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THz and millimeter-wave length radiation is widely used in imaging, detection 

and plasma heating. Vacuum electronic devices are the most efficient sources of high 

power radiation in the THz and millimeter range. Efforts to increase power by 

increasing current, are hampered by self-field effects and instabilities. Two examples 

of these effects are considered: the reduction in bunching efficiency in orotrons (a 

slow wave device), and the excitation of backward wave instabilities, in gyrotrons (a 

fast wave device). 

The goal of producing THz radiation from miniature electron beam devices has 

refocused interest in orotrons. The efficiency of these devices improves with 

increasing current density. However, with increasing current density, self-fields 

become more important. Here, the theory of self-fields in a planar orotron is 

developed.  We find that the parameters of the grating, which provides the slow wave 



  

fields that interact with the beam, also affect the self-fields, which give rise to the 

slow space charge wave. Thus, optimization of the grating parameters requires 

consideration of their impact on the dispersive properties of the slow space charge 

wave.  We present a sample structure design appropriate for a planar orotron.  

Heating plasma to fusion temperatures will require multi megawatts of continuous 

wave (CW) power. Gyrotrons are the sources of choice for this heating. However, the 

maximum CW power from a single gyrotron is about 1.5MW. Efforts to increase 

gyrotrons power have led to instabilities in the electron beam. Here, the starting 

conditions for excitation of backward waves in the beam tunnel between the electron 

gun and the cavity of a high-power gyrotron are studied. The excitation of these 

waves leads to electron energy spread that spoils the beam quality and, hence, 

degrades the gyrotron efficiency. The suppression of these modes by a resistive 

coating on the wall of a smooth beam tunnel is examined. The guiding magnetic field 

and the tunnel wall radius vary along the axis, so the theory is essentially the small-

signal theory of a gyro-backward-wave oscillator (gyro-BWO) with tapered 

parameters. The velocity spread and space charge of the beam will affect the 

interaction between the electron beam and backward wave. We find that space charge 

significantly lowers backward wave start currents and suppression of the space charge 

effect is key to operating at higher currents.  
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Chapter 1: Introduction 

In the electro-magnetic spectrum, which has been widely used since the 1900’s, 

THz radiation (3x1011 Hz - 3x1012 Hz), occupies the region between microwave and 

far-infrared radiation. Similar to microwaves, THz radiation can penetrate dry, non-

conducting and non-polar materials such as clothing, paper and plastics, and even 

non-polar organic objects. In dielectrics, its absorption depends on the polarity and 

the optical phonon resonance of the material. In the gas phase, most molecules have 

unique rotational or ro- vibrational spectra of the absorbing species. Thus many 

materials have unique spectral fingerprints in THz range, this gives THz radiation 

high selectivity in different materials. In addition, THz radiation is non-ionizing 

radiation, so it can be used for imaging and detecting without damaging the objects. 

All these advantages bring THz radiation potential applications in a wide range of 

fields such as packaging inspection, materials evaluations, biomedical engineering 

research and plasma physics. However THz is not suitable for communications, 

because it is strongly absorbed in the atmosphere. 

Sources of THz radiation can be grouped into three categories. The first category 

is vacuum electronic devices such as gyrotrons and backward wave oscillators 

(BWOs). The second is lasers. Far infrared lasers, the quantum cascade laser and the 

photomixing source all can generate THz radiation. The last category is solid-state 

sources. It includes the surface emitter, photoconductive emitters and the optical 

rectifiers, all of which are used in Terahertz time-domain spectroscopy. Our research 

focuses on vacuum electronic devices. 
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There are two basic mechanisms to generate THz waves in vacuum electronic 

devices: slow wave excitation and fast wave excitation. In slow wave devices, beam 

electrons travel along a straight path and interact with a wave whose phase velocity is 

below the speed of light. Radiation can be generated when the Cherenkov 

synchronism condition (

€ 

vp ≈ ve) is satisfied, where 

€ 

vp =ω kz is the phase velocity of 

the wave, 

€ 

ω  and 

€ 

kz  are frequency and wave number, and 

€ 

ve  is the velocity of the 

electron. Cherenkov radiation occurs when 

€ 

vp < ve . The orotron is an example of a 

potential source of high power THz. In fast wave devices, such as the gyrotron, the 

beam electrons travel along a curved path and interact with a wave whose velocity is 

larger than the velocity of light. Radiation can be generated when the cyclotron 

synchronism condition 

€ 

ω − kzvz ≈ Ω , is satisfied, where 

€ 

Ω is the cyclotron resonance 

frequency. 

The orotron was first proposed by Rusin and Bogomolov in 1966 [1]. It generates 

millimeter and sub-millimeter coherent radiation from the interaction between an 

electron beam and the electromagnetic field of a cavity containing a periodic grating. 

Near the grating surface, the field is a superposition of waves with wave numbers as 

€ 

kz,n = kz,0 + n2π p, where 

€ 

p  is one period length of the grating surface. The orotron 

converts the spontaneous Smith-Purcell radiation [2] into stimulated radiation via the 

addition of a cavity.  The dispersion diagram of the interaction between the electron 

beam and electromagnetic wave is shown in Fig. 1.1. The periodic curve indicates the 

dispersion curve of the field. The intercept is where the Cherenkov resonance occurs.  

Figure 1.2 displays schematically the structure of an orotron consisting of a 

movable parabolic mirror and a fixed plane periodic grating. The upper mirror is 
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movable to generate different radiation frequencies. The lower mirror is a periodic 

grating surface to provide slow waves that will couple with the electron beam. 

Reviews of the orotron can be found in Refs. 3, 4 and 5. Reference 6 describes an 

example of the application of an orotron.   

To produce higher power THz radiation from an orotron, higher beam current 

density will be needed. The self-fields in the beam, which resist the beam- wave 

interaction, will lower the efficiency of the orotron. To calculate the electron beam 

density needed to generate THz radiation, the self-field effects should be considered. 

We calculated start currents as function of various parameters. This is the essence of 

chapter 2. 

 

Fig.1.1. Dispersion diagram for the interaction between electron beam and 

electromagnetic wave in orotron. 
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Fig. 1.2. Structure of a plane orotron (

€ 

Lx >> x1 + Δ + d )  

with rectangular grooves showing the important dimensions 

 

The gyrotron [7] is based on mechanism of coherent cyclotron radiation. The 

theory was first developed by Richard Twiss in Australia [8], Jurgen Schneider in the 

US [9], and Andrei Gaponov of the U.S.S.R. [10] individually in the late 1950s. The 

structure of a gyrotron is shown in Fig. 1.3(a), and a cross section in the beam tunnel 

is shown in Fig. 1.3(b). An annular electron beam is accelerated from a cathode and 

gyrates in a small orbit around a magnetic field line towards a cavity. In the cavity, 

the electrons interact with an eigen-mode of the cavity and transform a part of their 

transverse kinetic energy to the wave. The electrons then leave the cavity and are 

collected on the right hand side.   
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Fig. 1.4 shows the dispersion diagram of the interaction between the electron 

beam and electromagnetic wave in the cavity of gyrotron. The curved line 

€ 

ω = ωc
2 + c 2kz

2  is the dispersion diagram for the wave in the cavity, which can be 

regarded as a waveguide, 

€ 

ωc is the cutoff frequency. The intercepts indicate where 

the cyclotron resonances occur. Either backward wave (solid) or forward wave 

(dashed) oscillation can occur, which depends on relation between the cutoff 

frequency and the cyclotron frequency.  If the cutoff frequency is larger than the 

cyclotron frequency, backward wave oscillation occurs, and the intercept is at 

negative 

€ 

kz . If the cutoff frequency is smaller, forward wave oscillation occurs, the 

intercept is at positive 

€ 

kz . 

 

 

Fig. 1.3 (a). Gyrotron structure 
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Fig. 1.3 (b). A cross section at the end of beam tunnel in gyrotron 

 

 

Fig. 1.4. Dispersion diagram for the interaction electron beam and electromagnetic 

wave in the cavity of gyrotron  
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The gyrotron as a generator of short- wavelength radiation has been well 

developed since 1960, when the fast-wave ECM (electron cyclotron maser) resonance 

(early gyrotron) was first experimentally verified in the U.S. and the U.S.S.R. (Refs. 

7, 11, 12). Since then, high-power, long-pulse millimeter-wave gyrotrons have been 

ubiquitously used for electron cyclotron resonance plasma heating and current drive 

in many plasma installations (tokamaks and stellarators) at various laboratories 

around the world (see, e.g., Refs. 13-15). Also gyrotrons are used as a rapid heating 

tool in industry.  

In the beam tunnel before the cavity of the gyrotron, the cyclotron resonance 

condition may also be satisfied.  A backward wave can be excited in the tunnel, 

which will perturb the beam and significantly reduce the efficiency of the gyrotron.  

This excitation can be suppressed by putting some kind of absorbing material on the 

inner surface of the tunnel.  We calculate the level of the surface impedance needed to 

suppress this excitation. This is the essence of chapter 3. 

The rest of this research thesis is divided into three parts.  In section 2, we 

discuss why we are concerned with the self-fields in orotrons, the basic theory of the 

orotron, how we include the AC space-charge effect in the start oscillation condition 

of an orotron, and some simulation results of how the start current varies with 

different parameters. In section 3, we discuss the backward wave excitation that 

happens in the beam tunnel of a gyrotron, how to suppress this excitation, the model 

equations describing the interaction between the electron beam and the EM wave in 

the gyrotron and some numerical results of the level of surface impedance needed to 

suppress the instability when only considering the backward wave excitation. In 
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section 4, we discussed how the velocity spread and space charge effect of the 

electron beam will affect the backward wave excitation in the beam tunnel of a 

gyrotron. 
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Chapter 2: Self-field in Planar Orotron 

2.1 Background 

For an orotron to emit stimulated radiation at high frequencies (f ~1 THz), a 

sufficiently large beam current density must be injected. As a result, the effect of 

space charge has to be taken into consideration when analyzing the device’s operation. 

One important effect is the generation of AC self fields [16]. The AC self fields of the 

electron beam act to resist the formation of bunches, and consequently the start 

current is raised.  These fields become important at beam densities that are high 

enough such that the product of the effective beam plasma frequency (ωp,eff) and the 

transit time for beam particles through the interaction region is of order of unity or 

greater, 

€ 

ω p,eff Lw /vz0 ≥1. Here Lw is a measure of the interaction length and vz0 is the 

beam speed. Space charge effects in orotrons were analyzed in Refs. 17, 18 and 19. 

Basically, the interaction was considered to be with a space charge wave 

characterized by a single beam plasma frequency. In practice the effective beam 

plasma frequency is dependent on the presence of metallic surfaces near the beam. In 

general, a nearby metallic surface will lower the effective plasma frequency [20] from 

the value determined simply by the beam density, 

€ 

ω p
2 = 4πq2n /m , where 

€ 

q = −e  is the 

electron charge, n is the beam density and m is the electron mass. Since the electron 

beam is very close to the grating surface in a high frequency orotron, we can expect 

that the plasma frequency will be modified in a significant way by the grating. A 

calculation of this effect is the subject of this thesis. 
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Two conditions that we investigate are the following. First, some portions of the 

beam will be much closer to the grating than others, and we can expect that the space 

charge effect will vary over the cross section of the beam. Second, the grating is not 

simply a planar conductor, and the geometry of the grooves will affect the space 

charge field. In particular, the self-fields penetrate to some degree into the grooves. 

Our analysis of this effect is accomplished by coupling a mode matching calculation 

of the fields in the grooves to a solution of the fields in the region of the beam.  

2.2 Basic theory 

To place our more detailed calculation in perspective, we first review the 

calculation of the start current in an orotron under the assumption that the self-fields 

of the beam are weak. The geometry we consider is shown in Figure 1.2. The beam is 

confined by a strong magnetic field such that only electron motion along the direction 

of propagation of the beam (the z-direction) is allowed, and the beam is planar 

(independent of y). For this basic model we can take the fields in the region above the 

grating, x>0, to have a spatial structure corresponding to a grating with period 

 p = 2π / k0 , 

€ 

Ez(x,z,t) = Re d ˜ k z
2π

E zn ( ˜ k z,x)exp i ˜ k z + nk0( )z −ωt( )[ ]
n
∑∫

 
 
 

 
 
 

,  (2.1a) 

€ 

Ex (x,z,t) = Re d ˜ k z
2π

E xn ( ˜ k z,x)exp i ˜ k z + nk0( )z −ωt( )[ ]
n
∑∫

 
 
 

 
 
 

,  (2.1b) 

and 

€ 

By (x,z,t) = Re d ˜ k z
2π

B yn ( ˜ k z,x)exp i ˜ k z + nk0( )z −ωt( )[ ]
n
∑∫

 
 
 

 
 
 

.  (2.1c) 
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Here, the sum on n is over spatial harmonics of the field.  We assume that the 

wave number dependence of the n=0 term is determined by the shape and location of 

the curved mirror that confines the upper boundary of the cavity, and that higher 

spatial harmonic fields follow this dependence.  For example, for a parabolic mirror 

with large radius of curvature, the spatial dependence of the field will be of the form 

 exp(−z2 / Lw
2 )  where Lw is the half-width in z of the cavity mode.  This leads to a 

wave number dependence of the transformed amplitudes of the form 
  exp(−

kz
2Lw

2 / 4) .  

The x dependence of the fields is determined by the vacuum wave equation.  We 

assume that the fundamental, n=0, spatial harmonic propagates in the x direction with 

wavenumbers 

€ 

±kx = ± ω 2 c 2 − ˜ k z
2 ≈ ±ω c , and consists of a superposition of 

upward (reflected) and downward (incident) propagating waves.   

€ 

E z0( ˜ k z,x) = E inc ( ˜ k z )e
− ikx x + E refl ( ˜ k z)e

ikx x  

The last approximation in the definition of kx requires that the mode width satisfy 

 ωLw / c >> 1 .  In other words, the wavevector of the fundamental harmonic is 

predominately in the ±x-direction.  The other spatial harmonics are evanescent with 

spatial decay rate 

€ 

κn = ( ˜ k z + nk0)2 −ω 2 c 2 ≈ nk0 .  Here we have also assumed the 

first spatial harmonic approximately satisfies the Cherenkov resonance condition 

€ 

ω ≈ kovz0 , where vz0 is the velocity of the injected electron beam.  Then, for a 

nonrelativistic beam  k0 >>ω / c .  The shape of the grating determines the relative 

amplitudes of the different spatial harmonics.  In Appendix A we describe a mode 

matching solution that applies to the case of a grating consisting of rectangular 
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grooves.  This solution will also be applied to our more detailed calculation to be 

presented subsequently. 

The electrons are strongly coupled with the 1st spatial harmonic of the EM field.  

The energy,  ε = mvz
2 / 2 , and axial position of beam electrons at transverse position x 

will then satisfy [21]: 

€ 

dε
dt

= qvz Re d ˜ k z
2π

E z1( ˜ k z,x)ei(kz z−ωt )∫
 
 
 

 
 
 

,   (2.2a) 

and 

 
dz
dt
= vz (ε) .    (2.2b) 

where 

€ 

kz = ˜ k z + k0 is the wavenumber of the component of the field that strongly 

interacts with the beam.  Here, we assume that electrons, with charge q, enter the 

interaction region uniformly distributed in time and with beam energy  εb = mvz0
2 / 2 .  

