one can go further and aim to identify signals at a single nucleotide
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level in the DNA! Millions of cytosine residues in the human DNA are found harboring

an extra methyl group. A particular treatment allows transformation of such methylated

residues to uracils, while unmethylated cytosines are retained as cytosines, leaving the

rest of the DNA material more or less intact [68]. The resulting position specific methy-

lation information is then read off by processing/assembling the output sequences from

the DNA sequencer. This is the engineering feat behind the bisulfite sequencing technol-

ogy [68–70]. Needless to say, other variations of such derived technolgies exist, each with

its own target measurements of interest. At the time of this writing, many consortia like

ENCODE [71, 72], TCGA [73–76], GTex [77–82], HMP [83–86], and MetaHit [87–91]

with several million dollars in public funds have been established with contributors from

all over the world. Their purpose, for the most part, is to exploit sequencing based tech-

nologies to produce and analyze associated (genotypic) data for diverse phenotypes of

public health interest. The data produced is publicly available for the world’s researchers

to use. We hope it is clear to the reader that sequencing in various disguises have and will

play a fundamental role in helping researchers identify and measure signals of diverse

biological origins.

We indicated in the paragraph before last that sequencing technology allows only

relative frequency, and not absolute abundance/concentration1, quantifications of the in-

put molecules2. While there are questions in biology where relative frequency measure-

ments are useful (e.g., quantitative geneticists have traditionally tracked allele frequencies

in characterizing their long term evolution and fixation in a target population [92, 93], al-

1Henceforth, the term concentration is used to mean the absolute abundance of a molecule in the units
of number of molecules per unit volume of the input. We contrast this with relative frequency/relative
abundance, which is used to mean the fraction molecules of a given type in the input.

2More generally, input molecules that are measured in an experiment will be termed features.
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though one could argue that effective population size measures are still needed to track

the fates of low relative frequency mutants), there are at least three fundamental reasons

for why feature-wise concentration measurements are attractive and should be sought.

S

SS

S

A
B

A
B

A

B

Absolute
abundance of

genes

What a 
sequencing 

machine sees

A
B A

B
What a 

sequencing 
machine
outputs

Wild-type Knock-outs

S
A

B

S

Induced change in 
knock-outs

A case-control
experiment

Figure 1.2: Compositional bias: Contrasting relative frequencies lead to confounded
concentration inferences. Suppose we want to compare gene expression measurements
from wild-type and knock-out genotypes of a particular cell type. Suppose genes S and
A have similar expressed RNA concentrations (number of molecules per unit volume of
the cell) in wild-types and knock-out cells, while B has increased in its concentration
in the knock-outs due to biological reasons. Because a sequencing machine’s output
allows relative frequency quantification only, an increase in B leads to reduced abundance
measurements from other genes. An analyst might reason A and S to be significantly
reduced in abundance, while, in reality they did not.
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First, it must be irrevocably emphasized that concentrations introduce far less ambi-

guities both in generating sound hypotheses, and in deriving sound scientific conclusions.

We shall illustrate this with a few examples. Consider the thought experiment in Fig. 1.2,

where knock-out genotypes experience an increased concentration of gene B’s RNAs

alone. If we run the derived RNAseq samples through a sequencer (which only provides

relative frequency measurements), we will find that the output relative frequencies cor-

rectly indicate that gene B’s expression has increased. But the output would also suggest

that genes S and A have decreased in their expression. The latter conclusion is false, ir-

relevant, and is purely caused because of the bias ( hereafter, referred to as compositional

bias ) induced by the relative frequency based quantification system. Compositional bias

is caused solely because relative frequencies by definition are constrained to sum to 1,

and are therefore anti-correlated. Had the experimentalist tracked concentrations, such

confounded inferences would not have arisen in the first place. Some well known micro-

bial markers of Crohn’s disease based on host intestine associated microbial abundance

markers turned out to be artifacts of relative frequency based quantification, and had no

immediate relevance to the underlying biology [94]. In an RNASeq experiment contrast-

ing genes’ expression values in mice liver and kidney, a decreased expression of house

keeping genes were attributable to the increased concentration of a few dominant genes

in the liver tissue samples [52]. In fact, in any RNAseq experiment, genes with shorter

lengths can appear to be lowly expressed simply because their longer length counterparts

contribute more to the sequencing machine’s output [50]! In the era of modern biology,

where we attempt to base hypotheses and conclusions on millions of molecular features

that are quantified using a DNA sequencer, how can we attribute any measured relative

8



frequency change to an underlying biologically relevant concentration change? In appen-

dices A and C, we outline a couple of our own research programs where such concerns

limit serious progress.

Second, key biological phenomena exist in which the absolute concentrations of

the players have more meaningful roles, than their relative frequency descriptions. For

instance, intracellular gene expression kinetics and their noise characteristics are largely

driven by absolute RNA and protein numbers, not their relative frequencies [95–99]. Sim-

ilarly, cystic fibrosis patients can exhibit very stably associated microbial relative frequen-

cies in the same way as healthy controls, yet suffer from increased absolute total microbial

loads [100, 101].

Finally, we must acknowledge that absolute measures are attractive simply be-

cause they are more general, allowing immediate access to relative frequency measures if

needed. This generality is bound to be favorable in questions involving as yet unexplored

biological systems and mechanisms.

Given the major impact sequencing and its derived technologies have in modern

biology, sequencing machine induced compositional bias in molecular quantification is

certainly a major cause for concern in designing experiments. In chapters I.2, I.3 and

I.4, we aim to analyze, and estimate the sequencing machine induced compositional bias

under certain assumptions.
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Chapter 2

An analysis of sequencing technology induced compositional bias in

generating confounded concentration inferences.

In the previous chapter, we mentioned that sequencing technology has been instru-

mental in measuring diverse biological signals. We also stressed that this remarkable flex-

ibility comes with atleast one tradeoff: output from a DNA sequencer only retain relative

frequencies of the input molecular features, and not their absolute concentrations. When

contrasting feature-wise relative frequencies across distinct biological sample sources1,

truly null features can exhibit non-zero apparent contrasts. This artifact is shared by all

relative frequency quantification systems, and the DNA sequencer is no exception. We

illustrated the artifact in Fig. 1.2, and gave it the name compositional bias.

In this chapter, we will analyze compositional bias in significant generality. In par-

ticular, our interest would be in deriving the conditions under which a relative frequency

measurement system like the DNA sequencer would yield unbiased concentration infer-

ences. We will also identify the compositional correction factor, which when estimated

correctly would remedy the compositional bias problem. It is not surprising that this

1an analysis known as differential abundance analysis or differential expression analysis in the biology
literature.
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quantity is a measure of the total feature load in the input sample.

2.1 A sequencing experiment

Xgj
0

Xgj

qgj

Contamination,
extraction, 

amplification
& other technical

biases

Sequencing Ygj

DE Test 1
(on Relative
abundances)

DE Test 2
(on “Absolute” 

abundances)

DE Test 3
(on Absolute 
abundances)

If technical biases perturb
feature abundances similarly 
across conditions, 
compositional correction 
yields DE inference on X0 (green). 
Otherwise, on X (blue).

Figure 2.1: Compositional bias introduced by sequencing technology. As a sample j
from group g of interest is prepared for sequencing, its true internal feature concentra-
tions (organized as a vector) X0

g j is transformed by various technical biases to Xg j. A
sequencing machine introduces compositional bias by generating counts Yg j proportional
to the input absolute abundances in Xg j according to proportions qg j = [Xg ji/(∑k Xg jk)],
i and k indexing features. Directly performing a differential abundance test on Y (DE
Test 1), by using normalization factors (discussed in text) proportional to that of total se-
quencing output (e.g., R/FPKM/subsampling in metagenomics [3–6]) amounts to testing
for changes in relative abundances (frequencies) of features in X, in general (not X0). For
inferring differences in absolute abundances (concentrations), we need to reconstruct X0

from Y to perform our inference (DE Test 3). For compositional bias correction in partic-
ular, we care about reconstructing X j from Y (DE Test 2). We show more formally later
that compositional correction can reconstruct X0 if technical biases (including contami-
nation) are comparable across treatment and control groups.

Fig. 2.1 illustrates a general sequencing experiment and sets up the problem of com-
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positional bias correction. We imagine a set of samples/observations j = 1 . . .ng arising

from biological conditions g = 1 . . .G (e.g., cases and controls). The true concentra-

tions of features in every input sample is organized as a vector X0
g j·, are perturbed by

various technical sources of variation as the sample is prepared for sequencing. These

technical sources of variation include any unforeseen contaminants, and/or specific bi-

ases introduced in a measurement pipeline [51, 60, 61, 102–107]. For instance, when

surveying microbial taxa by sequencing 16S ribosomal RNAs, taxonomy specific biases

in the relative frequencies can arise by variation in the ribosomal RNA extraction effi-

ciencies [108, 109], binding preferences of DNA amplification agents and even the target

ribosomal RNA’s Guanine-Cytosine content [107]. All these cause systematic, differen-

tial amplification across the surveyed microbial taxa. The end result after all such nui-

sance perturbations is a transformed concentration vector Xg j·, the net total concentration

of which is denoted by Tg j = ∑i Xg ji = Xg j+, where the + indicates summing over that

subscript. This is the input to the sequencer, which introduces compositional bias by pro-

ducing sequencing reads proportional to the absolute feature abundances represented in

Xg j·. The output short sequences are processed and organized as counts for each feature

in a vector Yg j·, which now retain only relative abundance/relative frequencies of features

in Xg j· as q̂g ji = Yg ji/Yg j+ = Yg ji/τg j. Here τg j = Yg j+ is the total number of sequences

produced by the machine ( sample depth ) for sample g j.

We discuss the question of recovering X0
g j· for all g and j later in the text. For

now, we shall restrict our attention to reconstructing X from Y , as it is in this step, the

sequencing machine induces the compositional bias we are interested in. Because we

are ignoring all other technical biases inherent to the experiment/technology (i.e., the
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process from X0→ X), our discussions apply to all derived technologies based on DNA

sequencing.

2.1.1 Analysis

Given only the feature-wise relative frequencies output by a sequencer (Y ), our goal

is to identify the conditions under which we can achieve both (a) unbiased estimates of

true underlying concentration fold changes (contrasts), and (b) unbiased inferences on

the estimated concentration contrasts for all features i, in Fig. 2.1 ), when using classical

general linear models often exploited in genomics. We briefly summarize the steps in our

analysis below.

• Lemma 2.1 provides the condition for obtaining unbiased concentration fold change

(or contrast) estimates from relative frequencies. It serves to define the composi-

tional correction factor.

• Conditions for achieving unbiased inferences with independent feature-wise gen-

eral linear models are derived in two steps as follows:

– Lemma 2.2 uses the idea that for any given feature i in the input, contrasting

its frequencies with a linear model (between two experimental conditions,

say) would yield accurate concentration inferences for the feature, when the

rest of the features do not undergo any concentration change. This fact is

reflected as a linear constraint that relates the feature-wise proportions to the

compositional correction factor.

– Theorem 2.3 generalizes Lemma 2.2, and asks when the constraint derived in
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Lemma 2.2 would apply to all features in the input. We thus recover condi-

tions to obtain accurate inferences for all feature-wise concentration contrasts

with relative frequencies.

• Finally, Therorem 2.4 combines Lemma 2.1 and Theorem 2.3 to recover the con-

ditions for achieving both unbiased contrast estimates and their inferences with

relative frequencies. Theorem 2.5 generalizes the model dealt with in the afore-

mentioned lemmas and theorems in a straightforward fashion.

Model For simplicity, we shall first consider the generative process in eqn. 2.1, and

derive some consequences.

Xg j· ∼Multinomial(Tg j,qg·)

Yg j·|Xg j·,τg j ∼Multinomial
(

τg j,
Xg j·
Xg j+

) (2.1)

We will note later that the conclusions also hold when the assumption on a fixed

proportions vector qg· for all samples at sage X is relaxed by requiring very general mo-

ment conditions. The Multinomial assumption on X follows for example from a Poisson

assumption on the expression of features Xg ji [47, 99, 110].

For our analysis, we only consider features truly expressed in the control group

(g = 1, regardless of them being observed or not in a sequencing experiment) as we can

only estimate fold changes for features occurring in the control group, and index them

with i = 1 . . . p. Let φg be the summed proportion of features internally expressed only in

group g but not in the control group (regardless of whether they are observed or not). For
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interestingness, we assume p > 1. Clearly, 0 < q1i < 1 for all i. Fold changes are defined

as ratios of marginal expectations. Define feature-wise concentration fold changes at

stage X , νgi =
E[Xg1i]
E[X11i]

. The corresponding apparent contrasts ξgi from relative abundances

at stage Y is defined as: ξgi =
E[q̂g+i]

E[q̂1+i]
. Denoting E[Tg1] as the marginal average of the total

abundances Tg j, from model 2.1, we have E[Xg ji] = E[Tg1] ·qgi for all j = 1 . . .ng. Under

model 2.1, the fold changes can be re-written as: νgi = E[Xg1i]/E[X11i], and ξgi = qgi/q1i.

In the entire process, we only get to observe Yg j· for all j = 1 . . .n and g = 1 . . .G.

Lemma 2.1. Under assumptions 2.1, for all features i, νgi = ξgi, if and only if Λg =

E[Tg1]
E[T11]

= 1. Λ−1
g will be termed as the compositional correction factor.

Proof. The proof follows directly from the definition of fold changes νgi associated with

the ith feature’s concentrations.

νgi =
E[Xg1i]

E[X11i]
=

E[Tg1]qgi

E[T11]q1i
≡ Λg ·

qgi

qi1
= Λg

E[q̂g+i]

E[q̂1+i]
= Λgξgi (2.2)

which is equal to νgi iff Λg = 1.

Lemma 2.2. Under assumptions 2.1, when applying the standard log-linear mean model

on the total sum normalized data independently for each feature i, logE[Yg ji/τg j] = µi +

αgi with µi quantifying logged control group proportions, logq1i, and αgi quantifying

the log-fold change of relative abundances, logξgi, there is a necessary and sufficient

condition under which αgi = 0 ⇐⇒ logνgi = 0, the log- fold change associated with
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concentrations. Furthermore, this condition is given as:

1
1−q1i

[
Λgφg + ∑

k,k 6=i
νgkq1k

]
= 1

Proof. Following Lemma 2.1, re-write the proportion in group g as:

qgi = Λ
−1
g νgiq1i =

Λ−1
g νgiq1i

1
=

Λ−1
g νgiq1i

φg +∑k qgk
=

νgiq1i

Λgφg +νgiq1i +∑k,k 6=i νgkq1k

≡ 1

1+
νg\i
νgi

(1−q1i)
q1i

(2.3)

where we have set:

νg\i =
1

1−q1i

[
Λgφg + ∑

k,k 6=i
νgkq1k

]
(2.4)

Substituting eqn. 2.3 in the assumed linear model: logE[Yg ji|τg j] = logqg ji + logτg j =

µi+αgi+ logτg j, and noting µi = logq1i, αgi = log qgi
q1i

, it is clear that αgi = 0 ⇐⇒ νg\i
νgi

=

1. It is thus seen that νg\i = 1, is a necessary and sufficient condition for the statement

αgi = 0 ⇐⇒ νgi = 1 to hold.

Theorem 2.3. Under the model above, there exists a unique vector of fold changes ν∗g·

under which ∀i = 1 . . . p, αgi = 0 ⇐⇒ νgi = 1. Furthermore, each i = 1 . . . p entry of ν∗g·

is given as:

ν
∗
gi(Λg,φg,q1·) =

[(
1−q1i

q1i

)(
ηg

1−q1i
−1
)
+

(
1

1− p

)
∑
k

(
1−q1k

q1k

)(
ηg

1−q1i
−1
)]

(2.5)
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with ηg = Λg ·φg.

Proof. We want to study the conditions under which νgi = 1∀i = 1 . . . p. Substituting this

in equation 2.4 from lemma 2.2, and stacking the constraints for all i, we get a linear

system:

Qν = γ

where, Q is a p× p matrix with Q(i, j) = q1 j
1−q1i

if j 6= i and 0 otherwise. ν =

[|νgi|]pi=1, a p× 1 vector, and γ = [|γgi|]pi=1, a p× 1 column vector with γgi = 1− ηg
1−q1i

,

where ηg = Λgφg, a non-dimensional parameter. A unique solution for this equation is

obtained directly as ν∗ = [|ν∗gi|]
p
i=1 = Q−1γ if Q is invertible.

We now show that Q is invertible by observing that the column vectors of the p× p

square matrix Q are linearly independent. If we denote the columns from left to right as

K1, . . .Kp, for linear dependence, we want the statement ∑
p
j=1 α jK j = 0 =⇒ α j = 0 to

hold. Identifying each of the column’s projections on all p dimensional unit vectors e j,

and noting all q1i ∈ (0,1), we can write:

K j = q1 j

{
1

1−q11
e1 + · · ·+

1
1−q1, j−1

e j−1 +
1

1−q1, j+1
e j+1 + · · ·+

1
1−q1,p

ep

}
= q1 j

{
p

∑
i=1

1
1−q1i

ei−
1

1−q1 j
e j

}
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Generating the required linear combination of these column vectors Ki, we find:

p

∑
j=1

α jK j = 0 =⇒
p

∑
j=1

α jq1 j

p

∑
i=1

1
1−q1i

ei =
p

∑
j=1

1
1−q1 j

α jq1 je j

=⇒ ∀ i,
1

1−q1i

p

∑
j=1

α jq1 j = αiq1i
1

1−q1i

=⇒ ∀ i,
p

∑
j=1

α jq1 j = αiq1i

Summing the last equation over all i = 1 . . . p, we get:

2
p

∑
i=1

αiq1i =
p

∑
i=1

αiq1i

Because all q1i ∈ (0,1), the above equation can only be true if αi = 0 ∀i. Hence,

the vectors are lineary independent; Q is full rank, and invertible.

Indeed, we can go further and derive the solution analytically. Notice that Q =

rqT
1·−D where r is a p× 1 vector with the ith component equal to 1

1−q1i
and q1· is a

p× 1 vector of control proportions. Notice all 0 < q1i < 1. D is a p× p diagonal ma-

trix with diagonal entries given by 1−q1 j
q1 j
∀ j = 1 . . . p. If we set F = D− rqT

1·, we then

want Q−1 = −F−1. Denoting U = −r, and V = qT
1·, we can write, F−1 = (D+UV )−1.

Woodbury identity then yields F−1 = D−1−D−1U(I+V D−1U)−1V D−1, a p× p matrix

with F−1(i, j) = 1−q1 j
q1i

(
1

1−p

)
if i 6= j, and 1−q1i

q1i

(
1+ 1

1−p

)
if i = j. The exact solution

for the fold changes satisfying the linear constrains are then given by ν∗g· =−F−1γ , with

ν∗gi given by eqn. 2.5 above.

Theorem 2.4 (Validity of Total Sum Normalization in Reconstructing X). Under the

model above, the vector of feature-wise fold changes under which relative frequencies
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(total sum normalized data) can yield unbiased inferences ( correct fold changes and

non-zero significance ) of concentrations of all i = 1 . . . p features in group g at stage X is

given by ν∗g (1,φg,q1), where ν∗g (Λg,φg,q1) is defined in Theorem 2.3.

Proof. Proof follows directly from Lemma 2.1 and Theorem 2.3.

Theorem 2.5 (Relaxing the fixed group-specific proportions assumption). The results

derived in lemmas 2.1, 2.2, and theorems 2.3 and 2.4 hold under the following more

general model as well. In this model, qgi and φg are defined as marginal expectations of

sample-wise relative frequencies, which are themselves assumed to be independent of Tg j.

{q̃g j·, φ̃g j} ∼ f (·) such that φ̃g j ∈ (0,1), q̃g ji ∈ (0,1), φ̃g j +∑
i

q̃g ji = 1,

with E[q̃q ji] := qgi, E[φ̃g j] := φg, Tg j independent o f q̃g ji, φ̃g j.

Xg j·|Tg j, q̃g ji ∼Multinomial(Tg j, q̃g j·)

Yg j·|Xg j·,τg j ∼Multinomial
(

τg j,
Xg j·
Xg j+

)
(2.6)

Here f is some unspecified distribution function (e.g., Dirichlet) that allows con-

strained sampling of observation-specific relative frequencies such that they sum to 1,

with finite feature-wise marginal expectations.

Proof. One only needs to note that with E[q̃g ji] = qgi, and E[φ̃g j] = φg forall j = 1 . . .ng
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samples in group g, we obtain:

E[q̂g+i] = qgi. (2.7)

E[Xg1i] = E[E[Xg ji|Tg j, q̃g ji]] = E[Tg j q̃g ji] = E[Tg j]qgi. (2.8)

φg +∑
p
i=1 qgi = E[φ̃g1]+∑

p
i=1 E[q̃g1i] = E[φ̃g1 +∑

p
i=1 q̃g1i] = 1. (2.9)

Equations 2.7 and 2.8 above are needed for lemma 2.1, and equation 2.9 is needed for

the lemma 2.2 and theorem 2.4 to go through.

The result in theorem 2.4 was also verified numerically. As an example, suppose

q1· = [0.25,0.25,0.1,0.1,0.3]T . For Λg = 1, and φg = 0.05, the fold changes that need

to be achieved for unbiased inference is given by: ν∗g· = [0.95,0.95,0.88,0.88,0.96]T

implying that downregulation across features can be detected well as the unique features

will compete for sequencing output. For Λg = 1, and φg = 0.4, no feasible solution exists.

For the case φg = 0, the optimal solution is trivial: νgi = 1 for all i i.e., no perturbation

in any of the features. Providing additional constraints by fixing at least one of the fold

changes yields the single, constrained solution on the rest of the fold changes: the solution

vector ν∗ is obtained by replacing ηg =Λgφg in the above equation with ηg =∑k∈F ν∗gkqkg

where F is the set of features for which the fold changes are fixed apriori to ν∗gk, and

restricting i to the rest of the features (other than those in F) present in the control group in

the above derivation. Notice that there is an uncountable number of values (non-negative

real values) the fold changes of features in the constraint set F can take. They will impose

a particular value of ηg, and conditioned on this value, the fold changes the rest of the

features can take in group g so that the linear model above achieves unbiased contrast
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estimates and inferences are unique.

The conclusion of theorem 2.4/its generalized version in 2.5 is an unfortunate result

as it says that to obtain unbiased concentration inference across all features with relative

frequencies alone, the feature-wise concentration fold changes must behave in a unique

fashion, and therefore appears unlikely to occur in practice. Notice that fold-change ν∗gi

can never be < 0. Thus, a feasible solution need not exist for arbitrary parameter values

of ηg = Λgφg implying that unbiased inference may not always be possible. It is also

interesting to note that unless the fold change of total feature content in group g (Λg) is

somehow maintained the same across conditions despite contaminants present at propor-

tion φg, achieving unbiased inference with normalization techniques based on the total

sum is not possible. Group-specific expression of features are a major source of com-

positional bias and their sufficiently high expression can effectively wash out the signal.

In metagenomic surveys, it is often the case that a large number of features are observed

with a positive count in very few samples. Although this does not necessarily mean they

are actually present in only a few observations, we can expect this to be the case with

samples arising from diverse ecosystems.

In summary, strict unbiased inference with a DNA sequencer’s output relative fre-

quencies may or may not be possible depending on the underlying value of ηg; when

possible, it can only occur under a unique set of fold changes. In practice, RNAseq exper-

iments are performed across diverse tissues of various origins, and metagenomic surveys

are constantly carried out across ecosystems. Thus, unbiased-ness in inference need not

hold.
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2.2 When can we hope to reconstruct X0 from Y with compositional

bias correction?

So far, we have concerned ourselves only with characterizing the conditions that

enable accurate characterization of feature-wise concentrations in the sequencing input

(X in Fig. 2.1), given only feature-wise frequencies. We can now ask when compositional

correction is guaranteed to recover the true concentrations X0 in the original source before

it was marred by technical variation. In the next chapter, simple algebraic derivations

reveal that as long as a feature i’s unwanted technical variation in group g is comparable,

on average, to that of the control group, compositional bias correction reconstructs its true

concentration, i.e., E[X0
g1i] (eqn. 3.1).

With this result, we recover a slightly more general condition than the often cited

assumption on some familiar genomic data normalization techniques [4, 6]. We not only

want the technical biases to affect all the features the same way within a sample, but

if any contamination is introduced we want those biases to also behave appropriately

according to the above condition. We also emphasize that in-silico post-processing of

sequencing count data for contaminants (for example, by excluding sequencing reads

mapping to potential cotaminant reference sequences) does not help in compositional

bias correction because they have already caused information loss by competing with

other native features for being sequenced.
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Chapter 3

On the generality of compositional correction factors, and some

strategies to estimate them.

In the previous chapter, we addressed the question of inferring feature-wise concen-

trations with feature-wise relative frequencies output from a DNA sequencing machine.

We found that in such a problem, a single, linear bias term denoted as Λ−1, called the

compositional correction factor, underlies all the confounded feature-wise concentration

inferences. Among others, we arrived at two important conclusions:

1. That by transforming concentrations to frequencies, sequencing machine introduces

one of the many unforeseen technical biases in our truly intended experiment to

measure concentrations.

2. That by appropriately measuring or estimating the compositional correction factor,

one can arrive at accurate feature-wise concentration inferences.
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3.1 The generality of compositional correction factors in explaining

technical variation

We now note that compositional factors are far more general in their utility than

merely serving to describe compositional bias induced by the sequncer. Indeed, they

can very well account for other sources of technical variation as well. To see this, we

refer the reader back to Fig. 2.1 and its notation, and notice that the process X0
g j·→ Xg j·

succinctly accounts for all unwanted, technical perturbations in the concentration of any

feature i, in sample g j. For each feature i, on average, these perturbations are described by

the corresponding fold changes defined relative to the true concentrations in the original

sample source: µgi =
E[Xg1i]

E[X0
g1i]

.

We already saw that the concentration fold change at the time of input to sequencer

(stage X in Fig. 2.1) is given as: νgi =
E[Xg1i]
E[X11i]

. With some algebra below, we observe how

this apparent fold change is correlated with all technical perturbations abstracted away in

the process X0
g j·→ Xg j· :

νgi =
E[Xg1i]

E[X0
g1i]
·

E[X0
g1i]

E[X11i]

= µgi ·
E[X0

g1i]

µ1i ·E[X0
11i]

=
µgi

µ1i
·

E[X0
g1i]

E[X0
11i]

=
µgi

µ1i
×ν

0
gi =: ζgi︸︷︷︸

true technical fold change

× ν
0
gi,︸︷︷︸

true biological fold change.

(3.1)

It is correctly observed above that if technical biases are comparable across cases
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and control conditions, the first factor is one, and the apparent fold change measured at

stage X equals the true biological fold change at stage X0. Our formula for compositional

correction factors is then altered correspondingly as Λg = νT
g·qg· = (ζg· ◦νg·)

T qg·. Here ◦

denotes element-wise product.

Thus we see that compositional correction factors can account for more general

technical biases introduced in a sequencing experiment. Given this significance, it is only

fitting that we consider their estimation in detail.

3.2 Estimation strategies

Strategy 1: Measure total feature load We had indicated in the previous chapter that

the compositional correction factor for each experimental group g, Λ−1
g , is inversely re-

lated to the group’s average total feature content. So a clear strategy is to measure, if

possible, the total DNA in the input sample could serve to estimate Λ−1
g ; subsequently

multiplying the estimates to the DNA sequencer’s output relative frequencies should then

restore feature-wise concentrations. However, this strategy only reconstructs concentra-

tions at the time of input to the sequencer (the vector Xg j· in Fig. 2.1), and completely

ignores all other technical variation introduced in the data. So, unless techinical biases

are comparable across conditions (as described in the previous subsection), it will be lim-

ited in its practical utility.

Here is a more concrete approach. Suppose we know that some feature k is un-

changed in its concentration across conditions. From eqn. 2.2, we see that for any feature

i, qgi = Λ−1
g νgiq1i. Because the fold change for the unperturbed feature (at stage X)
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Figure 3.1: Scaling normalization techniques in genomics from the perspective of com-
positional bias correction. (A) Features S and A have similar absolute abundances in two
experimental conditions, while B has increased in its absolute abundance in condition g
due to technical/biological reasons. Because of the proportional nature of sequencing,
increase in B leads to reduced read generation from others (compositional bias). An an-
alyst would reason A and S to be significantly reduced in abundance, while, in reality
they did not. (B) Knowing S is expressed at the same concentration in both conditions
allows us to scale by its abundance, resolving the problem. DESeq and TMM, by exploit-
ing rerefence strategies across feature count data (described below), approximate such
a procedure, while techniques that are based only on library size alone like RPKM and
rarefication/subsampling can lead to unbiased inference only under very restrictive con-
ditions. Currently available approaches for sparse data settings are indicated. Wrench is
the proposed technique in the next chapter.

