
 
 

ABSTRACT 

 
 
Title of Dissertation: COMBINATORIAL LIBRARY DESIGN OF MUTATION-

RESISTANT HIV PROTEASE INHIBITORS. 
 
 

Sripriya Chellappan, Doctor of Philosophy, 2006 
 
 
Dissertation directed by:  Professor Michael K. Gilson 
                                         Department of Molecular and Cellular Biology 
 
 

      The emergence of HIV strains that are resistant to current HIV protease inhibitors in 

the past few years has become a major concern in AIDS treatment. The goal of this 

project is to design a combinatorial library of potential lead compounds that can bind to 

both the wild-type and mutant proteases and that can resist further mutations. A recent 

crystallographic study of complexes of HIV protease with its substrates has provided 

structural insights into the differential recognition of the substrates and inhibitors.  It has 

been proposed that clinical resistance is a consequence of inhibitors failure to stay within 

the consensus substrate volume. In this work, we devised a quantitative indicator of the 

degree to which a candidate ligand falls outside the consensus substrate volume, and 

determined its correlation with the inhibitor’s sensitivity to clinically relevant resistant 

mutations. The validation of this hypothesis has encouraged us to use this strategy in our 

design of a combinatorial library of inhibitors. 



The compounds in a typical combinatorial library are built around a common structural 

scaffold possessing multiple connection points where substituents can be added by 

reliable synthetic steps. As the number of compounds encompassed by such a 

combinatorial scheme frequently exceeds what can actually be synthesized and tested, 

virtual screening methods are sought to shortlist the compounds. Even though these 

methods require only seconds to minutes of CPU time per compound, exhaustive 

screening of an entire virtual combinatorial library is computationally demanding. We 

therefore implemented a simple algorithm of combining substituents that have been 

optimized independently for the substituent sites. This method was compared with 

Genetic Algorithm, a global optimization method and was found equally efficient. This 

simple method was hence chosen for the design process. 

A combinatorial library based on these ideas and methods has been synthesized and 

tested. It includes four compounds with nanomolar inhibition constants. Two of them 

were shown to have retained affinity against a panel of treatment-resistant mutations. 
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Chapter 1. Introduction 

1.1 AIDS and HIV 

1.1.1 AIDS epidemiology 

Acquired Immunodeficiency Syndrome (AIDS) is a severe, immune deficiency syndrome 

due to impaired T-cell function, which results in serious opportunistic infections such as 

tuberculosis, kaposi sarcoma and herpes (1). The UNAIDS reported in 2005 that there are 

about 38 million people worldwide affected by AIDS. Just last year, about 3 million 

people lost their lives to this disease (2).  In 2005, at the G8 nations meeting and the 

United Nations World Summit, world leaders recognized AIDS as a major epidemic and 

committed to provide universal access to AIDS treatment for all who need it (2). 

1.1.2 AIDS infection 

In 1984, a cytocidal retrovirus was identified as an infectious etiologic agent for AIDS 

(3). This virus was named the Human Immunodeficiency Virus (HIV) by the 

International Committee on Taxonomy of Viruses in 1986. AIDS is a communicable 

disease which is transmitted through direct contact of a mucous membrane with a bodily 

fluid of an HIV infected person, such as blood, semen, or vaginal fluid. The main routes 

of HIV transmission are transfusion of blood and blood products, sexual contact, 

transmission from mother to child, and the use of contaminated hypodermic needles. 

Upon infection, HIV attacks host helper T-cells and macrophages, which are major 
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components of the host immune system.  The virus gains entry into the host cell through 

the cell surface receptors CD4 (cluster of differentiation) (4) and co-receptors such as the 

cytokine receptor CCR5 (5). Once inside the cell, HIV disrupts the normal cellular 

function by hijacking the cellular machinery to produce viral proteins. It also affects the 

integrity of the host cell by copious budding during its replication. This eventually leads 

to the destruction of helper T-cells and macrophages. There is an initial decline in the 

count of helper T-cells, which is followed by a short term recovery to a nearly normal 

level. After this recovery, there is an average annual loss of about 60 T-cells/µl. When 

the count falls below 200/µl (the normal count is between 800-1200/µl), the patient is 

diagnosed with AIDS (6). The time period between the recovery and this state 

corresponds to clinical latency. 

The symptoms of acute HIV infection include headache, sore throat, muscle pain and 

other virus-like symptoms. Non-pruritic macular erythematous rashes of the trunk and 

extremities can distinguish HIV from other infectious diseases. During this acute 

infection phase, there is a high level of infectious viruses with heterogeneity in strains in 

the blood, which can be detected by Enzyme Linked Immunosorbent Assay (ELISA) 

detection kits. After the acute phase, patients can be asymptomatic for years. Because of 

the latency involved in the clinical manifestation of this syndrome, the virus was 

classified as lentivirus, a sub-family of retrovirus (7).  

When the helper T-cell count drops below 200/µl, the patient becomes highly susceptible 

to opportunistic infections (OIs). Because of the highly compromised immune system, 

the individual becomes susceptible to a wide range of opportunistic pathogens, which are 
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harmless to the normal population. Candidiasis, Kaposi sarcoma, herpes and 

cytomegalovirus are relatively common OIs among AIDS patients. Neoplasms and 

neurological symptoms such as aseptic meningitis, myelopathies are also not rare in 

AIDS patients (7). The OIs are chiefly responsible for the morbidity and mortality in 

AIDS. 

1.1.3 HIV structure 

The HIV virion is roughly spherical, with a diameter of approximately 100nm. The 

surface is made up of a lipid bilayer and envelope glycoproteins, which occur as trimers 

or tetramers. These glycoproteins include the external surface envelope protein gp120, 

and a trans-membrane protein, gp41, which interact covalently with each other. Gp120 

has binding sites for the host cellular receptors. Beneath the lipid bilayer, there is a viral 

membrane, whose inner structure is supported by a myristoylated matrix protein. This 

protein is important for the viral structure and hence for the integrity of the virion. Apart 

from structural stability, the matrix protein has also been shown to play an important role 

in the incorporation of envelope proteins gp120 and gp41 into the mature virion. Inside 

the virus, there is a cone shaped core structure termed the capsid or nucleoid, which is 

composed of a capsid protein. The nucleoid contains two identical RNA strands and the 

associated proteins viral RNA dependent DNA polymerase and nucleocapsid protein (7) . 

Figure 1.1 shows a simple cartoon diagram of an HIV virion. 
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Figure 1.1: Structure of HIV. 
Important structural features are highlighted. Reprinted from (7). 
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1.1.4 The life cycle of HIV 

The life cycle of HIV starts with the attachment of viral particles to the target host cells, 

which are mainly helper T-cells and macrophages. Gp120 aids in the attachment of HIV 

to the host cell by interacting with its cell surface protein CD4. This interaction leads to a 

conformational change in the envelope protein, by which the virus gains entry into the 

host cell. During the process of entry, gp120 is displaced and cleaved by cellular 

proteases, exposing gp41 fusion domain, which has been suggested to be important in 

viral envelope shedding and cleavage. Alternative sites for viral entry through 

complement and Fc receptors have also been proposed (7). After the shedding and 

cleavage of the viral envelope, ribonucleocapsid is released into the host cell. The viral 

RNA undergoes reverse transcription, using its associated RNA-dependent DNA 

polymerase and RNase H proteins, forming double stranded DNA. This viral DNA then 

migrates to the nucleus and integrates with the host chromosomes. Some of the earliest 

mRNA species have regulatory genes, particularly tat, rev and nef. These genes 

determine the state of HIV virus as dormant or active. The primary full length viral 

mRNA is translated into Gag, Pol and Env polyproteins. This early transcription relies 

primarily on the cellular transcription factors. Hence the state of the host cell 

(differentiation or quiescent phase) affects the viral replication cycle. The Gag precursor 

protein on cleavage yields smaller structural proteins p25, p17, p9 and p6, whereas the 

Pol yields functional proteins reverse transcriptase, protease and integrase and Env yields 

two envelope proteins gp120 and gp41. Other viral proteins are produced by alternate 

splicing events. Viral genomic RNA is then incorporated into a capsid forming at the host 
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cell surface. The processing of Gag, Pol and Env polyproteins by HIV protease occurs at 

the cell surface or in budding virion. Viral envelope proteins get inserted on the viral cell 

surface. HIV then buds off the host cell, completing the HIV replication cycle. A cartoon 

representation of HIV life cycle is shown in Figure 1.2. There are several life stages in 

HIV replication cycle that can be considered as targets for anti-AIDS therapy. They are 

viral entry, reverse transcription of viral RNA, integration of viral DNA into host DNA, 

processing of Gag, Pol, Env polyproteins, viral assembly and budding. Gp41 (needed for 

viral fusion), reverse transcriptase and HIV protease are the targets for the existing FDA 

approved drugs (7).  
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Figure 1.2: Diagram of the life cycle of HIV. 
 (1) Viral entry and fusion. (2) Envelope shedding and cleavage. (3) Reverse 
transcription. (4) Integration. (5) Cellular transcription and translation. (6) Post 
processing of precursor polyproteins. (7) Viral assembly. (8) Viral budding. Reprinted 
from (7) 
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1.1.5 Anti-HIV therapy 

The four major therapeutic classes of anti-HIV drugs include are nucleoside analogues of 

reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors 

(NNRTI), protease inhibitors (PI) and fusion inhibitors. The first two classes act by 

inhibiting the RNA-dependent DNA polymerase (reverse transcriptase): the NRTIs 

competitively inhibits the binding of nucleosides to reverse transcriptase and thereby 

prevents elongation of viral DNA strand, while the NNRTIs non-competitively inhibit the 

viral reverse transcriptase.  FDA approved NRTIs include Zidovudine (8), Didanosine (9) 

and Lamivudine (10), Zalcitabine (11), Stavudine (12) and Abacavir (13).   Combinations 

of two or more NRTIs such as Combivir (Lamivudine & Zidovudine) and Trizivir 

(Abacavir & Lamivudine & Zidovudine) are also therapeutically used.  Nevirapine (14), 

Delavirdine (15) and Efavirenz (16) are the NNRTIs that are FDA approved.  Protease 

inhibitors act by competitively inhibiting HIV protease, an enzyme that is essential for 

virulence. Amprenavir (17), Indinavir (18), Saquinavir (19), Nelfinavir (20), Ritonavir 

(21), Lopinavir (22) and Atazanavir (23) are FDA approved PIs.  A combination of 

Lopinavir and Ritonavir is also in clinical use.  Fusion inhibitors act by binding to viral 

protein gp41, which is important for the viral entry and fusion. Enfuvirtide (24) is the 

only FDA approved drug that belongs to this class. It is advocated only as an add-on 

drug.  

A combination of one PI or one NNRTI and two NRTIsis routinely used in AIDS therapy 

to overcome the emergence of drug resistant mutations. Such combination therapy, 

termed Highly Active Anti Retroviral Therapy (HAART), has been reported to be 
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responsible for a rapid decline in the morbidity and mortality rate associated with HIV 

infection (25). 

1.1.6 HIV protease 

1.1.6.1 Structure 

HIV protease is an enzyme that processes the precursor polyproteins into mature proteins. 

This posttranslational processing is one of the vital processes of the HIV replication 

cycle. Mutation of catalytic Asp25 in HIV protease to asparagine destroys the enzyme’s 

catalytic activity, supporting its classification as an aspartyl protease, a class that also 

includes renin and pepsin. The virion produced by such mutants lacks virulence and 

infectivity (26). A synthetic peptide resembling an HIV protease substrate but with a non-

hydrolysable replacement of the scissile amide bond was found to inhibit HIV protease 

activity. It was also found to inhibit the viral replication in blood lymphocytes. These 

studies suggested that HIV protease could be a suitable target for therapeutic intervention 

(27-29). 

HIV protease shares sequence homology around the active site with other retroviral 

proteases. It is a homodimer, with 99 amino acids in each monomer. It exhibits C2 

symmetry in the absence of ligands. A cartoon representation of HIV protease is given in 

Figure 1.3. The amino and carboxyl termini from both monomers form a four-stranded 

anti-parallel beta sheet at the dimer interface. This structure is stabilized by ionic 

interactions between the N- termini (residues 1-4 of beta strand a) of each monomer and 

the C-termini (residues 96 –99 of beta strand q) of other monomer (30). The beta strand b 
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(residues 9-15) continues to another beta strand c, through a loop, which terminates in the 

active site triad. The catalytic triad Asp (25, 25’), Thr (26,26’), Gly (27,27’) is located at 

the bottom of the dimer interface. Each monomer contributes one aspartic acid to the 

catalytic triad. Coplanar arrangement of catalytic aspartates is due to the network of 

hydrogen bonds resembling “fireman’s grip”, between the loops bearing catalytic triad. 

Thr26 and Thr24 from both the monomers are involved in this network of hydrogen 

bonds. Beta chain d (residues 30-35) which follows the strand c, is terminated at a 

distorted loop (residues 36-42). There is an approximate two fold intra-molecular 

symmetry in the monomer, making second half of the molecule topologically similar to 

the first half of the molecule. The a’ beta strand (resides 43 - 49) and a part (residues 52-

58) of longer b’ beta strand (residues 52-66) form a flap. These glycine rich flap regions, 

from both the monomers, cover the active site. The beta chain c’ (residues 69-78) is 

connected to another beta chain d’ (residues 83-85), through a loop (residues 79-82). A 

well-defined helix (residues 86-94) follows the beta strand d’, which is in turn followed 

by the C-terminal beta strand q. Aψ-shaped beta sheet in the molecular core, is formed by 

four of the beta strands (c, d and d’ ; c’,d and d’). This feature is a characteristic for the 

family of aspartic proteases(31).  

There are at least three distinct subsites on either side of the catalytic triad. The 

numbering of sub sites begins from the catalytic site and continues on either side (Figure 

1.4). The residues that comprise S1 and S1’ site are mostly hydrophobic. Most of the 

crystal structures of inhibitors and substrates show hydrophobic moieties interacting with 

this subsite, though exceptions are not rare (31). Subsites S2 and S2’ are also hydrophobic 
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but still accommodate both hydrophobic and hydrophilic residues (31). The distal 

subsites are not as well-defined, and can accommodate a wide variety of substituents.  
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Figure 1.3: A cartoon representation of HIV protease. 
Substructures are labeled as described in the text. Catalytic aspartates are represented in 
ball and stick model. Redrawn from (31).  
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Figure 1.4: Hydrogen bonds between HIV-1 Protease and a modeled substrate. 
Reprinted from (32). 
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1.1.6.2 Substrate recognition 

HIV protease processes Gag, Pol and Env polyprotein into structural and functional 

proteins. These substrates require a large-scale flap opening in HIV protease to access the 

active site. This movement in the flap region can be observed in structures of ligand 

bound and free HIV proteases with more heterogeneous flap structures in the Protein 

Data Bank (PDB) (33), varying from closed to open form. The nature of this movement 

in flap regions is debatable. Some studies have modeled it as rigid lever movement (34), 

while others have described it as a curling of flap tips (35).  

The binding, cleavage, and release of substrates involve large-scale movement of certain 

regions in HIV protease (36, 37). The protease molecule can be conceptually divided into 

four regions based on their mobility (Figure 1.5). They are the fulcrum (residues 11-21 

and 11’-21’), fireman’s grip (residues 22-28 and 22’-28’), flaps (residues 34-59 and 34’-

59’) and cantilever (residues 64-74 and 64’-74’) (Figure 5). The fireman’s grip region is 

considered rigid because of the extensive hydrogen-bond network in this region. 

Movements of the flap, fulcrum and cantilever regions was observed to correlate with 

each other and with the movement of substrates in a recent study using Molecular 

Dynamics (MD) simulations (36). 

Substrates bound to the protease form a parallel β-sheet with one monomer and anti-

parallel β-sheet with the other. The transition between these two parts of the substrate 

generates a kink in the substrate at the center of the active site, directly above the 

catalytic aspartates, which is thought to facilitate cleavage (38). The hydrogen bonds 
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between the substrate and the backbone amide nitrogen of residues I50 through the flap 

water are thought to be important for the catalytic action (39). These hydrogen bonds 

were suggested to exert strain on the scissile amide bond by causing it to rotate out of the 

plane and lose double-bond character, assisting in catalysis. Most of the hydrogen bonds 

between the substrates and the enzyme involve the backbone of the substrates.(38) 

Therefore the substrate specificity arises mainly from nonpolar interactions between the 

side-chains of the substrate and the residues lining the corresponding sub-sites (37).  
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Figure 1.5: Flexible regions of HIV Protease. 
Violet: Flap. Gold: Cantilever. Pink: Fulcrum. Green: Fireman’s grip. Catalytic aspartates 
are shown in ball and stick model. Redrawn from (32, 36).  
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1.1.6.3 HIVP substrate specificity 

HIVP cleaves the Gag-Pol polyprotein at least at eight different locations; Table 1.1 

presents the P4 to P3’ amino acid sequences flanking these cleavage sites. The substrates 

can be grouped into two types, based on the amino acids immediately flanking the 

scissile bond: “–aromatic * Pro-“ , and “–hydrophobic * hydrophobic-“. The interactions 

of these substrates with HIVP are typically analyzed in terms of seven subsites, S4-S3', 

within the binding site (40).  For example, the branched amino acids (Val or Ile) are 

preferred at the P2 position in substrates of the –hydrophobic * hydrophobic- type, while 

Asn is prefered at this position in the –aromatic * Pro- types.  Interestingly, although 

though there is no S5 subsite, Lys at P5  position significantly enhances the catalysis of 

substrates with a -hydrophobic * hydrophobic cleavage site, and also can significantly 

affect catalysis for the -aromatic*hydrophobic- junction (40). Thus, substrate residues at 

long distances from the scissile peptide bond contribute to HIVP specificity.  However, 

although it is conceivable that entire flanking domains of the Gag-Pol polyprotine might 

also be involved in binding to HIVP and to substrate specificity, such interactions to not 

appear to have been reported in the literature. 
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JUNCTION 

 

P4

 

P3

 

P2

 

P1

 

* 

 

P1’ 

 

P2’ 

 

P3’ 

 

Ser Gln Asn Tyr * Pro Ile Val 

Ser Phe Asn Phe * Pro Gln Ile 

Aro*Pro 

 

Thr Leu Asn Phe * Pro Ile Ser 

         

Ala Arg Val Leu * Ala Glu Ala 

Ala Thr Ile Met * Met Gln Arg 

Pro Gly Asn Phe * Leu Gln Ser 

Ala Glu Thr Phe * Tyr Val Asp 

Hydrophobic 

* 

Hydrophobic 

Arg Lys Val Leu * Phe Leu Asp 

 

Table 1.1: Substrate sequences from P4 to P3’.   
The cleavage site is denoted by *. Reproduced from Griffiths etal (41). 

 

1.1.6.4 Mechanism of catalysis 

The aspartic proteases catalyze hydrolysis of their substrates through a general acid-base 

mechanism. This proteolysis takes place in four steps (Figure 1.6). The peptide carbonyl 

is hydrated by an active-site water in the first step of catalysis (Figure 1.6a). There is also 

translocation of a proton between the active site aspartates. In the second step, the scissile 
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peptide bond adapts a gauche conformation (Figure 1.6b).  The flexibility of the hydrated 

bond leads to this conformational transition. The gauche conformation facilitates proton 

transfer in the third step (Figure 1.6c). This proton exchange involves simultaneous 

proton transfers from one hydroxyl group of active site water to the charged aspartate and 

from the second aspartate to the nitrogen lone pair of the hydrated peptide bond. Rotation 

of the proton donor aspartate around the Cβ–Cγ bond is required for this proton 

exchange. The final step involves the breakage of C–N peptide bond and regeneration of 

the initial protonation state of catalytic aspartates (Figure 1.6d)(42). 
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Figure 1.6: A model for HIV protease catalysis.  
(a) Hydration of the scissile amide bond. (b) Conformational transition. (c) Simultaneous 
proton transfer. (d) Cleavage of the scissile bond. Reprinted from (42). 
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1.1.7 HIV protease inhibitors 

HIV protease inhibitors are competitive inhibitors, in which the scissile P1-P1’ amide 

bond is replaced by a non-hydrolysable isostere such as a reduced amide,  

hydroxyethylene, hydroxyethylamine, azapeptide, etc (Figure 1.7) (43). Crystal structures 

of HIV protease-inhibitor complexes show that the enzyme structure is well preserved. 

