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Abstract

Title of Thesis: Systematic Methodologies for
the Automatic Enumeration of
the Topological Structures of Mechanisms

Name of degree candidate: Hsin-I Hsieh
Degree and year: Master of Science, 1992

Thesis directed by: Professor Lung-Wen Tsai
Department of Mechanical Engineering

This thesis proposes new algorithms for the enumeration of the topological
structure of mechanisms. The definitions of dual graph and dual of a contracted
graph are modified to provide a one-to-one correspondence between graphs. In
this study, three efficient algorithms have been developed for automatic enumer-
ation and structural representation of graphs.

The first method enumerates conventional graphs by deriving the vertex-to-
vertex incident matrix directly. The second method derives conventional graphs
from contracted graph families by the arrangement of binary chains. The row
vector formed by listing of binary vertex chains is used instead of the vertex-to-
vertex incident matrix. The third method uses the edge-to-vertex incident matrix

as the expression of graphs instead of the vertex-to-vertex incident matrix. The



dual of a conventional graph is derived from the dual of a contracted graph by
the arrangement of parallel edges. A conventional graph is formed from the dual
graph by the following definition of a dual graph.

Two tables of conventional graphs with seven and eight vertices, and with
up to eleven edges have been developed. We believe that the results of these
conventional graphs are new. Mechanisms of higher pair joints with six loops

and seven or eight links can now be synthesized from these tables.
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Nomenclature

LC
Ld
de

Degrees of freedom of a mechanism

Number of loops in a mechanism, including the peripheral loop
Number of loops in a contracted graph, including the peripheral loop
Number of loops in a dual graph, including the peripheral loop
Number of loops in the dual of a contracted graph

Number of binary-vertex chains with ¢ vertices and ¢ + 1 edges
Number of edges in a conventional graph

Number of edges in a contracted graph

Number of edges in a dual graph

Number of edges in the dual of a contracted graph

Number of joints in a mechanism

Number of links in a mechanism

Number of vertices in a conventional graph

Number of vertices in a contracted graph

Number of vertices in a dual graph

Number of vertices in the dual of a contracted graph

Number of vertices of degree 1
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A Motion parameter,
A = 3 for planar or spherical motion, and

A = 6 for spatial motion



Chapter 1

Introduction

1.1 Historical review

In 1964 graph theory was first applied for structural synthesis of mecha-
nisms (Crossley, 1964a; Crossley, 1964b). The graph of a kinematic chain is
obtained by representing each link by a vertex and each joint by an edge. Each
edge connection between two vertices corresponds to a joint connection between

two links. The advantages using graph representation are :
1. Network propertities of graphs are directly applicable.
2. It leads to automatic kinematic and dynamic analysis of mechanisms.

3. A single atlas of graphs can be used to enumerate a large class of mecha-

nisms.
4. The structural topology of a mechanism can be uniquely identified.

Techniques for the identification and classification of the kinematic structures of
mechanisms have attracted much attention for nearly three decades. (Crossley,

1964b; Crossley, 1964a; Crossley, 1965; Freudenstein, 1967; Buchsbaum and



Freudenstein, 1970; Freudenstein and Maki, 1979; Mruthyunjaya, 1979; Yan,
1980; Tuttle and Peterson, 1987; Tuttle and Titus, 1989a; Tuttle and Titus,
1989b; Hwang and Liu, 1991; Alhakim and Shrivastava, 1991). Some of the
existing methods employed for the number synthesis of kinematic chains with
simple joints are based on graph theory (Freudenstein, 1967; Woo, 1967; Huang
and Soni, 1973; Sohn and Freudenstein, 1986; Tsai, 1987; Hsu, 1989).

Woo (1967) defined the contracted graph for the classification and enumer-
ation of conventional graphs with ten vertices and thirteen edges. Mruthyun-
jaya (Mruthyunjaya, 1984a; Mruthyunjaya, 1984b; Mruthyunjaya, 1984c) devel-
oped a computer program, which is based on the method of the transformation
of binary chains, for structural synthesis of kinematic chains. Sohn and Freuden-
stein (1986) introduced the concept of dual graphs, which were used to establish

large categories of mechanism structures.

1.2 Motivation

Graphs are applied to represent the structural topologies of mechanisms.
Conventional graphs, dual graphs and contracted graphs have been used for the
enumeration of the topological structures of kinematic chains. However, the
correspondences between these graphs are not unique. This study modifies the
definition of dual graph and establishes a one-to-one correpsondence between the
conventional graph and the dual graphs, and between a contracted graph and
the dual of a contracted graph. The relationships between the graphs are also
studied.

Although a few approaches for the enumeration of kinematic chains have been



developed, existing methodologies tend to be complicated and inefficient. In
this study, three systematic algorithms are suggested to improve computational

efficiency.

1.3 Outline

In Chapter Two basic definitions of a conventional graph, a contracted graph,
dual graph, and the dual of a contracted graph will be established. The corre-
spondences between these graph representations will also be described.

In Chapter Three a systematic procedure for the enumeration of contracted
graphs will be presented. Using contracted graphs as the data base, three
systematic procedures for the enumeration of conventional graphs will be given
in Chapter Four.

The first method in Chapter Four directly enumerates the vertex-to-vertex
incident matrices of conventional graphs. The second method derives conven-
tional graphs by the arrangement of binary chains on contracted graphs. The
third method constructs conventional graphs from the duals of contracted graphs.
An edge-to-vertex incident matrix is introduced for the graph representation
instead of a vertex-to-vertex incident matrix. No permutations are needed in
this method. These procedures use the one-to-one correspondence between the
contracted graph and the dual of a contracted graph, and between the conven-
tional graph and its dual defined in Chapter Two. These methodologies identify
all the admissible graphs of a given specification. It is very straightforward and
involves no guess work.

In Appendices D and E two tables of conventional graphs with seven and



eight vertices are developed and tabulated. These tables can be used to generate

mechanisms with up to six loops and eight links.



Chapter 2

Definitions

In this chapter the basic definitions of a conventional graph, a contracted
graph, a dual graph, and the dual of a contracted graph are defined. In addition,
the correspondences between these graphs are stated. Using these definitions new
procedures for the enumeration of contracted graphs and conventional graphs will

be outlined in Chapters Three and Four, respectively.

2.1 Conventional Graphs

A graph is a collection of vertices joined by edges. In the conventional graph
representation of a mechanism, vertices represent links and the edge-connection
between vertices corresponds to the pair connection between links. From this
definition, it is clear that the number of vertices is equal to the number of links,

and the number of edges is equal to the number of joints, i.e.,



The relationship between the number of loops, the number of vertices and

the number of edges is given by Euler’s theorem (Harary, 1969):

L=e—v+42 (2.3)

The degree of a vertex in a graph is defined as the number of edges incident
with that vertex (Harary, 1969). Let v; be the number of vertices with degree i.
Then v; is related to v and e as (Woo, 1967):

n

Zvi = (2.4)

=1

Zn:i v; = 2e (2.5)
i=1

The planar representation of a graph divides the plane into several connected
regions called faces or loops. Each loop is bounded by several edges of the
graph and it shall not contain any other vertices and/or edges within the region.
For example, shown Fig. 2.1 is a mechanism with ten links and thirteen joints.
Fig. 2.2 shows the graph representation of the mechanism. In the graph of
Fig. 2.2, the region bounded by the path 3-9-4-10-3 is a loop. However, the
region bounded by the path 1—5—2—8—7—i will not be considered a loop, since it
contains vertex 6 and two edges within the region. The region external to the
graph is called the peripheral loop. One may think of the peripheral loop as a loop
that encloses no other vertices outside of the loop. The peripheral loop shown
in Fig. 2.2 is formed by the path 1-3-9-4-2-8-7-1. Including the peripheral loop,
the graph shown in Fig. 2.2 contains five loops designated L; to Ls. According

to graph theory, any loop can be transformed into the peripheral loop using a

stereographic projection (Gibbsons, 1985).
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Figure 2.1: A mechanism with ten links and thirteen joints.
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Figure 2.2: (10,13) Conventional graph of Fig. 2.1
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The V-V (vertez-to-vertex) incident matriz is defined as an n by n matrix

with elements A; ; defined as follows:

1, if vertex ¢ is connected to vertex j

Ai

W
0, otherwise (including : = j)

Therefore the V-V incident matrix is symmetric with all the diagonal ele-
ments set to zero. The V-V incident matrix of a conventional graph is called
the "A” matrix. For example, the V-V incident matrix A of the graph shown in

Fig. 2.2 is given by

060010111000
0001110100
1 00000O0O0T11
6010000O0CO0T11
e 110000O00O0O0CTO (2.6)
11000000O0O
10000006100
060100001000
0600110000C00O
00110000O0O0©0

A conventional graph with v vertices and e edges will be denoted as a (v, ¢)
graph. A self-loop is an edge that connects a vertex to itself. Two edges are
said to be parallel if they connect the same end-points. In a conventional graph
representation of mechanism, self-loops and parallel edges are not permitted. A

graph is planar if it can be drawn on a plane with no two edges crossing each



other and with the edges drawn by straight lines. In this thesis, we shall concern
ourselves with only those graphs which are planar with no articulation points or

cut edges.

2.2 Contracted Graph

A binary-vertex chain in a conventional graph is defined as the maximum
possible sequence of alternating edges and vertices of degree two, starting and
ending with an edge. Let S;, Sk1, Sk2, - -, Skm, 5j, be a series of vertices in a
conventional graph in which vertex S; is connected to Sk, Sk1 to Ske, ..., and
Sim to S; by one and only one edge, respectively. If Si1, Ska, ..., Skm are all
binary vertices, but S; and S; are not binary, then the sequence of alternating
edges and vertices, —Su—Sko— * —Skm—, is called a binary-vertex chain. The
beginning and ending edges of a binary-vertex chain must be connected to
vertices of degree greater than two. The 4-9 and 9-3 edges together with vertex 9
shown in Fig. 2.2 is a binary-vertex chain. The 2-8, 8-7 and 7-1 edges together
with vertices 8 and 7 form another binary-vertex chain. Let b, denote the
number of binary-vertex chains with m vertices and m + 1 edges and let bg
denote the number of single edges connecting vertices of degree greater than
two. Then, in the graph shown in Fig. 2.2, by=2, by=4, and by=1.