νgk = 1 for all groups g = 1 . . .G, we obtain qgk = Λ−1
g q1k, which immediately suggests

Λ−1
g can be computed as ratios of proportions of this internal control feature. Further-

more, if we calculate the transformation log E[Yg ji]
E[Yg jk]

= log qgi
qgk

= log
Λ−1

g νgiq1i

Λ
−1
g q1k

= µi +αgi,

where with appropriate side conditions on the contrasts, the intercept estimates µi =
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(logq1i− logq1k). Our contrast variable then estimates αgi = logνgi, which is 0 only

under the null νgi = 1. Thus, the traditional data normalization idea of "dividing by a

feature that does not change across conditions" automatically corrects for compositional

bias induced through sequencing technology [4]. This is discussed further below. No-

tice that we do not necessarily need the internal control feature to have the same internal

concentration across conditions. As long as we know their sample-wise absolute concen-

trations, their fold changes across conditions are also known, and these simply enter the

above formulation as known constants that simply offset the linear models. (That is, we

can write: qgk = Λ−1
g ν̂gkq1k, where ν̂gk is the now known fold change associated with the

feature in group g. ) These insights lead us to the following two estimation strategies:

Strategy 2: Introduce spike-in control features If all we need is a feature that is

expressed at known abundances across conditions, why not inject it ourselves at the time

of sequencing? Two potential techniques exist in the experimental literaure, one of which

cannot protect us against compositional bias. In the ERCC spike-in protocol [111], widely

used in various bulk tissue and some single cell RNAseq studies [112], a fixed amount of

total RNA extract is obtained, and subsequently suspended in solution along with known

concentrations of a chosen control feature (spike-ins). Because this procedure adds the

spike-ins to the extract, an already compositional source, our inferences are limited to

questions on relative abundances; a statement about differences in absolute abundances

cannot be made unless the samples themselves behave according to the narrow conditions

established in the previous chapter. An alternative, more effective strategy is to add known

concentrations of barcodes/spike-in to the entire sample’s suspension [113] (Fig. 3.1B).
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This problem has also been noted by Stegle et al., in the context of designing scRNAseq

experiments [114].

Strategy 3: Post-process abundance data with reference normalization strategies

In the absence of internal control features like the spike-ins, effective correction for com-

positional bias can still be hoped for [52]. Here, is the central idea, which is so significant

that it will appear repeatedly in our discussions: If most features do not change in their

absolute abundances relative to the control group, the fundamental eqn. 2.2 should hold

true for most features with νgi = 1. Thus, an appropriate summary statistic of these ratios

of proportions could serve as an estimate of Λ−1
g .

With this idea in place, a normalization procedure for deriving sample-specific com-

positional scale factors Λ
−1
g j can be devised. One only needs to carry out the above proce-

dure by pretending that every sample arises from its own experimental group. Indeed, as

illustrated in Table 3.1, scale normalization methods in genomics can be viewed in this

light, where some control set of proportions ("reference") is defined, and the Λ
−1
g j estimate

is derived for every sample j based on the ratio of its proportions to that of the reference.

This central idea being the same, the robustness of these methods are dependent on how

well the assumptions hold with respect to the chosen reference, and the choice of the

estimation algorithm.

To illustrate this idea further, we present the following derivation of a DESeq-like

normalization strategy (refer Table 3.1 and Fig. 3.1). We use the same notation as in the

last chapter and Table 3.1. Because each sample is considered to arise from its own group,

the index j does not play any role here. We can fix j = 1, and let g = 1 . . .n index the
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samples. Let i = 1 . . . p index the features. For a given sample g j then, Yg ji indicates

the measured sequencing count of the ith feature in the sample; νg ji, the feature’s true

concentration fold change in the sample; τg j = Yg j+ the sample’s sequencing depth; qg ji

the feature’s proportion in the sample. Finally, let q1 ji denote the proportion of feature i

in a control sample indexed with g = 1.

If one assumes that feature-wise count distributions follow a log-normal distribu-

tion, we obtain a DESeq-like estimator for compositional correction factors as below. Al-

ter eqn. 2.2 with a multiplicative log-normal error term, and write for feature i in sample

g j,

Yg ji ∼ Λ
−1
g j · τg j ·νg jiq1 ji ·LN(0,σ2

i ), i = 1 . . . p, j = 1 . . .n

≡ µg ji ·LN(0,σ2
i )

where, LN(0,σ2
i ) refers to a log-normal random variate that when logged has a

mean of 0 and a variance of σ2
i . Then:

∏
g

Yg ji ∼

(
∏

g
µg ji

)
LN(0,nσ

2
i )[

∏
g

Yg ji

] 1
n

∼

(
∏

g
µg ji

)1/n

LN(0,σ2
i )

=⇒ dg ji =
Yg ji(

∏gYg ji
) 1

n
∼

µg ji(
∏g µg ji

) 1
n
·LN(0,σ2

i )

=
Λ
−1
g j(

∏g Λ
−1
g j

) 1
n
·

τg j(
∏g τg j

) 1
n
·

νg ji(
∏g νg ji

) 1
n
·LN(0,σ2

i )

= kΛΛ
−1
g j · kττg j · kννg ji ·LN(0,σ2

i )
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in which we have collected the constant denominator (independent of g j) terms

separately into three k terms with corresponding subscripts. Now, d̃g ji =
dg ji

kτ τg j
∼ kΛΛ

−1
g j ·

kννg ji ·LN(0,σ2
i ), with expectation given by kΛΛ

−1
g j · kννg ji · eσ2

i /2 ∝ Λ
−1
g j ·νg ji · eσ2

i /2. So

if atleast a median fraction of features do not change on average relative to the reference

sample, setting νg ji = 1 should hold for those features. We then arrive at:

s̃g j = mediani
d̃g ji

eσ2
i /2

∝ Λ
−1
g j (3.2)

and so s̃g j serves as an estimator of Λ
−1
g j . This is simply DESeq normalization

factors presented in table 3.1, altered only by feature-wise variances.

In summary, the fact that compositional factors are linear technical biases shared by

all measured features, makes it possible to take advantage of the class of scale normaliza-

tion techniques in the genomics literature to estimate them [4, 52, 115, 116]. All of these

approximate the aforementioned spike-in strategy by assuming that most features do not

change on average across samples/conditions (Fig. 3.1). For the same reason, we have

given such an interpretation to approaches like centered logarithmic transforms (CLR)

from the theory of compositional data, which many analysts favor when working with

relative abundances [117–123]. We must note that scaling normalization techniques have

the same limitation as strategy 1 described above.

Reconstructing X0 from Y It is worth emphasizing again that the aforementioned

reference normalization strategies do not restrict compositional factors to only reflect

biology-induced global abundance changes; in reality, if feature-wise perturbations (νgi)
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Technique Proposed Abundance Measure, Scale factor Signal for Compositional Scale in

Total Sum
yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = 1

TMM

yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = e

[
∑i:yi j>0 ∩ i∈trimmed set for j wi j log

(
qg ji
q1 ji

)] qg ji
q1 ji

, ratio of proportions

DESeq

yg ji

C·τg j·Λ−1
g j

∝
yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = mediani

qg ji

[∏k qik]
1
n

qg ji

[∏k qik]
1
n

, ratio of proportions

Median

yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = mediani qg ji ∝ mediani

qg ji
1/p

qg ji
1/p , ratio of proportions

Upper quartile

yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = upper quartilei qg ji ∝ upper quartilei

qg ji
1/p

qg ji
1/p , ratio of proportions

CLR Transformation
log

(
yg ji

[∏i yg ji]
1
p

)
≡ log

(
qg ji

[∏i qg ji]
1
p

)
≡ log

(
yg ji

τg j·Λ−1
g j

)
,

with Λ
−1
g j =

[
∏i qg ji

] 1
p ∝

[
∏i

qg ji
1/p

] 1
p

qg ji
1/p ,

closely tracks Median factors above;
ratio of proportions

Scran

yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = fit linear models to

{
q1 ji
q++i

, . . . ,
qn ji
q++i

}p

i=1

qg ji
q++i

, ratio of proportions

Wrench

yg ji

τg j·Λ−1
g j

,

Λ
−1
g j = 1

p ∑i wi j
qg ji
q++i

qg ji
q++i

, ratio of proportions

Table 3.1: Scaling normalization approaches derive their technical bias estimates from
ratio of proportions. For each scaling normalization technique, we present the transfor-
mation they apply to the raw sequencing count data (second column) to produce normal-
ized counts. The third column shows how all techniques use statistics based on ratio of
proportions to derive their scale factors. i = 1 . . . p indexes features, each sample is con-
sidered to arise from its own singleton group: g = 1 . . .n and j = 1, τg j the sample depth
of sample j, qg ji the proportion of feature i in sample j, wi j represents a weight specific
to each technique, and q++i is the average proportion of feature i across the dataset. In
the second column, the first row in each cell represents the transformation applied on
the raw count data by the respective normalization approach. They all adjust a sample’s
counts based on sample depth (τg j) and a compositional scale factor Λ

−1
g j . Continued on

the following page.
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Table 3.1: Continued from previous page. As noted in the third column, the estima-
tion of Λ

−1
g j is based on the ratio of sample-wise relative abundances/proportions (qg ji)

to a reference that are all some robust measures of central tendency in the count data.
The logarithmic transform accompanying CLR should not worry the reader about its rel-
evance here, in the following sense: the log-transformation often makes it possible to
apply statistical tests based on normal distributions for the rescaled data; this is in-line
with applying log-normal assumptions on the rescaled data obtained with the rest of the
techniques. C =

[
∏ j τg j

]−1/n is a constant factor independent of sample, and its pres-
ence does not matter. For the same reason, Median and Upper Quartile scalings and
CLR transforms, can be thought to base their estimates on a reference that assigns equal
mass to all the features or if the reader wishes, a more complicated reference that behaves
proportionally. When most features are zero, values arising from classical scale factors
can be severely biased or undefined as we shall illustrate in the next chapter. Wrench is
the scale normalization strategy we propose to overcome this problem.

are also of technical origin, they can well be correlated with other sources of technical

variation, and can be seen to estimate technical variation beyond what is accounted for

by sample depth adjustments. This was described below eqn.3.1. Thus, it is interesting

to ask under what conditions compositional factors arising from scaling techniques (in-

cluding our proposed technique in this work) can reconstruct X0, the true concentrations

in the source samples. From eqn. 3.1, it is clear that accurate compositional correction

techniques can reconstruct true average concentration for any feature i when technical

biases perturbing the feature is comparable between the treatment and control groups.

3.3 Simulation analyses

In this section, we naturally ask how several genomic normalization techniques fare

in estimating compositional correction factors. Our analysis below is limited to methods

that provide interpretable estimates of fold-changes. We therefore do not consider differ-
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ential abundance inferences arising from rank-based methods. We also leave the analysis

of non-linear normalization techniques for future work.

We note that traditional genomic normalization techniques [3, 4] like library size

scaling, total sum/total count, reads per kilobase of transcript, per million mapped reads

(RPKM), fragments Per kilobase of transcript per million mapped reads (FPKM), Counts

per million (CPM), subsampling, rarefication based approaches are simple arbitrarily

rescalings of relative frequencies, and for the purpose of this part of the thesis, one and

the same. References for other genomic normalization techniques discussed will appear

as appropriate.

Figure 3.2 illustrates our simulation strategy. Given the set of control proportions

q1i for features i = 1 . . . p, and the fraction of features that are perturbed across the two

conditions (1−π), we sample the set of true log fold changes ( logνgi ) from a fold change

distribution for the random (1−π) fraction of features that have been chosen to be per-

turbed. The fold change distribution (FCD) is a two-parameter distribution chosen either

as a two-parameter Uniform or a Gaussian. Based on the expressions from eqn. 2.3, the

target proportions were then obtained as qgi =
νgiq1i

∑k νgkq1k
. Conditioned on the total number

of sequencing reads τ , the sequencing output Yg j for all i were obtained as a multinomial

with proportions vector qg· = [|qgi|]pi=1. We set the control proportions q1· from various

experimental sequencing datasets. With this setup, we can vary π , and the two parameters

of the FCD, and ask, how various normalization and testing procedures compare in terms

of their performance. Performance was quantified based on the sensitivity and specificity

values in detecting truly perturbed features at a Benjamini-Hoschberg false discovery rate

of .1.
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Figure 3.2: Simulation strategy for evaluating current normalization and differential expres-
sion analysis toolkits for compositional correction. (A) Simulation set up. q1·,qg· represent
the control and case proportion vector of all the features. q1· is obtained from a given ex-
perimental dataset. π represents the fraction of features that do not change across conditions.
Zgi ∼ Bernoulli(π) for all i represents the set of indicator variables that denote if a feature is not
differentially expressed. Conditioned on Zg·, the logged vector of fold changes logν is sampled
from a two-parameter fold change distribution, with νgi set to 1 whenever Zgi is 1. Here i indexes
the individual entries of the vector.
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Figure 3.2: Continued from previous page. The sampled fold changes and control pro-
portions are normalized to yield the case proportions. A multinomial draw for a fixed
sample depth τ (20M reads) then yields the desired simulated sequencing output. The
two fold change distributions, Uni f (aν ,bν) and a N(µν ,σ

2
ν ), considered in our study are

shown in (B). Example M-A plots resulting from simulations when 75% (i.e., π = 0.75)
of the features are fixed across conditions, with the rest perturbed according to log fold
changes sampled from Normal(0,1) and Uni f (−4,4) fold change distributions respec-
tively are shown in (C). Each point in the M-A plot corresponds to a feature, and plots its
grand average (A axis), against their empirical fold changes. Both are in log2-scale.

With the above setup, we do not strictly enforce constant average total feature abun-

dance across simulated cases and controls. We would like to keep the parameter variations

sufficiently general that this condition roughly holds under some settings, while letting us

appreciate the relative merits of reference normalization strategies under others.

In summary, for a given set of control proportions, we vary i) the fraction of features

that change across conditions, ii) the shape, iii) mean and iv) variance of the fold change

distribution that underlies the perturbation of features in the case-group, v) normalization

approach and vi) testing technique. We also varied the control proportions themselves

from various experimental datasets, and our results were similar. Our simulations are

fairly general and should allow us to robustly characterize the performance of the current

normalization and differential expression analysis practices in genomics.

Library size/Subsampling based approaches Figure 3.3 plots the performance mea-

sures for a negative binomial based testing suite (edgeR software [124]) for a uniform fold

change distribution after total sum normalization. Sensitivity values in detecting true un-

derlying concentration changes never go beyond 65%, and heavy false positive rates are

incurred even when 95% of the features remain unchanged across conditions. Figure 3.4

35



shows the performance under the Gaussian fold change distribution. In contrast to the uni-

form case above, we find sensitivities go up to 85%, but false positives are also accrued at

higher rates. It would appear that higher variances and means lead to better performance,

but as Figure 3.5 shows, many of these truly significant features were called significant

for the wrong reason: wrong signs of fold changes. Higher means and variances of fold

change distributions are therefore conditions that lead to heavily confounded inference

under proportion based normalization strategies. These results were similar across testing

platforms, and across testing techniques.

It is useful to also summarize the relevant results from previous chapter here. Total

count/library size normalized data is equivalent to relative frequencies. We devoted the

previous chapter to ask under what conditions, inferences made with relative frequencies

alone would continue to reflect concentration changes in an unbiased manner. We for-

mally analyzed its influence within the framework of linear models, a widely used statis-

tical framework within several count data packages commonly used in genomics. Under

the most natural adjustments based on the total count (e.g., unaltered reads per kilobase

of transcript, per million mapped reads (RPKM)/ fragments Per kilobase of transcript

per million mapped reads (FPKM)/ Counts per million (CPM)/subsampling/rarefication

based approaches), we found that these conditions can be precisely characterized mathe-

matically and are extremely limited in their applicability in general experimental settings.

It may be tempting to argue that one can resort to total count-based normalization if total

feature content is the same across conditions. However, as was shown in the last chapter, it

is easy to see that this assumption is only valid when strict constraints on the levels of tech-

nical perturbation of feature abundances and sequence-able contaminants are respected,
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Figure 3.3: Total sum based normalization, like RPKM/Rarefication, under a Uniform fold
change distribution. The figure plots various performance metrics of the edgeR package as a
function of the fraction of features that remain unchanged across conditions (π), and the lower
(aν ) and upper bounds (bν ) of a Uniform fold change distribution. Control proportions (q1·) were
obtained from rat liver tissue of the rat bodymap [7]. Extremely high false positive rates result
with higher variance and asymmetrically located fold change distributions (i.e., with positive or
negative means) due to compositional bias. The results were similar across commonly used dif-
ferential abundance testing platforms, and for the Gaussian fold change distribution (Fig. 3.4).
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Figure 3.4: Total sum based normalization, like RPKM/Rarefication, under a Gaussian fold
change distribution. The figure plots various performance metrics of the edgeR package as a
function of the fraction of features that remain unchanged across conditions (π), and the mean
(µν ) and standard deviation (σν ) of the Gaussian fold change distribution for the same control
proportions (q1·) as in figure 5. (A) (σν ,π) variations at µν = 0. (B) (µν ,π) variations at σν = 1.
It would appear that higher fold change distribution variances and means lead to better perfor-
mance, but these are also associated with higher false positive rates and as Fig. 3.5 shows, large
fraction of these calls had wrong signed fold changes. Higher means and variances of fold change
distributions are therefore instances that lead to heavily confounded inference. The results were
similar across commonly used differential abundance testing pipelines.

38



A

B

TMMTotSumSampled LFCs
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π 0.75, µ 4, σ 1

π 0.95, µ 0, σ 4
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Figure 3.5: Confounded inference with total sum and reference normalization strategies. For
all features whose reconstructed fold changes had wrong signs when called significant, together
with false negatives, we plot the sampled fold changes (first column) and deviations in the edgeR
reconstructed fold changes from those of the true values after total sum (second column) and TMM
(third column) normalizations. The corresponding parameter values for the simulations are shown
alongside the plots. Larger deviations from the horizontal line at 0 imply higher confounding in
inference. Asymmetric FCDs, which give rise to feature specific fold changes biased to be more
positive or negative, can easily trick inference based on total sum based normalization approaches.
TMM and other voting based strategies behave in a more robust fashion. However, when larger
fraction of features (25%) varies across conditions, their performance becomes highly sensitive to
the underlying FCDs. The color indicates the density of points, with blue, green and red indicating
low, medium and high densities respectively.
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an assumption that can be very easily violated in metagenomic experiments [125–127],

which usually feature high intra- and inter-group feature diversity.

Reference normalization and robust fold-change estimation techniques We now

compare and contrast the aforementioned total count/library size adjustments (i.e., relative

frequency measurements) with a few reference based techniques (reviewed in Table. 3.1)

in overcoming compositional bias at high sample depths. Also, many widely used ge-

nomic differential abundance testing toolkits enforce prior assumptions on reconstructed

fold changes, and moderate their estimation. This made us wonder about the robustness

of these testing techniques in overcoming the false positives that would otherwise be cre-

ated without compositional bias correction. With an exhaustive set of simulations at high

coverage sample depths (similar to bulk RNAseq) with 20M reads per sample, by and

large, we found that all testing packages behaved the same way, and the key ingredient

to overcome compositional bias always was an appropriate normalization technique . We

also found that reference based normalization procedures outperformed library size based

techniques significantly, re-emphasizing the analytic insights we mentioned previously.

Figures 3.6 and 3.7 demonstrate the performance of TMM normalization, a refer-

ence based normalization strategy. In contrast to the above total sum-based normalization

procedure, the false positive rates with TMM were maintained low, if not at zero, for

a variety of parameter settings. At higher FCD means and variances, they also lead to

wrong reconstruction of fold change signs but with a highly desirable twist: as long as

the fraction of perturbed features across conditions is small, the fold change distribution

is correctly centered throughout the abundance distribution except for those features with
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very low abundances leading to very low false positive rates Fig. 3.5. For all normaliza-

tion techniques, as the amount of features that change across conditions increases, false

positive rates increase.

In the next chapter, we consider applying these techniques to the problem of com-

positional bias correction in metagenomic survey data. The data pose an interesting chal-

lenge, as the microbial abundance measurements resulting from them can be extremely

sparse.
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Figure 3.6: Reference normalization (TMM/DESeq/Median) under a Uniform fold change
distribution. The figure plots various performance metrics of the edgeR package with TMM nor-
malization as a function of the fraction of features that remain unchanged across conditions (π),
and the lower (a) and upper bounds (b) of a Uniform fold change distribution. Control propor-
tions (q1·) were obtained from rat liver tissue of the rat bodymap [7]. In contrast to what was
observed with total sum approaches, the false positive rates are maintained at low levels for a
larger range of parameters. Sensitivity values still remained low. High false positive rates result
with higher variance and asymmetrically located (with respect to 0) fold change distributions.
The results were similar across testing platforms, for median based normalization techniques like
DESeq/Median scaling, and for the Gaussian fold change distribution.
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Figure 3.7: Reference normalization (TMM/DESeq/Median) under a Gaussian fold change
distribution. The figure plots various performance metrics of the edgeR package as a function
of the fraction of features that remain unchanged across conditions (π), and the mean (µν ) and
standard deviation (σν ) of the Gaussian fold change distribution for the same control proportions
(q1·) as in figure 3.6. (A) (σν ,π) variations at µν = 0. (B) (µν ,π) variations at a constant σν = 1.
When the fraction of unperturbed features is large, in contrast to what was observed with total
sum approaches, higher fold change distribution variances and means lead to better performance.
Figure 3.5 shows, many of these calls had wrong signed fold changes. Higher means and variances
of fold change distributions are therefore cases that lead to heavily confounded inference. The
results were qualitatively similar across commonly used differential abundance testing pipelines.
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Chapter 4

A scaling normalization technique for estimating compositional bias

from sparse relative frequency data.

From previous chapters, we recall that:

1. The output of a sequencing machine only retain relative frequencies, and not the

concentrations of the measured features. We call this unwanted technical bias in-

troduced in our experiment as compositional bias. Compositional bias is present

in the output of all derived technologies in genomics like RNAseq, ChipSeq etc.,

which exploit a DNA sequencing machine for quantification purposes.

2. Compositional bias can be corrected by estimating compositional correction fac-

tors. These factors are more general in that they correlate with other unwanted

technical variation infused in the data, beyond compositional bias, as well.

3. Compositional correction factor is a linear technical bias shared by all features mea-

sured in a sequencing experiment. This fact makes it possible to exploit various

scale normalization techniques in genomics to estimate them.

In this chapter, we consider the problem of estimating compositional correction

factors for metagenomic 16s surveys, another derived technology based on sequencing.
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Recognizing that 16s ribosomal RNAs (rRNA) are relatively specific for every prokary-

otic Genus, Carl Woese and George Fox suggested that a simple strategy for identifying

prokaryotic genera in a microbial sample is to sequence and catalogue the 16s rRNA

sequences in it [128–133]. In fact, Woese & Fox demonstrated the promise of such a

technology, rather dramatically, by adding a whole new domain of life – the archaea – to

the phylogenetic tree of life! [129, 134]

The number of times a given prokaryotic genera’s 16S sequence is found in the

sequencing output serves as a measure of its frequency. This is the idea behind 16s

marker gene surveys [135–138], which have now found widespread utility in biomedical

research [139] and natural history studies involving large-scale oceanic microbial ecosys-

tems [8, 138]. Like with other derived technologies, compositional effects are observable

in the count data from the large-scale Tara oceans metagenomics project [8], (Fig. 4.1),

in which a few dominant taxa are attributable to global differences in the between-oceans

fold-change distributions.

We demonstrate that our strategy of adapting traditional genomic normalization

techniques (discussed in the previous chapter) for estimating compositional bias fail with

16S survey data. This is mainly because a large fraction of features (the distinct 16s

sequences) in 16S count data are very sparsely observed in the output. Given that all

reference based normalization techniques base their compositional scale factor estimates

on ratios of proportions, the large fraction of zeroes in the 16s survey data lead to mostly

zero valued compositional correction factor estimates: DESeq failed to provide a solution

for all the samples in a 16s survey of our interest, and TMM based its estimation of scale

factors on very few features per sample (as low as 1). The median approach simply re-
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Figure 4.1: Importance of compositional bias correction in sparse metagenomic data.
(A) M-A plots of 16S reconstructions (from high sequencing depth, whole metagenome
shotgun sequencing experiments) from two technical replicates each from the Tara oceans
project [8] generated for the Southern and South Atlantic Oceans. In all subplots, x-axis
plots for each feature, its average of the logged proportions in the two compared samples;
y-axis plots the corresponding differences. The red dashed line indicates the median log
fold change, which is 0 across the technical replicates. (B) M-A plots of the same repli-
cates but plotted across the two oceans. The median of the log-fold change distribution is
clearly shifted. A few dominant taxa in the South Atlantic Ocean (circled) are attributable
for driving this overall apparent differences in the observed fold changes. The Tara 16s
dataset, reconstructed from very deep whole metagenome shotgun experiments of oceanic
samples, albeit boasting of an average 100,000 16S contributing reads per sample, still
encourages a median 88% feature absence per sample.

turned zero values. CLR transforms behaved similarly. When one proceeds to avoid this

problem by adding pseudo-counts, owing to heavy sparsity underlying these datasets, the
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transformations these techniques imposed mostly reflected the value of pseudocount and

the number of features observed in a sample. A recently established scaling normalization

technique, Scran [6], tried to overcome this sparsity issue in the context of single cell ri-

bonucleic acid sequencing (scRNAseq) count data – which also entertains a large fraction

of zeroes – by decomposing simulated pooled counts from multiple samples. That ap-

proach, developed for relatively high coverage single cell RNAseq, also failed to provide

solutions for a significant fraction of samples in our datasets (as high as 74%). Further-

more, as we illustrate later, compositional bias affects data sparsity, and normalization

techniques that ignore zeroes when estimating normalization scales (like CSS [5], and

TMM) can be severely biased. The relatively low sequencing depth per sample (as low as

2000 reads per sample), large number of features and their diversity across samples thus

pose a serious challenge to existing normalization techniques.

In this chapter, we develop a compositional bias correction technique (Wrench) for

sparse count data based on an empirical Bayes approach that borrows information across

features and samples. We demonstrate its improved performance in metagenomic 16S

survey data. Based on the distribution of compositional scale factor estimates arising

from several publicly available large scale 16S count datasets, we argue that detailed

experiments specifically addressing the influence of compositional bias in metagenomics

are needed.
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4.1 Classic scale normalization techniques suffer with sparse 16s count

data

In Fig. 4.2, we plot the feature-wise compositional scale estimates (i.e., ratio of

sample proportion to that of the reference; third column entries in Table. 3.1), obtained

from TMM and DESeq for a sample in two different 16S microbiome datasets. TMM

computes a weighted average over these feature-wise estimates, while DESeq proposes

the median. The first column corresponds to a bulk RNAseq study of the rat body map [7];

the second corresponds to those from a 16S metagenomic dataset [139]. Strikingly, while

a large number of features agree on their scale factors for a sample arising from bulk

RNAseq for both TMM and DESeq strategies, the sparse nature of metagenomic count

data makes robust estimation of their scale factors extremely difficult. Furthermore, large

variance is also observed across the scale factors suggested by the individual features.

Clearly, a moderated estimation procedure is warranted.

One might wonder if adding pseudocounts to the orginal count data (a common pro-

cedure in metagenomic data analysis [118,140]) effectively deals away with the problem.

However, as shown in Fig. 4.3, with large number of features absent per sample, these

scale factors roughly reflect the value of the pseudocount, and are systematically scaled

down in value as sequencing depth, which is strongly correlated with feature presence,

increases. This result suggests that addition of pseudocounts to data need not be the right

strategy for deriving normalization scales based on CLR [141] or other similar methods,

especially when the data is sparse. The alternate idea of only deriving scale factors based

on positive values alone, are also associated with problems as we will see later in the text.
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Figure 4.2: Estimation of compositional correction scales from sparse count data. On
the left column, we plot the feature-wise ratio (Λg ji) estimates adjusted for sample depth
from each feature i in one of the samples from the Adrenal tissue of the rat body map
dataset (bulk RNAseq), and on the right column, we plot the same values arising from a
sample in the Diarrheal dataset (16S metagenomics). The top and bottom rows corre-
spond to the scales estimated using TMM and DESeq respectively. In the case of bulk
RNAseq data, large numbers of individual feature estimates agree on a compositional
scale factor. Simple averaging, or some robust averaging would help us obtain the scale
factor exactly. Continued on next page.