This implies that the interaction pattern of inhibitors with the main chain of the protein 

remains the same, in spite of their differences in chemistry and structure. On 

superimposition, the functional elements were found to have a very good overall 

alignment. Most of the substrate-based inhibitors bind to the enzyme in an extended 

conformation(31).  Inhibitors with a hydroxyl group at the non scissile junction position it 

between the catalytic aspartates, within hydrogen-bonding distance to at least one 

carboxylate oxygen of each aspartate (Figures 1.8a and 1.8c). Interaction of inhibitors 

with a buried water molecule, that bridges their P2 and P1’ carbonyl groups and Ile50 and 

Ile50’ NH groups of the flaps, is one more common feature (Figures 1.8a and 1.8b). This 

water is completely separated from the bulk solvent. Most inhibitors have hydrophobic 

moieties occupying P1 and P1’ sub sites.  
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Figure 1.7: Examples of non-hydrolysable isosteres of the peptide bond.  
 (a) Reduced amide. (b) Hydroxy ethylene. (c) Hydroxy ethylamine. (d) Azapeptide (44).
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Figure 1.8: Superimposed HIV protease-clinical inhibitor complexes. 
Crystal structures of Amprenavir, Indinavir, Saquinavir, Ritonavir and Nelfinavir in 
complex with HIV protease were superimposed to show the consensus hydrogen bonding 
interaction with flap water (a) and with catalytic aspartates (b). HIV protease is shown in 
ribbon model; the inhibitors, flap water and residues Asp25, Asp25’, Ile50 and Ile50’ are 
shown in licorice model.  

 23



Inhibitor-binding induces substantial changes in enzyme conformation. There is an 

approximate rotation of about 2 Å around the hinge region in the β-sheet interface. This 

rotation is accompanied by a large ~7 Å  motion of the flap regions, which leads to flap 

closure and tightens the active site (31). This tight conformation of the active site 

excludes bulk water, providing the dehydrated environment needed for catalysis or for 

inhibitor binding (45). Upon binding, clinical inhibitors such as Indinavir, nelfinavir, 

saquinavir and ritonavir bury a large amount of largely hydrophobic surface area. Hence, 

the main driving force for their binding is, arguably, provided by the hydrophobic effect 

(45). 

1.1.8 Clinical resistance 

Despite the initial success of anti-AIDS therapy, nowadays there is a worrisome 

emergence of viral strains that exhibit resistance (45). It is estimated that almost 14% of 

new infections in America and 10% in Europe are by treatment-resistant strains. Its high 

replication rate and error-prone reverse transcriptase makes this virus remarkably prone 

to mutation. As a consequence, the appearance of HIV variants with decreased 

susceptibility to clinical inhibitors can be viewed as inevitable (44).  

HIV protease, being a small enzyme and a homo-dimer, was initially thought of as an 

ideal target because of its limited mutational possibilities (46).  There was also a 

speculation that resistance mutations would not readily develop to HIV protease 

inhibitors, because the protease need to process nine different substrates (47). However, 

rapid emergence of strains resistant to HIV protease inhibitors completely changed the 

 24



initial perspective. There are at least 49 residues in HIV protease that undergo mutation, 

leading to resistance to one or more clinical inhibitors (45, 48). These mutations 

considerably reduce the affinity to inhibitors while retaining a viable enzymatic profile. 

HIV protease mutations can be classified as primary or secondary, based on their order of 

appearance in patients undergoing treatment. Mutations in the binding site are almost 

invariably primary mutations. They are generally conservative, preserving the charge and 

polarity of the active site but not the geometry (49). As few as two such mutations often 

suffice to reduce the binding affinity of inhibitors several hundred-fold (50). 

The effects of active site mutations on binding affinity are often relatively easy to 

interpret, as they are responsible for the loss of local van der Waals interactions or 

hydrogen bonds. The active site residues Asp30, Val32, Gly48, Ile50, Val82 and Ile84 

(Figure 1.9), are highly prone to mutation. As these sites directly interact with the 

inhibitors, most of them are signature mutations for specific inhibitors. For example, 

signature mutations for saquinavir are G48V and I84V; for indinavir and ritonavir are 

V82A/T/F/S and I84V; for nelfinavir are D30N and I84V; for amprenavir are I50V and 

I84V; and for lopinavir V82A/T/F/S (45).   

These active site mutations also affect the catalytic efficiency and maturation of Gag 

proteins, leading to impaired infectivity (51). Mutations at sites other than the active site 

have been found to compensate for this compromised catalytic activity (52). They also 

affects the binding of clinical inhibitors by causing a distortion in the geometry of 

binding site (53), and by stabilizing the open form of the protease (50). These effects of 
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non-active site mutations were proposed to have a greater effect on binding of rigid 

inhibitors rather than the binding of substrates (54). Hence viral strains that show 

phenotypic and genotypic resistance to multiple drugs have only one or two active site 

mutations and a constellation of non-active site mutations (53). The diminished catalytic 

activity was also compensated to a certain degree by the co-evolution of substrates with 

mutations in Gag precursor p1/p6 and/or NC (p7)/p1cleavage sites (55-57).  
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Figure 1.9: Sites of signature mutations. 

Blue: Saquinavir. Red: Amprenavir. Orange: Nelfinavir. Green: Residues 82 and 84, that 
mutate with all clinical inhibitors. (a) Front view (b) Top view 
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1.1.9 Design strategies for mutation resistant HIV protease inhibitors 

The emergence of viral strains that are resistant to existing clinical HIV protease 

inhibitors has necessitated a search for novel inhibitors with broad specificity against 

treatment-resistant strains. The goal of our project is to design a combinatorial library of 

such inhibitors. Several plausible design strategies deserve consideration. This section 

gives a short list of such strategies and discusses their merits.  

The first strategy is to design inhibitors against multi-PI resistant variants. These variants 

carry various permutations and combinations of mutations in the protease. Hence it is not 

possible to include all the variants in screening, but it is possible to account for mutations 

at residues 10, 54, 71, 82 and 84, which occur frequently in multi-PI resistant strains. 

Therefore the strategy would be to design compounds that might not interact with these 

residues (58). Compounds having unique contacts with protease, such as TMC126, can 

be another category of novel mutation resistant inhibitors. The development of resistance 

to such an inhibitor will follow a different genetic pathway than the one due to the 

existing clinical protease inhibitors. Hence such inhibitors can be used in cocktail therapy 

with other protease inhibitors or for salvage therapy (59). 

Inhibitors can be designed to have flexibility in the regions that interact with residues that 

are prone to mutate (60, 61). This idea is based on the observation that highly flexible 

peptide substrates are more amenable to adapt to backbone rearrangements or subtle 

conformational changes induced by mutations in the protease. In contrast, more rigid 

inhibitors lose much of their affinity on minor changes in the geometry of the binding site 
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(62). This differential susceptibility to mutation leads to clinical resistance. Hence 

inhibitors that are flexible may evade resistance. It is difficult though not impossible to 

incorporate this criterion in massive in silico screening. 

The inhibitors that target open active site can be another set of candidate drugs. Most of 

the non active site mutations occur at domain interfaces, stabilizing protein in un-

liganded (open) state and thus increasing the off rate for existing inhibitors. Therefore 

drugs targeting open active site can selectively avoid the mutations that confer resistance 

in this manner (63).  

Design of compounds to have a volume consensus with substrates is another design 

strategy. It has been recently proposed that substrates are recognized by the protease by 

their volume rather than by their sequence or by their charge distribution. As these 

compounds would occupy the same volume as that of the substrates, any mutation that 

affects the binding of inhibitors would also affect the binding of substrates, and thereby 

affecting the viability of the virus. We selected this strategy for further scrutiny and 

evaluation in the design of a combinatorial library of mutation resistant HIV protease 

inhibitors. This strategy was also chosen based on its easy implementation and 

compatibility with our scoring algorithm (details are given in Chapter 2).  
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1.2 Combinatorial library design  

1.2.1 Combinatorial library and virtual screening 

Combinatorial library is a library of compounds that are related to one another, as they 

are built from same set of building blocks. Each compound in this library is a unique 

combination of these building blocks. There is a common structural core (combinatorial 

scaffold) between the members of this library, which has linking points for the building 

blocks (64). As there are huge number of available building blocks (synthetic reagents), it 

is not possible to synthesize and screen all possible combinations in the library for bio-

activity. Identification of subsets of compounds from this vast combinatorial library that 

have the best potential for the discovery of new leads is a daunting task. Computational 

methods (Virtual screening) are sought to pick such promising candidates for synthesis 

and in vitro screening.  

Based on the criteria used, virtual screening methods can be broadly classified into three 

classes. They are as follows: Cheminformatics-based, Ligand-based and Structure-based 

methods. The first class uses chemical descriptors or other chemical properties to select 

molecules based on drug-likeness, lead-likeness or diversity. The second class is used 

only when one or more active compounds were known. This method compares structural 

features of the screened compounds with the known actives. The last method is used 

when the structure of biological target and the key features of molecular recognition are 

known (65). Hence, selection of the virtual screening method depends on the level of 

available information.  The last two methods are more predictable than the first method 

(65).  
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Cheminformatics-based methods are used when there is no prior information on the target 

or the actives for this target. In this situation, it is desirable to screen combinatorial 

libraries for diverse chemistry with drug and lead-like characteristics and also without 

undesirable chemical properties such as toxicity(66). This virtual screening method thus 

involve evaluation of molecular similarity or diversity, which can be assessed by 

comparing molecular features expressed in binary fingerprints (67). These fingerprints 

carry information on molecular features such as presence or absence of structural 

fragments, aromatic character, flexibility, and hydrogen-bonding capacity of molecules. 

There are a variety of metrics, that are available to compare the fingerprints (68). 

Ligand-based methods are based on a pharmacophore model, which correlates molecular 

architectures with bio-activity. In this method compounds are screened for isofunctional 

molecular architecture that mimics the pharmacophore pattern in bio-active molecules. 

This method is especially useful, when there is limited or no structural information on the 

target. There are several software programs (HARPick (69), MoSELECT (70), TOPAS 

(71)) that use this method in the design of combinatorial libraries (72). 

When the structure of a target protein is known, structure based screening methods are 

widely chosen because of their potential to discover diverse chemistry. They are also 

preferred for the structural insights, which can guide the design and optimization of lead 

compounds. In the structure based methods, suitable combinations of building blocks are 

suggested based on their predicted binding affinity for a given receptor. These methods 

can be broadly classified as de novo and scaffold based. In the de novo based method, 

optimal building blocks (chemical fragments) that interact favorably with sub sites in the 
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binding cavity of a target protein are linked sequentially to build combinatorial 

compounds (73). Examples of such de novo based design algorithms include 

CombiSMoG (74),TOPAS (71), MCDNLG (73),  LUDI (75). The disadvantage of these 

methods is that the choice of an optimal fragment for an earlier link in the growth phase 

may not be optimal further down the growth chain. Certain programs such as 

CONCERTS (76) circumvent this problem by allowing the links to break and reform 

during the growth phase.  

Scaffold based design method involves linking building blocks (substituents) to an 

anchoring fragment (combinatorial scaffold) through the linking points (substituent 

positions). The combinatorial scaffold may be the one that provides the key interactions 

with target protein or a starting fragment in the synthetic route or the fragment to which 

other fragments are linked. Examples of this method include CombiDock (77) and 

PRO_SELECT (78).  

Structure-based virtual screening methods predict the binding affinity of a given 

compound by docking them in the target active site and scoring the docked poses. 

Examples for the programs that are widely used for this purpose are DOCK(79), 

GOLD(80), AutoDock(81), FlexX(82), PRO_LEADS(83) and GLIDE(84). The 

following two sections give a brief introduction on the docking and scoring functions and 

on VDock(85, 86), one such function that we use in our combinatorial library design. 
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1.2.2 Docking and scoring 

Docking is a computational method that uses the structure of a targeted protein to aid in 

the discovery of new ligands. It involves generating putative binding poses of candidate 

ligand in the target’s active site and scoring these poses for their predicted binding 

affinity (65). Kuntz and coworkers pioneered this approach with their geometric method 

of fitting compounds into the binding site; this method was later named DOCK (87). 

Since then, numerous other approaches have been developed that vary in their scoring 

functions, their approaches to treating the flexibility of ligand and protein, and their 

algorithms for discovering low energy conformations of the ligand- protein complex.  

There are three categories of scoring function: force-field based, empirical and 

knowledge-based. The force-field based methods compute the binding energy in terms of 

van der Waals and Coulombic potentials from a molecular mechanics force field. 

Docking programs that use this approach include AutoDock (81), DOCK (79) and 

VDock (85, 86). An empirical scoring function uses fitted hydrogen bonding, ionic and 

hydrophobic energy terms, which are calibrated based upon complexes of known affinity. 

The docking programs FlexX (82), AutoDock (87), ChemScore (88) and LUDI (89) use 

this approach. Knowledge-based potentials, such as BLEEP (90), PLP (91), PMFScore 

(92) and DrugScore (93),  are based on observed atom-atom distributions among a large 

set of protein-ligand structures. (65). 

Different docking proteins account for the flexibility of ligands and proteins in greater or 

lesser detail. One approach to handling ligand flexibility is to precompute a set of ligand 
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conformations, and then dock them all as rigid components into the binding site.  This 

approach is employed by a number of methods, including EUDOC (94), FLOG (95) and 

LigandFit (96).  Another approach, used in programs such as FlexX (82) and DOCK (79), 

considers the ligand as a series of rigid molecular fragments. After positioning a key 

anchoring fragment in the active site, the other fragments are added to it in a step-wise 

fashion in such a way as to optimally fit the ligand into the binding site.  Finally, a 

number of other programs use global optimization methods, such as Metropolis Monte 

Carlo (MC) (97, 98), Tabu search (83) and Genetic Algorithm (GA) (99), to seek the 

lowest-energy conformation of a flexible ligand in the binding site. Examples of this 

approach include GOLD (80), AutoDock (81), VDock (85, 86), GLIDE (84) and 

PRO_LEADS (65).   

Docking methods are typically evaluated based upon their ability to reproduce the 

experimentally observed conformations of bound ligands.  In many cases, the predicted 

conformations lie within a root-mean-square deviation (RMSD) of 2.0 Å  On the other 

hand, the computed structure of lowest RMSD is not always the one with the most 

favorable docking score, due to errors in the the scoring function (65).  Docking 

programs are also tested for their ability to score the known ligands of a targeted protein 

higher than a set of background (“decoy”) compounds that are not thought to bind the 

target.  When a mixture of known ligands and decoys are scored, most programs provide 

substantial enrichment of known ligands among the top-ranked compounds (74, 100, 

101).  However, it is important to recognize that performance on such tests depends upon 

the details of the comparisons.  For example, it is typically easier to assign high scores to 

 34



ligands that bind the target tightly than to lower-affinity ligands.  Also, the known ligands 

are harder to differentiate from the decoy compounds when the decoys are more drug-like 

(65).  

1.2.3 VDock 

VDock is a force-field based docking algorithm developed in our lab. This program uses 

a rigid protein model. In the calculation of protein-ligand interaction energy, it is 

computationally expensive to include all non bonded interactions, as they are numerous. 

The fact that the protein atoms are fixed in the calculations, enables us to pre-compute the 

potentials (electrostatic potentials, and Lennard-Jones potentials) generated by all protein 

atoms in advance, and storing these potentials on a grid.  Protein-ligand interaction 

energy can then be computed from the interaction between ligand atoms and grid points. 

These grids (electrostatic, steric and dispersive grids) with lattice spacings of 0.2 A° are 

generated using CHARMM 22 force field parameters and an implicit solvent model with 

a distance dependent dielectric constant, ε = 4r , where r is the distance between the grid 

point and the receptor atom (88).  The grid dimensions are chosen to encompass all 

regions that mobile ligand atoms might enter.  

VDock models the ligand as flexible by explicitly considering all torsional degrees of 

freedom along with translational and rotational mobility. As stated earlier, it is not 

possible to thoroughly investigate the huge conformational space that results from the 

inclusion of all degrees of freedom in the generation of conformers. Hence, VDock uses 

mining minima optimizer to find low energy conformations from this huge search space. 
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This mining minima assumes a hierarchical binding energy landscape, where low energy 

structures are close to each other and clearly separated from high energy structures. This 

optimizer combines principles from global-under estimator method (89) and GA (85). 

During the search using a pseudo global-under estimator, a large number of candidate 

ligand conformations are generated randomly within the sampling range, which is 

gradually narrowed around the current low-energy conformer. When a new low energy 

conformation is generated, the center of the sampling range is moved to this new 

conformer. Once the sampling range is narrowed to zero, a local energy minimum is 

found. This local minimum is kept in memory for use in later cycles of sampling by GA. 

A detailed description of GA is given in section 1.2.4.  

Initial pseudo global-under estimator search results in multiple local minima, whose 

number is user defined. In GA, these local minima are recombined with random 

conformation through cross over. This recombination of partial solutions, resulting from 

the earlier pseudo global-under estimator search, accelerates the discovery of global 

optimum (85). 

The energy of protein-ligand conformation generated during the search is computed from 

the sum of vanderWaals and coulombic interactions, using three pre-computed grids of 

potential fields, as follows.  

∑
=

++=
Natoms

i

disp
ji

steric
ji

elec
jiLR BAqE

1
φφφ  

Equation 1.1 

 36



 Where  is the interaction energy,  is charge of atom, ,  and  are 

electrostatic, steric and  dispersion potentials at j

LRE iq elec
jφ

steric
jφ

disp
jφ

th grid point, respectively. 

126 / rA σε≡ iiii and 63 / rB σε≡ iiii . iε , iσ are the Lennard-Jones parameters and r is the 

distance between the atom and the grid point. The interaction energy of a compound is 

given by the energy of the lowest energy conformation generated in docking runs. These 

interaction energies serve as fitness for the tested compounds (85). 

VDock had been shown to have comparable performance in the reproduction of 

crystallographic binding pose, with popular docking programs such as PRO_LEADS, 

AutoDock, FlexX, MCDOCK and GOLD (85). The second criterion for validating a 

scoring function is the enrichment ability. It is the ability to select known actives against 

a background of decoy compounds for a target protein. It is tested by docking both active 

and decoy compounds into the corresponding target protein. The entire set of compounds 

is then ranked as per their interaction energy. The concentration of known binders in the 

top of the ranked list determines the enrichment ability of the docking program. If the 

scoring had been ideal, all the actives will be concentrated in the top of the ranked list, 

where as if it had been a random selection, the actives will be distributed uniformly 

through out the ranked list. 

Enrichment ability of VDock is shown in Figure 1.10. The reported actives and NCI 

diversity set were used as known actives and decoys, respectively for this experiment. 

The random selection of compounds would yield an enrichment plot along the diagonal. 

i.e, 10% of the actives can be recovered from top 10% of the ranked database. The 
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greater the shift of the line towards left, greater is the enrichment. VDock is shown to 

have remarkable enrichment ability with our target protein, HIV protease. This justifies 

the use of VDock in our combinatorial library design. 

Even though computational evaluation of a candidate compound by VDock can be fast 

(seconds to a few minutes of computer time per compound), the computational demands 

can become problematic for the exhaustive screening of virtual combinatorial libraries. 

Optimization methods such as GA and simulated annealing methods are therefore, used 

in selecting an experimentally tractable sub library from among this astronomical number 

of compounds that could in principle be synthesized. 
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Figure 1.10: Enrichment graph for VDock with several target proteins. 
 Black: Factor Xa. Purple: Cyclin Dependent Kinase2. Green: Androgen receptor. Blue: 
Peroxisome Proliferator Activated Receptor.  Orange: Neuraminidase. Red: HIV 
Protease. (Courtesy: Dr Visvaldas Kairys) 
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1.2.4 Genetic algorithm 

Optimization algorithms are widely used in the design of combinatorial libraries that use 

both ligand-based (90, 91) and structure-based methods for the evaluation of compounds. 

One such method is genetic algorithm (GA), a stochastic method that mimics Darwinian 

evolution. In the combinatorial problem, each entity is a unique combination of a set of 

parameters that defines the position of this entity in the search space. Merit of each entity 

is a prospective solution to the combinatorial problem. The GA represents each 

individual entity as a “Chromosome”, a linear series of genes. Each parameter is 

represented by a gene, which has a set of values that are represented by alleles. A random 

population of chromosomes is created in the first generation of the program, which are 

then scored for their fitness.  A new population of chromosomes is constructed from the 

few selected, first generation chromosomes through cross over, mutation and 

reproduction. The chromosome selection for the propagation is biased to favor those with 

better fitness score. In the cross over operation, selected parent chromosomes swap a part 

of their chromosome resulting in two new chromosomes with different combination of 

alleles. Mutation results in change of one or more alleles in the parent chromosome. 