A contracted graph is a graph derived from a conventional graph by replacing
each of the binary-vertex chains with a single edge. Parallel edges may exist in
a contracted graph.

From the above definition it is clear that the number of vertices, edges and

loops in a contracted graph are related to that of the corresponding conventional



graph by the following equations.

m

Vg = E'L b,’ (2.7)

i=1

V= v — vy (2.8)
e =e—u, (2.9)
L°=e—v°+2=1L (2.10)

For example, the contracted graph of Fig. 2.2 has four vertices and seven
edges as shown in Fig. 2.3. In the contracted graph the binary-vertex chains
(-9-), (-10-), (-5-), (-6-), and (-8-7-) are replaced with single edges shown
in Fig. 2.3. By contracting, the loops L, Ly and Ls become two-edged loops.
There are two parallel edges connecting vertices 3 and 4, and three parallel edges

connecting vertices 1 and 2.

L3

Figure 2.3: Contracted graph of Fig. 2.2

The V-V incident matrix of a contracted graph, called the ”C” matrix, is a

symmetric matrix of order v¢ in which all the diagonal elements are set to zero,

10



and a nonzero element C;; denotes the number of parallel edges connecting

vertices ¢ and j. The V-V incident matrix C for the contracted graph shown in

Fig. 2.3 is
( 0 310
3001
C = (2.11)
1 00 2
\ 0120

The minimal degree of a vertex in a contracted graph is three. Hence, the

sum of each row (or column) in matrix C must be equal to or greater than three.

2.3 Dual Graphs

The dual graph of a conventional graph is a graph whose vertices represent
loops of a conventional graph. The number of parallel edges connecting any
pair of vertices in the dual graph represents the number of edges dividing the
two corresponding loops in the conventional graph. The loops in a dual graph
correspond to the vertices of the conventional graph. From the above definition
it is clear that the number of vertices, edges and loops in a dual graph are related

to those in the corresponding conventional graph as follows:

vl =L (2.12)
et =e (2.13)
Lf=w (2.14)

11



The degree of a vertex in a conventional graph corresponds to the number of
edges in the corresponding loop of the dual graph. Therefore, the positions of
binary-vertex chains in the dual graph cannot be interchanged arbitrarily. Using
the above definition, a one-to-one correspondence between the dual graph and
the conventional graph is established.

Define L; as the ith vertex in a dual graph corresponding to the ith loop
in the conventional graph. Following the definition of a dual graph, if loops ¢
and j in a conventional graph have a binary-vertex chain with k edges as their
boundary, then vertices L; and L; in the corresponding dual graph are connected
by k parallel edges, which are adjacent to each other; if the edges dividing loops
¢ and j in a conventional graph are not connected in a series, then the parallel
edges in the corresponding dual graph will not be drawn adjacent to each other,
1.e., they must be divided by other interconnected loops; and if vertex i in a
conventional graph is the common vertex of loops L,, Ly and L., then the loop
formed by vertices L,-Ly-L.-L, in the dual graph shall be labeled as loop t.

For example, Fig. 2.4 shows the dual graph of the conventional graph shown
in Fig. 2.2. The edges dividing loops 1 and 3 in the conventional graph are not
connected to each other. In the corresponding dual graph (Fig. 2.4) the two
parallel edges connecting vertices L; and L3z are not adjacent to each other and
are separated by vertex L,. Vertices L; and Ls in the graph shown in Fig. 2.4
have three parallel edges, which correspond to the three common edges between
loops 1 and 5 in Fig. 2.2. Vertex 1 in Fig. 2.2 is the common vertex of loops 1,
3, 4 and 5. Therefore the loop formed by vertices L,-L3-L4-Ls-Ly in Fig. 2.4 is

labeled as 1.

12
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L2
3 1 6
4 2
10
L
L3 4

Figure 2.4: Dual graph of Fig. 2.2

D=|[220 20 (2.15)

The V-V incident matrix of a dual graph, called the ”D” matrix, is a symmet-
ric maﬁrix of order L in which all the diagonal elements are zero. The nonzero
element D;; denotes the number of edges connecting vertices 7 and j. The
incident matrix of the dual graph shown in Fig. 2.4 is given by Eq. (2.15).

This definition of dual graph is different from that reported in Sohn and
Freudenstein (1986). In this definition, parallel edges are permitted. A binary-
vertex chain is transformed into a set of parallel edges which forms several two-

edged loops in the dual graph.

13



2.4 Duals of Contracted Graphs

The dual of a contracted graph is obtained by taking the dual graph of a
contracted graph. Following the definition of a dual graph, it can be shown that
the number of vertices, edges and loops are related to that of the corresponding

contracted graph by the following equations.

¥ =L (2.16)
e = e (2.17)
L% =v'=¢" —L+2 (2.18)

For example, the contracted graph shown in Fig. 2.3 has four vertices, seven
edges and five loops. The dual of this contracted graph shown in Fig. 2.5 has
five vertices, seven edges and four loops. The number of vertices in Fig. 2.5 is
equal to the number of loops in Fig. 2.3 . The number of edges of both graphs
is the same.

The dual of a contracted graph can also be obtained by contracting the
dual graph, i.e., by replacing all the adjacent parallel edges with a single edge.
However, when two parallel edges are separated by other vertex-chains, it shall
not be replaced with a single edge in order to retain the loop information in a
contracted graph.

For example, the three parallel edges connecting vertices L, and Ls in Fig. 2.4
are replaced by a single edge, while the two parallel edges connecting vertices L;
and Lj are not replaced by a single edge as shown in Fig. 2.5.

Using this definition, the degree of a vertex in the conventional graph becomes

the number of edges in the corresponding loop of the dual of a contracted graph.

14



9
L
¢ 2 1 2
4 3
9
L3 L4

Figure 2.5: Dual of contracted graph of Fig. 2.3

The arrangement of edges and binary-vertex chains for loop boundaries is crucial
and cannot be arbitrarily exchanged. In what follows we denote the vertez-degree
listing as a listing of the degree associated with the vertices of a graph, and the
loop-edge listing as a listing of the numbers of edges associated with the loops in
descending order.

Fig. 2.6 shows three completely different contracted graphs and their corre-
sponding duals. However, the three duals have identical connectivity between
their vertices and edges, i.e., they all share the same vertex degree listings,
(L1,L3,L4,Ls,L2,L6)=(5,3,3,3,2,2), and the same V-V incident matrix.

As a matter of fact, the three duals are isomorphic with one another under
the definition of graph isomorphism. Two graphs are isomorphic if there exists
a one-to-one correspondence between their point sets which preserves adjacency
(Harary, 1969). Two isomorphic graphs may have different matrices which
represents the adjacency of vertices. However, they will be the same after
rearranging the columns and rows of one of the adjacency matrices. The dual
of a contracted graph shown in Fig. 2.6(b) can be obtained by placing the

binary-vertex chain associated with vertex L, in Fig. 2.6(a) inside loop 3. The

15



Figure 2.6 | Vertex-degree listing Loop-edge listing

of the contracted graphs | in the duals of contracted graphs

a V: 6/3/3/3/3 L: 6/3/3/3/3
b V: 5/4/3/3/3 L: 5/4/3/3/3
c Vi 4/4/4/3/3 L: 4/4/4/3/3

Table 2.1: The vertex-degree listing and loop-edge listing

dual of a contracted graph shown in Fig. 2.6(c) can be obtained by placing
the binary-vertex chain associated with vertex Lg in Fig. 2.6(b) inside loop 4.
Although these three duals have identical vertex-to-vertex connectivity, their
planar embeddings are different from one another which results in different loop-
edge listings. As defined in Section 2.1, the loop-edge listings associated with
the dual graphs of Fig. 2.6(a)-(c) are (6,3,3,3,3), (5,4,3,3,3), and (4,4,4,3,3),
respectively. In this thesis these three duals are considered as non-isomorphic
graphs. Note that the loop-edge listing of the dual graph corresponds to the
vertex-degree listing of the contracted graph. See Table 2.1.

The V-V incident matrix T of the dual of a contracted graph is a symmetric
matrix of order L% in which all diagonal elements are set to zero. The off

diagonal element T; ; is defined as follows.

1, if vertex ¢ is connected to vertex j by a single edge;

m (m > 1), if vertex ¢ is connected to vertex j by m non-adjacent

parallel edges; and

0, otherwise

\

For example, the incident matrix for the dual of a contracted graph shown

16



Graph Contracted Dual of a
NoO graph contracted
' graph
(a)
(b)
(c)

Figure 2.6: Three non-isomorphic contracted graphs and their duals
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in Fig. 2.5 is

0
T=121010 (2.19)

2.5 Correspondences Between Graphs

It is denoted that the definitions of a dual graph and the dual of a contracted
graph are different from those defined by Sohn and Freudenstein (1986). In the
dual graph of a mechanism defined by Sohn and Freudenstein (1986), the vertices
represent the loops of the conventional graph, and an edge connecting each pair
of vertices in a dual graph corresponds to the one or more common edges between
two loops. These new definitions lead to one-to-one correspondence between the
conventional graph representation of a mechanism and its dual, and between the
contracted graph and its dual. In what follows, the correspondences between
these graphs will be summarized. Using the new definition of dual graph, not
only are the vertex-to-vertex and edge-to-vertex incident informations preserved,
but also the loop-to-edge and loop-to-loop incident informations are preserved.