4.2 The proposed technique (Wrench) reconstructs precise group-wise

compositional factor estimates

To overcome the issues faced by existing techniques, we devised an approach based

on the following observations and assumptions. First, aggregated group/condition-wise

feature count distributions are less noisy than sample-wise feature count distributions,
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Figure 4.2: Continued from previous page. A similar robust behavior is observed with all
the tissues available in the bodymapRat dataset (considered later in text). On the second
column, we plot the feature-wise ratio values from a metagenomic 16S marker gene survey
of infant gut microbiota. There is no general agreement among the features on the scale
factors, and simple averaging will not work. We note that what we have shown are fairly
good cases. Several samples entertain only a few tens of shared species with an arbitrary
reference sample within the dataset. In this work, we aimed to model this variability and
estimate the scale factors robustly by borrowing information across features and samples.
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Figure 4.3: Adding pseudocounts leads to biased normalization. For each of the four
microbiome count datasets (rows: Mouse, Lung, Diarrheal and Tara Oceans ), we plot
(A) CLR and (B) DESeq compositional scales obtained after adding a pseudo count value
of 1, as a function of fraction of features that are zero in the samples (first column) and the
sample depth (second column). The observed behavior was not sensitive to the value of
pseudocount used. A similar plot was alos generated for a pseudocount value of 10−7. (C)
shows the total number of pseudocounts added, which is essentially the number of features
observed in a dataset, and the total actual counts observed in the dataset divided by their
sum i.e., the total implied sequencing depth after pseudocounts addition. Continued on
next page.
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Figure 4.3: A large fraction of sequencing depth in the new pseudocounted dataset is now
arising from pseudocounts than the true experimental counts, when the data is excessively
sparse. Indeed, if the pseudocount value is altered to a very low positive fraction value,
the boxplots will reflect reversed locations, but this plot is only used to stress the level of
alteration made to a dataset. Only in the Tara Oceans project, where the sample depth
is 100K reads, do the boxplots shift. However, at a roughly median 90% features absent,
that data when altered by pseudocounts, also leads to biased scaling factors as seen in
(A) and (B).

and it may be useful to Bayes-shrink sample-wise estimators towards that of group-wise

global estimates. Second, zero abundance values in metagenomic samples are predom-

inantly caused by competition effects induced by sequencing technology (illustrated in

Fig. 3.1), and therefore can be indicative of large changes in underlying compositions1

with respect to a chosen reference. Indeed, ignoring sterile/control samples, the median

fraction of features recording a zero count across samples in the mouse, lung, diarrheal,

human microbiome project [142] and (the very high coverage) Tara oceans [8] datasets

were: .96, .98, .98, .98 and .88. These respectively had median sample depths of roughly

2.2K, 4.5K, 3.3K, 4.4K and 100K reads. In direct contrast, this value for the high cov-

erage bulkRNAseq rat body map across 11 organs at a median sample depth of 9.7M

reads, is .33. Large number of features, extreme diversity, and time-dependent dynamic

fluctuations in microbial abundances can result in such high sparsity levels in metage-

nomic datasets. When working within the fundamental assumption that most features do

not change across conditions, such extraordinary sparsity levels can then be attributed, by

and large, to competition among features for being sequenced. As we illustrate in Fig. 4.4,

zero observations in a sample are correlated with compositional changes, and truncated

1the idea being that in the limit Λg → ∞, feature-wise relative frequency ratios that reflect Λ−1
g , → 0.

Ref table 3.1 for discussions.

51



analyses that ignore them (as is done with TMM / DESeq / metagenomic CSS normal-

ization techniques) effectively leads to loss of information and results that are opposite to

what is expected.
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~50X absolute growth (upward change) in the first feature
results in this set of True Case proportions

  
 

1. Choose reference set of proportions as that from controls. 
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(roughly, ratio of proportions in first feature, as that is the only one that 
is mostly expressed) = .9/.1 = 9
3. Zero strategy, naive averaging of positive ratios over zeros as well: ( (.9/.1) + 0)/10=.9

Then: 
TMM/DESeq/CSS prediction = 1/9 =.11X (downward) change in absolute abundance
Scran fails to reconstruct for case group samples owing to heavy occurrence of zeros. 
Zero strategy’s prediction = 1/.09 =  1.11X (upward) change in absolute abundance
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Figure 4.4: Ignoring zeroes can introduce bias in normalization, when zeroes predomi-
nantly arise from under-sampling. An artificial example with 10 features and two groups
("controls" and "cases"), when one of the features undergoes a roughly 50X expansion (a
log2 fold change of 5.64) in cases compared to controls. This drives the relative frequen-
cies of the rest of the 9 features relatively low in the case group. As a result features
that are largely present in the controls are not observed in the case group at moderate
sequencing depths. Scaling normalization strategies that derive scales based only on the
positive count values, can underestimate compositional changes as shown.

We now give a brief overview of the technique (Wrench) proposed in this work.
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More details are presented in the Methods section at the end of this chapter. With average

proportions across a dataset as our reference, we model our feature-wise proportion ratios

as a hurdle log-normal model2, with feature-specific zero-generation probabilities, means

and variances. For the purpose of metagenomic applications, and analytic convenience,

we slighty relax the standard assumption that most features do not change across condi-

tions by assuming that the feature-wise log-fold changes arise from a zero mean Gaussian

distribution, a common assumption in differential abundance analysis [5, 143, 144]. The

analytical tractability of the model allows us to standardize the feature-wise values within

and across samples, and derive the compositional scale estimates by basing heavy weights

on less variable features that are more likely to occur across samples in a dataset. In ad-

dition, to make the computed factors robust to low sequencing depths and low abundant

features, we employ an empirical Bayes strategy that smooths the feature-wise estimates

across samples before deriving the sample-wise factors. Such situations are rather com-

mon in metagenomics, and some robustness to overcome heavy sampling variations is

desirable.

Table. 4.1 succinctly illustrates where current state of the art fails, while more com-

prehensive simulations illustrating the effectiveness of the proposed approach presented

in Fig. 4.5. To generate table 4.1, roughly, we simulated two experimental groups, with

54K features whose proportions were chosen from the lung microbiome data, and let

35% of features change across conditions (see Methods for details on simulations). The

net true compositional change resulting from each simulation, and their corresponding

2the random variable assumes a value of zero with probability π and a positive value based on its specific
log-normal distribution with probability (1−π)
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reconstructions by the various techniques when the count data are generated at different

sequencing depths are shown. The following observations form the theme of these, and

the more elaborate simulations summarized in Fig. 4.5: 1) TMM/CSS, because they fo-

cus on positive-valued observations only, are restricted in the range of scales they can

reconstruct. 2) Scran can yield accurate estimators at very large sequencing depths when

high feature-wise coverages are achieved. Unfortunately, this behavior is highly depen-

dent on the underlying feature proportions and their diversity. 3) Wrench estimators offer

better alternatives for under-sampled data, and as we shall observe below in their em-

pirical performances, they can still offer robust protection against compositional bias at

higher coverages. Similar results were obtained when Wrench was compared to pseu-

docounted CLR. In addition, Figs. 4.6, and 4.7 explore simulation performance as a

function of group-wise sample size in balanced and unbalanced designs, where we find

the performance to stabilize between roughly 10−20 samples, depending on the fraction

of features that change across conditions.

We briefly note a key ingredient about our simulation procedure. Simulating se-

quencing count data as independent Poissons / Negative Binomials – as is commonly

done in benchmarking pipelines – does not inject compositional bias into simulated data.

From the perspective of performance comparisons for compositional correction, doing so

is therefore inappropriate. A renormalization procedure after assigning feature-wise fold-

changes is necessary. Alternatively, if absolute concentrations are generated, subsampling

to a desired sample depth needs to be performed.
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Net Compositional
Change (Λg)

Average
Sample Depth

CLR TMM CSS Scran W0 W1 W2 W3

36.86X 1M 1.36 1.45 5.41 22.57 19.32 31.44 30.65 32.01

7.75X 10K .95 3.05 1.47
12.08

(14/40 samples failed)
5.30 6.32 6.31 6.70

Table 4.1: Example simulations illustrate the limitations of current techniques. Shown
are the group-wise true and reconstructed compositional scales from the methods com-
pared on two simulated examples, each at different sequencing depths and at different to-
tal true concentration changes for a roughly 54K features with control group proportions
derived from the Lung microbiome. Low-coverage and/or high compositional changes
are problematic for current techniques due to the sparsity they cause in the count data.
W1, . . .W3 are Wrench estimators proposed in the Methods section that adjust the base
estimator W0 for feature-wise zero-generation properties. All are presented here for com-
parison purposes. Our default estimator is W2.

4.2.1 Wrench has better normalization accuracy in experimental data

Below, we show five different results illustrating the improvements Wrench offers

over existing techniques in experimental data. The first two show that Wrench leads

to reduced false positive calls in differential abundance inference, while the other three

demonstrate the improved quality of positive associations.

Reduction of false positives We used two approaches to compare the performance of

Wrench in reducing false positive calls in differential abundance inference. Each of these

analyses was performed across all biological groups with atleast 15 samples in the mouse

(2 diet types), Diarrheal (2 groups), Tara (5 oceans), HMP (JCVI, 16 body sites), and

HMP (BCM, 16 body sites) and averaged the results across these 41 experimental groups.

We ignored the lung microbiome for these analyses as Scran had particular difficulty

making direct comparisons hard. Owing to the heavy sparsity in these datasets, Scran

failed to provide scales for 53 out of 72 samples of the lung microbiome, 10 out of 132
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Figure 4.5: Wrench scales outperform competing approaches in reconstructing compositional
changes and in differential abundance testing. Multiple iterations of two group simulations are
simulated with various fractions of features perturbed across conditions (rows, f in figures), total
number of reads. Their average accuracy metrics in reconstruction and differential abundance
testing are plotted. The control proportions were set to those obtained from the mouse microbiome
dataset. Continued on next page.

observations of the mouse microbiome, 6 out of 992 samples of the diarrheal dataset.

Notice that Wrench not only recovers compositional scales for these samples, but also at
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Figure 4.5: Continued from previous page. (A) Average log ratios of reconstructed to
true concentration changes. Each row corresponds to a particular setting of f , and each
column a particular setting of average sequencing depth. Scran also suffered from being
unable to provide scales for samples in each simulation set (sometimes as high as 60%
of the samples at 4K and 10K average reads). (B) Average sensitivity, specificity and
false discoveries at FDR .1 of detecting true differential concentration abundances. W0 is
the regularized Wrench estimator without sparsity adjustments and W1, ..W3 are various
adjusted estimators compared here. For details on this and simulations, see Methods.
Behavior was similar for other parameteric variations (variances of global and sample-
wise fold change distributions, number of samples) of simulations.
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Figure 4.6: Simulation performance in a balanced design. We plot the performance metrics as
a function of sample size and fraction of features f that are perturbed in cases. The sample depth
was fixed to 10K reads on average per sample. TMM is provided for reference. Legend: Red,
Wrench; Black: TMM.
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Figure 4.7: Simulation performance in an unbalanced design. We plot the performance metrics
as a function of sample size and fraction of features f that are perturbed in cases. The total number
of case samples were fixed to 20, and the number of control samples were varied to simulate
unbalanced designs. So in the plot, a sample size of 20 corresponds to a sample size of 20 for
the case sample, and therefore reflects a balanced design. The rest represent unbalanced designs.
The sample depth was fixed to 10K reads on average per sample. TMM is provided for reference.
Legend: Red, Wrench; Black: TMM.
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magnitudes that were coherent with other samples from similar experimental groups (see

next subsection) indicating some validity for the computed normalization factors.

First, a standard resampling analysis was performed. For every given experimental

group, two artificial groups are repeatedly constructed via resampling (without replace-

ment), and the total number of significant calls made during differential abundance anal-

ysis is recorded in each repetition. For each iterate, we compute the log2(FOther/FWrench)

ratio, where FOther is the total number of significant calls made by a competing method

(Total Sum / TMM / Scran / CSS ) and FWrench is the total number of significant calls made

by Wrench. If Wrench is superior these logged ratios should be > 0. The average of these

ratios across all the experimental groups mentioned above is plotted in Fig. 4.8A, and we

find Wrench meeting the goal. Although total sum does not show a significant difference

in this analysis, as illustrated next, it is insufficient in capturing the null variation in the

data.

We next exploited the offset-covariate approach introduced in [6]. For every fea-

ture/OTU within a homogenous experimental group, two generalized linear models are

fitted: in model (a) Wrench normalization factors as offset, and those of a competing

method as covariate. In model (b), normalization factors from a competing method as

offset, and those of Wrench as covariate. The number of features for which the covariate

term was called significant is recorded in both (a) and (b). We will denote them respec-

tively as CWrench and COther. If Wrench sufficiently captures the variation in data, the

number of times the covariate term from a competing method is called significant will be

low. That is: the logged ratio log2(COther/CWrench) must be > 0. The average of these

values across all the experimental groups mentioned above is plotted in Fig. 4.8B, and we
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Figure 4.8: Wrench scales lead to reduced false positive calls. (A) The average of
log2(FOther/FWrench) values obtained over artificial two group splits of homogeneous experimental
group data is shown and (B) the average of log2(COther/CWrench) values across 41 metagenomic
experimental groups are shown. Standard error bars are shown. In both plots, positive values
for a method imply reduced accuracy relative to Wrench. FOther: total number of diffferentially
abundant features found by a competing method (total sum, TMM, CSS or Scran). FWrench: to-
tal number of differentially abundant features found by Wrench. COther: total number of features
where the covariate term for Wrench normalization factors were found to be significant when com-
peting method is used as offset. CWrench: total number of features where the covariate term for a
competing method’s normalization factors were found to be significant, when Wrench is used as
covariate.

find Wrench to improve upon other techniques.

Improved association discoveries To compare the quality of associations achieved

with the various normalization methods, we re-analyzed the Tara Oceans 16S microbiome

dataset.

Even though the contribution of true compositional changes and other technical

biases are not identifiable from the compositional scales without extra information, we

asked if the reconstructed scales correlate with orthogonal information on absolute abun-

dances, and other measures of technical biases. The results are summarized in Table 4.2.
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Dataset Type CLR TMM CSS Scran W0 W1 W2 W3

Tara Oceans [8] 16s (from Whole Metagenome) 0 (−2.65×10−6) 0.26 0.15 0.52 .58 .54 .53 .53
Rat BodyMap [7] Bulk RNAseq -0.36 0.22 0.16 0.18 .20 .19 .20 .26

Embryonic Stem Cells [62] UMI/scRNAseq -0.70 .70 .67 .67 .71 .70 .70 .68

Table 4.2: Correlations of compositional scales with orthogonal measurements on con-
centrations/technical biases. Correlations of logged reconstructed abundance factors
(1/compositional correction factor) with logged total flow cytometry cell counts is shown
for the Tara project. Correlations of logged normalization factors with logged total ERCC
counts are shown in the case of the rat body map and embryonic stem cells datasets. Given
the high sparsity in these datsets, CLR factors computed by adding pseudocounts, essen-
tially had no information on technical biases. W1, . . .W3 are estimators proposed in the
Methods section that adjust the base estimator W0 for feature-wise zero-generation prop-
erties. All are presented here for comparison purposes. The default Wrench estimator
(W2) compares well at low and high coverage settings. For more details on these and the
distinction in terminology between compositional correction factors and normalization
factors, refer Materials and Methods.

Interestingly, in the very high coverage Tara Oceans metagenomics project, Wrench and

Scran estimators achieve comparable correlations (>50%) with absolute flow cytometry

measurements of microbial counts from the Tara Oceans project. Scran failed to recon-

struct the scales for 3 samples. TMM and CSS had substantially poor correlations. Sim-

ilarly, Wrench normalization factors had comparable/slightly better correlations to the

total ERCC spike-in counts in bulk and single cell RNAseq datasets. In direct contrast,

CLR scale factors (the geometric means of proportions) computed with pseudocounts

were either uncorrelated or highly anti-correlated with the aforementioned measurements

reflecting technical biases. These results reaffirm that there are advantages to exploiting

specialized compositional correction tools even with microbiome datasets teeming with

microbes of extraordinary diversity.

We next analyzed the quality of differential abundance inference arising from com-

peting normalization techniques, by performing two sets of enrichment analyses.
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Detailed tables presenting the following results are provided as a supplement addi-

tional file 2 in our related publication [145]. In the first procedure, we extracted broad

genus-level functional annotations from the Faprotax database [146], and tested for their

enrichment in positively associated genera in the deep chlorophyll (DCM) and the mesopelagic

layer (MES) samples of the oceans relative to the surface layer. The total number of

significantly differentially abundant OTU calls were widely different across techniques:

Wrench and Scran made roughly 30% fewer calls compared to total sum, TMM, and

CSS. Given the relatively general nature of the annotations, all methods yielded ex-

pected annotations in the DCM and MES layers based on previous studies, although there

were a few differences (additional file 2). Nitrite respiration/reduction/anoxygenic pho-

totropy, oil bioremediation were found enriched in mesopelagic layer by all methods,

while methanogenesis, a function that is usually associated with mesopelagic and deep

sea microbes [8, 146–149] was not found enriched in MES by total sum. Both Wrench

and Scran did not find xylanolysis to be enriched in the mesopelagic layer, while other

methods did. We were unable to find literature evidence supporting this call, and the re-

sult could potentially be due to the higher number of OTUs called differentially abundant

by the other methods. Aerobic ammonia/nitrite oxidation and fixation were found to be

enriched in DCM by all methods. Total sum and TMM found a methanogenesis related

module enriched in DCM, while other methods did not.

To evaluate the methods in a more fine-grained setting, we devised the following

validation approach. The design of the Tara oceans experiments - where 16S reconstruc-

tions are obtained from whole metagenome shotgun sequencing data - makes the follow-

ing analysis feasible. Because the Tara project’s functional (gene content summarized as
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Kegg Modules, KMs) and 16S data arise from the same input DNA samples, the same

compositional factors should apply for both datatypes. We therefore estimated compo-

sitional factors from 16S data using the different normalization methods and applied the

resulting estimates to the KM abundance data from the corresponding matched samples.

Next, we computed Spearman rank correlation between OTU and KM normalized abun-

dances and annotated OTUs with those KMs which showed correlation of at least 0.75.

Finally, we identified OTUs that were positively associated with each layer using dif-

ferential abundance analysis. With the KM annotations in place, we performed Fisher

exact tests to compute the enrichment scores in the identified OTUs. In mesopelagic sam-

ples, Scran finds enrichment in only 30 KMs, while other methods recovered at least 100

KMs. Specifically, ureolysis, motility, several denitrification/methanogenesis processes

and aminoacid biosynthetic/transport mechanisms (functions that have been attributed

to microbes in the mesopelagic layer and deep sea) [8, 146, 150, 151], were missed by

Scran, while Wrench finds them. On the other hand, Total sum, TMM and CSS found

more varied and general processes including various ribosomal, transcription/translation

components to be enriched in both MES and DCM layers.

Notice that the first analysis gives a broad sense of the genera identified by the

competing methods in light of existing annotations, while the second gives a sense of the

quality of annotations one might confer on the OTUs based on the normalized expression

levels of OTUs and the measured functional content themselves. In both cases, Wrench is

shown to retain relevant information, and the relatively more specific nature of the latter

analysis reveals that Wrench demonstrably improves upon other methods.
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4.3 Inferences following compositional correction show improved co-

herence with experimental data

We further demonstrate the impact of compositional bias in downstream inference

below. The experimental cell density measurements in the Tara Oceans project show

a highly significant overall reduction in the mesopelagic samples when compared the

surface layer (see Fig. 3 in ref [8]). Thus, we expect an overall negative change in

the reconstructed fold changes, when performing a differential abundance analysis of the

OTUs across these two ocean layers.

Summing the log-fold changes of significantly associated OTUs (both positive and

negative) serves as a measure of a net change experienced by a community. If a given

method produces fold change inferences that track the above mentioned empirical cell

density measurements, we expect it to yield an overall negative net change value for

the significantly differentially abundant OTUs in the mesopelagic community. As illus-

trated in Fig. 4.9A, this value for total sum normalized data is +10577.99, while that for

Wrench is −8919.65, showing that differential abundances arising from Wrench agrees

more appropriately with the underlying community change. Fig. 4.9B and C, show how

these values distribute across the major phyla focussed in the Tara oceans article. These

plots demonstrate that the two approaches lead to markedly different conclusions on the

net change experienced by a phylum. In particular, Proteobacteria, Actinobacteria, Eur-

yarchaeota were predicted to have drastically high positive changes by total sum (while

Wrench predicts a marked decrease in the negative direction), and sizable differences

were apparent in the values obtained with the rest of the phyla.
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Figure 4.9: Wrench normalized data lead to better downstream inferences. (A) The sum of
log-fold changes of differentially abundant OTUs is used as a measure of net change experienced
by a community. This value is plotted for the differentially abundant OTUs in the mesopelagic
ocean layer relative to the surface layer in the Tara oceans 16S data, for Total Sum and Wrench
normalization. (B) The same metric plotted for various major phyla of interest in the Tara oceans
project.

4.4 Compositional scale factor estimates imply substantial technical

biases, indicating importance of further experimental studies

We next analyzed the phenotypic integrity of the compositional scales reconstructed

by the various methods. In the absence of technical biases, following our discussion in

the previous subsection, compositional factors should hover around 1 (upto some arbitrary

scaling). This is not what we observe in samples from metagenomic datasets. All scale

normalization techniques resulted in group-wise integrity in the scales they reconstructed

within and across related phenotypic categories, potentially indicating the general impor-

tance of correcting for confounding induced by compositional bias in general practice.

Total sum normalization is oblivious to these biases, making further experimental stud-
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ies on compositional bias important. For instance, in the microbiome samples arising

from the Human Microbiome Project [142], as shown in Fig. 4.11A, we noted system-

atic body site-specific global deviations in the fold change distributions. This is similar

to what was illustrated with the Tara project in Fig. 4.1. We found the reconstructed

compositional scales to largely organize by body sites, across normalization techniques

(Fig. 4.11B), behind-ear and stool samples were distinctly located in terms of their com-

positional scales from the oral and vaginal microbiomes (notice the log scale in these

plots). This behavior was also recapitulated in scales reconstructed from other centers.

Similar results were obtained for samples arising from the J. Craig Venter Institute. In the

case of the mouse microbiome samples, most normalization techniques predicted a mild

change in differential feature content across the two diet groups (Fig. 4.11C, and ). In the

lung microbiome, the lung and oral cavities had roughly similar scales across smokers and

non-smokers , while scales from the probing instruments had relatively higher variability,

which we found to directly correlate with the high variability of feature presence in the

count data arising from these samples. In the diarrheal datasets of children, however, no

significant compositional differences were found across the various country/health-status

populations (Fig. 4.11D).

For completeness, we also attach similar results from all the 11 organs of the rat

body bulk RNASeq dataset in Fig. 4.10. We noted that the rat body map samples also

showed systematic tissue-specific global deviations in the expressed features’ fold change

distribution. Fig. 4.10 shows this result and the general behavior of compositional scales

across various methods compared and a few related statistics of the dataset. Given that

these samples arise from a well designed series of experiments, the similarity in the scales
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within and across related tissues, and across normalization methods, is striking; the ob-

served trend in the reconstructed scales could indeed reflect underlying true compositional

differences for the most part. TMM and CSS ascribe substantially deviated scales to mus-

cle, heart and liver tissues, when compared to Scran and Wrench estimators. This effect

may be due to the truncated estimation strategy which biases the scales for a relatively

fewer but highly expressed genes in these tissues. Nevertheless, these results indicate po-

tentially heavy compositional bias injected into downstream differential abundance anal-

ysis that compare tissues of different types. Compositional bias can be costly not only in

metagenomics, but even in common bulk-RNAseq studies.

4.5 Methods

4.5.1 An approach (Wrench) for compositional correction of sparse, ge-

nomic count data

Briefly, our normalization strategy can be described as follows. Based on eqn. 2.2,

for a chosen reference vector q0·, accounting for sample depth τg j, the mean model for

the observed positive count of the ith feature can be written as: logE[Yg ji|Yg ji > 0] =

log
[
qg jiτg j

]
= log

[
qg ji
q0i

q0iτg j

]
≡ log

(
θg jiq0iτg j

)
, where θg ji = Λ

−1
g j νg ji. Thus the true

ratio of proportions θg ji encapsulate both the constant Λ
−1
g j and the concentration fold

changes νg ji, and can be viewed as the net fold change experienced by feature i in sample

j from group g. For the purpose of metagenomic applications, and analytic convenience,

we slighty relax the standard assumption that most features do not change across condi-

tions by assuming that the feature-wise log-fold changes logνg ji arise independently from
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Figure 4.10: Importance of compositional correction in common bulk RNAseq studies. (A)
Application of scaling techniques to the rat body map data across tissues. Median positive ratio:
median of the positive ratios of group-averaged proportions to that of Adrenal chosen as the
reference. Subsequent figures in the top row indicate higher sparsity levels in the heart, muscle
and liver samples, although at sequencing depths that are comparable/slightly higher to those
from other tissue groups. (B) Reconstructed scales from several normalization techniques. If one
were to perform a differential expression analysis between Testes and Heart, the fold changes
are roughly 4X (ratio of medians) inflated as predicted by Scran/Wrench, which can lead to high
false positive rates especially if most features are not changed across the two tissues. Notice the
similarity in scales for closely related tissues, across techniques; for these tissues, the influence of
compositional bias in the related differential abundance tests will be low.

a zero mean Gaussian distribution, a common assumption in differential abundance anal-

ysis [5, 143, 144]. Assuming independence across features i, it then follows that logθg ji

follows a Gaussian distribution with a mean parameter logΛ
−1
g j . Thus, a robust location

estimate of θg ji for every sample leads us to the desired compositional scale estimate Λ̂g ji.

Below, we first illustrate how the θg ji are estimated, and subsequently discuss the robust

averaging procedure.
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Model We assume the following hurdle log-normal model for the counts Yg ji:

Yg ji ∼


0 with probability πg ji

eZg ji with probability (1−πg ji)

,

Zg ji = logq0i︸ ︷︷ ︸
log-reference

+ logτg j︸ ︷︷ ︸
log-sample depth

+ logζ0g +µg j +ag ji︸ ︷︷ ︸
=logθg ji, log net fold change relative to reference

+εg ji,

ag ji ∼ N(0,η2
0g), g = 1 . . .G,

εg ji ∼ N(0,σ2
0i), i = 1 . . . p,

log
(

πg ji

1−πg ji

)
= βi1 +βi2 logτg j +possibly other covariates

(4.1)

The model assumes the following. For each sample j from group g, the ith feature’s

count value is sampled from a hurdle log-normal distribution, in which with probability

πg ji, a value of 0 is realized; and with probability 1−πg ji a positive count is observed.

The probabilities πg ji are determined by sample covariates, including the total sequencing

depth. The positive count value is realized as an exponential of a Gaussian random vari-

able Zg ji the mean of which is determined (in accordance with the eqn. 2.2) by the chosen

reference value q0i, sample-depth τg j, and the net fold change θg ji = νg ji ∗Λ
−1
g j , the log

of which has been modeled in the above equation as a sum of group-wise effect (logζ0g),

two-way group-sample interaction (µg j), a three-way group-sample-feature interaction

random effect ag ji and a noise term.
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Estimation of regularized ratios θ̂g ji: In the model, the 0 subscripted parameters

are considered known, and are determined the following way. τg j = Yg j+ is the to-

tal count of sample g j. The reference value for each feature i, q0i, is set to the aver-

age proportion value q̂++i, where q̂g ji is the observed proportion of feature i in sample

g j, i.e., q̂g ji = Yg ji/Yg j+ = Yg ji/τg j . The raw ratio of proportions are then given as:

rg ji =
qg ji
q0i

. The mean and variance parameters logζ0g and η2
0g of the Gaussian random ef-

fects distribution on the logθg ji are determined based on the moments of the correspond-

ing empirical distribution of the group-wise pooled raw ratios of proportions. Specif-

ically, we fix the group-wise compositional scale ζ0g = rg+i i.e., as the average of the

raw ratios including the zero values (following discussions in Fig. 4.4). We set the

variance parameter η2
0g =

1
∑i I[Yg ji>0]

∑i:Yg ji>0(logrg ji− logrg+i) i.e., as the empirical vari-

ance of the logged-ratios. Finally, the feature-specific expression variances σ2
0i are fixed

with values obtained from Limma/Voom. With the above fixed, the unknown parame-

ters µg j and ag ji are estimated/predicted using standard random effects estimators: µ̂g j =

∑i wg ji
(
logrg ji− logζ0g

)
with wg ji ∝

1
σ2

0i+η2
0g

, and âg ji =
σ2

0i
σ2

0i+η2
0g

(
logrg ji− logζ0g− µ̂g j

)
.

