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A SUPERLINEARLY CONVERGENT FEASIBLE METHOD
FOR THE SOLUTION OF INEQUALITY CONSTRAINED
OPTIMIZATION PROBLEMS*

ELIANE R. PANIERt AND ANDRE L. TITSt

Abstract. When iteratively solving optimization problems arising from engineering design applications,
it is sometimes crucial that all iterates satisfy a given set of “hard” inequality constraints, and generally
desirable that the objective function value improve at each iteration. In this paper, we propose an algorithm
of the successive quadratic programming (SQP) type which, unlike other algorithms of this type, does enjoy
such properties. Under mild assumptions, the new algorithm is shown to converge from any initial point,
locally superlinearly. Numerically tested, it has proven to be competitive with the most successful currently
available nonlinear programming algorithms, while the latter do not exhibit the desired properties.
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1. Introduction. While some of the specifications associated with engineering
design problems can often be relaxed, others, such as stability or physical realizability,
have to be met imperatively (see [13] for a discussion of optimization problems arising
from design problems). The former type of specification calls for tradeoff exploration
through close interaction between designer and design process. However, this tradeoff
exploration can meaningfully take place only once the latter specifications are satisfied.
Since each iteration of an optimization algorithm involves one or more function
evaluations and since typically, in a design environment, function evaluations call for
computationally expensive system simulations, it is essentially required that hard
constraints be satisfied at each iteration." It is also desirable that the design obtained
after each iteration improve on the previous one.

In the simplest case, a design problem can be formulated as

(P){minf(x)

st.xe X

where X = {xs.t. gi(x)=0,j=1,---m}and :R">R and g;:R" >R, j=1," -+ m, are
smooth functions. For this optimization problem, the stipulations outlined above
amount to the requirement that, given x,€ X, the optimization algorithm construct a
sequence {x;}%-o such that, for all k,

(1.1) xee X
and
(1.2) S 1) = f(x0)-
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Methods of feasible directions [23], [14] satisfy these two requirements. They
have been extended to handle problems with functional constraints [3], [15] and
multiple objectives [13] and enhanced to efficiently handle design problems [21]. They
have been used very successfully in solving engineering design problems arising in
diverse application areas [12], [1], [11]. However, they suffer from an important
shortcoming in that they are generally slow, as their rate of convergence is at best linear.

This paper presents an algorithm which enjoys properties (1.1) and (1.2) as well
as a superlinear rate of convergence. This algorithm is of the successive quadratic
programming (SQP) type. Successive quadratic programming algorithms were first
introduced by Wilson [22]. Subsequently, Robinson [20] showed that Wilson’s method
is locally quadratically convergent and that it can be viewed as a form of Newton’s
method for solving the first order necessary conditions of optimality for constrained
nonlinear programming problems. The question of global convergence and Hessian
approximation were then considered by a number of authors (see e.g. [4], [2]).
Numerical experiments have shown that these methods (in particular a version due to
Powell [17]) often dramatically outperform algorithms of other classes [6]. However,
existing SQP type algorithms do not enjoy properties (1.1) and (1.2).

Given an estimate x € X of the solution x* to problem (P) and an estimate H of
the Hessian of the Lagrangian at x*, the SQP iteration yields a search direction d°
given by the solution of the quadratic program

min id "Hd +(Vf(x), d)

(1.3)
s.t. gi(x)+(Vgi(x), d)=0, j=1,"m

Let us assume for the time being that H is positive definite. Then clearly d° is a descent
direction for f at x, since, using the first order condition of optimality for (1.3}, we get

(Vf(x),d°)=—(Hd’,d°)— Y p(Vg(x), d"
(1.4) =—<Hd°,d°>+2 Mjgj(x)

0)2
=-pld°|
for some positive p and some nonnegative multipliers u;. However d° may not be a

feasible direction at x, since the constraints in (1.3) merely imply, for the constraints
active at x,

(Vg (x), d)=0
and thus property (1.1) may not be satisfied. Feasibility is recovered if one substitutes
in the right-hand side of the constraints of (1.3) a negative number —&. However the

new solution d' may not be any more a descent direction for f, thus jeopardizing
property (1.2). Indeed, (1.4) now becomes

Vf(x), dY=—pld'P+e T .