There is a one-to-one correspondence between a conventional graph and its
dual graph. Fig 2.7(a) shows another conventional graph that is non-isomorphic
with that of Fig. 2.2. The dual graphs shown in Figs. 2.4 and 2.7(b) have identical
vertex-to-vertex and edge-to-vertex incident matrices. However, the loop-to-loop
and edge-to-loop incident matrices are different. Note that the loops in the dual

graphs shown in Figs. 2.2 and 2.7(b) are denoted by numerals from 1 to 10, which

18



1 6
(a) Conventional graph (b) Dual graph
1 ” L1 2 L5
L3
3 2 L3 La
(c) Contracted graph (d) Dual of contracted graph

Figure 2.7: The conventional graph and its corresponding graphs
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correspond to the vertices in their corresponding conventional graphs shown in
Figs. 2.4 and 2.7(a), respectively. The two edges dividing loops 1 and 3 in the
conventional graph shown in Fig 2.7(a) are connected in series. Thus, the two
parallel edges connecting vertices L; and L3 in Fig. 2.7(b) form a two-edged loop,
10. On the other hand, the two edges dividing loops 1 and 3 in the conventional
graph shown in Fig. 2.2 are disconnected. Therefore the two parallel edges
connecting vertices Ly and L3 in the corresponding dual graph shown in Fig. 2.4
do not form a two-edged loop. Instead, they are separated by other vertex-edge
chains. When the loop-to-loop and loop-to-edge information are also preserved,
there exists a one-to-one correspondence between a conventional graph and its
dual graph.

The contracted graph of Fig. 2.7(a) and its dual graph are shown in Figs. 2.7(c)
and 2.7(d), respectively. Note that the contracted graph and the dual of a
contracted graph shown in Figs. 2.7(c) and 2.7(d) are clearly different from those
shown in Figs. 2.3 and 2.5, respectively. There is also a one-to-one correspon-
dence between the contracted graph and its dual.

Using Sohn and Freudenstein’s definition of dual graph (1986), the two graphs
shown in Fig. 2.2 and 2.7(a) yield the identical dual graph shown in Fig. 2.8,
where the numerals on the edges identify the number of common edges between
two adjacent loops in the conventional graph. Hence, there is no one-to-one
correspondence between the conventional graph and its dual graph.

The dual of a contracted graph can also be formed by replacing every set of
adjacent parallel-edges in the dual graph by a single edge. It is similar to the
definition of a contracted graph, which is formed by replacing every binary-vertex

chain in a conventional graph by a single edge. The non-adjacent parallel edgess

20



Ls

Figure 2.8: Dual graph of Fig 2.2 and 2.7(a) as defined in Sohn and Freudenstein

(1986)

Conventional graph

many-to-one

Contracted graph

one-to-many

one-to-one
Dual graph
one-to-many many-to-one
one-to-one Dual of
Contracted graph

Figure 2.9: Correspondences between graphs
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Type of graph | Number of | Number of | Number of
vertices edges loops
Conventional
graph v e L
Dual graph L e v
Contracted graph v — vy e~ vy L
Dual of
contracted graph L € — vy v — Uy

Table 2.2: The number of vertices and edges of graphs

in a dual graph are preserved. Many different dual graphs can be contracted into
the same dual of a contracted graph. On the other hand, one dual of contracted
graph can produce many dual graphs by expansion of the edges. Hence, there is
no one-to-one correspondence between a dual graph and the dual of a contracted
graph. One may consider the dual of a conventional graph as a labeled dual of
contracted graph. Replacing an edge in a dual of contracted graph by parallel
edgess results in different dual graphs.

Replacing all binary-vertex chains in a conventional graph by single edges
forms a contracted graph. Therefore, several non-isomorphic conventional graphs
can be reduced to one contracted graph. On the other hand, a contracted graph
can be expanded into several conventional non-isomorphic graphs by replacing
its single edges with binary-vertex chains. Consequently, there is no one-to-
one correspondence between a contracted graph and a conventional graph. One

important fact is that conventional graphs with different corresponding con-

22



tracted graphs will not be isomorphic. This will be discussed later in Section 4.4
describing isomorphism between graphs. The correspondences between these
graphs are summarized in Fig. 2.9. The correspondences among the numbers of

vertices, edges and loops are summarized in Table 2.2.
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Chapter 3

Procedure for the Enumeration of

Contracted Graphs and Their Duals

In this chapter a procedure for the enumeration of contracted graphs will be
presented. Although several methodologies have been proposed previously (Woo,
1967; Hsu, 1989), the procedure described in this chapter represents a new and

efficient method of achieving the same purpose.

3.1 Procedure for Enumeration of Contracted
Graphs

Recall that the V-V incident matrix of a contracted graph is a symmetric
matrix in which all the diagonal elements are set to zero. The off-diagonal
element C;; denotes the number of parallel edges connecting vertices ¢ and j.
Therefore, the summation of the elements in the :th row represents the degrees
of the ith vertex. Let n = v° be the number of vertices, ¢° be the number of

edges, and D; be the degree of the :th vertex in a contracted gfaph. Then there
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exist v° equations relating the elements of the incident matrix and the degree of

vertices as follows:

0 + Ci2 + Ciz + e + Cin = Dy
Cip + 0 4+ Cys + e + Copn = D,
(3.1)
Cin-z + + 0 + Chonaa + Chan = Daoy
Cin-1 + + + 0 + Chcin = Dpy
Cim -+ + + Chein  + 0 = D,

?

where C;; and D; are non-negative integers. In a contracted graph, D; > 3
for all the vertices. Since each edge has two end vertices, the summation of all

elements of the matrix is equal to two times the number of edges, i.e.,

c c

EZ C,',j =2 ¢€° (32)
=1 5=1
which means that
> Di=2¢° (3.3)
1=1

Given v° and e° all admissible non-isomorphic contracted graphs can be
derived by solving Eqgs. (3.1) and (3.3). First Eq. (3.3) is used to obtain D;.
Solving Eq. (3.3) amounts to partitioning the 2e° number of ones into the
corresponding D;. Using the method described in Appendix A, all partitions
are obtained. For each set of D;, Eq. (3.1) is used to obtain C;;. It is more
convenient to arrange Eq. (3.1) in the ascending (or descending) order of D; to
simplify the programming. Due to symmetry and the null diagonal elements of

the matrix, there are only n(n — 1)/2 unknown variables.
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A procedure for solving Eq. (3.1) will now be described. Note that the
first equation in Eq. (3.1) contains (n — 1) unknowns. Hence, these (n — 1)
unknowns can be solved for using the procedure outlined in Appendix A. Once
Crj> 7=2,3,...,n, are obtained, one substitutes C; ; into the second equation in
Eq. (3.1) and solves for C;;, j=3,4,...,n. The procedure continues until only
three unknown variables C,_3,—1, Cho2,, and Cy_y, are left in the last three
equations in Eq. (3.1). These last three equations can be solved by using Gauss

elimination. The procedure is summarized as follows:

1. Given v¢ and e°, solve Eq. (3.3) for D; using the method outlined in

Appendix A.

2. For each set of D;, solve the first equation in Eq. (3.1) for C1;, j=2,3,.. .,

n.

3. Similarly, substitute the solution of C;;, =2 initially and j=1,...,2 + 1,
into the : + 1th equation and solve the resulting equation for the variables,

C{+1yj,j =Z+2, Z+3,,Tl
4. Continue this procedure until : = n — 3.

5. Substitute all the known C; ; into the last three equations in Eq. (3.1), and

solve them for the remaining three variables.
6. Check if all the C;; are non-negative integers.
7. Check for the existence of articulation points.
8. Check for graph isomorphism.

9. Repeat steps 2 to 9 until all the possible partitions of D; are exhausted.
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3.2 Examples

Problem statement: Derive all sets of contracted graphs with five loops.

Solution: There are five sets of contracted graphs, (v, e®)= (2,5), (3,6), (4,7),

(5,8) and (6,9), as a result of the following two restrictions.

1. The number of vertices and the number of edges are related to the number

of loops by Euler’s formula: L = e — v° + 2.

2. Given the number of loops, the maximum number of edges is given by ef ..

= 3(L — 2), which occurs when all the loops are triangular loops.

For the purpose of illustration some (4,7) and (5,8) contracted graphs will be

derived.

3.2.1 Enumeration of (4,7) Contracted Graphs

For (v°, eé) = (4,7), Eq. (3.1) reduces to:

04+Ci2+Cis+Ciy = Dy (3.4)
Ci2+0+Co3+Cos = Dy (3.5)
Ci3+Caz+04+Cs54 = Ds (3.6)
Cia+Cos+C34+0 = Dy (3.7)
and Eq. (3.3) reduces to:
Dy+Dy+D3+Dy=2xT=14 (3.8)



But D; > 3, for ¢=1 to 4. Therefore, without loss of generality one may let

Diy1 > D;, for 1=1,2, and 3. Using the method outlined in Appendix A, two

solutions are obtained:

D, D, D3 D,
3 3 5
3 4 4

Case (a) For the first set, (Dy, D,, D3, Dy) = (3,3,3,5), and Eqgs. (3.4)-(3.7)

become

0+Cip+Cia+Ciy

Ciz+0+Cos+Coy

Ciz+Caz+0+Cs4

=3

=3

=3

Cia+Coa+C34+0 =5

(3.9)
(3.10)
(3.11)

(3.12)

Solving Eq. (3.9) we obtain the following solution sets for Cj 2, C; 3 and Cj 4.

Ci2 Cig Cipa
0 0 3
0 1 2
0 3 0
1 0 1
1 1 2
1 2 0
3 0 0

Case (a.1) For (C1,2,C13,C23) =(0,0,3), Egs
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Coa+Cas =3
Co3+Cs4 =3
Cou+Czs =2

(3.13)
(3.14)

(3.15)

Solving Egs. (3.13)-(3.15), we obtain (C33,C24,C34) = (2,1,1). Therefore,

the V-V incident matrix for the contracted graph is

-

000 3
0021
0 201

3 110

(3.16)

The resulting contracted graph is shown in Fig. 3.1. In this case, vertex 4 is an

articulation point, i.e., the removal of vertex 4 results in a disconnected graph.