In this case the power extracted from the beam can be written as [4] 

€ 

Pext =
qω

4mvz0
3 dxdyJb (x) ∂

∂ ˜ k z
E z1( ˜ k z,x)∫

˜ k z =(ω / vz 0−k0 )

2

,  (2.3) 

where  Jb(x)  is the injected beam current density.  For oscillations to start, the power 

must balance power lost in the cavity  Plost =ωW /Q  where W is the stored energy and 

Q is the quality factor.  The stored energy can be written in terms of the incident wave 

amplitude for the n=0 spatial harmonic in Eq. (2.1a), because typically the amplitude 

of this harmonic is much larger than amplitudes of other harmonics.  The result for 

the lost power is 

€ 

Plost =
ωLx

4πQ
dy∫ d ˜ k z

2π
E inc ( ˜ k z)

2
∫ ,   (2.4) 
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where Lx is the separation between the grating and the curved mirror.  Since losses 

occur primarily at the metallic surfaces of the mirror and grating we can express the 

quality factor in terms of the combined power reflection coefficient for the two 

surfaces, R (assumed to be close to unity), or the sum of the effective surface 

impedances for the two surfaces, 

 

2ωLx

cQ
= (1− R) = 4Re Zs1 + Zs2

Z0







, 

where Zs1,2 is the complex surface impedance of the mirror and grating, and Z0 is the 

impedance of free space.  For a metallic surface with skin depth ds we have 

 Re(Zs / Z0 ) = Tωδs / (2c) , where T is a factor that accounts for the geometry of the 

surface.  For a flat surface T=1, and for a grooved surface T>1.  Roughly T increases 

with the length of the surface per period [22].  This quantity is calculated in Appendix 

A for the case of rectangular grooves. 

Forming the ratio of the two powers defined in Eqs. (2.3) and (2.4) we find that 

the minimum current density required to start oscillations in the cavity must satisfy 

€ 

Ratio =
Pext
Plost

=
g(δ)

4β0
2(δs /λ)

α 2

1+ T
 

 
 

 

 
 
2k0dxJ(x)Lw

2

IA
e−2k0x >1∫ ,  (2.5) 

where 

€ 

α 2 = E z1(x = 0)
2
/E inc

2
 is a property of the grating that gives the strength of 

the n=1 spatial harmonic in terms of the incident n=0 wave,  β0 = vz0 / c ,  λ = 2πc /ω , 

is the vacuum wavelength,  I A = mc3 / q  and corresponds to 1.7 ×104 Amperes, and Lw 

is a characteristic length of the interaction region.   The dimensionless gain function 

€ 

g(δ)  is given by, 
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€ 

g(δ) = Lw
−2 ∂
∂ ˜ k z

E z1( ˜ k z,0) ˜ k z =(ω / vz 0−k0 )

2
/ d ˜ k z

2π
E inc ( ˜ k z)

2
∫ = −(2π )1/ 2δexp(−δ 2 /2) , (2.6) 

where  δ = Lw(ω / vzo − k0 )  is the detuning from Cherenkov resonance normalized to 

the length of the interaction region.  The second equality in (2.6) applies for the case 

of a parabolic reflecting mirror in which case the field profile has a z-dependence of 

the form  exp(−z2 / Lw
2 ) .  In the case of the Gaussian field profile gain function has a 

maximum value gmax=1.52 occurring for detuning d=-1 (see Ref. 21, for the case of a 

flat field profile). 

Condition (2.5) can be rewritten as a condition on the current density, assuming it 

to be relatively constant in x over the distance  (2k0 )
−1  

€ 

J[A /cm2] > 0.039 1+ T
α 2

 

  
 

  
V[kV ] f 1 2[THz]

L2w[cm]
.   (2.7) 

Here we assume the conductivity of the metal boundaries to be that of ideal copper, 

and the skin depth approximately to be 

€ 

δs[cm] = 6.52 / f 1/ 2[Hz] .  The optimum 

coupling occurs when the grooves are approximately a quarter wavelength deep.  In 

this case, 

€ 

α ≈ 4 π .  Also, with quarter wavelength depth grooves the factor T 

becomes essentially a function of voltage only.  As voltage increases, the period of 

the structure must increase to maintain resonance, and T decreases.  The factors 

describing the structure are well approximated by the formula: 

€ 

(1+ T) /α 2 ≈ 45.5 /(1+ 2.72V 1/ 2[kV ]).  The result is that for voltages above 1 kV Eq. 

(2.7) gives a V1/2[kV] scaling of start current. 

We note that condition (2.7) is based on gain from the beam exceeding losses in 

the wall.  In practice we would like to couple power out of the cavity.  Thus, the 
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quality-factor is lowered by the coupling.  Finally, Eq. (2.7) represents the condition 

on current necessary to start oscillations.  A higher current density is needed to reach 

an efficient nonlinear operation point [4, 23].  These last two effects plus effect of the 

surface roughness on the ohmic losses can be expected to increase the required 

current density by a factor of approximately 5-10. 

Condition (2.7) is based on the interaction of the beam with the vacuum fields of 

the grating.  It will be modified when the beam space charge is taken into 

consideration, and this effect will be studied in the remainder of the thesis. 

2.3 Start oscillation condition including AC space charge 

We still assume that the beam interacts primarily with the first spatial harmonic of 

the grating field.  The x-dependence of this spatial harmonic is no longer determined 

by the vacuum wave equation.  Rather, it satisfies a wave equation that includes the 

dielectric response of the beam,  

€ 

d
dx

ε(x, ˜ k z )
d
dx

E z1
 

  
 

  
− k0

2ε(x, ˜ k z )E z1 = 0 ,   (2.8) 

where 

€ 

ε(x, ˜ k z) =1−
ω p

2 (x)

ω − ( ˜ k z + k0)vz0[ ]2 ,   (2.9) 

is the local beam dielectric constant.  In writing (2.8) and (2.9) we have made a 

number of approximations and assumptions. First we have assumed that field is 

primarily electrostatic, 

€ 

ω k0c( ) ≈ β0 <<1, and that the continuous wavenumber is 

small, 

€ 

˜ k z << k0.  This latter condition allows us to drop 

€ 

˜ k z  except where it occurs in 

the Cherenkov resonance denominator.  Finally, we have assumed that the beam is 
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confined by a focusing force that is linear in the displacement x of a beam particle 

from the y-z plane, and that this force is exactly balanced by the DC self field in 

equilibrium.  This situation could be realized in a periodic magnetic focusing field in 

the limit in which the period of the magnetic field 

€ 

λm  is small: 

€ 

λm << 2πΩβ vz0 .   

Generally, for small period, the period-averaged focusing force is proportional to the 

gradient of the square of the periodic field and hence is linear in displacement from 

the y-z plane [24].  This linear focusing force gives rise, in the absence of self fields, 

to transverse oscillations of beam particles with betatron frequency 

€ 

Ωβ , that is 

quadratic in magnetic field strength. If the focusing force balances the self field we 

have 

€ 

ω p =Ωβ  and the requirement on the period becomes 

€ 

λm << 2πΩβ /vz0 ≤ Lw . 

Here the last inequality results from the requirement that AC space charge effects not 

be too strong.  Thus, the requirement is that the period must be smaller than the 

interaction length.  A second situation in which linear focusing is realized is with a 

solenoidal magnetic focusing field if the cathode is in field free region.  In this case, 

by conservation of the y-component of canonical momentum, it can be shown that in 

the uniform field region the focusing force is linear in displacement and proportional 

to 

€ 

−mΩ2x  where 

€ 

Ω = qB /mc  is the cyclotron frequency.  Balancing this force against 

the self-field gives 

€ 

ω p
2 =Ω2 .  The required magnetic field strength to achieve this 

balance can be related to the current density, 

€ 

B[kG] = 0.18J1/ 2[A /cm2]/V 1/ 4[kV ], 

(often a safety factor is applied to this formula).  The assumption of a linear focusing 

force results in the dielectric constant appearing twice in Eq. (2.8) describing the 

perpendicular and longitudinal response of the beam.  In the case in which the beam 

is focused by a strong solenoidal magnetic field with immersed cathode (

€ 

ω p
2 >Ω2), 
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and motion in the x direction is suppressed, the first occurrence of the dielectric 

constant e, in Eq. (2.8) would be replaced by unity. 

The main effect of the presence of the beam on the solution of Eq. (2.8) is that the 

field near the surface of the grating must now contain a mixture of the spatially 

growing and evanescent solutions, 

€ 

E z1 = E (− )e
−k0x + r( ˜ k z)E (− )e

k0x( ) ,   (2.10a) 

€ 

B y1 =
iω
k0c

E (−)e
−k0x − r( ˜ k z)E (− )e

k0x( ) ,   (2.10b) 

Here 

€ 

r( ˜ k z )  describes the effect of the beam on the fields, with the vacuum case 

corresponding to r=0.  If we take the beam to be of uniform density for 

€ 

x1 < x < x1 + Δ , and of zero density otherwise, we arrive at the expression 

 
r = 1− ε 2

1+ 2εYΔ
−1 + ε 2

exp(−2k0x1)  

where  YΔ = [1− exp(−2k0Δ)] / [1+ exp(−2k0Δ)] . 

We now wish to find the effect of the beam on the rate of growth of the cavity 

fields.  That is we wish to relate the modification of the first spatial harmonic fields in 

Eqs.(2.10), back to the fundamental spatial harmonic fields which essentially describe 

the cavity mode fields.  Realizing that the fundamental and first spatial harmonic 

fields are linearly related by the properties of the grating does this, 

€ 

E z0 x= 0
= i X00B y0 + X01B y1( )x= 0

,   (2.11a) 

and 

€ 

E z1 x= 0
= i(X10B y0 + X11B y1)x= 0.    (2.11b) 
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Here Xij are the elements of a reactance matrix that are found by solving the vacuum 

Maxwell’s equations for the fields in the grooves and for the fields above the grating 

for all spatial harmonics except the fundamental and the first.  This calculation for a 

rectangular grooved grating is described in Appendix A.  The matrix elements depend 

on the dimensions of the grating and the frequency of the radiation.  They are 

properties of the vacuum structure.  The relation between electric and magnetic first 

spatial harmonic fields is given in Eqs. (2.10).  A similar equation can be written for 

the fundamental electric and magnetic fields, 

€ 

E z0 = E ince
− ikx x + ρ( ˜ k z)E ince

ikx x( ) ,   (2.12a) 

€ 

B y0 = E ince
− ikx x − ρ( ˜ k z)E ince

ikx x( ) ,   (2.12b) 

where 

€ 

ρ( ˜ k z) is the complex amplitude reflection coefficient for the grating, and we 

have assumed 

€ 

kxc ω ≈1. 

Solving Eqs. (2.10-2.12), we arrive at an expression for the reflectivity of the 

grating including the effect of the beam, 

€ 

ρ( ˜ k z ) = −
1− i( ˆ X + δX)
1+ i( ˆ X + δX)

,   (2.13) 

where 

  

€ 

ˆ X = X00 −
X01X10

X11 + ck0 ω[ ]
,   (2.14a) 

€ 

δX = −X01X10 X11 +
ck0
ω
(1− r
1+ r

)
 

  
 

  

−1

− X11 +
ck0
ω

 

  
 

  

−1 
 
 

 
 
 

.  (2.14b) 

The reflection coefficient for the grating including the effect of the beam can in 

principle have magnitude greater than unity describing the power extracted from the 
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beam.  We write the reflection coefficient in the form 

€ 

ρ( ˜ k z ) = exp iφ0 +η( ˜ k z)[ ], where 

φ0  is the reflection phase in the limit of no beam (r=0), and 

€ 

η( ˜ k z )  is the correction 

introduced by the interaction with the beam.  In Appendix B we show that the start 

oscillation condition can be determined by balancing the reflection gain resulting 

from wave interaction with the beam against the reflection losses at the two metal 

surfaces, in a wavenumber averaged sense  

€ 

Re d ˜ k z E inc
˜ k z( )

2
η ˜ k z( )∫ 

 
 

 
 
 
≥ 2Re Zs1 + Zs2

Z0

 
 
 

 
 
 

d ˜ k z E inc
˜ k z( )∫

2
  (2.15) 

We can evaluate η in the limit in which the coupling between the fundamental and 

first spatial harmonic is weak, 

€ 

η( ˜ k z ) =
2i

1+ X00
2 X01X10 X11 +

ck0

ω
1+ r
1− r

 

  
 

  

−1

− X11 +
ck0

ω

 

  
 

  

−1 
 
 

 
 
 

.  (2.16) 

Using the definitions of r and ε, Eq. (2.16) can be seen to be the ratio of 

polynomials in 

€ 

˜ k z .  All that is required in Eq. (2.15) is the real part of the integral, 

and this can be found from the residues of the poles of η.  These correspond to the 

zeros of 

€ 

X11 +
ck0
ω
1+ r
1− r

 

  
 

  
, 

which is quadratic in 

€ 

ε.  Thus, the zeros are determined by two solutions for 

€ 

ε, and as 

a result four solutions for 

€ 

˜ k z .  The four solutions correspond to fast and slow surface 

space charge waves, one pair for each surface in the beam. 

€ 

˜ k z1,2 =
ω
vz0

±
ω p

vz0

1
1−ε+
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€ 

˜ k z3,4 =
ω
vz0

±
ω p

vz0

1
1−ε−

 

Here 

€ 

ε± =
−(1+Y1)(1+ ζ1) ± (1−Y1)(1−ζ1)[ ]2 + 4(1−YΔ

2)(1+ ζ1Y1)(Y1 + ζ1)
2YΔ ζ1 +Y1( )  

(2.17) 

where 

€ 

ζ1 = (ωX11) /(ck0) is in the range of [0, 2] by varying the depth and width of the 

grating,  and 

€ 

Y1 = 1− exp(−2k0x1)[ ] / 1+ exp(−2k0x1)[ ]. 

The factors ε± determine the space charge reduction factors for the space charge 

waves supported by the beam. The effect of the grating enters through the surface 

reactance X11. The case of a planar conducting surface corresponds to 

€ 

ζ1 = 0  (X11= 0). 

In the limit in which the beam is thick, 

€ 

YΔ →1, the two solutions can be found 

simply, 

€ 

ε+ = −1and 

€ 

ε− = − 1+Y1ς1( ) Y1 + ς1( ). These correspond to surface waves on 

the lower and upper edges of the beam respectively. Plots of the reduction factors 

[16]  

€ 

rsc,± ≡ 1−ε±( )−1 2 ,     (2.18) 

versus beam width appear in Figure 2.1.We note that for beams satisfying 

€ 

k0Δ >1 the 

reduction factor falls in a relatively narrow range 

€ 

0.6 < rsc < 0.9 . 
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Fig. 2.1. Space-Charge Factor (

€ 

rsc ) (defined in Eqs. (2.17) and (2.18)) as function of 

beam width (

€ 

k0Δ ) for different fixed 

€ 

k0x1 = 0, 1/8, 1/2 when Vb=3 kV 

 

2.4 Results and analysis 

In this section, we evaluate the start current numerically by evaluating the left and 

right hand sides of Eq. (2.15).  In particular, we define the Ratio to be the left hand 

side divided by the right hand side.  This ratio represents the amount of gain relative 

to wall losses.  If wall losses are the only source of losses, oscillations start when 
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Ratio>1.  We will plot curves for the amount of current needed to reach several 

values of Ratio.  In this way one can consider the effect of other sources of loss, as 

well as the requirement to reach a sufficiently large nonlinear oscillation.  

