
ABSTRACT 
 

Title of Dissertation:  THE MULTIDIMENSIONAL GENERALIZED GRADED    
UNFOLDING MODEL FOR ASSESSING CHANGE IN 
REPEATED MEASURES 

 
Weiwei Cui    Doctor of Philosophy, 2008  

 
Directed by:                Associate Professor James S. Roberts 
    Department of Psychology  

 
 

 
 

A multidimensional extension of the generalized graded unfolding model for 

repeated measures (GGUM-RM) is introduced and applied to analyze attitude change 

across time using responses collected by a Thurstone or Likert questionnaire.  The model 

conceptualizes the change across time as separate latent variables and provides direct 

estimates of both individual and group change while accounting for the dependency 

among latent variables. The parameters and hyperparameters of GGUM-RM are 

estimated by fully Bayesian estimation method via WinBUGS. The accuracy of the 

estimation procedure is demonstrated by a simulation study, and the application of the 

GGUM-RM is illustrated by the analysis of attitude change toward abortion among 

college students. 

 



 

 
 
 
 
 

THE MULTIDIMENSIONAL GENERALIZED GRADED UNFOLDING MODEL 
FOR ASSESSING CHANGE IN REPEATED MEASURES 

 
 

By 
Weiwei Cui 

 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
 University of Maryland in partial fulfillment  

of the requirements for the degree of 
 Doctor of Philosophy 

2008 
 
 
 
 
 
 
 
 

Advisory Committee: 
Associate Professor James Roberts, Chair 
Professor Chan Dayton 
Professor Robert Mislevy 
Professor Robert Lissitz 
Professor Paul Hanges 



 

 

ii

 
  
 

DEDICATION 
 

This dissertation is dedicated to: 

My parents, my husband, and my daughter. 



 

 

iii

 
  
 

ACKNOWLEDGEMENTS 
 

 
I would like to thank the following individuals and the Department of 

Measurement, Statistics, and Evaluation. To Dr. James Roberts for his patient and 

intelligent supervising through this study; to Dr. Chan Dayton for his encouragement and 

support through my doctoral program; to Dr. Robert Mislevy for his insightful comments 

and suggestions through the study; to Dr. Robert Lissitz for bringing me to this program 

and his thoughtful and experienced guidance through my doctoral program; Dr. Paul 

Hanges for his thoughtful comments and suggestions for this study. 

 

I would also like to thank Otto Gonzalez for allowing me to run the simulation 

using the computer lab; and Hi Shin Shim, Vanessa Thompson, J. Daniel Gordon, 

Zachary Morford, Alisha Monteiro, Casey Bowden and Sheliza Bhanjee for collecting 

the responses in the Georgia Institute of Technology sample.  



 

 

iv

 
  
 

Table of Contents 
 

List of Table……………………………………………………………………………  v 
 

List of Figures  ………………………………………………………………………... vi 
 

I.    Research Objective  ……………………………………………………………….   1 
 
II.   Introduction   ………………………………………………………………………   2 

Problematic Issues in Classical Test Theory Approaches ……………………..   2 
Assessing Individual Change over Time Using Item Response Theory ……….  5 

Unidimensional IRT Approach  ………………………………………..  8 
Measuring Change With Multidimensional IRT Models  ……………...10 

 
III. Unfolding IRT Approach to Measure Change across Repeated Assessments …….. 20 

Modeling Proximity-based Response Processes ………………………………. 20 
Directly Assessing Change in Repeated Measures Designs Using the GGUM... 24 

 
IV. A Parameter Recovery Simulation  ………………………………………………..  32 

Simulation Design ……………………...……………………………………… 33 
Data Analysis and Evaluation of Results.……………………………………… 37 

 
V.  A Real Data Example ……………………………………………………………….42 
 
VI. Results ………………………………………………………………………………44 

Accuracy of Parameter Recovery ……………………………………………… 44 
Real Data Analyses  ……………………………………………………………  61 

 
VII. Discussion and Conclusions  ……………………………………………………..   76 

Discussion   .……………………………………………………………………  76 
Limitations  ………………….…………………………………………………  81 
Conclusion  ……………………………………………………….……………  82 

 
Appendix A.  Time-Series Plots for Alpha, Delta and Taus for Two  

Chains of 10000 Iterations for 10 Items, and Thetas for First  
Five Persons for Two Chains of 10000 Iterations  …………………….………  84 

 
Bibliography  ………………………………………………………………….……….  97 



 

 

v

 
  
 

List of Tables 
 
Table 1   ANOVA Effect for the Analysis of the RMSD of Estimates 

of Item Parameters and Person Parameters ………………………………    45 
Table 2   ANOVA Effect for the Analysis of the Absolute Bias of  

Parameter Estimates ………………………………………………………   46 
Table 3    ANOVA Effect for the Analysis of the Variance Ratio (VR) 

 of Estimates of Item Parameters and Person Parameters …………………  46 
Table 4    ANOVA Effect for the Analysis of the Correlation (r) of 

 Estimates of Item Parameters and Person Parameters ……………………  47 
Table 5   GGUM-RM Item Parameter Estimates ( iδ̂ , iα̂ , and ikτ̂ ) for 

 19 Abortion Attitude Statements …………………………………………   64 
Table 6   Responses for 4 Respondents with Absolute Change Estimates 

 Greater than 1 ……………………………………………………….……   75 
 



 

 

vi

 
  
 

List of Figures 
 
Figure1        Expected Value of an Observed Response to a Hypothetical 

Four-Category Item as a Function of αi and τ ik  ……………………….. 23 
Figure 2        Mean Accuracy Measures for Alpha Estimates for Same  

Form and Alternate Forms   …………………………………………….. 53 
Figure 3        Mean Accuracy Measures for Delta Estimates for Same  

Form and Alternate Form  ……………………………………………… 54 
Figure 4        Mean Accuracy Measures for Delta Estimates for 10, 20,  

and 30 Items ……………………………………………………………. 55 
Figure 5        Mean Accuracy Measures for Tau Estimates for Same  

Form and Alternate Form  ……………………………………………… 56 
Figure 6        Mean Accuracy Measures for Tau Estimates for 10, 20,  

and 30 Items  …………………………………………………………… 57 
Figure 7        Mean Accuracy Measures for Theta Estimates for 10, 20,  

and 30 Items  …………………………………………………………… 58 
Figure 8        Interaction of and Test Length for RMSD and Correlation of 

Individual Change Estimates …………………………………………… 59 
Figure 9       RMSD of Group Change Estimate 1000 and 2000 Respondents ………. 60 
Figure 10     RMSD of Estimated Variance of Latent Distribution for 10,  

20, and 30 Items  ……………………………………………………….. 60 
Figure 11     Scatter Plot of Estimates of Item Location Parameters at 

Baseline against Estimates of Item Location Parameters at the 
Second Assessment Time ……………………………………………… 62           

Figure 12      Scatter Plot of Estimates of Item Discrimination Parameters at 
Baseline against Estimates of Item Discrimination Parameters at the 
Second Assessment Time  ………………………………………………62 

Figure 13     Scatter Plot of Estimates of Item Threshold Parameters at 
Baseline against Estimates of Item Threshold Parameters at the 
Second Assessment Time ……………………………………………… 63 

Figure 14     Estimated Item Locations for 19 Abortion Items ………………………. 67 
Figure 15     The ICC for Item 14…………………………………………………….. 67 
Figure 16     Average Observed and Expected Responses by Theta Group for  

Item 1-4  ……………………………………………………………….. 69 
Figure 17     Average Observed and Expected Responses by Theta Group for  

Item 5-8  ……………………………………………………………….. 70 
Figure 18     Average Observed and Expected Responses by Theta Group for  

Item 9-12 ………………………………………………………………  71 
Figure 19     Average Observed and Expected Responses by Theta Group for 

Item 13-16……………………………………………………………..   72 
Figure 20     Average Observed and Expected Responses by Theta Group for 

Item 17-19   ……………………………………………………………  73 
Figure 21     Scatter Plot of Estimate of Individual Change against Their for 

Initial Level ……………………………………………………………  74 



 

 

1

 
  
 

I.  Research Objectives 

In many areas of educational and psychological measurement, measuring change 

over time is of great interest. This dissertation focuses on measuring change over time in 

the context of item response theory (IRT).  Specifically, a new multidimensional 

extension of the generalized graded unfolding model (GGUM; Roberts, Donoghue, & 

Laughlin, 2000) is developed and explored.  The traditional GGUM is a unidimensional 

IRT model for unfolding binary or graded responses to Likert or Thurstone style attitude, 

satisfaction or preference questionnaires.  The model postulates a proximity-based 

response process between an individual and an item such that higher item scores are 

expected to the extent that the individual is located close to the item on a unidimensional 

latent continuum.  The traditional GGUM is extended to the multidimensional case in this 

project in an effort to quantify changes in these types of proximity-based constructs over 

time. 

This dissertation first reviews the seminal literature on the measurement of 

change from both a classical test theory and an item response theory perspective.  A new 

multidimensional version of the GGUM is then described for the measurement of change 

in proximity-based constructs using repeated measures designs.  A simulation study is 

designed and conducted to assess the data demands required for accurate recovery of 

model parameters using a fully Bayesian estimation method implemented via the 

WinBUGS computer program.  Finally, the model is applied to real data from a self-

report questionnaire designed to measure one’s attitude to abortion in a repeated 

measures context. 
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II. Introduction 

Problematic Issues in Classical Test Theory Approaches to the Measurement of 

Individual Change over Time 

The earliest discussions on assessing change over time generally focused on 

classical test theory (Thorndike, 1924; Garside, 1956; Bereiter, 1963; Lord, 1962, 1963).  

Within the classical test theory (CTT) framework, change over time is typically measured 

as the difference between raw test scores from successive test administrations.  In the 

simplest case, this change would be measured as the difference between raw pretest and 

posttest scores.  Pretest and posttest scores are measured at a manifest variable level, as is 

the change score derived by differencing them.   In other words, they are both considered 

observed scores in CTT.  CTT formulates the observed score as a function of a true score 

and an error term (i.e., measurement error):  

jjj ETX +=   (1) 

where 

Xj is the observed score for the jth person, 

Tj is the true score for the jth person, and 

Ej is the measurement error for the jth person.  

The CTT model assumes that the measurement errors are distributed with a mean of zero.  

Therefore, the true score is equal to the expected value of the observed test score.   

Suppose we denote two observed test scores for person j as Xj1 and Xj2.  The CTT model 

represents the difference between these two observed test scores as: 

jDjDjjjjjjjjjjj ETEETTETETXXD +=−+−=+−+=−= 1212112212 )(   (2) 

where 
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Dj is the observed difference score for the jth person, 

Tj2 is the true score for the jth person on the second test, 

Tj1 is the true score for the jth person on the first test, 

Ej2 is the error score (i.e., measurement error) for the jth person on the second test, 

Ej1 is the error score for the jth person on the first test, 

TjD is the true difference between the two tests for the jth person, and 

EjD is the difference in error scores for the jth person on the two tests. 

As we will see below, this simple conception of a difference score within CTT can lead 

to some interesting psychometric problems.  

Reliability of Change Scores. The reliability paradox in CTT when measuring 

change over time is widely recognized. Bereiter (1963) pointed out that the reliability of 

change scores decreases as the correlation between pretest and posttest scores increases, 

holding other conditions constant.  Lord (1963) mathematically showed that this would 

happen when using differences between pretest and posttest scores as the measure of 

change.  However, a stable test structure that measures the same content domain over 

time is generally preferred when measuring change over time, and thus, strong 

correlations are usually seen as an advantage. This results in a paradox because 

researchers desire pretest and posttest scores that correlate to a large extent, but reliability 

of the corresponding change score decreases as the correlation increases.    

In contrast to the perspectives of Bereiter (1963) and Lord (1963), some 

researchers have argued that change scores can be reliable even though the reliability 

paradox holds mathematically (Zimmerman and Williams, 1982, 1998; Regosa and 

Willet's 1983; Williams & Zimmerman, 1996, 1999).   One can see this by examining 
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Equation 2.  If there were few individual differences in the amount of change in true 

score (i.e., TjD is fairly constant across examinees), then the variance of the resulting 

difference score would be primarily a function of the difference between two sources of 

measurement error (i.e., EjD).  In that case, the reliability of the observed difference score 

would be low.  In contrast, if there was substantial individual variation in TjD relative to 

EjD, then the observed difference score could be quite reliable.  

The Meaning of Change Scores Constructed from Different Initial Score Levels.  

Bereiter (1963) indicated that measuring and comparing change scores from pretest to 

posttest implied that equal raw score changes at various points on the scale correspond to 

equal changes in the trait being assessed. In other words, the pretest and posttest scores 

must be measured at the interval scale level in order to correctly interpret change scores.  

However, classical test theory makes no presumptions about the level of measurement 

(i.e., ordinal, interval, etc.) that is achieved for either the pretest or posttest, and thus, the 

corresponding change score (or some linear transformation of it) will not necessarily 

represent an interval scale.  This is especially the case in educational and psychological 

testing practice. Fischer (2003) argued that a compression of the scale is bound to occur 

near the boundaries of the score (i.e. floor and ceiling effects are common when using 

raw scores). Consequently, change scores for individuals with different initial score 

levels will generally have different meanings. For example, a small change score for an 

individual with a high initial score may have a different meaning than the same amount 

of change for an individual with a moderate initial score.  