Therefore, 1t is rejected from further consideration.

2 1

Figure 3.1: A (4,7) contracted graph with an articulation point

Case (a.2) For (Cy,2,Ch3,C1,4) =(0,1,2), Egs. (3.10)-(3.12) reduce to

Coz+Caqy =3
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Ca3 +VC'3,4 =2

Cia+Cs4 =3

(3.18)

(3.19)

Solving Egs. (3.17)-(3.19), we obtain (Ca3,C24,Cs4) = (1,2,1). Hence, the V-V

incident matrix is given by

001 2
001 2
1101
2210

The resulting contracted graph is shown in Fig.

3 1

Figure 3.2: A (4,7) contracted graph without articulation point

3.2.

Following the same process, the contracted graphs for all the other sets of

(C1,2,C1,3,C1,4) can be obtained.

Case (b) For the second set (D1, D, D3, Dy) = (3,3,4,4), Eqgs. (3.4)-(3.7) be-

come
0+ Cio+Cis+Cia
Cia+0+4+Co3+Cay
Ciz+Ci3+0+Cs4

Cia+Cou+Cs54+0
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=3

=3

=4

=4

(3.21)
(3.22)
(3.23)

(3.24)



Again, we can solve Eq. (3.21) for Cy, Ci3, and Cy4 first and then solve
Egs. (3.22)-(3.24) for the remaining C; ;.

3.2.2 Enumeration of (5,8) Contracted Graphs

For (v, e®) = (5,8), Eq. (3.1) reduces to

04+ Ci2+Ci3+Cia+Cis = Dy (3.25)
Ciza+0+Cos+Cos+Cps = Do (3.26)
Cia+Coz+0+C34+Cs5 = Ds (3.27)
Cra+Cra+Cas+0+Cis = Dy (3.28)
Crs+ Cas+Css+Cas+0 = Ds (3.29)

and Eq. (3.3) reduces to:

D1+D2+D3+D4+D5=2X8=16 (330)
Again, let Diy; > D; > 3for i=1,2,3,4. Solving Eq. (3.30) yields (D1, D3, D3, Dy, Ds) =
(3,3,3,3,4) as the only solution. Substituting D;=3 into Eq. (3.25) yields
(C1,2,C13,C14,C15) = (2,0,1,0) as one of the many possible solutions.

For (Cl,g, 01,3, 01’4, 01,5) = (2, 0, 1, 0), Eq (326) becomes

Cap+Cou+Cos=D;—Crp=1 (3.31)

Solving Eq. (3.31) results in three sets of solutions. One such solution is
(Ca3,C4,Ca5) = (1,0,0). Substituting (C1,2,C13,C14,C1s, C23,Ca,4,Cas) =
(2,0,1,0,1,0,0) into Eqs. (3.27)-(3.29), yields
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C34+C3s = D3—Ciz—Coz=2 (3.32)
C34+Css = Dy—Cra—Coy=2 (3.33)

Cas+Css = Ds—Ci5—Chs=4 (3.34)

Solving Eqgs. (3.32)-(3.34) yields (C34,C35,Cas) = (0,2,2). Therefore, the V-V

incident matrix for the contracted graph is

02010
20100
C=10100 2
1000 2
00220

The resulting contracted graph is shown in Fig. 3.3. To derive all the (5,8)

contracted graphs, steps 2 to 9 outlined in Section 3.1 are repeated.

5

Figure 3.3: A (5,8) contracted graph

3.2.3 Enumeration of the Duals of Contracted Graphs

Applying the procedure outlined in Section 3.1, a computer program can be

written for the systematic enumeration of contracted graphs. Contracted graphs
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with up to six loops have been previously enumerated by other researchers (Hsu,
1989). Although we believe this method presented in this study is more efficient
and does not need any guess work, no attempt was made to recreate the con-
tracted graphs. For the convenience of the reader, a set of contracted graphs
with up to five loops is listed in Tables 3.1 and 3.2. Using the definition of
dual graph, duals of the contracted graphs have also been sketched and listed in
Tables 3.1 and 3.2. Appendix B lists contracted graphs with six loops and their

duals.
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Contracted graph Dual of contracted graph

(3,3)

(4.5)

(D1 A
® |
@ K.

AN A

(4,6)

Table 3.1: Contracted graphs with three and four loops
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Contracted graph

Dual of contracted graph

0

(2,5)

@ (3.6) EI (5.6)
(4,7) @ (5,7)
(5,7)
(4.7)
(4,7) (5,7)

Table 3.2: Contracted graphs with five loops
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Contracted graph

Dual of contracted graph

). | Z]
| A ]
| 1 @
|
(1D @

Table 3.2: Continued
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" Contracted graph

Dual of contracted graph

13

(6,9)

14

Table 3.2: Continued
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Chapter 4

Procedures for the Enumeration of

Conventional Graphs

In this chapter three methods for the enumeration of conventional graphs
will be discussed. In the first method the V-V incident matrix of a conventional
graph is derived using the procedure described in Chapter Three.

In the second method the insertion of binary vertices on edges of a contracted
graph are used to derive conventional graphs. The edges of a contracted graph
are labeled. A row vector is used to represent the edges and a 2 by v° matrix
is used to store the end vertices of the edges. This makes efficient computation
possible. Graph isomorphism due to symmetry in parallel binary-vertex chains in
a conventional graph can be detected before conventional graphs are generated.

In the third method the edges of the dual of a contracted graph are labeled.
The E-V incident matrix expresses the edge-vertex relationships of the dual
of a contracted graph. The E-V incident matrices of dual graphs are generated
directly by an expansion of E-V incident matrix of the dual of contracted graphs.
The random number technique of the characteristic polynomial (Tsai, 1987) is

used to detect graph isomorphism.
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4.1 Direct Enumeration of Conventional Graphs

The V-V incident matrix of a conventional graph is'a symmetric matrix with
zero daigonal elements. The summation of elements in the ith row represents
the degree of the :th vertex. Let n = v be the number of vertices, e be the
number of edges, and D; be the degree of the ith vertex in a conventional graph.
Then there exist v equations relating the elements of the incident matrix and

the degree of vertices as given below.

0 4+ A2 + Az + -+ A, = D
Ay + 0 + Az + e + Agn = Dy
(4.1)
Aipaz + -+ + 0 + A on + Ap2n = Dy
A1 + o0+ e+ 0 + An-in = Do
A + - + o 4+ Anan + 0 = D,

’

For a conventional graph without articulation points, D; > 1 are integers and
A; ; take the values of 1 or 0.

Since each edge has two end vertices which appears as two ones in the A
matrix, the summation of all the elements in the matrix is equal to two times

the number of edges, i.e.,

Zujzv: Ati)j =2 (42)

$=1 j=1

which means that

S Di=2e (4.3)

i=1
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Given v and e, all admissible non-isomorphic conventional graphs can be
derived by solving Eqgs. (4.1) and (4.3). We first solve Eq.(4.3) for D;, i=1,... n,
and then solve Eq. (4.1) for A;;. This procedure is identical to that described

in Chapter Three.

4.1.1 Example

Problem statement: Derive all sets of conventional graphs with six vertices

and eight edges.
Solution

For (v,e) = (6,8), Eq. (4.1) reduces to:

0+ Ao+ Aist+AiatAis+4A16 = Dy (4.4)
Atz + 04 Ags+ Agu+ Ags + Ass = Dy (4.5)
A1s+ A3+ 0+ Ass+ Ass+ Asg = D3 (4.6)
Aja+Asa+ Asa+ 0+ Ass+ Asg = Dy (4.7)
Ays+Ags+ Aszs+ Ass+0+ 456 = Ds (4.8)
Argt+Ass+ Asg+ Asg+ As6+0 = Dg (4.9)

and Eq. (4.3) reduces to:
D1+D2+D3+D4+D5+D6=2X8:16 (410)

Since D; > 2, for =1 to 6, without loss of generality we may let D;yy > D,
for :=1,2,...,5. Using the method outlined in Appendix A, the solutions of
(D1, D, D3, Dy, Ds, Dg) are obtained as follows.
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2 2 2 2 3 5
2 2 2 3 3 4
2 2 3 3 3 3

For the fourth set, (D1, D, Ds, D4, D5, D) = (2,2,3,3,3,3), Egs. (4.4)-(4.9)

become

0+Ap+As+A1atAis+41e =2 (4.11)
Avg +04 Agg+ Apg+ Ags + Agg =2 (4.12)
. Az + A3+ 0+ Ass+ Ass+ Az =3 (4.13)
Apg+Asa+Asa+0+ Ags + Ase =3 (4.14)
Ays+Ags+Ass+ Ags+ 0+ Asg =3 (4.15)
Avg+ Apg + Asg + Ago+ Asg+0 =3 (4.16)

Since A;; take the values of 1 or 0, solving Eq. (4.11) yields ten solution sets.
For the solution (A; g, Ay 3, A1,4, A1, A16) = (1,0,0,1,0), Eq. (4.12) becomes

Ags+Ags+ Ags+ Az =1 (4.17)

Solving Eq. (4.17) yields four solution sets for A3, Ag4, Azs, and Agg.
For (Aas, Az4, A25, A26) = (1,0,0,0), Eq. (4.13) becomes

Azs+ Ass+ Az =2 (4.18)



There are three solution sets for As 4, Ass, and Asg.