The identifiability of these terms is ensured as the other variance components are fixed.

The π̂g ji are estimated with logistic regression. The regularized ratios are then calculated

as: θ̂g ji = exp(logζ0g + µ̂g j + âg ji).

Robust averaging of the θ̂g ji: While averaging over the regularized ratios W0 =:

1
p ∑i θ̂g ji would be one estimation route to Λ

−1
g j , better control can be achieved by tak-

ing the variation in the feature-wise zero generation into account. We shall notice that

E[rg ji|rg ji > 0] = θg ji · eσ2
0i/2, and so a robust averaging over θ̂g ji/eσ2

0i/2, can serve as an
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estimator of Λ
−1
g j . One might choose the weights for averaging to be proportional to that of

the inverse hurdle/inclusion probabilities (as is done in survey analysis) ∝ 1/(1− π̂g ji) or

on the inverse marginal variances ascribed by our model above ∝
1

(1−π̂g ji)(π̂g ji+e
σ2

0i+η2
0g−1)

.

An estimator that we also found to work well empirically is a weighted average of θ̂g ji/eσ2
0i/2

1−π̂g ji
with

weights proportional to 1
σ2

0i
. The next subsection sketches the derivations for the weights.

An advantage of these weights (and hence the model) is that the weighting strategies

proceed smoothly for features with zero expression values as well, unlike the binomial

weights employed in the TMM procedure. Furthermore, when constructing averages,

the weights have a favorable property of downweighting zeroes at higher sample depths

relative to those in samples at lower sample depths.

In summary, we explored the performance of the following estimators for sample-

wise compositional factors:

W0g j =:
1
p ∑

i
θ̂g ji = θ̂g+ j,

W1g j =:
1
p ∑

i
wg jiθ̂g ji, with wg ji ∝ 1/(1− π̂g ji)

W2g j =:
1
p ∑

i
wg jiθ̂g ji, with wg ji ∝

1(
1− π̂g ji

)(
π̂g ji + eσ2

0i+η2
0g−1

)
W3g j =:

1
p ∑

i
wg ji

θ̂g ji

1− π̂g ji
, with wg ji ∝

1
σ2

0i

(4.2)

The compositional bias corrected data is then obtained by dividing each sample’s

count data with its corresponding estimated compositional correction factor. For instance,

if W2 is the choice of estimator, the bias corrected data for sample g j is Yg j/W2g j.
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We have found W1,W2 and W3 to work comparably well in simulations and empiri-

cal comparisons, and W0 slightly less so at high sparsity levels at low sample depths. We

prefer W2 as it systematically integrates both the hurdle and positive component varia-

tions. In our software implementation, users have the option for other weighted variants,

and whether weighted averaging over zeroes is necessary as they see fit. Software docu-

mentation for Wrench embarks on further discussions on these ideas.

Derivation of marginal variance weights Setting φ0i = eσ2
0i/2, and γ0g = eη2

0g/2, we

have:

Varθ (E(Yg ji|θg ji)) =Varθ ((1−πg ji)θg jiτg jq0iφ0i)

=
(
(1−πg ji)τg jq0iφ0i

)2
(γ2

0g−1)γ2
0gζ

2
0g︸ ︷︷ ︸

group specific contribution

(4.3)

Now, if we let Z to be an indicator random variable denoting whether a feature was

zero or positive:

Var(Yg ji|θg ji) = EZ(Var(Yg ji|θg ji,Z))+VarZ(E(Yg ji|θg ji,Z))

= (1−πg ji)
(
θg jiτg jφ0iq0i

)2 [
πg ji +(φ 2

0i−1)
] (4.4)

Similarly,

E(θ 2
g ji) =Var(θg ji)+E(θ 2

g ji)

=
(
γ

2
0g−1

)
γ

2
0gζ

2
0g +

(
ζ0gγ0g

)2

=
(
ζ0gγ0g

)2
γ

2
0g

(4.5)
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Together, eqns. 4.3 and 4.4 lead to:

E(Var(Yg ji|θg ji)) = (1−πg ji)
[
πg ji +(φ 2

0i−1)
]
(q0iτg jφ0i)

2 (
γ

2
0gζ0g

)2 (4.6)

Eqns. 4.3 and 4.6 then imply:

Var(Yg ji) = (1−πg ji)(q0iτg jφ0i)
2 [

πg ji +φ
2
0iγ

2
0g−1

]
γ

2
0g

ζ
2
0g

∝ (1−πg ji)(q0iτg jφ0i)
2 [

πg ji +φ
2
0iγ

2
0g−1

] (4.7)

The variances for the adjusted ratios then follows from straightforward calculations,

the inverse of which take the weight forms shown in in the previous subsection.

Data We principally demonstrate our results with five datasets from metagenomic sur-

veys. A smoking study (n = 72) where the lung microbiome of smokers and non-smokers

were surveyed (along with the instruments that were used to sample the individual). A

diet study in which the gut microbiomes (n = 139) of carefully controlled laboratory

mice fed plant-based or western diets were sequenced [152]. A large scale study of

human gut microbiomes (n = 992) from diarrhea-afflicted and healthy children from

various developing countries [139]. 16S metagenomic count data corresponding to all

these studies were obtained from the R/Bioconductor package metagenomeSeq [5]. The

Tara Oceans project’s 16S reconstructions from whole metagenome shotgun sequenc-

ing (n = 139) deposited in http://ocean-microbiome.embl.de/data/ was obtained from file

miTAG.taxonomic.profiles.release.tsv.gz. The flow cytometry counts for autotrophs, bac-

teria, heterotrophs, picoeukaryotes were obtained from TaraSampleInfo_OM.CompanionTables.txt
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from the same website and summed to serve as a rough measure of total cell count that cor-

relates with sequence-able DNA material. The Human Microbiome Project count data in

file HMQCP/otu_table_psn_v35.txt.gz was downloaded from http://downloads.hmpdacc.org/data/,

and the associated metadata are from v35_map_uniquebyPSN.txt.bz2 under the same

website.

The processed bulk-RNAseq data corresponding to the rat body map from [7] was

obtained from [153].

The Unique Molecular Identifier (UMI) single cell RNAseq data from Islam et al.,

[62] was downladed from GEO under accession GSE46980.

Implementation of normalization and differential abundance techniques All anal-

ysis and computations were implemented with the R 3.3.0 statistical platform. EdgeR’s

compNormFactors for TMM, DESeq’s estimateSizeFactors, Scran’s computeSumFactors (with

positive=TRUE in sparse datasets) and metagenomeSeq’s calcNormFactors for CSS

were used to compute the respective scales. Implementation of CLR factors used a

pseudo-count of 1 following [140], and were computed as the denominator of column 3 in

table 3.1. Limma’s eBayes in combination with lmFit, edgeR’s estimateDisp, glmFit

and glmLRT, DESeq2’s estimateDispersionsGeneEst and nbinomLRT were used to

perform differential abundance testing [144]. Welch’s t-test results were obtained with

t.test.

Simulations Given a set of control proportions q1i for features i = 1p, and the frac-

tion of features that are perturbed across the two conditions f , we sample the set of true
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log fold changes ( logνgi ) from a fold change distribution (fold change distribution) for

those randomly chosen features that do change. The fold change distribution is a two-

parameter distribution chosen either as a two-parameter Uniform or a Gaussian. Based

on the expressions from the first subsection of the results section, the target proportions

were then obtained as qgi =
νgiq1i

∑k νgkq1k
. Conditioned on the total number of sequencing

reads τ , the sequencing output Ygi· for all i were obtained as a multinomial with propor-

tions vector qg· = [|qgi|]pi=1. We set the control proportions from various experimental

datasets (specifically, mouse, lung and the diarrheal microbiomes). With this setup, we

can vary f , and the two parameters of the fold change distribution, and ask, how various

normalization and testing procedures compare in terms of their performance. For bulk

RNAseq data, as illustrated in the previous chapter, we simulated 20M reads per sample.

For comparison of Wrench scales with other normalization approaches, we altered

the above procedure slightly to allow for variations in internal abundances of features in

observations arising from a group g. We used νgi ( where the bar indicates this value will

now assume the role of an average) generated above as a prior fold change for observation-

wise fold change generation. That is, for all samples j ∈ 1 . . .ng for all g, where ng

represents the number of samples in group g, for all i (including the truly null features),

sample νg ji from LN(logνgi, σ̃
2
ν ) for a small value of σ̃2

ν = .01. This induces sample

specific variations in the proportions within groups. Notice that this makes the problem

harder and more realistic, as feature marginal count distributions now arise from a mixture

of distributions. Based on empirically observed MA plots for our metagenomic datasets,

we set the mean and standard deviation of prior log-fold change distribution to 0 and 3

respectively. For generating 16S metagenomic-like datasets, logged sample depths were
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sampled from a log-normal distribution with logged-standard deviation of .25 and logged-

means corresponding to log(4K), log(10K) and log(100K) reads. These parameters were

chosen based on comparisons with M-A plots, the sparsity levels and total sample depths

observed in current experimental datasets. We repeated simulations for 20 iterations.

In both versions of simulations, the total induced abundance change relative to that

of the control is Λg j = νT
g j·q1·, where νg j· is the vector of fold changes for sample j in

group g, and q1· is the average vector of feature-wise control proportions. As it can be

seen from the expression for Λg j, notice that perturbing features with very low relative

frequencies do not demonstrably induce compositional bias at low sample depth settings

(unless perturbed by very high fold changes). So for every simulation iteration, the frac-

tion f of features that were perturbed in cases were chosen randomly according to their

control proportions. We apply the term compositional correction factor for Λ
−1
g j and the

term normalization factor for a sample as the product of its compositional correction fac-

tor with something that is proportional to that of its sample depth. Thus, all technical

artifacts like total abundance changes, but sample depth, are incorporated into the defini-

tion of compositional factors.

Performance comparisons For simulations, we used edgeR as the workhorse fitting

toolkit. The compositional scale factors provided by all normalization methods were

provided to edgeR as offset factors. We define detectable differential abundance in our

simulated count data as follows. For each simulation, as we know the true compositional

factors, we input them as normalization factors in edgeR, and the detectable differences

in abundances are recorded. All the performance metrics are then defined based on this
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ground truth. Because we are interested in fold changes and their directions, the perfor-

mance metrics we report are redefined as follows: Sensitivity as the ratio of the number of

detectable true-positives with true sign over the total number of positives, False discovery

as the ratio of the number of detectable true positives with false sign and false positives,

over the total number of significant calls made.

The offset-covariate analysis followed the procedure in [6]. For resampling anal-

ysis, samples from each experimental group (with atleast 15 samples) were split in half

randomly to construct two artificial groups. Normalization factors from each method

were then used to perform differential abundance analysis, and the total number of differ-

entially abundant calls were recorded. The procedure was repeated for ten iterations for

each group, and the results were averaged across 41 experimental groups. Those samples

for which Scran fails to reconstruct normalization scales were discarded from differen-

tial abundance analyses to avoid any power differences while testing. The normalization

scales however, were obtained with all data for each method.

Fisher exact tests were used to perform functional enrichment analyses for posi-

tively associated OTUs. A Genus level functional enrichment analysis was first performed

by aggregating annotations from the FAPROTAX1.1 database [146] at the Genus level. A

more specific OTU level functional enrichment analysis was devised as follows. Because

the Tara Oceans Kegg module (KM) abundance data (downloaded from TARA243.KO-

module.profile.release.gz, under http://ocean-microbiome.embl.de/data/) and the 16S re-

constructions are obtained from the same input DNA through whole metagenome shot-

gun, the same compositional factors apply to both datatypes. Each normalization ap-

proach’s compositional factors for 16S data was used to rescale the KM relative frequen-
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cies. This normalized KM data was used to annotate each OTU by (normalized) KMs that

Spearman correlate at a value of atleast .75.

4.6 Discussions

For some researchers, statistical inference of differential abundance is a question

of differences in relative frequencies; for others, it is a matter of characterizing differ-

ences in absolute abundances/concentrations of features expressed in samples across con-

ditions [54,154]. In this work, we took the latter view and aimed to characterize the com-

positional bias injected by sequencing technology on downstream statistical inference of

concentrations of genomic features.

It is clear that the probability of sequencing a particular feature (ex: mRNA from

a given gene or 16S RNA of an unknown microbe) in a sample of interest is not just a

function of its own fold change relative to another sample, but inextricably linked to the

fold changes of the other features present in the sample in a systematic, statistically non-

identifiable manner. Irrevocably, this translates to severely confounding the fold change

estimate and the inference thereof resulting from generalized linear models. Because the

onus for correcting for compositional bias is transferred to the normalization and testing

procedures, we reviewed existing spike-in protocols from the perspective of composi-

tional correction, and analyzed several widely used normalization approaches and differ-

ential abundance analysis tools in the context of reasonable simulation settings. In doing

so, we also identified problems associated with existing techniques in their applicability to

sparse genomic count data like that arising from metagenomics and single cell RNAseq,
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which lead us to develop a reference based compositional correction tool (Wrench) to

achieve the same. Wrench can be broadly viewed as a generalization of TMM [52] for

zero-inflated data. We showed that this procedure, by modeling feature-wise zero gen-

eration, reduces the estimation bias associated with other normalization procedures like

TMM/CSS/DESeq that ignore zeroes while computing normalization scales. In addition,

by recovering appropriate normalization scales for samples even where current state of

the art techniques fail, the method avoids data wastage and potential loss of power during

differential expression and other downstream analyses

Some practically relevant notes on the application of proposed method to metage-

nomic datasets follow. First, our choice of methodology and simplifying assumptions

were principally determined by the scale and sparsity of the 16s metagenomic datasets

and estimation robustness. While fully joint parameter inference algorithms will certainly

be more accurate, they can be unwieldy and computationally intensive with large scale

datasets boasting a large number of features with high sparsity. A case in point is the neat

GAMLSS methodology [9], which improved over the proposed pipeline (Wrench nor-

malization coupled with edgeR differential abundance analysis) in a small scale equimo-

lar miRNA benchmarking dataset, but could not run to completion in the simplest of our

metagenomic datasets, the mouse gut microbiome. In Fig. 4.12, we present the same

benchmarking analysis as in Fig. 7 of Argyropolous et al., [9] for DeSeq2, GAMLSS,

Wrench normalization + EdgeR and Scran normalizaiton + EdgeR pipelines for differen-

tial abundance.

Second, our simulation results indicate that the performance of Wrench stabilizes

by 10−20 samples per group depending on sample depth and the fraction of features that
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change across conditions. While in our experience, this is very well within the limits of

practically realized sample sizes in metagenomic experiments, at very low sample sizes

and very low sample depths (less than a few thousand reads per sample), some care might

be necessary. For instance, coherence of the reconstructed sample-wise compositional

scales within groups relative to the experimental design can be checked and deviations

from expectations analyzed/corrected. Third, our current implementation exploits cate-

gorical group information/factors alone (e.g., cases and controls), and extension to con-

tinuous covariates (e.g., age, time) underlying the sampling design are planned for future

work. If a continuos covariate is present, converting it to factors by discretizing its range

in to non-overlapping windows is an option that the analyst can entertain. Furthermore,

because group information is exploited during normalization, our proposed methodology

is not immediately applicable for classification purposes. In such applications, imme-

diate extensions of the proposed empirical Bayes formalism by assuming priors on the

unknown-sample’s group membership (based vaguely, for example, on clustering dis-

tances) can be done, and is planned for future work.

A few important insights on compositional bias emerge from our theory, simulation

and experimental data analyses. In our simulations, we found reference based normal-

ization approaches to be far superior in correcting for sequencing technology-induced

compositional bias than library size based approaches. From a more practically relevant

perspective, we found that in all the tissues from the rat body map bulk RNAseq dataset,

the scale factors can be robustly identified. We expect that in other bulk RNAseq datasets,

the assumptions underlying compositional correction techniques to hold well. These re-

sults reinforce trust in exploiting such scaling practices for other downstream analyses of
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sequencing count data apart from differential abundance analysis; for example, in esti-

mating pairwise feature correlations. In the regimes where assumptions underlying these

techniques are met, an analyst need not be restricted to scientific questions pertaining to

relative frequencies alone. The fundamental assumption behind all the aforementioned

techniques is that most features do not change across conditions (or the closely related

assumption that the log-fold change distribution is centered at 0). As we illustrated, these

assumptions appear to hold rather well in bulk RNAseq. Do we expect these to hold in

arbitrary microbiome datasets as well? This question is not easy to address without more

experiments, but the relatively high correlations obtained with orthogonal measurements

of technical biases, the similarity in the compositional scales obtained within samples

arising from biological groups, and their sometimes highly significant shifts preserved

across normalization techniques and across sequencing centers in large scale studies cer-

tainly reinforce the critical importance of characterizing compositional biases, if any, in

metagenomic analyses by establishing carefully designed spike-in protocols. In particular,

given the inverse dependence of compositional correction factors on the total feature con-

tent in the absence of technical biases, the large compositional scale estimates obtained

for stool samples (across all normalization techniques) is suspect. Compositional effects

can amplify even when a few features experience adverse technical perturbations, and

only carefully designed experiments can isolate these effects to inform further normal-

ization approaches. Finally, our results also emphasize the tremendous care one needs to

exercise before applying the most natural normalizations based on total sequencing depth

or by applying pseudocounts when the data is excessively sparse (CLR, RPKM, CPM,

rarefication are a few examples).
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This brings us to the question of how effective spike-in strategies are in enabling

us to overcome compositional bias. It is immediately clear that the widely used ERCC

recommended spike-in procedure for RNAseq cannot help us in overcoming confounded

inference due to compositional bias for the simple reason that it already starts with an

extract, a compositional data source. If one is able to add the spike-in quantities at a prior

stage during feature extraction, we would have some hope. Lovén et al., [113] demon-

strate a procedure for RNAseq that precisely does this, in which the spike-ins are added at

the time when the cells are lysed and suspended in solution [114]. One can perhaps extend

these solutions to metagenomics, where we may expect confounding due to composition-

ality to be heavy by adding barcoded 16S RNAs during feature extraction. We expect

similar problems to arise in other genomic and epigenetic measurement techniques that

exploit sequencing technology, and the need for the development of appropriate spike-in

procedures should be addressed.

Finally, it is imperative that we enforce new tools and techniques for normalization

and differential abundance analysis of sequencing count data be benchmarked for com-

positional bias at least in the simulation pipelines. Data analyses based on large-scale

integrations of different data types for predicting clinical phenotypes is increasingly com-

mon, and care should be taken to include effective normalization techniques to overcome

compositional bias. We hope the results and ideas presented and summarized in this work

enables a researcher to do just that.
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4.7 Conclusions

Compositional bias, a linear technical bias, underlying sequencing count data is in-

duced by the sequencing machine. It makes the observed counts reflect relative and not

absolute abundances. Normalization based on library size/subsampling techniques can-

not resolve this or any other practically relevant technical biases that are uncorrelated with

total library size. Reference based techniques developed for normalizing genomic count

data thus far, can be viewed to overcome such linear technical biases under reasonable

assumptions. However, high resolution surveys like 16S metagenomics are largely under-

sampled and lead to count data that are filled with zeroes, making existing reference based

techniques, with or without pseudocounts, result in biased normalization. This warrants

the development of normalization techniques that are robust to heavy sparsity. We have

proposed a reference based normalization technique (Wrench) that estimates the overall

influence of linear technical biases with significantly improved accuracies by sharing in-

formation across samples arising from the same experimental group, and by exploiting

statistics based on occurrence and variability of features. Such ideas can also be exploited

in projects that integrate data from diverse sources. Results obtained with our and other

techniques, suggest that substantial compositional differences can arise in (meta)genomic

experiments. Detailed experimental studies that specifically address the influence of com-

positional bias and other technical sources of variation in metagenomics are needed, and

must be encouraged.

83



R
ig

ht
 R

et
ro

au
ric

ul
ar

 c
re

as
e

Le
ft 

R
et

ro
au

ric
ul

ar
 c

re
as

e
An

te
rio

r n
ar

es
Va

gi
na

l i
nt

ro
itu

s
R

ig
ht

 A
nt

ec
ub

ita
l f

os
sa

Po
st

er
io

r f
or

ni
x

Bu
cc

al
 m

uc
os

a
H

ar
d 

pa
la

te
Le

ft 
An

te
cu

bi
ta

l f
os

sa
Pa

la
tin

e T
on

si
ls

Th
ro

at
Su

bg
in

gi
va

l p
la

qu
e

To
ng

ue
 d

or
su

m
Su

pr
ag

in
gi

va
l p

la
qu

e
At

ta
ch

ed
 K

er
at

in
ize

d 
gi

ng
iva

Sa
liv

a
M

id
 v

ag
in

a
St

oo
l

Lo
g2

(M
ed

ia
n 

Po
si

tiv
e 

R
at

io
)

−2
−1

0
1
2
3
4

Sa
liv

a
Su

bg
in

gi
va

l p
la

qu
e

Su
pr

ag
in

gi
va

l p
la

qu
e

Pa
la

tin
e T

on
si

ls
H

ar
d 

pa
la

te
To

ng
ue

 d
or

su
m

Th
ro

at
Bu

cc
al

 m
uc

os
a

St
oo

l
At

ta
ch

ed
 K

er
at

in
ize

d 
gi

ng
iva

R
ig

ht
 A

nt
ec

ub
ita

l f
os

sa
Le

ft 
An

te
cu

bi
ta

l f
os

sa
An

te
rio

r n
ar

es
R

ig
ht

 R
et

ro
au

ric
ul

ar
 c

re
as

e
Le

ft 
R

et
ro

au
ric

ul
ar

 c
re

as
e

Va
gi

na
l i

nt
ro

itu
s

M
id

 v
ag

in
a

Po
st

er
io

r f
or

ni
x

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Fr
ac

tio
n 

Ft
rs

. U
nd

et
ec

te
d/

Ab
se

nt

Le
ft 

An
te

cu
bi

ta
l f

os
sa

Va
gi

na
l i

nt
ro

itu
s

At
ta

ch
ed

 K
er

at
in

ize
d 

gi
ng

iva
Th

ro
at

Sa
liv

a
M

id
 v

ag
in

a
Po

st
er

io
r f

or
ni

x
Su

pr
ag

in
gi

va
l p

la
qu

e
An

te
rio

r n
ar

es
Le

ft 
R

et
ro

au
ric

ul
ar

 c
re

as
e

H
ar

d 
pa

la
te

Bu
cc

al
 m

uc
os

a
St

oo
l

To
ng

ue
 d

or
su

m
Pa

la
tin

e T
on

si
ls

Su
bg

in
gi

va
l p

la
qu

e
R

ig
ht

 A
nt

ec
ub

ita
l f

os
sa

R
ig

ht
 R

et
ro

au
ric

ul
ar

 c
re

as
e

10

11

12

13

14

15

16

Lo
g2

(S
am

pl
e 

D
ep

th
)

R
ig

ht
 R

et
ro

au
ric

ul
ar

 c
re

as
e

Le
ft 

R
et

ro
au

ric
ul

ar
 c

re
as

e
R

ig
ht

 A
nt

ec
ub

ita
l f

os
sa

An
te

rio
r n

ar
es

Le
ft 

An
te

cu
bi

ta
l f

os
sa

Bu
cc

al
 m

uc
os

a
Va

gi
na

l i
nt

ro
itu

s
H

ar
d 

pa
la

te
At

ta
ch

ed
 K

er
at

in
ize

d 
gi

ng
iva

Pa
la

tin
e T

on
si

ls
M

id
 v

ag
in

a
Po

st
er

io
r f

or
ni

x
Sa

liv
a

To
ng

ue
 d

or
su

m
Th

ro
at

Su
pr

ag
in

gi
va

l p
la

qu
e

Su
bg

in
gi

va
l p

la
qu

e
St

oo
l

−6

−4

−2

0

2

4

Lo
g2

(T
m

m
)

R
ig

ht
 R

et
ro

au
ric

ul
ar

 c
re

as
e

Le
ft 

R
et

ro
au

ric
ul

ar
 c

re
as

e
An

te
rio

r n
ar

es
Po

st
er

io
r f

or
ni

x
At

ta
ch

ed
 K

er
at

in
ize

d 
gi

ng
iva

Va
gi

na
l i

nt
ro

itu
s

H
ar

d 
pa

la
te

Bu
cc

al
 m

uc
os

a
R

ig
ht

 A
nt

ec
ub

ita
l f

os
sa

M
id

 v
ag

in
a

Th
ro

at
Le

ft 
An

te
cu

bi
ta

l f
os

sa
To

ng
ue

 d
or

su
m

Pa
la

tin
e T

on
si

ls
Sa

liv
a

Su
pr

ag
in

gi
va

l p
la

qu
e

Su
bg

in
gi

va
l p

la
qu

e
St

oo
l

−6

−4

−2

0

2
Lo

g2
(S

cr
an

)

Le
ft 

R
et

ro
au

ric
ul

ar
 c

re
as

e
R

ig
ht

 R
et

ro
au

ric
ul

ar
 c

re
as

e
An

te
rio

r n
ar

es
H

ar
d 

pa
la

te
Bu

cc
al

 m
uc

os
a

To
ng

ue
 d

or
su

m
Th

ro
at

At
ta

ch
ed

 K
er

at
in

ize
d 

gi
ng

iva
Pa

la
tin

e T
on

si
ls

R
ig

ht
 A

nt
ec

ub
ita

l f
os

sa
Le

ft 
An

te
cu

bi
ta

l f
os

sa
Po

st
er

io
r f

or
ni

x
Sa

liv
a

M
id

 v
ag

in
a

Va
gi

na
l i

nt
ro

itu
s

Su
bg

in
gi

va
l p

la
qu

e
Su

pr
ag

in
gi

va
l p

la
qu

e
St

oo
l

−3
−2
−1

0
1
2
3

Lo
g2

(W
2)

A

B

AAAA

HMP, Baylor

C D

W
es

te
rn

BK

−1

1

3

W
es

te
rn

BK

−1

1

3

Lo
g2

 (W
2)

C
on

tro
l

C
as

e

−4

0

4

Lo
g2

 (S
cr

an
)Lo

g2
 (S

cr
an

)

C
on

tro
l

C
as

e

−4

0

4

Lo
g2

 (W
2)

Lo
g2

 (S
cr

an
) Mouse Diarrhea

Figure 4.11: Wrench retains potential biological information, and indicates importance of
compositional correction in general practice. We plot some statistical summaries and the com-
positional scale factors reconstructed by a few techniques for various Human Microbiome Project
samples, sequenced at the Baylor College of Medicine. (A) On the top-left, we plot the logged
median of the positive ratios of group-averaged proportions to that of Throat chosen as the ref-
erence group. Stool samples show considerable deviation from the rest of the samples despite
having comparable fraction of features detected and sample depths to other body sites. Notice
the log scale. (B) The similarity in the reconstructed scales across techniques (second row) for
closely related body sites are striking; although minor variations in the relative placements were
observed across centers potentially due to technical sources of variation, the overall behavior of
highly significant differences in the scales of behind-ear and stool samples were similar across
sequencing centers and normalization methods. Continued on next page.
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Figure 4.11: Continued from previous page. These techniques predict a roughly 4X-8X
(ratio of medians)inflation in the Log2-fold changes when comparing abundances across
these two body sites. (C) Wrench and scran compositional scale factors across the plant-
based diet (BK) and Western diet (Western) mice gut microbiome samples. (D) Compo-
sitional scale factors for healthy (Control) and diarrhea afflicted (Case) children. Slight
differences in the compositional scales are predicted in the diet comparisons with t-test
p-values < 1e-3 for all methods except TMM, but not as much in the diarrheal samples.
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Figure 4.12: Benchmarking analysis of the small scale, high coverage Argyropolous et
al., miRNA dataset for deviatioin from expected fold changes in the clustered symmetric
DE without global changes in expression ratiometric A versus B. Same as Fig. 7 in [9].
The shown numbers measure deviation of the reconstructed fold changes from the true ex-
pected fold changes by experimental design, for the pipeline. Lower is better. Refer [9], Fig.
7 for details on experimental design. The data was downloaded from authors’ repository:
https://bitbucket.org/chrisarg/rnaseqgamlss.
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Part II

Adaptive immunity in prokaryotes
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Chapter 5

The curious case of prokaryotic adaptive immunity.

In vertebrates, adaptive immunity against infectious agents is special [155]. It pro-

vides hosts with immediate adaptations to counteract infections, over ecological time

scales. This is in direct contrast to any innate defense novelties that may arise through

natural selection over much longer evolutionary time scales. To fully appreciate the util-

ity of adaptive immunity, one only needs to look back to the pathological complications

of Measles morbillivirus or Varicella zoster viral infections, which respectively cause

measles [156, 157] and chickenpox [158]. These examples are often quoted and perhaps,

the most relatable.