Negative Correlation of the Change Score and Initial Score. Some researchers 

(Thorndike, 1924; Bereiter, 1963; Lord, 1963) observed that difference scores are 
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negatively related to the pretest scores. Two main reasons have been used to explain the 

occurrence of the negative correlation between baseline measures and change estimates. 

One is ceiling and floor effects (Wilder, 1967). As scores approach the boundaries of the 

scale, there is not enough scale space for individual to express his or her response.  This 

may produce smaller changes for individuals at the one extreme end than those at the 

other extreme end of the scale. Another reason is the regression effect caused by errors of 

measurement (Lord, 1963; Cronbach & Furby, 1970). Lord (1963) showed that this 

negative correlation is due to the fact that the difference score has a measurement error 

component that is opposite in sign but identical in absolute value to the measurement 

error in the pretest score. This is apparent in Equation 2 where EjD is equal to Ej2 – Ej1.  

Thus, when considering Equations 1 and 2, both the initial observed score and the 

observed difference score are a function of Ej1, although the signs of these functions are 

reversed. The CTT model suggests that all manifest test scores generally contain some 

degree of measurement error.  Thus, when measurement error is not negligible, this 

problem is unavoidable for measures of change based on CTT.  

 

Assessing Individual Change over Time Using Item Response Theory 

Item response theory (IRT) is a widely used modern psychometric technique in 

educational and psychological assessment.  It describes the interaction between a person 

and a categorically scored item assuming that the characteristics of the person can be 

represented by one or more hypothetical constructs. The hypothetical construct(s) is 

modeled as latent variable(s) within IRT and it can be unidimensional or 

multidimensional depending on the underlying theory. IRT models represent item and 
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person characteristics as model parameters that are calibrated simultaneously.  This yields 

item characteristics and person locations (i.e., scores) that are measured on latent scale 

level.  

An IRT model offers several benefits when it fits a given set of item response 

data. It provides invariant interpretations of person parameters regardless of the 

distributional characteristics of test or survey items. It also provides interpretations of 

item parameters that are invariant to the distribution of respondents on the latent 

continuum. Finally, it allows one to approximate the precision that has been achieved 

when estimating a given model parameter. This, in turn, enables one to estimate how well 

each individual has been measured using a given test or survey. 

In testing practice, repeated measures designs are often used to assess individual 

change over time. The same test/questionnaire or alternate tests/questionnaires are 

repeatedly administered to the same individuals at each time point.  When the same 

test/questionnaire is used, there is some potential for invalidity due to memory or learning 

effects caused by repeated presentation of the same items. In order to alleviate these 

contaminating effects, alternate test/questionnaire forms maybe used at different 

assessment administrations. If alternate forms are used, they must be linked to common 

metric.  A common metric is often achieved by placing common items across alternate 

forms, and then using responses to the common items to link the origin and scale of item 

parameters across forms. Two types of alternate forms are typical in testing practice.  

With one type, items on all forms are constructed to possess similar locations on the 

latent continuum. With the other type, items are constructed to have systematically 
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different locations across forms.  For example, attitude items may be constructed to 

assess more extreme attitudinal positions across forms.   

Both unidimensional and multidimensional IRT models have been used to assess 

change in repeated measures designs, though they conceptualize and characterize change 

over time in different ways.  When an IRT model is used to assess individual change over 

time based on responses to a repeatedly administered test or survey, it is usually assumed 

that a person’s position on the latent continuum varies over time, whereas the 

characteristics of test or survey items are generally held fixed across the repeated 

administrations. 

 IRT approaches to measuring individual change avoid some of the problems 

addressed by Lord (1963) and Bereiter (1963).  When specific IRT model parameters are 

used to represent individual change, these parameters do not depend on the correlation of 

successive pairs of raw test scores (Embretson, 1991).  Instead, the precision of the 

individual change estimate is evaluated by the inverse of information matrix.  

Consequently, the reliability paradox is a moot issue when IRT is used to directly 

measure individual change.  Additionally, the nonlinear relationship that is typically 

assumed between raw scores and latent traits in most IRT models suggests that the same 

change in raw score may be associated with different amounts of change in the latent trait 

depending on the magnitude of the initial raw score (Embretson, 1991; Roberts & Ma, 

2006).  Appropriate use of IRT models also helps to remove ceiling/floor effects, which 

are both possible reasons for the negative correlation between initial levels and change 

estimates.  However, measurement errors still exist even when IRT models are 

appropriately used. Thus, unless we have perfect measures, this negative correlation 
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between initial score and change estimates will also be observed when IRT approaches 

are used to estimate individual change.  Some unidimensional and multidimensional IRT 

approaches will be introduced in the following two sections. 

 

Unidimensional IRT Approach 

Unidimensional IRT models assume that a person’s response to a test item is 

determined by only one underlying theoretical construct. For a repeated measures design, 

either the same test/questionnaire or alternate test/questionnaire forms are given to the 

same individuals at each assessment time point. Then, person parameters based on an 

IRT model are estimated at each assessment time point and the intra-subject difference 

between estimates provides a measure of each individual’s change. This approach 

requires that the model should hold for the data at each time point.  The approach also 

presumes that item parameters remain stable over time. 

When the unidimesional IRT approach is used, the metric of the model 

parameters must be linked through common items across test/questionnaire forms. Two 

methods can be used to establish a common metric when using IRT models: separate 

calibration (Kolen & Brennan, 2004) and simultaneous calibration (Lord, 1980).   These 

two methods are briefly described below. 

Separate calibration. The model parameters are estimated separately at each time 

point. The θ scale for one time point, such as the starting point, is chosen as the baseline 

metric, and then responses to common items are used to place estimates of model 

parameters derived from responses to other forms onto the baseline metric using standard 

linking methods (e.g., mean/mean, mean/sigma, or item characteristic curve methods).  
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After the parameter estimates for the separate calibrations are placed on the same scale, 

then measures of individual change are derived simply by differencing a given person’s θ 

estimates at successive time points.  

Separate calibration estimates all model parameters independently at each time 

point. Consequently, estimates of item parameters for common items can drift over time 

because there is nothing in the method that constrains parameters for common items to be 

equal across calibrations. This violates the assumption that common item parameters 

must be stable across time when using this technique. 

Simultaneous calibration. With simultaneous calibration (a.k.a. concurrent 

calibration), individual responses from all time points are used to estimate all model 

parameters in a single calibration run.  Responses from each assessment time point are 

treated as though different individuals responded to each form.  The responses from each 

assessment period are then combined into one data set that is subsequently analyzed.   

Responses to common items are available for all time points, but responses to the unique 

items are only available for the single corresponding assessment time. Responses are 

coded as “not reached” or “missing” for the unique items not taken at a given assessment 

time. When these data are subsequently analyzed with a unidimensional IRT model, the 

resulting estimates of item parameters and person parameters will be on the same metric.  

As in the separate calibration method, individual change is measured simply by 

differencing a person’s θ estimates at successive time points.   

Simultaneous calibration allows the prior distribution of the latent trait to differ at 

each time point if responses from each time point are treated as though they are from 

multiple groups. Additionally, the parameters characterizing common items are forced to 
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be equal across time points, and thus, there is no apparent item drift.  However, it does 

not account for the correlations of latent trait distributions across time. 

 

Measuring Change With Multidimensional IRT Models 

Multidimensional IRT (MIRT) models assume that a person’s response to a test 

item is determined by more than one underlying theoretical construct and represent all 

relevant constructs within a single IRT model. MIRT has been used to assess change over 

time in two ways. One way is to conceptualize the person’s latent trait at each time point 

as one dimension, and thus, each individual has a latent profile across time.  As with the 

unidimensional IRT approach, change is assessed by the differencing the latent trait 

estimates between successive time points. However, the multivariate approach provides a 

benefit that the unidimensional approach does not.  Specifically, the multivariate 

approach provides direct estimates of the correlation among the latent variables in the 

profile. A second way of implementing a multivariate IRT approach to change 

assessment is to conceptualize the change between two adjacent time points as a separate 

dimension.  A respondent's "composite" latent trait at each time point is then calculated 

as the sum of the baseline latent trait and all subsequent changes between latent traits at 

preceding adjacent time points. This composite latent trait can be used to examine 

traditional IRT formulations such as the item characteristic function or the item 

information function, etc.  An advantage of this second IRT approach is that change in 

the latent trait is parameterized directly in the model rather than deriving it after the fact 

by subtracting latent trait profile estimates. Additionally, as the first approach, the 

correlation matrix can be estimated directly.   
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 Several MIRT models have been developed to assess change over time by either 

conceptualizing the θ at each time point as a separate dimension or the change over 

adjacent time points as a separate dimension (Andersen, 1985; Fischer and Pazer 1991; 

Embretson 1991; Fischer and Ponocny 1994; Fischer 2003; Wang, Wilson & Adams, 

1998; Wang & Chyi-In, 2004; Reckase & Martineau, 2004; Roberts and Ma 2006; te 

Marvelde, Glas, Van Landeghem & Van Damme, 2006). Some of the models are briefly 

described and compared below.  

Andersen’s model. A multidimensional Rasch type IRT model was proposed by 

Andersen (1985) to estimate change in latent trait scores for repeated measures designs.   

Like all the multidimensional approaches discussed in this section, this method estimates 

the correlation among latent trait scores across time.   Assume that same 

test/questionnaire is given to same individuals at each time point and the following 

conditions hold: 

1) The probability of a response to any test item follows Rasch model. 

2) An individual’s response vector at a given time point is conditionally 

independent from the individual’s response vectors at other time points 

given the latent traits associated with the given time point.   

3) Item parameters are invariant across time points. 

4) Response vectors for different individuals are independent. 

The probability of a “correct” response from the jth individual to the ith item at time t can 

be defined as: 

    ( )
( )itj

itj
tjtij

b
bXP
−+
−

==
θ
θθ

exp1
exp)|1(                             (3) 

where 
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θjt is the latent trait parameter for the jth individual at assessment time t (i.e., the person 

parameter) ,  

bi is the location parameter of the ith item on the latent continuum (i.e., the item 

parameter). 

Because Andersen's model is a Rasch type IRT model, sufficient statistics exist 

for both item and person parameters and these parameters can be calculated using a 

conditional maximum likelihood estimation procedure. The multiple latent trait estimates 

for a given individual constitute a profile.  Change is then assessed by calculating the 

difference of latent trait estimates between adjacent time points. Andersen (1985) also 

showed that correlations among latent trait densities could be estimated using this model.  

Andersen’s model is only appropriate for repeated measures designs that use the 

same test/questionnaire at each assessment point, not for alternate test/questionnaire 

forms, which are often used in testing practice, too. This property may limit the 

application of the model.   Moreover, users of this model would assess change over time 

by constructing differences between latent trait scores in a given profile, which implies 

that the change over time is not directly estimated. Whether this is a reasonable strategy 

depends on the researcher’s primary interest. For example, if the main purpose of the 

research is to estimate a respondent’s latent trait score at each time point while 

accounting for the correlation among latent trait distributions, this model is appropriate 

and preferred. If the researcher is interested in assessing individual change over time, 

then this model suffers from the fact that it does not provide a direct estimate of such 

change. Estimating change by constructing differences between adjacent latent trait 
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scores suffers from the same reliability paradox that was previously mentioned for the 

gain score approach from CTT (Lord, 1963; Roberts & Ma, 2006).   

Roberts & Ma (2006) also pointed out that, although Andersen's model is 

multivariate in form, it is conceptually univariate in nature. They argued that Andersen’s 

model is mathematically multivariate in form, but focuses on only one single variable, as 

in the multivariate approach to repeated measure in analysis of variance (ANOVA) 

model.  

Multidimensional Rasch Model for Measuring Learning and Change (MRMLC).   

Embretson's (1991) developed the MRMLC model to directly assess individual change 

over time and account for the correlation between latent trait scores across time. One 

latent dimension is postulated to represent the initial (a.k.a. baseline) latent trait, and one 

or more additional dimensions are used to represent latent change over time.  Embretson 

referred to these latent change scores as “modifiabilities”.   The probability function of 

MRMLC can be mathematically defined as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==

∑

∑

=

=

i

t

q
qj

i

t

q
qj

Tjjtij

b

b
XP

1

1
,...,1)(

*

*

**

exp1

exp
)|1(

θ

θ
θθ                                               (4)   

Where 

( )ji tX  represents a response from the jth individual to the ith item where that item may be 

administered at one or multiple assessment times, each of which is indexed by t, 

q = 1, 2, …, T is a given assessment time point (i.e., q is simply a counter that indexes 

time points between 1 and t), 

t = 1, 2, …, T is the assessment time point for the response in question, 
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θj1
* = θj1 is latent person parameter of the jth respondent for the baseline (time 1) level, 

θj2
* = θj2 - θj1 is the latent change parameter of the jth respondent from time 1 to time 2, 

…,             

θjt
* = θjt - θj(t-1) is the change parameter of the jth respondent from time t-1 to time t with t 

= 3, …, T, and  

ib  is the location parameter of the ith item on the latent continuum. 