For (A1,2, A1,3, A1,4, Al,s, A1,67 A2,3, A2,4, Az,s, Az,e, A3,4, As,s, As,s)
=(1,0,0,1,0,1,0,0,0,1,0,1), Eqgs. (4.14)-(4.16) reduce to

Ags+Ase = Va—Ara—Azg—Azg=2 (4.19)
Ags+Ase = Vs—Ais—Ays— Azs =2 (4.20)
Age+Ase = Vo— A1g— Az — Azg =2 (4.21)

Solving Eqs. (4.19)-(4.21) yields (A4,5, Ass, Asg) = (1,1,1). Hence, the V-V

incident matrix is given as:

010071 0
101000
010101

A= (4.22)
001011
100101
001110

The resulting conventional graph is shown in Fig. 4.1.
A computer program can be written to enumerate the conventional graphs
systematically. Graphs enumerated in this manner may contain articulation

points and/or isomorphic graphs, and they must be identified and screened out.
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Figure 4.1: The (6,8) conventional graph

4.2 Enumeration of Conventional Graphs from

Contracted Graphs

Conventional graphs can be derived from contracted graphs by using a tech-
nique called "expansion” first introduced by Woo (1967).
Given v and e for the desired conventional graphs, Woo’s approach starts

with solving the following two equations:

Zv; = (4.23)

f_:i v; = 2e (4.24)

1=2
where 8 < e—wv + 2.
Using Egs. (4.23) and (4.24), the degree listing of all possible (v, &) graphs can

be obtained. For example, the solutions for v=10, e=13, one edgree-of-freedom,
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planar linkages are shown below:

a Vs i Vs
4 6 0 0
5 4 1 0
6 2 2 0
6 3 0 1
7 0 3 0

1 1 1

0 0 2

For each of the solution sets found in the previous step, the corresponding
contracted graphs are identified. Then the v, binary vertices are partitioned into
all possible partitions satisfying the kinematic requirement on partial graphs. For
example, the contracted graphs corresponding to v,=5, v3=4, and vy=1 are the
(5,8) graphs identified as Nos. 9, 10, and 11 in Table 3.2.

In each of these three contracted graphs there are eight edges. The pqurtition

of binary vertices can be obtained by solving the following two equations:

Yobi=e (4.25)
=0

SlE+1)bi=e (4.26)
i=0
where b; denotes the number of binary-vertex chains with 7 vertices connected
in series with 7 +1 edges as shown in Fig. 4.2. The maximum number of vertices
in the binary-vertex chain is limited by m < F + A —2 (Sohn and Freudenstein,
1986).

For a one degree-of-freedom planar mechanism with simple joints, we have

F=1, A = 3. Hence, m=2. For the above example, we have that v,=5, v3=4,
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vg=1, e=13 and e°=8. Writing Eqs. (4.25) and (4.26) for ¢° = 8, ¢ = 13 and

m = 2 yields

bo + b1 -l- bz e 8 (427)

Solving Egs. (4.27) and (4.28) yields the following partitions of binary-vertex

chain
bo b b
5 1 2
4 3 1
3 5 0

The last step in Woo’s approach is to find the permutation group for each
contracted graph and to enumerate conventional graphs for each partition. The
procedure is systematic. However, it is not straightforward to implement on
a computer program. In particular, the algorithm for finding the permutation
group for a contracted graph can be very complicated. In what follows, we
present a more straightforward procedure which can be easily implemented on a

computer.

Figure 4.2: A binary—vertex chain b;
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4.2.1 Modified Woo’s Approach

Given v and e for the desired conventional graphs, the enumeration proceeds
in the following sequence:

Step 1. Identify of the admissible contracted graphs.

Step 2. Expand the single edges into binary-vertex chains.

Step 3. Identify the admissible graphs and graph isomorphism.

In the first step Euler’s formula is used to determine the number of loops

required of the contracted graphs. Thus,
L=e-—-v+2 (4.29)

For example, L=>5 for the (10,13) graphs. Therefore, only those contracted
graphs listed in Table 3.2 with five loops are permissible for the enumeration of
(10,13) graphs.

In the second step edges in a contracted graph are labeled and arranged as

the row vector

I( - (kl,kz,...,kp) (4:30)

where p=e¢° is equal to the number of edges in a contracted graph.

The k;, 1=1,2,...,p, initially take the values of one. The end vertices of all
edges in a contracted graph are arranged in a 2 by e° matrix, called the "E”
matrix, to establish a data base for the enumeration of conventional graphs.
Each row in the E matrix represents an edge in a contracted graph. The two
elements in a row represent the node numbers associated with the end vertices
of an edge. For example, edges of the No. 2 contracted graph listed in Table 3.2

can be labeled as shown in Fig. 4.3.
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Figure 4.3: A (3,6) contracted graph

The E matrix for the contracted graph shown in Fig. 4.3 1s given by

13

3
12
E= (4.31)

2 3
For convenience, the end vertices in each row of the E matrix are arranged in an
ascending order.

During the process of expansion the values of k;’s are replaced by positive
integers. The value of k; represents the number of edges in a binary-vertex chain.
Thus, if k;=1, the 7th edge in a contracted graph is not altered; if k;=2, the ¢th

edge in a contracted graph is replaced by a binary-vertex chain with one vertex

and two incident edges, etc. Hence,
k1+k2+...+kp=6 (432)

where (F+A—1) > k; > 1,:=1,2,...,p, are all integers.
The expansion of a contracted graph is equivalent to solving Eq. (4.32) for all

possible positive integer solutions. Fortunately, this can be easily accomplished
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by either the solution method outlined in Appendix A or by a computer program
to vary the values of k; from 1 to (F+4A-1).
For example, using the (3,6) contracted graph shown in Fig. 4.3, (10,13)

conventional graphs can be derived by solving

For planar, one degree-of-freedom mechanisms with simple joints, the upper and

lower limits on k; are

3>k >1 (4.34)

Solving Eq. (4.33) subject to constraints imposed by Eq. (4.34) yields all possible
solutions. Parallel edges in a contracted graph are identified in order to reduce
the number of loops in the computer program.

End vertices in the E matrix are compared, and edges with identical end
vertices are recorded and rearranged in such a way that each set of parallel
edges forms a group, which are arranged in a descending order according to the
number of edges in its group. If ks, ksy1,..., ks4r belong to a group of parallel
edges, then the constraints, ks < kypy < ... < kg4, are imposed on k;. This
reduces greatly the chance of producing isomorphic graphs and the number of
loops in the coﬁbuter program. |

For example, the E matrix of the contracted graph shown in Fig. 4.3 is

rearranged as
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1
2

N BN

L W W N

Group 1
(4.35)

Group 2

Group 3

The rearrangement of E is equivalent to renumbering the edges in a con-

tracted graph. For this eaxmple, the edges of the graph shown in Fig. 4.3 are

renumbered as shown in Fig. 4.4.

The nested do-loop can be written as :
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Group 1

Do 1= 1,3
K(1)= 1
Do 2= 11, 3
K(2)= 12
Do 13 = 12, 3
K@3)= 13
Group 2
Do =1, 3
K(4) = 14;
Do 15 =14, 3
K(5) = 15;
Group 3
K6)=13-K(1)-K(2)- K3)— K(4) - K(5)
If K(6) < 1,try next K(5)
If K(6)>1, save K(i), 1=1,...,6
Continue
Continue
Continue
Continue
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4.2.2 Construction of the V-V Incident Matrices

Once the values of k;, 1=1,2,...,p, are found, the V-V incident matrix of
the corresponding conventional graph can be constructed. The value of (k; —1)
denotes the number of vertices to be inserted on the ith edge of a contracted
graph. Since the pair of end vertices of every edge in a contracted graph is
contained in a row of the E matrix, insertion of (k; — 1) binary vertices on each
edge will increase the number of vertices and the number of edges by (k; —1) each
in the E matrix of the corresponding conventional graph. The number of rows
in the E matrix will also increase by (k; — 1). The process of incrementing the
numbers of vertices and edges is called "expansion.” The V-V incident matrix
can be constructed as follows:

We start with the first edge. If the first element is k; = 1 and the first row

of the E matrix is (a, b), then let

Aab':l

’

If the first element k; = z, then = — 1 vertices are inserted onto the first edge as
follows:

Aa,v“-{-l =1

Av“+1,v“+2 =1

Au“+x—2,v°+z—1 =1
Avc-l-z-wl,b =1

where v°® denotes the number of vertices in the contracted graph.
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If the second element is k;=1 and the second row of end vertices pair matrix
is (¢, d), then let

Aca=1

If the second element k; = y, then y — 1 vertices are inserted onto the second
edge as follows:

Ac,v‘=+x =1

Au°+x,v°+x+l =1

Av°+z+y—3,v‘:+x+y—2 =1
Av°+:z:+y—2,d =1

This process is repeated until all binary-vertex chains are added to the

contracted graph. Finally, let
Aij=Aji, 1#7

and

Ai; =0, 1=7

for all 7 and j needed to complete the matrix.

Example

The number of the vertices in the contracted graph shown in Fig. 4.4 is 3.
The matrix E for this contracted graph is given by Eq. (4.36). Let us assume

that one of the solutions to Eq. (4.33), K = (2,2,2,2,2,3), to illustrate the

concept.
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(4.36)

W W W N

Since K(1)=2 and the first row of E is (1,2), let
A1,4 = ].

A4'2 - 1

Since K(2)=2 and the second row of E is (1,2), let
A1,5 =1

A5’2 = ].

Since K(3)=2 and the third row of E is (1,2), let

A1,6 == 1
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Ag2 =1

Since K(4)=2 and the fourth row of E is (1,3), let
Arr=1
Arg=1

Since K(5)=2 and the fifth row of E is (1,3), let
Arg =1
Agz=1

Since K(6)=3 and the sixth row of E is (2,3), let

A2,9 - 1
AQ,]() = ]-
A10,3 =1

The complete V-V incident matrix A is as shown in Eq. (4.37).

00011111

00 111060

<O st
— s
[ww) o o O o o
o o o O o o o o
O O o o o o o o
() o o o o o
o O O o o o
o o O o o o o
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The corresponding conventional graph is shown in Fig. 4.5.