Choosing & =|d'|”, with »>2, would resolve this difficulty, at least for d' small, which
is the case if x is close to the solution of (P). Unfortunately the transformed problem
would not be a quadratic program any more. Following an idea used by Herskovits
in a different context [5], we propose to solve successively two quadratic programs:
first (1.3), giving d°, then

min 3d "THd +(Vf(x), d)
st g(x)+(Vg(x), dy=-[d°, j=1,---m
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yielding a search direction d'. The hope is that d' will be small enough, and close
enough to d°, near the solution to (P), for property (1.2) as well as the basic convergence
properties of the SQP type algorithms to be preserved. As shown in a later section,
such will indeed be the case, even without assuming positive definiteness of H over
the entire space (the milder assumption (4.1) will be used instead).

Once a feasible descent direction is obtained, an Armijo type rule may be suitable
as a line search procedure. However, in order to preserve a superlinear rate of
convergence, it is necessary to avoid any Maratos-like effect [7], by which the step
length is truncated even close to the solution. Mayne and Polak [9] solve this problem
in a different context—SQP methods using a penalty function for the stepsize calcula-
tion—by replacing the line search by a search along a suitably defined arc, tangent to
d' at x. In our context, a further “bending” towards the feasible region is necessary
to avoid truncation of the step due to infeasibility. It turns out that the amount of
bending must be closely monitored. Indeed, the bent unit step, say, d'+d, must be
very close to d' when d' is small (in the neighborhood of a solution of (P)). Otherwise,
d'+ d may not inherit enough descent properties from d ', resulting again in a truncated
step. Also, if d is too large, even the unit step iteration may not yield superlinear
convergence. A suitable correction d will be obtained as the solution of a linear least
squares problem.

The last problem to be addressed is that of global convergence. As suggested
above, d' is guaranteed to be a descent direction for f only in the neighborhood of a
solution to (P). Away from a solution, a first order search direction will be used. A
suitable mechanism will ensure that our algorithm selects the SQP direction when a
solution is approached, so that superlinear convergence can occur.

The resulting algorithm is relatively complex, as it involves the solution of two
quadratic programs and of one linear least squares problem at most iterations. Clearly
however, the close relationship between these three problems should result, in a clever
implementation, in little more computational effort than that required for the solution
of a single quadratic program.

The remainder of this paper is organized as follows. The proposed algorithm is
statedin § 2. In § 3, itis shown that, under mild assumptions, this algorithm is convergent
irrespective of the initial guess. Rate of convergence analysis is the object of § 4, where
conditions for superlinear convergence are put forth. Finally, § 5 is devoted to
implementation aspects and to numerical experiments.

2. The algorithm. Throughout the paper, the following two hypotheses will be
assumed to hold.

H1. The set X is not empty;

H2. The functions f, g;, j=1, + - * m are continuously differentiable.

The algorithm we propose for solving (P) is as follows.

ALGORITHM A.
Parameters.

M>0, ac(0,}), Be(0,1), »v>2, «k>2, r€(2,3).
Data.
X € X, HyeR™",

Step 0. Initialization.
Set k=0.
Step. 1. Computation of a search direction.
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(i) Solve

min 3d "Hed +(Vf(x), d)

(QPO){s.t. g(x)+(Vg(x),d)=0, j=1,---m

to the extent of obtaining a Kuhn-Tucker point d, of least norm.
If (QPy) has no Kuhn-Tucker point or if |dy|> M or if |Hcd}|>|d2|"? go
to (iv).

If |d3| =0 stop.
(ii) Solve

min 3d "Hyd +(Vf(x.), )

(QP){s.t. 5+ (Vg (x), dy=—|d%,  j=1,--m

to the extent of obtaining a Kuhn-Tucker point d, of least norm.
If d, exists, set 6, =(Vf{(xy), di).
If (QP) has no Kuhn-Tucker point or if |d|>M or if
6, > min(—|d%|*, —|d.|"), go to (iv).
(iii) Compute a correction d,, solution of the linear least squares problem

min 3|d [’
st g(x +di) +(Vgi(xi), d) = —|di” Vjel,
where I = {js.t. g;j(x;) +<ng(3fk), dy=—dy|"}.

If (LS) has no solution or if |dy|>|d,|, set d; =0.
Proceed to Step 2.
(iv) Compute a first order feasible descent direction d,, (see remark below).
Set 0y = (Vf(x0), di).
Set d,, =0.
Step 2. Line search.
Compute t,, the first number ¢ of the sequence {1, 8, 87, - - -} satisfying

(2.1) f(xp+ tdi + 12d,) = f(x0) + athy,
(2.2) g (X +td +12d)=0, j=1,---m

(LS){

Step 3. Updates.
Compute a new approximation H,.,, of the Hessian matrix.
Set Xiuy =X, + tidi + 124
Set k=k+1.
Go back to Step 1. O

Remark. The “first order” direction of Step 1(iv) is any direction satisfying a set
of conditions that will be stated later, as the need arises. At this time, let us just point
out that algorithms do exist that construct directions satisfying these conditions (e.g.
the algorithm in [16] using optimality function 67 defined by equation (36) in that
paper).