We first consider an orotron operating at ƒ=0.5 THz, the half-width of the 

interaction length is Lw=0.5 cm, and the walls are considered to be ideal copper.  The 

width and depth of the grating surface are half of the period of the grating and a 

quarter of the wavelength, respectively. (Details are in Appendix A.)  The electron 

beam is considered to be broad (

€ 

k0Δ >>1), and close to the grating surface 

(

€ 

k0x1 <<1).  This situation can be expected to produce the lowest start current density 

values.  

Figure 2.2 shows the current density required to produce Ratio-values of 1, 5, and 

10 as predicted by the simple theory, and the theory including self-fields and 

transverse motion.  The simple theory curves are well represented by Eq. (2.7) with 

the voltage dependent expression 

€ 

(1+ T) /α 2 ≈ 45.5 /(1+ 2.72V 1/ 2[kV ]) .  At high 

voltages the effect of self-fields is unimportant and the simple theory, which assumes 

infinitely strong confining field gives a start current value that is about twice that of 

the theory that includes transverse motion.  This is because the gain in the latter case 

includes the effect of both longitudinal and transverse bunching.  At lower voltages 

the effect of space charge becomes more important. As can be seen, depending on the 

Ratio-value, there is an optimum voltage where the start current is minimized.  This is 

consistent with the previous studies of Ref. 17 and 18. 
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Fig. 2.2. Plot of start current density (Jst) versus beam voltage (Vb) for copper-wall 

devices producing radiation at f = 0.5 THz. The curves with solid symbols correspond 

to the simple, one-dimensional model with no self-fields. The curves with open 

symbols correspond to the theory including two-dimensional motion and self-fields.  

 

In Figure 2.3 we show the same data for a longer interaction length (Lw=2.0 cm), 

compared with the case (Lw=0.5 cm).  As expected the start current values are 

substantially lower.  Two factors need to be kept in mind.  The first is that the 
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efficiency tends to drop as the interaction length increases.  Phase trapping arguments 

indicate that saturated efficiency should scale as the reciprocal of the number of the 

grating periods.  Further, the alignment and transport of the beam become more 

critical as the interaction length increases.  Because of the exponential dependence of 

the first spatial harmonic field on distance from the grating, the useful thickness of 

the beam is a small fraction of the period.  Maintaining this distance from the grating 

for several centimeters will be a technological challenge.  Also, operation of the 

orotron with a longer interaction space is more sensitive to electron velocity spread 

[23]. 

In Figure 2.4, the interaction length is fixed (Lw=0.5 cm), and start current density 

is plotted as a function of the operating frequency (f) for different values of beam 

voltage (Vb).  The frequency varies in the range from 0.2 to 2 THz, and the beam 

voltage is set to be 3kV and 10 kV.  As shown, start-current density increases when 

frequency gets higher.  From Figure 2.3, we know that when Vb=3kV the space-

charge effect plays an important role, but it does not at Vb=10 kV. Comparing the 

plots for Ratio=10, we can see that at higher frequencies self field effects play a more 

important role, which explains why the start current for Vb=3 kV is larger than that for 

Vb=10 kV. 
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Fig. 2.3. Jst versus Vb for the theory includes two-dimensional motion and self-fields 

when Lw= 2cm and Lw=0.5 cm. The radiation frequency is kept at f=0.5 THz. 

 

 

 

 



 

 26 
 

 

Fig. 2.4. Jst versus f  [0.2 THz-2 THz] with Lw=0.5 cm fixed and voltages 3 kV and 10 

kV. 

 

Figure 2.5 shows the effect caused by varying the width of the beam (Δ) and the 

distance between the beam and the grating surface (x1).  For instance, let 

€ 

k0Δ =1, 

€ 

k0x1 =1/8 .  The interaction length is again Lw=0.5 cm, with radiation frequency at 

f=0.5 THz.  We see that the start current increases with beam-grating distance and 

decreases with beam width.  The first relation comes from the exponential decay of 

the field away from grating surface.  The second relation is because the absorption of 
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the incident and reflected waves by the beam increases as the beam gets wider, which 

will cause the absorption drop.  

 

Fig. 2.5. Jst versus Vb, when Lw=0.5 cm, f=0.5 THz. The upper dashed lines are for 

Ratio=10, and the lower solid ones corresponds to Ratio=1.  For both sets of plots, 

from circle to diamond marked (upward) the lines in turn correspond to 

€ 

k0Δ =∞, 

€ 

k0x1 = 0 ; 

€ 

k0Δ =∞, 

€ 

k0x1 =1/8; 

€ 

k0Δ =1, 

€ 

k0x1 = 0 ; 

€ 

k0Δ =1, 

€ 

k0x1 =1/8 . 

 

We compare our calculated start currents with the experimental results of Ref. 4, 

for a set of applied beam voltages and frequencies (between 60 GHz and 70 GHz) in 
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Table 1.  Here the period of the grating is fixed to be 0.43 mm, the depth and width of 

each groove is 0.88 mm and 0.15 mm; the size of injected electron beam is 10 mm× 

0.3 mm.  The cavity mode dimensions are 10 mm in length, 20 mm in height, and the 

quality factor Q= 5000.  In this device, there was a strong confining solenoidal 

magnetic field, so the simple, one-dimension theory should be more appropriate.  

Further, the beam had an estimated 1% energy spread, which would reduce gain for a 

structure such as this one with 25 grating periods.  The observed start currents are 

about five times that predicted by the one-dimension theory based on a cold beam. 

(See column 3 of Table 1.)  The authors of Ref. 4 attribute some of the difference to 

beam energy spread.  However, we note that the interaction is very sensitive to the 

€ 

x1- 

the distance between the beam and the grating.  The results of Table 1 are for 

€ 

x1 = 0 , 

(i.e. the beam touches the grating).  If we increase 

€ 

x1 to a value 

€ 

x1= 0.06 mm, then 

the simple theory gives a start current that is comparable to the measured value.  In 

any event, our calculations show that for this low frequency device, self -field effects 

do not play an important role. However, at frequencies in the THz region, self-field 

effects are important.   

 

V ( KV ) f (GHz) Ist/2(mA) 
simple 

Ist (mA) 
Self-field 

Ist10(mA) 
Self-field 

Is(mA) 
experiment 

2.008 60.76 4.3 4.5 44.7 68 
2.14 62.75 4.4 4.5 45 75 
2.35 65.85 4.4 4.5 45.6 78 
2.44 66.92 4.5 4.8 46.2 58 
2.471 67.46 4.5 4.8 46.2 70 
2.74 70.76 4.7 4.8 47.7 82 

Table 1 Calculated and experimental start currents [4] for a set of beam voltages and 

frequencies 
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2.5 Conclusions and future work 

The start current for an orotron is affected by the AC self fields of the electron 

beam.  These fields can be thought of as space-charge waves on the beam.  The 

frequency of the space-charge waves is affected by the geometry of the beam and the 

location of the nearby grating.  We have calculated the start current as function of 

various parameters. Our general finding, which is in qualitative agreement with the 

previous theories [17, 18], is that the self fields lead to an optimum voltage at which 

start current is minimum.  This optimum voltage is in the range of 2-6 kV for 

generation at THz frequencies.  
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Chapter 3: Formulation of Backward wave excitation 

3.1 Background 

High-power, long-pulse millimeter-wave gyrotrons are used for electron cyclotron 

resonance plasma heating and current drive in many plasma installations (tokamaks 

and stellarators) at various laboratories around the globe (see, e.g., Refs. 13-15). One 

of the problems hindering efficient operation of these gyrotrons is excitation of 

spurious backward waves in beam tunnels. Such excitation, and resulting lower 

gyrotron efficiency, has been observed in a number of experiments (see, e.g., Refs. 25 

and 26).  

The beam tunnel is the region between the electron gun and the cavity and is 

schematically shown in Fig. 3.1. Here backward waves may be excited in the region 

between two planes denoted in Fig. 3.1 by z=zo and z=zs. The excitation takes place 

when the resonance condition between the cyclotron frequency of electrons and the 

Doppler-shifted wave frequency is satisfied. For the resonance at the fundamental 

cyclotron harmonic, this condition can be written as 

€ 

ω − kzvz ≈ Ω γ          (3.1) 

In Eq. (3.1),  and 

€ 

kz  are the wave frequency and axial wave number of a TEm,p 

mode, respectively, 

€ 

vz  is the electron axial velocity, 

€ 

Ω0 = qB0 mc  is the 

nonrelativistic cyclotron frequency, q and m are the electron charge and mass and 

€ 

B0  

is the strength of the magnetic field, 

€ 

γ = 1− v 2 c 2( )
−1 2

 is the relativistic factor, v is the 

electron speed, c is the speed of light. The axial wave number is given by 

€ 

kz = ± ω 2 −ωc
2 /c , where the cut-off frequency is 

€ 

ωc = c jm,p
' R z( ) , here 

€ 

jm,p
' is the p-
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th zero of the derivative of the m-th Bessel function and 

€ 

R(z)  is the wall radius, and 

the 

€ 

± sign denotes whether the wave is forward (+) or backward (-). 

In the beam tunnel region shown in Fig. 3.1 a number of the quantities in Eq. (3.1) 

vary with axial distance. The axial dependence of the wall radius makes the cutoff 

frequency axially dependent. As a consequence, the axial wave number varies in z as 

well. Also, the axial tapering of the external magnetic field 

€ 

B0 z( )  not only changes 

the electron cyclotron frequency, but also affects the electron axial velocity, because 

the electron orbital momentum 

€ 

p⊥ varies in accordance with the invariant 

€ 

p⊥
2 B = const  [12]. Thus, all quantities except for 

€ 

ω  in Eq. (3.1) vary with axial 

distance.  

The dispersion curves for the waveguide mode and the Doppler shifted cyclotron 

frequency are shown in Fig. 3.2 for two axial positions in the beam tunnel. The 

intersections of the two curves satisfy Eq. (3.1). At the plane z=z1 (Fig. 3.2 (a)) the 

cyclotron resonance interaction takes place at frequencies far from cutoff, while at the 

plane z=z2 (Fig. 3.2(b)) the wave frequency is close to the cutoff. When the wave is 

excited near the cutoff frequency, it is necessary to take into account the electron 

beam interaction with both forward and backward wave components of the excited 

electromagnetic field because the axial wave number (and hence the Doppler term) in 

this case are small. Then, the wave excitation in the framework of the linear theory in 

an untapered configuration can be described by a fourth-order dispersion equation 

with proper boundary conditions [27]. In contrast, in the case of wave excitation far 

from cutoff, the Doppler term is significant, so the interaction with the forward wave 

component of an electromagnetic field has a non-resonant nature and, hence, can be 
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neglected that reduces the problem to the cubic dispersion equation [27-31]. As 

shown in Ref. 28 (see also references therein), under certain conditions, this 

dispersion equation can be reduced to the cubic dispersion equation derived for 

linear-beam traveling-wave devices by J. Pierce [32] whose study for the case of 

backward waves was performed by H. Johnson [33].  

The effect of tapered parameters on the operation of gyro-devices has been 

investigated in a number of contexts. Previous studies of tapering have focused on the 

effects on start conditions and efficiency of relatively weak tapering in magnetic field 

and wall radius in gyro-oscillators [34] and gyro-BWO’s [35]. By “weak” we mean 

that the relative spatial variation of the cyclotron frequency or Doppler shift is much 

less than unity. The effect of strong tapering of wall radius and magnetic field on gain 

and bandwidth of gyro-amplifiers was considered in Ref. 36, while the effect of 

strong tapering on the electrostatic cyclotron instability was considered in Ref. 37. 

The effect of wall radius tapering on the nonstationary behavior of gyro-BWO’s was 

considered in Ref. 38. In this case, wall radius tapering at the end of the gyro-BWO 

induced a reflection launching a forward wave which modified the nonlinear behavior 

of the oscillator. In contrast, in our present analysis the wall radius tapering is gradual 

and does not induce strong reflections. On the other hand, the wall tapering is strong 

in the sense that the axial wave number of the waveguide mode becomes large 

enough to make the Doppler shift frequency comparable to the mode frequency. The 

tapering of the magnetic field is strong in the same sense, viz, changes the cyclotron 

frequency are comparable to the wave frequency. Generally these changes serve to 

define an interaction length and hence determine the start current.  
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In what follows we present a small-signal theory describing the self-excitation 

conditions for backward waves in beam tunnels of the type shown in Fig. 3.1 whose 

walls can be covered with a lossy dielectric for suppressing these backward waves. 

Section II contains the formulation of the problem. There, a general set of equations is 

given for the excitation of the gyro-BWO in a beam tunnel having tapered 

parameters. In Section 3.3 we present results of numerical studies of solution of the 

equations and determine the amount of attenuation in the tunnel walls needed to 

suppress the backward waves. The results are discussed and the requirements on lossy 

materials necessary for suppressing unwanted backward waves are given. Section 3.4 

contains a summary and discussion of modifications to the theory that may affect the 

predictions.  

 
Fig. 3.1. Structure of the beam tunnel of gyrotron 
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Fig. 3.2. Dispersion diagram of forward and back ward wave interaction when the 

excitations are far away (a) and close to (b) the cutoff.  

 

3.2 Formula of the backward wave excitation 

In general, to describe the excitation of electromagnetic waves by an electron 

beam one needs equations for electron motion and equations for excitation of the 

electromagnetic field. We use both second order non-normalized differential equation 

set Eqs (3.9) and first order normalized differential equation set Eqs. (3.13) for each 

the case, when the excitation is close to and far from the cutoff. 

3.2.1 Model Equations 

In general, to describe the excitation of electromagnetic waves by an electron 

beam one needs equations for electron motion and equations for excitation of the 

electromagnetic field. For the field equations we use the generalized telegraphist’s 

equations [39], in which Maxwell’s equations are recast in the form of a set of 

equations for voltages and currents on a coupled set of transmission lines. Here we 
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include the perturbed beam current and use the generalized telegraphist’s equation 

that describe the effect of the electron beam on the electromagnetic wave. Following 

Ref. 40 we use electrostatic units (esu-Gaussian) to express Maxwell’s Equations. 

Assume the electromagnetic field can be written as 

€ 

E(r,t) =ℜ (ET (r,t) + Ez (r,t) ˆ z )exp(−iωt){ },   (3.2a) 

€ 

B(r,t) =ℜ (BT (r,t) + Bz (r,t) ˆ z )exp(−iωt){ },    (3.2b) 

where   

€ 

 
E T  and   

€ 

 
B T  are the transverse fields, and  

€ 

Ezand 

€ 

Bz  are longitude components. 

The transverse components of electromagnetic field can be written as a sum over 

waveguide modes as, 

€ 

ET = Vk (z,t)ek (rT ,z)
k
∑    (3.3a) 

€ 

BT = Ik (z,t)
k
∑ bk (rT ,z)     (3.3b) 

where ,  are the complex voltage and current amplitudes.   

€ 

 e k  and   

€ 

 
b k  are the 

eigenmodes of a waveguide with the local radius of the bean tunnel.  The subscript k 

here denotes the mode. In our case, k stands for a combination of (m,p) for mode 

TEmp. From Maxwell’s equation, we write the generalized telegraphist’s equations for 

the TE modes as: 

€ 

2
c
∂Vk

∂t
= ΓkVk −

∂Ik
∂z

− STk
 

  (3.4a) 

€ 

ik0Ik =
∂Vk

∂z
.     (3.4b) 

where 
  

€ 

STk = 4π c( )
 
J T ⋅
 e k
∗da∫ , in which the integral is over cross section of the beam 

tunnel,   

€ 

 
J T  is the transverse current density at frequency 

€ 

ω ,  and 

€ 

k0 =ω c . In the 



 

 36 
 

quantity 

€ 

Γk = ik0 1− kk
2 k0

2( )  both the real and imaginary parts of 

€ 

kk =ωc c + iki  vary 

with z. The imaginary part  is a consequence of the finite conductivity of a lossy 

material applied on the inner surface of the beam tunnel. In writing Eqs.(3.4) we have 

neglected the coupling between modes under the assumption that the wall radius is 

gradually tapered. 