Reproduction is a mere replication of the parent chromosome. The new population is 

scored in turn and the iteration continues. Typically the average and maximum fitness 

score of the population increases with each generation until they converge to some 

maximum value. GA is especially useful in the search of large combinatorial search 

space, knowledge of whose terrain is very limited (90). 
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In the combinatorial library design problem, each chromosome represents a compound in 

the virtual combinatorial library, each gene corresponding to one substitution site, each 

allele of a gene corresponding to a candidate substituent (building block) at the site and 

the fitness of a chromosome corresponding to the interaction energy score predicted by 

VDock. The implementation of the genetic algorithm in our combinatorial library design 

is explained in detail under section 3.2.1 

1.3 Overview of the thesis  

This thesis is organized as follows. Chapter 2 introduces the substrate envelope 

hypothesis, describes the calculation of the fit of a candidate inhibitor to the substrate 

envelope with a grid based method, and evaluates the correlation of this score with 

susceptibility to resistant mutations. Chapter 3 compares a combinatorial library design 

strategy based on a simple additivity scheme that assumes independence among 

substitution sites, with a strategy based upon a genetic algorithm. Chapter 4 describes the 

application of the Additivity design strategy in the discovery of mutation-resistant HIV 

protease inhibitors. This process is found to yield two tightly binding compounds with 

desirable resistance profiles. Chapter 5 provides a general discussion and a prospectus for 

future research work. The major conclusions of the full project are summarized in chapter 

6. 
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Chapter 2. The Substrate Envelope Hypothesis  

2.1 Introduction 

Inhibitors of Human Immunodeficiency Virus (HIV) protease revolutionized the 

treatment of patients infected with HIV in the mid-1990s, and remain a mainstay of 

therapy today (25, 92, 93). However, recent years have seen the emergence of HIV 

strains that are resistant to protease inhibitors (48, 94).  The appearance of resistance is 

traceable to the selective pressure of therapy, combined with the high replication rate of 

HIV and the low fidelity with which HIV replicates its genetic information. Overcoming 

the evolutionary power of this system and maintaining an active armamentarium against 

HIV may prove to be a substantial challenge.  On the other hand, this challenge is 

circumscribed by the fact that a viable resistance mutant of HIV protease must still bind 

and hydrolyze the various cleavage sites of the virus’s Gag-Pol gene product at an 

adequate rate to allow viral replication.  Accordingly, it has been argued that an inhibitor 

which forms “substrate-like” interactions with the protease should tend to evade viral 

resistance, because a mutation that weakens inhibitor-binding should simultaneously 

weaken substrate-binding, and hence damage the activity of the enzyme.  

Recent crystallographic studies of complexes of HIV protease with its substrates provide 

a basis for pursuing this design concept.  The substrates adopt a rather uniform shape 

when bound, despite the differences among their amino acid sequences, and the border of 

the consensus volume they occupy has been termed the “substrate envelope” (95). 

Intriguingly, the consensus volume occupied by a number of bound inhibitors differs 
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significantly from the consensus substrate volume, and key resistance mutations appear to 

cluster near locations where inhibitors protrude outside the substrate envelope (96).  

These observations have led to the hypotheses that the protease recognizes its various 

substrates largely on the basis of their shape, and that inhibitors that fit within the 

substrate envelope may be less susceptible to mutational resistance (96). Indeed, it has 

been argued that the fit of inhibitor TMC-114 to the substrate envelope helps explain its 

ability to retain affinity for clinically relevant protease mutants (97, 98).   

These considerations suggest that the substrate envelope hypothesis may be useful as a 

basis for the design of new inhibitors that will tend to counteract the emergence of 

resistance mutants. The present study addresses this issue by devising a quantitative 

indicator of the degree to which a candidate ligand falls outside the substrate envelope, 

and then determining whether this indicator correlates with the inhibitor’s sensitivity to 

clinically relevant resistant mutations. The resistance analysis is based upon new 

calorimetric data for the association of various inhibitors with wild-type and mutant 

proteases, supplemented by additional calorimetric data from the literature. 

2.2 Materials and methods 

This section describes a method of quantifying the volume of a bound inhibitor falling 

outside the envelope, then details the measurement of affinities by isothermal titration 

calorimetry (ITC) for a group of inhibitors and proteases, and summarizes additional 

binding data drawn from prior publications. Finally, a novel measure of the “clinical 

relevance” of the mutant proteases is described.  
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2.2.1 Computational methods 

2.2.1.1 Evaluation of the fit of an inhibitor to the substrate envelope 

A 3D grid of substrate density in the binding site was generated as follows. The 

Superimpose module of QUANTA(99) was used to superimpose six crystal structures of 

HIV protease having bound substrate peptides (1F7A, 1KJ4, 1KJ7, 1KJF, 1KJG, 1KJH 

(37)) on a crystal structure of HIV protease with indinavir (1HSG(100)), based upon the 

coordinates of backbone atoms (Figure 2.1).  The chemical C2 rotational symmetry of the 

receptor structure was accounted for by carrying out the symmetry operation and 

superimposing the six resulting structures on the original six by the same method, for a 

total of 12 overlaid substrates. Next, a cubic three-dimensional grid with side-length 10 Å 

and grid spacing 0.2 Å was centered on the active site, and an initial value of 0 was 

assigned to each grid point.  Then a value g(i,j,k) was incremented by 1 for every 

substrate structure that contains the grid point (i,j,k), where a grid point was considered to 

be contained by a substrate if it lies within the CHARMm (101) van der Waals radius of 

any non-hydrogen atom of the substrate. Because there are 12 overlaid substrates, the 

resulting grid values vary between 0 (outside all substrates) to 12 (inside all substrates). 
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Figure 2.1: Alignment of HIV protease substrates on a 3D grid of substrate 
occupancy. 
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The fit of an inhibitor to the substrate envelope is computed as follows.  A crystal 

structure of HIV protease with the bound inhibitor is aligned with the substrate-bound 

structures, as described above. Then the effective volume of the inhibitor outside the 

substrate envelope, Vout, is computed by summing the values of the grid points gijk that lie 

within the van der Waals volume of the inhibitor, normalizing the sum by 12, and 

converting to a volume by multiplying by the 0.008 Å3 volume of a grid box: 

, ,
(12 )

12out ijk
i j k

V g≡ −∑0.008 inside

 

Equation 2.1 

Here “inside” implies that the sum runs only over grid points ijk that lie within the van 

der Waals volume of the inhibitor. As a control, the effective volume of the inhibitor that 

lies within the substrate envelope is computed as: 

, ,12in ijk
i j k

V g≡ ∑0.008 inside

 

Equation 2.2 

The total volume of an inhibitor, Vtot, is computed by adding these two quantities.  The 

molecular weight and the number of non-hydrogen atoms were also included as 

alternative measures of molecular size.  
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The following crystal structures of HIV protease with bound inhibitors were drawn from 

the Protein Data Bank (33): 1HPV (102) (amprenavir; APV), 1HXB (103) (saquinavir; 

SQV), 1HSG (100) (indinavir; IDV), 1OHR (100) (nelfinavir; NFV) and 1HXW(21) 

(ritonavir; RTV). These structures were used to compute the values of Vout, Vin and Vtot 

(see above) of the respective inhibitors.  

2.2.2 Binding data 

The degree, to which an inhibitor's affinity declines when a mutant protease is substituted 

for wild-type, is quantified as , where K  and K represent 

the inhibitor’s dissociation constants for the mutant and wild-types, respectively. 

Dissociation constants from isothermal titration calorimetry (section 2.2.2.1) were 

obtained from our collaborators lab and from the literature (subsequent subsection). In 

each case, the ratio of mutant to wild-type is drawn from a single study to minimize noise 

due to experimental variations.  

)/log( typewildmut KK − mut wild type−
dd d d

2.2.2.1 Literature Data 

The new calorimetric data from the collaborators lab were supplemented with data drawn 

from the literature, including results for proteases with mutations only in the active site, 

only outside the active site, and both in and out of the active site.  One study examines 

the consequences of mutants with a single mutation in the active site (I84V), multiple 

mutations outside the active site,  (NAM10: L10I/M36I/S37D/M46I/R57K/L63P/A71V 

/G73/L90M/I93L) and their combination (ANAM11: L10I/M36I/S37D/M46I/R57K/ 
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L63P/A71V/G73S/L90M/I93/I84V), upon resistance to a number of clinical inhibitors 

(53).  A second study examines cooperativity among mutations V82A/I84V in the active 

site, M46I/I54V in the active site flaps, and L10I/L90M in the dimerization region away 

from the active site, as well as the combinations, HM (L10I/M46I/I54V/V82A/ 

I84V/L90M) and QM (V82A/I84V/M46I/I54V) (104). A third study examines the active 

site mutation V82F/I84V against the background of viral strains A, B and C (105). 

2.2.3 Clinical relevance of mutations 

Treatment of a patient with HIV protease inhibitors selects for mutations that disrupt 

inhibitor binding while preserving enzyme function.  If the substrate envelope hypothesis 

is valid, then inhibitors that fit the substrate envelope well should tend to retain affinity in 

the face of such clinically relevant mutations, but not necessarily to artificial mutations, 

which might disrupt the normal interactions of the enzyme with its substrates. The 

clinical relevance of the mutations studied here is assessed based upon their tendency to 

occur in patients treated with protease inhibitors, and in the absence of concurrent 

mutations known to be major resistance mutations. Thus, a combination of mutations is 

considered clinically relevant if clinical data suggest that it alone suffices to generate 

clinical resistance.  Clinical data drawn from the HIV Drug Resistance Database (106) 

are used to define the clinical relevance Ci of a mutation set i as  

,i onlyN

,

100i
i all

C
N

=  

Equation 2.3 
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where Ni,only is the number of isolates with mutation set i and no other major mutations, as 

defined at the Drug Resistance Database (http://hivdb.stanford.edu/cgi-bin/PRMut.cgi); 

and Ni,all is the total number of isolates with mutation set i.  That is, Ni,all includes isolates 

with other major mutations.   

2.3 Results 

2.3.1 Fit of inhibitors to substrate density 

Isodensity contours of the substrate density grid (Figure 2.2) show a rather smooth 

gradation of density, rather than a sharp drop from the maximal value of 12 to the 

minimal value of 0.  The absence of an unambiguous substrate envelope motivates the 

present use of a smoothly varying measure of the volume of an inhibitor lying outside the 

substrate region (Equation 2.1), rather than a sharp cutoff.  The consensus volume that is 

covered by all 12 substrate poses is rather constricted (red in Figure 2.2).  It seems 

unlikely that an inhibitor could achieve high affinity without reaching outside this region.  

In fact, the inhibitors studied here all extend to some degree outside the level 8 contour, 

APV the least and RTV the most (Figure 2.3).  This observation is quantified in the first 

row of Table 2.1, which lists the computed values of Vout (Equation 2.1) which range over 

a factor of 2.  The computed volumes within the substrate envelope are more uniform, 

varying by only about 20%.  Table 2.1 includes other measures of molecular size as well. 

2.3.2 Binding affinities to wild-type protease and mutants 

Table 2.2 lists the sensitivities ( of inhibitors to mutations MDR5, 

MDR3, and to 11 other mutant proteases for which data are drawn from the literature. 

)/log( dd KK typewildmut −
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The affinity losses vary from 0.3 to nearly 4 logs. APV tends to lose least affinity to these 

mutations, while RTV tends to lose the most.   
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Figure 2.2: Isosurface contours of the substrate density. 
Backbone trace of HIV-1 protease is also shown. Red: density 12. Green: density 8. Blue: 
density 4.  
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 b) a) 

Figure 2.3: Two views of level 8 isodensity contours of the substrate density overlaid 
with crystal structures of clinical inhibitors. 

The contours are shown in green color. Red: Amprenavir (APV). Cyan: Indinavir (IDV). 
White: Saquinavir (SQV). Purple: Nelfinavir (NFV) and Yellow: Ritonavir (RTV).  The 
active site residues I82, V84, and G48 are shown with red spheres. The hydroxyl groups 
common to all five inhibitors protrude downward in (b).   
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 APV IDV SQV NFV RTV 

Vout 128 180 213 166 256 

Vin  267 315 319 288 308 

Vtot 395 495 531 454 564 

Non-hydrogen atoms 35 45 49 44 50 
Molecular weight 
(Da)  506 614 671 664 721 

Table 2.1: Computed volumes (Å3) of inhibitors, with other measures of molecular 
size.  

Vout: volume outside the substrate envelope. Vin: volume within the substrate envelope. 
Vtot: total volume. 
 

 53



 

 

 

MUTATION SETS APV IDV SQV NFV RTV 
MDR5 (L10I/G48V/I54V/L63P/V82A) 0.52 1.88 2.55 1.94  
MDR3 (L63P/V82T/I84V) 0.77 1.69 2.13 1.69  
NAM10  
(L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93L)  2.80 3.06 3.10 3.95 
ANAM11 
(L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93/I84V)  2.98 3.29 3.13 4.56 

I84V  0.57 0.60 0.54 1.73 
V82F/I84V 
(Strain A)  1.78 1.34 1.34 2.58 
V82F/I84V 
(Strain B)  1.83 1.32 1.30 2.57 

V82F/I84V 
(Strain C)  1.85 1.32 1.30 2.58 

L10I/L90M 0.60 0.48 0.78 0.47 0.58 
M46I/I54V 0.31 0.16 0.85 0.28 0.65 
V82A/I84V 0.74 1.20 0.90 0.28 1.31 
QM (V82A/I84V/M46I/I54V) 1.19 1.46 2.19 1.27 2.15 
HM (L10I/M46I/I54V/V82A/I84V/L90M) 1.93 2.30 3.29 2.33 3.18 

Table 2.2: Resistance values of five inhibitors and 13 HIV protease mutants. 

Resistance: .  K)/log( typewild
d

mut
d KK −

d values for MDR3 and MDR5 were kindly provided 
by Dr Celia Schiffer. The other Kd values were obtained from the literature. 
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2.3.3 Clinical relevance of protease mutants 

Clinical relevance of the studied mutations is given in Table 2.3. The mutants analyzed 

here appear to span a range of clinical relevance, as computed with Equation 2.3.  The 

mutation sets of MDR5, QM and HM are found in a significant fraction (19-44%) of 

clinical isolates having no other major mutations; mutation sets MDR3, I84V, 

L10I/L90M and V82A/I84V appear in 2-5% of isolates with no other major mutations; 

and V82F/I84V, M46I/I54V appear in <1% of isolates without other major mutations. 

Mutation sets NAM10 and ANAM11 were not observed in any of the clinical isolates 

studied in Stanford database (48).  

2.3.4 Correlation of Vout with sensitivity to clinically relevant mutations 

Figure 2.4 examines the correlation of Vout, Vin, Vtot, number of nonhydrogen atoms, and 

molecular weight, with the loss of affinity of the various inhibitors on going from wild-

type to the most clinically relevant protease mutants, MDR5, QM and HM. The data are 

drawn from Tables 2.1 and 2.2.  The corresponding correlation coefficients for these 

mutants, and for the other, less clinically relevant mutants, are provided in Table 2.4.  

The volume of an inhibitor that lies outside the substrate envelope, Vout, correlates 

strongly with its susceptibility to the four most clinically relevant mutations, with 

correlation coefficients 0.94 – 0.97.  Similar correlations are observed for many of the 

other mutants, but not all: the correlation coefficients range from 0.28 to 0.97.  

Interestingly, the other measures of molecular size show rather similar patterns.  The 
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correlations tend to be weakest for Vin, if only because this quantity has a rather small 

range of values.   
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MUTATION SETS NI,ONLY NI,ALL

CLINICAL 

RELEVANCE 

MDR5 (L10I/G48V/I54V/L63P/V82A) 14 75 18.67 

MDR3 (L63P/V82T/I84V)     1 53 1.89 

NAM10  
(L10I/M36I/S37D/M46I 
/R57K/L63P/A71V/G73S/L90M/I93L)  

0 0 0 

ANAM11 
(L10I/M36I/S37D/M46I/R57K/ 
L63P/A71V/G73S/L90M/I93/I84V)  

0 0 0 

I84V  20 807 2.48 
V82F/I84V (Strain A) 0 4 0.00 
V82F/I84V (Strain B) 0 4 0.00 
V82F/I84V (Strain C) 0 4 0.00 
L10I/L90M  62 1264 4.91 
M46I/I54V 1 390 0.26 
V82A/I84V  4 166 2.41 
QM (V82A/I84V/M46I/I54V) 7 28 25.00 
HM 
(L10I/M46I/I54V/V82A/I84V/L90M) 4 9 44.4 

Table 2.3: Clinical relevance of HIV protease mutants. 
Ni,only: number of clinical isolates having the listed mutations and no other major 
mutations. Ni,all: total number of clinical isolates with the listed mutations. Clinical 
relevance is the percentage of  Ni,only to Ni,all.  
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Figure 2.4: Correlation plots for the computed volume and other measures of size 
with the resistance. 

Resistance is computed as the log loss in affinity on going from wild-type to mutant, for 
the three most clinically relevant mutants. Volume measures are given in cubic 
angstroms. Blue: MDR5. Green: HM. Red: QM. 
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MUTATION SET VOUT VIN VTOT
NON-H 
ATOMS

MOL. 
WEIGHT  

MDR5  
(L10I/G48V/I54V/L63P/V82A) 0.96 0.88 0.94 0.99 0.96 
MDR3  
(L63P/V82T/I84V)     0.97 0.89 0.95 0.99 0.95 
NAM10  
(L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/ 
L90M/I93L)  

0.74 0.20 0.57 0.53 0.84 

ANAM11  
(L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/ 
L90M/I93/I84V)  

0.94 0.17 0.84 0.79 0.83 

I84V  0.89 0.10 0.77 0.71 0.81 
V82F/I84V   
(Strain A) 0.77 0.17 0.71 0.55 0.56 

V82F/I84V  
(Strain B) 0.75 0.20 0.69 0.52 0.50 
V82F/I84V  
(Strain C) 0.75 0.20 0.69 0.52 0.50 
L10I/L90M  0.28 0.28 0.30 0.04 0.10 
M46I/I54V 0.68 0.46 0.65 0.60 0.53 
V82A/I84V  0.62 0.57 0.63 0.44 0.22 
QM  
(V82A/I84V/M46I/I54V) 0.91 0.75 0.91 0.84 0.73 
HM  
(L10I/M46I/I54V/V82A/I84V/L90M) 0.91 0.75 0.91 0.89 0.82 

Table 2.4: Correlation coefficients of resistance with inhibitor properties.   
Ligand characteristics and resistance are given in Table 2.1 and 2.2 respectively. 
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2.4 Discussion 

The present results support the hypothesis that HIV protease inhibitors that conform 

better to the substrate envelope tend to be less susceptible to resistance mutations.  The 

presumptive explanation is that a viable mutant must allow the protease to interact 

correctly with its substrates and so it will also tend to retain affinity for a substrate-like 

inhibitor. The present data do not definitively establish this mechanism, especially 

because nonspecific measures of inhibitor size, such as molecular weight, also are found 

to correlate with sensitivity to mutation. On the other hand, these additional correlations 

do not disprove the presumed mechanism; they may merely reflect the correlation of 

molecular weight, say, with Vout.  Teasing apart the various correlations will require 

further studies.  The ultimate aim of the present study, however, is to facilitate the design 

of new inhibitors that will resist mutation.  It will therefore be of particular interest to 

observe the consequences of using the fit of candidate inhibitors to the substrate envelope 

as a figure of merit in computer-aided ligand-design.  

The present analysis generalizes the notion of the substrate envelope to that of a substrate 

density, which falls rather gradually to zero from its maximum at the core of the substrate 

binding region.  This approach provides more detailed information about the disposition 

of substrates in the binding site, as highlighted in Figure 2.2a, and avoids the need to set 

an arbitary level of substrate density at which to position a sharp substrate envelope.  The 

substrate density is encoded on a 3D grid, allowing rapid calculation of the fit of a 

docked ligand to the substrate density.  Analogous maps of ligand density, or of the 
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density of a flexible receptor, could be useful in describing and modeling other molecular 

systems as well.  

The present study evaluates the clinical relevance of protease mutations based upon the 

sequences of clinical isolates.  For example, L10I/L90M occurs rarely in the absence of 

other major mutations (clinical relevance 4.9, Table 2.3), presumably because these two 

mutations alone confer less than one log of resistance to the clinical inhibitors that were 

studied here (Table 2.2).  An alternative approach to assessing clinical relevance might 

have been to rely on in vitro vitality scores of the mutant proteases (45), which account 

for the enzymatic activity of the mutant against substrate. However, these data are 

unavailable for many mutants.  In addition, the vitality may vary across substrates, 

whereas the clinical relevance score used here implicitly accounts for multiple substrates. 