3. Global convergence. In this section we prove that, under mild conditions, the
algorithm described in § 1 is convergent.

In addition to H1 and H2, we will assume that the following hypothesis holds.
H3. For any x € X, the vectors {Vg;(x), j € I(x)} are linearly independent, where

I(x)2{js.t g(x)=0}.
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Before analyzing the convergence properties of Algorithm A, we need to verify
that the line search of Step 2 is well defined. A first requirement on the first order
direction is needed here.

R1. The direction computed at Step 1(iv) of the algorithm is a strict descent

direction for f and for the active constraints associated with the current
iterate (i.e., (Vf(xy), di) <0 and (Vg;(x), d) <0 for all je I(x;)).

PrOPOSITION 3.1. The line search yields a step t, = B’ for some finite j =j(k).

Proof. This is a well-known result in the case when the direction is computed at
Step 1(iv) and R1 is satisfied. Thus suppose that the direction is computed through
Step 1(i)-(iii). We have

f(uc+ td + 2d) = f(x) + KVf(x + Edi + €2d), di+2£d)

for some ¢€[0, t]. Since f is continuously differentiable, 8, ={(Vf(x,), di) <0 (from
Step 1 (ii)), and e € (0, 3), there exists ¢ > 0 such that

SO+ td + Pd) = f(x) + tab, Yie0, 1].
We also have
g (xe+ td + 12d.) = g;(xi) + KV g (x + € + £2d,), di+2£d,)
for some £€[0, t]. Moreover, from the inequalities
g(x) +H(Vgi(x), d)y=—|dy|” <0, j=1,---m
and
g(x)=0, j=1,---m,

we conclude that either g;(x,) <0 or g;(x.) =0 and (Vg,(x), di) <0. Therefore, for
Jj=1,- -+ m, there exists some ¢ such that

g(xttd+12d)=0 Vie[0,1]. 0

It is of interest to note that this result was obtained without making use of any
property of dy.

Our first convergence result has to do with the sequence of intermediate directions
{d3}.

PROPOSITION 3.2. Suppose that Algorithm A generates an infinite sequence. Let x*
be a cluster point of this sequence, and {x;} . x a subsequence converging to x*. Suppose
moreover that the directions at points x,, for k € K, are computed through Step 1(i)-(iii).
Then, the sequence {d%},.x tends to zero.

Proof. We assume by contradiction that there exists a cluster point x*, a number
d >0 and subsequences {X,}icx and {d%}x.x such that

x>x* keK, k-
and
|[dil/z=d Vkek

We first show that, in that case, the step ¢, obtained by the line search is bounded
away from zero on K i.e.,

3.1) 3:>0st. 4, =t Vkek
From Step 1(ii) we have, for k€ K,

O = (Vf(xi), di) = —(d)"
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and
gj(xk) + <ng(xk), dy=-(d)’.
Then, for k€ K, k large enough, we obtain,
(Vf(xe), dy=—8
and
(Vgi(xi), di)=-8 VjelI(x*),
g{x)=—-6 VjeglI(x*)

for some & > 0. From the identity

1

SO+ td + I2Jk) = f(x) +J (Vf(xp + tédy + tzgzgk)’ td, + 2t2§Jk>d§,
0

it then follows that, for k€ K, k large enough,
O+ td + 2d) — f(x) — aty

1
= t” [V (x + tédi + 2£2d,), di+21€d,) — (V (%), di)] dE

+(1—aXVf(x), dk)}
= t{:l[lopl] |Vf(xi + tedy + °¢%d,) ~Vf(x:)||di]

+21 sup |Vf(x, + téd, + 2£2d,)||di| — (1 — )8}
£e[0,1]

Since d, and d, are bounded and fe C', this ensures that there exists 4> 0, independent
of k, such that for 1€ [0, t], ke K, k large enough,

f(xk + tdk + tZJk) _‘f(xk) - C!tok = O.
Similarly, for k¢ K, k large enough, t>0 and je I(x*), it holds
g+ td + tzfik) —gi(x) = ’{§SI[10PI] Ing(xk +téd, + tzgzgk) —Vg;(x)| |di|
+2t sup |Vg(x, + téd, + 2£2d,)||di| - 8}
£e10,1]

so that there exists some ¢ > 0 independent of k such that, for t€[0, ¢ ], ke K, k large
enough,

g (x + td + £2d,) =0.
Also, there exists t;> 0 independent of k such that, for t€[0, 4], k€ K, k large enough,
and j g I(x*),
. 5 5
g(x +td+t7d) = gj(xk)+5 =-48 +5§0 Vie[0, 1]