In practice, items may be unique to a given form or may be administered on several, if 

not all, forms.     

The MRMLC is appropriate for binary responses to either the same form or 

alternate forms with common items among them.  Because the model is a Rasch-type IRT 

model, Embretson (1991) was able to derive conditional maximum likelihood estimates 

of item and person parameters. She showed that in addition to the person and item 

parameters, the MRMLC also provides direct estimates of the hyperparameters of latent 

variable distributions. Estimates of the associated mean vector and variance-covariance 

matrix for θjt
* can be derived using traditional maximum likelihood techniques.  These 

quantities are denoted here as: 

 µ µ µ µθ θ θ= ⎡
⎣⎢

⎤
⎦⎥j j jT1 2* * *

, ,..., , and 
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The variance-covariance matrix can be transformed into a correlation matrix, in which 

the off diagonal elements represent the correlation among latent variables. 

When using this model, the sum of the initial latent trait level and all the latent 

change scores up to the tth time point can be used to construct a composite latent trait 

variable at time t:   

θ θjt jq
q

t

=
=
∑ *

1

                                  (5) 

where 

q = 1,2,…, t is a given assessment time point (i.e., q is simply a counter that indexes time 

points between 1 and t), 

θjt
  is the composite latent trait parameter for the jth respondent at assessment time point t, 

when t=1; it equals the value of initial latent trait, and 

θjq
* is the latent change parameter of the jth respondent from time q-1 to time q. 

This composite variable can be used to produce traditional IRT formulations like item 

characteristic curves, item information curves, etc.  Within a given time point, an 

individual’s response to all items depends on the composite latent trait at that time point. 

That is, a unidimensional IRT model based on the composite variable holds for all items 

within a given time point. Embretson (1991) demonstrated how the MRMLC solved 

Bereiter’s (1963) three psychometric problems by conceptualizing the latent changes as 

separate dimensions within multidimensional IRT. 

Unlike the Andersen model, the MRMLC directly estimates changes in the latent 

trait for an individual across assessment periods and this overcomes the fundamental 

problems associated with taking differences between either successive raw scores or 

successive latent score estimates.  If the researcher is interested in the latent trait level of 
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an individual at any assessment time, then it can be expressed as composite latent trait at 

time t, which is the sum of the initial latent trait level and all the latent changes up to the 

time t.  However, the MRMLC is somewhat limited. It is only appropriate for 

dichotomous responses and, like all Rasch models, the discrimination parameters are 

constrained to be equal across all items. Again, Roberts and Ma (2006) pointed out that 

the MRMLC is multivariate in its mathematical form, but univariate in nature, just like 

the Andersen model. 

Generalizations of the MRMLC. The MRMLC is an additive model that is 

designed only for dichotomous responses. This limits the application of the model in 

testing practice because there are situations in which polytomous item responses are used 

and there are also situations in which a Rasch-type model does not fit the item responses 

well.  In these situations, a more general IRT model maybe needed.  For example, the 

generalized partial credit model (GPCM; Muraki, 1992) is used to model responses to test 

items in the National Assessment of Educational Progress (NAEP; Allen, Donoghue & 

Schoeps, 2001). Several extensions of MRMLC to accommodate polytomous responses 

and varying discrimination parameters have been proposed using the same 

conceptualization of change over time (Wang, Wilson & Adams, 1998; Wang & Chyi-In, 

2004; Roberts and Ma, 2006).  Wang, Wilson & Adams (1998) generalized the MRMLC 

to assess change over time when polytomous item responses are used on test 

administrations. In essence, they extended Embretson’s MRMLC to the case where a 

partial credit model (Masters, 1982) would be appropriate at a given time point.  Wang & 

Chyi-In (2004) subsequently demonstrated that the gain score estimated by this 
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polytomous model could be used as an estimate of effect size along with a standard error 

estimate.   

The Wang et al. (1998) generalization of the MRMLC retains the additive 

property of Rasch models, which makes it inappropriate for situations in which not all 

items have the same discrimination parameter. Roberts and Ma (2006) further generalized 

the MRMLC to accommodate varying discrimination parameters across items. In their 

model, changes over time are conceptualized as separate dimensions and items within 

each assessment time are treated as unidimensional, just as in the MRMLC. The IRT 

model used for each assessment administration is the GPCM, and thus, the model is 

called GPCM for repeated measures (GPCM-RM).  The category probability function of 

GPCM-RM is defined as: 
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where 

Xji(t) = 0,1,…,Mi is the observed response of person j to item i at assessment time t, 

βik is the kth step location of the ith item on the latent continuum, 

αi  is the discrimination of the ith item on the latent continuum, and 

θjt
*  are defined as in Equation 4.  

Note that β and αi may be repeated across forms.  Model identification and estimation is 

complex for GPCM-RM. Roberts and Ma (2006) constrained the first step location and 

the discrimination parameter for one common item to identify the model and used a fully 

Bayesian technique to estimate model parameters and hyperparameters of the latent 
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variable distributions.  These hyperparameters represent the means of the baseline latent 

variable and latent change score distributions, and the corresponding variance-covariance 

matrix among these latent variables.  Again, the covariance matrix can be transformed 

easily into a correlation matrix.  

Multidimensional GPCM for Repeated Measures. te  Marvelde, Glas, Van 

Landeghem & Van Damme (2006) generalized the GPCM to the multidimensional case 

with T dimensions.  The authors showed how such a model could be used to analyze 

longitudinal survey data when repeated measures are used.  This multidimensional 

GPCM model can be expressed as: 
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where 

k = 1,…, mi is the response to a given item, 

h = 1, …, mi is a counter index, 

mi is the total number of categories for the ith item, 

αi = (αi1, αi2, …,  αiT) is a T-dimensional vector of discrimination parameters, 

bi = (bi1, bi2, …,  bimi
) is a mi-dimensional vector of location parameters (i.e., step 

parameters), 

θj = (θj1, θj2, …, θjT) is a T-dimensional vector of person parameters,  

Xjik equals 1 if the jth person gives a response in category k of item i; otherwise Xjik equals 

to zero. 
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As indicated by te Marvelde et al. (2006), the model described by Equation 7 is a 

very general model that will often be constrained when measuring latent change over 

time.  Specifically, constraints will generally be placed on discrimination parameters so 

that item characteristics are fixed across assessment points.  With such constraints in 

place, the model is similar to the GPCM-RM:  
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The model above could easily be denoted to incorporate items that are nested within a 

test form administered at a specific time point, t.  Therefore, it differs from the GPCM-

RM primarily because it estimates a composite latent trait score at each time point; 

specifically, it yields latent profile scores over time.  In contrast, the GPCM-RM 

parameterizes individual differences using an initial (baseline) latent trait and subsequent 

latent change between successive time points. Te Marvelde et al. (2006) used a marginal 

maximum likelihood technique with a multivariate normal prior distribution to estimate 

item parameters, latent growth profiles, and the covariance matrix for the latent traits.  

This is different from the fully Bayesian estimation technique used by Roberts & Ma 

(2006) to estimate parameters of the GPCM-RM. 
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III. Unfolding IRT Approach to Measure Change across Repeated 
Assessments 

 

Modeling Proximity-based Response Processes 

The unidimensional and multidimensional IRT models discussed in the preceding 

sections all assumed that item responses resulted from a dominance-based response 

process.  In this case, a cumulative (i.e., monotone) IRT model is generally consistent 

with the data.  A cumulative IRT model suggests that higher item scores are more likely 

to the extent that the respondent possesses higher levels of the latent trait(s).  Although 

cumulative IRT models are often appropriate for tests of achievement and proficiency, 

they may not adequately represent questionnaire data designed to measure constructs 

such as attitudes, satisfaction, and preference.  These constructs are often measured with 

questionnaires constructed in the Likert (1932) and Thurstone (1927, 1928) traditions.  

Moreover, several researchers have argued that responses from such questionnaires are 

generally more consistent with the notion of proximity-based response process (Andrich, 

1996; Roberts, Laughlin, Wedell, 1999; van Schuur & Kiers, 1994).  In a proximity-

based response process, an individual will agree with or more readily select an item to the 

extent that the content of the item matches the individual's own ideal level with respect to 

the construct of interest.  This process generally results in different response patterns than 

those arising from a dominance-based response process, and therefore, different models 

are often required to adequately represent the data.  

 Unfolding IRT models have been developed to analyze responses resulting from 

a proximity-based response process.  Unfolding IRT models imply that higher item 

scores are more likely when the individual is located close to an item on the latent 
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continuum as opposed to more distant locations. One of the most general unfolding IRT  

models is the generalized graded unfolding model (GGUM, Roberts, Donoghue & 

Laughlin, 2000).  The GGUM is a unidimensional unfolding model that is appropriate for 

either binary or graded responses. If the model fits the response data, the GGUM offers 

the same advantages as any other parametric IRT model.  These advantages include 

sample invariant interpretation of item parameters, item invariant interpretation of person 

parameters, and estimates of precision at the parameter level. 

 The GGUM is mathematically defined by its category probability function: 
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 (9)      

where 

z = 0, 1, 2, … , C; represents individual’s response to an item, 

C = the number of observed response categories minus 1, 

M = 2*C +1, 

θj is the location parameter of the jth individual on the latent continuum, 

δi  is the location parameter of the ith item on the latent continuum, 

αi is the discrimination parameter of the ith item, 

τik is the kth subjective response category threshold parameter for the ith item.  

The unidimensional GGUM allows both discrimination and threshold parameters 

to vary across items. The item characteristic curve (ICC) under the GGUM is always 

single peaked (Donoghue, 1999) unless the corresponding discrimination parameter is 
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equal to zero.  The shape of the ICC is influenced by both discrimination and threshold 

parameters. Figure 1 illustrates how the expected value of an observed response to a 

hypothetical item with four response categories is influence by the value of 

discrimination and threshold parameters, respectively, when holding values of other 

model parameters constant. A comparison of panels 1a to1b and 1c to 1d shows that the 

maximum expected value is greater and the shape of the ICC is more peaked as αi 

increases from 1 to 1.5. Additionally, the effect of increasing the distance between 

subjective response category thresholds can be seen by comparing panels 1a to 1c and 1b 

to 1d.  The interthreshold distance is increased from .25 to .5 across these comparisons.  

Consequently, the maximum expected value increases with greater interthreshold 

distance, but the shape of ICC becomes less peaked.  This second effect of increasing the 

interthreshold distance is opposite from that found when increasing the value of the 

discrimination parameter.  Consequently, these two types of parameters have 

distinguishing features that may prove useful when modeling a given set of data. 
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Figure1: Expected Value of an Observed Response to a Hypothetical Four-Category Item 

as a Function of αi and τ ik   

  

Roberts et al. (2000) used a marginal maximum likelihood (MML) technique to 

estimate item parameters in the GGUM along with an expected a posteriori (EAP) 

method to estimate person parameters. Roberts, Donoghue and Laughlin (2002) 

subsequently examined the accuracy of these methods and found that very accurate 

estimates of item parameters could be obtained with the MML technique when using 750 

to 1000 respondents.  Similarly, accurate estimates of person parameters were obtained 

using responses to 15-20, equally spaced items with 6 response categories per item.  

Additional simulation studies have been performed to explore the data demands under 

a. α i = 1,  δ  i  =0,  τ  ik   = 0, -.75, -.5, -.25 b. α i = 1.5,  δ i  =0,  τ  ik   = 0, -.75, -.5, -.25

c. α i = 1,  δ  i  =0,  τ  ik   = 0, -1.5, -1, -.5 d. α i = 1.5,  δ i  =0,  τ  ik   = 0, -1.5, -1, -.5
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different sample sizes, test lengths, and with different numbers of response categories 

(Cui, Roberts & Bao, 2004). The results suggested that when fewer response categories 

are used, larger sample sizes (i.e., between 1000 and 1250) would be required to obtain 

accurate estimates of item parameters.  However, 20 items still appeared sufficient to 

produce reasonably accurate estimates of person parameters, regardless of the number of 

response categories.     

 

Directly Assessing Change in Repeated Measures Designs Using the GGUM 

In addition to assessing growth of knowledge, skills and cognitive levels, 

assessing the change in attitude toward an academic subject, the change in satisfaction 

with instruction, or the change in preference of instruction styles may be both relevant 

and important to educational practice.  A number of researchers have suggested that these 

psychological characteristics follow an ideal point process (Andrich, 1996; Roberts, 

Laughlin, Wedell, 1999; van Schuur & Kiers, 1994), and thus, they can be modeled more 

appropriately with an unfolding IRT model. Given the emphasis on measuring change 

over repeated measures, an unfolding model that directly models changes in attitude, 

satisfaction and preference and the dependency of latent traits is needed. This study will 

recast the GGUM into a multidimensional form in order to assess change using the same 

logic implemented in the GPCM-RM.  

One advantage of the MRMLC and the GPCM-RM for assessing change over 

time is that they conceptualize change itself as a separate dimension and model it directly 

using an appropriate parametric IRT model. This same idea can be applied to 

conceptualize changes in attitude, satisfaction and preference while incorporating an 
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appropriate parametric unfolding IRT model, such as the GGUM, to analyze responses 

collected from Likert or Thurstone questionnaires at each assessment administration. 