From the relativistic motion equation of an electron  

  

€ 

d p 
dt

= q E( r ,t) +
 v 
c
× B( r ,t)

 

 
 

 

 
 +

q
c
 v ×
 
B 0 ,  (3.5) 

where   

€ 

 
p = γm v is the relativistic momentum of electron,   

€ 

 
v  is the velocity of the 

injected electron,   

€ 

 
B 0  is the external guiding magnetic field, we can obtain the 

following equations for electron motion in the preserve of a TE mode in the beam 

tunnel [40]: 

€ 

∂(γβ⊥ )
∂z

=
1
βz

ℜ (γβ⊥ )
s−1 exp(−isφ) × (Vk −βzIk )F⊥ks∑{ } +

γβ⊥

2
∂ lnB0
∂z

,      (3.6a) 

€ 

∂φ
∂z

=
1
βz

k0
s
−
Ω0

γc
 

 
 

 

 
 +

1
γβzβ⊥

×ℑ (γβ⊥ )
s−1 exp(−isφ) (Vk −βzIk )F⊥ks∑{ } ,     (3.6b) 

€ 

∂(γβz)
∂z

= −
γβ⊥

2

2βz
∂ lnB0
∂z

.   (3.6c) 

In Eqs.(3.6) 

€ 

Vk  and 

€ 

Ik  are normalized to 

€ 

q /mc 2 , 

€ 

φ = ξ +ωt s+ θ0 , 

€ 

ξ  is the gyro-

phase, i.e. the velocity of electron can be written as 
  

€ 

 v = v⊥
 x cosξ +

 y sinξ( ) + vz
 z , and 

€ 

F⊥ks is the coupling coefficient between the electromagnetic fields and electrons, 

defined as  

€ 

F⊥ks = F⊥m,p = −cm,pkm,pe
i m+1( )θ 0Jm+1 km,p x0( ) 12 e

iπ
2 , 
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where 

€ 

x0  and 

€ 

θ0  are the guiding center radius and azimuth,  and 

€ 

cm,p =
1

π jm,p
' 2

−m2( )Jm jm,p
'( )

. 

Then the 

€ 

STk  in Eq. (3.4) can be written as 

€ 

STk = 8π I /IA( )F⊥ks
∗ (γβ⊥ exp(iφ))

s /(γβz ) .                           (3.7) 

where 

€ 

IA = mc 3 q and corresponds to 1.7 ×104 Amperes. The average on the right 

hand side of Eq. (3.7) is over electron trajectories. Also for TE modes in Eq. (6a)-(6b) 

€ 

βkIk  is much smaller than 

€ 

Vk , so it can be omitted. 

To simplify this set of equations, we define 

€ 

γβ⊥ = RB
1/ 2ρ⊥ , where 

€ 

γ = (γβ⊥ )
2 + (γβz)

2( ) /2 +1 and

€ 

RB (z) = B0(z) B0max . We also assume, consistent with 

our use of Eqs.(3.4), that the transverse fields in Eq. (3.3) are dominated by a single 

mode. We obtain a new set of equations for new variables 

€ 

ρ⊥ , 

€ 

γ  and 

€ 

φ  for a specific 

mode as follows:   

∂ρ⊥
∂z

=
γρ⊥

(s−1)RB
s /2−1

ρz
ℜ F⊥ ksVk exp(−isφ){ } ,  (3.8a) 

∂γ
∂z

=
γρ⊥

sRB
s /2

ρz
ℜ F⊥ ksVk exp(−isφ){ }  ,  (3.8b) 

∂φ
∂z

=
1
ρz
(γ k0
s
−
Ω0

c
) +

γρ⊥
s−2RB

s /2−1

ρz
ℑ F⊥ ksVk exp(−isφ){ } .    (3.8c) 

where 

€ 

ρz γ,ρ⊥,z( ) ≅ 2 γ −1( ) − ρ⊥2RB , which is a good approximation when the beam 

voltage (Vb) is low (

€ 

Vb << 511KV). 

Equations (3.8a)-(3.8c) and Eqs.(3.4a) and (3.4b) constitute a nonlinear, self-

consistent set that describes excitation of modes in the beam tunnel by the electron 
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beam. To solve this equation set, we need boundary conditions, which for electrons 

are initial values describing the injected electron 

€ 

ρ⊥ (zo) = ρ⊥0 , 

€ 

γ(zo) = γ 0, 

€ 

φ(zo) = φ00 . 

Also, we will assume that the interaction takes place between 

€ 

zo and 

€ 

zs, and that the 

wave excited in this region satisfies outgoing conditions at these points: 

€ 

dVk dz z= zo = ikz (zo)Vk zo( ), and 

€ 

dVk dz z= zs = ikz (zs)Vk zs( ). Here 

€ 

kz zo( )  represent the 

wave number of a backward wave at 

€ 

zo (

€ 

kz zo( ) < 0), and 

€ 

kz zs( )  represent the wave 

number of a forward wave (

€ 

kz zs( ) > 0) or an evanescent wave at 

€ 

z = zs. 

Using the small signal model, we write 

€ 

ρ⊥ = ρ⊥0 + δρ⊥ , 

€ 

γ = γ 0 + δγ  

and

€ 

φ = φ0 + δφ , where quantities with a subscript zero apply to the case of no 

electromagnetic wave and ( , , ) are the perturbations induced by the wave. 

We then obtain the following equations, for 0th order, 

€ 

ρ⊥0 = const , 

€ 

γ 0 = const , and 

dφ0
dz

=
1
ρz0
(γ 0k0
s

−
Ω

c
) .     (3.9a) 

For the 1st order, we obtain 

∂δρ⊥
∂z

=
γ 0ρ⊥0

(s−1)RB
s /2−1

ρz0
ℜ F⊥ ks exp(−isφ0 )Vk{ }

,
     (3.9b) 

∂δγ
∂z

=
γ 0ρ⊥0

sRB
s /2

ρz0
ℜ F⊥ ks exp(−isφ0 )Vk{ }

,
  (3.9c) 

and 

€ 

∂δφ
∂z

=
δγk0
sρz0

−
δγ − ρ⊥0RBδρ⊥

ρz0
3

γ 0k0
s

−
Ω0

c
 

 
 

 

 
 +

γ 0ρ⊥0
s−2RB

s / 2−1

ρz0
ℑ F⊥ks exp(−isφ0)Vk{ }

,
 

(3.9d) 

with the wave equation being given by . 



 

 39 
 

 

€ 

−i 1
k0

∂ 2

∂z2
−Γk

 

 
 

 

 
 Vk = −8π I

IA
F⊥ks
* ρ⊥0

s RB
s 2

ρz0

× exp isφ0( ) sδρ⊥
ρ⊥0

−
δγ − ρ⊥0RBδρ⊥

ρz0
2 + isδφ

 

 
 

 

 
 

. (3.9e) 

On the right hand side of Eq. (3.9e), the average is still over the electron 

trajectories. In practice, this means average over different initial phases. By writing 

€ 

φ0 = φ00 + ˆ φ 0, where 

€ 

0 ≤ φ00 < 2π  is the value of 

€ 

φ0  at the entrance of tunnel, we can 

take the average as over 

€ 

φ00.  Then Eq. (3.9a) can be written as 

€ 

d ˆ φ 0
dz

=
1
ρz0

γ 0k0 −
Ω0

c
 

 
 

 

 
 
.    

(3.10) 

with the initial condition 

€ 

ˆ φ 0 zo( ) = 0 . Further, each perturbed quantity in Eq. (3.9) is 

proportional to 

€ 

exp(−iφ00) . Thus, by defining 

€ 

δ ˆ φ ,δ ˆ γ ,δ ˆ ρ ⊥( ) = δφ,δγ,δρ⊥( )eiφ00 , we 

reduce Eq.(3.9a)-(3.9d) to a set of equations for variables that are independent of the 

initial phase 

€ 

φ00 : 

€ 

ˆ φ 0 = dz 1
ρz0

γ 0k0 −
Ω0 z( )
c

 

 
 

 

 
 0

z
∫    (3.11a) 

€ 

∂δ ˆ ρ ⊥
∂z

=
γ 0

2 RB ρz0

F⊥ks exp(−i ˆ φ 0)Vk( )   (3.11b) 

€ 

∂δ ˆ γ 
∂z

=
γ 0ρ⊥0 RB

2ρz0

F⊥ks exp(−i ˆ φ 0)Vk( )    (3.11c) 

€ 

∂δ ˆ φ 
∂z

=
δ ˆ γ k0

ρz0

−
δ ˆ γ − ρ⊥0RBδ ˆ ρ ⊥

ρz0
3 γ 0k0 −

Ω0

c
 

 
 

 

 
 +

γ 0

2iρ⊥0ρz0 RB

F⊥ks exp(−i ˆ φ 0)Vk( )     (3.11d) 

Given that all perturbed quantities in Eqs. (3.9) are proportional to 

€ 

exp(−isφ00) , the 

average over values of 

€ 

φ00 can be carried out. Basically, the result of the average is to 

remove the brackets from Eq. (3.9e), 
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€ 

−i 1
k0

∂ 2

∂z2 − ik0 1− ωcut
2

ω 2

 

 
 

 

 
 

 

 
  

 

 
  Vk = −8π I

IA

ρ⊥0 RB

ρz0

F⊥ks
∗ exp(i ˆ φ 0)

×
δ ˆ ρ ⊥
ρ⊥0

−
δ ˆ γ − ρ⊥0RBδ ˆ ρ ⊥

ρz0
2 + iδ ˆ φ 

 

 
 

 

 
 

       (3.11e) 

The initial conditions for this equation set at the entrance of the beam tunnel are: 

€ 

δρ⊥ (zst ) = 0 , 

€ 

δγ(zst ) = 0 , 

€ 

δφ(zst ) = 0 , and 

€ 

Vk (zst ) =1 , 

€ 

dVk (zst ) dz = −ikz (zst )Vk zst( ) . 

Here we assume the initial wave amplitude of the excited wave to be 1, as this 

quantity is arbitrary in the small signal limit. Eqs.(3.11) form a set of self consistent 

equations for the interaction between electromagnetic field and electron beam, which 

we can solve.  The growth rate is determined when boundary condition are applied at 

€ 

z = zst  

3.2.2 Normalized equations far from cut-off frequency 

When the operation is far from the cutoff, the interaction of the wave with the 

forward wave is smaller compared to interaction with the backward wave, so it can be 

neglected. This is demonstrated in the following for the normalized equation. 

By assuming that the operation is not far away from the cutoff frequency so that 

€ 

ρz  is approximately constant, and guiding magnetic field is constant (

€ 

RB =1), we 

normalize Eqs. (3.8) in the way same as in Ref.  41. Substituting relation 

€ 

RBρ⊥0δρ⊥ = δγ , which could be seen by combining Eq. (3.11b) and Eq. (3.11c), 

normalized electron rotational energy 

€ 

w = p⊥
2 p⊥0

2 = 2 γ 0 − γ( ) β⊥0
2γ 0 = −2δγ β⊥0

2γ 0 , normalized axial coordinate 

€ 

ς = β⊥0
2 2βz0( )k0z  and normalized wave amplitude 

€ 

F = 2γ 0
s−1β⊥0

s−4F⊥ksVk k0  into 

Eqs. (3.9b) and (3.9d),  the normalized equations could be written as  
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€ 

∂w
∂ς

= −2ℜ Fe− isφ0{ },    (3.12a) 

€ 

∂ sδφ( )
∂ς

= −w + sℑ Fe−isφ0{ } .   (3.12b) 

Also by substituting 

€ 

h = 2βz0kz β⊥0
2k0 , and normalized injected current density 

€ 

ˆ I = 64π I IA F⊥ks k0
2
β⊥0

2(s−4 )βz0  into Eq.(3.9e), the normalized beam-wave 

interaction equation will have the following form, 

€ 

d2F
dς 2 + h 2F = −iˆ I eis(φ0 +δφ ) 1− sw

2
 

 
 

 

 
  .  (3.12c) 

We define a new phase variable 

€ 

θ , which relates with

€ 

φ  in Eq. (3.6b) by 

€ 

θ = θ0 + δθ = sφ = s(φ0 + δφ), also from Eq. (3.8a) we could have that 

€ 

sφ0 = sφ00 + Δς  

and 

€ 

θ0 = sφ00 , so 

€ 

δθ = sδφ + Δς , where  

€ 

Δ =
2

β⊥0
2 1−

sΩ0

γ 0ω

 

 
 

 

 
 .    (3.12) 

We could get the set of normalized equations as following, 

€ 

∂w
∂ς

= −2ℜ Fe− i(θ 0 +Δς ){ }   (3.13a) 

€ 

∂δθ
δς

= −w + Δ + sℑ Fe− i(θ 0 +Δς ){ }   (3.13b) 

€ 

d2F
dς 2 + h 2F = −iˆ I ei(θ 0 +δθ ) 1− sw

2
 

 
 

 

 
    (3.13c) 

This set of equations is consistent with the second order equations in Ref. 12 for 

the case when the operating is close to the cutoff.    

For the situation that the radius of the tunnel is constant and the external magnetic 

field is fixed, let 

€ 

F = feiΔς  in Eqs. (3.13), then  
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€ 

d2F
dς 2

= eiΔς d2 f
dς 2

+ 2iΔ df
dς

−Δ2 f
 

 
 

 

 
    (3.14) 

Substituting this into Eq. (3.13c), we get  

€ 

d2 f
dς 2 + 2iΔ df

dς
+ (h 2 −Δ2) f = −iˆ I eiθ 0 iδθ − sw

2
 

 
 

 

 
 .  (3.15) 

In the left hand side of Eq. (3.15) 

€ 

h 2 −Δ2 = −
2
β⊥0

 

 
 

 

 
 

2
(ω − kzvz0 − sΩ0 /γ 0)(ω + kzvz0 − sΩ0 /γ 0)

ω 2   (3.16) 

When the backward wave excitation condition is satisfied, i.e. 

€ 

ω + kzvz0 − sΩ0 /γ 0 /ω  

is small, then 

€ 

ω − kzvz0 − sΩ0 /γ 0( ) /ω = −2kzvz0 /ω . So we have 

€ 

h 2 −Δ2 = −
2
β⊥0

 

 
 

 

 
 
(ω + kzvz0 − sΩ0 /γ 0)

ω
⋅ 4 βz0

β⊥0
2

kz

k0
  (3.17) 

If the operation is far from the cutoff, i.e.

€ 

ω − sΩ0 γ 0 ⋅ L vz0 >> π , so 

€ 

Δ >> df dς / f , we could omit the second order derivative in Eq.(3.15). So the Eq. 

(3.15) could be rewritten as  

€ 

df
dς

− i ˜ Δ f = ˜ I eiθ 0 iδθ − sw
2

 

 
 

 

 
 ,   (3.18a) 

where 

€ 

˜ Δ = 2 −ω − kzvz0 + sΩ0 /γ 0( ) β⊥0
2ω  and 

€ 

˜ I = β⊥0
2 4βz0 ⋅ k0 kz

ˆ I . 