Our claim (3.1) is thus proven, with t=min {t., ¢, j=1, - m}.
Now, for ke K, k large enough, we have,

S(xier1) = f () + atiy

(32) =f(x) - atd.
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On the other hand, from (2.1), the sequence {f(x;)} is monotonically decreasing and
hence, since f is continuous, f{x;) - f(x*) as k - c0. This contradicts (3.2). 0
In order to prove global convergence of Algorithm A, we need to strengthen the
first requirement on the first order direction, replacing it with R1'.
R1'. Ifasubsequence {x;}..x convergesto apoint x* which is not a Kuhn-Tucker
point for problem (P), then the corresponding first order directions are
bounded and satisfy the inequalities

(Vf(xe), dy=-8,
(Vgi(xp), di)=—8 Viel(x*)

for all k€ K, for some &> 0.

THEOREM 3.3. Algorithm A described in § 2 either stops at a Kuhn-Tucker point
or generates a sequence {x,} for which each accumulation point is a Kuhn- Tucker point
for (P).

Proof. The first statement is obvious, the only stopping point being in Step 1(i).
Thus, suppose that {x,},cx = x*. If the first order direction is selected infinitely many
times, the result follows from an argument identical to that used in the proof of
Proposition 3.2, using requirement R1’ and the fact that the function f is monotonically
decreasing. We then suppose, without loss of generality, that the direction is always
computed through Step 1(i)-(iii) on K and that the active set associated with (QP,)
keeps a constant value

I=1I ={jst g(x)+(Vg(x),d)=0} Vkek
From Proposition 3.2, we have
d}->0, keK, k-,
Therefore, I < I(x*). Also, the vector d} satisfies the optimality conditions

(3.3a) Hd} +Vf(x)+ 'ZI (1) V g (%) =0,

(3'3b) (#‘k)jgos

for some multiplier vector u,. Because I = I(x*), for k € K, k large enough, the vectors
Vg;(x;), je I are linearly independent. If we denote by R,(x;) the n x|I| matrix

Ri(x)=(Vgi(x,)st.jel)

we obtain the expression of the unique multiplier vector u, as
i =—(RT (% )R (%)) Ry (%) T (Hid R + V. (x1)).

Due to the condition |H,d}|=|d}|"/* we obtain

we>u¥, keK, koo
with

p*=—(RI(x*)Ri(x*)) 'Ry (x*) TV f(x*).
Taking the limit in (3.3) yields
VAx*)+ Y ufvg(x*)=0, nF=0. 0

Jjel

We conclude this section by showing that the existence of an accumulation point
in the sequence generated by Algorithm A induces some regularity properties on this
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sequence. This result will be used in § 4. We first need to introduce a second and last
requirement on the first order direction.”
R2. The first order direction satisfies the relation (Vf(x,), di) = —c|d,|* for some
a=1and ¢>0.2
ProrosITION 3.4. Suppose that the sequence {x;} generated by Algorithm A has
some accumulation point. Then

{lxk+1_xk|}‘)0, k- 00,

Proof. Since f(x,) is monotonically decreasing, existence of an accumulation point
of {x.} and continuity of f imply that the sequence {f(x;)} is bounded. Also, the line
search in Algorithm A yields

S (1) = f(x) + ati by
It follows that -
(3.4) 1.6, = 0, k - o,

Now 1,0y is bounded from above by —t,|d,|* if the direction is computed through Step
1(i)-(iii) and by —ct,|d,|* if the direction is computed through Step 1(iv). Thus, in
both cases, (3.4) and the fact that the step #, is bounded by 1 imply
|tedi| > 0, k- co.
Since .
X1 = Xie| = vl de| + £ di]
=2t |di|

the claim holds. 0O

4. Rate of convergence. In order to study the rate of convergence of the algorithm,
we need some stronger regularity assumptions on the functions involved in problem
(P). We replace H2 by the following hypothesis.

H2'. The functions f, g;, j=1, - - - m are three times continuously differentiable.
Hypotheses H1 and H3 are still assumed to hold.