This distinction may help explain why V82A/I84V (clinical relevance 2.4, Table 2.3) 

appears more frequently than V82F/I84V (clinical relevance 0, Table 2.3) in clinical 

isolates lacking other major mutations, despite the fact that the clinical inhibitors retain 

activity better against V82A/I84V than against V82F/I84V (Table 2.2), and both mutants 

affect the catalysis of a model substrate similarly (105).  It is also worth noting that, 

although all the clinical inhibitors position the hydroxyethylene hydroxyl group outside 

the substrate envelope (Figure 2.3), this deviation should not provide a basis for 

resistance mutations because the hydroxyl contacts residues D25/D25', which are 

essential for catalysis and therefore are clinically irrelevant. 

In summary, the failure of an HIV protease inhibitor to fit within the substrate envelope 

does appear to correlate with its susceptibility to mutational resistance. This is a low-
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resolution approach so exceptions will undoubtedly be found, and more rigorous 

approaches to identifying robust inhibitors are still needed.  However, until such methods 

are available, the trend observed here suggests that designing ligands not only for tight-

binding but also for fit to the substrate envelope could help accelerate the discovery of 

robust inhibitors of HIV protease.  
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Chapter 3. Combinatorial Library Design 

3.1 Introduction 

The compounds in a typical combinatorial library are built around a common structural 

scaffold possessing multiple connection points where substituents can be added by 

reliable synthetic steps (107). This format allows the efficient synthesis of many 

candidate inhibitors of a target protein. However, the number of compounds 

encompassed by such a combinatorial scheme frequently exceeds what can actually be 

synthesized and tested. This situation can be addressed by making and testing smaller 

sub-libraries where the compounds are selected based upon their similarity to known 

ligands (70) and/or their fit to the targeted binding site (77, 78). The present study 

focuses on the structure-based method, using ligand-protein docking. This method is 

expected to possess the advantages of yielding candidate ligands of diverse chemistries 

and of providing physical insight into interactions between ligand and protein.  On the 

other hand, docking calculations tend to be more time-consuming than ligand-based 

methods, since one docking calculation typically requires seconds to minutes of CPU 

time. As a consequence, there is a particularly strong requirement for a library design 

algorithm that will make the best possible use of available computer resources.   

One approach to the problem of library design is to apply a global optimization method, 

such as a genetic algorithm (108, 109). Successful applications of genetic algorithms in 

the design of both ligand-based combinatorial libraries (110-112) and the prediction of 

binding affinity have been previously reported (108, 109). A combinatorial sub-library 
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designed via global optimization should perform significantly better than a randomly 

chosen sub-library.  However, it is not clear whether global optimization methods can 

perform as well at picking chemical substituents as they do in more typical applications 

where the objective function depends upon better-defined degrees of freedom. A specific 

concern in the present application is that there is no guarantee that the GA will test every 

possible substituent at each position and, if it does not, the best substituents may well be 

missed. 

Another approach to optimizing a combinatorial library using structure-based methods is 

to simplify the problem by assuming that the substituent sites can be optimized at least 

somewhat independently.  This can be done, for example, by constructing an initial 

compound with an arbitrary set of initial substituents, and then making new compounds 

in which each position is converted to all other possible substituents, while the other 

substituents are held fixed.  For a library with 4 substitution sites and 1000 candidate 

substituents at each site, this would yield almost 4000 compounds to be docked and 

scored, far fewer than the full virtual library of 10004=1012 compounds.  The substituents 

which yield the best scores can then be selected and used to build a manageable set of 

compounds to be tested individually by docking and scoring. The approximation of 

independence provides for a dramatic acceleration in library evaluation, but if it is 

inaccurate, the best compounds may be missed. We are not aware of any systematic 

evaluation of the suitability of this approximation. Even though the idea of additivity has 

been employed in PRO_SELECT (78) and CombiDock (77), a comprehensive evaluation 

has not been discussed to date. 

 64



The present study evaluates the accuracy of additivity in docking and scoring of 

combinatorial libraries, tests its applicability to the design of targeted combinatorial 

libraries, and compares its productivity with that of a genetic algorithm method of library 

design, in applications to two model systems, HIV protease and cathepsin.  For each 

system, three scenarios are considered: 1) design of sublibraries of a virtual library 

containing thousands of compounds with diverse substituents; 2) design of sublibraries of 

a virtual library containing thousands of compounds with substituents preselected to 

generate promising ligands; and 3) design of sublibraries of a virtual library containing 

millions of compounds with diverse substituents.  The smaller virtual libraries allow 

more detailed characterization of the design methods because every compound in this 

library can be docked and scored. The larger libraries are more representative of real-

world applications. 

3.2 Methods 

The methods section is organized as follows. The first three subsections describe the 

implementation of the design methods and their evaluation. The next two subsections 

describe the construction of combinatorial compounds, and the selection of substituent 

libraries for the studied test systems.  The last two subsections provide details on the 

preparation of target protein structures and on the docking and scoring methodologies. 

3.2.1 Genetic algorithm 

A genetic algorithm (GA) is a stochastic optimization method that mimics the evolution 

of a population of chromosomes through a series of generations, where each chromosome 
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represents a candidate solution for the optimization problem (108-112). For each 

generation, the objective function (fitness) is evaluated for each chromosome, and a new 

generation is formed by directly transferring a few top-scoring chromosomes (elites) 

from this generation to next one and by forming the rest of the population through 

processes mimicking crossing-over and single-site mutation.  This process is repeated for 

a selected number of generations or until some criterion of convergence has been met. In 

this work, each chromosome represents a compound, each gene corresponds to one 

substitution site, and each allele of a gene corresponds to a candidate substituent at the 

site (Figure 3.1). The fitness of a chromosome is evaluated by constructing the 

corresponding compound and docking it to the target protein (section 3.2.7).  

The GA used here is modified slightly for the sake of efficiency. The chief difference is 

that compounds in old generations are not discarded, but also are not brought forward 

into successive generations; i.e., no elite compounds are brought forward without 

modification. This change increases the number of compounds tested in one GA run. The 

second difference, based upon the first one, is that all chromosomes for the next 

generation are built by mutation and cross-over operations on parent chromosomes from 

not only the most recent generation but also from all prior generations. Parents are 

selected via the roulette-wheel method (113) where the probability of selecting a 

compound is proportional to its fitness rank. A predefined fraction of parents are used for 

cross-over operations; the rest are subjected to single-site random mutation.  The cycle of 

evaluation, selection and modification is repeated for a user-defined number of 

generations, and the output is the ranked set of all compounds tried.   
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The GA includes several important operational parameters: the number of generations, 

the number of chromosomes in each generation, and the percentage of parent 

chromosomes subjected to cross-over. The total number of compounds tried, and hence 

the total number of docking calculations, equals the generation size multiplied by the 

number of generations.  Except as otherwise noted, this total was kept as close as possible 

to the number of dockings used in the corresponding additivity-based calculations, so that 

the two methods could be compared on an equal footing.  Preliminary calculations 

showed that the performance of the GA depends strongly on choices made regarding 

population size versus number of generations, and on the crossover versus the mutation 

rates. In particular, the mean fitness of compounds was found to improve only slowly 

after 8 generations, so all GA calculations used ~8 generations, and the desired number of 

dockings was set by adjusting the population size.  The best overall results were obtained 

with a crossover rate of 25%, and this value was then used throughout. 

The GA lends itself to parallelization on a loosely coupled computer cluster (114).  In the 

present implementation, a “master” processor generates the chromosomes (compounds) 

for each generation, distributes n chromosomes apiece to N “servant” processors for 

docking and scoring, collects the results, and keeps a central list of all compounds tried 

and their scores. The servant processors decode the chromosomal representations into 

compounds, dock them, and return the scores to the master processor. The GA was 

implemented in parallel in the C++ programming language and using LAM/MPI 

libraries(115).  For the smaller virtual libraries of several thousand compounds (Section 

3.2.3), every compound in the virtual library was docked and scored. This allowed large 
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numbers of GA runs to be carried out efficiently by construction of a lookup table of 

chromosomal fitness scores.  This procedure is justified by confirmation of the 

consistency of the scores provided by the docking procedure used here (Section 3.3.1). 

For the larger libraries, N=60 processors were used, and each processor was sent n=4 

chromosomes at a time.  All results presented for the GA method are averages over 3 

independent GA runs initiated with different random number seeds. 
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Figure 3.1: Chromosomal representation of a compound.  
(a) Each gene in a chromosome represents a substituent position. (b) Each allele of a gene 
represents a unique substituent in the corresponding substituent library. (c) Each 
chromosome hence can be translated to a unique ligand 

 

a) 

R3
R1

X

O

O
X

12 18 229

b) 

c) 

O

O N
H

N
S

O

O

O

OH

NH2

12 18 229

 69



3.2.3 Additivity method 

3.2.3.1 Additivity approximation 

The additivity method is based upon the assumption that the difference in binding energy 

of two compounds in the combinatorial library can be approximated by a sum of the 

relative contributions from each substituent (116).  Thus, for a scaffold with four 

substitution sites, the binding energy Eijkl of a compound with substituents i ,j ,k ,l at each 

of the four sites, respectively, is estimated in terms of the binding energy of a reference 

compound E0000 with substituents 0,0,0,0, and the change in binding energy when each 

substituent 0 is replaced independently by i ,j , k and l, respectively:  

0000 000 000 0 00 0000 00 0 0000 000 0000( ) ( ) ( ) (ijkl i j k lE E E E E E E E E E≈ + − + − + − + − )  

Equation 3.1 

The success of the method depends upon the validity of this approximation. 

Continuing with the present example of a 4-site scaffold, the additivity approximation is 

applied by carrying out docking calculations for a reference compound (0000) and for all 

compounds that can be made by replacing one substituent in the reference compounds 

with another substituent; that is, compounds (i000), (0j00), (00k0) and (000l), where i, j, 

k and l take on all possible values other than 0.  This yields E0000 and all possible values 

of Ei000, E0j00, E00k0 and E000l. Thus, if there are 100 substituents for each of the four sites, 

then only 1+(4)(99)=397 docking calculations are needed to generate the quantities 

needed to estimate the binding energies of all 1004 compounds in the full library, via 

Equation 3.1.  
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3.2.3.2 Choosing compounds with the additivity method 

The top ranked compounds can be found by using Equation 3.1 to estimate the docking 

energy of all compounds, and then sorting them all, but this can lead to very large sorting 

calculations. A simple algorithm for identifying the top-ranked compounds was therefore 

devised. First, the substituents available at each site are sorted according to their energy 

scores. The top-ranked compound is simply the one with all of the top-ranked 

substituents. (See Figure 3.2, row 1, where the substituents’ indices are simply their 

ranks.)  The second-ranked compound, must be one of the following compounds: 

(2,1,1,1), (1,2,1,1), (1,1,2,1), or (1,1,1,2), (Figure 3.2, row 2), which can be identified by 

computing these compounds’ energies with Equation 3.1.  Here, the second compound is 

taken to be (1,1,2,1) (Figure 3.2, row 3).  The third-ranked compound is found similarly: 

four new compounds are formed by replacing each site of the second-best compound 

with the next best substituent (Figure 3.2, row 4), grouping the new compounds with all 

others that have previously been generated (Figure 3.2, rows 4-5), eliminating 

compounds that are clearly not candidates (Figure 3.2, red boxes) to form a reduced set 

(Figure 3.2, row 5), and choosing the best compound (here taken to be (1,2,1,1)) 

according to Equation 3.1 (Figure 3.2, row 6).  This process is repeated until the desired 

number of top-ranked compounds has been identified. Selected compounds from this 

method are then scored by docking and sorted to find the top-scoring compounds among 

them.  
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3.2.3.3 Pair wise additivity 

The additivity approximation described in Section 3.2.2.1 uses a single-site 

decomposition of the binding energy. Other decompositions also are possible and may be 

useful when there is reason to believe that substitution sites do not affect the binding 

energy independently.  For example, the substituents in the present four-site example can 

be grouped into two pairs, sites 1 and 2, and sites 3 and 4, and the energy of molecule 

(ijkl) can be estimated as  

0000 00 000 00 0000( ) ( )≈ + − + −ijkl ij klE E E E E E  

Equation 3.2 

This pair-wise approximation requires calculating the energies of all pair-wise 

substitutions at sites 1 and 2 (Eij00) and at sites 3 and 4 (E00kl).  If 100 substitutions are 

possible at each site, then evaluating these pair-wise energies requires (2)(992) or about 

20,000 dockings. This is more demanding than the single-site method, but may increase 

the accuracy of the energy predictions.  

3.2.4.4 Reference compounds 

The additivity approximation requires a reference compound, compound (0,0,0,0) in the 

4-site example.  Amprenavir (117) is used as the reference compound for amprenavir-like 

combinatorial libraries targeting HIV-protease. For the cathepsin system, no crystal 

structure is available with any compound based upon the combinatorial scaffold used 

here. Therefore, three different reference compounds were tried; all were drawn 
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arbitrarily from the small virtual combinatorial library.  For the larger virtual 

combinatorial library, only one arbitrarily chosen reference compound was used. 
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Figure 3.2: Combination of optimal substituents by single-site additivity method.  
Compound 1 is the combination of the best substituents for all sites. A first generation of 
compounds is generated by substituting each site with next best substituent, one at a time. 
In the present example, Compound 2 is taken to be the best of this generation. This 
iteration of substitution and selection continues until a predetermined number of 
compounds have been generated. The ranks of the substituents are represented by their 
indices, and the best compound from each generation is shown in bold font. The red 
blocks highlight pairs of compounds of which one (bottom) can trivially be eliminated in 
favor of the other (top).  

 73



3.2.3 Evaluation of additivity and GA methods 

In each comparison, the GA and Additivity methods were run for a preselected number of 

docking calculations. The number of dockings for the GA, NGA, is the product of the 

number of generations and the generation size. For the single-site Additivity method, the 

total number of dockings, Nadd, is given by . Here the 1 

accounts for docking the reference compound, N

1

1 ( 1)add i combinations
i

N n N
=

= + − +∑
sitesN

combinationsN

combinaN

sitesN⎛ ⎞

sites is the number of substitution sites on 

the scaffold, ni is the number of candidate substituents at site i, and the summation 

represents the number of dockings required to generate the parenthesized quantities in 

Equation 3.1. Finally, reflects the additional work of computing the actual 

docking energies of the specific compounds predicted by Equation 3.1 to be top-scorers. 

The value of is chosen to make the total number of dockings for the 

Additivity method equal to N

tions

GA; hence .  
1

1 ( 1)combinations GA i
i

N N n
=

= − + −⎜ ⎟
⎝ ⎠

∑

For the smaller virtual libraries (Section 3.2.5), the compounds generated by the GA and 

Additivity methods are assessed by two measures. The first measure is the fractional 

recovery of the top-scoring 5% of compounds (“computational binders”) in the full 

virtual library. This quantity can be evaluated only if all compounds in the virtual library 

have been docked and scored, and therefore can be used only for the smaller virtual 

libraries (Section 3.2.5).  The second measure is the docking energies of the top 5% of 

the compounds in the designed library; this measure can be applied to the larger virtual 

libraries as well. For the large virtual libraries (Section 3.2.4), 6000 dockings were done 
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for both the GA and single-site Additivity method, and the distribution of the scores of 

the top 1000 compounds generated by the two methods were analyzed. The pair-wise 

additivity method was not tested for the larger virtual libraries, as it would have required 

more than the allotted 6000 dockings to generate the pairwise terms found on the right 

hand side of Equation 3.2.   
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Figure 3.3: Combinatorial scaffolds. 
Amprenavir-like (top) and pepstatin-like (bottom) scaffolds were used in the construction 
of combinatorial libraries. Torsional freedom along the light brown, cyan and bright 
green colored bonds was restrained to ranges of 40, 60 and 180 degrees respectively. 
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3.2.4 Construction of compounds 

The docking calculations (Section 3.2.7) vary only the rotatable bonds and therefore 

require reasonable initial 3D structures of each candidate ligand as input. They also 

require molecular “topologies” comprising bonding information and force-field energy 

parameters, such as the Lennard-Jones parameters used in computing van der Waals 

interactions.  These structures and topologies were prepared as follows.  The initial 3D 

structure of the amprenavir-like and pepstatin-like scaffolds were drawn from the crystal 

structures 1HPV (117) and 1LYB (118), respectively. The initial 3D structures of all 

substituents (Section 3.2.5) drawn from the ZINC database (119) were taken as-is from 

Zinc. The initial 3D structures of the preoptimized substituents for the cathepsin system 

were prepared with Quanta (99). The initial 3D conformation of a compound in the 

virtual library was assembled when required by overlaying linking bonds and setting to 

ideal bond-length based on the atom types of connected atoms. “Ab initio”-like partial 

charges of the assembled compounds were generated with VCharge, an electronegativity 

equalization method parameterized to reproduce electrostatic potential fields computed at 

the 6-31G* level (120).  The resulting partial charges closely resemble those of 

CHARMM and AMBER for amino acids and nucleic acids (120). Dreiding force-field 

parameters were used for bond-torsions, and CHARMM parameters were used for 

Lennard-Jones interactions. 
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3.2.5 Substituent libraries 

3.2.5.1 HIV protease system 

Three sets of substituents were prepared, one with 100 candidate substituents at each site, 

and two with 15 candidate substituents at each site.  All carboxylic acids and primary 

amines were drawn from the building blocks collection of Zinc, and the carboxylic and 

amine groups were deleted and replaced with dummy linker atoms.  Thus, other 

functional groups could have been drawn from Zinc; the present choice was one 

convenient option.  A diverse set of 100 candidate substituents for each substituent site 

was drawn from these initial Zinc fragments, as follows. The  program Dragon (42) was 

used to compute, for each candidate substituent, the molecular weight, number of 

hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, 

aromatic ring density, logP, and surface area.  The Euclidean distance, in the resulting 

descriptor space, was computed between each substituent of amprenavir and each 

candidate substituent and, for each substitution site, the 30 closest and 30 most distant 

candidates were chosen, along with 40 candidates of intermediate distance.  This 

procedure produces four different substituent libraries of 100 compounds, one library for 

each site of the amprenavir-like scaffold.   

Substituents for the small diverse library of size 15 fragments were drawn from this 

initial library of 100 diverse substituents, by choosing compounds at regular intervals of 

distance from the baseline amprenavir substituent.  A set of 15 preoptimized substituents 

for each scaffold site was formed by computing all 397 values of Ei000, E0j00, E00k0, and 

E000l (Section 3.2.2) for the 100 substituents, using amprenavir as the reference 
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compound (0000), and choosing the top-scoring 15 substituents at each site for further 

study.  

3.2.5.2 Cathepsin system 

A set of 25 candidate substituents preoptimized for the cathepsin target was drawn from a 

prior study (109); note that the same substituents were used at each position. A small 

diverse set of 25 candidate substituents was constructed from random compounds in the 

R1 fragment library of the amprenavir system (Section 3.2.5.1), along with 5 substituents 

from, the above mentioned, preoptimized set. A larger set of diverse substituents was 

constructed by supplementing the preoptimized 25 substituents with the 100 candidate R1 

substituents prepared for the HIV protease system, for a total of 125 possibilities at each 

site. 

3.2.6 Protein structures 

Candidate ligands for HIV protease and cathepsin were docked to PDB (33) structures 

1HPV (117) and 1LYB (118), respectively.  In both cases, the ligand and other 

nonprotein atoms were removed from the binding pockets, except for the flap water in the 

case of 1HPV.  The program Quanta (99) was then used to add all polar hydrogen atoms 

and their positions were optimized by energy minimization with only hydrogen atoms 

free to move.  

The structure of HIV protease and its substrates specificity has already been described in 

section 1.6. A brief description on cathepsin, its structure and its specificity is as follows. 
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Cathepsin D is a mammalian aspartic protease found primarily in lysosomes and 

suspected of involvement in a variety of diseases such as cancer, Alzheimer’s (121) and 

muscular dystrophies (118). At 366 residues, it is somewhat larger than HIVP. Its 

crystallographic structure reveals a fold similar to that of other mammalian aspartic 

proteases, such as renin, chymosin and pepsin (118). It also shares a close-packed core of 

conserved, hydrogen-bonded polar residues. It structure can be divided into an N-

terminal domain, a C-terminal domain, and an interdomain connecting both terminals. 

The N- and C-terminal domains each contribute one aspartic acid to the active site, which 

lies in the deep cleft formed by both the domains (Figure 3.4) (122).  This cleft is wider 

than that of renin, so cathepsin can bind larger substrates and inhibitors (118). 