Indeed, this idea is used herein to develop a new IRT model.  This new model is referred 

as the generalized graded unfolding model for repeated measures (GGUM-RM).   

The GGUM-RM is defined by its category probability function: 
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for z = 0, 1… C,  

where 

( )ji tZ  represents a response from the jth individual to the ith item where that item may be 

administered at multiple assessment times, each of which is indexed by t,  

q = 1, 2, …, T is a given assessment time point (i.e., q is simply a counter that indexes 

time points between 1 and t), 

t=1,2, …,T is the assessment time point for the response in question,  

C is the number of response categories minus 1,  

M is equal to 2*C+1, 

θj1
* = θj1 is the initial (i.e., baseline) level of the latent trait for the jth person, 

θj2
* = θj2 -θj1  is the change in the level of the latent trait from baseline to time point 2,      

 …….            

θjt
* = θjt -θj(t-1)  is the change in the level of the latent trait from time t-1  to time point t,      

δi  is the location parameter for item i, 



 

 

26

 
  
 

τik  is the kth threshold for item i, and  

αi is the discrimination parameter for item i. 

A unidimensional GGUM is presumed to hold for all items administered at each 

assessment time point, and the construct measured by the items is held constant across 

time points. Thus, the parameters of αi, δi  and τik  are held constant for common items on 

successive test administrations. This model treats the baseline level of the latent trait and 

successive latent changes over time as separate dimensions in a mathematical sense, but 

the underlying latent trait represents the same psychological construct over assessment 

periods.  An individual’s composite latent trait level at the tth time point can be derived by 

the sum of the initial latent trait level and all the latent change scores up to the tth time 

point: 

θ θjt jq
q

t

=
=
∑ *

1

                                (11) 

where 

q, θjt
 , and θjq

* are defined as in equation 5.                                                                    

This composite score can be used to generate traditional IRT quantities, such as the item 

characteristic curve, the test characteristic curve, the item information function, etc. Since 

responses are from repeated measures of the same individuals, the latent variables are 

dependent. This dependency among latent variables can be ascertained via direct 

estimates of the variance-covariance matrix corresponding to the multivariate normal 

distribution.  (The variance-covariance matrix can be transformed into a correlation 

matrix if desired).  The associated centroid of that distribution can also be directly 

estimated.   
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Benefits of the GGUM-RM. If model fits the data, the new GGUM-RM has all 

advantages associated with any parametric IRT model, and it generally provides a more 

adequate representation of responses from a Likert-type or Thurstone-type scale than do 

cumulative IRT models.   In addition, the GGUM-RM provides direct estimates of the 

latent change over time while accounting for the correlation between latent variables.  

Parameterizing change as alternative latent dimensions resolves the reliability paradox 

mentioned earlier because the precision associated with a given latent change estimate is 

not dependent on the correlation between raw test scores at successive points in time  

(Embretson, 1991).  Thus, practitioners can choose tests/questionnaires with high 

correlations at different assessment administrations without degrading the reliability of 

the latent change estimates. Also, te Marvedle et al. (2006) pointed out that taking into 

account of the dependency between latent variables would increase the accuracy of 

estimates of change. 

Model Identification and Parameter Estimation in GGUM-RM.  The GGUM-RM 

is not identifiable without further constraints.  The constraint strategy implemented by 

Roberts and Ma (2006) in the GPCM-RM was to fix the first step location and 

discrimination parameter for a common item to arbitrary values (i.e., 0 and 1, 

respectively). This provided a unique scale origin and unit required to estimate the 

remaining model parameters.   However, a preliminary study of the GGUM-RM showed 

that this method did not provide stable estimates of model parameters. We suspect that 

this problem was due to the greater amount of metric uncertainty encountered when 

identifying the scale by fixing the location and discrimination parameters for one item as 

compared to fixing the mean and variance of the latent trait. Additionally, Roberts, 
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Donoghue and Laughlin (2000) originally removed the indeterminacy of GGUM 

parameter estimates by fixing the mean and variance of the latent trait distribution.  Thus, 

the behavior of GGUM parameter estimates using other constraints to remove model 

indeterminacies was never investigated.  It could be that fixing the location and scale 

parameters for a single item leads to less stable estimation when there are local maxima 

in the likelihood function like those that have been reported with unfolding models such 

as the GGUM.  In any event, removing the indeterminacies inherent in the GGUM-RM 

by restricting the mean and variance of θj1
* appears to be a feasible solution. Specifically, 

for this model, the mean and variance of the latent initial level are set to 0 and 1, 

respectively. But the mean and variance of other latent variables, and the covariances 

among all latent variables are free parameters to be estimated. Thus, in addition to item 

and person parameters, the model can also provide a direct estimate of latent group 

change and the covariance of latent change: 
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After the model is identified, model parameters and hyperparameters can be estimated 

using a fully Bayesian estimation technique. This technique combines information about 

the prior distributions of model parameters and hyperparameters along with the 

traditional likelihood function to produce a joint posterior probability distribution of all 

parameters. This distribution can be used to calculate the posterior mean of each model 
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parameter.  In this study, a fully Bayesian solution is obtained using a Markov chain 

Monte Carlo (MCMC) procedure implemented in the WinBUGS computer program 

(Spiegelhalter, Thomas, Best, & Lunn, 2003). The MCMC procedure is an iterative 

sampling scheme in which values of model parameters are drawn from an approximate 

posterior probability distribution and repeatedly corrected to better represent the target 

posterior distribution.  Eventually, the iterative process (i.e., Markov chain) converges to 

a unique stationary distribution; namely, the posterior distribution of model parameters. 

Multiple draws can be made from the stationary distribution and used to formulate the 

sampling distribution of each model parameter.  Parameter estimates are derived by 

taking the mean of a given sampling distribution. The default sampler (current point 

Metropolis sampling method) provided by WinBUGS is used for this study.   

Prior Distributions for Model Parameters and Hyperparameters. When a fully 

Bayesian technique is used, specification of a prior distribution is required for each model 

parameter. In this study, the prior distributions for the item locations were chosen to be 

identical N(0,1) distributions, and those for item discrimination parameters were set to be 

identical lognormal distributions with means of 0 and variances equal to .25.  The prior 

distributions for discrimination parameters are the same as those used in PARSCAL 

computer program (Muraki & Bock, 1997), but those for location parameters are a 

slightly less variable than those used in PARSCAL though identical in form (i.e., NIID).  

Considering GGUM-RM is more complex than GPCM, this change to the variance of the 

prior distribution seemed warranted.  The prior distributions for threshold parameters 

were set to identical uniform distributions with ranges of [-4,1].  The uniform prior 

distribution guaranteed that estimates of threshold parameters would remain within a 
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reasonable range of values, though it did not favor any particular values in that range.  

Given the sparse information about the distribution of GGUM thresholds in the literature, 

this flat prior distribution seemed reasonable. 

The prior distribution for latent θjt
*, was assumed to be a multivariate normal 

distribution with mean vector of µ and a covariance matrix Σ(θ).  As pointed out earlier, 

the elements of vector µ are the estimates of the mean latent level at the initial assessment 

point and the mean latent change between successive assessment points.  The diagonal 

elements of matrix Σ(θ) correspond to the variances for each latent variable and off-

diagonal elements are the estimates of the linear dependency between pairs latent 

variables. The first element of vector µ, corresponding to the mean of the initial latent 

variable, was set to 0 for identification purposes, whereas the remaining means were 

estimated using identical N(0,100) prior distributions.  The large variance associated with 

these distributions leads to an extremely non-informative prior distribution for the 

corresponding hyperparameters. It is not possible to directly constrain the matrix Σ(θ) 

using WinBUGS because this software does not allow users to constrain the elements of a 

multivariate distribution that might be used as a prior distribution for Σ(θ) (i.e., a Wishart 

prior distribution).  Consequently, constraining the first diagonal element of Σ(θ) to be 

equal to 1 for model identification purposes is not possible for the general case.   

However, it can be accomplished quite easily in the case of two time points by specifying 

separate prior distributions for the free elements in the Σ(θ).  Specifically, the first 

diagonal element of Σ(θ) was fixed to one, and the inverse of the second diagonal element 

was modeled with a gamma (.5, .5) prior distribution.  The single unique off-diagonal 

covariance was modeled as a function of the correlation between the two latent traits 



 

 

31

 
  
 

times the standard deviation of the second latent trait.  The correlation was, in turn, 

modeled using a uniform [-1,+1] prior distribution.  With these specifications in place, a 

variance-covariance matrix was formed and subsequently inverted and used as a 

hyperparameter for the multivariate normal distribution as required in WinBUGS.  

(Inversion of the covariance matrix is peculiar requirement of WinBUGS which 

parameterizes the multivariate normal distribution by its corresponding centroid and 

inverse variance-covariance matrix.)  These priors are appropriate only for the situations 

involving two time points. When individuals are surveyed at more than two time points, 

then the variance-covariance matrix cannot be modeled in this fashion because there is no 

guarantee that the method will produce a positive definite matrix.      
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IV. A Parameter Recovery Simulation 
 

The main purpose of the simulation study was to demonstrate the feasibility of 

calculating parameter estimates using the fully Bayesian technique implemented in 

WinBUGS.  All other things being equal, sample size is the key factor that affects the 

accuracy of the item parameter estimates, while the accuracy of person parameter 

estimates will increase as test length increases. Furthermore, the proportion of common 

items shared by test forms in a repeated measures design will also affect parameter 

estimation across assessment periods. Thus, this study varied three independent variables: 

sample size, test length, and the proportion of common items shared by alternate forms.  

Ten replications were simulated under each combination of levels for the three 

factors.  This small number of replications was undertaken because WinBUGs runs very 

slow for complex model like GGUM-RM.  In some cases, an analysis of data from a 

single replication required up to three days of computing time on a fast Pentium-based 

processor.   On every replication, each survey item always had four response categories. 

 

Simulation Design 

Number of assessment points. Two assessment points were simulated in each 

condition for this study. One reason is that it is the simplest situation for repeated 

measures designs. The other reason is that the strategy used to model the variance-

covariance matrix is only suitable for situations with two time points, and can not be 

directly generalized to repeated measures designs with more than two assessment points.  

As mentioned previously, this is a limitation of the WinBUGS program rather than a 

typical feature of Markov Chain Monte Carlo methods. 
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Number of response categories. GGUM-RM is appropriate for either binary or 

graded responses. Questionnaires constructed in Likert or Thurstone tradition usually 

have graded response items. Some research has suggested that, because of the ambiguity 

of the neutral or undecided option, an odd number of response options should be avoided 

when constructing questionnaires using Likert or Thurstone methods, if exploring the 

ambiguity is not particularly of interest (Bock & Jones, 1968; Dubois & Burns, 1975; 

Andrich, de jong, & Sheridan, 1997). Additionally, a previous simulation study (Cui, 

Roberts & Bao, 2004) suggested that somewhat larger samples were required to obtain 

item parameter estimates of similar accuracy as the number of response categories 

decreased from six categories to two categories.  These two lines of research suggested 

that four response categories per item would be a reasonable choice in this simulation 

study.  

Sample size. Previous research has shown that very accurate estimates of item 

parameters for a unidimensional GGUM model can be obtained with a marginal 

maximum likelihood (MML) technique when using 750 respondents along with a items 

that have 6 response categories (Roberts, Donoghue and Laughlin 2002). When the 

response categories are reduced to 4 and 3 categories, respectively, approximately 1000-

1250 respondents are required to achieve similar levels of accuracy (Cui, Roberts & Bao, 

2004). The model used in this simulation is more complex than the GGUM.  Thus, we 

expected that more simulees would be needed to obtain accurate estimates of item 

parameters. Therefore, sample sizes of 1000 and 2000 were studied in an effort to 

describe the characteristics of parameter estimates within an informed sample size range.   
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Test length. Test length will influence the precision of person parameter 

estimates. Estimates will be more precise when more informative items are used. Test 

lengths of 10, 20 and 30 items were simulated in this study.  Roberts, Donoghue and 

Laughlin (2002) suggested that at least 15 items were required in order to obtain accurate 

estimates of person parameters for a unidimensional GGUM when using items with 6 

response categories.  In light of their suggestion and the additional complexity of the 

GGUM-RM, it seemed reasonable to initially explore test lengths of 20 and 30 items with 

4 response categories per item.  Considering that fewer items are often used in evaluation 

research studies, a third condition which utilized 10 items was also included in the 

simulation study.   

The proportion of common items shared by alternate forms. When measuring 

individual differences using a repeated measure design, either the same test/questionnaire 

or alternate forms of a test/questionnaire is/are administered at each time point.  When 

alternate forms are used, common items are embedded across forms to maintain the same 

metric. In this study, the proportion of common items shared by alternate forms was 

either 30% or 100%. These two conditions corresponded to situations in which an 

alternate form with common items or an identical form is used over time, respectively.  

When alternate forms are used in testing practice, the number of common items is an 

important issue that should be considered.  Larger numbers of common items led to less 

random linking error. Some researchers have suggested that a common item set should be 

at least 20% of the length of the total test (Angoff, 1971; Kolen & Brennan 2004). As the 

GGUM-RM is a complex multidimensional IRT model, more items might be required to 



 

 

35

 
  
 

estimate stable model parameters. Thus, 30% of common items shared across alternate 

forms were chosen for this simulation study.  