In general with higher organisms, adaptive immunity operates in several steps. The

first phase involves a rapid combinatorial production and selection of specialized cells

that synthesize proteins (antibodies) with high specificity to bind an appropriately pro-

cessed target infectious agent. The resulting stably bound complexes activate a series of

host innate responses, ultimately clearing host infection. Perhaps owing to the complex

nature of the system and the variety of components involved [155, 159, 160], until about

a decade ago, it was generally thought only higher organisms like vertebrates entertain

adaptive immunity. As far as prokaryotes were concerned, two distinct classes of rel-
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atively rudimentary immune systems were known to operate, especially against viruses

(phages) that invade them. The first makes the host resistant to phage infection. Examples

of this type include mutations in the cell surface receptors that prevent phage adsorption

(envelope resistance), and the variety of restriction-modification enzymes that recognize

and cleave the intracellular phage DNA introduced during a phage infection. The second

class induce altruistic cellular suicide of infected hosts, thus limiting the spread of infec-

tions to other concomitant hosts. Toxin/anti-Toxin and abortive infection (Abi) systems

are examples of the latter.

In the late 2000s, a very simple yet highly effective adaptive immune system was

documented in natural prokaryotic populations. Owing to their genomic architecture in

bacterial DNA, the system was named CRISPR – clustered regularly interspersed palin-

dromic repeats [161]. It is instructive to summarize a decade long story behind this dis-

covery [162, 163]. The history also serves to emphasize the pivotal role sequencing and

bioinformatics played in generating effective, testable hypotheses. The first steps towards

the identification of CRISPRs were laid down by a series of papers that documented the

presence of roughly equally spaced repeats, interleaved with some spacer DNA in the

genomes of a few archaea and bacteria [164–171]. Continued public funding allowed

the growth and maintenance of sequencing databases, along with effective algorithms to

search them. These tools revealed that the aforementioned spacer DNA that interleave

the repeat segments had extensive similarities to seemingly random segments of the ge-

nomic DNA of invading phages, among other things [161, 172–175]. Putative genes and

promoters upstream of the CRISPR locus were also identified, and relating these find-

ings back to the nobel prize winning RNA interference mechanism of gene expression
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inhibition, several authors speculated that spacer DNA when expressed could function

as anti-sense RNAs [176, 177]; when bound to their complementary phage targets, they

could induce an RNA interference like pathway resulting ultimately in the destruction

of target. By 2010, these speculations turned to biological facts through careful experi-

ments [178–183]. But what makes CRISPRs adaptive? Sequencing CRISPR loci from

laboratory cultures of CRISPR hosts before and after coevolution with invading phages

showed that CRISPR spacer DNA reflect new segments in phage DNA over ecological

time scales [178, 180, 184]. Furthermore, host resistance was correlated with the fraction

of spacers that match segments in the invading phage genomic DNA [178, 180]. Thus, a

very fundamental and highly significant advancement in microbiology was made in the

last decade: prokaryotic CRISPR is an effective adaptive resistance mechanism.

Our interest in CRISPRs is piqued by another set of observations. With powerful

experiments and bioinformatics analyses, various authors have demonstrated that autoim-

munity is a major side-effect experienced by CRISPR hosts [185–188]. This is caused

because the CRISPR machinery could, with very high error rates, exploit DNA segments

derived from the host genome itself as spacer DNA. As a result, CRISPRs are config-

ured to consider host DNA as foreign, adversely affecting host health. We analyze the

influence of autoimmunity in CRISPR mediated prokaryote-phage coevolution over eco-

logical time scales, and discuss some evolutionary implications. This is the subject of

chapter 6.
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Chapter 6

Ecological dynamics of autoimmune CRISPR induced prokaryote-

phage coevolution.

Prokaryotes have evolved diverse molecular defense systems over billions of years

of co-evolution with phages [189, 190]. Clustered Regularly Interspersed Palindromic

Repeats (CRISPRs), found in roughly 40% of sequenced bacteria and 90% of archaea, are

peculiar in that they confer adaptive immunity against invading phages [183, 191–194].

CRISPR, as a defense mechanism, works via targeted acquisition of 26-72bp fragments

(called protospacers) from the target DNA, and subsequently use of acquired fragments

(spacers) for target restriction through an RNAi-like mechanism [176, 178]. Acquisition

events appear to concentrate around short 2 – 5bp motifs (protospacer adjacent motifs,

or PAMs) in the target DNA [180, 183, 195]. CRISPR loci are organized as cassettes in

which short repeats interleave spacers, and are located adjacent to highly diverse genes

that code for the CRISPR associated protein machinery [183] [187].

Intriguingly, in addition to acquiring phage fragments, CRISPR systems can also

acquire spacers from the host genome. This has been experimentally demonstrated in

two model systems: first, selective induction of the acquisition machinery (in the ab-
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sence of interference) in laboratory strains of Escherichia coli resulted in the accumula-

tion of a large number of self-targeting spacers [185]; second, abolition of interference

activity (and not the acquisition machinery) in wild type Streptococcus thermophilus re-

sulted in unbiased acquisitions of self-targeting spacers alongside phage-targeting spac-

ers [186]. However, a large-scale survey of CRISPR cassettes in microbial genomes iden-

tified that only about 0.4% of the spacers are self-targeting, which, considering the rel-

ative size of prokaryotic genomes over phages, suggests some mechanism of selection

against self-targeting spacers, perhaps to avoid autoimmunity [186,187,196]. Indeed, di-

rected experiments have conclusively shown that self-targeting can result in severe lethal-

ity [180, 197–201].

We therefore face a conundrum: how do prokaryotes maintain functional CRISPR

systems [202]? Despite the conceptual similarities with restriction-modification systems

that avoids autoimmunity by methylating the host genomes’ target restriction sites [203],

no analogous genome wide self- vs. non-self-discrimination (SND) mechanism is known

for CRISPR systems. In fact, as noted above, the evidence thus far suggests that an effi-

cient SND may not exist (The SND mechanism described by Marrafini and Sontheimer

explains the evasion of self-destruction of CRISPR locus only and does not confer genome

wide protection [204]). But there are other routes to avoiding autoimmunity. Toxin/anti-

toxin or abortive infection systems restrict the scope of autoimmunity to infected pop-

ulations via infection-induced activation [205]. Indeed, upregulation of CRISPRs upon

phage infection has been demonstrated experimentally [206–208]. This makes it possi-

ble that the accumulated self-targeting spacers may function as "toxins", which can be

activated upon infection. We therefore address the following two questions in this study:
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1. Does infection-induced activation allow CRISPRs to function as an abortive infec-

tion (ABI) system? If so, what is the relative contribution of ABI in determining

coevolving host and phage densities?

2. If CRISPR suppression in uninfected host populations is required to avoid host

extinction, how strong should this suppression be?

Clearly, the answers to these questions depend on key ecological and CRISPR

kinetic parameters. For instance, while CRISPRs are highly active against phages in

wild type S. thermophilus (a lactic acid bacteria widely used in industrial production of

cheese) [180], artificial induction is essential to activate the system in E.coli [209]. To

this end, we develop and analyze a dynamical model that integrates prokaryote-phage

coevolutionary dynamics, with regulated, infection-induced CRISPR acquisition and in-

terference activity. Several models of CRISPR-mediated prokaryote-phage coevolution-

ary dynamics have been previously reported [1, 2, 200, 210–213]. While refs. [211–213]

account for an abstract CRISPR-associated cost, they do not include the specifics of au-

toimmunity kinetics/the regulatory aspect of CRISPRs. The model we develop here is

detailed enough to incorporate the adaptive aspects of CRISPR, and general enough to al-

low intuitive (analytic) interpretations of the resulting qualitatively distinct steady states.

We interrogate the model using simulations and bifurcation analyses, and we find that as

a function of key host, ecological, and CRISPR evolutionary parameters, the operational

behavior of CRISPRs (and the resulting host densities) decomposes into four qualitatively

distinct regimes. In those regimes where CRISPR is advantageous to the host, both re-

striction and abortive infection operate; the latter dominates restriction in SND absence.

92



Crucially, CRISPR maintenance is determined by an upper bound on the activation level

of CRISPRs in uninfected populations. This critical limit of activation – beyond which

host extinction is inevitable – is determined by a simple dimensionless combination of

parameters. We compare the current experimental data on CRISPR kinetics with these

qualitative observations, which helps to explain the spacer deletion mechanism and ab-

sence of CRISPR activity in highly virulent and multi-drug resistant clinical isolates.

6.1 Results

6.1.1 Behavior of a simple prokaryotic immune system with regulated

autoimmunity

Before proceeding to model the complexity of CRISPR dynamics in general, we

start by considering the case of a simple prokaryotic immune system with regulated au-

toimmunity. The goal here is to analyze the influences of the regulation, immunity and

autoimmunity on the resulting coevolutionary dynamics.

Fig 6.1 illustrates a simple coevolutionary model in which the immune system,

apart from conferring immunity, also induces autoimmunity that is regulated in a cell

state (infected / uninfected) specific manner. Dynamic variables are denoted with Roman

letters, and parameters are denoted with Greek symbols. Any parameter associated with

production of an item i is denoted as αi and that with its degradation is denoted by γi.

Free cells (p), grow exponentially at a rate of αp, under a carrying capacity constraint of

Φp. Phages (v) infect free cells to produce infected cells at a rate of αq. Infected cells can

lyse to release phages at a rate of γq→v or undergo immunity to become a free cell at a rate
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Figure 6.1: Bifurcation analysis of a simple model of a prokaryotic immune system with reg-
ulated autoimmunity side effect. (A) p, q and v denote densities of uninfected, infected cells, and
phage respectively. q undergoes autoimmunity at a rate of γq→φ , while p undergoes autoimmunity
at a suppressed rate determined by δγp→φ . The second figure shows the bifurcation behavior of
the free cell densities with respect to the control parameter δ , beyond a certain critical value of
which one of the steady states vanishes. Continued on next page.
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Figure 6.1: Continued from previous page. (B,C) Two-parameter bifurcation diagram
revealing coexistence (C) and host extinction (E). Each plot instance is denoted by a
tuple <AB> where A and B can indicate low (L) or high (H) values or extinction (E)
of prokaryote (free–solid, infected–dotted) and phage (dashed) respectively. GP→φ and
GQ→φ denote the rescaled free cell autoimmunity rate and infected cell autoimmunity
(abortive infection) rates respectively. High values of GQ→φ lead to complete phage
evasion. Parameter values αp = 1 hr−1, Φ = 108 cells ml−1, γv = 5 hr−1, αv = 50,
αq = 5×10−9 ml phage−1 hr−1.

Variable Description Value, Units

p,q Cell densities cells ml−1

v Phage density phages ml−1

αp Free cell replication rate hr−1

αq Phage adsorption rate ml phage−1 hr−1

γp→φ , γq→φ , γq→p, γq→v Autoimmunity, Immunity, and Lysis rates hr−1

γv Phage death rate hr−1

αv Phage burst size phages
Φp Environmental carrying capacity cells ml−1

δ Scale factor (0≤ δ ≤ 1), determines CRISPR activity in free cells.
µv Phage mutation rate per protospacer protospacers−1

Table 6.1: Descriptions of variables and parameters in model 1. Dynamic variables
are denoted with Roman letters, and parameters are denoted with Greek symbols. Any
parameter associated with production of an item i is denoted as αi and that with its
degradation is denoted as γi. Steady state value of an item i will be donted by i∗.

of γq→p, or undergo autoimmunity at a rate of γq→φ . Free cells undergo autoimmunity at

a suppressed rate of δγp→φ , (0 ≤ δ ≤ 1). Note γp→φ need not necessarily equal γq→φ ,

for reasons that will become clear later when we discuss the detailed CRISPR model.

The condition δ = 0 implies complete repression of autoimmunity in free cells, whereas

δ = 1 indicates no difference in repression across the two cell states. The burst size of

phages is αv. Phages also die at a rate of γv. Table 6.1 describes the variables and model

parameters.
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The dynamical equations for this model can be written as:

ṗ = αp p
(

1− p+q
Φp

)
−δγp→φ p−αq pv+ γq→pq

q̇ = αq pv− (γq→φ + γq→p + γq→v)q

v̇ = αvγq→vq− γvv−αq pv

(6.1)

Measuring all the state variables in units of Φp, and time in units of τ =
[
αqΦp

]−1 t,

and denoting all the transformed variables and parameters with their corresponding Ro-

man alphabets, we obtain:

Ṗ = Ap p(1−P−Q)−δGP→φ P−PV +GQ→PQ

Q̇ = pv− (GQ→φ +GQ→P +GQ→V )Q

V̇ = αvGQ→V Q−GVV −PV

(6.2)

We can study the influence of regulation (determined by the parameter δ ), immunity

and autoimmunity rates (GQ→V ,GQ→φ , and GP→φ ) on the above dynamical system using

a bifurcation analysis. These results are summarized in Fig. 6.1. Fig. 6.1A shows that, as

a function of δ , two fixed points collide at a critical value of δ (which we denote by δ1),

beyond which one of them ceases to exist. Fig. 6.1B shows that in the (δ ,GP→φ ) space,

beyond a critical curve that falls roughly as G−1
P→φ

, hosts go extinct. Fig. 6.1C reveals in

the (δ ,GQ→φ ) space, beyond a line of critical points, phages go extinct. Behavior in the

(δ ,GQ→P) space is similar. We provide an analytical treatment below.

Bifurcations occur when the number of fixed points or their stability properties

change in response to a dynamical parameter. Our system can approach three qual-
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itatively distinct steady states: the first corresponds to host extinction, which we de-

note by E∗ = (P∗e ,Q
∗
e ,V
∗
e ) = (0,0,0). The second corresponds to a phage free system,

which occurs with pure cultures where phages have not been introduced, or when hosts

completely evade phage infection, which we denote by F∗ = (P∗f ,Q
∗
f ,V
∗
f ) = (P∗f ,0,0).

The third corresponds to the case of prokaryote-phage coexistence, which we denote by

C∗ = (P∗c ,Q
∗
c ,V
∗
c ).

In the phage free situation, the system evolves along the curve Ṗ = AP(1−P)−

δGP→φ P, towards the fixed point P∗f = 1− δGP→φ

AP
. Non-extinction/positivity condition

on this expression reveals a criticality condition on δ for maintenance of hosts carrying

our simple immune system in the phage free case: δ < AP
GP→φ

= δ1. This is precisely

the curve mapped out in Fig. 6.1B beyond which the hosts go extinct; when δ = δ1,

F∗ = E∗, and when δ > δ1, F∗ is infeasible. Hence, as long as the immune system (with

an autoimmunity side effect) is suppressed below a critical nondimensional ratio of the

free cell reproduction rate to that of its autoimmunity potential, the phage free steady state

is feasible.

The non-trivial fixed point for the case of coexistence, C∗, is given by:

P∗c =
GV

αv1+
GQ→φ +GQ→P

GQ→V︸ ︷︷ ︸
immune advantage


−1

V ∗c =
AP(1−P∗c )−δGP→φ

APP∗c +
GQ→φ+GQ→P

GQ→V

Q∗c =
P∗c V ∗c
GQ

(6.3)
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Here GQ = (GQ→φ +GQ→P +GQ→V ) denotes the overall removal rate of infected

cells. In this coexistence regime, the steady state expression for P∗c decomposes into the

two parts: steady-state value when the dynamics is phage limiting and the advantage of-

fered by the immune system in overcoming phage lysis. This advantage is given by the

ratio of the sum of immunity and autoimmunity rates conferred by the immune system

in infected cells to that of the phage specific lysis rates. Thus inducing autoimmunity,

alongside immunity, in infected cells (abortive infection) is beneficial to the prokaryotic

population when coevolving with phages. As is the case with predator-prey models, P∗c

is independent of the cell’s own growth rate [214], and is completely determined by the

immunity and autoimmunity parameters, along with the phage specific parameters. Fur-

thermore, positivity conditions on the steady state values yields the feasibility conditions

for the existence of this steady state: (0 < P∗c < 1), and (0≤ δ < δ2) with δ2 =
AP(1−P∗c )

GP→φ

(as V ∗c ≤ 0 otherwise), giving us a tighter constraint on δ for coexistence. Notice that

δ2 < δ1. So regardless of the presence or absence of phages, a free cell autoimmunity

suppression level of δ < δ1 is required for the population to avoid losing the immune

system altogether.

When free cells completely repress the immune system (δ = 0), or when there is

no autoimmunity (GQ→φ = 0), V ∗c and Q∗c achieve their maximum values. As δ → δ2,

the values of V ∗c and Q∗c are reduced progressively. The form of these equillibria implies

that by increasing the net autoimmunity rate in free cells, lower net viral abundance is

achieved. However, by doing so the range of δ that supports coexistence is narrowed.

When δ > δ2, the coexistence steady state C∗ is infeasible, and the system operates in the

phage free regime, at which point, the condition δ < δ1 has to be satisfied to avoid host
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extinction. The bifurcation diagram in Fig. 6.1A maps this behavior: C∗ continues to be

stable until δ < δ2, whereas beyond δ2 the otherwise unstable F∗ becomes stable. The

stability of the steady states ascertained by the Routh-Horwitz criteria [214].

To analyze the influence of abortive infection on coevolution, we produced a two-

parameter bifurcation diagram for the (δ ,GQ→φ ) space (Fig. 6.1C). Two distinct regimes

are clear: a coexistence regime, and a regime where hosts evade phages. A third regime

corresponding to host extinction also occurs for autoimmunity suppression exceeding the

value δ1 (for the parameters in this figure, it occurs along the line δ = 1). The bifurcation

diagrams are similar for a variety of other parameter combinations tested. Coexistence

occurs for low values of GQ→φ , and are progressively lost as δ is increased. We can trace

the line of critical points analytically as follows. Recall that the switch from coexistence to

phage evasion is principally determined by the equality δ = δ2 =
AP(1−P∗c )

GP→φ
. If we let GQ =

(GQ→V + GQ→P + GQ→φ ) and substituting for P∗c , we obtain 1− δ
GP→φ

AP
= GV

αvGQ→V
GQ

−1
.

When αvGQ→V
GQ

>> 1 , as a function of GQ→φ and δ , this condition spans the line:

δ

K1
+

GQ→φ

K2
= 1 (6.4)

where the intercepts are given by K1 =
AP

GP→φ

[
1− GV

αv

(
1+ GQ→P

GQ→V

)]
, and K2 =

GQ→V

[
αv
GV
−
(

1+ GQ→P
GQ→V

)]
. For the parameters in Fig. 6.1C, Routh-Horwitz criteria [214]

reveals that the achieved C∗ values are stable. Beyond this boundary, coexistence is infea-

sible, and cells assume a density determined completely by δ , and independent of GQ→φ :

P∗f = 1− δAP
GP→φ

. Clearly, both K1 and K2 are reduced with increasing values of GQ→P

(immune rate), the net effect being reduction of the area under the line resulting in loss
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of coexistence. To map the influence of immunity, one can similarly establish the critical

line determining the boundary of coexistence explicitly as a function of (δ ,GQ→P).

In summary, our bifurcation analysis of this simple model (i) reveals the precise

regimes for the three possible fates of a prokaryotic immune system with regulated au-

toimmunity (complete evasion of phages, coexistence with phages, or extinction) (ii)

shows that infected cell autoimmunity (alongside restriction) is beneficial to the prokary-

otic population, and (iii) reveals a strict limit on the free cell autoimmunity levels above

which host extinction occurs.

Perhaps the most characteristic feature of CRISPRs is their adaptive ability for con-

tinued novelty resulting from spacer acquisitions and deletions. The model above does

not incorporate spacer turnover kinetics or its regulation. Neither does it allow us to

explicitly determine the influence of host protospacer levels on the interval of autoimmu-

nity regulation 0 ≤ δ < δ1; the larger this window, the higher the cellular tolerance for

CRISPRs.

We will therefore proceed to incorporate CRISPR specific reactions into the simple

model described above. We will show that (i) the simple model arises as a particular limit

of a more general model, and (ii) by thwarting the accumulation of self-targeting spacers

through an SND (whose existence/absence is hard to ascertain from existing data), and/or

through a highly active spacer deletion mechanism, the range of free-cell CRISPR activity

levels, δ , is widened. Furthermore, the general model will reveal other idiosyncratic

features of CRISPR and its maintenance in populations over ecological time scales.
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6.1.2 A detailed model for CRISPRs incorporating their adaptive ability

and regulation

In this section we develop a more detailed model of CRISPR dynamics, which gen-

eralizes the simple model discussed above. Our modeling strategy in this section (Fig 6.2

) is intermediate to models that fix a constant rate of immunity (as in [1]) and agent-

based models that describe strain-specific immunity (as in [2]). Briefly, we track spacer

accumulations over time and use linear mass action kinetics to model the CRISPR reac-

tions and the resulting ecological dynamics due to immunity and autoimmunity. Such an

approach offers the computational advantage to model growing populations while simul-

taneously accounting for the underlying regulatory dynamics of CRISPR and its kinetics.

While this model cannot capture strain-specific behavior, we can nonetheless make qual-

itative and even quantitative predictions for the average spacer accumulation kinetics re-

sulting from the adaptive nature of CRISPR dynamics. The key variables in this detailed

model are described in Table 6.2 and discussed below.

We let πv denote the total number of phage protospacers per phage genome. The

amount of self-targeting spacers per prokaryotic genome is defined relative to the phage

protospacer amount as βπv. Thus β = 0 implies no self-targeting protospacers per prokary-

otic genome, which can also be interpreted as the absence of self-targeting protospacers

due to the presence of an SND. At any time, both the free and infected cell populations

(denoted as p and q respectively) have an associated CRISPR spacer content, the "per-

cell" quotas of which are completely specified by ypA,ypI,ypS and yqA,yqI,yqS respectively

(table 6.2). Here y·A denotes the active spacer quota per cell (i.e., phage reactive), y·I de-
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Variable Description Value, Units

p Free cell density cells ml−1

q Infected cell density cells ml−1

v Phage density phages ml−1

(ypA,ypI,ypS) Average Active, Inactive, and Self-targeting spacer quota per free cell spacers cell−1

(yqA,yqI,yqS) Average Active, Inactive, and Self-targeting spacer quota per infected cell spacers cell−1

xA Average Active phage protospacer quotea per infected cell protospacers cell−1

αp Free cell replication rate 1 hr−1

αq Phage adsorption rate 5×10−9 ml phage−1 hr−1

αv Phage burst size 50 phages
γv Phage death rate 5 hr−1

Φp Environmental carrying capacity 108 cells ml−1

αc Acquisition rate of new spacers 10−6 cells hr−1

γc Deletion rate of new spacers varied hr−1

γq→p Immune rate per active spacer per infected cell 1−10−6( spacers
cell )−1 hr−1

γq→φ Autoimmunity rate per self-targeting spacer per infected cell varied ( spacers
cell )−1 hr−1

γq→v Lysis rate of infected cells 1 hr−1

πv Total number of protospacers per phage genome phage−1

β ×πv Total number of self-targeting protospacers per prokaryotic cell. varied protospacers cell−1

δ Scale factor (0≤ δ ≤ 1), determines CRISPR activity in free cells.
µv Phage mutation rate per protospacer 30×10−8 protospacers−1

Table 6.2: Description of the different variables used in the detailed model. Dynamic
variables are denoted with Roman letters, and parameters are denoted with Greek sym-
bols. Any parameter associated with production of an item i is denoted as αi and that
with its degradation is denoted as γi. Steady state value of an item i will be donted by i∗.
Parameter values were obtained from [1, 2].
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Figure 6.2: A detailed model of CRISPR dynamics. The infected cell population (and its as-
sociated CRISPR spacer content) is created from the growing free cell population (and its cor-
responding CRISPR content) through phage infections. The overall CRISPR spacer content in
each cell population is abstractly partitioned into active, inactive and self-targeting. Active spac-
ers elicit phage restriction, while self-targeting spacers cause cell death (autoimmunity). While
both the free and infected cell populations have genomic protospacers that contribute to the cre-
ation of self-targeting spacers, only the infected cell population has access to the released phage
protospacers for the creation of active spacer content. Continued on next page.
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Figure 6.2: At any given time, the CRISPR induced rate of immunity for an infected
cell is proportional to its per capita quota of active spacer content associated with the
population at that time. Similarly, we use the corresponding self-targeting spacer content
to define the rates of autoimmunity for both the infected and free cell populations. In our
equations, we directly model these per capita quotas. Thus the rates of CRISPR induced
immunity and autoimmunity for a cell population are reflective of its associated spacer
content at any given time, which in turn is determined by the kinetics of CRISPR and
prokaryote-phage interaction.

notes the inactive spacer quota per cell (i.e., phage inactive, due to mutations in the cor-

responding PAMs in phages) and y·S denotes the self-targeting spacer quota per cell. The

average phage protospacer quota per infected cell available for its new spacer acquisitions

is denoted by xA.

The per capita quotas of the various types of CRISPR spacer content are used to

model the rates of acquisition and interference reactions in each subpopulation. Let γq→p

be the rate of immunity conferred per active spacer; then at any given time the immunity

rate per infected cell is assumed to be γq→pyqA. Similarly, if γq→ denotes the rate of

autoimmunity conferred per self-targeting spacer, the autoimmunity rate per infected cell

is then γq→φ yqS. To obtain the corresponding term for the free cell population we will first

need to model infection-mediated CRISPR activation.

As the operonic structure of CRISPR/Cas genes lends itself to regulation based on

free/infected cell states [208,209,215–218], we simply scale the rates of all the CRISPR

reactions (acquisition, deletion and interference) by δ (0≤ δ ≤ 1), in the free cell popula-

tion relative to that of the infected population. So δ = 0 implies that all CRISPR reactions

in free cells are switched off whereas δ = 1 implies that there is no differential CRISPR

expression between the free and infected cell populations. Note that, only infected cells

104



can acquire novel phage protospacers, while both infected and free cell populations can

acquire self-targeting protospacers. The latter events occur when δ > 0. Under these

modeling assumptions, the corresponding autoimmunity rate per self-targeting spacer is

given by δγq→φ ; this is scaled by the per capita free cell quota of self-targeting spacers to

calculate the autoimmunity rate per free cell, δγq→φ ypS.

6.2 Population dynamics.

We now describe how the above reactions are coupled with prokaryote-phage co-

evolution. Free cells (p) replicate at a rate αp under the constraint imposed by the carrying

capacity Φp. Free cells are also produced from infected cells (q) due to immune evasions

of phage lysis at a rate of γq→pyqA (as described above). Thus the net rate of infected

cells that undergo immunity is given by γq→pyqAq. Phages (v) infect free cells with an

adsorption rate constant αq to produce q. In addition, free cells undergo autoimmunity at

a rate of γq→φ ypS, which is determined by the amount of self-targeting spacers (ypS) in

free cells and the degree of CRISPR activity in free versus infected cells (δ ). Phages with

a burst size of αv are produced from lysis of infected cells at rate γq→v and removed a t a

rate of γv. q can undergo autoimmunity at a rate of γq→φ yqS, or switch to free cells with

rate γq→pyqA. The differential equations are then given as:
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ṗ = αp p
(

1− p+q
Φp

)
−δγp→φ ypS p︸ ︷︷ ︸

autoimmunity

−αq pv+ γq→pyqAq︸ ︷︷ ︸
immunity

q̇ = αq pv︸︷︷︸
infections

−(γq→φ yqS + γq→pyqA + γq→v)q

v̇ = αvγq→vq︸ ︷︷ ︸
lysis

−γvv−αq pv

(6.5)

For convenience in exposition below, we will let Γp = (αqv+δγq→φ ypS) and Γq =

(γq→pyqA + γq→φ yqS + γq→v), which denote the overall removal rates of cells in the free

and infected populations respectively.

6.3 Spacer and protospacer concents in free and infected cells

Fig. 6.3 presents the set of reactions influencing the total spacer and protospacer

contents of different types. These give rise to the following derivatives when q(t) 6= 0 and

p(t) 6= 0.