Let x* be a Kuhn-Tucker point for (P). Denote by u* the unique multiplier vector

computed at x* and, for any xeR" and u€R™, denote by L(x, u) the Lagrangian
function

L(x, ) =f(x)+ ¥ (r);8,(x).

The optimality conditions associated with x* can then be written
V. L(x*, u*) =0,
w*=0, g(x*)=0, j=1,-m,
(u*)g(x*)=0, j=1,---m
The point x* is said to satisfy second order sufficiency conditions with strict complementary
slackness if the multipliers satisfy uf >0 for all je I(x*) and if the Hessian of the

Lagrangian function V,L(x* n*) is positive definite on the subspace
{ps.t. (Vg (x*), p)=0 for all je I(x*)}.

2 We could replace R2 by any condition sufficient for Proposition 3.4 to hold.
3 The direction computed by the method described in [16, eq. (36)] satisfies R2 with « =2 and ¢ =1.
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PROPOSITION 4.1. If some accumulation point x* of the sequence generated by the
algorithm satisfies the second order sufficiency conditions with strict complementary slack-
ness, then the entire sequence converges to x*,

Proof. Under the stated assumptions, the Kuhn-Tucker point x* is isolated (see,
e.g., [19]), i.e., for some & >0, the ball B(x*, ¢) does not contain any Kuhn-Tucker
point other than x*. From Proposition 3.4, we have

,xkﬂ"xkl_’oa k- co.

Therefore, for k large enough, |x,., — x| < £/4 and there exists a subsequence {x; }xcx
such that |x, — x*|< &/4 on K. It is then impossible to leave B(x*, ¢) without creating
another cluster point and hence a Kuhn-Tucker point in that ball. [0

In the sequel, we will assume that the sequence generated by the algorithm
converges to such a point x*. We will denote by R* and P* the nx|I(x*)| and nx n
matrices, respectively, defined by

R* = {Vg;(x*),je I(x*)},
P*=1—R*(R*"R*)'R*".

Given some iterate x, close enough to x*, we will similarly define matrices R, and P,
by

R, ={Vg(xi),je I1(x*)},
P.=I-R.(RJR)'R].

Without loss of generality, we will suppose that the matrices H, are symmetric. We
will assume moreover that the sequence { H,} converges to a matrix H™* satisfying

(4.1) P*H*P* = P*V2 L(x*, u*)P*.

This holds, for example, when one uses secant approximations as in [9] or, under
suitable conditions, when one uses the BFGS update formula (see [18]). Hypothesis
(4.1) and the second order sufficiency condition guarantee the existence of a positive
number p satisfying*

(4.2) d"P.H.Pd=p|Pdl’ VdeR"

for k large enough.

Propositions 4.2 and 4.3 give important asymptotic properties.

ProposiTiON 4.2. For k large enough,

(i) (QPy) has a unique Kuhn- Tucker point of least norm,
(QP) has a unique Kuhn-Tucker point of least norm,
{di}>0, {d}~0,
where d% and d, are computed through Step 1(i) and (ii).

(i) {pi}=>p*  {w}on*
where wj and w, are the multipliers associated with the quadratic problems

(QP;) and (QP).
(iii) IR2{jst (uR);> 0} ={js.t g(x) +(Vg(x), dR) =0} = I(x*),
L&{jst (pi); = 0 ={j s.t. g;(xi) +{Vgi(xi), dv) = —|d}y]"} = I(x*).

4 In fact if (4.2) holds, a positive matrix H/ can easily be constructed such that P,H! P, = P,H, P, (see

[18]).
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Proof. x* is a Kuhn-Tucker point for the problem
min 3(x — x*) TH*(x — x*) + (Vf(x*), x — x*)
s.t. gi(x*) +(Vg(x*), x —x*)=0

at which the second order sufficiency conditions are satisfied with strict complementary
slackness and linear independence of the gradients of the active constraints.
We can write d = x —x;, where x is solution of the problem

min %(x - xk)THk(x = %) H(Vf(xe), x — %)
sit. gi(x) +(Vg(x), x —x)=0.