Also by substituting 

€ 

f = Fe− iΔς into Eqs.(3.13a) and (3.13b), we could get  

€ 

dw
dς

= −2ℜ Fe− iθ 0{ } ,    (3.18b) 

€ 

dδθ
dς

= −w + sℑ Fe− iθ 0{ }.   (3.18c) 
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Eqs.(3.18) form a set of first order normalized equations for the backward wave 

excitation in the beam tunnel of gyrotron, which are also consistent with the equations 

in  Ref. 41.  

For a more general gyro-BWO for the situation that the operation is far from 

cutoff with slightly tapered parameters the set of three first-order ordinary differential 

equations forms a self-consistent set of equations containing a small number of 

parameters [35] (let 

€ 

s =1): 

€ 

dw
dς

= −2(1− w)1/ 2 Re Fe− iϑ( ) ,    (3.19a) 

 

€ 

dϑ
dς

= w + (1− w)−1/ 2 Im Fe− iϑ( ) ,    (3.19b) 

€ 

dF
dς

− iΔF = I0 (1− w)
1/ 2eiϑ .    (3.19c) 

Here Eqs. (3.19a) and (3.19b) represent equations for electron rotational energy 

2
0

2 / ⊥⊥= ppw  and gyrophase with respect to the wave phase ( )zkt z−−= ωθϑ  (these 

equations are averaged over fast electron gyrations), ( )( )czz /2/ 0
2
0 ωββς ⊥=  is the 

normalized axial coordinate (here 0⊥β  and 0zβ  are initial orbital and axial velocities 

of electrons normalized to the speed of light). Eq. (3.19c) is equation describing the 

wave excitation in the case of operation far from cutoff when the second-order wave 

equation can be reduced to the first-order one (as explained in Introduction). This 

equation is written for the dimensionless wave amplitude F . The parameter Δ  in its 

right-hand side is the normalized cyclotron resonance detuning 

  
ω

ω

β
00

2
0

2 Ω−−
=Δ

⊥

zzvk .                                           (3.20) 
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In the right-hand side of Eq. (3.19c) 0I  is the normalized beam current, which 

will be specified below and angular brackets denote averaging over initial gyrophases 

of electrons at the entrance 0ϑ . The boundary conditions to Eq. (3.19a)-(3.19c) 

describe the absence of electron modulation in energies and phases at the entrance 

[ ( ) 10 =w , ( ) 00 ϑϑ =  uniformly distributed between 0 and π2 ] and zero amplitude of 

a backward wave at the right end of the interaction region ( ) 0=endF ς . As follows 

from the consideration of the beam tunnel, the cyclotron resonance detuning Eq. 

(3.20) depends on the axial coordinate because zk  and 0Ω  are axially dependent (in 

Eq. (3.20) 0Ω  and 0zv  are determined for an electron beam with velocities and 

energies non-perturbed by electromagnetic waves). When a lossy material is put on 

the wall of a beam tunnel, the axial wave number in Eq. (3.20) is a complex value and 

both, the real and imaginary parts of it can be functions of the axial coordinate. 

Equations Eqs. (3.19a)-(3.19c) are given for the case when the axial wavenumber 

is not too small and not too large. The meaning of this statement is the following: as 

was just mentioned, the axial wavenumber should be not too small in order for 

interaction with the forward wave to be non-resonant and, hence, neglect it. At the 

same time, this axial wavenumber should not be too large that allows one to neglect a 

so-called recoil effect, i.e. changes in the electron axial velocity in the process of 

radiating electromagnetic waves [30-31,12]. Introducing ( )ckn z // ω= , i.e. the axial 

wavenumber normalized to c/ω , one can present the corresponding conditions as 

1)/(2 >>cLn ω  (for neglecting the forward wave interaction) and ( ) 12/ 0
2
0 <<⊥ zn ββ  
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(for neglecting recoil effect). As one can see, when the interaction length is long 

enough, both conditions can be easily satisfied. 

To determine the self-excitation conditions for backward wave excitation it is 

necessary to solve linear Eqs. (3.19a-3.19c) together with corresponding boundary 

conditions. The linearization implies small perturbations in the electron energy and 

phase caused by the wave: ww ~1+= , ϑϑϑ
~

0 += . Then, linear equations for 

0~ ϑieww = , 0
~ ϑϑϑ ie=  and F  follow from Eqs. (3.19a- 3.19c): 

   F
d
wd
=

ς
,                                                          (3.21a) 

    Fiw
d
d

2
−−=

ς
ϑ ,                                             (3.21b) 

   ( ) ( ) 






 +=Δ− ϑςς
ς

iwIFi
d
dF

20 .                       (3.21c) 

These three first-order differential equations can be directly solved with the 

boundary conditions 

€ 

w ς st( ) =ϑ ς st( ) = 0  and 

€ 

F ς st( ) =1. (The absolute value of the 

wave amplitude at the entrance does not matter in the framework of the small-signal 

theory.) These equations should be solved for various values of the detuning Δ  and 

beam current parameter 0I  and just those values of these parameters which yield zero 

amplitude of a wave in a certain cross-section determine solution of the problem. In 

the case of constant detuning and beam parameter, Eqs. (3.21) can be reduced to the 

dispersion equation of the gyro-BWO which, in turn, at small values of the beam 

current parameter can be reduced [12] to the dispersion equation of the linear-beam 

backward-wave oscillator [28]. As known [28], the variables in this case can be 
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normalized to the Pierce gain parameter whose role in our notations is played by the 

normalized beam current parameter. Then, the starting value of the normalized length 

stendst Il ,
3/1

0 ς=  can be determined as the function of the attenuation parameter and 

other parameters of the system.  

3.3 Results and Analysis 

3.3.1 Results by solving the normalized first order equations 

By using the first order differential equations (3.21), we assume the oscillation is 

far from the cut off frequency along the whole axis. While, at part of the beam tunnel 

the oscillation is close to the cut off, which we will take into consideration later in the 

next section 

Intuitively, the amplitude of the excited wave grows from zero in both negative 

and positive z directions. So we assume the boundary condition for excited wave as  

€ 

Vk (zex ) = 0 .     (3.22) 

For a fixed value of surface impedance, we search for the solution to Eqs.(3.21) 

satisfying Eq. (3.22) by varying the frequency, 

€ 

zex  is the axial position where the 

excitation happens. 

Let us start presentation of our results from considering a simple case of a gyro-

BWO with constant parameters operating far from cutoff. In this case, solution of 

Eqs.(3.21) yields the following dependence of the starting length of the beam current. 

Fig. 3.3 gives the normalized start length 

€ 

ς st = β⊥0 /2βz0( ) ω /c( )zex  as function of 

normalized beam current density  
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€ 

I0 = 4 eIb
mc 3

Jm±1
2 ( j 'm,p Rb R)

( j 'm,p
2

−m2)Jm
2 ( j 'm,p )

κ−2

n
(1− nβz0)

3

γ 0β⊥0
4    (3.23) 

for different 

€ 

Δ i = 2kzivz0 ωβ⊥0
2( ), which is the imaginary part of  

€ 

Δ   (defined in Eq. 

(3.12)) caused by putting materials with different 

€ 

kzi on the inner surface of tunnel. 

Here 

€ 

Rb  is the radius of the electron guiding center. We can see from Fig. 3.3 that the 

normalized starting length is inversely proportional to the normalized beam current, 

which is caused by the fact that for higher beam current the excitation is easier. Also 

starting length for higher 

€ 

Δ i  is longer, which indicates that for higher surface 

impedance the excitation is harder. So our assumption that the backward wave 

excitation can be suppressed by applying high enough surface impedance on the inner 

surface of the beam tunnel, is right.  

For the specific 170GHz gyrotron in Ref. 25, whose parameters are B=6.6T, R = 

14.25mm, beam radius rb =9mm beam energy Vbeam= 80kV, and pitch factor 

€ 

α = v⊥ vz =1.3.  For the TE 24, 6 mode we can show the dimensional minimum 

interaction length needed for the excitation is plotted as a function of the current 

density of the injected electron beam for different surface impedances are plotted in 

figure 3.4.   

The different curves correspond to different values of surface impedance on the 

waveguide wall.  Here 

€ 

Zs /Z0 is the ratio of the surface impedance of the wall to the 

impedance of free space. Non-zero impedance corresponds to the presence of lossy 

materials in the wall. The solid curve shows the expected scaling of start length with 

beam current 

€ 

Lst : I
−1 3[30].   

Figure 3.1 shows the typical structure of the beam tunnel in a gyrotron. The radius 
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of the wall is tapered and the strength of the external guiding magnetic field varies.  

This effect is taken into our consideration. Here we still use the parameters from Ref. 

[25], beam radius

€ 

R[mm] =14.25 − 0.06 × z , z [mm] is 0 at the end of the beam tunnel, 

and the distribution of magnetic field is 

€ 

B T[ ] = 6.64 1.0 − 0.9e−6 ω c ⋅ z( )2( )   

We see from Fig. 3.2 that because the tapering of the wall radius and variation of 

the guiding magnetic field, the approximate excitation condition 

€ 

Ω >ωc z( )  depends 

on axial position.  We plot 

€ 

(Ω−ωc ) /c  versus z for several TE modes in Fig. 3.5. We 

see that the TE 24, 6 mode has a relatively large interaction length, and is more likely 

to be unstable. Fig. 3.6 is the starting length as function of injected beam current for 

the gyrotron [25] with profiles of magnetic field and tapering of wall radius. 

From Fig. 3.4 and 3.6, we see that the larger the injected current density, the more 

likely the backward wave will be excited. But this excitation can be suppressed by 

including a lossy material on the wall of the beam tunnel. Our analysis shows how 

much surface impedance we need to put on the wall to suppress the excitation. For the 

case in Ref. 25 Ib=40A, we see that Zs/Z0=0.085 or lower surface impedance is 

enough. 
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Fig. 3.3 normalized starting interaction length as function of normalized beam 

current of different 

€ 

Δ i  
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Fig. 3.4. Start interaction length is plotted as function of beam current assuming 

that there is no tapering of the wall and constant magnetic. 
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Fig. 3.5. 

€ 

(Ω−ωcut ) /c  is plotted versus z for different modes. Only when it is 

positive, can wave excitation happen. 
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Fig. 3.6. Start interaction length as function of beam current includes the effect of 

the wall tapering and varying of magnetic field 

 

3.3.2 Results by solving the second order equations 

When the operation is close to the cut-off frequency, the forward wave will be 

excited together with the backward wave. Here we assume that the injected beam 

current is 

€ 

I = 68A, external magnetic field is constant with 

€ 

B0 = 6.65T  and tapering 

angle of the tunnel radius is 

€ 

tanφ = 0.01. Eq. (3.11) is solved for different values of 

cavity radius by applying Eq. (3.22) as the boundary condition.  
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Fig. 3.7. Starting length as function of surface impedance for different tapering, 

with fixed magnetic field (

€ 

B0 = 6.65T ). 

 

Starting length as function of surface impedance is plotted in Fig. 3.7. The blue 

line is for constant tunnel radius as 

€ 

Rw =1.6cm . From Fig. 3.7, we know that by 

increasing the surface impedance of the surface, the starting length is longer, i.e. the 

unstable excitation is easier to be suppressed. The excited wave is possibly backward 

wave, forward wave excitation, or both. We can also see for larger tunnel radius, the 

starting length is shorter, so excitation is more likely happen.  
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Fig. 3.8, Starting length as function of surface impedance for different magnetic 

fields, with fixed tunnel radius (

€ 

Rw =1.6cm ). 

 

Assuming that the tunnel radius is constant (

€ 

Rw =1.6cm ), the starting length is 

plotted as function of surface impedance for several fixed magnetic field values in 

Fig. 3.8. We can see that for a fixed magnetic field (

€ 

B0 = 6T ) there exists a certain 

surface impedance value where the excitation can be suppressed. The surface 

impedance needed to suppress the excitation is proportional to the external magnetic 

field. This is not consistent with our expectations for backward wave excitation. For 

backward wave, the cyclotron resonant frequency is closer to the cutoff frequency 
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(Fig. 3.2) for smaller magnetic field. Thus, higher surface impedance is needed to 

suppress the excitation. But lower surface impedance is needed for forward wave. To 

see the transition from backward wave excitation to forward wave excitation clearly, 

we plot the starting length as function of the magnetic field for fixed surface 

impedance in Fig. 3.9.  

 

 

Fig. 3.9. Starting length as function of external magnetic field for different surface 

impedance when the tunnel radius is fixed (

€ 

Rw =1.6cm ). 
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3.3.3 Boundary condition modifications to the model 

Eq. (3.22) is an approximation to the real boundary condition. It doesn’t really 

satisfy the boundary condition of the wave in the beam tunnel or cavity. So instead, 

we can solve the problem by applying the following boundary condition. At the 

entrance of the tunnel (

€ 

zi) the excited wave is propagating in backward direction, so 

it satisfies the 

€ 

dVk dz + i kz Vz( )
z= zi

= 0 . The remaining boundary condition that must 

be satisfied is the condition that the mode is outgoing or evanescent at 

€ 

z = zs,  

€ 

C ω,Zs( ) =
dVk

dz
Vk

 

 
 

 

 
 
z= zs

− ikz zs( ) = 0.    (3.24) 

Here we have indicated that the quantity C depends implicitly on the frequency (

€ 

ω ) 

and surface impedance (

€ 

Zs ). The surface impedance determines 

€ 

ki  which is the 

imaginary part of 

€ 

kk  in Eq. (3.4a) in the following way [42]: 

 

€ 

ki =
Zs

Z0R z( ) 1−ωc
2 ω 2

ωc
2

ω 2 +
m2

jm,p
' 2 −m2

 

 
  

 

 
     (3.25) 

for the mode TEm,p , where 

€ 

Z0 = 376.7Ω  is the impedance of free space.  

Equations (3.11a)-(3.11e) form a set of self-consistent equations for the 

interaction between the electromagnetic field and the electron beam, which we solve. 

We initialize the perturbed variables according to Eqs. (3.12), and integrate Eqs. 

(3.11a)-(3.11e) forward in z from 

€ 

z = z0  to the point 

€ 

zs , where we evaluate the 

complex quantity 

€ 

C ω,Zs( ) . Finding a solution then becomes a two dimensional 

search for parameter values that give 

€ 

C ω,Zs( ) = 0 . Our procedure for doing this is 

described in the next section. 
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First we compare our calculation with previous work such as the Gyro-BWO in 

Ref. 43 shown in the Fig. 3.10 with magnetic field 

€ 

B0 =14.52kG , beam voltage 

€ 

Vb =100kV , pitch factor 

€ 

α =1.0  and guiding center at

€ 

rc = 0.09cm . The excited field 

profile from our simulation is shown in Fig. 3.11 (a) comparing with the profile in 

Ref. 43 in Fig. 3.11 (b). The start current from our calculation is 

€ 

Ist = 0.0226A  with 

unstable mode frequency at 

€ 

f = 33.25GHz , which is very close to the current 

€ 

Ist = 0.03A  with 

€ 

f = 33.30GHz  from Ref. 43. 

 

 

Fig. 3.10. Structure of Gyro-BWO in Ref. 43 
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(a) Field profile from our simulation 

 

(b) Field profile from Ref. 43 

Fig. 3.11. Stimulated backward wave profile in Gyro-BWO 
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In the following, we report numerical solutions of the system in MKSA units, 

Eqs. (3.11) and describe the method by which we impose the boundary condition, Eq. 