Response Generation Procedure. The true item parameters used on a given 

replication were re-sampled from a list of 47 item parameter estimates derived from an 

analysis of an abortion attitude questionnaire reported by Roberts, Lin and Laughlin 

(2001).  The items on this list were originally associated with 6-category response 

formats.  However, the data from their study were recoded into four response categories 

and item parameters were estimated from the recoded data based on a new maximum 

marginal a posteriori (MMAP) estimation program that is currently under study (Roberts 

& Thomson, 2007).  The MMAP parameter estimates associated with these items served 

as the generating (i.e., true) item parameters on a given replication.  A general principle 

in Thurstone (1928) attitude scale construction is that items should be explicitly chosen to 

represent the affective continuum in an approximately uniform pattern. Therefore, most, 

if not all, of the respondents will be close to some item on the scale.  In an effort to obtain 

a relatively uniform distribution across a reasonable portion of the attitude continuum, 

only 35 items with location estimates between [-2.5 2.5] on the latent continuum were 

chosen to serve in the item pool. The interval was then divided into five segments: [-2.5 -

1.5], (-1.5 -0.5], (-0.5 0.5], (0.5 1.5] and (1.5 2.5].   An equal number of items were 

randomly drawn with replacement from each segment.    

The true person parameters were randomly sampled from a multivariate normal 

distribution with µ = [0, .5] which indicated that the true average change over the two 

assessment points was .5 units on the latent continuum. The variances for composite θ at 

each assessment point were set to 1 and 1.5625 respectively.  As mentioned earlier, the 
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variance of the latent variable at the initial assessment time was set to 1 in order to 

identify the model, whereas the larger variance for the composite θ represented a 

characteristic that is often seen in practice (Embretson, 1991).  The correlation between 

the composite θ at the two time points was randomly drawn from a uniformly distributed 

closed interval of [.36  .64] on each replication.  This interval represented low to 

moderate correlations, and it was characteristic of a range of values reported in the 

literature (Embretson, 1991).  Consequently, the true value of the correlation between θj1
*  

and θj2
*  on a given replication was equal to: 

)]()([),cov( 121121*
2

*
1

θθθθθθ
θθ

−−= stdstdr
jj

.                     (12) 

One can then use expectation algebra to yield the following identities: 

cov( ,( )) ( ) ( ) var( ),θ θ θ θ θ θθ θ1 2 1 1 2 11 2
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and  
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Recall that std(θ1) was constrained to be 1 to achieve identifiability of model parameters, 

std(θ2) was set equal to 1.25, and the correlation between θ1 and θ2 was sampled from a 

uniform distribution on the interval [.36  .64].  Therefore, the true correlation between θ1* 

and θ2* on a given replication was equal to:    
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The observed response of each individual was generated with a unidimensional 

GGUM model for each time point using the simulated true item parameters and the true 

composite θ at that point. After an observed response to each item was generated for all 

subjects, the data were used to estimate GGUM-RM parameters. The process of 
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generating data and subsequently estimating parameters was replicated 10 times in each 

condition defined by sample size, test length, and the proportion of common items.   

Model parameter estimation.  Fully Bayesian estimates were obtained by 

implementing an MCMC algorithm with the WinBUGs computer program. Prior 

distributions for each model parameter were specified as described earlier in this report.  

An adaptive MCMC algorithm, specifically the Metropolis sampling algorithm 

(Spiegelhalter, Thomas, Best, & Lunn, 2003; Gelman, Carlin, Stern, & Rubin, 2003), was 

used to produce a series that converged to the joint posterior distribution of model 

parameters.  The default number of adaptive iterations that was built within WinBUGS 

was 4000 for Metropolis sampling. However, the GGUM-RM is a complex model and 

may need more burn-ins to converge. Therefore, following the procedures described by 

Roberts and Ma (2006)¸ 9000 burn-in iterations were conducted.  A preliminary analysis 

showed that similar estimates of model parameters and hyperparameters could be 

obtained when running the model with different initial values for model parameters. Time 

series plots for two chains (Appendix A) also showed that the series stabilized long 

before 9000 iterations.  This suggests that the algorithm can converge to the joint 

posterior distribution within 9000 adaptive iterations. An additional 1000 iterations were 

obtained following the burn-in iterations, and these 1000 iterations were used to calculate 

expected a posteriori estimates of model parameters.   

 

Data Analysis and Evaluation of Results 

In all, there were 12 different combinations of simulated assessment conditions 

(two sample sizes x three test lengths x two common item levels). For each combination, 
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10 replications were generated.  After the estimates of model parameters were obtained, 

the accuracy of the estimates was assessed for each type of model parameter estimated in 

a given replication.  

Measures of accuracy. Four measures of estimation accuracy were used to 

evaluate parameter recovery.  All of the four measures have been used in previous 

recovery studies of IRT model parameters (Andrich 1988; Andrich & Luo, 1993; Kim, 

Cohen etc., 1994; Roberts, & Laughlin, 1996; Roberts, Donoghue & Laughlin, 2000). 

The degree of the accuracy of model estimation depends on three types of discrepancies 

between estimated and true parameter distributions: the difference of the mean and the 

variance between the estimated and true parameter distributions, and the covariance 

between the estimated and the true parameter distributions. Three measures were used to 

evaluate each individual discrepancy separately, and a fourth measure reflected all three 

types of discrepancies. 

Root mean squared deviation (RMSD).  The RMSD was calculated as follows: 

 RMSD H H H Ii i
i

I

( ) ( $ )= −
=
∑ 2

1

                                                        (16) 

where  

Hi is the true value of model parameters for a particular parameter type (i.e., α, δ, τ, µ, σ, 

and θ) in a given replication,  

$Hi is the corresponding estimate of the model parameters in that replication, 

 I is the number of parameters of a particular type within a given replication.  

The RMSD index is sensitive to three types of discrepancies between estimated and true 

parameters, and it will increase as either one of the three discrepancies becomes larger. 
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Specifically, Roberts and Laughlin (1996) illustrated that the RMSD could be 

decomposed as: 

RMSD S S S X XH H HH H H= + − + −2 2 22$
$ $( )                                    (17) 

where 

S H
2  is the sample variance of the true model parameters for a particular parameter type 

(i.e., α, δ, τ, µ, σ, and θ) in a given replication,  

S H
2
$  is the sample variance of the estimate of the model parameters in that replication, 

SHH$  is the sample covariance between H and $H , 

X H  is the average of the H s, 

X H$  is the average of the $H s. 

Since the RMSD reflects the entire deviation in model estimation, it is used as the 

primary accuracy measure for this simulation study. 

 

 Absolute Bias. Absolute bias is a measure of the average absolute difference of 

estimated and true parameter distributions and it was calculated for each replication as 

follows: 

            
I

HH
HBiasAbsolute

I

i
ii∑

=

−
= 1

ˆ
)(                           (18)  

where 

Hi, $Hi , and I are defined as in equation 16. The value of absolute bias will increase as the 

absolute difference between each pair of estimated and true parameter increases.  
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Variance ratio (VR). The difference of the variances between the estimated and 

true parameter distributions was evaluated by variance ratio and it was calculated for 

each replication as follows:  

VR s sH Hi i= 2 2
$ /                                     (19) 

where 

s Hi
2  is the variance of the true model parameters for a particular type of parameters (i.e., 

α, δ, τ and θ ) in a given replication, 

s Hi
2
$  is the corresponding variance of the estimated model parameters in that replication. 

The value of variance ratio will be greater or smaller than 1 as the difference of the 

variances of the two distributions becomes larger, depending which distribution has 

larger variation. 

Pearson correlation (r). A Pearson product-moment correlation between estimated 

and true parameters was computed across model parameters (i.e., α, δ, τ and θ ) within 

each replication to evaluate the linear association between the two distributions. Strong 

linearity between the estimated and true parameters will result in higher value of r. 

 Effect of key factors. This simulation represents a 2x3x2 fixed-effects factorial 

design. A univariate ANOVA procedure was used to analyze the bias, variance ratio, 

correlation and RMSD associated with a given type of parameter. Sample size, test length, 

and the proportion of common items shared across alternate forms served as three 

between-replication factors in the analysis.  There were 10 replications in each cell of the 

corresponding factorial design. Given that the RMSD index for 8 parameters, and 

absolute bias, VR, and r indices for 5 parameters were analyzed in this study, the Type I 

error rate was set to α = .00625 for RMSD, and α = .01 for absolute bias, VR, and r in 
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ANOVA to control for the fact that the same ANOVA model was run 8 times for RMSD, 

5 times for absolute bias, VR, and r. The proportion of the total sums of squares 

associated with each ANOVA effect  (02) was also calculated.  Interpretations were 

limited to those effects that are both statistically significant and had an associated 02 >  

.05, which indicated that an ANOVA effect accounted for at least 5% of the total sum of 

squares in the dependent variable.  The latter criterion limited interpretations to those 

effects that were of sufficient magnitude to be meaningful in practice.  
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V.  A Real Data Example 
 

An analysis of graded agree-disagree responses to abortion attitude items was 

performed using data from 750 University of South Carolina (USC) and 428 Georgia 

Institute of Technology (GT) undergraduate students. Students from USC responded to 

each of 50 items using one of six response categories: strongly disagree, disagree, 

slightly disagree, slightly agree, agree, and strongly agree at one assessment time. For 

each respondent, items were presented in a random order, and they were not allowed to 

skip any item. Students from GT responded to 40 questionnaire items.  Of these 40 items, 

19 of them were from the questionnaire administered to USC students.  The response 

categories were identical in both the USC and GT samples.  Items were also presented to 

GT students in random order, but students were allowed to skip any item they did not 

want to answer.   GT students were also asked to respond to the same attitude 

questionnaire at two separate assessment times that were approximately three weeks 

apart.   

Previous research suggested that the 19 items that appeared on both 

questionnaires were unidimensinal and represented all portions of attitude continuum to 

approximately the same degree (Roberts, Donoghue, & Laughlin, 2000).  These items 

were also fit reasonably well by the GGUM.  Thus, the responses to these 19 items were 

analyzed in this study. 

Because USC students only responded to the 19 items at one assessment time 

without skipping any single item, all the responses for the second assessment time were 

treated as missing for these students (and coded as “NA” in WinBUGS). GT students 

were asked to respond to all items at two assessment times, but only 113 students 
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returned for the second assessment.  Also, there were missing data within an individual’s 

response vector at a given assessment time because GT students were allowed to skip 

items. In this analysis, missing responses within each assessment time and missing 

responses at the second assessment time were all coded as “NA” in WinBUGS.  

Analysis of the 38 responses from 1178 students to the repeated assessments (19 

responses at each of 2 assessment times) was performed using the same prior 

distributions for item parameters, person parameters and hyperparameters as those used 

in simulation study. Also, because three weeks is an extremely short period to expect 

much naturalistic change in attitudes to abortion, no significant mean change was 

expected in this analysis.  
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VI. Results 
 

Accuracy of Parameter Recovery 

 A univariate ANOVA was performed for four measures associated with each 

given parameter. The 2 levels of form, 3 levels of test length, and 2 levels of sample size 

served as the three between-subject factors, and there were 10 replications within each 

cell. Only those effects that met both of the two criteria were interpreted as having impact 

on the accuracy of model estimation. Recall that these two criteria were p< .00625 for 

RMSD or p< .01 for absolute bias, variance ratio and correlation along with η2>.05.  The 

p-values and η2 values associated with each ANOVA effect are shown in Tables 1-4. 

Entries given in bold correspond to the effects that meet both interpretation criteria.  

Accuracy of $αi .  ANOVA results showed statistically significant main effects of 

form and of sample size on the RMSD, absolute bias, and correlation for $αi .  None of the 

three key variables or their interactions showed any statistically significant influence on 

the variance ratio for $αi .  In addition, the interaction between form and sample size had 

significant influence on the correlation between $αi  and trueαi . Figures 2a-2e show the 

mean accuracy measures of RMSD, absolute bias, and correlation associated with the $αi  

as a function of form and sample size. 

As shown in Figure 2a-2b, the average difference in RMSDs of $αi  was primarily 

influenced by form and sample size. Specifically, the average values of the RMSD for $αi  

increased when alternate forms, instead of same form, were used across time points. This 

was presumably due to the fact that there were more responses per item with the same 

form was used, and consequently, the RMSD was lower in that condition.  As expected, 
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the RMSD for $αi  also decreased with sample size. Again, this was due to having more 

responses for each item.  Although these differences emerged using the predefined 

interpretation criteria, the average values of RMSD for $αi  were reasonably small in 

every form and sample size condition.   