ẋA = αq
pv
q
[(1−µv)πv− xA]

ẏqA = αcxA +αq
pv
q

[
ypA− yqA

]
− γcyqA

ẏqI = αq
pv
q

[
ypI− yqI

]
− γcyqI

ẏqS = αcβπv +αq
pv
q

[
ypS− yqS

]
− γcyqS

ẏpA = µv
[
ypI− ypA

]
+ γq→p

yqAq
p

[
yqA− ypA

]
−δγcypA

ẏpI = µv
[
ypA− ypI

]
+ γq→p

yqAq
p

[
yqI− ypI

]
−δγcypI

ẏpS = δαcβπv + γq→p
yqAq

p

[
yqS− ypS

]
−δγcypS

(6.6)
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Figure 6.3: Reactions influencing total spacer and protospacer densities. The inflow and out-
flow of different species are indicated. The figure shows the reactions influencing the total spacer
and protospacer contents at any given time in the population. We use this reaction set to derive
the rates of average spacer quota change over time. Squares in the top row correspond to the total
protospacer and spacer content in the infected cell population; those in the bottom correspond
to those in the free cell population. Note that while we model average spacer quotas this figure
illustrate all the reactions that influence total spacer contents.

We derive the aforementioned per cell quotas of protospacer (xA), and various

spacer contents as follows.

Active phage protospacer quota per infected cell Because we track the per capita

quotas of protospacer contents per infected cell, any expression for its derivative has to

account for the current spacer density in the infected cell population, the influx due to the

newly infected cells, weighted by their corresponding population sizes (refer Fig. 6.3).

At any time instant t, the total amount (density) of phage protospacers associated with
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the entire infected population is xA(t)q(t) . The total amount of newly released phage

protospacers is given by the product of total amount of infections and the expected amount

of native phage protospacers per phage as αq p(t)v(t)× (1−µv)πv . The total amount of

protospacers leaving the infected pool is proportional to the removal rate of infected cells

and is equal to Γq(t)q(t)xA(t). For any small time interval ∆t then, we can write xA(t+∆t)

as:

xA(t +∆t) =
xA(t)q(t)+∆tαq(1−µv)πv p(t)v(t)−∆tΓq(t)q(t)xA(t)

q(t)+∆tαq p(t)v(t)−∆tΓq(t)q(t)
(6.7)

where the denominator is the expected infected cell density at time t+∆t. Thus xA(t+∆t)

is precisely the average protospacer content per infected cell at time t +∆t. In a straight-

forward fashion, when q(t) 6= 0, we can compute the limit dxA(t)
dt = lim∆t→0

xA(t+∆t)−xA(t)
∆t

to obtain our derivative:

ẋA =
αq p(t)v(t) [(1−µv)πv− x(t)]

q(t)
(6.8)

We now follow a similar procedure to calculate the average spacer contents in the

free and infected cell populations.

CRISPR spacer quota per infected cell New additions to the active and self-targeting

spacer content associated with infected cell population can occur upon infection due to

acquisition reactions. In addition, they are also inherited from free cells that are infected.

Inactive spacers in the infected cell population, however, can only be inherited. Further-

more, we will also account for the removal of spacers due to CRISPR kinetics through a
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spacer deletion parameter γc .

Given the current phage protospacer levels available per infected cell (xA) for spacer

acquisitions and the acquisition rate of αc, the total rate of new active spacer acquisitions

is computed as αcxA. Similarly, given the current genomic protospacer density of βπvq,

the rate of newly acquired self-targeting spacer content is given by αcβπvq . For a given

spacer type, the inflow due to inheritance is determined by the amount of infections (αq pv)

and the spacer density of that type in the free cell population (e.g., αqvp× ypA for active

spacers). Finally, all three spacer types within an infected cell are also removed at a rate

proportional to the removal rate of infected cells and spacer deletion. Taken together this

results in the following equations for the different spacer contents at time t +∆t:

yqA(t +∆t) =
q(t)yqA(t)+∆tαcxA(t)q(t)+∆tαq p(t)v(t)ypA(t)−∆t

(
Γq + γc

)
q(t)yqA(t)

q(t)+∆tαq p(t)v(t)−∆tΓq(t)q(t)

yqI(t +∆t) =
q(t)yqI(t)+∆tαq p(t)v(t)ypI(t)−∆t

(
Γq + γc

)
q(t)yqI(t)

q(t)+∆tαq p(t)v(t)−∆tΓq(t)q(t)

yqS(t +∆t) =
q(t)yqS(t)+∆tαcβπvq(t)+∆tαq p(t)v(t)ypS(t)−∆t

(
Γq + γc

)
q(t)yqS(t)

q(t)+∆tαq p(t)v(t)−∆tΓq(t)q(t)
(6.9)

When q(t) 6= 0, we obtain the corresponding derivatives for the variables by com-

puting the limits lim∆t→0
yqA(t+∆t)−yqA(t)

∆t , lim∆t→0
yqI(t+∆t)−yqI(t)

∆t and lim∆t→0
yqS(t+∆t)−yqS(t)

∆t .

CRISPR spacer quota per free cell New additions to the self-targeting spacer content

in free cells is determined by the differential activation rate of acquisition in free cells

(δαc), and the current available pool of genomic protospacers βπv p . All three spacer

types are inherited from the infected cells at a rate proportional to the amount of infected

cells undergoing immunity. Further, at a rate determined by per protospacer spacer mu-
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tation rate µv , mutated phage protospacers can switch to being native (and vice versa);

at this rate then, this effect is also reflected in the corresponding CRISPR content as the

transition of inactive spacers to active states (and vice versa). For simplicity, we do not

consider the difference in the rates of forward and backward mutation rates. Finally, all

three spacer types within a free cell replicate at a rate proportional to the effective free cell

duplication rate, and are removed at a rate proportional to the removal rate of free cells

and spacer deletion (which, as mentioned before, is scaled by the CRISPR activation rate

δ ). Taken together this results in the following equations for average spacer contents at

time t +∆t (for clarity, we ignore mentioning time dependence explicitly):

ypA(t +∆t) =
ypA p+∆tµvypI p−∆tµvypA p+∆ty2

qAq−∆tΓp pypA−∆tδγc pypA +∆tαp p
(
1− p+q

Φ

)
ypA

p+∆tγq→pyqAq−∆tΓp p+∆tαp p
(
1− p+q

Φ

)
ypI(t +∆t) =

ypA p+∆tµvypA p−∆tµvypI p+∆tyqAqyqI−∆tΓp pypI−∆tδγc pypI +∆tαp p
(
1− p+q

Φ

)
ypI

p+∆tγq→pyqAq−∆tΓp p+∆tαp p
(
1− p+q

Φ

)
ypS(t +∆t) =

ypS p+∆tαcβπv p+∆tγq→pyqAqyqS−∆tΓp pypS−∆tδγc pypS +∆tαp p
(
1− p+q

Φ

)
ypI

p+∆tγq→pyqAq−∆tΓp p+∆tαp p
(
1− p+q

Φ

)
(6.10)

When p(t) 6= 0, we obtain the derivatives as lim∆t→0
ypA(t+∆t)−ypA(t)

∆t , lim∆t→0
ypI(t+∆t)−ypI(t)

∆t

and lim∆t→0
ypS(t+∆t)−ypS(t)

∆t .

We non-dimensionalize our equations by choosing to measure our cell density vari-

ables in units of the carrying capacity Φp, and phage density in units of αvΦp, spacer and

protospacer variables in units of the number of native phage protospacers πv, and time in

the non-dimensional units of τ = α−1
c t (CRISPR evolutionary time scales). This leads to

the following set of equations, with effective parameters AV =
αvαq

αc
Φp, GQ→P =

γq→p
αc

πv,

and GQ→φ =
γq→φ

αc
πv, while the rest of the rate parameters get scaled by α−1

c . Non-
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dimensionalization, apart from reducing the number of parameters in the model, also

simplifies analysis of relative parameter sizes.

Ṗ = APP(1− (P+Q))+GQ→PYQAQ−δGQ→φYPSP−AV PV

Q̇ = AV PV − (GQ→φYQS +GQ→PYQA +GQ→V )Q

V̇ = GQ→V Q−GVV − AV

αv
PV

ẊA = AV
PV
Q

[(1−µv)−XA]

ẎQA = XA +AV
PV
Q

[YPA−YQA]−GCYQA

ẎQI = AV
PV
Q

[YPI−YQI]−GCYQI

ẎQS = β +AV
PV
Q

[YPS−YQS]−GCYQS

ẎPA = MV [YPI−YPA]+GQ→P
YQAQ

P
[YQA−YPA]−δGCYPA

ẎPI = MV [YPA−YPI]+GQ→P
YQAQ

P
[YQI−YPI]−δGCYPI

ẎPS = δβ +GQ→P
YQAQ

P
[YQS−YPS]−δGCYPS

(6.11)

6.3.1 Simulations and bifurcation analysis.

All numerical simulations were performed with Matlab 2013b. Numerical bifurca-

tion analyses were performed with XPPAUT (AUTO) [219].

6.3.2 SND absence is extremely lethal in the absence of regulation

In the absence of SND, given the large host genome size relative to that of phage

(e.g. E.coli genome is roughly 100x the length of phage λ )and short PAM demarcating
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protospacers, we expect an abundant host protospacer pool. In our model, this would

imply a large host to phage protospacer ratio (β > 1). On the other hand, if SND is

present, then its efficiency determines the β value, with higher efficiencies implying lower

β values and vice versa. Similarly, the parameter δ determines the activation level of

CRISPRs in free cells relative to that of infected cells; thus δ = 0 represents complete

repression, and δ = 1 signifies no difference in CRISPR activation between free and

infected cell populations.

To study the influence of host protospacers levels and regulation on prokaryotic

densities, we vary δ and β across a large range of biologically feasible values (Fig. 6.4).

Remarkably, as we observed in the case of our simple model, the steady state prokaryotic

densities show a sharp, threshold-like behavior as a function of the degree of CRISPR

regulation δ : hosts switch from maximal densities to complete extinction as the degree

of free-cell CRISPR activity, δ , increases (Fig. 6.4A). Even in the case of comparable

levels of host and phage protospacer (β = 1), greatly reduced levels of activation in free

versus infected cells (δ < 0.01) are required to guarantee host existence. While this

tight window of prokaryotic existence is relaxed slightly at lower host protospacer levels,

these results indicate that tight regulatory control is necessary for a wide range of host

protospacer levels. It is therefore clear that the presence or absence of an SND is a crucial

determinant of CRISPR maintenance in populations.

Fig. 6.4B shows the time course of several typical simulations for various (β ,δ )

combinations, to illustrate the effects of these two key parameters on intracellular spacer

contents. For a wide range of parameters and initial conditions we find that the system

approaches a steady state.
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6.3.3 A simple constraint determines CRISPR maintenance in the model

We now work to derive an analytical understanding of the critical limit on δ (de-

noted by δ1) that permits population survival. As in the simplified model, exact conditions

for the threshold-like behavior of the system in the δ and β space can be obtained by con-

sidering the phage free system, in which case, the full system reduces to:

Ṗ = APP(1−P)−δGQ→φYPSP

ẎPA = MV [YPI−YPA]−δGCYPA

ẎPI = MV [YPA−YPI]−δGCYPI

ẎPS = δβ −δGCYPS

(6.12)

These values give rise to the following fixed point: {P∗ = 1− δGQ→φYPS
AP

,Y ∗PA =

0,Y ∗PI = 0,Y ∗PS =
β

GC
}. In the absence of any feedback from infections, and in the presence

of an active spacer deletion mechanism, the active and inactive spacer contents are pro-

gressively lost from the population. The influence of CRISPR induced autoimmunity on

free cell density is manifest in the steady state expression for free cells. For a population

to not completely lose their CRISPR activity, the condition P∗ > 0 must be satisfied. This

leads us to the condition required for sufficient suppression of CRISPR in free cells:

δ <
AP

GQ→φY ∗PS
=

APGC

GQ→φ β
, (6.13)

For values of δ exceeding this upper bound, the system goes extinct. The same

constraint holds for a system with phage, as non-negativity of the net cellular growth rate
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is essential to avoid the only steady state of extinction. Note that, in the presence of a

perfect SND, β = 1 and so the constraint on δ is effectively removed altogether. But in

the absence of such a mechanism (β > 0), the internal steady state level of self-targeting

spacers determines an upper limit on the free-cell CRISPR activity, δ .

The role of another crucial parameter is also apparent from this analysis: the spacer

deletion rate. High spacer deletions can effectively remove self-targeting spacer accumu-

lations, thus suppressing autoimmunity. So in addition to CRISPR regulation, the spacer

deletion rate can also be increased to maintain CRISPR+ hosts in a population with larger

host protospacer levels. We will use simulations below to determine how large this rate

should be relative to the spacer acquisition rate.

6.3.4 Coevolutionary dynamics under the assumption of equilibrated spacer

levels over CRISPR evolutionary time scales

For a wide variety of parameters and initial conditions tested, we found that the sys-

tem converged to steady states (see Fig. 6.4B for an example). Let (Y ∗QA,Y
∗
QS,Y

∗
PS) denote

the resulting steady state levels of intracellular spacer contents over CRISPR evolutionary

time scales. These can then determine fixed rates of immunity (GQ→PY ∗QA) and autoim-

munity (GQ→φY ∗QS,GP→φY ∗PS). To do so, we use the simplified model shown in Fig. 6.1,

which replaces all immunity and autoimmunity rates (which were originally functions of

the spacer variables) by fixed rate constants. In such a limit, a thorough analysis of the co-

evolutionary dynamics is feasible. These results indicate that as long as the constraint on

δ is met and the steady state intracellular levels of self-targeting spacers in infected cells
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is non-zero, CRISPRs can exploit the abortive infection strategy alongside restriction. In

the absence of SND, by contrast, the levels of self-targeting spacers will be much higher

than phage reactive spacers. Under these conditions, the model predicts that CRISPRs

will function principally as an abortive infection system.

We stress that we are not considering the situation that individual spacer sequences

themselves are fixed in the population, but rather, the total number of them.

6.3.5 Four characteristic regimes of CRISPR activity

Given the importance of the dimensionless parameters {δ ,β ,GC} in determining

the evolutionary maintenance of CRISPR+ hosts, we now focus on understanding the

influence of these parameters on the general model.

Free cell densities in the {β ,GC} space for a given value of δ reveal a characteristic

four-regime pattern. Fig. 6.5 shows the free cell densities achieved (first column) and

phage densities (second column) for various values of (β ,GC) values under two cases of

δ : δ = 10−2 and δ = 10−4. Regime I occurs at low β and very high GC values. Here both

free cells and phages coexist; while the former assume significantly low levels (but never

extinct), the latter achieve their highest densities. Regime II occurs at low β and low

GC values. Here hosts achieve their highest densities driving phage densities to very low

values, if not extinction. In regime III, which occurs at high but still plausible β values,

host extinction occurs. Regime IV is an extension of regime II’s behavior, but at high GC

and high β values.

Hints to explain the existence of these four qualitative regimes, and their bound-

aries, are provided by the corresponding intracellular steady state spacer levels and the
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constraint on δ we derived in the previous section. As we proceed to higher β values,

the active spacer levels decrease and self-targeting spacer levels increase (see for exam-

ple Fig. 6.4B). Higher β values lead to larger steady state levels of self-targeting spacers,

effectively increasing the autoimmunity rate of infected cells. This inhibits immune me-

diated feedback of active spacers to the free cell population (through inheritance) and

causes a reduction in the overall active spacer levels. Self-targeting spacers, on the other

hand, can be independently acquired in free cells at a rate determined by δ . According

to this basic intuition, we can now derive rough conditions for falling in each of the four

qualitative regimes.

(Regime I) At high GC values (GC→ ∞) CRISPR cassettes are empty and the im-

munity and autoimmunity reactions are overwhelmed by phage lysis. Under these con-

ditions, both the steady state spacer levels and their derivatives become zero, making

the factor
GQ→PY ∗QA+GQ→φY ∗QS

GQ→V
= 0 , resulting in no net growth advantage to CRISPR hosts

(compare to steady state of the simple model). In this regime, the coevolutionary dy-

namics is phage limiting, resulting in steady state free cell levels of GV
αv−1 in terms of the

simple model. (Regime II) At lower GC values, and when the existence condition on

δ is satisfied, both immunity and autoimmunity operate, allowing prokaryotes to evade

phage lysis at significant rates. In this regime, phages are driven to very low densities or

extinction. (Regime III) At lower GC values, progressing to higher β values increases

steady-state levels of self-targeting spacers, thereby increasing the risk of not satisfying

the constraint on δ . In such cases, regime III operates for all higher values of β , and ex-

tinction is inevitable. (Regime IV) This regime operates in the region where high levels of

β are matched by corresponding high GC values that are sufficient to reduce self-targeting
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spacer levels so as to satisfy the δ constraint. In this regime, host extinction occurs. Here

no active spacer mediated immunity occurs, but CRISPRs transform to a full-fledged

abortive infection system. When δ = 0, regime III does not occur, and regime IV ex-

tends into regime III. Thus the boundaries between regimes I and II, IV can be mapped

by
GQ→PY ∗QA+GQ→φY ∗QS

GQ→V
= 0, and that between II, IV and III can be mapped by the critical

condition on δ .

6.3.6 Elimination of abortive infection improves coexistence of phages

To study how ABI influences the coevolutionary dynamics in the general model, we

remove the autoimmunity term from the model and compare the resulting prokaryotic and

phage densities across several host protospacer and CRISPR activation levels (Fig. 6.6).

We find that while removing ABI in infected cells increases the size of the coexistence

regime and allows for improved phage densities. Indeed, this is the same effect predicted

by our bifurcation analysis of the simplified model, where lower abortive infection rates

lead to increased coexistence owing to higher phage turnover.

6.4 Discussion

A handful of prokaryote-phage experimental systems for studying CRISPR dynam-

ics have been established. However, the extreme diversity of CRISPRs [190] makes it dif-

ficult to draw broad conclusions from any one biological model system. Computational

models, which allow exploration over a wide range of feasible parameters, provide an

attractive alternative.
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In this work, we analyzed the influence of infection-induced activation of CRISPRs

and their autoimmunity side effect on prokaryote-phage coevolutionary dynamics. Our

model integrates the classical ingredients of the prokaryotic CRISPR immune system,

along with aspects of regulation and autoimmunity. Our analysis suggests that CRISPRs

exploit both restriction and abortive infection. Moreover, we identified a key constraint

that determines the growth advantage associated with CRISPRs as a prokaryotic immune

system. As summarized in Fig. 6.7, our model reveals a characteristic four-regime pattern

determined principally by three effective parameters: the activation level of CRISPRs in

uninfected population, the host to phage protospacer ratio, and spacer deletion to acqui-

sition rate ratio in CRISPRs. In the presence of SND, the host to phage protospacer ratio

is close to zero, and CRISPRs operate exclusively by exploiting restriction, while in the

absence of SND, they tend to principally exploit the abortive infection route.

Several previous models have also studied CRISPR associated fitness costs, al-

though as abstract functions. Nevertheless, these models reproduce and help to explain

some of the key experimental and comparative genomics findings on CRISPRs. Levin

and colleagues exploited classical density dependent ecological models to numerically

analyze the invasion of costly CRISPR genotypes in the presence of innate (envelope) re-

sistance and conjugative plasmids [1, 200, 220], and showed that selection due to contin-

uous phage exposure and absence of less costly resistance mechanisms improve CRISPR

maintenance in the population. Similar in spirit, Gandon and Vale make general discus-

sions based on their analysis of general epidemiological models on the evolution of a

CRISPR-like resistance mechanism, when the side effect associated is that of beneficial

horizontal gene transfer impedance [213]. Childs et al., established a multiscale agent-
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based simulation model to characterize CRISPR spacer and viral diversity during coevo-

lution, and conclude that population dynamics is more sensitive to spacer acquisition rates

than interference rates [2]. Weinberger et al., derive a critical threshold on CRISPR asso-

ciated cost as a function of coevolving viral diversity, innate resistance and spacer acqui-

sition rate and conclude that high viral diversity selects against CRISPRs [212]. Iranzo et

al., used numerical simulations of a general agent based simulation model that addition-

ally accounted for CRISPR loss and horizontal transfer, to exhaustively study CRISPR

maintenance as a function of various kinetic parameters in their model [211]. They also

concluded that CRISPR loss is encouraged at high prokaryote/phage population sizes.

Our analyses complement these studies summarized above, and they advance our

understanding of CRISPR mechanisms in general. We have delineated the precise condi-

tions under which CRISPRs can be lost even at low viral diversities. The level of com-

plexity in our model, intermediate to previous simulations of agent-based models and

models requiring radical simplifications and that do not account for the adaptive nature of

CRISPR kinetics, provides an opportunity for mathematical analysis and intuitive under-

standing of the results. We have presented an analytical treatment of a particular limit of

our model (which empirically hold for wide parameter regimes), summarizing qualitative

behavior of the CRISPR system as a function of the underlying parameters.

It is also worthwhile to re-examine previous experimental and bioinformatic studies

of CRISPRs, in light of the insights gained from our modeling analyses. We found that for

CRISPRs to be maintained in a population, free-cell CRISPR activity must be sufficiently

suppressed. This upper bound on free-cell activity is determined by a nondimensional

ratio of free cell growth rate to that of its autoimmunity potential due to the accumulated
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self-targeting spacers. An immediate consequence is that CRISPRs are likely to be lost

from populations or cell types with reduced growth rates. This result helps to explain

well-known empirical trends. For example, in general it is known that drug resistance

or virulence is associated with moderate to high fitness costs; under these conditions

cells often assume low growth rates [221]. According to our model, then, such strains

should lack functional CRISPR elements, as has been confirmed for multi-drug resistant

Escherichia coli [222]and for highly virulent Francisella sp. [223]. Furthermore, clini-

cal isolates of Pseudomonas aeruginosa lack CRISPR resistance despite crRNA expres-

sion, and several virulent clinical isolates of pathogenic Vibrio parahaemolyticus [224],

Shigella [225], pathogenic Clostridium jejuni [226] and Mycoplasma gallisepticum [227]

seem to lack CRISPR resistance. While these studies have suggested a causal role played

by CRISPR inactivity in the gain of virulence of clinical isolates, we propose an alter-

native mechanism: reduced growth rate in virulent strains induces selection for reduced

CRISPR activity.

Under the assumptions of our model we can make approximate quantitative state-

ments about the kinetic parameters underlying CRISPR function. In the absence of SND,

our results suggest that CRISPRs can be maintained in a prokaryotic population only

under high repression in free cells and/or high deletion rates (> 102 times the spacer ac-

quisition rate in the absence of complete repression, as obtained in Fig. 6.5). But while

high repression is possible through crosstalk with specialized pathways that detect phage

invasion or foreign DNA element, as is often the case with toxin/anti-toxin or abortive

infection systems [208,215,216,216–218,228], how can such high deletion to acquisition

ratio be achieved? One possibility is a spacer deletion mechanism [180–182,229,230] but
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we still lack sufficient biochemical characterization of this process. Our model assumed

that the spacer deletion system is coupled with the rest of the CRISPR machinery, because

it is likely that such a system must be expressed from the same operon as the rest of the

CRISPR genes. We tested two hypothetical deletion systems that relax the requirement

for high spacer deletion rates (Fig 6.8). The first is constitutively expressed regardless

of the cell state. The second is regulated in a direction opposite to that of the rest of the

CRISPR machinery – it is repressed when infected, and fully activated when uninfected.

The reason these strategies work is because of the fundamental reduction they produce

in the steady state expressions of the self-targeting spacers. Notice however that neither

of these alterations guarantee CRISPR maintenance for arbitrarily large host protospacer

levels. They still must respect the required constraint of reduced CRISPR activity in free

cells.

A thorough biochemical characterization of the spacer deletion mechanism is re-

quired for advancing our understanding of CRISPRs. Stern et al. [187], in their large

scale survey of CRISPR cassettes in microbial genomes, remarked that deactivated self-

targeting spacers are found throughout the CRISPR array. This is in contrast to experi-

mental conclusions that, in most systems, more recent acquisitions appear in the leader

proximal end [181, 182, 229, 230]. In fact, Stern et al. found that self-targeting spacers

with no signs of deactivation were limited to the leader proximal end, indicating that their

acquisition followed immediate lethality. It is therefore tempting to suggest that the spacer

deletion machinery was likely impaired, resulting in continued acquisitions alongside ad-

vantageous coevolving phage targeting spacers; and the continued selection pressure to

evade self-targeting activity but retain phage targeting activity persisted and selected for
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loss-of-function mutations in the self-targeting spacers. While this manuscript was in re-

view, Levy et al., demonstrated that artificially induced CRISPR systems in laboratory

populations of E.coli tend to exploit degradation products from the enzyme RecBCD,

which processes double strand breaks resulting from replicating DNA and through the

processing of exposed linear phage genomes after infection [231]. Because this bias re-

duces the effective number of self-targeting spacer acquisitions, this can be seen as a po-

tential self- vs. non-self detection mechanism resulting in a relaxed constraint on CRISPR

regulation. It is however crucial that the spacer deletion system is still in check so as to

avoid the loss of effective antiviral spacers, thereby encouraging CRISPR maintenance in

the population.

The rapidly growing empirical literature on CRISPR molecular and cellular biology

will surely suggest further refinements to our model. Several avenues for model improve-

ment are already apparent. First, the impact of the most commonly occurring alternative

resistance mechanisms (such as envelope resistance) in laboratory populations was ne-

glected. Second, our activation model where all CRISPR reactions are scaled uniformly

in free cells is simplistic, as differences in activation levels among the acquisition and

interference genes may occur. Third, assignment of equal autoimmunity rate constants

for all the genomic protospacers is a rough approximation and it is known that the genetic

sequences vary in their essentiality. Fourth, the current analytic cannot describe multiple

CRISPR genotypes with diverse spacer configurations, in contrast to agent-based mod-

els [2, 212]. While we have presented some theory for explaining the maintenance of

altruistic CRISPR hosts over ecological time scales, a clear characterization of factors

determining their long-term evolutionary stability in well-mixed conditions continues to
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be an open question (ref. Appendix B). Nevertheless, despite these simplifications, our

analysis clarifies the effects of CRISPR autoimmunity in a general setting – a problem

that is difficult to address experimentally, due to the lethality of self-targeting.
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Figure 6.4: SND absence is lethal due to accumulation of self-targeting spacers. (A) A sharp
threshold-like behavior is observed with steady state prokaryotic densities in the (δ ,β )space.
Without a sufficient amount of CRISPR suppression in free cells, determined by δ , cells go extinct.
(B) Time course trajectories of the species and spacer variables for several parameter settings.
In the absence of strong regulation of auto-immunity, high host protospacer levels are extremely
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(A) moderately suppressed free-cell CRISPR activity, δ = 10−2 and (B) strongly suppressed free-
cell CRISPR activity, δ = 10−4. GC is the dimensionless parameter indicating the ratio of spacer
deletion rate to spacer acquisition rate. β is a dimensionless parameter indicating the ratio of host
to phage protospacer levels. (Regime I) Very high GC values effectively reduce CRISPR content to
very low levels (phage lysis rates are relatively overwhelming) offering no immune advantage to
the hosts, resulting in free cell levels of GQ→V

AV
. (Regime II) Both abortive infection and immunity

operate with the available intracellular steady state levels of active and self-targeting spacers.
(Regime III) The constraint on δ is not satisfied and the hosts are extinct. (Regime IV) CRISPRs
behave as full-fledged abortive infection systems exploiting only the accumulated self-targeting
spacers, with phage reactive spacers eliminated due to high GC values.
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Figure 6.7: Qualitative behavior of regulated CRISPR modules. Depending on the activation
level of CRISPR activity in free cells (δ ), the host to phage protospacer ratio (β ), and the CRISPR
specific spacer deletion to acquisition rate ratio (GC), regulated CRISPR cassettes can fall in one
of the four regimes: no advantage (regime I), advantageous to hosts by offering immune resistance
and abortive infections (regime II and IV), or causing host extinction (regime III). Because per-
spacer immune rates have been experimentally measured to be high, we do not study its influence
specifically here. When CRISPR activity is completely repressed in free cells (δ = 0), regime III
vanishes, and regime IV expands into its place. Notice that a low β value corresponds to efficient
SND during acquisition process.

127



B

−5 0 5
0

2

4

6

lo
g

10
G

C

0

0.2

0.4

0.6

0.8

−5 0 5
0

2

4

6

lo
g

10
G

C
0

0.01

0.02

0.03

−5 0 5
0

2

4

6

log10 β

lo
g 10

 G
C

0

0.2

0.4

0.6

0.8

−5 0 5
0

2

4

6

log10 β

lo
g 10

 G
C

0

0.01

0.02

0.03

log10 β log10 β

A

C

Infection

CRISPR/Cas

Delete

active spacer

inactive

self-targeting

coding genes

Figure 6.8: Decoupled behavior of a spacer deletion system. (A) A schematic of the decoupled
model of CRISPR regulation. Arrow indicates activation, and a blunt arrow indicates repression.
The dashed arrow can be active (suppression when infected) or inactive (constitutive expression).
We plot the steady state free cell densities (the first column) and the corresponding phage densities
(the second column) for various values of (β ,GC) values at δ = 10−4. Comparison with Fig. 6.5B
illustrates that decoupled spacer deletion systems as in (B) no regulation or (C) regulation in a
direction opposite to that of the rest of the CRISPR system can tolerate higher host protospacer
levels without requiring extremely high GC values. Note that log10 β = 2 corresponds to 100× the
corresponding phage protospacer levels, a realistic condition in the case of E.coli vs. phage λ ,
where the expected number of host protospacers is a hundred fold.
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Part III

Appendix
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Chapter 7

Ecological equivalence as a modeling strategy for metagenomic count

data.