(3.24). Equation (3.24) is a complex transcendental equation for the unknown 

oscillation frequency 

€ 

ω . For a given set of physical parameters there may or may not 

be solutions of Eq. (3.24) that correspond to instability 

€ 

Im ω( ) > 0 . To determine if 

such solutions are present we use the Nyquist analysis [44]. That is we numerically 

evaluate 

€ 

C ω,Zs( ) for a set of 

€ 

ω  values, that encircle the upper half 

€ 

ω -plane. In 

practice this reduces to evaluating 

€ 

C ω,Zs( ) for values of 

€ 

ω  along the real -

€ 

ω  axis. 

We then plot the corresponding values of 

€ 

C  in the complex plane and determine the 

net encirclement of the origin 

€ 

C = 0. This indicates the number of solutions of 

€ 

C = 0 

with 

€ 

Im ω( ) > 0 . 

As an example we consider the beam tunnel of a gyrotron operating at 170GHz. 

The beam voltage and current are 80KV and 50A, the pitch factor is 1.3, the beam 

radius is 9mm, and the length of the beam tunnel is 18cm. For this gyrotron we model 

the profile of the magnetic field to be 

€ 

B z( ) = B0 1− 0.5 z LB( )2( ) , where 

€ 

z = 0 

corresponds to the center of the cavity where 

€ 

B0 = 6.64T and 

€ 

LB = 22.36cm. The 

wall radius in the beam tunnel is given by 

€ 

R = R0 − tw (z − zs) , where 

€ 

R0 =1.425cm 

and 

€ 

tw = 0.06. Here 

€ 

zs is the point where the wall radius equals 

€ 

R0 . These parameters 

correspond roughly to those of Ref. 25. Figs. (3.12a) (3.12b) and (3.12c) show the 

locus of 

€ 

C ω,Zs( ) values computed for the TE24, 6 mode for three increasing values of 

surface impedance: 

€ 

Zs =10.40Ω , 

€ 

10.59Ω and 

€ 

12.92Ω respectively. In Fig. (3.12a), 

with the lowest surface impedance the 

€ 

C ω,Zs( )  curve encircles the origin twice 
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indicating the presence of two unstable modes. In Fig. (3.12b), the curve passes 

through the origin indicating the presence of a marginally stable mode, while in Fig. 

(3.12c) there is no encirclement of the origin indicating the beam tunnel is stable for 

this mode. Thus, use of the Nyquist analysis enables us the find the critical values of 

surface impedance needed to stabilize a particular mode, in this case, 

€ 

Zs =10.59Ω. 

Further, by noting the frequency at which 

€ 

C ω,Zs( ) passes through the origin, as in 

Fig. (3.12b), we can determine the frequency of the excited mode at marginal 

stability. 

The presence of the multiple loops in the 

€ 

ρ ω,Zs( ) curve indicates the presence of 

multiple axial modes in our system of equations. These multiple modes stem from the 

fact that the beam tunnel is long when measured in the gyration length 

€ 

LΩ = vz /Ω0 . 

For the gyrotron we considered here, 

€ 

LΩ ≅ 0.08cm. So the number of electron orbits 

€ 

N =Ω0T =Ω0zD vz ≅ 225, where T is the travel time of the electron in the beam 

tunnel. The sensitivity of the frequency and the critical surface impedance to the point 

at which we apply the boundary conditions is illustrated in Fig. 3.13. Here we have 

plotted in Fig. (3.13a) the critical surface impedance and in Fig. (3.13b) the mode 

frequency as a function of the length of our simulation domain, 

€ 

zD = zs − zo. As can be 

seen in the regions 

€ 

8 < zD < 9.5 cm, the curves are not smooth due to mode hopping. 

This is made more clear in the inset of Fig. (3.13a), where the detailed structure of 

curves is resolved. Similar structure occurs for all values of 

€ 

zD, but is not plotted. 

However, in spite of the small oscillations, the marginally stable solution generally 

falls in a narrow range of frequencies, 

€ 

159 < f <160.5GHz with a critical surface 

impedance 

€ 

Zs ≈ 30.Ω. Thus, we can consider the results for specific parameters, in 
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particular the beam tunnel length, to apply in practice. Further, it is likely that the 

small oscillations would disappear if the beam were given a spread in velocities. 

In Fig. 3.14, we plot the critical surface impedance as function of external 

magnetic field (

€ 

B0) for different values of injected beam current (Ibeam) and pitch 

factor (

€ 

α ) for the gyrotron structure in Ref. 25. Here we have taken 

€ 

zD =18cm, 

which corresponds to essentially the entire beam tunnel length. In Ref. 25 the beam 

current used was 50A and 

€ 

α =1.3. For these beam current and 

€ 

α  we found that the 

tunnel was stable with zero surface impedance. To find instability we increased the 

beam current and 

€ 

α  values, in excess of those used in the experiment. Specifically, 

we consider values of current Ibeam= 51, 68, 102A, and values of pitch factor 

€ 

α = v⊥ vz = 1.3 and 1.5. We see that for the TE24, 6 mode the hardest to stabilize 

oscillations occur for 

€ 

B0 ~ 6.3T. The optimal 

€ 

B0  value for the gyrotron in Ref. 25 

is

€ 

B0 = 6.64T, which is not the most unstable value according to our calculations.  

For the case of the highest current 

€ 

Ibeam =102A, which is much higher than the 

current value 

€ 

Ibeam = 50A in Ref. 25, an isolated region of stability appears around 

€ 

B0 = 6.0T. To investigate this we show in Fig. 3.15, the mode frequency at marginal 

stability vs magnetic field strength. We note that there is a mode transition around 

€ 

B0 = 6.06T. The frequency jumps by about 1.5GHz. Note, this jump is much larger 

than the small jumps depicted in Fig.3.13. This changing of modes is responsible for 

the isolated region of stability.  

Figures 3.13, 3.14 and 3.15 apply to the TE24, 6 mode. Other modes have similar 

cutoff frequencies and may be excited. In Fig. 3.16 we plot the critical surface 

impedance for three representative modes. We see that the critical surface impedance 
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for these modes is in the same range as that of the TE24,6. At 

€ 

B0 = 6.25T the mode 

frequencies at the marginally stable modes are as follows: 160.852GHz (TE24,6), 

160.865GHz (TE22,7) and 160.855GHz (TE20,7). We have similarly studied the TE20,8, 

TE16,7, TE12,10 and TE8,12 modes and found the ones shown in Fig. 3.16 to be most 

unstable. 

 

 

(a) for 

€ 

Zs =10.40Ω 



 

 63 
 

 

(b) for 

€ 

Zs =10.59Ω 
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(c) for 

€ 

Zs =10.92Ω 

Fig. 3.12. An example of 

€ 

ρ  is plotted in complex plane by varying the frequency, 

which is for the gyrotron in Ref. 25 for different surface impedance.  
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(a) 
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(b) 

Fig. 3.13. For the gyrotron structure in Ref. 25, the surface impedance (a) and 

frequency (b) are plotted as a function of the length of the tunnel.  
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Fig. 3.14. Surface impedance needed to suppress the excitation for mode TE 24, 6 

in the beam tunnel as function of the external magnetic field for different values of 

injected beam current and pitch factor for the gyrotron in Ref. 25. 
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Fig. 3.15. Frequency of the unstable excitation for mode TE 24, 6 for the gyrotron 

in Ref. 25 with injected beam current 

€ 

Ibeam =102A  and pitch factor 

€ 

α =1.3. 
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Fig. 3.16. Surface impedance needed to suppress the excitation in the beam tunnel 

as function of the external magnetic field for different modes for the gyrotron in Ref. 

25 (It is assumed that injected beam current 

€ 

Ibeam =102A  and pitch factor 

€ 

α =1.3). 

3.4 Conclusions 

For the parameters and geometry considered, backward waves in a beam tunnel 

with a smooth wall will be stabilized if the surface impedance satisfies 

€ 

Zs > 30Ω . At 

the frequencies of interest, 

€ 

f ~ 160GHz, a coating material with a bulk conductivity 

€ 

σ = 57S/m will provide adequate surface impedance. Silicon carbon is a good 

example of the absorber. The most unstable modes are the ones whose cut-off 

frequency matches the cyclotron frequency at the point of minimum radius in the 
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beam tunnel. Note that the study of the effect of attenuation on the starting conditions 

in the gyro-BWO with constant parameters [41] shows that, when the attenuation is 

strong enough, the backward wave excitation becomes impossible at arbitrary beam 

currents. 

The present small signal theory has made a number of approximations that need 

to be investigated for their validity. First we have neglected spreads in velocity. These 

are not expected to be significant as excited modes are close to the cut-off where the 

strongest interaction occurs. (Note that the effect of the axial velocity spread on the 

backward-wave excitation conditions in one specific design of a W-band gyro-BWO 

was studied in Ref. 45 where it was shown how this effect is increasing with the 

frequency departure from the cutoff.) Second, we have neglected the linear coupling 

between the modes that occurs when the wall is tapered. This effect has been shown 

to be important in the output taper of gyrotrons where it affects mode purity [46]. 

Finally, we have considered interaction between the beam and TE modes only. This 

neglects the so called electrostatic cyclotron maser instability [37] which may be 

important in beam tunnels and could interact with the BWO instability. Consideration 

of these last two effects will be the subject of next chapter. 
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Chapter 4: Velocity Spread and Space Charge Effect in 

Gyrotron Beams 

Two important effects were omitted from consideration in the previous chapter. 

These are velocity spread and the effect of AC space charge. In real magnetron 

injunction guns electrons are to a good approximation monoenergetic. However, due 

to variation in electric field near the cathode, electrons have a distribution of values of 

their pitch factor 

€ 

α = v⊥ vz . Typically, the spread in pitch angles is such that when 

the beam reaches the cavity there is a 5-10% spread in the relative value at 

€ 

v⊥. The 

precise value of spread is hard to predict because it is affected by misalignments, 

surface roughness and nonuniform emission of the cathode, which are not easily 

quantified. A velocity spread of this level has modest effect on the operating mode 

because, in the cavity, the operating mode is near cut-off and has a small axial 

wavenumber. Thus there is little disruption of the cyclotron resonance due to Doppler 

shift. The same may not be true in the beam tunnel where potential BWO modes have 

considerable Doppler shift.  

A second effect not considered is AC space charge. The instability considered in 

the previous section involved an electromagnetic field that was represented as a 

backward propagating TE mode. The bunched spiraling electron beam also produces 

an electrostatic field that, through the negative mass effect, can enhance bunching. In 

fact, the beam can be unstable in the absence of a backward wave due to the 

electrostatic cyclotron maser instability [48-51]. This mode is convectively unstable. 
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We will study the interaction of this mode with the BWO studied in the previous 

section.  

In this chapter, we first repeat in section 4.1 our analysis for the CPI gyrotron as 

in Chapter 3. Later, in section 4.2, we include velocity spread into our calculation, 

and compare with the situation without spread. In the last section, the electrostatic 

instability in the gyrotron beam is considered.  

4.1 CPI Gyrotron 

Our previous calculations are based on the structure of the JAERI 170GHz 

Gyrotron in Ref. 25, but at this point we change our focus to the CPI 95GHz Gyrotron 

[26]. The aim of CPI is to generate an output power at the 2 MW level with a 75 A 

beam current, but at this power level the efficiency appears to be limited by backward 

wave oscillation. We assume the beam tunnel to be a smooth wall, then the backward 

wave excitation in the beam tunnel is essentially the same as the JAERI Gyrotron. So 

we repeat our previous analysis in chapter 3 for the CPI Gyrotron in this section. The 

operating mode of the CPI Gyrotron is TE22,6,  with the magnetic field profile as in 

Fig. 4.1, beam tunnel shown in Fig. 4.2, and pitch factor  in the cavity. 

The beam tunnel profile and three different possible beam positions (

€ 

rmax , 

€ 

rguide, 

€ 

rmin ) along the axis are shown in Fig. 4.2 together with the location of the coupling 

zeros (coupling coefficient equals zero) for the TE19,2 and TE8,5 modes. The coupling 

coefficient is defined in Eq. (4.1) as the strength of the coupling between the electron 

beam and backward wave,  
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€ 

CouplingCoeff =
Jm+1 jm,n

' rb /R z( )( )
Jm jm,n

'( )
 

 
 
 

 

 
 
 

1
π jm,n

' 2
−m2( )

,    (4.1)

 

where the positive and negative sign denotes the different direction of mode rotation 

relative to the electron gyration.  

 

        

 

External Magnetic field profile 

Fig. 4.1 Magnetic field profile of CPI Gyrotron 
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(a) Possible beam position and coupling zeros in the beam tunnel for mode TE8,5 
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(b) Possible beam position and coupling zeros in the beam tunnel for mode TE19,2 

Fig. 4.2 Beam position and coupling zeros in the beam tunnel 

 

The most unstable mode for each azimuthal index when the beam is at 

€ 

rmax  is 

listed in Fig. 4.3 along with its radial mode number. Here, instead of calculating the 

surface impedance needed to suppress a mode for a fixed injected beam current, we 

calculate the start current needed to excite an unstable mode with zero surface 

impedance. From the simulation we conclude that modes with eigenvalues close to 

 are more unstable than others. In Fig. 4.4, we plot the start current (a) as 

frequencies (b) of the modes listed in Fig. 4.3 for different beam positions. The 

unstable modes are in the range 85-90 GHz. In general, the start currents are much 
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larger than the nominal beam current (75A). Based on this one would assume that 

backward waves were stable in the CPI gyrotron. This will change when we introduce 

space charge effects. We can see from Fig. 4.4 that the TE19,2 has the smallest start 

current 

€ 

Ist = 93.5A, so it is the most unstable mode in the beam tunnel of the CPI 

Gyrotron. We indicated the unstable modes with negative azimuthal index for 

different beam positions in Fig. 4.4, others with positive index. The different beam 

positions lead to the largest start current variation for the TE8,5 mode and smallest 

variation for the TE19,2. To analyze the cause of the variation of start current with 

different beam positions for different modes, we plot the coupling coefficients for 

different beam positions as function of z for the TE8,5 (a) and the TE19,2 (b) modes in 

Fig. 4.5. There is large difference in the integrated along z coupling coefficient for 

different beam positions for the TE8,5 mode, while only a small difference for the 

TE19,2 mode. Thus, variations in start current with beam radius for the TE8,5 and 

TE19,2 modes are caused by the different coupling coefficients.  
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Fig. 4.3. Most unstable modes: their eigennumbers vary from 24.5 and 26.5. 
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(a) Start current of most unstable modes 
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(b) Frequencies of most unstable modes 

Fig. 4.4 Start current and frequencies of most unstable modes 
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(a)TE8, 5 
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(b)TE19,2 

Fig. 4.5. Coupling coefficients along z-axis for modes TE8, 5 and TE19,2 

 

From our calculations so far, we could conclude that for the beam parameters of 

the CPI Gyrotorn, a current under 80A will not excite backward waves in the beam 

tunnel. However, when space charge effects are considered this will change.  

4.2 Velocity Spread 

In gyrotrons, the source of electrons is usually a magnetron injection gun, which 

provides an annular electron beam that is monoenergetic, but has a spread in pitch 

angle, i.e. a spread in 

€ 

v⊥ vz . It was found in Ref. 47 that velocity spread weakens the 
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interaction between electrons and backward waves. Thus, the start current should 

increase when velocity spread is included. 