Since x; > x* and H,~> H*, parts (i) and (ii) for d$, follow from Theorem 2.1 of [20].
We can also write d, = x —x; where x is solution of the problem

min %(x - xk)THk(x = Xi) FAV (X)), X~ xi)
s.t. gi(x )+ (Vgi(xe), x —x) = —Id?(l"

and, as d% -~ 0, parts (i) and (ii) for d, also follow from Theorem 2.1 of [20]. That (iii)
is true follows from the fact that wj > u*, w, > u*, and that, from strict complemen-
tarity, I(x*)={js.t.uf>0}. O

ProPoSITION 4.3. The solutions of (QP,) and (QP) satisfy

(4.3) {di}~{d.},
i.e., there exist some constants C,>0, C,> 0 and an integer k such that
C|do)=|d|=CyldY| Vkz=k
Proof. For k large enough, I}, = I, =I(x*) and d, satisfies
(4.4) Hid, +Vf(x)+ Ry =0.
Let us define Ad, and Ay, by
di = d}+Ad,, i = pi+ Ay
We have from (4.4) )
H d2+Vf(x)+ Rips+ HAd + R A, =0
which gives
4.5) H,Ad+ R Apy =0.
Now, Ad, solves
=|di]*
R{Ad = -
—|dil*
and can be decomposed into
Ady=Ad}+Ad?

with
Ad = P.Ad,
and
|dl”
(4.6) Adi=-R.(RIR))™!

|dil”
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LEmMMA 4.6. There exists a positive constant ¥ such that, for k large enough, the
solution d,, of (QP) satisfies the inequality

6, = (Vf(xi), di) = —y|di .

Proof. Direction d,, computed through Step 1(ii) satisfies the Kuhn-Tucker condi-
tions
Vix)+ ¥ () Vgi(xa)+ Hed, =0

jel(x*)
and, multiplying by d,,
O.=— Y (Mk)j(vgj(xk), di)— dZdek

JeI(x*)

which yields, using the complementarity conditions,

b= % (“k)jgj(xk)+z(,u‘k)jld(l)clp—d[dek-
j

jeI(x*)
Replacing d, by its decomposition, we obtain

Oe= 2 )(ﬂk)jgj(xk)'i‘z_(Mk)jldzlv_dZPkaPkdk
j

jel(x*
—2dfP.Hd.-d. Hd..

Using (4.2), Lemmas 4.4 and 4.5, and the fact that the matrices H, and the multipliers
1 are bounded, we obtain

0= —pldi[*+ O(|di]").

Since {d.}~{d%}, the claim holds. 0O

The next proposition shows that, for k large enough, the algorithm never needs
to compute a first order direction.

PrOPOSITION 4.7. For k large enough, the solutions of (QP,) and (QP) satisfy the
Jfollowing inequalities

i ldid=Mm,
(i) |Hudil=]dy"?,
(iii) |dk| =M,
(v)  6=(Vf(x), di)=min {—|dS]", —|di]*}.

Proof. Relations (1)-(iii) obviously hold since the sequences {d}} and {d,} converge
to zero and the matrices H, are bounded. Inequality (iv) follows from Lemma 4.6. O

A crucial requirement for achieving superlinear convergence is that a unit stepsize
be used in a neighborhood of the solution. The next proposition shows that Algorithm
A does achieve this goal.

ProrposiTiON 4.8. For k large enough, the direction is always computed through Step
1(1)-(iii) and the stepsize t, is one.

Proof. (The proof is analogous to that of Proposition 15 in [8]; see also [9].)

In all the relations given in this proof, the phrase “for k large enough” is implicit.

The first part of the theorem is obvious in view of Proposition 4.7. In order to
prove the second part, we first show that the property

‘ik = O(Idklz)
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holds (close to the solution, dy is always well defined). By definition, d, is the minimal
norm solution of
g +d)+(Vg(x), doy=—|db, jel.
Expanding, we obtain
g(x) + (Vg (), dd+(Vg(xe), di)
+%<dk,Vxxgj(xk"‘fdk)dk):—'d?cr’ Jjel
for some 0= ¢=1. Hence, using the definition of I,
R{d. = O(|d]).
Thus, d, solves the problem
min 3/d[*
s.t. RTd, = 0(|d.]")
and, since R, is full column rank, is given by .
Jk = Rk(RI—chk)ﬁlo(ldk'z)’

which proves our first claim. Now, according to Step 2 in Algorithm A, two conditions
are needed for the line search to yield a unit stepsize, namely feasibility of the resulting
point (2.2) and sufficient decrease (2.1). Expanding g; around x, +d, we obtain, for
jel(x*),

g(x+di+d) =g (x +d) + (Vg (x+ di), doy+ O(d ")
(4.8) = g (x + di) +{Vg;(x), diy + O(|di[*)
= —|d}"+O(|d[).

The last term is negative since the sequence {d3} converges to zero. Thus the feasibility
condition is satisfied.
We also have, since f is three times continuously differentiable,

fOu +di+d) = f(xi) H{Vf(x), ey +H(VF(x), d)+3d i Voo f (i) di + O(de ).