Cathepsin D can bind to substrates 9 amino acids long, which occupy sites from S5 to S3’ 

in the active site. Its substrate specificity is not yet fully characterized, as its role in 

human physiology is not completely understood. Like HIVP, it prefers hydrophobic 

residues around the scissile bond (122). It also has a strong preference for a hydrophobic 

residue in the P2 site of the substrate, but can still accommodate hydrogen bonding 

residues at this location. However, the P2 site does not accept cationic amino acids.  The 

presence of Met in the S2 subsite may help explain its especially strong preference for 

hydrophobic substrate residues, relative to other aspartic proteases. 

Binding of the inhibitor pepstatin to cathepsin D induces small structural changes in the 

“flap region” (residues 72-87, Figure 3.5) and in a proline-rich loop (Figure 3.5) (118). In 

contrast, the flap regions of both monomers of HIVP are believed to move substantially 

on binding (section 1.1.6.2). Numerous hydrogen bonds between the main chain atoms of 
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bound pepstatin with the active site residues stabilize the complex. In addition, the 

hydroxyl of the central statine group of pepstatin forms hydrogen bonds with the catalytic 

aspartates much as the core hydroxyl of most HIVP inhibitors interact with the catalytic 

aspartates of HIVP. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Various domains of human Cathepsin D. 

Figure 3.4: Cartoon representation of Cathepsin D 
Blue: N-terminal domain. Green: C- terminal domain. Orange: Interdomain. Catalytic 
aspartates are shown in ball and stick model 
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Figure 3.5: Flap region and proline loop of Cathepsin D 
Blue: N-terminal domain. Green: C- terminal domain. Orange: Interdomain. Red: Flap 
region (residues 72 to 87). White: Proline loop (residues 312 to 317). Catalytic aspartates 
are shown in ball and stick model. Inhibitor, pepstatin is shown in licorice model.  
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3.2.7 Docking and scoring 

Candidate ligands were docked and scored with VDock (85, 86), using a distance-

dependent dielectric constant with a coefficient of 4.  In order to accelerate convergence, 

the scaffold of each compound was restricted to lie near the pose observed for amprenavir 

in the HIV protease tests and pepstatin in the cathepsin tests. The translational box had 

dimensions of 1 and 5 angstroms for HIV protease and cathepsin systems respectively. 

Rotation of amprenavir scaffold was restricted to 30 degrees, where as the cathepsin 

scaffold was not rotationally restricted. Torsional freedom was restrained for 6 and 4 

dihedrals for amprenavir and cathepsin systems respectively (see Figure 3.5 for torsional 

restraints). One thousand ligand conformations were tested during both of the  “hunt” and 

“fine tune” phases of the protocol (85). Each docking run generated 20 minimized 

conformations and ten independent docking runs were performed for each ligand. The 

lowest-energy conformation of the resulting 200 conformations was chosen to be the 

predicted binding pose and its energy was recorded as the compound’s score. Scoring of 

a compound with this protocol takes approximately 6 minutes on a commodity computer. 

3.3 Results 

The results section is organized as follows. The first subsection deals with the 

reproducibility of the docking energy scores. The second subsection analyzes the 

distribution of predicted binding affinities of smaller virtual libraries, which may help in 

the understanding of results in the following subsections. The third subsection evaluates 

the ability of Additivity methods to predict the docking energy scores. The last two 

subsections compare the Additivity method with the GA, based upon the retrieval of 
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computational binders and on the docking energies of the top-scoring compounds that 

each method provides. 

3.3.1 Convergence of VDock 

The reproducibility of the VDock scores was assessed for both the HIV protease and 

cathepsin systems by docking and scoring 1000 compounds with randomly picked 

substituents, using the docking protocol described in Section 3.2.7.  Figure 3.6 compares 

the score from one scoring run of 10x20=200 dockings with the score from a second, 

equivalent run started with different random number seeds.  The two scores agree 

reasonably well for the lowest energy compounds (lower curve in each graph), while 

somewhat greater scatter is evident for higher-energy compounds (upper curve in each 

graph). Presumably the tightest binding compounds are the easiest to fit repeatedly into a 

low-energy conformation.  
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Figure 3.6: Evaluation of the consistency of the docking calculations. 
Histograms of the difference in docking energy score from two independent calculations 
on the same compound, for HIV protease with 1000 diverse compounds (top) and 
Cathepsin with 1000 preoptimized compounds (bottom). Upper curve in each graph is for 
all 1000 compounds; lower curve in each graph is for compounds with both energy 
evaluations less than -50 kcal/mol. 
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3.3.2 Characterization of compound libraries 

The distribution of energy scores of the four smaller libraries is presented in Figure 3.7.  

The two libraries constructed of preoptimized substituents (left-most peaks in the figure) 

extend to scores as low as about -75 kcal/mole, with a peak at about -65 and tails to about 

0 kcal/mol.  The random cathepsin library extends to about -70 kcal/mol and peaks at 

about -48 kcal/mol, while the energies of the random amprenavir-based library are very 

broadly distributed, extending to about -65 kcal/mol and with a very wide peak at about -

20 kcal/mol. Analysis of these distributions help in the explanation of some of the results 

obtained in tests of the Additivity and GA methods.  
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Figure 3.7: Distribution of docking energy scores for the smaller libraries.  
Fraction of library compounds in energy bins of width 2 kcal/mol. HIVP system: heavy 
lines. Cathepsin system: thin lines.  Random libraries: solid lines.  Preoptimized libraries: 
dashed lines.  
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3.3.3 Assessment of additivity 

The numerical accuracy of the additivity approximation was assessed here by comparing 

the docking energies predicted with the Additivity approximation (Epred) with those 

calculated for the same compounds by docking and scoring them (Ecalc).  The analysis 

was done for the smaller compound libraries (Section 3.2.5), which are amenable to 

exhaustive evaluation.  Figures 3.8, 3.9 and 3.10 summarize the results with histograms 

of Ecalc -Epred. Perfect additivity would correspond to histograms sharply peaked at zero; 

in fact, all of the histograms peak near zero, but the width of the histograms indicates 

substantial deviations from perfect additivity. These deviations in the additivity could be 

due to the differences in the positioning of the substituents or even the scaffold itself 

between the predicted and calculated poses. Examples of such cases, where the Additivity 

could fail are shown in Figure 3.11. It is also important to recognize that some of the 

deviations from additivity undoubtedly result from the imperfect reproducibility of the 

docking scores themselves, for compounds with poor predicted binding affinity: the 

additivity graphs may be compared with the reproducibility graphs in Figure 3.6 

Interestingly, the Additivity approximation tends to become more accurate (sharper 

peaks) for compounds with better energy scores.  This is clear from two types of 

comparison within the graphs. First, the distributions are sharper for the preoptimized 

libraries (bottom of Figure 3.8, and all of Figure 3.10), than for the diverse libraries (top 

of Figure 3.8 and all of Figure 3.9); Second, the lower family of curves in each graph, 

which shows the distribution of errors for the lowest-energy compounds in each library, 

tends to be sharper and centered more precisely at zero.  This observation may result, in 
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part, from the great reproducibility of the docking energies of lower-energy compounds 

(Figure 3.6).   

The accuracy of single-site (heavy solid lines) versus pairwise additivity (thin lines) can 

be assessed by comparing the curves within each family.  It is evident that including 

pairwise interactions explicitly with the pairwise additivity method does tend to yield 

narrow error distributions that are centered more closely on zero.  Moreover, pairing 

nearest-neighbor substituents (solid thin lines) tends to yield the greater improvement 

than other pairings (thin dashed lines).   

Finally, Figures 3.9 and 3.10 provide information on the sensitivity of the results to the 

choice of reference compound; i.e., compound (0000) in Equations 3.1 and 3.2.  

Although the overall results are similar for different reference compounds, based upon 

comparison of the top, middle and bottom graphs, it can also be seen that different 

baseline compounds cause the distributions to skew differently.  For example, the 

calculated energies tend to be more negative than predicted in the top graph of Figure 

3.10, but the opposite trend is observed in the bottom graph of Figure 3.10.  Potential 

mechanisms by which the choice of reference compound may shift these distributions are 

considered in the Discussion (section 3.4). 
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Figure 3.8: Accuracy of Additivity approximations for HIV protease system. 
Histograms of differences between calculated and predicted energies scores of 
compounds, with 2 kcal/mole bins, for single-site Additivity model (heavy solid), and 
Pairwise Addivitity models based upon sites R1R2-R3R4 (dashed), R1R4-R2R3 (dashed), 
and R1R3-R2R4 (thin solid).  Diverse fragment libraries (top), showing histograms for all 
compounds (upper family of curves) and for compounds with predicted and calculated 
energies less than -50 kcal/mol. Preoptimized fragment libraries (bottom), showing 
histograms for all compounds (upper family of curves) and for compounds with 
predicated and calculated energies less than -70 kcal/mol. 
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Figure 3.9: Accuracy of Additivity for Cathepsin system with diverse library. 
Histograms of differences between calculated and predicted energies scores of 
compounds, with 2 kcal/mole bins, for single-site Additivity model (heavy solid), and 
Pairwise Addivitity models based upon sites R1-R2R3 (dashed), R1R3-R2 (dashed), and R1-
R2R3 (thin solid), for three different reference compounds (top, middle, bottom).  In each 
graph, the upper curves are for all compounds, and the lower curves are for compounds 
with docking scores less than -50 kcal/mol.  
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Figure 3.10: Accuracy of Additivity for Cathepsin system with preoptimized library. 
Histograms of differences between calculated and predicted energies scores of 
compounds, with 2 kcal/mole bins, for single-site Additivity model (heavy solid), and 
Pairwise Addivity models based upon sites R1-R2R3 (dashed), R1R3-R2 (dashed), and R1-
R2R3 (thin solid), for three different reference compounds (top, middle, bottom).  In each 
graph, the upper curves are for all compounds, and the lower curves are for compounds 
with docking scores less than -65 kcal/mol. 
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Figure 3.11: Examples of failure for the Additivity method.  
(a) Differences in the orientation of substituents at R1 and R3 positions in the HIVP 
system. (b) Rotation of combinatorial scaffold itself by 180o for cathepsin system. 
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3.3.4 Retrieval of computational binders 

The Additivity and GA design methods were evaluated according to their success in 

recovering the computational binders in the smaller virtual libraries; i.e., the top-scoring 

5% of compounds in each library.  Figures 3.12 and 3.13 graph the fraction of 

computational binders recovered as a function of the number of docking runs.  The 

results of hypothetical ideal and random design methods are included for comparison.  

As expected, both the Additivity (red and dashed lines) and GA methods (green) 

consistently outperform random compound selection (cyan) and underperform ideal 

(black).   The performance of both methods is better for the diverse libraries (Figures 

3.12a and 3.13a-c), than for the preoptimized libraries (Figures 3.12b and 3.13d-f).  This 

probably is a consequence of the fact that the diverse libraries have far fewer high-

scoring compounds than the preoptimized libraries (Figure 3.6), so the computational 

binders are easier to distinguish from the others compounds.  This also helps explain why 

better results are obtained for the diverse HIVP library than for the diverse Cathepsin 

library: the latter contains a higher concentration of tight-binding compounds.  

Interestingly, the single-site Additivity method consistently outperforms the GA, 

although the degree to which it is favored is case-dependent. Its advantage is most 

marked for lowest-scoring libraries; i.e., for the random Cathepsin libraries and especially 

for the diverse HIVP libraries, as reflected in the energy histograms in Figure 3.6. The 

pairwise Additivity calculations (dashed lines) give mixed results.  For the HIV protease 

system, they tend to outperform single-site additivity.  Particularly good results are 

 92



obtained with the pairing that accounts for interactions between the nearest-neighbor 

substituents, R1R3-R2R4 (gold dashed line).  This is consistent with the enhanced 

predictivity of this pairing evident in Figure 3.8.  It is worth noting that the pairwise 

calculations require more docking calculations as overhead.  For example, evaluating all 

the component terms E000, Ei,00 and E0,jk for the R1-R2R3 pairing in the Cathepsin series, 

with 25 candidate substituents at each site, requires 1 + 24 + 242 = 601 dockings at 

minimum.  Single-site Additivity for the same library requires only 1 + 3(24)=73 

dockings. This difference accounts for the fact that the pairwise curves start further to the 

right than the single-site and GA curves. This higher overhead may also account for the 

fact that the yield of computational binders for a given number of dockings tends to start 

low. The greater accuracy of the pairwise predictions (Figures 3.8-3.10) then accounts for 

the fact that the pairwise curves then tend to rise above the single-site curves.   

For Cathepsin, the consequences of changing from one reference compound to another 

can be assessed by comparing across Figures 3.13 a,b,c for the diverse library, and across 

d,e,f for the preoptimized library.  The results are fairly uniform, except that the single-

site and the two pairings other than R1-R2R3 pairing (gold dashed) perform worse for the 

diverse library with reference compound one (Figure 3.13a) than for the other reference 

compounds (Figure 3.13b,c).  The basis for this difference is not yet clear. 
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Figure 3.12: Retrieval of computational binders for HIVP system  
Fraction of computational binders retrieved as a function of the number of dockings, for 
HIV protease system, with small diverse (a) and preoptimized (b) substituent libraries.   
Ideal: black.  Random: cyan.  GA: green.  Single-site Additivity: red.  Pairwise additivity, 
dashed, with R1R3-R2R4 gold; R1R4-R2R3 red;  R1R2-R3R4 brown.  
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Figure 3.13: Retrieval of computational binders for Cathepsin system 
Fraction of computational binders retrieved as a function of the number of dockings, for 
Cathepsin protease system, with small diverse (a, b, c) and preoptimized (d, e, f) 
substituent libraries, with different reference compounds.   Ideal: black.  Random: cyan.  
GA: green.  Single-site Additivity: red.  Pairwise additivity, dashed, with R1-R2R3 gold; 
R1R2-R3 red;  R1R3-R2 brown. 
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3.3.5 Docking energy scores of top compounds  

The performance of the Additivity and GA methods was also evaluated based upon their 

ability to generate compounds with good energy scores. This measure does not require 

exhaustive docking of the virtual library and so can be used for the larger virtual libraries 

as well.  Results are presented here for both the smaller and larger libraries.  

3.3.5.1 Smaller combinatorial libraries 

The average docking energy of the top-scoring 5% of compounds found by each method 

are graphed against the number of dockings for the HIVP (Figure 3.14) and Cathepsin 

(Figure 3.15) systems.  Graphs for theoretically ideal and random compound selection are 

again included, for comparison.  Data are provided for both the diverse (left) and 

preoptimized (right) small libraries.  As expected, the gap between ideal and random is 

larger for the diverse than for the preoptimized libraries, and the best energies (ideal 

graphs) are more favorable in the preoptimized libraries. As expected, both the Additivity 

and GA methods yield much better results than random selection, yielding curves that lie 

fairly close to ideal, more so, apparently, than for recovery of computational binders 

(Section 3.3.4), presumably because the libraries contain a significant number of 

compounds that are not computational binders but that have energies similar to those of 

the computational binders (Figure 3.7). 

Overall, the single-site Additivity method again tends to outperform the GA especially 

for the more diverse libraries, yielding sub-libraries with generally better (more negative) 

binding scores for a given number of dockings.  The pairwise Additivity calculations 
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again yield a mixed picture.  It is worth noting that the energy ranges in the graphs are 

rather small, especially for the preoptimzed libraries, making fine distinctions uncertain.  
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Figure 3.14: Mean docking energy of the top 5% of designed compounds, for HIVP 
system  

(a) Diverse fragment libraries. (b)Preoptimized fragment libraries. See previous legends 
for symbols. 
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Figure 3.15: Mean docking energy of the top 5% of designed compounds, for 
Cathepsin  system  
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(a) Random fragment libraries. (b)Preoptimized fragment libraries. See previous legends 
for symbols. 
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3.3.5.2 Larger combinatorial libraries 

The distribution of docking energy scores of the top 1000 compounds found by each 

design method for the larger virtual combinatorial libraries are given in Figure 3.16. In 

spite of the differences in the systems, the two sets of graphs are remarkably similar.  The 

Additivity method yields very few poor compounds, but the peaks of the GA distributions 

are shifted to lower energies than those of the Additivity distributions. Over the entire 

distribution, the Additivity method seems to yield a higher number of compounds with 

better docking energy scores than the GA. However, the docking energy scores of top 

compounds from GA are better than from the Additivity method. The differences in the 

patterns of the two systems could be due to a difference in the distribution of compound 

energies. 
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Figure 3.16: Distribution of docking energy scores of top 1000 compounds  
(a) HIV protease system. (b) cathepsin system. Docking energy scores are given in 
kcal/mol. Bright green: GA and Red: Single site additivity method  
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3.4 Discussion 

The present study demonstrates that both the Additivity approximation and a GA can 

strongly enhance the yield of high-scoring compounds in a combinatorial sublibrary, 

relative to random selection, when a structure-based docking method is used to score 

compounds.  Thus, either method may be used in real-world library design.  Overall, the 

Additivity method is found to perform as well as or better than the GA method, when 

both are allowed the same number of dockings to optimize a combinatorial sublibrary.  

One reason for this may be that, whatever its weaknesses, the Additivity method has the 

strength of being guaranteed to try every candidate substituent at each site; in contrast, it 

is highly unlikely that the GA will try every substituent at each site, when a large library 

is studied.  Therefore, the GA risks missing good substituents.  On the other hand, the GA 

has the potential advantage of identifying specific combinations of substituents that work 

particularly well because of their sizes and charges, for example, are mutually 

complementary.  Another advantage of the Additivity method is that it is essentially 

trivial to implement, whereas the GA is relatively complex piece of software. 

All of the methods tend to yield better results for the HIVP system than for the Cathepsin 

system. One reason may be that the HIVP substituents are more diverse and the 

compounds’ energies therefore are spread more widely, making it easier to pick out the 

top scorers.  Another reason undoubtedly is the unanticipated flipping of some 

compounds in the Cathepsin library.  Such flips cause a given substituent to make a 

different energy contribution depending upon the part of the binding site with which it 
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interacts.  Note that the GA results also depend to some degree upon additivity: the 

crossing-over two compounds will yield a new and better compound only if the good 

substituents of the two compounds are still good when they are brought together in one 

compound.  In general, both the Additivity and GA methods are expected to perform best 

when the combinatorial scaffold adopts a rather uniform pose within the binding site.  

The pairwise approach is logical and does improve results in a number of cases, 

especially for the HIVP system, and especially when nearest-neighbor substituent sites 

are paired.  Its weaker performance for the Cathepsin system may be a consequence of 

the flipping of some compounds, which limits the overall accuracy of additivity.  The 

pairwise method does impose a higher computational overhead than the single-site 

method because it requires calculation of energy contributions from all pairs of interest, 

not just all single substituents.  In a real-world application, knowledge that two 

substituents are likely to contact each other in the binding site would argue in favor of 

pairing these substituents. The likely benefit of the pairing could be evaluated by test-

calculations of the sort described in Section 3.2.3.3.   

The chief exception to the rule that the Additivity method is superior to the GA is for the 

large, diverse Cathepsin library, where the GA does somewhat better than single-site 

Additivity at identifying the highest scoring compounds.  The reasons for this are still 

uncertain, but may have to do with the tendency of some Cathepsin ligands to flip in the 

binding site.  On the other hand, flipping should also pose problems for the GA.  It will 

be interesting to repeat some of these calculations with a restraint on the scaffold that will 

prevent flipping.  Another possible explanation is that there may simply be more 
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nonadditivity in the Cathepsin library, even in the absence of flipping, due to interactions 

between substituents.  The pairwise Additivity approach is one way to alleviate this 

problem, but it would be time-consuming to run the >10,000 dockings need to run a full 

additivity analysis of one pair of substituents the large Cathepsin library.  The time could 

be cut constructing and docking pairwise combinations of only the most promising 

substituents from a single-site analysis. 

Previous applications of the Additivity concept have used single-site substitutions to pick 

the most promising substituents at each site, and then formed libraries by combining 

them.  The present implementation goes beyond these methods by using Equation 3.1 and 

3.2 to predict the binding energies of the various combinations.  This quantitative 

approach should be better in the case where the energy contributions of the various 

substitutions are not uniformly distributed.  For example, if the next-ranked two 

substituents at R1 both give excellent binding energies, but neither of the next-ranked two 

substituents at R2 gives good energies, and then expanding the library with the two 

substituents at R1 should be better than expanding it by adding one at R1 and one at R2.  

The quantitative approach taken here also leads directly to the pairwise Additivity 

method, which often yields better predictions than the single-site approach. 