To bring velocity spread into our calculation, the equations of motion Eq. 3.5 

need to be solved for an ensemble of particles with different initial velocities. The 

wave equation Eq. 3.4 (a) needs to be modified to include a sum of contributions 

from different electrons 

€ 

wiSTki
i
∑ , where 

€ 

wi is the weight of electrons with velocity 

€ 

vi and 

€ 

wi
i
∑ =1. The equations of motion with velocity spread become 

  

€ 

ˆ φ 0 = dz 1
ρz0

γ 0k0 −
Ω0 z( )
c

 

 
 

 

 
 0

z
∫           (4.2a) 

 

€ 

∂δ ˆ ρ ⊥i
∂z

=
γ 0

2 RB ρz0i

F⊥ks exp −i ˆ φ 0( )Vk( )    (4.2b) 

   

€ 

∂δ ˆ γ i
∂z

=
γ 0ρ⊥0i RB

2ρz0i

F⊥ks exp −i ˆ φ 0( )Vk( )      (4.2c) 

€ 

∂δ ˆ φ i
∂z

=
δ ˆ γ ik0

ρz0i

−
δ ˆ γ i − ρ⊥0iRBδ ˆ ρ ⊥i

ρz0i
3 γ 0k0 −

Ω0

c
 

 
 

 

 
 +

γ 0

2iρ⊥0iρz0i RB

F⊥ks exp −i ˆ φ 0( )Vk( )    (4.2d) 

for each electrons, and the wave equation becomes  

€ 

−i 1
k0

∂ 2

∂z2 − ik0 1− ωcut
2

ω 2

 

 
 

 

 
 

 

 
 

 

 
 Vk = −8π I

IA

ρ⊥0i RB

ρz0i

F⊥ks
* exp i ˆ φ 0( )

wi
δ ˆ ρ ⊥i
ρ⊥0i

−
δ ˆ γ i − ρ⊥0iRBδ ˆ ρ ⊥i

ρz0i
2 + iδ ˆ φ i

 

 
 

 

 
 

i
∑

,  (4.2e) 

where 

€ 

ρ⊥0i = γv⊥0i c RB  and 

€ 

ρz0i = γ vz0i c  are for electrons with velocity 

€ 

vi.  

Two example distribution functions for the perpendicular velocity (uniform and 

triangular) are shown in Fig. 4.6. We sample the distribution function at five equally 

spaced points. The root mean square (RMS variation of 

€ 

v⊥) is used to denote the 
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spread in velocity. Thus, for different values of RMS spread, the spaces 

€ 

Δv⊥  between 

spread velocities are different. For uniform distribution, and with five points the space 

between points is 

€ 

Δv⊥ v⊥0 = 0.0354 for 5% velocity spread, and 

€ 

Δv⊥ v⊥0 = 0.0433 for 

triangular. We found that with 15 interpolated points our calculations for uniform 

(

€ 

Δv⊥ v⊥0 = 0.0012 for 5% RMS spread) and for triangular (

€ 

Δv⊥ v⊥0 = 0.0015 for 5% 

RMS spread) are close.  

 

 

(a) Uniform distribution  

 

(b) Triangular distribution 

Fig. 4.6. Velocity Spread distribution 
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The start current and frequency of the most unstable mode with 5% velocity 

spread is compared with cold beam in Fig. 4.7 when the beam guiding center at 

€ 

rmax . 

We see that 5% velocity spread increases the start currents, but not much. The 

unstable frequencies remain the same. This is consistent with the conclusion in Ref. 

47, where most growth of start current caused by the velocity spread is near the cutoff 

frequency. The start current is not sensitive to velocity spread, because 

€ 

kz ≈ 0  there. 

The start current and most unstable mode frequencies as functions of the percentage 

of velocity spread for TE19,2 mode are plotted in Fig. 4.8. We see that the start current 

increases as velocity spread increasing. A velocity spread of 12% doubles the start 

current needed to excite the instability in the tunnel. The most unstable mode 

frequency also increases as velocity spread increasing, but the varying amount is very 

small. The most unstable mode frequency for TE19,2 is still around 92GHz.  
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(a) Start current of the most unstable modes 
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(b) Frequencies of most unstable modes 

Fig. 4.7 Start current and frequencies of most unstable modes  

for 5% velocity spread and no velocity spread 
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(a) Start current for beam with velocity spread 
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(b) Frequencies of most unstable modes 

Fig. 4.8. Start current and frequencies as function of velocity spread for TE19,2 mode 

 

4.3 Coupling to the Electrostatic Cyclotron Maser Instability 

The spiraling electron beam, when it becomes bunched, produces a time 

dependent density perturbation and an associated electrostatic field. The analogous 

field, in the case of linear beam devices, gives rise to beam plasma waves that resist 

the formation of bunches. This was the phenomena studied in chapter 2. However, for 

a spiraling beam, due to the relativistic negative mass effect, the electrostatic field can 

enhance bunching. The associated unstable waves are known as the electrostatic 
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cyclotron maser instability, and they were originally studied by Hirshfield [48] and 

Charbit et.al [49]. Later, Chen and Chu [50] modeled the linear instability by 

monoenergetic electrons and Bonderson and Antonsen [51] pointed out the 

importance of an inhomogeneous magnetic field in stabilizing the perturbations.  

The electrostatic cyclotron maser instability is convectively unstable. That is, the 

unstable perturbations propagate with the beam as they grow. Thus, previous studies 

[27, 48-51, 52-53] have focused on whether small levels of noise introduced near the 

cathode will be amplified to high enough level to degrade the beam by the time the 

beam reaches the cavity. Since the noise level is low, a large amplification is required 

to disrupt the beam, and due to the magnetic field inhomogeneity this level of 

amplification usually doesn’t occur.  

Considered here is a new phenomena, the coupling of backward waves with the 

electrostatic cyclotron maser instability. This coupling can result in absolute, rather 

than convective instability. The backward wave carries the signal from the cavity 

region to the cathode where the beam is perturbed. The perturbations are amplified as 

the beam propagates from the cathode to the cavity region where the backward wave 

is excited. Thus, there is a feedback loop that can give rise to absolute instability.  

4.3.1 Motion Equation 

The equations of motion are modified due to the presence of an additional 

component of electric field [37, 54]. The following modifications of the space charge 

effect can be made to the differential equations of 

€ 

γv⊥ and 

€ 

φ : [54] 
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€ 

d γv⊥( )
dt

= ...+ q
2m

cosφEφ
s + sinφEφ

c[ ] ,    (4.3a) 

€ 

dφ
dt

= ...+ q
2mγv⊥

−cosφEφ
c − sinφEφ

s[ ],   (4.3b) 

where 

€ 

Eφ
s  and 

€ 

Eφ
c  are the electrostatic contributions to the electric field, defining as  

€ 

Eφ
s =

m
q
ω p
2

Ω0

wp sinφ
'γ 'v⊥

'

electrons
∑ ,    (4.4a) 

€ 

Eφ
c =

m
q
ω p
2

Ω0

wp sinφ
'γ 'v⊥

'

electrons
∑ .    (4.4b) 

The sum is over all electrons, 

€ 

wp  is the weight of each electron (

€ 

wp =1
p
∑ ). By 

transforming the derivatives with respect to

€ 

t  to derivatives with respect to

€ 

z , and by 

substituting Eq. (4.4), we arrive at the following equations: 

€ 

d γβ⊥( )
dz

= ...+ 1
vz

d γv⊥ c( )
dt

= ...+ 1
βz

q
2mc 2

cosφEφ
s + sinφEφ

c[ ]
,   (4.5a) 

€ 

dφ
dz

= ...+ 1
vz
dφ
dt

= ...+ 1
γβ⊥βz

q
2mc 2

−cosφEφ
c − sinφEφ

s[ ]
.   (4.5b) 

We define a new space charge field amplitude, as 

€ 

εφ
s,c =

q
2mc 2

Eφ
s,c =

ω p
2

2cΩ0

wp
sinφ '

cosφ '
 

 
 

 

 
 

electrons
∑ γ 'β⊥

' ,   (4.6) 
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the equations become 

€ 

d γβ⊥( )
dz

= ...+ 1
βz

cosφεφ
s − sinφεφ

c[ ] ,    (4.7a) 

€ 

dφ
dz

= ...− 1
γβzβ⊥

cosφεφ
c + sinφεφ

s[ ].    (4.7b) 

By substituting the trigonometric relations 

€ 

cosφ sinφ ' − sinφ cosφ ' = sin φ ' −φ( ) , 

€ 

cosφ cosφ ' + sinφ sinφ ' = cos φ ' −φ( ) , Eqs. (4.7) become 

€ 

d γβ⊥( )
dz

= ...+ 1
βz

ω p
2

2cΩ0

wp sin φ
' −φ( )γ 'β⊥

'

electrons
∑

= ...− 1
βz

ω p
2

2cΩ0

wpγ
'β⊥
' ℜ iei φ

'−φ( ){ }
electrons
∑

   (4.8a) 

€ 

dφ
dz

= ...− 1
γβ⊥βz

ω p
2

2cΩ0

wp cos φ
' −φ( )

electrons
∑ γ 'β⊥

'

= ...− 1
γβ⊥βz

ω p
2

2cΩ0

wpγ
'β⊥
'

electrons
∑ ℑ iei φ

'−φ( ){ }
    (4.8b) 

By defining a complex space charge amplitude 

€ 

K =
iω p

2

2cΩ0

 

 
 

 

 
 γβ⊥e

iφ ,      (4.9) 

the equations can be further simplified as: 

€ 

d γβ⊥( )
dz

= ...− 1
βz

ℜ Κe− iφ{ }    (4.10a) 
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€ 

dφ
dz

= ...− 1
γβ⊥βz

ℑ Κe−iφ{ } .    (4.10b) 

The change in particle energy can be related directly to the change in magnetic 

moment and 

€ 

β⊥  [55]. Thus yields, 

€ 

∂γ
∂z

= ... ω
Ω0

RB γβ⊥( )
∂ γβ⊥( )
∂z

    (4.11) 

Adding Eq. (3.6) with Eq. (4.10), the differential equations of motion become with 

€ 

s =1, 

€ 

∂(γβ⊥ )
∂z

=
1
βz

ℜ VkF⊥k −Κ( )exp(−iφ){ } +
γβ⊥

2
∂ lnB0
∂z

,       (4.12a) 

€ 

∂φ
∂z

=
1
βz

k0
s
−
Ω0

γc
 

 
 

 

 
 +

1
γβzβ⊥

ℑ VkF⊥ks −Κ( )exp(−iφ){ },      (4.12b) 

Then the normalized differential equations for 

€ 

ρ⊥ , 

€ 

γ  and 

€ 

φ  are 

€ 

∂(ρ⊥ )
∂z

=
γ

ρz RB

ℜ VkF⊥k −Κ( )exp(−iφ){ } ,   (4.13a) 

€ 

∂γ
∂z

=
RB ρ⊥γ

ρz
ℜ VkF⊥k −

ω
Ω0

K
 

 
 

 

 
 exp −iφ( )

 
 
 

 
 
 

,   (4.13b) 

€ 

∂φ
∂z

=
1
ρz

γk0 −
Ω0

c
 

 
 

 

 
 +

γ
ρzρ⊥

ℑ VkF⊥k −K( )exp −iφ( ){ } .   (4.13c) 

By applying the same small signal model to Eq. (4.13) and averaging over the 

unperturbed electron trajectories as we did in Chapter 3, the equations Eq. (4.13) 

become  

€ 

∂δ ˆ ρ ⊥
∂z

=
γ 0

2 RB ρz0

F⊥ksVk −Κ( )exp(−i ˆ φ 0)    (4.14a)  
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€ 

∂δ ˆ γ 
∂z

=
RB

2
ρ⊥0γ 0

ρz0

F⊥ksVk −
ω

Ω0 z( )
K

 

 
 

 

 
 exp −i ˆ φ 0( )   (4.14b) 

€ 

∂δ ˆ φ 
∂z

=
δ ˆ γ k0

ρz0

−
δ ˆ γ − ρ⊥0RBδ ˆ ρ ⊥

ρz0
3 γ 0k0 −

Ω0

c
 

 
 

 

 
 +

γ 0

2iρ⊥0ρz0 RB

F⊥ksVk −Κ( )exp(−i ˆ φ 0), 

(4.14c)
 

where the expression for 

€ 

K  defined in Eq. (4.9) becomes 

€ 

Κ =
iω p

2

2cΩ0

RB ρ⊥0 exp i ˆ φ 0( ) δ ˆ ρ ⊥
ρ0

+ iδ ˆ φ 
 

 
 

 

 
    (4.15) 

The above equations together with Eq. (3.11e), describe the interaction of the space 

charge and backward wave excitation in the beam tunnel of a gyrotron.  

4.3.2 Space-charge spatial growth 

To analyze the space-charge effect on the beam only, we turn off the backward wave 

temporarily, i.e. 

€ 

Vk = 0, also set 

€ 

γω −Ω0 = 0. Assuming the third term in Eq. (4.14c) 

is small compared to the first term and substituting 

€ 

K  with Eq. (4.15), the equations 

of motion Eq. (4.14) become     

€ 

δ ˆ γ = ρ⊥0RB

γ 0

δ ˆ ρ ⊥      (4.16a) 

€ 

∂δ ˆ ρ ⊥
∂z

= −
γ 0ρ⊥0

2ρz0

iω p
2

2cΩ0

δ ˆ ρ ⊥
ρ⊥0

+ iδφ
 

 
 

 

 
    (4.16b) 

€ 

∂δφ
∂z

= δγ
k0
ρz0

      (4.16c) 
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In case of constant external magnetic field (

€ 

RB =1), and looking for spatially varying 

solutions of the form 

€ 

δφ = Aexp ikz( )  and 

€ 

δρ = Bexp ikz( ), we obtain a second order 

equation of 

€ 

k : 

€ 

k 2 +
γ 0ω p

2

4cΩ0ρz0
k +

γ 0ω p
2

4cΩ0

ρ⊥0
2

ρz0
2 γ 0

k0 = 0 .     (4.17) 

Substituting 

€ 

k = kr − iki  in to Eq. (4.17), the spatial growth rate of the perturbed 

quantities 

€ 

ki  is  

€ 

ki =
1
2
ω p

c
v⊥0

vz0 γ 0
.     (4.18) 

This is consistent with the spatial growth rate of space charge calculated in Ref. 37 by 

solving the Vlasov equation in the homogenous beam limit. The dispersion equation 

from Ref. 37 is written as 

€ 

1−
ω p
2γ

4γ z
2Ω0

2
γv⊥0
c

 

 
 

 

 
 
2 kz

2c 2 −ω 2

d(ω,kz )

 

 
 

 

 
 = 0,   (4.19) 

where 

€ 

γ z = 1+ γ 2vz0
2 c 2( )

1 2
, 

€ 

d(ω,kz) = γω − kzuz0 −Ω0( )2  when the thermal velocity 

spread of the electron speed can be neglected. We solve this dispersion equation by 

letting 

€ 

kz = γω −Ω0( ) uz0 + iki , then 

 

€ 

ki =
ω pγ

1 2

γ zΩ0

v⊥0
2vz0c

ω 2 −
c 2 γω −Ω0( )2

γ 2vz0
2

 

 
  

 

 
  

1 2

.   (4.20) 
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The two terms in Eq. (4.20) originate from gyrophase and axial bunching respectively.  

Gyrophase bunching is destabilizing, while axial bunching is stabilizing. The most 

unstable case occurs when

€ 

γ 0ω −Ω0 = 0, so the second term is 0. Then 

€ 

ki =
1
2
ω pv ⊥ 0

vz0cγ 0
1 2 ,      (4.21) 

which agrees with our result, Eq. (4.18).   