 
Table 1: ANOVA Effect for the Analysis of the RMSD of Estimates of Item Parameters 
and Person Parameters  
   Item Parameter αi  δ i  τ ik  
 p-value η2 p-value Η2 p-value η2 
Form 0.0001 0.1381 0.0001 0.1090 0.0001 0.1451
Test Length 0.0023 0.0456 0.2363 0.0178 0.2529 0.0155
Form x Test Length 0.7408 0.0021 0.0271 0.0454 0.0433 0.0360
Sample Size  0.0001 0.3937 0.0089 0.0432 0.0001 0.0885
Form x Sample Size  0.0111 0.0236 0.5056 0.0027 0.6223 0.0014
Test Length x Sample Size 0.3394 0.0077 0.0007 0.0937 0.0019 0.0738
Form x Test Length x Sample Size 0.3781 0.0069 0.0787 0.0317 0.0360 0.0382
Person Parameter θj1

*  θj2
*    

 p-value η2 p-value η2   
Form 0.9583 0.0000 0.0001 0.0494   
Test Length 0.0001 0.9483 0.0001 0.6245   
Form x Test Length 0.0082 0.0042 0.0001 0.0508   
Sample Size  0.6834 0.0001 0.6536 0.0005   
Form x Sample Size  0.5512 0.0001 0.4300 0.0016   
Test Length x Sample Size 0.0800 0.0022 0.4848 0.0036   
Form x Test Length x Sample Size 0.7473 0.0002 0.6848 0.0019   

Hyperparameter µ
θ *

2
  σ θ

2
2

*   σ
θ θ* *

1 2
  

 p-value η2 p-value η2 p-value η2 
Form 0.2175 0.0120 0.8220 0.0004 0.8633 0.0002
Test Length 0.5016 0.0108 0.3843 0.0140 0.6225 0.0080
Form x Test Length 0.1257 0.0330 0.1329 0.0299 0.9100 0.0016
Sample Size  0.0010 0.0887 0.0202 0.0405 0.0116 0.0550
Form x Sample Size  0.6446 0.0017 0.1510 0.0152 0.1538 0.0172
Test Length x Sample Size 0.7288 0.0050 0.0034 0.0871 0.4252 0.0144
Form x Test Length x Sample Size 0.7120 0.0053 0.1670 0.0265 0.9039 0.0017
Note: The bold numbers denoted the effect that met both interpretation criteria.  
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Table 2: ANOVA Effect for the Analysis of the Absolute Bias of Parameter Estimates  
   Item Parameter αi  δ i  τ ik  
 p-value η2 p-value η2 p-value η2 
Form <.0001 0.1200 <.0001 0.1085 <.0001 0.1690
Test Length 0.0015 0.0452 0.0346 0.0398 0.0624 0.0288
Form x Test Length 0.7626 0.0018 0.0612 0.0328 0.1643 0.0186
Sample Size  <.0001 0.4390 <.0001 0.1111 <.0001 0.1771
Form x Sample Size  0.0132 0.0208 0.7891 0.0004 0.8592 0.0002
Test Length x Sample Size 0.0989 0.0155 0.0021 0.0750 0.0161 0.0435
Form x Test Length x Sample Size 0.6223 0.0031 0.3098 0.0136 0.2142 0.0158
Person Parameter θj1

*  θj2
*    

 p-value η2 p-value η2   
Form 0.8216 0.0000 0.2533 0.0005   
Test Length <.0001 0.9413 <.0001 0.9555   
Form x Test Length 0.0096 0.0046 0.2940 0.0009   
Sample Size  0.7041 0.0001 0.1995 0.0006   
Form x Sample Size  0.7687 0.0000 0.6423 0.0001   
Test Length x Sample Size 0.0809 0.0024 0.2233 0.0012   
Form x Test Length x Sample Size 0.5377 0.0006 0.8590 0.0001   
Note: The bold numbers denoted the effect that met both interpretation criteria.  
 

Table 3: ANOVA Effect for the Analysis of the Variance Ratio (VR) of Estimates of Item 
Parameters and Person Parameters  
   Item Parameter αi  δ )  τ ik  
 p-value η2 p-value η2 p-value η2 
Form 0.5385 0.0033 0.7479 0.0009 0.0265 0.0394
Test Length 0.1682 0.0311 0.8437 0.0028 0.4219 0.0136
Form x Test Length 0.7918 0.0040 0.0631 0.0468 0.2429 0.0223
Sample Size  0.8392 0.0004 0.9871 0.0000 0.7579 0.0007
Form x Sample Size  0.0865 0.0256 0.1583 0.0167 0.5789 0.0024
Test Length x Sample Size 0.7174 0.0057 0.4561 0.0131 0.0646 0.0438
Form x Test Length x Sample Size 0.7608 0.0047 0.1960 0.0273 0.1000 0.0366
Person Parameter θj1

*  θj2
*    

 p-value η2 p-value η2   
Form 0.4850 0.0028 0.0133 0.0293   
Test Length <.0001 0.3458 <.0001 0.4480   
Form x Test Length 0.4727 0.0085 0.5380 0.0058   
Sample Size  0.8438 0.0002 0.9442 0.0000   
Form x Sample Size  0.1330 0.0129 0.0964 0.0130   
Test Length x Sample Size 0.3567 0.0117 0.7860 0.0022   
Form x Test Length x Sample Size 0.4135 0.0100 0.8179 0.0019   
Note: The bold numbers denoted the effect that met both interpretation criteria.  
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Table 4: ANOVA Effect for the Analysis of the Correlation (r) of Estimates of Item 
Parameters and Person Parameters  
   Item Parameter αi  δ i  τ ik  
 p-value η2 p-value η2 p-value η2 
Form <.0001 0.2702 <.0001 0.1439 <.0001 0.2054
Test Length 0.0713 0.0139 0.9537 0.0006 0.5920 0.0057
Form x Test Length 0.4524 0.0041 0.0832 0.0311 0.0137 0.0484
Sample Size  <.0001 0.3618 0.1659 0.0119 0.0130 0.0346
Form x Sample Size  <.0001 0.0705 0.7270 0.0008 0.9319 0.0000
Test Length x Sample Size 0.8832 0.0006 0.0006 0.0961 0.0011 0.0791
Form x Test Length x Sample Size 0.8834 0.0006 0.0114 0.0569 0.0253 0.0413
Person Parameter θj1

*  θj2
*    

 p-value η2 p-value η2   
Form 0.7087 0.0001 0.0012 0.0357   
Test Length <.0001 0.9306 <.0001 0.5496   
Form x Test Length 0.1853 0.0020 0.0005 0.0524   
Sample Size  0.1360 0.0013 0.5928 0.0009   
Form x Sample Size  0.9689 0.0000 0.5207 0.0013   
Test Length x Sample Size 0.0551 0.0034 0.2099 0.0102   
Form x Test Length x Sample Size 0.5887 0.0006 0.9412 0.0004   
Note: The bold numbers denoted the effect that met both interpretation criteria.  
 

As shown in Figure 2c-2d, the average values of the absolute bias of $αi  were a 

function of both form and sample size main effects. The mean value of absolute bias for 

$αi increased when alternate forms were administered across assessment times instead of 

same form. Mean absolute bias of $αi  decreased as the sample size increased. However, 

the average values of absolute bias were small in these conditions.   

The average correlations between $αi  and αi  were greater than .97 in every 

condition, which indicated that the $αi was a strong linear function of the true αi  in each 

condition. The small variation among these average correlations was influenced by form, 

sample size, and the interaction of these two factors (Figure 2e). The correlation became 

weaker when alternate forms, instead of same form, were administered across assessment 

times. As the sample size increased, $αi s showed stronger linear correlation with αi s.  

Additionally, though average correlations increased as sample size increased in both 
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same form and alternate form conditions, larger increases appeared in alternate form 

condition.  

Accuracy of $δi . The average RMSD $δi was primarily a function of the main effect 

of test form, and this relationship is shown in Figure 3a. Smaller values of average $δi  

RMSD were observed in the same form condition than in the alternate form condition. 

Additionally, the RMSD for $δi  was also a function of the interaction between sample 

size and test length (Figure 4a). Larger sample size led to a small reduction in RMSD for 

$δi , but only for tests of 20 or 30 items.  With the smaller 10-item test, the RMSD was 

similar regardless of sample size.  Results of t-test showed that average RMSDs 

significantly decreased as the sample size increased in 20 or 30 items condition, but not 

in the 10 items condition (t-test: p >.05 for 10 items condition, p < .001 for both 20 items 

and 30 items conditions).  Thus, it appears that test length was a limiting factor that 

mitigated the effect of sample size.  Test length generally affects the precision of 

individual latent traits estimates, and this, in turn, seems to have moderated the sample 

size effect.   

The absolute bias of $δi  was influenced by sample size, form, and the interaction 

of test length and sample size (Figure 3b, 3c, and Figure 4b). Larger average values of the 

absolute bias of $δi  were observed in the alternate form condition.  The mean values of 

the absolute bias of $δi  decreased as the sample size increased, also, the impact of sample 

size showed different patterns at different levels of test length. t-test results indicated that 

the average values of the absolute bias of $δi  significantly decreased as sample size 

increased from 1000 to 2000 when 20 or 30 items were administered (t-test: p < .001 for 
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20 items condition and p < .0001 for 30 items condition), but not when 10 items were 

used (t-test: p > .05). 

The average correlations between $δi and true δi  were near to 1 (all greater than 

.99) in every condition, which indicated that the $δi  and theδi  were highly collinear.  The 

small differences in mean correlations were influenced by form, and the interaction of 

test length and sample size. As shown in Figure 3c, the correlation was stronger in the 

same form condition than in the alternate form condition. The sample size showed 

statistically significant impact on the correlations for tests of 20 and 30 items, but not for 

smaller tests of 10 items (Figure 4c; t-test results suggested p >.05 for the 10 item 

condition and p < .001 for both the 20 and 30 item conditions). 

Accuracy of $τ i . The RMSD for $τ i  was influenced by form, sample size and the 

interaction of test length and sample size. The pattern of these effects mimicked those 

seen with the RMSD for $δi .  As shown in Figure 5a and 5b, the RMSD had smaller 

average value when the same form, instead of the alternate forms, was used across 

assessment times. Also, the average RMSD decreased as the sample size increased.  

Furthermore, as the sample size increased, the average RMSDs significantly decreased in 

both the 20 and 30 item conditions, but not in the 10-item condition (Figure 6a; the t-test 

yielded p >.05 for the 10 item condition and p < .001 for the 20 item and 30 item 

conditions).  

The average values of the absolute bias of $τ i s were influenced by both form and 

sample size (Figures 5c-5d). When the same form was administered across time points, 
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the average values of the absolute bias of $τ i  were smaller. Also, the mean values of the 

absolute bias of $τ i  decreased as sample size increased.  

The average correlations between $τ i and true iτ  were greater than .97 in every 

condition, which suggested that the $τ i  is quite linearly related toτ i .  The small 

differences in average correlations between $τ i  and true iτ  were mainly influenced by 

form, and the interaction of test length and sample size. As shown in Figure 5c, the 

average correlation was higher when the same form, instead of the alternate forms, was 

administered across assessment times. The main effect of the sample size did not exhibit 

a significant main effect on the correlation, but it did interact with test length (Figure 6b). 

Specifically, the mean values of correlations increased for larger samples when either 20 

or 30 items were used, but there was no statistically significant difference between 

sample size conditions when only 10 items were used. (The corresponding t-test results 

revealed that p >.05 for the 10 item condition, and p < .001 for both the 20 item and 30 

item conditions).  

Accuracy of $*θ j1  and $*θ j2 . All four accuracy measures, RMSD, absolute bias, 

variance ratio, and correlation, for $*θ j1  and $*θ j2  were primarily a function of test length. 

As shown in Figures 7a, 7b, and 7d, the mean values of RMSD and absolute bias of $*θ j1  

and $*θ j2  both decreased as the number of items increased, while the mean correlations of 

$*θ j1  and $*θ j2  increased as the number of items increased. post hoc test (Tukey HSD) 

showed that the mean values of variance ratio decreased when test length increased from 

10 items to 20 items, but with longer test of 30 items, had similar value of variance ratio 

as 20 item test (Figure 7c).  
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The RMSD and correlation for $*θ j2  were also both a function of a form by test 

length interaction.  Statistically smaller average RMSD was observed when alternate 

forms with 20 items were used (Figure 8a), but superiority of alternative forms 

disappeared with there were 10 or 30 items on each test. The same pattern was observed 

for the correlation of $*θ j2  and true θ *
j2  (Figure 8b).  One might speculate that the 

additional unique test items associated with alternate forms increased the accuracy of 

$*θ j2 .  This result is not altogether surprising in an unfolding model where repeated 

administration of a parallel item does not produce a unique global maximum in the 

likelihood function associated with theta.  However, the reversal of this effect with short 

or long test makes the finding more difficult to understand.  Perhaps these cases provide 

two few or more than enough unique items regardless of the type of test form that is 

implemented.       

The average RMSD, absolute bias, and variance ratio of $*θ j1  (the estimate of 

individual’s initial level) were all lower than the corresponding values for $*θ j2  (the 

estimate of individual’s change over time) in every condition (Figure 7a, 7b, and 7d), and 

the reverse was seen with the average correlation. This is presumable due to the fact that 

only those item responses from the second assessment point provided information about 

the estimate of $*θ j2 .  In contrast, all item responses from both assessment points 

provided information about the estimate of $*θ j1 . 