1

10 9

Figure 4.5: The resulting (10,13) conventional graph

4.3 Enumeration of Conventional Graphs from

the Dual of Contracted Graphs

In this section the enumeration of conventional graphs from the dual of
contracted graphs is presented. The edges of a graph are labeled such that an E-
V (Edge-to-Vertex) incident matrix of a graph can be introduced to represent the
graph. The E-V incident matrix of the duals of contracted graphs are used as the
data base. The E-V incident matrix of the dual of a conventional graph is derived
by replacing the edges in the dual of a contracted graph with parallel edges. The
procedure of using the permutataion of binary chains is not necessary here, since
the E-V incident matrix completely describes the topology of a conventional
graph.

The procedure to derive conventional graphs from the dual of contracted

graphs is as follows:

55



1. Construct the E-V incident matrices of the duals of contracted graphs as

a data base.
2. ldentify the admissible duals of contracted graphs.

3. Insert of parallel edge sets into the duals of contracted graphs to form the

E-V incident matrices of the duals of conventional graphs.

4. Construct the duals of conventional graphs from the E-V incident matrices.

o

. Sketch the conventional graphs from the dual graphs.

4.3.1 Construction of E-V Incident Matrices for the Du-

als of Contracted Graphs

Let ¢% be the number of edges and v% be the number of vertices in the dual
of a contracted graph. Label each edge in the dual of a contracted graph with
lower case letters. The E-V incident matrix E* is a €% by v% matrix. The

element of the E-V incident matrix is defined as follows:

- 1, if vertex z is the end vertex of edge j
ij =

0, otherwise

The non-zero elements in a column represent the pair of end vertices of each
edge. Therefore the sum of each column is equal to two. The sum of each row
denotes the number of edges incident with a vertex in a contracted graph. For
example, Fig. 4.6 is the dual of a contracted graph with five vertices and seven
edges.

The E-V incident matrix of Fig. 4.6 is
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E*

oo O
o
o
o
—

o o W

L
L,
L;

Ls

(4.38)

For each contracted graph, the E-V incident matrix for the corresponding

dual graph is built as a data base. This E-V incident matrix can be expanded

as the E-V incident matrix of the dual of a conventional graph by replacing each

labeled edge with parallel edges. The way to find the definite sets of parallel

edges 1s described in the next section.

4.3.2 Identification of the Duals of Contracted Graphs

Given v and e, the number of loops L is computed from the Euler formula

L=e—v+2
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All the duals of contracted graphs having L vertices are potential candidates for

the enumeration of conventional graphs.

4.3.3 Expansion of the E-V incident Matrices for the

Duals of Conventional Graphs

Let e = v% be the number of edges in a dual of a contracted graph. The
derivation of a dual graph from the dual of a contracted graph requires the
replacement of each edge in the dual of a contracted graph by a set of parallel
edges. Let k; denote the number of parallel edges used to replace the :th edge
in the dual of a contracted graph. Then, the sum of all the sets of parallel edges

is equal to the total numebr of edges in the dual of a conventional graph, i.e.,

ki+ka+...+k=c¢ (4.39)

where k; > 1, 1=1,...,p, are positive integers.

Using the method outlined in Appendix A, all k;, i=1,...,p, can be deter-
mined. Alternatively, Eq. (4.39) can also be solved by using the nested loops
outlined in Section 4.2.1. Once the k; are found, the ith edge in the dual of
a contracted graph is replaced by k; parallel edges. If k;=1, then the original
ith edge will be retained as a single edge. The E-V incident matrix of a dual
graph can, therefore, be obtained by an expansion of the number of columns in
accordance with the values of k;. The procedure is similar to that outlined in
Section 4.2.2.

Because parallel edges share the same end vertices, parallel edges form a set
of adjacent columns in the E-V incident matrix of a dual graph. The columns

in each parallel edge set are identical to one another.
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4.3.4 Construction of Dual Graphs

Once the E-V incident matrix of a dual graph is obtained, the dual graph
can be constructed according to the definition of an E-V incident matrix. Note
that a set of identical adjacent columns in the E-V incident matrix represents a

set of adjacent parallel edges in the dual graph, and should be sketched as such.

4.3.5 Construction of Conventional Graphs

A number, which corresponds to a vertex in the conventional graph, is
assigned to each loop in the dual graph. The vertex : and vertex j of the
conventional graph are connected with an edge if the loops ¢ and j in the dual
graph are adjacent to each other. This process is continued until all the edges

are constructed.

4.3.6 Example

Problem statement: Derive a (10,13) conventional graph from the (5,7) dual

of contracted graph as shown in Fig. 4.7.

a

L1 ¢—b oS L3
12
e d g
L5 f 14

Figure 4.7: The labeled dual of contracted graph

The E-V incident matrix of Fig. 4.7 is
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fyg

1101100 Ly
0110000 Lo

E= (4.40)
1011001 Ls
0 000O0T11 Ly
0000110 Ls

Since p=T7 and e=13, Eq. 4.39 reduces to
Ey4+ko+ks+ka+ks+ ke + k=13 (4.41)

Using the method outlined in Appendix A yields (kq, k2, ks, - - -, k7) =(1,2,2,1,3,2,2)
as one of the solution sets. For (ky, k2, ks, k4, ks, ke, k7) = (1,2,2,1,3,2,2), the
procedure to expand the E-V incident matrix for the corresponding dual graph
is as follows:

Since k3=1, the first column is not altered.

Since k,=2, the second column is written twice as the second and third
columns in the E* matrix as shown in Eq. (4.42).

Since k3=2, the third column in Eq. (4.40) is written twice as the fourth and
fifth columns in Eq. (4.42).

Since ks=1, the fourth column in Eq. (4.40) is written once as the sixth
column in Eq. (4.42).

Since ks=3, the fifth column in Eq. (4.40) is written three times as the
seventh, eighth and ninth columuns in Eq. (4.42).

Since kg=k7=2, the sixth and seventh columns in Eq. (4.40) are both written
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twice as the 10th-13th columns in Eq. (4.42).

1 1 100 11 1 100 00 Ly
01 1 1 1000000 0 0 L

E* = * o (4.42)
1 001 1100000 1 1 Ls
0000 00O0TGO0TGO0 1 1 1 1 Ly
0000001 1 1 11 0 0 Ls

2 L L3
L1
3 X_8
4
1
5
L5 0 L4

Figure 4.8: The dual graph

Following the procedure outlined in Section 4.3.5, the corresponding conven-

tional graph is sketched as shown in Fig. 4.9.

4.3.7 Conversion of E-V Incident Matrices to V-V Inci-
dent Matrices

In Section 4.3.3, we have obtained the E-V incident matrix of a dual graph.

In order to check for graph isomorphism, one needs to convert the E-V incident
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Figure 4.9: The corresponding conventional graph

matrix of a dual graph to the V-V incident matrix of a conventional graph. The
computer algorithm for automatically converting an E-V incident matrix of a
dual graph to the corresponding V-V incident matrix of a conventional graph is
very involved. It is not developed in this thesis since the second method is more

effective and is chosen for the enumeration of conventional graphs.

4.4 Identification of Graph Isomorphism

In Sections 4.1, 4.2 and 4.3, procedures for deriving conventional graphs have
been described. However, detection of graph isomorphism is also necessary. In
this thesis, the random number technique of the characteristic polynomial is used
to check graph isomorphism (Tsai, 1987).

The linkage characteristic polynomial p(z) is defined as the determinant of
the matrix (zI — A), where z is a dummy variable and I is an identity matrix

of the same order as the V-V incident matrix A. Thus,

p(z) = det(z] — A)



Instead of symbolically developing the polynomial, Tsai replaces z in p(z) by a
random number and then computes the value of p(z) numerically. If two graphs
are isomorphic, then their characteristic polynomials are necessarily identical to
one another (Uicker and Raicu, 1975).

However, the characteristic polynomial is only a necessary, but not sufficient
condition for checking graph isomorphism. It has been shown that when the
number of verticess becomes sufficiently large (Sohn and Freudenstein, 1986),
two non-isomorphic graphs may possess identical characteristic polynomials.
This problem can be avoided by classifying conventional graphs into different
contracted graph families before the values of characteristic polynomials are
compared.

The probability for two non-isomorphic graphs that belong to the same con-
tracted graph and, at the same time, possess identical characteristic polynomials
is negligibly small. However, the probability for two non-isomorphic graphs to
possess identical characteristic polynomials is not negligible. Hence, conventional
graphs are classified according to their corresponding contracted graphs. Only
those graphs that belong to the same contracted graph family are checked for
graph isomorphism.

Using the method developed by Tsai (1987), we have not found two non-
isomorphic graphs that, both, have the same characteristic polynomial and
belong to the same contracted graph. For example, the three pairs of graphs
shown in Fig. 4.10 have the same characteristic polynomials but they belong to

different contracted graphs.
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Conventional
graph

(10,13)

(10,13)

(a)

Characteristic polynomial : 1/0/-13/0/53/-8/-82/26/39/-16/0

Contracted
graph

(7,11)

(5,8)

Conventional
graph

(11,14)

(11,14)

(b)

Characteristic polynomial : -1/0/14/0/-65/0/130/0/-112/0/32/0

Contracted
graph

(5.8)

(5.:8)

Conventional
graph

(11,14)

(11,14)

(€)

Characteristic polynomial : -1/0/14/0/-67/8/138/-36/-120/44/36/-16

Contracted
graph

(5.8)

(5.8)

Figure 4.10: Conventional graphs with the same characteristic polynomials
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4.5 Discussion

In this chapter, three methodologies for the enumeration of conventional
graphs are described. An algorithm is developed to solve for m integer variables
in n equations, where m > n. The advantage of these procedures is that it
provides an efficient computation technique to solve for the variables. The
method for solving this problem is outlined in Appendix A.

The first method directly derives the vertex-to-vertex incident matrix of a
conventional graph. The procedure is similar to that outlined in Chapter 3 for
the derivation of contracted graphs. Both procedures are typical for solving for
m integer variables with n equations, where m > n. The detection of articulation
points for conventional graphs is necessary.