For the situation when the velocity spread can not be neglected, 

€ 

d(ω,kz) = γω − kzuz0 −Ω0( )2 − 14
kz
2Δuz

2. The last term stands for the axial momentum 

spread. This term suppresses the instability when 

€ 

kz ≅ ω −Ω0 γ( ) vz0  is large. This 

will be important in the beam tunnel where the cyclotron frequency varies with z.   

4.3.3 Results and analysis 

We now consider the growth of fields in the CPI beam tunnel with 

inhomogeneous magnetic field and varying wall radius. Fig. 4.9 compares the spatial 

growth of the perturbed transverse velocity with backward wave (BWO) and electron 

cyclotron maser instability (ECM) for TE+19,2 mode. For initial condition in the case 

with ECM only we set 

€ 

δp⊥ = 0.01, 

€ 

δγ = 0 and 

€ 

δφ = 0. The profile for ECM only is not 

strictly exponential growing because of magnetic field varying. The oscillation is 

caused by the interaction with the backward wave. By comparing between profiles for 

BWO only and for BWO and ECM, we see that electron cyclotron maser increases 

the instability in the tunnel. 
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Fig. 4.9. Perturbations in the electron orbital momentum in a tapered magnetic field 

with and without interaction with backward wave. 

 

The start current and frequencies of the most unstable modes considering electron 

cyclotron instability at different beam center positions are listed in Fig. 4.10. 

Compared with plots in Fig. 4.4, we see that space charge reduces the start current 

substantially, i.e. space charge greatly increases the instability of the backward wave. 

At the same time, the space charge doesn’t affect the frequencies of the most unstable 

modes. We also see that the beam position doesn’t affect the start current as much as 

for the situation with no space charge.  
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(a) Start Current of most unstable modes 
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(b) Frequencies of most unstable modes 

Fig. 4.10. Start current and frequencies of most unstable modes without and with 

space-charge effect with beam center at 

€ 

rmax , 

€ 

rguide  and 

€ 

rmin  

 

In Fig. 4.11, the start current and most unstable mode frequencies are plotted as 

function of external magnetic field. Start current decreases and then increases with 

external magnetic field in Fig. 4.11(a), which is caused by the transit of excitation 

from forward wave to backward wave. The unstable mode frequency increases with 

external magnetic field in Fig. 4.11(b). This proportional relation can be explained by 

the cyclotron resonance condition in Eq. (3.1).  
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(a) Start current of most unstable modes 
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(b) Frequencies of most unstable modes 

Fig. 4.11. Start current and Frequencies of unstable modes as function of external 

magnetic field 
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(a) Start current of most unstable modes 
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(b) Frequencies of most unstable modes 

Fig. 4.12. Start current and Frequencies of most unstable modes with space charge 

effect, without and with 5% velocity spread 

  

We consider both the space-charge effect and velocity spread in our calculation in Fig. 

4.12 for beam guiding center at 

€ 

rguide . The velocity spread still increases the start 

current. Here an 8% velocity spread doubles the start current. But, velocity spread 

doesn’t affect the frequency. TE+19,2 is still the most unstable mode in the beam 

tunnel of CPI Gyroton. A beam current larger than 60A can excite the backward wave.  
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Fig. 4.13. Surface Impedance needed to suppress instability in beam tunnel with 75A 

beam current considering both space charge effect and 5% velocity spread. 

 

For the desired 75A beam current of CPI Gyrotron, modes TE+11,4, TE+12,4, TE+14,3, 

TE+15,3, TE+18,2 and TE+19,2 can be excited in the beam tunnel when the beam guiding 

center is 

€ 

rguide .  The surface impedances needed to suppress the instability considering 
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both space charge effect and 5% velocity spread for the unstable modes are listed in 

Fig. 4.13. We see that a surface impedance of 

€ 

15Ω can suppress the instability.  

4.4 Conclusion 

Our calculation provides a more accurate and general estimate of start current 

needed to excite backward wave excitation and the surface impedance of the 

absorbing material placed on the inner surface to suppress the instability in the beam 

tunnel of CPI Gyrotron by taking velocity spread and space charge effect into our 

calculation. The most unstable mode for this specific gyrotron is TE19,2. The start 

current is around 60A.  In the same way, our calculation can also be applied to other 

high power gyrotrons, and will be very helpful to enhance their efficiency.  
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Appendix A: Structure parameters 

In this appendix, we analyze a rectangular grating of the type shown in Fig. 1.2.  

The purpose is to find the properties of the structure field needed for both the basic 

(low density) theory, and for the elements of the reactance matrix needed to 

determine the effect of self-fields. 

The field above the grating surface (x>0) is expressed in Eqs. (2.1a-2.1c), Ezn and 

Byn are related by Eq. (A-1), which is derived from Maxwell equations.  The 0th-

harmonic term is expressed in Eqs. (2.12), and 1st-harmnoic term is given in Eqs. 

(2.10). 

€ 

Byn =
−iω c

(kzn
2 −ω 2 c 2)

∂
∂x

Ezn      (A-1) 

Meanwhile, the field in one of the grating slots is given by 

€ 

Ez(x,z) = Ezm
(g ) cos(kmz)

sinh km
< x + d( )( )

cosh km
<d( )

+ Ez0
(g ) cos(k0z)

sin ω x + d( ) /c( )
cos ωd /c( )m=1

∞

∑  (A-2a) 

€ 

By (x,z) = Bym
(g ) cos(kmz)

cosh km
< x + d( )( )

cosh km
<d( )

+ By0
(g ) cos(k0z)

cos ω x + d( ) /c( )
cos ωd /c( )m=1

∞

∑  (A-2b) 

Here, 

€ 

km = mπ w , 

€ 

km
< = km

2 −ω 2 /c 2 , 

€ 

Bym
(g ) and 

€ 

Ezm
(g ) are also related by Eq. (A-1). 

The field components Ez and By are continuous at x=0, and we note that the Ez-field 

on the metallic surface is zero.  We match the Ez-field by multiplying both Ez 

expressions (Eq. (2.1a) and Eq. (A-1a)) by 

€ 

e−i( ˜ k z +nk0 )z  then integrating z from 0 to p in 

the case of Eq. (2.1a) and 0 to w in case of Eq. (A-1a).  This generates a set of 

equations 

€ 

Ezn = TnmEzm
(g )

m
∑ , where 

€ 

Tnm = dz p( )
0

w
∫ e− i( ˜ k z +nk0 )z cos(kmz) .  Doing a similar 

process for the By-field, except multiplying both Eq. (2.1c) and Eq. (A-1b) by 



 

 106 
 

€ 

cos(kmz) , generates 

€ 

Bym
(g ) = NmTmn

*

n
∑ Byn , here 

€ 

Nm= (p w) dz /w( )cos2(kmz)0

w
∫ . At 

x=0, 

€ 

Ezm
(g ) = iξmBym

(g )  (derived from (A-1)), 

€ 

ξ0 = −tan(kd)  and 

€ 

ξm = (km
<c ω)tanh(km

<d).  This leads to a matrix relation between the different spatial 

harmonics of the magnetic and electric fields above the grating surface, 

€ 

Ezn = i Z
nn '
B
yn '

n '
∑      (A-3) 

with 

€ 

Z
nn '

= TnmξmTmn '
*

m
∑  

We next use Eq. (A-1) to express 

€ 

Byn = i ˜ ξ nEzn  for 

€ 

n ≠ 0,1 , where 

€ 

˜ ξ n = ω /c( ) kzn
2 −ω 2 /c 2( )

−1/ 2
.  We then solve  

€ 

Ezn + Z
nn '

˜ ξ 
n 'Ezn ' = iZ

nn 'Byn '

n '≠0,1

∑
n '≠0,1

∑     (A-4) 

for Ezn for 

€ 

n ≠ 0,1 in terms of By0 and By1.  Substituting this back into Eq. (A-4) now 

for 

€ 

n = 0 and 

€ 

n =1 gives linear relations between Ez0,1 and By0,1.  These relations are 

then expressed in the form of Eq. (2.11). 

 Two grating dependent quantities are needed to evaluate the start current: the 

strength of first spatial harmonic relative to the incident wave amplitude 

€ 

α 2 and the 

geometric surface loss factor T.  The factor α is determined by solving Eqs. (2.11) - 

(2.14) in the absence of a beam, with 

€ 

r = 0 in Eq. (2.14).  The factor T can be 

calculated once the fields in the case of a perfectly conducting grating are known.  In 

general the 

€ 

n = 0 spatial components of the tangential electric and magnetic fields are 

related by the complex surface impedance

€ 

ˆ E z0 = ˆ Z s ˆ B y 0 , the coefficient T is defined in 

terms of the real part of 

€ 

ˆ Z s , 

€ 

Re ˆ Z s{ } ≡ TRs /Z0 , where Rs is the surface impedance of 
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the metal from which the grating is constructed. For small values of 

€ 

Rs /Z0 <<1, we 

have 
  

€ 

T = dl
 
B t∫

2
/ dz ˆ B y 0∫

2
.  Here   

€ 

 
B t  is the component of magnetic field tangent to 

the metal surface and the integration 

€ 

dl is along the grating metal surface.  Therefore 

T equals 1 for flat surface.  

We know from Eq. (2.7), that the start current density is inversely proportional to 

€ 

α 2 /(T1 + T2), where T1 is the geometric loss factor for the parabolic metal mirror, 

which is approximately 1, T2 corresponds to the grating surface.  Figure (A-1) shows 

us how the quantity 

€ 

α 2 /(T1 + T2) changes with grating depth and width.  The peak 

value is achieved by varying both the grating width and depth.  Figure (A-1a) shows 

the dependence on depth with width fixed 

€ 

w = 0.44 p .  The peak occurs around 

€ 

d /λ = 0.252 .  Figure (A-1b) shows the dependence on width with 

€ 

d /λ = 0.252 .  Here 

the peak occurs for 

€ 

w = 0.44 p. 
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Fig. A-1, (a) is plot of 

€ 

α 2 /(T1 + T2) versus depth/λ (keep width/period=0.442) 

(b) is for 

€ 

α 2 /(T1 + T2) versus width/period (keep depth/λ=0.252) 
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Appendix B: Cavity modes with k-dependent reflectivity 

The evaluation of gain and loss that determines the start current described by Eq. 

(2.15) involves integration of both gain and loss over wave number.  This relation is 

derived here. 

Near the surface of the grating, the fundamental spatial harmonic fields have the 

character of counter propagation plane waves as described by Eq. (2.12).  The 

reflected wave amplitude (upward propagation) is related to the incident wave 

amplitude  (downward propagation) by the reflection coefficient ρ that includes the 

interaction with the beam. 

The waves will diffract as they propagate back and forth between the mirror and 

the grating.  The incident and reflected wave fields at the mirror surface 

€ 

xm = Lx −Δx(z) are given by: 

  

€ 

Einc,refl (z,xm (z)) =
d ˜ k z
2π∫ [E inc,refl ( ˜ k z)e

 iϕ (z)], 

where 

€ 

ϕ(z) = (ω 2 c 2 − ˜ k z
2)1/ 2(Lx −Δx(z)) , and are related to each other by 

€ 

Einc (z,Lx −Δx) = ρmErefl (z,Lx −Δx), where 

€ 

ρm = eiπ +ηm  is the reflection coefficient of 

the metallic mirror surface where 

€ 

ηm < 0 and 

€ 

ηm <<1 in the small loss limit. 

We expand the phase 

€ 

ϕ(z)  using the assumption 

€ 

ωLw c >>1 , and define 

€ 

θ( ˜ k z ) = ˜ k z
2Lx 2ω c( ), 
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€ 

Erefl (z,Lx −Δx) =
d ˜ k z
2π

ei ˜ k z z E refl ( ˜ k z )e
ikx (Lx −Δx(z))∫

≈
d ˜ k z
2π

E refl ( ˜ k z )exp i ˜ k zz + iω
c

Lx −Δx(z)( ) − iθ( ˜ k z)
 

  
 

  ∫
 (B-

1a) 

and 

€ 

Einc (z,Lx −Δx) ≈ d ˜ k z
'

2π
E inc

˜ k z'( )exp i ˜ k z
'z − iω

c
Lx −Δx(z)( ) + iθ( ˜ k z

' )
 

  
 

  ∫  (B-1b) 

We then use the relationship between the amplitudes at the mirror surface 

€ 

Einc = ρmErefl  and at the grating surface with 

€ 

E refl ( ˜ k z ) = ρ( ˜ k z)E inc ( ˜ k z) , and inverse 

Fourier Transform to obtain an integral equation for the wavenumber dependence of 

the incident field 

€ 

E inc ( ˜ k z
'' ) = e− iθ ( ˜ k z

'' ) d ˜ k z
2π∫ ρmρ( ˜ k z)κ( ˜ k z

'' − ˜ k z )e
2iω

c
− iθ ( ˜ k z )

E inc ( ˜ k z )    (B-2) 

where 

€ 

κ(kz
'' − kz ) = e−2ikxΔ(z)+ i(kz −kz

'' )zdz
−∞

∞

∫ .  

We now consider perturbations to the case of a perfectly reflecting grating and mirror.  

The two reflection coefficients are written as 

€ 

ρm ≅ e
iπ (1+ηm ), 

€ 

ρ( ˜ k z) = eiφ0 (1+η( ˜ k z)) . 

Also let 

€ 

E inc ( ˜ k z) = E inc
(0)( ˜ k z) + E inc

(1)( ˜ k z ) , 

€ 

ω =ω (0) +ω (1) , which is complex 

determining frequency and growth rate.  Here all quantities with superscript “0” refer 

to the case of perfectly reflecting surfaces, and those with superscript “1” are 

perturbations of these quantities when losses and the beam are included. 

The 0th order of Eq. (B-2) defines the unperturbed eigenfunction and cavity 

frequency. 

€ 

E inc
(0) ˜ k z ' '( ) = e−iθ ( ˜ k z '' ) d ˜ k z

2π∫ e
i(π +φ0 )+2iω

( 0)

c
Lx − iθ ( ˜ k z )

κ( ˜ k z ' '− ˜ k z )E inc
(0)( ˜ k z )   (B-3) 
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For given parameters of the beam, grating and mirror, this is an eigenvalue equation 

for the complex frequency ω.  The solution depends on the mirror shape 

€ 

Δx(z) 

through 

€ 

κ ˜ k z ' '− ˜ k z( ) . For parabolic mirrors the solutions are Gaussian. The eigenvalue 

€ 

π + φ0 + 2Lxω
(0) /c( ) = φeig + 2πn , determines the real mode frequencies.  

To the first order Eq. (B-2) gives 

€ 

E inc
(1)( ˜ k z ' ') = e− iθ ( ˜ k z '' ) d ˜ k z

2π
eiφeig− iθ ( ˜ k z )κ( ˜ k z ' '− ˜ k z)[E inc

(1)( ˜ k z) + (ηm +η( ˜ k z) + 2iω
(1)

c
Lx )E inc

(0)( ˜ k z)]∫  

We multiply this by

€ 

E inc
(0)*( ˜ k z ' ')on both sides, and integrate over 

€ 

˜ k z ' ' , using Eq. (B-3). 

This eliminates all terms involving the unknown field perturbation 

€ 

E inc
(1). 

The result is 

€ 

0 = d ˜ k z E inc
(0)( ˜ k z)

2
∫ (ηm +η( ˜ k z ) + 2iω

(1)

c
Lx )    (B-6) 

This is the desired requirement that the growth rate is found by balancing gain and 

losses, in a wavenumber integrated sense. 
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