It is worth noting that using different docking software could influence the results of this 

analysis. For one thing, VDock uses a pairwise additive energy function, and this clearly 

favors the Additivity method, as well as the GA.  Incorporation of a solvation model that 

is not pairwise additive, such as the Poisson-Boltzmann (123, 124) or Generalized Born 

(124) model, might degrade the performance of these methods.  On the other hand, the 
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non-additivity of these solvent models may not be severe for a ligand in a highly 

desolvated binding site.  A second issue is the imperfect reproducibility of the docking 

calculations, which limits the potential accuracy of the Additivity approximation.  It 

would be interest to explore both of these issues through tests with different docking 

algorithms and scoring functions.   

Ultimately, a more fundamental and interesting question is how well the Additivity 

approximation holds in reality; that is, how well the measured affinity of a new 

compound can be predicted based upon additive contributions of its substituents.  

Somewhat surprisingly, this issue does not appear to have been addressed in the 

literature; it is therefore being addressed in a separate project, to be described elsewhere. 

3.5 Conclusions 

The present study introduces a quantitative Additivity method for the efficient structure-

based design of combinatorial libraries. The method provides for a purely single-site 

additivity approximation, as well as a more sophisticated pairwise approach that allows 

for interactions between substituents, but comes at a greater computational cost.  These 

Additivity methods are compared with a GA design method in various situations.  Both 

approaches are much better than random compound selection, and the Additivity method 

tends to outperform the GA.  Not surprisingly, it is harder to identify the top-scoring 

compounds in a library of compounds that all score well; and when the combinatorial 

scaffold flips orientation in the binding site, predicted affinities become less reliable. 
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Chapter 4. Design, Synthesis, and Biological 
Evaluation of HIV-1 Protease Inhibitors with 
Broad Specificity 

4.1. Introduction 

The use of HIV protease inhibitors significantly reduced the mortality and morbidity rate 

in AIDS patients (25, 92, 93), but the emergence of resistance and cross resistance to the 

existing protease inhibitors has become a major threat in AIDS therapy. There is a thus a 

need for inhibitors with broad specificity against existing treatment-resistant strains, and 

without vulnerability to potential future mutations.  One approach to developing such 

inhibitors may be to design compounds that make only substrate-like interactions with the 

binding site, so any mutation that weakens binding of the inhibitor should also weaken 

binding of the substrate, and thus lead to reduced enzymatic activity and a less viable 

virus. 

Crystallographic studies of complexes of HIV-1 protease with its substrates have shown 

that, despite the differences in their amino acid sequences, the various substrates fill a 

rather uniform volume, with a toroidal shaped component on the unprimed side of the 

cleavage site and an extended shape on the primed side, (95, 125). This consensus 

substrate volume differs significantly from that occupied by existing clinical inhibitors in 

the binding site, and residues near locations where inhibitors extend outside the substrate 

volume were observed to be loci of resistance mutations. These observations led to the 

hypothesis that the selective recognition of substrates by treatment-resistant variants of 
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HIVP is attributable to the differences in the shape of bound substrate versus inhibitors., 

and that inhibitors that fit within the border of the consensus volume, termed the 

“substrate envelope”, may be less susceptible to resistance mutations (96). Chapter 2 

provides retrospective data that support the validity of this substrate envelope hypothesis.  

The present chapter describes a prospective evaluation of the hypothesis through the 

design and experimental characterization of a combinatorial library of HIV-1 protease 

inhibitors that aim to achieve high binding affinity while fitting the substrate envelope. 

The library is based upon a hydroxylethylamine scaffold (Figure 4.1), because it is a part 

of amprenavir, an existing HIVP inhibitor which has been shown to fit well within the 

substrate envelope. The ability of this scaffold to make key hydrogen bonds with HIV 

protease through the flap water and the catalytic aspartates, along with considerations of 

synthetic feasibility, also favored its selection. The present study also examines the 

consequences of the two accessible inversion geometries of the sulfonamide nitrogen 

(126) upon the computational results and predictions.  Two of the designed compounds 

are found to bind to wild type protease with nanomolar affinity, and to retain substantial 

affinity against a panel of clinically relevant resistance mutations. These results support 

the validity of the present design strategy. 
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Figure 4.1: Combinatorial scaffold showing the restrained torsions.  
Torsional freedom along the blue, magenta and red colored bonds is restrained by ±20, 
±30 and ±90 degrees respectively. 

4.2 Methods 

This section is organized as follows. The first subsection details the design methodology, 

and the next two subsections give a brief overview of screening and crystallographic 

studies, which were kindly provided by our collaborators. The last subsection describes 

the analysis of the effect of sulfonamide inversion on the docking.  

4.2.1 Computational methods 

4.2.1.1 Scaffold selection  

The ideal characteristics of a combinatorial scaffold are as follows: 1) Synthetic 

feasibility and ability to provide diverse chemistry through a number of attachment 

points. 2) Ability to establish key interactions with the target protein. The second feature 

not only improves the affinity of compounds in the combinatorial library but also helps 

limit the movement of scaffold in the active site. This restriction can accelerate the 

structure-based virtual screening process by reducing the computational time involved in 

conformational search (Section 4.2.1.4)(78). We selected the hydroxylethylamine 
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scaffold shown in Figure 4.1, based on the above criteria, as well as the scaffold’s ability 

to position the three variable substituents, R1, R2 and R3, within the substrate envelope. 

Synthetically, R1 substituents require a carboxylic group, R2 substituents require a 

primary amine, and R3 substituents require a sulfonylhalide.  The initial 3D conformation 

of the scaffold was prepared from the crystal structure of amprenavir in complex with 

HIV protease (1HPV)(127) in structure definition file (SDF) format. The sulfonamide 

geometry of the scaffold thus was that found in 1HPV.  

4.2.1.2 Substituent libraries 

Initial designs used functional groups from the “all purchasable” subset of the Zinc 

database (119). This subset was sorted by functional group, carboxylic acids and primary 

amines were extracted for the R1 and R2 positions, respectively. Sulfonyl halides were 

collected from the Sigma-Aldrich and Maybridge catalogs. All candidate substituents 

were restricted to have fewer than 12 non hydrogen atoms, in order to favor the 

construction of small compounds that are likely to fit within the substrate envelope. This 

restriction yielded approximately 7000, 1200 and 350 compounds for the R1, R2 and R3 

positions respectively. Starting 3D conformations of the substituents available in Zinc 

were used as-is; the rest were constructed with the program Quanta. The chemical 

components (carboxylic acids, amines and sulfonyl halide) were tagged as belonging to 

R1, R2 and R3, respectively, and the functional groups were then removed and replaced 

with linker atoms connected by pseudobonds, to facilitate compound construction, as 

described below. 
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4.2.1.3 Construction of compounds 

A new program, termed “Dovetail”, was used to build in-silico combinatorial libraries in 

3D conformations in SDF format from initial 3D structures of the scaffold and 

substituents. Dovetail builds a combinatorial compound by matching the substituent sites 

and the corresponding functional groups for the desired compound, overlaying a 

pseudobond with the terminal substitution bond in the scaffold, deleting the redundant 

linker atoms, forming new bonds joining the substituents to the scaffold, and assigning 

force-field parameters to the resulting compound. “Ab initio”-like partial charges of the 

resulting compounds are generated with VCharge, an electronegativity equalization 

method parameterized to reproduce electrostatic potential fields computed at the 6-31G* 

level (120). Lennard-Jones parameters are assigned from CHARMm (128) atom types, 

and bond-torsions parameters are drawn from the Dreiding force field (129).  

4.2.1.4 Docking and scoring 

The program VDock was used to dock and score the combinatorial compounds, using a 

distance-dependent dielectric constant with a coefficient of 4. This docking program uses 

three pre-computed grids: an electrostatic grid, an attractive Lennard-Jones grid and a 

repulsive Lennard-Jones grid, which allow the rapid calculation of the interaction of the 

ligand with a fixed conformation of the protein (85). Combinatorial library compounds 

were docked to 1HPV (127). This protein structure was superimposed on 1HSG (100), to 

place the docked conformations in the same reference frame as that of the substrate 

envelope grid (section 4.2.1.5). The receptor structure was prepared by removing ligand 
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and other non protein atoms from the binding pockets, except for the flap water.  The 

program Quanta (99) was then used to add all polar hydrogen atoms and their positions 

were optimized by energy minimization with only hydrogen atoms free to move.  

In order to compute the interaction energy between a receptor and a ligand, VDock 

should identify the most stable bound conformation of the ligand and compute the energy 

for this bound conformation. Identification of the low energy conformations from a large 

conformational search space can be computationally challenging. We accelerated the 

search by restricting the movement of the combinatorial scaffold, so that it lies close to 

the binding pose observed in 1HPV. As the scaffold forms key interactions with the 

catalytic aspartates and the flap water, which beautifully anchor it in the active site, 

restraints on its movements in our docking and scoring calculations can be justified. The 

translational movement of the scaffold was restricted to ±1 Å in each axis, and the 

rotation was restricted to ±30 degrees. Movement along six dihedrals in the scaffold was 

also restrained, as shown in Figure 4.1. Ten independent docking runs were performed 

for each ligand, with each docking run resulting in an output of 20 docked conformations. 

The lowest energy conformation among the 200 generated conformations was taken as 

the predicted binding pose and the energy as the predicted binding affinity. Scoring of a 

compound with this protocol takes approximately 6 minutes.  

4.2.1.5 Evaluation of substrate envelope fit 

Candidate inhibitors were also scored for their fit within the substrate envelope using a 

grid based method described in Chapter 2. Briefly, a cubic three-dimensional grid with 
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side-length 10 Å and grid spacing 0.2 Å was centered on the active site of HIV protease, 

1HSG (100). Six HIV protease substrates (1F7A, 1KJ4, 1KJ7, 1KJF, 1KJG, 1KJH (37)) 

and their symmetry-operated structures, for a total of 12 substrate structures, were 

superimposed on 1HSG, based upon the coordinates of backbone atoms. Each grid point 

was assigned a value of 0 and then incremented by 1 for every substrate structure 

containing the grid point. A grid point is considered to be contained by a substrate if it 

lies within the CHARMm (128, 130) van der Waals radius of any non-hydrogen atom of 

the substrate.  

The fit of a ligand to the substrate envelope is computed as follows. The docked ligand 

conformation is overlaid laid on the substrate envelope grid, and the effective volume of 

the ligand outside the substrate envelope, Vout, is computed by summing the values of the 

grid points gijk that lie within the van der Waals volume of the inhibitor, normalizing the 

sum by 12, and converting to a volume by multiplying by the 0.008 Angstrom3 volume of 

a grid box: 

, ,

0.008 (12 )
12

inside

out ijk
i j k

V g≡ −∑  

Equation 4.1 

Here “inside” implies that the sum runs only over grid points ijk that lie within the van 

der Waals volume of the inhibitor.  
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4.2.1.6 Selection of compounds 

Our two design criteria, high predicted binding affinity and the fit to the substrate 

envelope were combined to give one single score, to prioritize our compounds. This was 

done with Z-scores, since energy and Vout scores have different units (131). For a given 

distribution, the Z-score of an individual with observed value  is iX

σ/)(
−

−= XXZ ii  

Equation 4.2 

where 
−

X  and σ  are the mean and standard deviation of the distribution respectively. For 

each candidate inhibitor, the Z-scores of its VDock energy and Vout were computed in the 

context of the distribution of energies and substrate volumes of all candidate inhibitors 

studied.  The two Z-scores were then simply averaged to arrive at a composite figure of 

merit for the compound. 

4.2.1.7 Combinatorial library design 

An exhaustive virtual combinatorial library would comprise approximately 3 billion 

compounds, based upon all the candidate substituents described in section 4.2.1.2. 

Docking and scoring of all these compounds is not practical, as it takes approximately 6 

minutes per compound. This problem was addressed as follows.  First, single-site 

Additivity analysis was carried out, with Amprenavir as the reference compound; see 

Chapter 3 for methodological details and validation of this approach.  The candidate 
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substituents at each site, R1, R2 and R3, were ranked by the combined Z-scores of 

VDock energy and Vout, according to the single-site results, and the top 150 candidates at 

each site were identified.  Multiple Genetic Algorithm calculations (Chapter 3) were 

carried out with these 150 candidates at each position, with the combined Z-score as a 

fitness function, and substituents at each position that occurred repeatedly in the top 100 

compounds were identified and discussed.  Unsuitable substituents, such as symmetric 

amines, and ones that proved to be unavailable, were eliminated.  Further substituents 

were eliminated in order to narrow attention to fully combinatorial sublibraries.  

Ultimately, a fully combinatorial library of 27 compounds was proposed, and 26 of these 

compounds were synthesized and tested. 

4.2.2 Enzymatic assays 

The dissociation constant of an enzyme inhibitor, Ki, can be measured by the change in 

the rate of catalysis in its presence. The change in the consumption of substrate or in the 

generation of product over time gives the change in rate of catalysis. There are several 

ways to measure this change in the velocity of the reaction. One such method is the 

fluorometric assay in which a difference in the fluorescence of substrates or products is 

detected.  Here, Ki values were measured with fluorescence resonance energy transfer 

assays. A protease substrate was terminally labeled with a florescence energy transfer 

donor and acceptor. On proteolysis, the fluorescence of the fluorophore is recovered, and 

can be monitored at suitable excitation and emission wavelengths. The proteolysis rate is 

thus reflected by rate of evolution of fluorescence emission, andKi is obtained by 
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nonlinear regression fitting to the plot of enzyme velocity as a function of inhibitor 

concentration. 

The designed compounds were screened for their binding affinity not only to the wild-

type HIV protease but also for a panel of proteases that have clinically relevant sets of 

mutations: M1 (D30N/L63P/N88D), M2 (L10I/G48V/I54V/L63P/V82A) and M3 

(L10I/L63P/A71V/G73S/I84V/L90M)).  

4.2.3 X-ray crystallography 

X-ray crystallography was used to determine the structures of selected protein-ligand 

complexes. Crystals of protein-ligand complexes were prepared by the hanging drop 

vapor diffusion method. In this method, a droplet of concentrated solution of protein and 

precipitating agent is applied to a glass cover slip, which is then inverted so as to suspend 

the droplet above a larger reservoir of solution with higher concentration of precipitating 

agent. Over time, water in the droplet evaporates and then condenses in the reservoir, 

leading to a gradual increase in concentration of precipitant in the suspended droplet, and 

hence to crystallization of the protein-ligand complex.  The protein crystals are harvested, 

cooled with liquid nitrogen, and used to generate X-ray diffraction patterns which are 

reocorded and analyzed with commercially available software to provide the 3D structure 

of the complex to atomic resolution.  
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4.2.4 Analysis of the effect of sulfonamide geometry on the predictions 

The combinatorial scaffold has a sulfonamide nitrogen which is capable of inversion, 

resulting in two different conformations. As our docking program does not try alternate 

conformations of this nitrogen during the docking calculations, the sulfonamide geometry 

is held fixed throughout the calculations.  The choice of conformation was uncertain 

because there were only ten PDB structures of HIVP with ligands containing such a 

sulfonamide moiety, three of them with 1HPV-like geometry, and 7 with the alternate 

geometry. As we used the receptor structure from 1HPV, we assigned the corresponding 

sulfonamide geometry to the combinatorial scaffold during the design process. However, 

the crystal structures of the designed ligands showed them to adopt the other sulfonamide 

geometry. This observation led to retrospective analysis of the effect of the sulfonamide 

geometry on the docking calculations. 

The analysis was carried out by docking the designed ligands with both sulfonamide 

geometries into two crystal structures of HIV protease, 1HPV and KB60 (Schiffer and 

coworkers, unpublished) which were solved with sulfonamide-containing ligands having 

opposite nitrogen geometries.  In the present paper, the sulfonamide geometry found in 

KB60 will be referred to as the “inverted” geometry.  These calculations provide 

information regarding the direct influence of the sulfonamide geometry on ligand 

confrormation, and also regarding any indirect influence of the sulfonamide geometry 

that may result from its effect on the conformation of the protein. The docking 

calculations were performed as detailed in section 4.2.1.4, and the root mean square 
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distance (RMSD) between the non-hydrogen atoms in the predicted and crystallographic 

structures were used to compare the docking results. 

4.3 Results  

This section presents results of the computational design process, provides the binding 

affinities of the designed compounds, then analyzes the ligand-protein interactions of the 

two highest-affinity inhibitors according to the computational predictions. These 

predicted interactions then are compared with those observed in crystal structures of 

HIVP with the two inhibitors. Finally, the consequences of sulfonamide geometry on the 

docking predictions are analyzed.  

4.3.1 Computational design of combinatorial libraries 

Figure 4.2 shows how the distributions of the energy and Vout scores of the compounds 

under consideration changed during the design process, and elucidates the trade-off 

between the energy and Vout figures of merit.  The initial virtual library of ~3x109 

compounds, based upon all candidate substituents, has a mean docking energy of ~-30 

kcal/mol and a mean Vout of ~250 Å3 (solid black curve). Both of these values are 

approximations based upon reconstruction of the energies and volumes via the single-site 

Additivity approximation (Chapter 3) for 108 compounds randomly picked from the full 

virtual library.  Not surprisingly, better average docking and Vout scores, and narrower 

distributions, are observed for a smaller virtual library constructed from the 150 

substituents at each position that yielded the best combined docking and Vout Z-scores 

(dashed black curve).  
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The red and green distributions highlight the trade-off between selecting compounds 

according to docking score versus Vout. In both graphs, the red graph represents the 

distributions for the 100 compounds with the most favorable predicted docking scores: as 

expected, their docking scores are very low (top graph); but these compounds tend to be 

worse than the average compound in the 150x150x150 library (bottom graph). Thus, 

choosing compounds based purely on docking scores would not yield compounds that fit 

well into the substrate envelope.  Conversely, the green curves represent the distributions 

for the 100 compounds with the most favorable predicted values of Vout. These 

compounds fit the substrate envelope well (bottom graph), but have relatively poor 

docking scores (top graph).  

Finally, the blue curves in both graphs show the distributions of docking scores and Vout 

computed for the 26 compounds that were actually synthesized and tested. These data 

were obtained by docking each compound individually, rather than by applying the 

Additivity approximation.  It is evident that these compounds represent a compromise 

between optimization of docking scores alone (red graphs) and Vout alone (green) graphs, 

as the blue distributions peak between the red and green distributions. The docking scores 

of these compounds tend to be similar to that of Amprenavir (solid vertical line), while 

their values of Vout are a little larger than that of Amprenavir. 
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Figure 4.2: Distributions of docking energies (top) and volumes outside substrate 
envelope (Vout; bottom) computed for various compound sets.   

Solid black: 108 compounds drawn randomly from the full virtual library of ~3x109 
compounds; data estimated by single-site addtivity approximation.  Dashed black: all 
compounds constructed from the 150 candidate substituents at each position that gave 
optimal combined Z-scores (see 4.2.1.7); data estimated by single-site additivity 
approximation.  Red: 100 compounds with the best (lowest) docking scores estimated by 
single-site additivity.  Green: 100 compounds with the best (lowest) values of Vout 
estimated by single-site additivity.  Blue: 26 synthesized compounds; data computed by 
docking and scoring each of the 26 compounds.  Computed results for Amprenavir are 
indicated by vertical black lines. 

4.3.2 Binding affinity and resistance to mutation 

This work resulted in seven compounds with dissociation constants for wild-type HIVP 

in the nanomolar range, as shown in Table 4.1. For comparison, the table also provides 
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the structures of amprenavir, the smallest of the first-generation clinical inhibitors, and 

ritonavir, one of the largest, along with their measured dissociation constants.  The new 

compounds are similar in size to amprenavir. This is consistent with the use of fit to the 

substrate envelope as a design criterion, because smaller compounds tend to fit the 

substrate envelope better.   The two designed compounds of highest affinity, AD-37 and 

KB-45,  have low-nanomolar dissociation constants, but do not bind quite as tightly as 

amprenavir. 

 Compounds AD-37 and KB-45 were further tested against the panel of three mutant 

proteases, M1, M2 and M3, which are highly clinically relevant (as defined in Section 

2.2.3) according to the clinical relevance values listed in Table 4.2. The affinities of these 

two compounds for the three mutants are presented in Table 4.3, along with comparison 

data for a set of first-generation HIVP inhibitors in clinical use.  A graphical 

representation of the robustness of all the compounds is presented in Figure 4.3, using the 

definition provided in Section 2.2.2. Each line in Figure 4.3 represents one compound; 

and a lower, more level line indicates greater robustness to mutation.  By this measure, 

the two new compounds, AD-37 and KB-45, are more robust than any of the inhibitors 

except for amprenavir.  They also fit the substrate envelope better than any of the other 

inhibitors except for amprenavir, according to the values of Vout in Table 4.3.  However, 

it is important to note that the affinities of the new compounds are not especially good in 

absolute terms, as also evident from the data in Table 4.3. 
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INHIBITORS CHEMICAL STRUCTURE Ki (nM) 
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(Table 4.1 is continued on the next page.) 
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Table 4.1: Structures and inhibition constants, Ki ,for selected compounds.  
APV: amprenavir; RTV: ritonavir. The designed compounds were synthesized by Dr 
Akbar Ali and Dr Kiran Reddy. The enzyme inhibition experiments were conducted by 
Dr Hong Cao.  