In chapter 4 of part I, we mentioned statistical inference of taxas (OTUs) observed

in large-scale 16S metagenomic surveys is of considerable biological interest. The large

number of taxa thus discovered (albeit with only a few dominating/abundant ones) and

excess zeroes in the taxa count distributions, however, make it a challenge for performing

statistical analyses.

In this appendix, we present a strategy that aims to mitigate these issues by aggre-

gating counts of carefully chosen taxa that behave similarly to latent ecological factors

and environmental processes. It is well known that the relative abundances of such eco-

logically equivalent/nearly-equivalent species are not necessarily influenced by changes

in environmental conditions across local and regional scales, but their summed total abun-

dance, however, is [232–235]. To this end, we aim to cluster the 16S metagenomic

taxa into equivalence classes, and create a reduced dataset that presents these clusters

of taxa as new units of analysis interest (termed "Equivalence Class Units") and their

summed counts as new measurements across observations in an experiment. We suggest
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a Bayesian nonparametric model of ecological equivalence, and establish posterior infer-

ence algorithms, for inferring equivalent classes of metagenomic 16s features, which are

simply clusters of OTUs. Interesting prior probability distributions also appear which al-

low for both unknown number of ECUs in a dataset, and known relationships among the

species to be clustered (example, a taxonomic tree).

Our approach is applicable to datasets with few thousands of species, and we demon-

strate these ideas with metagenomic data arising from a few simple ecosystems. While

several clusters of taxa showed significant enrichment of taxonomic identities there were

also many clusters that did not demonstrate this behavior suggesting cross-taxonomic

equivalence in these ecosystems. Examples illustrating the coherence of the clusters in

terms of reflecting known biology are indicated. We present the models and derive the

inference algorithms, before presenting these preliminary results with publicly available

experimental datasets.

7.1 Model

We consider metagenomic features (OTUs) i = 1 . . . p, measured across different

experimental conditions g = 1 . . .G, in samples s = 1 . . .Ng. Here Ng is the number of

samples in group g. For now, we shall assume the number of equivalence classes (the

OTU clusters we want to infer) to be fixed to K, and let k = 1 . . .K index clusters. Z is

a p length vector where each entry Zi indicates which equivalence class k ∈ {1 . . .K},

feature i is a member of. Given a configuration of Z, Xgsk j will denote the metagenomic

count of the jth feature in cluster k in sample s from experimental condition g. We let
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Figure 7.1: A plate model illustration of the proposed generative process underlying
metagenomic counts. The entire process is specific to every group g with Ng samples
and p metagenomic features (OTUs). The total number of classes is fixed at K. The total
number of OTUs in an equivalence class k ∈ 1, . . .K is given by nk. Orange nodes indicate
observed data, and the blue and green nodes indicate our target variables, the posterior
of which is needed. The equivalence classes built are conditional on the available data,
and with respect to the distinct groups a researcher has.

nk = ∑i I[Zi==k], where I is the indicator variable, be the total number of features assigned

to equivalence class k. The abundance count corresponding to any given equivalence class

k is simply defined as the summed total count of all features assigned to the equivalence

class according to the configuration Z. Specifically, Ygsk = ∑i:Zi=k Xgski denotes the count

of the kth equivalence class in sample s from experimental condition g. We will use the ·

notation to denote vectorized quantities. So for instance, Ygs· is a K length vector desribing

the net count of K different equivalence classes in sample s from experimental condition

g. We will also use � represents a product / element-wise product (which will be clear

from the context).
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With this notation, we now present the baseline Bayesian hierarchical model below

in 7.1, and illustrate it in Fig. 7.1. Our goal is to infer Z. We leave the prior on Z unspec-

ified for now. We shall first derive the likelihood of the data, conditioned on the cluster

assignments and the parameters. We then consider two distinct priors in the subsequent

sections, and derive the resulting posteriors in each case.

Zi|αθ . . .∼ p(Zi|αθ , . . .)← prior on equivalence class assignments for each OTU

ψg·|K,αψ ∼ Dirichlet(αψ �1K)← prior on relative abundances of K equivalence classes

Ygs·|ψg· ∼Multinomial(τs,ψgK)← total summed abundance of equivalent species.

ηgsk|Z,αη ∼ Dirichlet(αη �1nk)← models drift

Xgsk·|Z,ηgsk,Ygsk ∼Multinomial(Ygsk,ψgk×ηgsk)← observed data
(7.1)

For convenience, we describe the dimensions of the variables in the model above.

Z is a p length vector, each entry i holding the equivalence class of feature i. ψg· is K

length equivalence class proportions vector, where the kth entry describes the proportion

of equivalence class k of 1 . . .K classes. Ygs· is a K length vector describing the count of

each of the K equivalence classes in a sample s from condition g. ηgsk is an nk length drift

proportions vector where each jth entry models assigns a proportion for the jth member

feature of cluster k in sample s from condition g. Finally, Xgsk· is an nk length vector

describing the count of all member features of cluster k in sample s from condition g.
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7.2 Data likelihood

We now derive the likelihood p(X |Z,ψ,η).

First, we shall restrict ourselves to describing the conditional likelihood of the fea-

ture count data in a single sample s from an experimental condition g. The key is to first

observe from the last line in the generative process 7.1 that, the feature count data for any

given equivalence class (cluster) k in sample s from condition g follows:

Xgsk·|Z,ψ,η ∼Multinomial(τgs,ψgk×ηgsk) (7.2)

So the entire feature count data for a given sample s in group g has the conditional distri-

bution:

Xgs··|Z,ψ,η ∼Multinomial(τgs,ψg·⊗ηgsk) (7.3)

Here ⊗ is used to denote a Hadamard product as follows: each entry of the K length

equivalence class proportions vector ψg·, ψgk multiplies the corresponding nk length drift

proportion vector ηgsk. The result is a p length vector of feature proportions that describe

the average relative abundance of the feature count data in sample gs.
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Writing eqn. 7.3 explicitly, we observe:

p(Xgs··|Z,ψ,η) =
τgs!

∏
K
k=1 ∏

nk
j=1 Xgsk j!

p

∏
j=1

(
ψgkηgsk j

)Xgsk j

=
τgs!

∏
K
k=1Ygsk!∏

nk
j=1 Xgsk j!

K

∏
k=1

Ygsk!
nk

∏
j=1

(
ψgkηgsk j

)Xgsk j

=
τgs!

∏
K
k=1Ygsk!

K

∏
k=1

(
ψgk
)Ygsk Ygsk!

∏
nk
j=1 Xgsk j!

nk

∏
j=1

(
ηgsk j

)Xgsk j

=
τgs!

∏
K
k=1Ygsk!

K

∏
k=1

(
ψgk
)Ygsk

nk

∏
j=1

Multinomial(Xgsk·|Ygsk,Z,ηgsk)

In the above derivation, Ygsk = ∑
nk
j=1 Xgsk j, where the entries in Xgsk j are organized

based on the equivalence class membership vector Z. Now, in a straightforward fashion,

we can integrate out ηgsk yielding the likeilihood distribution per sample:

p(Xgs··|Z,ψ,αη) =
∫

ηgsk

τgs!

∏
K
k=1Ygsk!

K

∏
k=1

(
ψgk
)Ygsk

nk

∏
j=1

Multinomial(Xgsk·|Ygsk,Z,ηgsk)p(ηgsk|αη)dηgsk

=
τgs!

∏
K
k=1Ygsk!

K

∏
k=1

(
ψgk
)Ygsk

∫
ηgsk

nk

∏
j=1

Multinomial(Xgsk·|Ygsk,Z,ηgsk)p(ηgsk|αη)dηgsk

=
τgs!

∏
K
k=1Ygsk!

[
K

∏
k=1

(
ψgk
)Ygsk DM(Xgsk|Ygsk,α

η)

]

where DM(Xgsk·|Ygsk,α
η) represents a Dirichlet-Multinomial distribution of vector Xgsk

with nk features of total count Ygsk, and concentration parameter αη � 1nk . Here 1nk

represents an nk length vector of 1s.

The condition data likelihood, for all independent samples from all experimental

135



conditions g = 1 . . .G, is then given as:

p(X |Z,ψ,αη) ∝

G

∏
g=1

Ng

∏
s=1

K

∏
k=1

(
ψgk
)Ygsk DM(Xgsk|Ygsk,α

η)

=
G

∏
g=1

K

∏
k=1

(ψk)
∑

Ng
s=1 Ysk

Ng

∏
s=1

DM(Xsk|Ysk,α
η)

=
G

∏
g=1

K

∏
k=1

(
ψgk
)

∑
Ng
s=1 Ygsk

Ng

∏
s=1, Ygsk>0

DM(Xgsk·|Ygsk,α
η)

(7.4)

The last line arises because Ygsk = 0 =⇒ Xgsk j = 0 ∀ j = 1 . . .nk, and therefore, the

corresponding Dirichlet-Multinomial evaluates to 1. This is seen easily using the Gamma

representation of a Dirichlet Multinomial distribution.

7.3 Posteriors for ψ and Z

We shall now derive the posterior for the two classes of variables of interest. The

first class of variables is the equivalence class proportions vector for each experimental

group g, ψg·, whose posterior is based on a standard Dirichlet-Multinomial hierarchy. The

second variable of interest is the equivalence class membership vector Z, whose posterior

is based on priors derived from relational data among the metagenomic features to be

clustered. Additionally, we present the Z posteriors in both cases of fixed and unknown

number of clusters (K).

7.3.1 Conditional posterior for ψ

While the cluster proportions vector ψ can in principle also be integrated out, our

inferential interest centers also in the posterior estimate of ψ . We use the likelihood
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prescribed by eqn. (7.4) to derive the conditional posterior of ψg· given the rest of the

variables and parameters.

p(ψg·|Z,X , ...) ∝ p(X |Z,ψ, ...)p(ψ|αψ)

∝

[
G

∏
g=1

K

∏
k=1

(
ψgk
)

∑
Ng
s=1 Ygsk

Ng

∏
s=1, Ygsk>0

DM(Xgsk|Ygsk,α
η)

]
p(ψ|αψ)

∝

K

∏
k=1

(
ψgk
)

∑
Ng
s=1 Ygsk p(ψ|αψ)

∝

K

∏
k=1

(
ψgk
)

∑
Ng
s=1 Ygsk

ψ
α

ψ

k −1
gk

∝

K

∏
k=1

(
ψgk
)

∑
Ng
s=1 Ygsk+α

ψ

k −1

≡ Dirichlet(ψg·|(αψ �1nk)+Yg··)

(7.5)

where the last line describes the parameter of the posterior Dirichlet distribution as

an nk length vector of αψ added to the total count of each of the K components across all

samples s from group g.

Thus, we arrive at the posterior of one of the two target variables we are interested.

We next derive the posterior for the equivalence class feature assignments vector Z.

7.3.2 Conditional posteriors for Z

To derive the posterior for Z, we will first need to specify its prior distribution. We

take two routes below. The first is a standard move in Bayesian hierarchical clustering

based on a Dirichlet distribution for component membership probabilities. The second

is a more natural route for modeling metagenomic microbial features, a prior based on
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taxonomic trees. It reflects the prior belief that metagenomic features belonging to similar

taxonomic categories should are part of the same equivalence class.

In each of the above two cases, we first provide the posterior when the number

of equivalence classes in the data K can be considered as known, fixed quantity. We

then provide a non-parametric extension, which assumes a small, but unknown number

of clusters in the data. This is based on the theory of infinite mixture models [236].

Case 1: Classic Dirichlet priors

Known K Suppose in our baseline model (7.1), we assume the following prior distribu-

tion for p(Z| . . .).

φK|αφ ,K ∼ Dirichlet(αφ �1K)

Zi|φK ∼Multinomial(φK,n = 1) ∀i = 1 . . . p

(7.6)

which leads to the conditional prior:

p(Zi = k|Z\i,αφ ) =
nk\i +α

φ

k

∑k α
φ

k + p−1
(7.7)

The posterior for Zi is then given using standard calculations as:

p(Zi|Z\i,X ,ψ, . . .)∼ p(X |Z, . . .)
[
nk\i +α

φ

]
(7.8)

where the likelihood term is given by (7.4), and Z\i denotes the membership vector

of all features except the ith feature whose membership gets sampled with the above
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posterior. Similarly, nk\i denotes the number of features assigned to clsuter k except

the ith feature. We have also abused the notation above by mentioning α
φ

k to indicate the

kth component of the Dirichlet prior parameter, which is derived in eqn. 7.6 as a K length

vector of a single value αφ repeated.

Unknown K. A non-parametric extension We now want to generalize to arbitrary K,

with the idea being that we would like to generate a small number of clusters. Consider

α̃φ = [|αφ/K|]Kk=1. Notice that a Dirichlet prior with a paramer < 1 for all entries favors

fewer categories. We consider the limit K → ∞. Then the conditional prior in eqn. 7.7

becomes:

1. For sampling a represented equivalence classes with at least one OTU:

p(Zi = k|Z\i, α̃φ ) =
nk\i

∑k α̃
φ

k + p−1

2. For creating a new equivalence class:

p
(

Zi = knew∩
[

knew 6= Z j ∀ j 6= i
]
|Z\i, α̃φ

)
=

(
1−

K

∑
k,k 6=knew

p(Zi = k|Z\i, α̃φ )

)

=
αφ

∑k α̃
φ

k + p−1

(7.9)

When applying the above non-parametric prior to derive the posterior for Z, we

do not need to worry about the divergence of the inner sum in the prefactor Γ(∑K
k=1 α

φ

k )

terms in the Dirichlet−Multinomial likelihood, as the inner sum (from our definition of

αφ above ) is always given by α̃φ . This mathematical convenience for convergence is

reflected as the "sparse number of custers" assumption above.
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Case 2: Tree priors for equivalence class memberships Often times, a metage-

nomic data analyst has additional relational information about the metagenomic features

that one may wish to account for in the above clustering procedure. For instance, ge-

nomically closely related OTUs share the same cluster component. These similarlities

are reflected in the taxonomic relationships among the microbial features or the edit-

distances among the 16S RNA sequences themselves. These measures render themselves

conveniently for a tree representation. The nodes T and αθ in Fig. 7.1 precisely corre-

spond to a process that accounts for such a prior. If not immediately available, such a tree

can be constructed using the Cho-Liu/Edmond’s algorithm based on other relational data

among the metagenomic features. We consider prior distribution generated by the model

in Fig. 7.2 below.

For any given undirected(/directed) tree prior, we would like a given taxon at the

leaf assume a cluster membership similar to other taxons closer to it in the tree. We con-

sider the following generative model, a simplified caricature of an evolutionary process:

p(Zi = k|wi,Pi,φ)∼ Discrete(φi wi)

wi|Pi ∼ Discrete

(
[|θih

h−1

∏
u=1

(1−θiu)|]|Pi|
h=1

)

θih ∼ Beta(a,b) ∀ h ∈Pi

φih ∼ Dirichlet(αφ �1K) ∀ h = 1 . . .H

(7.10)

For a given taxon i, and a prior tree, there exists a path Pi from it to the root of

the tree. For all internal nodes that lie in the path (denoted as h ∈Pi), we associate a

multinomial parameter φih, and a Bernoulli switching parameter θih. The taxon i sends a
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Figure 7.2: Prior distributions based on a tree of relationships among taxa. For a given
taxon i, a given tree of relationships implies a particular distance metric between the
chosen node and all others. We consider a rooted tree of relationships among the taxa
to be clustered. All the taxa are positioned in the leaves, and are colored brown. This
is very similar to a phylogenetic tree. Blue nodes indicate distinct internal nodes in the
tree, the deepness of color indicate the positition/height level in the tree. Each internal
node h is associated with a specific Dirichlet-Multinomial probability distribution φh of
size K for components. Every taxon i is at the leaft the tree, and there exists a path Pi

from it to the root that passes through a subset of internal nodes. A given taxon i chooses
its cluster membership according to the φh prescribed by an h∈Pi node that it randomly
chooses to stop at (red signal), as it visits each internal node h ∈Pi from the bottom
up (green signal). Such tree based priors closely reflects the commonly available tree of
relationships in metagenomics, and to an extent, evolutionary divergence in real world
systems.
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variable wi up the tree which chooses to stop at h ∈Pi with probability θih (or jump one

level up with probability 1−θih). Stopping at a level h (if no internal h ∈Pi was chosen,

it stops at the root of the tree), a taxon chooses to derives its component membership (Zi)

according to φih prescribed by node h ∈ Pi with the Geometric probability θih ∏
h−1
u=1(1−

θiu). According to the above model then, on average, at a given level h, this product is

close to
( a

a+b

)
∏

h−1
u=1(1−

a
a+b). If a > b, this product −→ 0 as h grows, thus capturing our

prior belief.

In summary, taxa decide on an internal node to sample their component assignments

from, and conditioned on these choices, the entire vector of component assignments Z is

generated independently across all these internal nodes, as prescribed by the Multinomial

mixture at each node.

Posterior Equations for Z and W We can integrate out φih, and θih yielding:

p(Z|w,P)∼
H

∏
h=1

DM(Z(h)|αφ �1nkh)

wi|Pi ∼ Discrete

[|( a
a+b

)h−1

∏
u=1

(
1− a

a+b

)
|

]|Pi|

h=1

 ∀ i = 1 . . . p

Here, DM is the Dirichlet-Multinomial distribution, Z(h) is the vector of taxons that derive

their membership from internal node h, nkh is the total number of taxon for which the

component indicator is k, and derived with probability at level h. Notice hs in the set of

internal nodes from which no taxon derives its membership from can be safely ingored

as the DM simply evaluates to 1. Also notice, while in principle marginalizing over w is

possible, the posterior for Z is easy to sample conditioned on w. We therefore consider
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sampling both variables.

At a given level h in path, a single Dirichlet-Multinomial determines component

assignments for all taxa that sample their component assignments from that level. Thus,

we can straightforwardly write the conditional prior as:

p(Zi = k|wi = h,Z\i,w\i,P,αφ ) = p(Zi = k|wi = h,Z(h)
\i ,w(h)

\i ,P,αφ ) ∝ nkh\i +α
φ

The posterior for w becomes:

p(wi = h|Z,X) ∝ p(X |Z,wi)p(Z|wi)p(wi)

∝ p(Z|wi)p(wi)

∝

(
a

a+b

)h−1

∏
u=1

(
1− a

a+b

)[
nkh\i +αφ

nkhαφ +nkh−1

]

∝

h−1

∏
u=1

(
1− a

a+b

)[
nkh\i +αφ

nkhαφ +nkh−1

]
(7.11)

The posterior for Z|w becomes:

p(Zi = k|X ,Z\i,w\i,wi = h) ∝ p(X |Z)p(Zi|wi,Z\i)

∝ p(X |Z)
[
nkh\i +α

φ

] (7.12)

Notice the trade off in these posterior equations. Suppose if a given taxon is truly

from component k; while the posterior is proportional to the number of features that arise

from the component, as we go higher up in the tree, the number of features that arise

from the same component is likely to grow, giving rise to higher posterior probablities for

Zi = k. However, our prior on wi can force the taxon to stay low in the tree.
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Incorporating phylogenetic distance If one wants to take branch lengths in a (phy-

logenetic) tree into account, a simple and straightforward model would be to model the

up-wise jumping probabilities (1− (a/(a+b))) terms for each level h in the the wi pos-

terior equation above, as a decreasing function of the total distances spanned upto level

h+1. This can be done by making them a solution of log
(

1−θih
θih

)
=−δh,h+1, where δh,h+1

is the distance spanned from internal node h to h+1 both ∈Pi. With this expression, the

posterior for w becomes:

p(wi = h|Z,X) ∝ (θih)
h−1

∏
u=1

(1−θih)

[
nkh\i +αφ

nkhαφ +nkh−1

]

∝

h−1

∏
u=1

(1−θih)

[
nkh\i +αφ

nkhαφ +nkh−1

] (7.13)

– Non-parametric extension Solution is straightforward and looks similar to that de-

rived in the Dirichlet case of previous section, with nk\i replaced by nkh\i.

7.4 Applications

The non-parametric inference algorithm with the tree prior was applied to the mouse

microbiome data [152] with roughly 1600 taxa. Relative to a standard Dirichlet-Multinomial

model for the count data, the equivalence class model lead to a > 300X increase in the

data likelihood. Roughly 110 equivalent clusters were found, and some were found to be

differentially abundant between cases (mice fed a "western" diet) and controls (mice fed

a plant based "BK" diet). While the use of a taxonomy tree prior for the metagenomic

features lead to more stable enrichments of taxa among the clusters identified (Fig. 7.3),

this was not always the case, suggesting that ecologically equivalent clusters need not be
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Figure 7.3: Tree priors improve taxonomy enrichments. −log10(p−value) from Fisher
exact tests for taxonomic categories in each EC without (A) and with tree priors (B).

taxonomically closely related.

Applying the non-parametric inference algorithm with the tree prior to the Tara

Oceans mirobiome data [8], about 450 equivalent clusters were found across the different

oceans categories. Even though the clusters were built based on the different oceans

categories alone, they recapitulated several OTU level properties. For instance, as shown

in Fig. 7.4, given the general negative correlation between temperature and pressure in

ocean layers, OTUs that were found to correlate positively with pressure, showed negative

correlation with temperature. This behavior was retained when summarizing at the level

of ECs as well.

We next sought to identify ECs, with interesting community level properties. The

Tara oceans dataset [8] also has sample-specific relative abundance information on the en-
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Figure 7.4: Equivalence classes capture environmental gradients. (A) The depth and
local temperature measurements for the various Tara Ocean’s samples. (B) A plot of the
correlations of each EC’s abundance profile with depth and temperature. (C) Same as B,
except the correlations are computed with OTU abundance profiles. We observe that ECs
recapitulate the anti-correlations in temperature and pressure, similar to OTUs.
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coded functional/gene content (e.g., various ion transport channels, glycolysis pathways)

by the sample’s microbiome. So after ranking the ECs based on the p-values obtained

from a differential abundance test [124] across oceans, we chose ECs that showed strong

correlations to at least one of the functional categories. For each such chosen EC, we built

a hierarchical clustering tree of the constituent OTUs, split the EC to finer clusters depend-

ing on the tree topology manually, and visualized the count profiles for each of these ECs

across various categories samples. In several cases, we not only found a coherent set of

OTUs that behave equivalently in their count profiles, but they also had sound potential

for generating testable hypotheses. For instance, as illustrated in Fig. 7.5, cluster EC163

was depressed in its relative abundance in the samples from (deep ocean) mesopellagic

layer, but had comparable relative abundances in the samples from surface (SRF) and

deep chlorophyll maximum (DCM) oceanic layers. The EC was highly correlated with

the relative abundances of the Iron (III) transport systems, which also exhibited higher

abundances in DCM and SRF layers compared to the samples from MES layer across

oceans. The EC was a multi-phyla cluster with member taxa from 9 different Phyla, all

consisting of members with known roles in Iron metabolism and chelation with the aid of

iron transport channels. In particular, several Proteobacteria is known to convert Iron(II)

to Iron (III), which are further metabolized by the other members of phyla associated with

EC163. These associations and correlations lead us to hypothesize that the decrease in

Proteobacteria (for e.g., in MES) leads to reduced levels of circulating Iron(III); this is

limiting for the growth of strains with a higher preference for Iron(III). The MES relative

abundance of the EC163’s Deferribacteres and Proteobacteria member taxa could explain

the observed reduction in the iron (III) transport channels’ relative abundances.
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Figure 7.5: Equivalence classes of OTUs as better hypotheses generators. (A,B) The
count profile of EC163, a cluster of 16S OTUs, was found to highly correlate with Iron(III)
transport system frequencies from the whole metagenome shotgun sequencing from the
Tara Oceans project [8]. (C) Observing the count profiles of the two distinct subgroups
within this cluster showed the coherent average abundance changes of distinct phyla in
different depth layers of the oceans surveyed in the experiment. (D,E,F) indicate the dis-
tribution and relative abundances of the EC163 member taxa. (G) a potential hypothesis
to explain these results.
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As future work, we aim to integrate appropriate statistics on convergence of the

Gibbs samplers, introduce additional structure in the model to constrain clustering choices,

and incorporate compositional correction factors to offer some prection for technical vari-

ation. While the inferences and hypotheses generated above appear meaningful, given the

discussions in part I of this thesis, the fact that such inferences were based only on relative

abundance information does not offer much confidence in them, and additional evidence

must be sought. With rapidly growing dataset sizes, compute time will limit the applica-

tion of the proposed approach, and faster algorithms based on other approximate inference

methods (like variational inference and stochastic gradient descent) will be preferable.
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Chapter 8

Evolutionary invasion analysis of altruistic post-infection suicidal

genotypes in a well-mixed epidemiological model.

In this chapter, we sketch the conditions for the evolution of altruistic, post-infection

suicidal mechanisms in a simplified well-mixed epidemiological model, using an adaptive

dynamics approach. The derivation serves to illustrate the difficulty of explaining the

surprising evolutionary origins, and the continued maintenance of an altruistic trait in

well-mixed systems, in general.

As with chapter II, our inspiration for analysis arises from the following set of

observations in microbiology. Prokaryotic Toxin/Anti-Toxin (TA) and Abortive Infec-

tion (Abi) defense systems work against parasite invasion by inducing dormancy/cellular

suicide following infection [189, 205, 237]. To avoid excess population loss when unin-

fected, such systems are regulated so that their activation is restricted to infected popu-

lations [238]. Given the widespread occurrence and the high effectiveness of phage tar-

geting machinery that clear a variety of phage infections without inducing host cell death

(like that of restriction-modification (R-M) and CRISPR systems) [239,240] or the widely

occurring envelope resistance mechanisms [241–243], the prevalance of suicidal defense
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systems in prokaryotes is surprising [190, 237, 244]. Indeed, their complete absence in

most endosymbionts is perhaps a testament to their associated fitness cost [244]. Thus

the search for an explanation for their evolutionary origins and ecological maintenance in

natural prokaryotic populations is quite interesting.

Several investigations have previously addressed the evolution of altruistic defense

systems by incorporating epidemiological feedback in the context of evolutionary game

theory or agent-based simulation models and extensively concluded that spatial structure

is necessary to allow for the stable evolution of altruistic hosts [245–249]. Favorable

spatial constraints can limit the dispersal of infectious agents, and post-infection suicide

of altruistic hosts can reduce the local densities of infectious agents. Such effects can

ultimately reduce the propensity of infections among locally dense altruists, providing

the hosts with a fitness advantage through selective assortment [250]. Similar results

for the evolution of altruism have been proposed in social game theory [251–253]. Kin

selection and inclusive fitness theory offer another route [254, 255].

Epidemiological Model

We consider a simplified epidemiological model, with extensive similarities to the

CRISPR model analyzed in Part II. Here, susceptible hosts (with density S) grow at a rate

of b under a carrying capacity constraint of K, the intensity of which is measured by α .

Susceptible hosts acquire infections from infecteds (with density I) at a rate of β . Infected

hosts clear infections through background resistance mechanisms at a rate of ρ . The back-

ground host mortality rate is assumed to be γ . Infected hosts additionally undergo suicide
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at a rate of ξ , and susceptible hosts regulate this autoimmunity through a suppression

factor of 0 ≤ δ ≤ 1: a value of 1 implies no difference in autoimmunity rates between

the susceptible and infected host states, while a value of 0 implies complete suppression

in the susceptible host state. The excess mortality induced by the parasite (virulence) is

indicated by λ . Denoting κ = α

K , we can write the following non-dimensional system for

the resident population (in which the parameters and variables are rescaled accordingly

but we preserve the same notation):

Ṡ = b [1−κ (S+ I)]S+ρI−βSI− (δξ + γ)S

İ = βSI− (ρ +λ +ξ + γ) I

(8.1)

8.1 Evolutionary Dynamics

As a defense mechanism, both regulation by suppression and abortive infection

mediated resistance can be costly to a host [188, 213, 256–264].