Accuracy of hyperparameter  estimates ( $ *µ
θ 2

, $ * *σ
θ θ1 2

, and $ *σ θ
2

2 ). The obtained 

$ *µ
θ 2

, $ * *σ
θ θ1 2

, and $ *σ θ
2

2  correspond to the direct estimate of group change, the covariance 

between latent variables, and the variance of the latent change score distribution. Since 
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only one set of estimated hyperparameters was obtained for each replication, only one 

accuracy measure, RMSD was calculated and evaluated for these estimates.  

The ANOVA results indicated that the mean values of the RMSD for $ *µ
θ 2

 were 

significantly influenced by sample size.  As shown in Figure 9, the mean values of the 

RMSD decreased as the sample size increased. The values of the RMSD were .026 and 

.015 in sample size of 1000 and 2000 conditions, respectively, which were very small in 

either case.  

The mean values of the RMSD for $ *σ θ
2

2  were significantly influenced by the 

interaction of test length and sample size (Table 1).  The average RMSD was statistically 

smaller in the larger sample size condition, but this difference only held in the case of a 

short test consisting of 10 items, not shown in relative longer test of 20 and 30 items 

(Figure 10; t-test results yielded that p < .0001 for 10 item condition, p > .05 for both 20 

and 30 item conditions).  

Lastly, none of the design effects met the criteria for interpretation when 

considering the RMSD for $ * *σ
θ θ1 2

. However, it is noteworthy that the effect of sample 

size was in the same direction as that for the RMSD of $ *µ
θ 2

 and $ *σ θ
2

2 . Specifically, the 

average values of the RMSD of $ * *σ
θ θ1 2

decreased as the sample size increased (0.076 for 

sample size of 1000, and 0.057 for sample size of 2000, respectively).     
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Figure 2: Mean Accuracy Measures for Alpha Estimates for Same Form and Alternate Form
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Figure 3: Mean Accuracy Measures for Delta Estimates for Same Form and Alternate Form
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Figure 4: Mean Accuracy Measures of Delta Estimates for 10, 20 and 30 Items
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Figure 5: Mean Accuracy Measures for Tau Estimates for Same Form and Alternate Form

c. Absolute Bias

0

0.05

0.1

0.15

0.2

Same Form Aternate Form

Form

A
bs

ol
ut

e 
B

ia
s

e. Correlation

0.96

0.97

0.98

0.99

1

Same Form Aternate Form
Form

C
or

re
la

tio
n

a. RMSD

0

0.05

0.1

0.15

0.2

Same Form Aternate Form
Form

R
M

SD

b. RMSD

0

0.05

0.1

0.15

0.2

1000 2000
Sample Size

R
M

SD

d. Absolute Bias

0

0.05

0.1

0.15

0.2

1000 2000

Sample Size

A
bs

ol
ut

e 
B

ia
s



 

 

57

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Mean Accuracy Measures of Tau Estimates for 10, 20 and 30 Items
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Figure 7: Mean Accuracy Measures of Theta Estimates for 10, 20 and 30 Items
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Figure 8: Interaction of Form and Test Length for  RMSD and Correlation of Individual Change Estimates
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Figure 9: RMSD of Group Change Estimate for 1000 and 2000 Respondents

Figure 10:RMSD of Estimated Variance of Latent Distribution for 10, 20, and 30 Items

0

0.005

0.01

0.015

0.02

0.025

0.03

1000 2000

Sample Size

R
M

SD

0

0.02

0.04

0.06

0.08

0.1

10 20 30
Test Length

R
M

SD

1000 Respondents
2000 Respondents



 

 

61

 
  
 

Real Data Analyses 

An analysis was performed to provide at least partial information about the 

invariance of item parameters across time.  Specifically, item parameters were calibrated 

using 1178 responses collected from the baseline assessment, and then the parameters 

were calibrated a second time using only the 113 responses collected from the second 

assessment. Full Bayesian estimation of model parameters was implemented via 

WinBUGS for both calibrations.  Prior distributions for all model parameters were the 

same as those used in simulation study. Figures 11-13 graphically display the 

relationships between corresponding parameter estimates derived from the two 

assessment periods. (i.e., iδ̂ , iα̂ , and ikτ̂  ). As shown in figure 11, the two sets of item 

location estimates (i.e., iδ̂ ) were highly correlated (Pearson r = .978), which implies that 

the estimates of the item location parameters are very stable across assessment times for 

these abortion statements.  However, the two sets of item discrimination and threshold 

parameter estimates were only moderately correlated.  The correlation for discrimination 

parameter estimates was .613, whereas those for threshold parameter estimates were .519, 

.745, .720, .649, and 727) for 1îτ  through 5îτ , respectively.  The relative decrease in these 

correlations was presumably due to the small sample size at the second assessment time 

along with the fact that these item parameters are generally harder to estimate than the 

location parameter (Roberts, Donoghue & Laughlin, 2002).   
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Figure 11: Scatter Plot of Estimates of Item Location Parameters at Baseline against 

Estimates of Item Location Parameters at the Second Assessment Time            
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Figure 12: Scatter Plot of Estimates of Item Discrimination Parameters at Baseline 

against Estimates of Item Discrimination Parameters at the Second Assessment Time 
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Figure 13: Scatter Plot of Estimates of Item Threshold Parameters at Baseline against 

Estimates of Item Threshold Parameters at the Second Assessment Time 
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An analysis of up to 38 responses from 1178 students to the repeated assessments 

(19 responses at each of 2 assessment times) was performed using the GUUM-RM. As 

reported above, the 19 responses from the second assessment were missing for all but 113 

of these students.  The prior distributions used to estimate model parameters and 
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hyperparameters in the GGUM-RM were identical to those used in the simulation study. 

The resulting item parameter estimates are given in Table 5 and the statements are listed 

in order of increasing iδ̂ . The scale was arbitrarily oriented such that the negative pole 

represented attitudes in favor of abortion, whereas the positive pole represented attitudes 

against abortion. Aside from this orientation, the calibration results were highly 

consistent with those obtained using the traditional GGUM in a previous study by 

Roberts, Donoghue, and Laughlin (2000).  Their study was based on the same 750 cases 

from the University of South Carolina sample used here which may account for some of 

this consistency.  The consistency is still noteworthy given that an additional sample of 

428 Georgia Institute of Technology respondents was also included in this calibration.  

 
Table 5: GGUM-RM Item Parameter Estimates ( iδ̂ , iα̂ , and ikτ̂ ) for 19 Abortion Attitude 
Statements 

Item Statement 
iδ̂  iα̂  2ˆiτ  3ˆiτ  4ˆiτ  5ˆiτ  6ˆiτ  

1 
Abortion should be legal 
under any circumstances -2.63 1.20 -2.30 -2.87 -2.32 -2.63 -1.68

2 

A woman should retain the 
right to choose an abortion 
based on her own life 
circumstances -1.57 1.74 -2.59 -2.08 -2.37 -1.84 -1.36

3 

Outlawing abortion 
violates a woman's civil 
rights -1.48 1.76 -2.48 -2.00 -2.30 -1.58 -1.28

4 

Society has no right to 
limit a woman's access to 
abortion -1.47 1.27 -2.17 -2.04 -1.81 -1.79 -1.14

5 

Regardless of my personal 
views about abortion, I do 
believe others should have 
the legal right to choose for 
themselves -1.35 1.23 -2.60 -1.77 -2.66 -1.99 -1.81

6 

Although abortion on 
demand seems quite 
extreme, I generally favor a 
woman's right to choose -1.06 1.77 -2.03 -1.76 -1.83 -1.35 -0.82
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7 

Abortion should generally 
be legal, but should never 
be used as a conventional 
method of birth control -0.70 0.91 -1.54 -0.97 -2.13 -1.15 -1.32

8 

Abortion should be a 
woman's choice, but should 
never be used simply due 
to its convenience -0.54 0.88 -1.67 -0.87 -2.31 -1.23 -1.19

9 
My feelings about abortion 
are very mixed 0.12 1.40 -1.07 -0.46 -1.03 -0.01 -0.36

10 

I cannot whole-heartedly 
support either side of the 
abortion debate 0.17 1.59 -0.91 -0.51 -0.78 -0.09 -0.32

11 

Abortion should be illegal 
except in extreme cases 
involving incest or rape 1.00 1.23 -1.31 -0.97 -0.89 -0.94 -0.10

12 

Abortion is basically 
immoral except when the 
woman's physical health is 
in danger 1.11 1.42 -1.78 -1.22 -1.16 -0.85 0.02

13 

Even if one believes that 
there may be some 
exceptions, abortion is still 
generally wrong 1.65 1.51 -2.34 -1.69 -1.78 -1.40 -1.00

14 

Abortion should not be 
made readily available to 
everyone 1.65 0.60 -2.03 -1.79 -2.42 -1.64 -1.37

15 
Abortion could destroy the 
sanctity of motherhood 2.15 1.08 -2.28 -1.99 -2.38 -1.34 -1.19

16 
Abortion can be described 
as taking a life unjustly 2.54 1.97 -3.12 -2.73 -2.60 -2.10 -1.85

17 

Abortion is the destruction 
of one life for the 
convenience of another 2.63 1.32 -3.09 -2.87 -2.71 -2.22 -2.13

18 Abortion is inhumane 2.93 1.72 -3.30 -3.00 -2.97 -2.55 -2.34

19 
Abortion is unacceptable 
under any circumstances 3.28 1.24 -2.53 -2.76 -2.29 -2.77 -1.90

 
 

The estimated locations ( iδ̂ ) for these 19 items ranged from –2.63 to 3.28.  As 

shown in Figure 14, they were nicely spread along the latent attitude continuum, and 

represented the entire range of attitudinal positions.  The locations of statements on the 

latent continuum corresponded well with the content of the statements.  Statements 
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located near the negative pole corresponded to attitudes strongly in favor of abortion, 

whereas statements located near the positive pole represented attitudes strongly against 

abortion. Those statements oriented at the middle of the scale conveyed mixed feelings 

about abortion. Statements between the middle of the scale and the extremes were more 

moderate in content, but not neutral.   

Items typically exhibited moderate to high iα̂  values.  However, there was one 

item (Item 14) that exhibited a relatively low iα̂  value. The discrimination of a GGUM-

RM item is a function of both discrimination parameter and the interthreshold distance, 

and thus, a low discrimination parameter value does not necessarily lead to low 

discrimination for a given item. Figure 15 shows the ICC for Item 14.  Even with its 

relatively low estimate for iα , this item is moderately efficient for determining the 

location of respondents on the latent continuum in the neighborhood of iδ̂ .  

Most of these items (15 out of 19 items) showed disordinal thresholds. The 

occurrence of disordinal thresholds suggested that for those items, one or more response 

options were used infrequently. However, Roberts & Ma (2006) pointed out that 

disordinal thresholds occurred often in IRT analysis of self-report questionnaire data and 

were generally not a threat to the underlying validity of the model.  
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Figure 14: Estimated Item Locations for 19 Abortion Items 
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Figure 15: The ICC for Item 14 

 

The fit of the GGUM-RM was graphically examined at an item level. The 

composite latent trait scores were first ranked, and then grouped with 50 respondents in 

each group but the last group, which was formed by the remaining 6 respondents located 

at the positive extreme. The average observed item response and the average response 

predicted by the model were plotted against the average composite theta in each group. 

 α i =.60 ,  δ  i  =1.65,  τ  ik   = 0, -2.03, -1.79, -2.42, -1.64, -1.37
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The degree of item fit was evaluated by how well the average responses predicted by the 

model matched the corresponding observed averages. Figures 16-20 illustrate these fit 

plots for each of the 19 items.  In each figure, the solid dot represents the average 

observed response for a given respondent group, whereas the smooth curve represents the 

average expected response predicted by the model. The observed and expected average 

values were generally comparable, except for Item 11, 13 and 14.  Item 11 had two misfit 

groups, Item 13 and 14 had one misfit group on the positive extreme side of the scale due 

to the small size of the last group (6 remaining respondents at the positive extreme). 

Thus, there was evidence that suggested the model performed reasonably well for the 

abortion questionnaire.  

As shown in Figure 16-20, 9 of 19 items had ICCs that were (more or less) 

monotonically increasing (items 16 through 19) or monotonically decreasing (items 1 

through 5). These statements represented opinions that were either very pro-life or very 

pro-choice, respectively. Six of 19 items had ICCs that exhibited a noticeable amount of 

folding (i.e., nonmonotonicity) in either the positive (items 13, 14, and 15) or the 

negative (items 6, 7, and 8) regions of the continuum.  These items corresponded to 

moderately pro-life or moderately pro-choice orientations, respectively. Both types of 

ICCs were consistent with the assumptions of an unfolding model.  The remaining 4 

items (items 9 through 12) were somewhat neutral in their content and exhibited 

markedly folded ICCs.  The ICCs of these four items were single-peaked and decreased 

at both extremes of the scale as predicted as GGUM-RM. In summary, 10 of 19 items 

showed a nonmonotonic pattern, which indicated that an unfolding model was more 

appropriate than a cumulative model for responses to this abortion questionnaire.  
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Firgure 16: Average Observed Versus Expected Item Responses by Theta Group for Items 1-4. 

Note:  Dots represent average observed responses;
          Smooth curve represents average expected responses.
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Firgure 17: Average Observed Versus Expected Item Responses by Theta Group for Items 5-8. 