 

MUTATION SETS 
NI,ONLY NI,ALL

CLINICAL 

RELEVANCE 

M1 (D30N/L63P/N88D) 223 322 69.3 

M2 (L10I/G48V/I54V/L63P/ V82A)    14 75 18.7 
M3 
(L10I/L63P/A71V/G73S/I84V/L90M) 39 102 37.5 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2: Clinical relevance analysis of mutant proteases M1, M2 and M3. 
See Section 2.2.3 and Table 2.4 for details.  
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Ki(nM) 
INHIBITORS VOUT (Å3) 

Wild-type M1 M2 M3 

AD37 155 23.90 62.90 358.4 371.70 

KB45 139 58.00 129.30 1288 2882.00 

Amprenavir 128 0.13 0.21 0.15 1.40 

Indinavir 180 0.18 0.73 33.58 21.15 

Saquinavir 213 0.07 1.03 89.53 78.44 

Nelfinavir 166 0.28 3.49 14.58 18.73 

Ritonavir 256 0.06 0.46 3.03 2.81 

Lopinavir 170 0.005 0.040 6.1 0.90 

Table 4.3: Measured inhibition constants Ki of designed compounds and first-
generation HIVP inhibitors. 

Vout: volume outside the substrate envelope, based upon crystal structures of the 
respective complexes. The enzyme inhibition experiments were conducted by Dr Hong 
Cao.  
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Figure 4.3: Resistance profiles graphs. 
Gold: AD37. Blue: KB45. Bright green: Amprenavir. Red: Saquinavir, Indinavir, 
Nelfinavir, Ritonavir and Lopinavir.  
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4.3.3 Docked structures of inhibitor complexes 

Close interactions between HIVP and inhibitors AD37 and KB45 in their predicted poses 

are shown in Figures 4.4 and 4.5 respectively. The two compounds differ only at their R3 

substituent position, so it is not surprising that their interactions with HIV protease 

through the scaffold and other substituent sites are similar. The combinatorial scaffolds of 

both AD37 and KB45 form hydrogen bonds with the flap water and with residue Asp25, 

one of the catalytic aspartates (Figure 4.4a and 4.5a). The phenyl group of the scaffold 

and the cyclopropyl groups of both ligands are predicted to form nonpolar interactions at 

S1’ and S1 subsites of HIVP, respectively. The residues involved in these interactions are  

Pro81’ and Val82’ at the S1’ subsite, and Leu23 and Val82 at the S1 subsite (Figures 

4.4b, 4.4d, 4.5b and 4.5d).   

Crystal structures show that residues in the S2 and S2’ subsites of HIVP form both 

hydrophobic and hydrogen bonding interactions with existing inhibitors (31), and the 

docking calculations place the R1 and R3 substituent groups at the S2 and S2’ subsites, 

respectively. Even though the amide group of the R1 substituent is within hydrogen 

bonding distance of residues Asp29, Asp30 and Gly48 (Figures 4.4c and 4.5c), the angle 

is not optimal, so the interactions of the R1 substituent with the residues in S2 subsite are 

interpreted as mainly electrostatic in nature. Residue Asp30’ in the S2’ subsite is 

predicted to form a hydrogen bond with the R3 substituent of AD37. Otherwise, the R3 

substituents of both the ligands are predicted to form mainly nonpolar interactions with 

the protein.  In particular, Ala28 is predicted to be in hydrophobic contact with the m-

methoxy benzyl group of AD37 and the tetrahydrofuryl group of KB45. 
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Figure 4.4: Docked structure of AD37 with HIVP.  
(a) Hydrogen bonding interactions of the combinatorial scaffold. (b-e) Interactions of 
phenyl, R1, R2 and R3 substituents with the protease. Ligand and neighboring residues are 
shown in licorice model. The dotted lines represent non-bonded interactions between 
ligand and residues within 4.1 Å 
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Figure 4.5: Docked structure of KB45 with HIVP. 
 (a) Hydrogen bonding interactions of the combinatorial scaffold. (b-e) Interactions of 
phenyl, R1, R2 and R3 substituents with the protease. 
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4.3.4 Crystal structures of HIV-1 protease complexes 

The crystallographic poses of AD-37 and KB-45 agree rather well with the predictions; 

the RMSD deviations of non-hydrogen atoms are 1.32 Å and 1.08 Å, respectively.  The 

observed interactions of these inhibitors with HIV-1 protease also are similar to the 

predictions, but some differences can be discerned by comparing Figure 4.4 with Figure 

4.6 and Figure 4.5 with Figure 4.7.  More schematic comparisons are presented in Figures 

4.8 and 4.9.  

The observed hydrogen bonding interactions between the scaffold and the flap water are 

as predicted, but the scaffold in the crystal structures forms one more hydrogen bond with 

Asp25’ than predicted: compare Figure 4.4a with Figure 4.6a and Figure 4.5a with Figure 

4.7a. The hydrophobic interactions of the scaffold’s phenyl group also are close to those 

observed in the docked poses, involving Pro81’, Val82’ and Gly49 in the S1’ subsite 

(Figures 4.4b vs. 4.6b and 4.5b vs. 4.7b).  However, the orientation and the interactions 

of the cyclopropyl group at R2 differ significantly from the predictions. In particular, the 

predicted nonpolar interaction with Leu23 at the S1 subsite is absent. The R1 substituents 

of both ligands form a hydrogen bond with backbone nitrogen of Asp29 at the S2 subsite, 

although this interaction was not observed in the most stable computed poses (Figures 

4.4c vs. 4.6c and 4.5c vs. 4.7c).   

The methoxy methyl moiety of the R3 substituent of AD-37 was predicted to form a 

nonpolar interaction with Val32 in the S2’ subsite, but the crystal structure instead shows 

multiple interactions between the benzene moiety of R3 and Val32.  Similarly, more 
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nonpolar interactions were observed than predicted between the R3 substituent of KB-45 

and nearby nonpolar groups (Figure 4.7e versus Figure 4.5e).   

Finally, the sulfonamide nitrogen in the crystal structures is inverted relative to that used 

in the docking calculations.  It was conjectured that this difference might account for 

differences between the predicted and observed positions of the various substituents.  The 

following subsection analyzes the consequences of the sulfonamide geometry for the 

docked conformations. 
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Figure 4.6: Crystal structure of AD37 in complex with HIV-1 protease.  
(a) Hydrogen bonding interactions of the combinatorial scaffold. (b-e) Interactions of 
phenyl, R1, R2 and R3 substituents with the protease. The crystallographic analysis was 
performed by Dr Madhavi Nalam. 
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Figure 4.7: Crystal structure of KB45 in complex with HIV-1 protease.  
(a) Hydrogen bonding interactions of the combinatorial scaffold. (b-e) Interactions of 
phenyl, R1, R2 and R3 substituents with the protease. The crystallographic analysis was 
performed by Dr Madhavi Nalam. 
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Figure 4.8: Interactions of AD-37 with the active site of HIV protease 
As predicted (a) and crystallographic (b) Residues within 4.1Å of the inhibitor are shown. 
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Figure 4.9: Interactions of KB-45 with the active site of HIV protease 
As predicted (a) and crystallographic (b) Residues within 4.1Å of the inhibitor are shown. 
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4.3.5 Consequences of sulfonamide geometry 

The geometry of the sulfonamide nitrogen could affect the VDock predictions directly by 

affecting the positioning of the substituents, and indirectly by affecting the protein 

conformation. The direct effect of the sulfonamide geometry was analyzed by additional 

docking calculations using AD-37 and KB-45 with both possible sulfonamide 

geometries. Possible indirect effects were examined by docking the ligands into two 

receptor structures, crystallized with ligands having different sulfonamide geometries, 

1HPV and KB60.  The four resulting docked conformations were superimposed and 

compared.  Tables 4.4 and 4.5 provide the RMSD of non-hydrogen atoms in the four 

docked conformations, relative to the crystal structure.  In all cases, docking with the 

inverted sulfonamide geometry of the crystal structures yielded lower RMSDs.  However, 

the choice of target protein structure has an inconsistent influence on the RMSD values: 

docking into KB60 gives lower RMSDs for AD-37, but higher RMSDs for KB-45.   

As shown in Figure 4.10, the conformation of the scaffold is similar across all four 

docked conformations of AD-37, so this aspect of the docked conformation is insensitive 

to sulfonamide geometry.  The scaffold of KB-45 is somewhat more sensitive to the 

sulfonamide geometry, as shown in Figure 4.11.   

The positioning of the cyclopropyl substituent at R2 overlays well on the crystal 

conformation only when the inverted sulfonamide geometry is used (two blue 

conformations in red regions of Figures 4.10 and 4.11); a significant discrepancy is 

observed when the 1HPV sulfonamide geometry is used (red and orange in Figures 4.10 

 135



and 4.11).  It is not surprising that the cyclopropyl group should be particularly sensitive 

to the sulfonamide geometry because it is linked directly to the nitrogen in question.  The 

R3  substituent also is bonded to the sulfonamide group and, like the cyclopropyl group, 

is best positioned when the inverted sulfonamide geometry of the crystal conformations is 

used during docking (two blue conformations in the red shaded regions of Figures 4.10 

and 4.11). The error in the predicted position of R3 of KB45 may result not only from the 

incorrect sulfonamide geometry, but also from its lack of strong interactions at the S2’ 

subsite, relative to AD-37 (Figures 4.10: red box vs. 4.11: red box), and hence greater 

mobility.   

Finally, the conformation of the R1 substituents of both AD37 and KB45 vary 

significantly among the docked poses, but no clear correlation is observed between the 

sulfonamide geometry options and the agreement with the crystal structures (Figures 4.10 

and 4.11: blue shaded region). 
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Figure 4.10: Superimposed docked structures of AD37. 
The R1 and the phenyl group of the scaffold are grouped together by a blue box and the 
R2 and R3 substituents by a red box, to highlight the variability within the docked poses. 
Predicted binding poses of AD37 with inverted sulfonamide geometry when docked into 
KB60 (blue) and 1HPV (ice blue); and AD37 with 1HPV like sulfonamide geometry 
when docked into KB60 (red) and 1HPV (orange) are shown. 
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PROTEIN 

STRUCTURE 

SULFONAMIDE 

GEOMETRY 
RMSD(Å) 

1HPV 1HPV-like 1.32 

1HPV Inverted 0.90 

KB60 1HPV-like 0.73 

KB60 Inverted 0.65 

Table 4.4: RMSD between the corresponding non-hydrogen atoms in the docked 
and the crystal structure of AD-37 
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Figure 4.11: Superimposed docked structures of KB45. 
The R1 and the phenyl group of the scaffold are grouped together by a blue box and the 
R2 and R3 substituents by a red box, to highlight the variability within the docked poses 
.at different substituent sites Predicted binding poses of KB45 with inverted sulfonamide 
geometry when docked into KB60 (blue) and 1HPV (ice blue); and KB45 with 1HPV 
like sulfonamide geometry when docked into KB60 (red) and 1HPV (orange) are shown. 
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PROTEIN 
SULFONAMIDE 

GEOMETRY 
RMSD(Å) 

1HPV 1HPV-like 1.08 

1HPV Inverted 0.83 

KB60 1HPV-like 1.31 

KB60 Inverted 1.18 

Table 4.5: RMSD between the corresponding non-hydrogen atoms in the docked 
and the crystal structure of KB45. 
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4.4 Discussion 

The present study provides a prospective evaluation of the substrate envelope hypothesis 

as a basis for the design of HIVP inhibitors with broad specificity against clinically 

relevant variants of HIV protease.  Incorporation of fit to the substrate envelope as a 

design criterion led to two new HIVP inhibitors of small size with relatively flat affinity 

profiles against a panel of clinically relevant mutants.  The volumes of the ligands lying 

outside the substrate envelope were computed from crystal structures of their complexes 

with HIVP, and were found to be less than those of all but one of the clinical inhibitors.  

These results support the validity of the hypothesis that compounds which fit within the 

envelope will resist mutations. It is worth mentioning that higher affinity compounds, 

with greater susceptibility to mutation, might have been chosen if the goal of achieving 

high affinity had not been partly balanced by the goal of fitting within the substrate 

envelope. 

Crystallographic studies of the new compounds AD37 and KB45 show generally good 

agreement between the predicted and crystal structures. However, the observed 

sulfonamide nitrogens are inverted relative to the conformation used in the design 

calculations.  Further docking calculations with the inverted geometry indicate that the R2 

and R3 substituents would have been more accurately positioned had the correct geometry 

been known in advance.  It is possible that repeating the full design procedure with the 

inverted geometry would lead to compounds of greater affinity than those identified here. 

More generally, the present results indicate that there might be considerable value in a 
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docking procedure that would automatically sample alternative geometries of invertible 

nitrogen atoms.  

Although the present results are encouraging, it is not expected that a relatively blunt 

instrument like the substrate envelope criterion will be fully reliable.  Utlimately, the 

subtleties of specific ligand-protein interactions will need to be considered.  Nonetheless, 

the substrate envelope method may be useful, especially given its convenient simplicity 

and the inexactness of current ligand scoring functions.  

4.5 Conclusions 

Inhibitors of HIVP that were computationally designed to stay within the consensus 

substrate volume were found to have favorable resistance profiles when tested against a 

panel of protease variants with clinically relevant mutations, although the affinities are 

not as great as those of current clinical inhibitors. This result supports the validity of the 

substrate envelope hypothesis.  
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Chapter 5. General Discussion 

Within approximately 15 years of the recognition of HIV protease as a viable target for 

AIDS, eight HIV protease inhibitors have been approved for the clinical use. The advent 

of these inhibitors greatly reduced the morbidity and mortality rate in AIDS patients. But 

unfortunately, the prevalence of treatment resistant strains has been observed to quickly 

rise within few years of treatment initiation(132).  This rapid development of resistant 

strains is a major challenge in the AIDS therapy. 

The main goal of our work was to develop and test an approach to the computational 

design of HIV protease inhibitors with minimal susceptibility to treatment resistant 

mutations. This project poses three major challenges: devising a computable quantity that 

might correlate with the robustness of an inhibitor against mutations; development of a 

efficient method of handling the combinatorial problem of library design; and selection of 

a scoring function or energy model that might be predictive of ligand affinity. The 

following paragraphs present a brief discussion of these challenges, our experience with 

them, and their possible or partial solution.  

5.1 Design strategy 

There are several workable strategies for the design of mutation resistant inhibitors. One 

is to design inhibitors that remain within the consensus substrate volume. This strategy is 

based on the observation that the primary active site resistance mutations occur at sites 

which are essential for inhibitor, but not substrate, recognition. We devised a quantitative 
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measure of the fit of a candidate ligand to the substrate envelope and observed a 

correlation between it the observed clinical resistance. This result justified using it in our 

design of a combinatorial library of inhibitors, which yielded inhibitors with nanomolar 

affinity and good resistance profiles. As this simple method is not expected to be 

infallible, designed compounds could also be evaluated against other criteria and selected 

based upon a consensus scoring scheme.   

Another approach would be to design compounds with high predicted affinity for the 

wild type protease and also for a panel of specific protease variants with clinically 

observed mutations (60). HIV-2 protease also could be used in place of a mutant HIV-1 

protease, because it differs from HIV-1 protease at the residues that are prone to mutate 

(133). This approach requires docking and scoring of compounds into multiple similar 

protein structures. Because an efficient method of serial docking of ligands into multiple 

target structures has already been implemented and tested in our lab (134), it would fairly 

straightforward to use this approach to seek compounds with broad specificity. Other 

serial docking methods, such as the one studied by Lamb etal can also be used for this 

purpose (135).  

Inhibitors could also be designed to interact only with main chain atoms and the 

conserved residues of the HIV protease. This approach is based on the observation that 

the overall shape of this protein remains constant in spite of differences in the substrates 

and ligands that bind it (31). This design method also would be easy to implement with 

our grid-based scoring function. Grids that store interaction potentials of only the main 

chain atoms and conserved residues can be readily generated by using a modified HIV 
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protease, in which residues other than the conserved ones are replaced by alanine 

residues.  

Finally, inhibitors that target nonstandard sites, such as the dimerization region or the 

open conformation of the active site, are also potential drug candidates to avoid resistance 

(132). Compound databases and combinatorial libraries can readily be screened against 

such targets.  

5.2 Combinatorial library design 

With the advent of automation technologies and high throughput screening, today’s 

medicinal chemistry has enormous potential to yield drug leads. However, it still is not 

possible to synthesize and screen the billions and trillions of compounds that could in 

principle be built from a combinatorial scaffold and ever-expanding libraries of building 

blocks (77). Hence computational techniques are needed to guide selecting of a 

sublibrary of compounds for synthesis and testing. There are several virtual screening 

methods available for this purpose. Among them, structure-based drug design has been 

shown to have higher predictability and more efficiency (65), but such methods are 

computationally more expensive than other virtual screening methods. Even if it takes 

less than a minute to screen a compound, it could take years to screen a huge 

combinatorial library of compounds. This problem can be addressed by several 

optimization methods, such as simulated annealing and genetic algorithms. Alternatively, 

selection of substituents independently for each substituent position can make the 

combinatorial problem a linear one and circumvent the combinatorial explosion. This 
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approach is based on the assumption that there will be little or no interaction between the 

substituents at different substituent positions.  

We have evaluated this simple additivity method and used it in the selection of 

sublibraries of compounds from virtual combinatorial libraries of 3 billion compounds. 

Interestingly, the additivity method in general worked as well as the GA method. 

However, the assumption of additivity can break down under certain conditions, such as 

when a combinatorial scaffold has excessive conformational freedom, or when 

substituents contact each other. In our HIVP test system, the combinatorial scaffold has 

key interactions with the target protein which anchor it in the active site, and the crystal 

structure of a compound with this scaffold bound to HIVP confirms the validity of the 

positioning of the scaffold. This situation allowed reasonable restrictions to be placed on 

movement of the scaffold during the docking calculations. These restrictions also helped  

speed the calculations.  

In some cases, one may not have prior information on the scaffold position. The literature 

suggests several computational approaches to this situation.  The binding pose can be 

determined by docking compounds that share the same combinatorial scaffold (136), 

which can be obtained from the literature (136) or by building a few combinatorial 

compounds using methyl groups or diverse functional groups as substituents, or by using 

substituents that are common to the class of compounds that was studied (137). The 

consensus binding pose of the scaffold in all the docked poses of the screened compounds 

can then be selected for use in the additivity method.  There is also one report that 

mentions the use of a bare scaffold (77), to obtain the binding pose. It would also be 
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possible to use a GA for this purpose, with the expectation that the top scoring 

compounds from the final generation will have only a few distinct binding poses. The 

efficiency of the GA for this purpose can be further enhanced by limiting cross-over to 

the segments that are proximal in the active site.   

The GA is a versatile optimization method which could be further tuned for 

combinatorial library design. For example, mutation operations could be biased in favor 

of choosing substituents that are chemically similar to moieties of a known ligand, or in 

favor of choosing substituents with chemotypes that have not yet been tested during the 

current GA run.  Mutations could also be biased to choose substituents that score highly 

in single-site Additivity calculations, thus blending the Additivity and GA approaches. 

The fitness function can also be tuned for specific purposes, much as we combined the 

docking energy with the substrate envelope criterion by using Z-scores to combine fitness 

measures with different units.  Other methods such as Pareto ranking can also be used to 

combine multiple objectives (70). 

There are some preliminary filters that can also be used to increase the efficiency of 

combinatorial library design. For example, substituent libraries can be preselected to 

eliminate compounds with more than one functional group that can react in the selected 

combinatorial synthetic scheme, in order to generate designed compounds that avoid 

synthetic pitfalls. Subtituent libraries can also be sorted or filtered based on cost and 

availability, or enriched with the bio-isosteres or with the substituents from other 

compounds known to bind the protein target (137, 138). As the availability and binding 

affinity of these substituents to a similar target protein are already known, this approach 
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in the selection of substituent library will appeal to the medicinal chemists tasked with 

synthesizing the designed libraries. 