The Kuhn-Tucker conditions

Vf(xe)+ Hyedy +§ (1) Vg (%) =0
and the complementarity relations imply
VS (%), diy = —2d  Hidy —; (1) (Vg (xx), die) =3 ? ()85 () + O(|d]")
and

(V(xe), d) = O(del) = ¥ (i) (Y g(x1), .

We obtain therefore,

S +di+ d) —f(x) =36, —Z (i) (V gi(xi), die)
(4.9) =2 () {V g (xx), ‘ik)—%dl—cerdk +%dZVxJ(xk)dk

+O0(|d]") + O(d) =2 T (i) 8 (1)
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Now, since the g;’s are three times continuously differentiable, the relation
g+ ditd)=0(d"), jel(x*)
obtained in (4.8) yields, for je I(x*),
&) +(V (%), di)+(Vg(xi), di)+3d {V gy (i) die = O(ldi[").
Hence,

~% (i) $V 8 (x0), die) = L (i) (Y &5 (x), i)
= Z (Mk)jgj(xk) +% Z (/-Lk)jdlz-vxxgj(xk)dk + O(Idle)-

Substituting those values into (4.9), we obtain

SO+ di+di) = f(x) =3 0+ T (i) &%)

+3 d;f(Vxxf(ka%‘. (i) V xx8 (X) = Hk) dy
+O0(|d[)+O(d]").
This, together with Lemmas 4.4 and 4.5, gives
f(xe+di+d) — f(x) — @by
=(-a)o+1d]P, (VXJ(xk)+§ (1), V ey () — Hk> P,
+O0(|d|) + O(ldi]").

Due to the convergence of the projections of the approximate Hessian matrices, we
obtain

fOa+ditd)—f(x)—ab =G —a)b+o(|d]?).

In view of Lemma 4.6, the right-hand side of the last inequality is nonpositive. Thus
the “sufficient decrease” condition is satisfied. 0O

TueoreM 4.9. Under the stated assumptions, the convergence is two-step superlinear,
i.e., the following relation holds

.
lim ‘1’.‘*'_2~x_| =0.
k-0 |x; — x*]
Proof. The proof is similar to the one of [18, Thm. 1]. 0

5. Implementation and computational results. Several implementation issues have
to be addressed. First, the sequence {H;} of nXxn matrices is thus far unspecified,
subject only to requirement (4.1). While a secant approximation to the Hessian
V2, L(x,, ux) would be suitable, use of an update formula avoids many function
evaluations. Under some assumptions, matrices H) generated by the BFGS formula
[18] are shown to satisfy (4.1). The latter option, with H,= I, was selected for our
experiments. Second, the order in which the tests (2.1) and (2.2) are performed needs
to be specified. In our implementation, in line with the premise that the objective
function may not be defined outside the feasible set, (2.2) was tested first and (2.1)
was tested only when (2.2) was satisfied. Third, Algorithm A as stated does not efficiently
handle affine constraints. In our experiments, the correction corresponding to such
constraints was set to zero in the right-hand sides of the constraints in (QP) and (LS).
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TABLE 1
Computational results.