Note:  Dots represent average observed responses;
          Smooth curve represents average expected responses.
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Firgure 18: Average Observed Versus Expected Item Responses by Theta Group for Items 9-12. 

Note:  Dots represent average observed responses;
          Smooth curve represents average expected responses.
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Firgure 19: Average Observed Versus Expected Item Responses by Theta Group for Items 13-16. 

Note:  Dots represent average observed responses;
          Smooth curve represents average expected responses.



 

 

73

 
  
 

 
 

The model also provided direct estimates of hyperparameters of the multivariate 

normal distribution used to model the latent variables.  In this analysis, the mean and 

variance of the baseline latent trait (i.e., baseline attitude) were constrained to be 0 and 1 

for identification purposes, whereas the mean and the variance of the latent attitude 

change, and the covariance between attitude change and the baseline attitude were 

estimated.  The estimated average abortion attitude change was equal to –0.066, which 

implied that there was little, if any, attitude change within the approximate 3-week test-

retest interval.  This was expected given the short testing interval and the lack of any 

Firgure 20: Average Observed Versus Expected Item Responses by Theta Group for Items 17-19. 

Note:  Dots represent average observed responses;
          Smooth curve represents average expected responses.
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experimental attempt to change attitudes.  The estimated variance for the attitude change 

and the covariance between attitude change and baseline attitude were .244 (standard 

deviation of .494) and -.074, respectively.  As expected, a negative correlation between 

attitude change and the baseline attitude was observed in this analysis (r = -.151). This 

negative correlation can also be seen in Figure 21, in which, the individual change 

estimates are plotted against their baseline levels. Students with neutral baseline attitudes 

exhibited little change across testing occasions, whereas students with extreme baseline 

attitudes for or against abortion showed slightly noticeable change that mitigated their 

extreme positions somewhat.     

 
    Figure 21: Scatter Plot of Estimate of Individual Change against Their Initial Level 

 

As shown in Figure 21, there were 4 respondents whose absolute change 

estimates were greater than 1 unit. The response patterns for these 4 respondents are 
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shown in Table 6.  Recall that an item score of 5 corresponded to “strongly agree” and a 

score of 0 represented “strongly disagree”.   Visual inspection of the responses for these 

four respondents suggests that they did change their attitude toward abortion across 

assessment times.  

 
Table 6: Responses for 4 Respondents with Absolute Change Estimates Greater than 1 
Student ID Assessment Time Responses 

Baseline 5555534440010400000  
1096 Second Time 0000010120054434545 

Baseline 5555555550000000000  
1098 Second Time 0000001123334444455 

Baseline 13110. 1000055345555  
1137 Second Time 4535554505510300000 

Baseline 5555450050000000000  
1150 Second Time 4045254432111111101 
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VII. Discussion and Conclusions 
 

Discussion  

The simulation results suggest that the model estimation procedure is 

computationally feasible. For the item parameters, accurate estimates can be obtained 

with a sample size of 1000 via the full Bayesian estimation method when using 4-

category items. Previous simulation studies showed that when using marginal maximum 

likelihood estimation, accurate estimates of item parameters can be obtained with 750 – 

1000 respondents when 6 response category items are used (Roberts, Donoghue, and 

Laughlin, 2002) or with 1000 respondents when 4-category items are used (Cui, Roberts, 

and Bao, 2004).  Although GGUM-RM is more complex than the unidimensional 

GGUM, the Bayesian estimation technique used by GGUM-RM provided prior 

information for all model parameters (i.e., item parameters, person parameters and 

hyperparameters) during model estimation, whereas MMLE used by unidimesional 

GGUM in previous simulation studies only provided prior information for person 

parameters. The additional prior distributions used to estimate GGUM-RM parameters 

apparently provided enough supplementary information in the solution to mitigate the 

need for larger samples. 

For the person parameters, accurate estimates of an individual’s initial level ( *
1jθ ) 

and change ( *
2jθ ) can be obtained when using 20 and 30 items, respectively. That is, 

more items would be needed to obtain equivalently accurate estimates of individual 

change than an estimate of the individual’s initial level. This is due to the model 

parameterization in the GGUM-RM.  The GGUM-RM formulates the category 
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probability function using a composite score (i.e., *
2

*
12 jjj θθθ += ), thus, during model 

estimation, all responses collected at both assessment times are used to estimate the 

individual’s initial level ( *
1jθ ), but only those responses collected from the second 

assessment time are used to estimate the individual’s change ( *
2jθ ). As a result, the 

estimates of the individual’s initial levels obtained by the GUUM-RM were more 

accurate than the estimates of individual change. 

Roberts, Donoghue, & Laughlin (2000) pointed out that the data demands of 20 

items and 1000 respondents for accurate model parameter estimation may exceed the 

resources of applied researcher; however, if suitable item parameter estimates are 

available, for example, when published standardized test/questionnaires are available, 

then accurate estimates of a single individual’s change over time can be obtained using 

GGUM-RM. Thus, this model could be applicable in small scale testing applications.   

In practice, alternate forms with anchor items may be used in order to alleviate 

potential contaminations caused by memory and learning effects. However, using 

alternate forms across assessment times may bring both advantages and disadvantages to 

model estimation of the GGUM-RM. Specifically, when holding other conditions the 

same, using alternate forms across assessment times results in less accurate estimates of 

item parameters, but more accurate estimate of individual change than using the same 

form across assessment times.  The inaccuracy in item parameter estimates is due to the 

fact that there are is fewer individual responses to all unique (i.e., non-anchor) items, In 

contrast, the additional accuracy in estimates of individual change results from the fact 

that each individual responds to more distinct items in the alternate forms condition.  

Person parameters in the GGUM family of models become more accurate as the number 
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of distinct items administered increases.  If items with identical characteristics were 

administered to an individual then these models would not indicate whether the 

individual was located above or below the item on the latent continuum.  

For the person parameter estimates, the simulation results showed that whether 

the same form or the alternate forms were used across assessment times had a negligible 

impact on the estimate of the individual’s initial level, but it had a significant influence 

on the estimate of the individual’s change in the 20 items condition. Specifically, the 

model provided a better estimate of individual change in the alternative forms with 20 

items than in the same form with 20 items. Two possible reasons can be used to explain 

this. First, there may be sampling fluctuation, since this recovery study only simulated 10 

replications in each combined condition. The small number of replications may have led 

to larger sampling fluctuation and the form effect on individual change estimates 

observed in this study could have been caused simply by chance. If more replications had 

been simulated within each combined condition, then the form effect might disappear.  

A second possible reason for the alternate form effect encountered in the 20-item 

condition relates to the fact mentioned earlier that the accuracy of person parameter 

estimates in the GGUM family of models improves as the number of distinct and 

informative items increase.  The notion of distinct items is key to this explanation and 

alternate forms provide more distinct items than do common forms.  Given this basic 

tenant, why then, did the alternate form effect only emerge in the 20-item condition?  The 

answer may relate to the minimum number of items required to obtain fairly accurate 

estimates of person parameters in the GGUM family.  Cui, Roberts & Bao (2004) 

suggested that tests/questionnaires with 20 4-category response items that are evenly 
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distributed along the entire scale are required to obtain reasonably accurate estimates of 

person parameters. In the 10-item condition from the present study, the number of 

distinct items administered across assessment times was less than 20 items in both the 

common form and the alternate forms conditions; thus, the test may have been too short 

to provide a good estimate of individual change, regardless of whether the same form or 

alternate forms were administered across assessment times. In the 30-item condition, the 

number of distinct items administered across assessment times was more than 20 in both 

the common form and the alternate forms conditions; thus, the test was long enough to 

give good estimates of individual change in both form conditions. However, in the 20-

item condition from the present study, the number of distinct items in the common form 

condition was equal to 20, which Cui et al. suggested was the minimum number of items 

required to achieve reasonably accurate estimates.  In contrast, there were 34 distinct 

items in the alternate forms condition, which clearly exceeded the test length suggestions 

made by Cui and colleagues.  Consequently, more accurate estimation of individual 

change was obtained in the alternate forms condition than in the same form condition 

when a test length of 20 items was used.  

With respect to the accuracy of item parameter estimation in the GGUM-RM, the 

simulation results indicated that when alternate forms were used across assessment times, 

estimates of item parameters were less accurate than those obtained by administering the 

same form across assessment times. That is because when the same form is used across 

assessment times, responses collected at all assessment times can be used to calibrate 

item parameters, but they can only be used to calibrate anchor items when alternate forms 

are used across times, and those unique items that appeared on one form can only be 
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calibrated using the responses collected at that specific assessment time. Thus, using the 

same form across assessment times can provide more accurate calibration of item 

parameters when using GGUM-RM than using alternate forms across assessment times.   

In longitudinal data analysis, researchers are also interested in assessing group 

change. The GGUM-RM can provide a direct estimate of group change via estimating 

hyperparameters of the latent distributions. Simulation results suggested that very 

accurate estimates of group change can be obtained with 1000 respondents using a 10-

item test/questionnaire. One advantage of directly estimating the group change across 

assessment times, instead of averaging the estimates of individual change, is that it avoids 

the impact of the shrinkage of EAP estimate of individual change when using Bayesian 

estimation. This implies that if the main purpose of a study is to assess group change over 

time, then equally or more accurate estimates of group change can be obtained with fewer 

items compared to the estimate of individual change.  

Usually researchers are interested in estimating change over time in longitudinal 

data analysis, but sometimes the latent trait level at any assessment time may also be of 

interest. An individual’s latent trait level at any assessment time can be easily derived 

from a composite score (i.e., 2
*

1
*

2
ˆˆˆ jjj θθθ += ) when using GGUM-RM to analyze 

responses collected from repeated measures designs. Then, a direct estimate of this 

composite score along with the standard error of the estimate can be obtained through 

WinBUGS by simply monitoring the composite ( 2
ˆ

jθ ).  This can be an advantage for 

those applied researchers who are interested in both individual composite scores over 

time (i.e., profiles) as well as individual change. 
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Limitations  

Findings from this study are encouraging and suggest that the use of GGUM-RM 

in large scale testing practice is viable. However, generalizations from the results of this 

study are limited to similar conditions represented herein.  The estimation strategy 

employed in this study is only appropriate for repeated measures designs with two 

assessment points. It cannot simply be generalized to situations that have more than two 

assessment times due to the limitations of WinBUGS with respect to constraining the 

variance-covariance matrix. If individuals are administered the test more than two times, 

more constraints are needed to make sure that the variance-covariance matrix is positive 

definite.    

The GGUM-RM presumes that within the same assessment administration, a 

unidimensional GGUM holds and item parameters are invariant across assessment points. 

That is, only individuals change their position on the latent continuum, but the way in 

which items measure the construct remains constant over time. This assumption may or 

may not be true for a given item in practice. For example, the construct being measured 

may remain the same across assessment times or it might possibly change such that old 

dimensions disappear or new dimensions emerge.  Reckase and Martineau (2004) 

demonstrated how the dimensions, measured in the context of vertical scaling of 

education proficiency tests, changed across cross-sectional examinee samples with 

increasing proficiency levels. The GGUM-RM might possibly be extended to 

accommodate such dimensionality change(s) by releasing certain constraints 

implemented in the current model. However, the estimation of model parameters would 

be quite difficult and time consuming due to the increased complexity.  Further study is 
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needed to see if stable estimates of model parameters over time can be obtained generally 

in common attitude measurement situations.  

 

Conclusion 

Assessing change in attitudes over time either at the individual level or at the 

group level using longitudinal data is likely to be of great interest in the future. Both 

researchers and practitioners are concerned about the appropriateness and the adequacy 

of psychometric methods available for this purpose. This study has extended 

unidimesional GGUM to a multidimensional format (GGUM-RM) and used it to directly 

estimate both individual and group change over time for repeated measures designs, 

while accounting for the dependency between latent trait variables at multiple assessment 

points.  Simulation results suggest that estimation of model parameters is computationally 

feasible and the application of the model in real test practice is plausible.  

 The GGUM-RM fits a non-linear function between latent change and observed 

scores, consistent with the fact that true changes are not linearly related to gain scores. 

The GGUM-RM uses standard errors to evaluate the precision of estimates of individual 

change, and thus, the reliability paradox becomes irrelevant (i.e., the reliability of gain 

scores decreases as the correlation between pretest and posttest increases). Also, direct 

estimates of group change provide researchers with a realistic option to avoid the 

problem of negative correlation between individual change estimates and initial levels 

when they are more interested in the change of a group. Lastly, the GGUM-RM is a 

parametric unfolding IRT model and is more appropriate for constructs measured by the 
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proximity-based response processes, as is typically the case with traditional attitude 

questionnaires.   

In summary, the GGUM-RM can provide appropriate and adequate estimates of 

change in unidimensional constructs over time when the binary or graded agree-disagree 

responses are collected from repeated measures designs using Likert or Thurstone 

attitude questionnaires, and the model may be very useful in many applications.  
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Appendix A: Time-series Plots for Alpha, Delta and Tau for Two Chains of 10000 
Iterations for 10 Items, and Thetas for First Five Persons for Two  Chains of 10000 
Iterations 
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