The second method enumerates conventional graphs from contracted graph
families by the arrangement of binary-vertex chains on a contracted graph. Two
data bases are necessary. One data base contains the families of contracted
graphs with the same number of loops. The other contains the end vertices for
each contracted graph in the families. No permutations of binary chains are
necessary.

The third method uses an E-V incident matrix to represent graphs instead of
a V-V incident matrix. It combines two data bases used in the second method.
However, the parallel edges are arranged on the dual of a contracted graph
to form a dual graph. The E-V incident matrix of a dual graph is expanded
correspondingly. The E-V incident matrix of a dual graph is the edge-to-loop
incident matrix of a conventional graph. The conventional graph can be formed
from a dual graph by the inspection method discussed in Section 4.3.5. However,

the conversion from E-V incident matrix to V-V incident matrix is required for
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the detection of isomorphism between conventional graphs.

The first method is very efficient when the number of vertices is reasonably
small. However, the required nested loops in the computer program become
unmanageable when the number of vertices is large. The third method requires
the conversion of a dual graph to a conventional graph. Although a computer
program can be developed to accomplish this conversion, the algorithm can
be quite involved. Therefore the second method is judged to be the most
straightforward and efficient method of all. Based on the second method, a
computer program was written for the enumeration of conventional graphs with

up to eight vertices and six loops.

4.6 Results

A comprehensive set of 219 planar, five-loop, single degree of freedom mech-
anisms with simple joints was developed by Woo (1967). Planar mechanisms
with up to five loops and three degrees-of-freedom were determined by Sohn
and Freudenstein (1986). An atlas of conventional graphs with up to six ver-
tices, which can be used to create mechanisms of any type, was developed by
Buchsbaum and Freudenstein (1970).

In this thesis, more than 700 new conventional graphs with up to eight
vertices and six loops have been enumerated. Table C in Appendix C lists the
number of enumerated graphs as a function of the various combinations of the
number of vertices, edges and loops. The tables in Appendices D and E contain
318 of these new conventional graphs with seven and eight vertices, and with up

to eleven edges. The remaining 387 graphs, which have eight vertices and twelve
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edges, are not included in this thesis due to the complexity of the graphs.
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Chapter 5

Conclusion

This thesis presents new definitions of a dual graph, a dual of a contracted
graph, and the correspondences between various graph representations of mech-
anisms. A method for solving one linear equation with more than one integer
variable is shown to be effetive for graph enumerations. Using these definitions
three methodologies for the enumeration of the kinematic structures are sug-
gested.

The first method is a direct enumeration of conventional graphs. It is sim-
ilar to the enumeration procedure developed for the enumeration of contracted
graphs. The second method derives conventional graphs from contracted graphs.
An efficient methodology for the arrangement of binary-vertex chains in con-
tracted graphs is also described. The third method derives conventional graphs
from the duals of contracted graphs. It uses the E-V incident matrices of the dual
of a contracted graph instead of the V-V incident matrix of a contracted graph.
Duals of contracted graphs are used as the data base for the enumeration. Dual
graphs are obtained from the dual of contracted graphs. Conventional graphs are

then derived from dual graphs. No permutations are needed in these methods.
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The random number techniques of characteristic polynomial is used to detect
graph isomorphism. Since different contracted graphs have different structural
topologies, conventional graphs can be isomorphic with each other only if they
are derived from the same contracted graph. Since conventional graphs are
derived from contracted graphs or the duals of contracted graphs, it is only
necessary to check graph isomorphism of conventional graphs within the same
contracted graph family. The existing problem of two non-isomorphic graphs
yielding identical characteristic polynomials is avoided.

Conventional graphs with up to eight vertices have been derived. The result-
ing graphs with four to six vertices are in complete agreement with the findings
by Bushsbum and Freudenstein (1970). The atlas of graphs with seven and eight
vertices are believed to be new.

The second method of enumeration is judged to be the most effective method
of all, and is recommended for further development, including automatic sketch-
ing of graphs and their corresponding mechanisms.

The principal contributions of this thesis are:

1. The definition of a dual graph has been modified. This definition has
been applied to both conventional graphs and contracted graphs to create
the dual graphs of a conventional graph, as well as the dual graphs of
a contracted graph. Conventional graphs can now be generated using
these definitions of dual graphs. The correspondences among conventional
graphs, dual graphs, contracted graphs, and the dual of a contracted graph

have been established.

2. Three algorithms for the systematic and automatic enumeration of the

graphs of kinematic chains have been developed. The algorithms are very
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simple and straightforward, and can be easily implemented in a computer

program.

. Two tables of conventional graphs with seven and eight vertices, respec-
tively, have been built. These tables can be used to create mechanisms

with up to six loops and eight links.
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Appendices

A simple procedure for solving n linear equations in m unknown integers will
be described. First, the procedure will be applied to solve one linear equation

with m unknowns, and then to n linear equations with m unknowns.
A.1 One equation in m integer variables

Equation (A.1l) shows a linear equation in m integers, k;, ¢ = 1,...,m, where
_ pis a known positive integer. Solving Eq. (A.1) for these m integers, all of which

are non-negative, is called m partitions of an integer p.

Since there are m unknowns in one equation, we may choose m —1 unknowns
arbitrarily and then solve Eq. (A.1) for the remaining unknown, provided all the
k;’s are non-negative. In order to systematically choose these m — 1 integers, we

let

L=3k (A.2)

1=2

Substituting Eq. (A.2) into Eq. (A.1), yields



Equation (A.3) contains only two unknowns. Hence, we may choose one of
the two variables arbitrarily and solve for the other variable. This can be easily
accomplished by letting k; assume the values of 0 to p, and then solving Eq. (A.3)

for l;. The results are as shown below:

Variables Solutions
ky 0t 1 2 |- 0P
l p{pljp2{---1|0

For each set of (ky,1;), let
k2 + l;z = ll (A4)

Again, we have one equation in two variables. We may let k; to assume the

values of 0 to {; and solve Eq. (A.4) for l;. The results are as shown below:

Variables Solutions
ks, 0 1 2 e L
[, LihLh-11hL-21---]0

The above procedure can be repeated until all sets of partitions are obtained.
The procedure is very simple and can be easily implemented on a digital com-

puter.

Example
To illustrate the principle, consider the following equation in three integers.

Let
h=k+ks (A.6)
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then, Eq. (A.5) reduces to
i+l =4 (A.T)

Choosing k; from zero to 4, we obtain

Variables Solutions

ky 0111234

L 413121110

Let
kz + kg - ll (A8)

Hence, by choosing k; from zero to [;, we can solve Eq. (A.8) for k3 for each
pair of solutions obtained in the previous step.

For example, for k; =1 and [; = 3, we obtain

ke |0{1]2|3

ks |312]1/0

Repeating the above process all sets of k; , 7 = 1,2, and 3 can be solved.

All the coefficients in Eq. (A.1) are equal to 1. In general the coeflicients
can assume any integers. The same procedure can be used to solve such a linear
equation, but the solutions are valid only when they are non-negative integers. A

more rigorus solution procedure for solving one linear equation in two unknowns

can be found in (Gelfond, 1981).



A.2 N Linear Equations in m Integers

The following are n linear equations with m integers, k;, 1 =1,...,m
a1 ki + a2 ky + 0+ a1 km = m
azi ki + a2 k2 + -+ dem kn = p2 (A.9)
any ki + ang ky + o0 4+ Grm km = pa
where the coefficients a; ; and p; are all integers, and m > n.
Writing Eq. (A.9) in matrix form yields
GK=0 (A.10)
where
- ayi1 ai2 - QGi;m —h -
Q= az1 422 - Qdzm P2
i An1 Qp2 " Gum —Pn ]

K = ki, ko, ... kn, 1T

Using the Gauss elimination method, G can be reduced to an upper triangular
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form:

911 G122 ottt Gim @1
O g212 LY e e e LRI g 'm q
G* = o (A.11)
0 0
0 0 0 Inn °** Qpm qn
Hence, Eq. (A.10) becomes
G"K=0 (A.12)

Note that the last equation in Eq. (A.12) contains (m — n + 1) unknowns.

Specifically, we have

gn,nkn + In,nt1 kn+1 +o+ gn,mkm ={qn (Al?’)

Equation (A.13) can be solved by the procedure outlined in Appendix A.1.
Once ky,. .. ,kn are solved. The remaining unknowns can be solved by backward

substitution. Note that the coeeficients, ¢;;, are all integers.
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B Contracted Graphs with Six Loops



Contracted graph

Dual of contracted graph

@(a,m

(6,6)
o7 6.7)
i 2 5 r_
@7 6.7)
(4.8) 6.8)
(4.8) T
(6,8)

Table B: The contracted graphs with six loops




Contracted graph Dual of contracted graph
7
6,8
4.8) (6,8)
I
8
(4.8) B ©8)
9
(6.8)
(4,8)
10
(4,8) (6,8)
11
(4,8) (6,8)
12 >
(4,8) (8,8)

Table B: Continued
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Contracted graph Dual of contracted graph
® %
(4.8) (6,8)
14 ( ; I ; ’
(4.8) (6.8)
15
(4,8) 6,8)
16
(6,8)
(4.8)
17
g :; ; (6.8)
(4.8)
e
18
(4,8) ' 69
Table B: Continued
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Contracted graph Dual of contracted graph
19
S~ 59) (6,9)
20 A&
o | | e
(5.9) (6.9)
Vl
22 \
(5,9) - 6.9)
23
(6,9)
(5,9)
24
(5.9) B (6,9)

Table B: Continued
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Contracted graph Dual of contracted graph
25
{5,9)
(6,9)
5.9) (6,9)
—
27 ?
(5,9) (6,9)
(5,9) (6,9)
(5.9) -
(6.9)
30
(5,9) (6,9)

Table B: Continued
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Contracted graph Dual of contracted graph
7 W \
(5,9) (6.9)
32
(5.9)
(6,9)
33
‘ (5,9 (6,9)
<l
(5.9) ©.9)
35 ' /
(5,9)
(6,9)
36
(5.9) (6.9)