No Code NF NDF FV vC KT
12 VFO2AD 12 12 —.30000000E+ 02 S8E —09 35E-07
OPRQP 40 26 —.30000004E + 02 .76E —05 .15E—-09
A 7 7 —.30000000E + 02 0 A2E-06
29 VF02AD 13 13 —.22627417E+ 02 .0 .16E - 05
OPRQP 64 39 —.22627421E+02 S56E —05 10E-05
A 14 10 —.22627417E+02 .0 A7E—-06
30 VF02AD 14 14 .10000000E + 01 .0 56E —08
OPRQP 18 18 .10000000E + 01 38E 08 .28E—09
A 14 13 .10000000E + 01 0 .0
31 VF02AD 10 10 .60000000E + 01 27E-09 12E—-04
OPRQP 24 22 .59999631E + 01 .62E - 05 A3E~-06
A 11 8 .60000000E + 01 .0 41E—-06
33 VF02AD 5 5 —.40000000E + 01 .0 .0
OPRQP 43 39 —.40000000E + 01 32E-10 .0
A 4 4 —.40000000E + 01 0 .0
34 VF02AD 8 8 —.83403245E+ 00 .15E—08 .0
OPRQP 60 37 —.83403515E+ 00 J3E-05 .0
A 9 8 —.83403245E+00 .0 .43E—08
43 VF02AD 12 12 —.44000000E + 02 35E-09 .75E-05
OPRQP 31 24 —.44000013E+ 02 J9E-05 19E—-06
A 9 9 —.44000000E + 02 .0 .68E — 04
57 VF02AD 4 4 .30646306E — 01 .0 .0
OPRQP 40 24 .28459078E — 01 .89E - 05 .89E - 06
A 33 19 .28459673E—01 .0 20E-07
66 VF02AD 7 7 .51816327E+00 39E -08 STE—-06
OPRQP 18 17 .51815751E+00 .10E-04 11E-10
A 8 8 .51816324E + 00 0 0
84 VF02AD 6 6 —.52803365E + 07 63E 01 .0
OPRQP 43 5 —.55883016E + 07 L68E +00 22E+06
A 4 4 —.52803389E+ 07 .0 .0
100 VF02AD 20 20 .68063006E + 03 76E — 07 29E—-03
OPRQP 49 31 .68063005E + 03 .76 E —05 73E-08
A 42 14 .68063006E + 03 .0 21E-03
113 VF02AD 15 15 .24306209E + 02 .16E—0 J1E-03
OPRQP 30 28 .24306193E+ 02 JA3E-04 J1E-08
A 18 14 .24306209E + 02 .0 17E~-04
117 VF02AD 17 17 .32348679E+02 36E 07 .28E—-05
OPRQP 41 40 .32348442E+ 02 .S4E.—-05 .73E—~06
A 28 16 .32348679E + 02 .0 .68E —04
No: number of the test problem in [6].
Code: name of the program.
NF: number of objective function evaluations.
NDF: number of gradient evaluations of the objective function.
FV: objective function value at the final point.
VC: sum of constraint violation, given by Z;":l max (0, g;(x)), at the final point.

KT: norm of Kuhn-Tucker vector (i.e. norm of the gradient of the Lagrangian function at the final point).
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However, in order to avoid potential zigzagging, the right-hand side in the condition
defining I, in (LS) was not set to zero for the affine constraints, but rather the
corresponding ‘="’ sign was changed to a ““=”. Finally, scaling can be introduced at
various places in the algorithm, and values have to be selected for the various para-
meters. If the right-hand side in the constraints in (QP) is too big, d, may not be a
descent direction for f in the early iterations, while if it is too small, the stepsize may
be truncated, due to infeasibility, until a very small neighborhood of the solution is
reached. In our experiments, the right-hand side of the constraints in (QP) and of the
condition defining I, in (LS) was replaced by max (—|d}|?, —107%d%]), which seems to
often result in a satisfactory behavior on reasonably well scaled problems. For a similar
reason, we replaced the right-hand side of the constraints in (LS) by
max (—|d%|”’?, —107%|d}|). The right-hand side of the test on 6, in Step 1(ii) was scaled
by a small number. This test was always satisfied throughout our experiments. Finally,
we used @ =.3, B =.8 and M =00,

Algorithm A was tested on fourteen of the seventeen problems in [6] which do
not involve equality constraints but do include nonlinear inequality constraints, and
for which a feasible initial point is provided. Problems numbered 67, 70 and 85 were
discarded due to some disparity between function values we computed and those given
in [6]. When tested on Problem 93, with the chosen values of the algorithm parameters,
Algorithm A had to resort to the first order direction (Step 1(ii)) for the initial iterations
due to infeasibility of (QP), thus making the performance of Algorithm A dependent
on the choice of the first order method. Table 1 shows the results obtained on the
thirteen remaining problems. The results obtained with Algorithm A are compared to
the best results among those given in [6], i.e., those obtained with algorithms VF02AD
and OPRQP. The format of this table is as in [6].

In most cases, Algorithm A is competitive with VF02AD. It always performs better
than OPRQP. This is remarkable since neither VF02AD nor OPRQP enjoys properties
(1.1) and (1.2). It could be argued that a comparison based only on the number of
function evaluations unduly favors Algorithm A, which calls for the solution of up to
two quadratic programs and one linear least squares problem at each iteration. However,
as pointed out in the introduction, clever implementation should reduce the computa-
tional effort needed to solve these three problems to little more than that required for
the solution of a single quadratic program. Also, in the context of engineering design
problems, function evaluations typically require such extensive computation that time
spent in solving quadratic programs can generally be regarded as negligible. Finally,
the number of constraint function evaluations is not indicated in Table 1. Typically,
the number of such evaluations will be somewhat larger for Algorithm A than for its
contenders due to the Maratos effect avoidance scheme.
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