Our goal is to perform a very simplified analysis and get a few insights on mech-

anisms that could lead to the evolution of altruist defense. In the above model, let us

consider the evolution of altruist defense (ξ ) at a fixed δ under the special case where

there is no recovery ρ = 0 (but notice that the condition ρ = 0 can also reflect an in-

stantaneous recovery/resistance where only a fraction of parasite-adsorbed susceptibles

actually proceed to the infected stage). Assume that our resident host population is at a

stable endemic equilibrium (S > 0, I > 0), encoding a no-suicide strategy (ξ = 0). We ask

when a rare mutant encoding a strategy ξm = 0+ε,ε > 0 small can invade this no-suicide
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resident host population. Under the assumptions of the theory of adaptive dynamics, a

mutant encoding a strategy ξm will invade a resident strategy ξ when its per-generational

invasion fitness φm > 0.

In our model, the invasion fitness for a mutant encoding a strategy ξm is given by:

φm = bm(1−κm(S+ I))−βmI− (δξm + γ)

Here the m−subscripted parameters (other than ξm) indicate that they are as yet

unspecified smooth functions of the mutant strategy ξm, and possibly also of the encoded

resident strategy ξ . For instance, bm = b(ξm,ξ ). Usually, transmission coefficient (β )

is considered to be a parasite related phenotype but for now, we let that to be an as-yet

unspecified smooth function of the encoded suicidal strategy as well. For evolution to

lead away from the resident no-suicide resident defense phenotype, the fitness gradient at

ξ = 0 must be positive. That is, dφm
dξm
|ξm=ξ=0 > 0. This, by the chain rule, means:

dbm

dξm
·
[
1−κm(S+ I)

]
|ξm=ξ=0

−bm ·
dκm

dξm
· (S+ I)|ξm=ξ=0

− dβm

dξm
· I|ξm=ξ=0

> δ ∈ [0,1]

(8.2)

Now, the terms (1−κm(S+ I)) > 0,S+ I > 0, and I > 0 under conditions needed

for stable endemic equilibrium. So whether the above inequality holds ultimately rests on

the interplay of other (derivative) terms. We will consider a series of simple cases; each of

these will ultimately inform potential mechanisms that one can explore for the evolution
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Figure 8.1: Evolution of host abortive infection potential. Trade off curves and their
shapes influence the evolutionary stability (A) and bistability (B) of the evolved suicidal
defense strategy. Green and brown regions indicate regions of positive and negative se-
lection respectively; black dark line indicates evolutionary stable states (ESS), dotted line
indicates unstable states.

of suicidal defense.

Case A If both the intraspecific and the transmission coefficients are fixed constants, and not

a function of ξm (κm ≡ κ , βm ≡ β ), then ∂bm
∂ξm
|ξm=ξ=0 > δ/

[
1−κ(S+ I)

]
|ξm=ξ=0 ≥

0 is needed for suicidal defense to evolve. This means, that the hosts must ex-

perience a sufficient reduction in intrinsic growth rates (i.e., its gradient must be

sufficiently positive) at ξ = 0. It is easy to see that opposite conclusions arise for

the two other cases below.

Case B When bm≡ b,βm≡ β but κ still a function of ξm and possibly also of ξ , ∂κm
∂ξm
|ξm=ξ=0

needs to be sufficiently negative for the inequality to hold. That is, the resident hosts

must suffer increased intraspecific competition at ξ = 0.
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Case C Similarly, for bm ≡ b,κm ≡ κ but when β still left to vary with ξm and possibly also

of ξ , ∂βm
∂ξm
|ξm=ξ=0 needs to be sufficiently negative for the inequality to hold.That is,

the resident hosts must suffer increased disease transmission rates at ξ = 0.

This simple catalog then reveals that there are at least three distinct mechanisms

by which adaptive evolutionary dynamics can lead to potential altruistic defense against

parasites in a well-mixed SIS model. Indeed, each of these mechanisms can be viewed as

a punishment mechanism that enforces cooperation among defecting individuals that do

not support altruistic defense.

The above analysis addressed the question of whether a mutant encoding a suici-

dal strategy can invade a resident host population encoding no suicidal defense strategy,

under the model assumptions. We can also ask when evolutionary singular points, in

particular, attractors, occur in the interior of the ξ parameter space; in this case, the in-

equality in (8.2) sign above must be replaced with equality. It is then clear that under the

classical const-benefit trade-off assumption of monotonically decreasing birth rates with

higher resistance (in this case, suicidal defense ξ ), unless one of the other gradients is

sufficiently positive in (8.2), there is no way for altruism to evolve. This is illustrated in

Fig. 8.1, where dependence of intrinsic growth rate and transmission rates on the encoded

suicidal strategy allows stable evolution of altruist defense. Similar results are obtained

numerically in the presence of background resistance and when the parasites are allowed

to coevolve their virulence strategy.

Thus, for post-infection suicidal hosts to evolve in an evolutionarily stable man-

ner, unless helped by other structural changes in the model, complete loss of suicidal
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systems must be assumed to be costly. Such a helping mechanism for the evolution of

altruistic traits [253,265] operates by punishment [266–271], and is mimicked by natural

prokaryotic toxin/anti-toxin systems that induce post-seggregational killing, or when they

take part in essential cellular pathways, or when parasites specialize to infect less suicidal

hosts.
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Chapter 9

Multi-resolution analysis with bifurcation analysis of smoothing spline

models.

Modern biological data are often measured along time and spatial coordinates. And

relative to some baseline reference, they reveal trends at various scales. Arctic and antarc-

tic sea ice cover vary by month, season and years. Relative to healthy controls, cancer

associated epigenetic signals have been recorded over small chunks of DNA, yet one can

also view them to be organized coherently over large blocks of the genome. The goal

of this study is to develop some analytics to identify such trends at various scales in a

systematic fashion. We exploit smoothing spline ANOVA models to model case-control

longitudinal data, and propose carrying out bifurcation analysis of the fitted spline’s roots

(zero crossings) as a function of the regularization parameter λ (which determines the

wiggliness of the fit) to identify qualitative changes in the spline topology. We illustrate

the potential of the proposed approach in revealing sound inferences in the case of a few

biological applications.
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9.1 Smoothing Splines Models

We now give a brief introduction to the theory of smoothing splines, which is

needed for our model construction below. For more mathematical details, we direct the

readers to refs. [272–274].

Suppose we want to study the association of predictors xi to outcome yi, given

the observations i = 1 . . .n. The predictors xi could arise from a discrete set of treatment

groups∈G= {1, . . . ,K} or a continuos covariate like time or age∈R. More generally, the

predictor variables could be multi-dimensional, arising from a product space of covariates.

As with other chapters in this thesis, we shall use the · notation to indicate vector-

ized quantities. Given the data (x·,y·), the smoothing spline technology aims to fit general

functions f (xi), xi ∈ χ, f ∈H to describe the mean outcome, by solving a penalized op-

timization problem:

argmin
f∈H

L( f ;y·,x·)+λJ( f ) (9.1)

Here, χ is the input domain, and H is a reproducing Kernel Hilbert space (RKHS)

of functions defined on χ . L(·) is a loss function, and arises usually from the likelihood

model that one prescribes for the data. For instance, if the data generative process is a

Gaussian process, one recovers the root mean square deviations of the predicted from

the observed values, as L(·). λ ∈ R is a penalty parameter that acts on the "roughness"

(wiggliness) measure of the function J( f ). Thus, roughly speaking, the goal of the above

optimization problem is to find a reasonably smooth function whose predictions deviate

minimally from the observations, while at the same time satisfying some constraint on its
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roughness.

The key advantage of restricting ourselves to fitting functions from an RKHS H 2

is that any function f ∈ H can be decomposed linearly in terms of their orthogonal

projections based on the given data points i= 1 . . .n (like a standard finite K− dimensional

RK vector space) as:

f (x) =
n

∑
i=1

αiR(x,xi)+ν(x),with ν ∈H 	{q : q =
n

∑
i=1

αiR(·,xi)}

=
n

∑
i=1

ciRA(x,xi)︸ ︷︷ ︸
∈HA⊂H

+ ζ (x)︸︷︷︸
∈HB⊂H

, with H = HA⊕HB
(9.2)

Here α·,ξ· are scalars. R(·, ·) is a bivariate, symmetric non-negative definite func-

tion called the reproducing kernel (RK) and is unique for every RKHS. The first line in

the above equation decomposes the function into two orthogonal pieces, the first term

based on the space’s RK, and a residual term ν . In the second line, the overall space H

is decomposed in to two orthogonal closed subspaces HA and HB, which are themselves

RKHSs, and therefore have their own RKs; by RA(·, ·), we mean the RK associated with

the RKHS subspace HA. The term orthogonal is used in the standard sense: the space’s

associated inner product ( f ,g)H = 0 ∀ f ∈HA, g ∈HB. So because all our decomposi-

tions above are orthogonal, it should be clear (R(·,xi),ν)H = 0, and (RA(·,xi),ζ )H = 0.

Notice we could write ζ in terms of the RK of HB as well; for our purposes, that is

immaterial.

In fact, one can go further and exploit this decompositional convenience to build

2a special type of Hilbert space, which is defined as a complete vector space endowed with an inner
product.
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a classical ANOVA like procedure as follows. Consider decomposing the subspace HB

further:

f (x) =
n

∑
i=1

αiR(x,xi)

=
n

∑
i=1

ciRA(x,xi)︸ ︷︷ ︸
∈HA⊂H

+ ζ (x)︸︷︷︸
∈HB⊂H

, with H = HA⊕HB

=
n

∑
i=1

ciRA(x,xi)+
m−1

∑
j=1

d jφ j(x)︸ ︷︷ ︸
∈HB0⊂H

+ ρ(x)︸︷︷︸
∈HB1⊂H

, with ρ ∈HB	{q : q =
m−1

∑
j=1

d jφ j(·)}

(9.3)

where φ j, j = 1 . . .m− 1 are some set of basis functions chosen such that they are

orthogonal to the space spanned by RA(·,xi) ∀i = 1 . . .n. For instance, this basis can

be chosen to include constant and linear order terms (like a general linear model). The

higher order terms are then left intact in subspaces HA and HB1. We shall come back to

this point in the next subsection.

In summary, we have decompsed our function space of interest, the RKHS H , into

three distinct orthogonal subspaces: H = HA +HB0 +HB1.

9.2 Two specific instances of the problem

We now briefly illustrate two example smoothing spline models. These will serve

to simplify our discussions for case-control longitudinal data next. Each such instance

of the general problem considered in eqn. 9.1 involves (a) defining the loss function, (b)

the space of functions we need to search over as an RKHS, and their corresponding RKs,

and (c) the roughness penalty we would like to impose. Usually, the roughness penalty
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measures the (inner product) induced squared norm of the function’s projection onto the

penalized H1 subspace, where higher order terms live.

9.2.1 Ridge regression

The standard one-way ANOVA can be cast as an instance of the penalized opti-

mization problem mentioned in eqn. 9.1, by fitting discrete functions f : χ → R, where

χ = {1, . . .K} represents the experimental groups. It turns out the function space H de-

fined this way is an RKHS with an RK R(x,y) = I[x==y]. Let 1 be a K dimensional vector

of 1s. We can decompose H 3 f into two orthogonal subspaces with individual RKs

(that add to give the original space’s RK as):

I[x==y] =
11T

K︸︷︷︸
R0

+

(
I− 11T

K

)
︸ ︷︷ ︸

R1

(9.4)

.

The RKHS subspaces H0 and H1 of H spanned by each of these RKs can be rea-

soned about by studying their respective linear combinations {∑i αiR j(·,xi),αi ∈ R,xi ∈

χ} for j ∈ {0,1} corresponding to each of the RKs R0, and R1. This corresponds to spaces

H0 = { f : f (1) = f (2) = · · ·= f (K)}, and H1 = { f : ( f ,g) = 0, f ∈H0,g ∈H1}, where

the inner product ( f ,g)H = f T g.

Then, when one considers the following instance of the optimization problem 9.1:

argmin
f∈H

1
n

n

∑
i=1

(Yi− f (xi))
2

︸ ︷︷ ︸
=L( f ;x·,y·)

+λ f T f︸ ︷︷ ︸
=λJ( f )

(9.5)
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we are effectively solving the ridge regression problem.

9.2.2 Cubic smoothing splines

Consider fitting functions f : χ → R, where χ = [0,1] to a continuos covariate

x∈ χ . Let us restrict our attention to fitting functions whose second derivatives are square

integrable: i.e., for f ∈ {g : g(2) ∈L2[0,1]}. It turns out one can decompose this RKHS

for f as H = H0⊕H1, where:

H0 =
{

g : g(2) = 0
}
,and,

H1 =

{
g : g(0) = g(1) = 0,

∫ (
g(2)
)2

dx < ∞

} (9.6)

with corresponding RKs:

R0(x,y) = 1+ k1(x)k1(y)

R1(x,y) = k2(x)k2(y)− k4(|x− y|),

where :

k1(x) = x−0.5

k2(x) =
1
2

(
k2

1(x)−
1

12

)
k4(x) =

1
24

(
k4

1(x)−
k2

1(x)
2

+
7

240

)

(9.7)

are the Bernoulli polynomials.

The point here is to note that the zero and first order terms (in x) are attached to

H0 and the non-linear higher order terms are restricted to H1. So one choice of basis
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functions for H0 are given by φ0(x) = 1,φ1(x) = x− .5.

With such a setup, one can write f (x) as:

f (x) =
1

∑
j=0

d jφ j︸ ︷︷ ︸
∈H0

+
n

∑
i=1

R1(x,xi)+ρ(x)︸ ︷︷ ︸
∈H1

(9.8)

where as before ρ ∈H1	g : ∑
n
i=1 αiR1(·,xi). Due to orthogonality (R1(·,xi),ρ) =

(φ j,R1(·,xi)) = (φ j,ρ) = 0. One then considers the penalized problem for obtaining cubic

smoothing splines f :

argmin
f∈H

1
n

n

∑
i=1

(Yi− f (xi))
2

︸ ︷︷ ︸
=L( f ;x·,y·)

+λ

∫ 1

0

(
f (2)
)2

dx︸ ︷︷ ︸
=λJ( f )

(9.9)

where the penalty mesures the roughness/curvature of the function.

9.2.3 Deriving the solution of the cubic smoothing spline problem

Substituting the decomposition of f derived above, and noting the orthogonalities

of ρ , R1(·,xi), and φ j, together with the identity that
∫ 1

0 R(2)
1 (x,xi)R

(2)
1 (xi,x) = R1(xi,x j)

we find that our specific cubic spline optimization problem in 9.9 is given in matrix terms

as:

argmin
c,d

(Y −Sd−Qc)T (Y −Sd−Qc)+nλcT Qc+nλ (ρ,ρ) (9.10)

.

Here Y is the n length response vector, Q is an n×n matrix with Q(i, j) = R1(xi,x j),
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S is the n× 2 matrix with row-wise entries (φ1(xi),φ2(xi)). It should be clear that ρ

appears only through its square norm term, which being independent of the parameters,

merely serves to introduce a non-negative shift in the objective’s location away from zero;

clearly then, the objective is minimized when ρ = 0. One then exploits linear algebraic

techniques to solve for c and d to estimate our cubic smoothing smoothing splines. As one

would expect, these estimates are functions of the roughness penalty λ . We thus arrive at

the celebrated Kimmeldorf-Wahba result [272] that polynomial smoothing splines reside

in a closed, finite dimensional space H0⊕{g : g = ∑
n
i=1 αiR1(·,xi),αi ∈ R}.

9.3 Proposed strategy for multi-resolution analysis of case-control lon-

gitudinal data

As we noted in the general formulation of the smoothing splines models in eqn. 9.1,

by increasing the penalty parameter λ , one trades off data fit for model simplicity. For

instance, in the case of cubic splines models, λ → ∞ chooses a linear fit with no wiggli-

ness, while λ → 0 retrieves a cubic spline within the function space that interpolates all

the data.

We make three key observations that lead us to the proposed algorithm. First, vary-

ing λ leads us to fitting models with varied complexities. This means, in terms of a

difference (contrast) function that one might build for longitudinal data (e.g., time series

measurements of a bacterium’s abundance in cases and controls, or DNA coordinate-wise

epigenetic measurements from cancer cells relative to healthy controls), lower values of λ

would reveal finer blocks of changes, while higher values of λ will restrict our attention to
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larger organizational blocks of changes in DNA. Second, given the continuous nature of

functions we fit our data with, the only way by which a bigger block of change can arise

at a higher value of λ , is by loss of one or more roots from the splines fitted at smaller λ

values (that is via a reduction in the number of points where the difference function attains

a value of zero). Thus by cataloging the number of roots obtained as we vary λ (and the

function gradients at these points, discussed later), one obtains a quantitative picture of

the special points in the λ space, where qualitative changes in the topology of the fitted

splines occur. Finally, as assumptions behind the Implicit Function Theorem apply to

spline solutions almost everywhere in the domain, one can go further, exploit numerical

continuation theory to obtain the location of the roots smoothly as we vary λ .

9.4 Model construction for longitudinal case-control data

In the two simplified problem instances described above, we constructed functions

for categorical and continuous data separately. Our goal now is to exploit smoothing

spline technology to construct a contrast function that describes a continuous change in

outcome along one continuous coordinate t ∈ τ (e.g., DNA coordinate or time) between

two discrete experimental conditions x ∈ χ = 1,2 (e.g., controls and cases).

It turns out one can construct RKHS model spaces for multi-variate functions as

easily as constructing them for univariate functions. The main result we exploit here

is that given two marginal RKHSs and their decompositions: H χ = H
χ

0 +H
χ

1 and
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H τ = H τ
0 +H τ

1 , a (tensor) product RKHS space can be constructed as :

H χ⊗τ = {H χ

0 ⊕H
χ

1 }⊗{H
τ

0 ⊕H τ
1 }

= {H χ

0 ⊗H τ
0 }︸ ︷︷ ︸

=H
χ⊗τ

0

⊕{H χ

0 ⊗H τ
1 }︸ ︷︷ ︸

=H
χ⊗τ

10

⊕{H χ

1 ⊗H τ
0 }⊕{H

χ

1 ⊗H τ
1 }︸ ︷︷ ︸

=H
χ⊗τ

11︸ ︷︷ ︸
=H

χ⊗τ

1

(9.11)

where we have hierarchically decomposed our new product input space into two

orthogonal RKHS [272–274]. The only remaining step needed to utilize the algorithms

outlined in the previous section is to identify the RKs associated with these spaces. Con-

veniently, it turns out that RKs assigned to the marginal spaces also add and multiply

accordingly!

Rχ⊗τ = {Rχ

0 +Rχ

1 }×{R
τ
0 +Rτ

1}

= {Rχ

0 ×Rτ
0}︸ ︷︷ ︸

=Rχ⊗τ

0

+{Rχ

0 ×Rτ
1}︸ ︷︷ ︸

=Rχ⊗τ

10

+{Rχ

1 ×Rτ
0}+{R

χ

1 ×Rτ
1}︸ ︷︷ ︸

=Rχ⊗τ

11︸ ︷︷ ︸
Rχ⊗τ

1

(9.12)

From the hierarchical decomposition of RKs and the marginal basis functions, it

is clear that Hχ×τ

0 is spanned by the basis {φ1(x, t) = 1,φ2(x, t) = t − 0.5} and models

the grand mean and linear main effect of τ; Hχ×τ

10 describes the smooth main effect due

to τ , and the third, interesting for our purposes, space Hχ×τ

11 models the smooth-linear

interaction and smooth-smooth interactions of x and τ . Thus, it is this subspace whose

contributions to the fitted function completely specify overall treatment effects that we

care for in this work. Specifically, we can write, for every function f ∈ H χ×τ , and
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denoting zi = (xi, ti)

f (z) =
1

∑
j=0

d jφ j(z)+
n

∑
i=1

ciR
χ⊗τ

1 (z,zi)+ρ(z)

=
1

∑
j=0

φ j(z)+
n

∑
i=1

ciR
χ⊗τ

10 (z,zi)+
n

∑
i=1

ciR
χ⊗τ

11 (z,zi)︸ ︷︷ ︸
=γ(z)

+ρ(z)
(9.13)

where ρ ∈H
χ⊗τ

1 −{∑n
i=1 ciR

χ⊗τ

1 (·,zi)}, and we have exploited the hierarchical

decomposition of the RK corresponding to H
χ⊗τ

1 . We emphasize that γ(·) is the overall

effects function whose roots we are after, as a function of λ in the rest of this work.

9.4.1 Estimation and Notation

With this model space construction, for every λ , we can estimate c(λ ) from the lin-

ear algebraic algorithms (Algorithm 3.4.2 [273]) available for smoothing spline models,

and compute the contrast function γ (z = (case, t)) as:

γ (z = (case, t);λ ) = R11
T (t)c(λ ) (9.14)

Here R11(t) = [|R11(ti, t)|]ni=1. Henceforth, we drop the superscript χ ⊗ τ and denote by

c the entire estimated vector of ci s instead of a bold typeface. Furthermore, because we

restrict our analysis to x = case, we will make the estimation functions’ dependence on it

implicit, and simply use γ(t,λ ) and R11(t).
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9.5 Bifurcation analysis of γ(t,λ ) with λ as the control parameter

Noting that it is the roots of the contrast function γ(t,λ ) we are after, and that

the function is continuously differentiable1, Implicit Function Theorem guarantees the

existence of a smooth solution to the equation γ(t,λ ) = 0 in the open neighborhood of a

given root (t∗,λ ∗) whenever ∂γ

∂λ
(t∗,λ∗) 6= 0.

In fact, this is the central theory underlying numerical bifurcation analysis in dy-

namical systems theory, where qualitative behavior about steady states are mapped as a

function of some control parameter. We had exploited such a technique in Part II of this

thesis for the analysis of a CRISPR model.

For our purposes here, we developed the equivalent numerical continuation algo-

rithms and implemented them in the R software language. Fold points were detected by

simultaneously asking for γ(t∗) = 0 and γ̇(t∗) = 0.

9.5.1 Confidence intervals for t̂ given λ

For every λ , the confidence intervals in the fitted roots can be obtained with a

linearization calculation as below. For a given value of λ , let the root along τ axis be

given as t̂. Expand around the true root t0, when γ̇(t̂) 6= 0:

γ(t̂) = γ(t0)+ γ̇(t̂− t0)+O(|t̂− t0|2) =⇒ t̂ ≈ t0 +
1

γ̇(t̂)
γ(t̂), (9.15)

1to be precise, the function is continuously differentiable almost everywhere, given the non-
differentiable nature of the RK R11(z) at data points xi, i = 1 . . .n. But we do not worry about this com-
plication in this work
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which leaves us with the following approximate variance on the estimated root:

Var(t̂) =
[

1
γ̇(t̂)

]2

Var(γ(t̂)) (9.16)

where Var(γ(t̂)) is easily available as the posterior variance of the fitted function γ at t̂

form the Bayesian calculations of Wahba [272] for polynomial smoothing splines. Based

on that theory, a Gaussian process prior with a mean zero and a covariance function

proportional to the RK R11(·, ·) can be assumed for γ . Whenγ̇(t̂) = 0, which is the case

at a fold point, a second order treatment is made in the above variance calculations. A

100(1− α

2 )% confidence interval can then be approximately obtained as: t̂± z α

2

√
Var(t̂),

which is an interesting overlay to the classical bifurcation analysis methodology exploited

for deterministic systems.

9.6 Applications

9.6.1 Metagenomic time series

To illustrate the potential of the proposal above in identifying multi-resolution changes

in longitudinal data, we first considered the 16s metagenomic feature data from David et

al., [275]. In this work, the authors measured microbial frequencies over time as an in-

dividual travelled abroad and returned back home. We performed a bifurcation analysis

on the contrast function for a few dominant genera, where samples post-travel were con-

sidered as "cases" and those pre-travel were considered as "controls". The results are

presented in Fig. 9.1. One of the main results in from David et al., is clearly recapitulated
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in this plot: Bacteroides and Blautia undergo major long-term changes post- travel before

they settle back to the pre-travel state. Bifurcation points along the time axis indicate at

which points changes in the (relative) abundances started to occur. These changes are

located at roughly similar time points for several features, indicating correlated factors

underlying their observed changes. As to whether they are purely due to compositional

effects discussed in Part I of the manuscript or truly owing to underlying biological rea-

sons, we cannot conclude from this result alone.

9.6.2 Genome-Wide DNA Methylation Signals

We next applied the technique to characterize long and short-term changes in high

resolution methylation signals throughout the genome in lung cancer tissue relative to

healthy controls. In contrast to the metagenomic time series datasets above, which con-

sist of a few hundred to a few thousand observations, we are now faced with the problem

of analyzing millions of methylation intensity values averaged and recorded throughout

the genome in 150 bp nucleosome sized windows [276]. This is a major computational

challenge, which we currently address using the following modifications to the more ac-

curate algorithm outlined in the previous section. First, we observed that changes in

methylation often spanned over several thousands of base-pairs. Second, given a value of

λ , finding its roots involve solving an one-dimensional root finding problem. Although

non-linear, sound computational techniques exist that are very fast for this problem [277].

Finally, we exploited the faster estimation algorithm by Kim and Gu [278] (also see sec-

tion 3.5.3 in [273]), which by only using a fewer q < n set of observations to describe the

H1 space (instead of all of the n observations to form ∑i cq
i=1R1(,xi) ), improved the speed
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Figure 9.1: Long term and short-term differences in microbial time series pre- and post- travel.
Plotted are the roots of the contrast functions for various microbial genera γ(x,λ ) for various
values of n ∗λ ; n is the sample size, and x is rescaled time. Purple and red points indicate roots
where the contrast function has positive and negative gradients with respect to the longitudinal
coordinate (in this case, x) respectively. For any given value of λ then, the region between a
consecutive (blue, red) pair is a region of positive difference, while a region between a consecutive
(red, blue) pair of points indicate regions with a negative difference in cases relative to controls.
Blue squares indicate fold points.

of the algorithm several folds. In summary, if one does not care about fold points, these

modifications to the original algorithm prescribed above, lead to deriving plots similar to

Fig. 9.1 genome-wide in non-overlapping 1 megabase pair windows in less than 3 hours,

with 3 parallel processes on a Macintosh laptop. With the more accurate algorithm, this
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problem would have taken more than two weeks to solve, with 16 parallel processes.

After obtaining the contrast function for various values of the roughness penalty

λ , we computed the lengths of differential regions/segments suggesting a negative differ-

ence (hypo-methylated) and positive change (hyper-methylated) relative to controls. In

Fig. 9.2, bottom panel, we plot the growth in the median lengths of the hypo- and hyper-

methylated regions vary (over 8x) as a function of λ . In general, for all resolutions( spec-

ified here by the value of log(nλ )), we found higher median lengths for hypo- methylated

regions than in hyper- methylated regions. The distributions of length values obtained at

fine- (log(nλ ) =−1) and large-scale (log(nλ ) =−14) changes are shown in the top two

panels.

Interestingly, we also found that across all resolutions, transcription factor bind-

ing sites, as measured with ChipSeq by the ENCODE consortia, were enriched in hypo-

methylated regions genome-wide in lung cancer tissues. To illustrate this, we have plotted

the binding site fraction in hypo-methylated regions in Fig. 9.3. These findings were con-

firmed by Fisher exact tests for >85% of the transcription factors as well.

Here is one possible explanation for the aforementioned results. The significantly

longer hypo-methylation blocks in lung cancer and the enrichment of transcription factor

binding sites in these regions could be caused by competitive binding of over-expressed

transcription factors, or other DNA binding agents, preventing stable methylation estab-

lishment. A simple kinetic / stochastic process model of such binding events will indicate

that this is a genuine possibility. If one has access to absolute concentration measure-

ments of protein molecules/mRNA expression from genes, such a hypothesis can quickly

be tested as well. As described in Part I of this thesis, relying on frequency based measure-
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Figure 9.2: Scale specific genome-wide differences in DNA methylation in lung cancer tissue
relative to controls. Plotted are the median lengths of differentially methylated regions γ(x,λ )
estimated from lung cancer data relative to healthy controls for various resolutions (as measured
by log(n∗λ )); n is the sample size.

ments from RNAseq (unless resolved effectively with internal spike-in control features)

need not always allow stable biologically relevant conclusions. Although scale normal-

ization approaches for RNAseq can lead to effective inferences when most genes do not

change in their expression values, cancer tissues exist where such an assumption is heav-

ily violated [113].
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Figure 9.3: Enrichment of transcription factor binding sites in hypo-methylated regions. For
each transcription factor whose binding sites were characterized by the ENCODE consortia, we
plot the fraction of binding sites found in lung cancer’s hypo-methylated regions. Enrichment
of transcription factor binding sites in hypo-methylated regions was generally the case for all
resolutions as measured by log(nλ ). The red dashed line indicates a value of 0.5.
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