Table B: Continued
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Contracted graph

Dual of contracted graph

37
(5,9) (6,9)
. /‘\
(5,9 (6,9)
39 <
r 6,
(5.9 6.9)
.—...—
) @ \E
(6,10) (6,10)
41 <E QQ
(6,10) X [
(6,10)
42
(6,10) (6,10

Table B: Continued
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Contracted graph Dual of contracted graph
43
(6,10)
(6,10)
44
(6,10) (6.10)
45
(6,10)
(6,10)
46
6.10) (6,10)
47
(6.10) (6,10)
48
(6,10) (6,10)

Table B: Continued
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Contracted graph

Dual of contracted graph

49
(6,10) (6,10)
P
50 <
(6.19) 6.9)
51
(6,10) (6,10)
‘4
52 ;
(6,10) ‘ (6,10)
53
'-—_—-—
(6,10) {6,10)
54
(6,10) (6,10)

Table B: Continued
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Contracted graph Dual of contracted graph
55
— W1
(6,10) 6,19
. O~
(6.10)
(6,10)
57 % S
(6,10) (6,10)
58
L
(6,10) (6,10)
N\
59 [,
(6.10) (8,10)
60
(6,10)
(6,10)

Table B: Continued
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Contracted graph Dual of contracted graph
’ @
(6,10) (6,10)
) @
(6,10) (6,10)
63
(6,10) (6,10)
- A
(6,10) (6.10)
|
6,10
(6,10) (6,10)
66 >
(6,10) L (6,10)

Table B: Continued

87




Contracted graph

Dual of contracted graph

N
-

67
(6:10) (6,10)
68
(6,10) (6,10)
69
(6,10) T (6,10)
70
(7,11) (6,11)
71
(7,11) (6,11)
72
6,11)

(7.11)

Table B: Continued
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Contracted graph Dual of contracted graph
’ @
(7,11) ‘ 6,11)
(7,11) (6,11)
(7.11) (6,11)
" @
(7,11) b (6,11)
" @
7.11) (6,11)
78 |
N AT) 6.11)

Table B: Continued
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Contracted graph

Dual of contracted graph

7.1) (6,11)
) D ﬁg
(7,11) ©11)
| A
@1 (6,11)
(7,11) ©.11)
7.11) (6,11)
84
(8,12) | oo (6,12)

Table B: Continued
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Contracted graph Dual of contracted graph
)
85
(8,12) (6,12)
) @
(8,12) 6,12)
(8,12) (6,12)
(8,12) 6,12)
(8,12) 6,12)
’ @
(8,12) 6.12)

Table B: Continued
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Contracted graph

Dual of contracted graph

91

(8,12)

(6,12)

Table B: Continued
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C Number of Graphs with Different

Sets of Vertices and Joints
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Number of vertices | Number of edges | Number of loops | Number of graphs
5 5 2 2
6 3 2
7 4 3
8 ) 2
9 6 1
6 6 2 1
7 3 3
8 4 9
9 5 13
10 6 11
7 7 2 1
8 3 4
9 4 17
10 5 26
11 6 78
8 8 2 1
9 3 6
10 4 26
11 5 140
12 6 387

Table C
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D Conventional Graphs with Seven

Vertices

Let k; denote the number of edges of a binary-vertex chain and k,,,, denote
the maximum number of edges of a binary-vertex chain.
Table D.1 The (7,7), (7,8) and (7,9) conventional graphs.
k; of the (7,9) conventional graphs shown in Table D.1 is not
greater than three.
kmaz of the (7,9) conventional graphs is equal to four.
Table D.2 The (7,10) conventional graphs (k; < 3).
kmaz of the (7,10) conventional graphs is equal to four.
Table D.3 The (7,11) conventional graphs (k; < 3).

kmaz of the (7,11) conventional graphs is equal to three.
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Conventional graph v e Conventional graph

(1) (@)

M ©)

(7 |

(4)
3) ()

(4) (6)

‘(1 N

7
-
(2
— >
&
<D

Table D.1: The (7,7), (7,8) and (7,9) conventional graphs
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Conventional graph

Conventional graph

(8)

©)

(10)

(1)

(14)

(15)

(16)

(17)

&
£

1
4>

(12)

(13)

Slelg=ivi=

Table D.1: Continued
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Conventional graph v e Conventional graph

10

(1) (@)

8)

@) ©)

(10)

(1)

(6) (12)

X &
&
B ||| LY
|| E
SERERSS,
SO

Table D.2: The (7,10) conventional graphs
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Conventional graph v

Conventional graph

e
(13) (19) %
(14) E 5 (20) %
(13) (21)
(16) (22)
(17) (23)
(18) % : (24)

Table D.2: Continued
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e Conventional graph v e Conventional graph
(25) ' (31)
(26) ; : (32)
(27) (33)
(28) (34)
(29) (35)
(30) (36)

Table D.2: Continued
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Conventional graph

Conventional graph

(42)

v e
37) (43)
(38) z (44)
(39) : (45)
(40) j {46)
1) (47) %

Table D.2: Continued
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e Conventional graph v e Conventional graph
(1) (7)
2) f (8)
©) )
4) l (10)
(5) (11)
(6) E S (12)

Table D.3: The (7,11) conventional graphs
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Conventional graph

Conventional graph

11

(13)

(14

(15)

(16)

a7

(18)

oy
7~
=
=
<
=

11

(19)

)
21)
@’
(22) ;
(23)

Table D.3: Continued
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Conventional graph

Conventional graph

11

(25)

0%
(26)

]
(27) /

=
(28)

<)
(29)
(30)

e

11

31)

(32)

=
=

(33)

(34)

|
|

(35)

(36)

h|
il

Table D.3: Continued
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e Conventional graph e Conventional graph
(37) (43)
) @ ) @
(38) E SZi 3
(39) (45)
(40) (46)
{41) (47)
(42) (48)

N

Table D.3: Continued
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Conventional graph

Conventional graph

e
(49) ‘35)
) @ (56) l Eg ’
(51) (57) %
(52) (58)
(53) (59)
(54) (60) 5

Table D.3: Continued
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e Conventional graph e Conventional graph

(61) (67)

(62) t 5 (68)

(63) (69)

(64) (70)

(65) (71)
- @

(66) (72) @
/ )

Table D.3: Continued
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Conventional graph

Conventional graph

11

(73)

A
A

(75)

<P

(76)

Table D.3: Continued
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E Conventional Graphs with Eight

Vertices

Let k; denote the number of edges of a binary-vertex chain and k,,,. denote
the maximum number of edges of a binary-vertex chain.
Table E.1 The (8,8) 'and (8,9) conventional graphs.
kmaz of the (8,9) conventional graphs is equal to six.
Table E.2 The (8,10) conventional graphs (k; < 3 only).
knaz of the (8,10) conventional graphs is equal to five.
Table E.3 The (8,11) conventional graphs (k; < 3 only).

kmaez of the (8,11) conventional graphs is equal to five.
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Conventional graph

M

) (4)

3) (6)

“ISlole

Table E.1: The (8,8) and (8,9) conventional graphs
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Conventional graph

Conventional graph

10

M

2)

©)

4)

(5)

©)

&0
7
&
-
)
7

™

%

(10)

=
G
-

(1)

&
RE

Table E.2: The (8,10) conventional graphs
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Conventional graph

Conventional graph

10

(13)

(14)

(15)

(16)

(an

(18)

ZilsiicAlleles

LA (D)

(19)

(20)

(21)

(22)

(23)

(24)

Table E.2: Continued
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Conventional graph

Conventional graph

10

(25)

10

(26)

Table E.2: Continued
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Conventional graph

Conventional graph

11

M

2

(4)

(®)

(6)

sibadhapesti=aIky

11

@

G

©

(0
L
-

(10)

@.

(11)

&

) @

Table E.3: The (8,11) conventional graphs
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Conventional graph

Conventional graph

A

e
(13) (19)
(19) ; (20)
(15) : (21)
(16) (22) z
(17) {23)

Table E.3: Continued
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e Conventional graph e Conventional graph
(25) (31)
(26) (32)
(27) (33)
(28) (34) %
(29) (35)
(30) \ gi; (36) @

Table E.3: Continued
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e Conventional graph e Conventional graph
(@7) (43)
(38) 2 (44)
(39) (45)
(40) (46)
(41) (47)
(42) ;E (48) f

Table E.3: Continued
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Conventional graph e Conventional graph
(49) (55)
(50) (56)
(51) (57)
(52) (58)
(53) (59)
@ (60)

Table E.3: Continued
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e Conventional graph e Conventional graph
(61) (67)

) @ | [
(62) (68) ; :
(63) (69)
(64) (70)
(65) (71)
(66) (72)

Table E.3: Continued
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e Conventional graph v e Conventional graph
(73) (79)
11 @ 8 | 11 [
(74) (80)
(75) (81)
(76) (82)
77 (83)
(78) j (84)

Table E.3: Continued
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e Conventional graph v e Conventional graph
(89) (91)
(86) ; (92)
(87) (93)
(88) . (94)
(89) (95)
(80) (96)

Table E.3: Continued
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Conventicnal graph

Conventional graph

e
(97) (103)
(98) ; (104)
(99) (105)
(100) F (106)
(101) (107)
@ ’
(102) % (108)

Table E.3: Continued
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Conventional graph

Conventional graph

e
(109) (115)
(110) (116)
(111) (17)
(112) (118)
(113) (119)
@ ‘b
(114) @ (120)

Table E.3: Continued




e Conventional graph e Conventional graph
(121) (127)
) @ 11 @
(122) (128)
(123) (129)
(124) (130)
(125) (131)
@ '
(126) (132)

Table E.3: Continued
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e Conventional graph e Conventional graph
(133) (139)
) @ )
(134) (140)
(135)
(136)
(187)
(138) é

Table E.3: Continued
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