Lipinski’s “rule of five” (139) , which seeks to differentiate drug-like compounds from 

others based on simple physical properties (molecular weight, number of hydrogen bond 

donors, acceptors and partition coefficient) can also be used as a preliminary filter to 

eliminate non-drug-like compounds from the combinatorial library before screening them 

with more computationally intensive docking and scoring functions. Other ligand-based 

virtual screening methods can also be used for pruning the huge combinatorial search 

space.   

5.3 Docking and scoring functions 

Even though docking and scoring functions are considered more reliable than ligand-

based virtual screening methods, they have their own limitations. For example, they make 

gross approximations regarding the flexibility of the protein, or lack thereof,  and in the 

treatment of solvent effects. These approximations severely limit the predictivity of 

affinity calculations, and a high level of accuracy is not routinely achievable (140). It is 

important for the user to be aware of the limitations of current docking and scoring 

methods, and to interpret their results in the light of the approximations they make. In 

spite of all these limitations, these methods can still contribute significantly to drug 

discovery.  

Our in-house docking and scoring function, VDock led to several low nanomolar 

inhibitors with good resistance profiles. It is worth noting that the compounds were 
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optimized not only for their docking energy scores, but also for their fit to the substrate 

envelope; compounds with higher affinity for the wild-type protease might have been 

discovered if the substrate envelope criterion had not been applied. Nonetheless, our 

energy scores correlated poorly with measured affinity (data not shown), so there is 

clearly much room for improvement. Prediction of binding energies is still a daunting 

task in the field of virtual screening.  

As mentioned above, one source of error probably is the imprecise treatment of solvent 

effects. For example, VDock does not impose an energy penalty for removing a polar 

moiety from solvent upon binding. It might be possible to overcome this limitation, at 

least in part, by penalizing bound conformations with unsatisfied hydrogen bonding 

donors and acceptors groups. This would avoid the unfavorable placement of nonpolar 

groups next to polar groups. It might also be possible to include a limited number of 

explicit water molecules while docking candidate ligands. These would probably need to 

have rather limited freedom of movement to avoid computationally intensive 

calculations. Such water molecules could be restricted to locations where there is 

sufficient space to accommodate a water molecule and where there are unsatisfied 

hydrogen bonds in both the ligand and the receptor. Identification of such spots may 

require preliminary docking runs without water molecules, followed by a second set of 

docking runs with localized water molecules.. 

Another major missing element in scoring functions is change in configurational entropy 

on binding. This is often approximated based upon the number of rotatable bonds in the 

ligand, but recent calculations in our group suggest that such approaches are not well-
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founded physically and markedly underestimate the entropy penalty. Ongoing research 

the group may lead to better approximations for this missing term.  

It seems likely that improving the treatment of solvent and of configurational entropy will 

significantly improve the accuracy of docking and scoring calculations. Further 

improvement may be gained by combining multiple, complementary scoring functions, 

rather than relying upon just one. Such “consensus scoring” methods have been shown to 

significantly improve the yield of ligands in structure-based drug design  (141). 
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Chapter 6. Conclusions 

This thesis has described the design of HIV protease inhibitors with broad specificity. 

The main contributions are as follows: (1) A method to quantify the fit of a compound to 

the substrate envelope has been developed and evaluated, both retrospectively and 

prospectively. The method can be easily used in virtual high throughput docking and the 

design of combinatorial libraries. (2) A novel criterion for the clinical relevance of HIV 

protease mutations has been put forward. (3) A fast, simple Additivity method for the 

structure-based design of combinatorial libraries has been implemented, evaluated, 

employed in a real-world design project. (4) A Genetic Algorithm has also been 

developed for combinatorial library design. This can be useful for systems for which the 

Additivity method is not expected to be applicable. (5) Our work resulted in two low 

nanomolar compounds with favorable resistance profiles against a panel of clinically 

relevant resistance mutations.  

 151



References

 
1. Wang, W. K., M. Y. Chen, C. Y. Chuang, K. T. Jeang, and L. M. Huang. 2000. 

Molecular biology of human immunodeficiency virus type 1. Journal of 
microbiology, immunology, and infection = Wei mian yu gan ran za zhi 33:131-
140. 

2. UNAIDS. 2005. Global summary of the HIV/AIDS epidemic. 

3. Gallo, R. C., S. Z. Salahuddin, M. Popovic, G. M. Shearer, M. Kaplan, B. F. 
Haynes, T. J. Palker, R. Redfield, J. Oleske, B. Safai, and et al. 1984. Frequent 
detection and isolation of cytopathic retroviruses (HTLV-III) from patients with 
AIDS and at risk for AIDS. Science 224:500-503. 

4. Dalgleish, A. G., P. C. Beverley, P. R. Clapham, D. H. Crawford, M. F. 
Greaves, and R. A. Weiss. 1984. The CD4 (T4) antigen is an essential 
component of the receptor for the AIDS retrovirus. Nature 312:763-767. 

5. Deng, H., R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, P. Di 
Marzio, S. Marmon, R. E. Sutton, C. M. Hill, C. B. Davis, S. C. Peiper, T. J. 
Schall, D. R. Littman, and N. R. Landau. 1996. Identification of a major co-
receptor for primary isolates of HIV-1. Nature 381:661-666. 

6. Lang, W., H. Perkins, R. E. Anderson, R. Royce, N. Jewell, and W. Winkelstein, 
Jr. 1989. Patterns of T lymphocyte changes with human immunodeficiency virus 
infection: from seroconversion to the development of AIDS. Journal of acquired 
immune deficiency syndromes 2:63-69. 

7. Levy, J. A. 1993. Pathogenesis of human immunodeficiency virus infection. 
Microbiological reviews 57:183-289. 

8. Daluge, S. M., D. J. Purifoy, P. M. Savina, M. H. St Clair, N. R. Parry, I. K. 
Dev, P. Novak, K. M. Ayers, J. E. Reardon, G. B. Roberts, and et al. 1994. 5-
Chloro-2',3'-dideoxy-3'-fluorouridine (935U83), a selective anti-human 
immunodeficiency virus agent with an improved metabolic and toxicological 
profile. Antimicrobial agents and chemotherapy 38:1590-1603. 

9. Schinazi, R. F., J. P. Sommadossi, V. Saalmann, D. L. Cannon, M. Y. Xie, G. C. 
Hart, G. A. Smith, and E. F. Hahn. 1990. Activities of 3'-azido-3'-
deoxythymidine nucleotide dimers in primary lymphocytes infected with human 

 152



immunodeficiency virus type 1. Antimicrobial agents and chemotherapy 
34:1061-1067. 

10. Schinazi, R. F., R. M. Lloyd, Jr., M. H. Nguyen, D. L. Cannon, A. McMillan, N. 
Ilksoy, C. K. Chu, D. C. Liotta, H. Z. Bazmi, and J. W. Mellors. 1993. 
Characterization of human immunodeficiency viruses resistant to oxathiolane-
cytosine nucleosides. Antimicrobial agents and chemotherapy 37:875-881. 

11. Chu, C. K., R. F. Schinazi, B. H. Arnold, D. L. Cannon, B. Doboszewski, V. B. 
Bhadti, and Z. P. Gu. 1988. Comparative activity of 2',3'-saturated and 
unsaturated pyrimidine and purine nucleosides against human 
immunodeficiency virus type 1 in peripheral blood mononuclear cells. 
Biochemical pharmacology 37:3543-3548. 

12. Balzarini, J., A. van Aerschot, P. Herdewijn, and E. de Clercq. 1989. 5-Chloro-
substituted derivatives of 2', 3'-didehydro-2',3'-dideoxyuridine, 3'-fluoro-2',3'-
dideoxyuridine and 3'-azido-2',3'-dideoxyuridine as anti-HIV agents. 
Biochemical pharmacology 38:869-874. 

13. Daluge, S. M., S. S. Good, M. B. Faletto, W. H. Miller, M. H. St Clair, L. R. 
Boone, M. Tisdale, N. R. Parry, J. E. Reardon, R. E. Dornsife, D. R. Averett, 
and T. A. Krenitsky. 1997. 1592U89, a novel carbocyclic nucleoside analog 
with potent, selective anti-human immunodeficiency virus activity. 
Antimicrobial agents and chemotherapy 41:1082-1093. 

14. de Clercq, E. 1996. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 
for the treatment of human immunodeficiency virus type 1 (HIV-1) infections: 
strategies to overcome drug resistance development. Medicinal research reviews 
16:125-157. 

15. Romero, D. L., R. A. Morge, M. J. Genin, C. Biles, M. Busso, L. Resnick, I. W. 
Althaus, F. Reusser, R. C. Thomas, and W. G. Tarpley. 1993. 
Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-
activity relationships of novel substituted indole analogues and the identification 
of 1-[(5-methanesulfonamido-1H-indol-2-yl)-carbonyl]-4-[3- [(1-
methylethyl)amino]-pyridinyl]piperazine monomethanesulfonate (U-90152S), a 
second-generation clinical candidate. Journal of medicinal chemistry 36:1505-
1508. 

16. Young, S. D., S. F. Britcher, L. O. Tran, L. S. Payne, W. C. Lumma, T. A. Lyle, 
J. R. Huff, P. S. Anderson, D. B. Olsen, S. S. Carroll, and et al. 1995. L-743, 
726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human 
immunodeficiency virus type 1 reverse transcriptase. Antimicrobial agents and 
chemotherapy 39:2602-2605. 

 153



17. Kim, E. E. B., C.T.; Dwyer, M.D.; Murcko, M.A.; Rao, B.G.; Tung, R.D.; 
Navia, M.A. 1995. Crystal structure of HIV-1 protease in complex with VX-
478, a potent and orally bioavailable inhibitor of the enzyme. J Amer Chem Soc 
117:1181-1182. 

18. Vacca, J. P., B. D. Dorsey, W. A. Schleif, R. B. Levin, S. L. McDaniel, P. L. 
Darke, J. Zugay, J. C. Quintero, O. M. Blahy, E. Roth, and et al. 1994. L-
735,524: an orally bioavailable human immunodeficiency virus type 1 protease 
inhibitor. Proceedings of the National Academy of Sciences of the United States 
of America 91:4096-4100. 

19. 1997. New drugs--reports of new drugs recently approved by the FDA. 
Saquinavir. Bioorganic & medicinal chemistry 5:465-466. 

20. Patick, A. K., H. Mo, M. Markowitz, K. Appelt, B. Wu, L. Musick, V. Kalish, S. 
Kaldor, S. Reich, D. Ho, and S. Webber. 1996. Antiviral and resistance studies 
of AG1343, an orally bioavailable inhibitor of human immunodeficiency virus 
protease. Antimicrobial agents and chemotherapy 40:292-297. 

21. Kempf, D. J., K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. 
Flentge, B. E. Green, L. Fino, C. H. Park, X. P. Kong, and et al. 1995. ABT-538 
is a potent inhibitor of human immunodeficiency virus protease and has high 
oral bioavailability in humans. Proceedings of the National Academy of 
Sciences of the United States of America 92:2484-2488. 

22. Sham, H. L., D. J. Kempf, A. Molla, K. C. Marsh, G. N. Kumar, C. M. Chen, W. 
Kati, K. Stewart, R. Lal, A. Hsu, D. Betebenner, M. Korneyeva, S. 
Vasavanonda, E. McDonald, A. Saldivar, N. Wideburg, X. Chen, P. Niu, C. 
Park, V. Jayanti, B. Grabowski, G. R. Granneman, E. Sun, A. J. Japour, J. M. 
Leonard, J. J. Plattner, and D. W. Norbeck. 1998. ABT-378, a highly potent 
inhibitor of the human immunodeficiency virus protease. Antimicrobial agents 
and chemotherapy 42:3218-3224. 

23. Robinson, B. S., K. A. Riccardi, Y. F. Gong, Q. Guo, D. A. Stock, W. S. Blair, 
B. J. Terry, C. A. Deminie, F. Djang, R. J. Colonno, and P. F. Lin. 2000. BMS-
232632, a highly potent human immunodeficiency virus protease inhibitor that 
can be used in combination with other available antiretroviral agents. 
Antimicrobial agents and chemotherapy 44:2093-2099. 

24. Kilby, J. M., S. Hopkins, T. M. Venetta, B. DiMassimo, G. A. Cloud, J. Y. Lee, 
L. Alldredge, E. Hunter, D. Lambert, D. Bolognesi, T. Matthews, M. R. 
Johnson, M. A. Nowak, G. M. Shaw, and M. S. Saag. 1998. Potent suppression 
of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated 
virus entry. Nature medicine 4:1302-1307. 

 154



25. Sterne, J. A., M. A. Hernan, B. Ledergerber, K. Tilling, R. Weber, P. Sendi, M. 
Rickenbach, J. M. Robins, and M. Egger. 2005. Long-term effectiveness of 
potent antiretroviral therapy in preventing AIDS and death: a prospective cohort 
study. Lancet 366:378-384. 

26. Kohl, N. E., E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. 
Dixon, E. M. Scolnick, and I. S. Sigal. 1988. Active human immunodeficiency 
virus protease is required for viral infectivity. Proceedings of the National 
Academy of Sciences of the United States of America 85:4686-4690. 

27. McQuade, T. J., A. G. Tomasselli, L. Liu, V. Karacostas, B. Moss, T. K. 
Sawyer, R. L. Heinrikson, and W. G. Tarpley. 1990. A synthetic HIV-1 protease 
inhibitor with antiviral activity arrests HIV-like particle maturation. Science 
247:454-456. 

28. Kaplan, A. H., J. A. Zack, M. Knigge, D. A. Paul, D. J. Kempf, D. W. Norbeck, 
and R. Swanstrom. 1993. Partial inhibition of the human immunodeficiency 
virus type 1 protease results in aberrant virus assembly and the formation of 
noninfectious particles. Journal of virology 67:4050-4055. 

29. Seelmeier, S., H. Schmidt, V. Turk, and K. von der Helm. 1988. Human 
immunodeficiency virus has an aspartic-type protease that can be inhibited by 
pepstatin A. Proceedings of the National Academy of Sciences of the United 
States of America 85:6612-6616. 

30. Wlodawer, A., M. Miller, M. Jaskolski, B. K. Sathyanarayana, E. Baldwin, I. T. 
Weber, L. M. Selk, L. Clawson, J. Schneider, and S. B. Kent. 1989. Conserved 
folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. 
Science 245:616-621. 

31. Wlodawer, A., and J. Vondrasek. 1998. Inhibitors of HIV-1 protease: a major 
success of structure-assisted drug design. Annual review of biophysics and 
biomolecular structure 27:249-284. 

32. Wlodawer, A., and J. W. Erickson. 1993. Structure-based inhibitors of HIV-1 
protease. Annual review of biochemistry 62:543-585. 

33. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. 
N. Shindyalov, and P. E. Bourne. 2000. The Protein Data Bank. Nucleic acids 
research 28:235-242. 

34. Collins, J. R., S. K. Burt, and J. W. Erickson. 1995. Flap opening in HIV-1 
protease simulated by 'activated' molecular dynamics. Nature structural biology 
2:334-338. 

 155



35. Scott, W. R., and C. A. Schiffer. 2000. Curling of flap tips in HIV-1 protease as 
a mechanism for substrate entry and tolerance of drug resistance. Structure 
8:1259-1265. 

36. Piana, S., P. Carloni, and M. Parrinello. 2002. Role of conformational 
fluctuations in the enzymatic reaction of HIV-1 protease. Journal of molecular 
biology 319:567-583. 

37. Prabu-Jeyabalan, M., E. Nalivaika, and C. A. Schiffer. 2000. How does a 
symmetric dimer recognize an asymmetric substrate? A substrate complex of 
HIV-1 protease. Journal of molecular biology 301:1207-1220. 

38. Swain, A. L., M. M. Miller, J. Green, D. H. Rich, J. Schneider, S. B. Kent, and 
A. Wlodawer. 1990. X-ray crystallographic structure of a complex between a 
synthetic protease of human immunodeficiency virus 1 and a substrate-based 
hydroxyethylamine inhibitor. Proceedings of the National Academy of Sciences 
of the United States of America 87:8805-8809. 

39. Baca, M., and S. B. Kent. 1993. Catalytic contribution of flap-substrate 
hydrogen bonds in "HIV-1 protease" explored by chemical synthesis. 
Proceedings of the National Academy of Sciences of the United States of 
America 90:11638-11642. 

40. Beck, Z. Q., G. M. Morris, and J. H. Elder. 2002. Defining HIV-1 protease 
substrate selectivity. Current drug targets 2:37-50. 

41. Griffiths, J. T., L. H. Phylip, J. Konvalinka, P. Strop, A. Gustchina, A. 
Wlodawer, R. J. Davenport, R. Briggs, B. M. Dunn, and J. Kay. 1992. Different 
requirements for productive interaction between the active site of HIV-1 
proteinase and substrates containing -hydrophobic*hydrophobic- or -
aromatic*pro- cleavage sites. Biochemistry 31:5193-5200. 

42. Silva, A. M., R. E. Cachau, H. L. Sham, and J. W. Erickson. 1996. Inhibition 
and catalytic mechanism of HIV-1 aspartic protease. Journal of molecular 
biology 255:321-346. 

43. Lebon, F., and M. Ledecq. 2000. Approaches to the design of effective HIV-1 
protease inhibitors. Current medicinal chemistry 7:455-477. 

44. Rodriguez-Barrios, F., and F. Gago. 2004. HIV protease inhibition: limited 
recent progress and advances in understanding current pitfalls. Current topics in 
medicinal chemistry 4:991-1007. 

 156



45. Velazquez-Campoy, A., S. Muzammil, H. Ohtaka, A. Schon, S. Vega, and E. 
Freire. 2003. Structural and thermodynamic basis of resistance to HIV-1 
protease inhibition: implications for inhibitor design. Current drug targets 3:311-
328. 

46. Lin, Y., X. Lin, L. Hong, S. Foundling, R. L. Heinrikson, S. Thaisrivongs, W. 
Leelamanit, D. Raterman, M. Shah, B. M. Dunn, and et al. 1995. Effect of point 
mutations on the kinetics and the inhibition of human immunodeficiency virus 
type 1 protease: relationship to drug resistance. Biochemistry 34:1143-1152. 

47. Stewart, K. D., and D. J. Kempf. 2004. An 'inside-the-box' approach to drug 
resistance. Chemistry & biology 11:1327-1328. 

48. Shafer, R. W., D. Stevenson, and B. Chan. 1999. Human Immunodeficiency 
Virus Reverse Transcriptase and Protease Sequence Database. Nucleic acids 
research 27:348-352. 

49. Ohtaka, H., and E. Freire. 2005. Adaptive inhibitors of the HIV-1 protease. 
Progress in biophysics and molecular biology 88:193-208. 

50. Ala, P. J., E. E. Huston, R. M. Klabe, D. D. McCabe, J. L. Duke, C. J. Rizzo, B. 
D. Korant, R. J. DeLoskey, P. Y. Lam, C. N. Hodge, and C. H. Chang. 1997. 
Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant 
proteases complexed with cyclic urea inhibitors. Biochemistry 36:1573-1580. 

51. Kuroda, M. J., M. A. el-Farrash, S. Choudhury, and S. Harada. 1995. Impaired 
infectivity of HIV-1 after a single point mutation in the POL gene to escape the 
effect of a protease inhibitor in vitro. Virology 210:212-216. 

52. Schock, H. B., V. M. Garsky, and L. C. Kuo. 1996. Mutational anatomy of an 
HIV-1 protease variant conferring cross-resistance to protease inhibitors in 
clinical trials. Compensatory modulations of binding and activity. The Journal of 
biological chemistry 271:31957-31963. 

53. Muzammil, S., P. Ross, and E. Freire. 2003. A major role for a set of non-active 
site mutations in the development of HIV-1 protease drug resistance. 
Biochemistry 42:631-638. 

54. Clemente, J. C., R. E. Moose, R. Hemrajani, L. R. Whitford, L. Govindasamy, 
R. Reutzel, R. McKenna, M. Agbandje-McKenna, M. M. Goodenow, and B. M. 
Dunn. 2004. Comparing the accumulation of active- and nonactive-site 
mutations in the HIV-1 protease. Biochemistry 43:12141-12151. 

 157



55. Doyon, L., G. Croteau, D. Thibeault, F. Poulin, L. Pilote, and D. Lamarre. 1996. 
Second locus involved in human immunodeficiency virus type 1 resistance to 
protease inhibitors. Journal of virology 70:3763-3769. 

56. Zhang, Y. M., H. Imamichi, T. Imamichi, H. C. Lane, J. Falloon, M. B. 
Vasudevachari, and N. P. Salzman. 1997. Drug resistance during indinavir 
therapy is caused by mutations in the protease gene and in its Gag substrate 
cleavage sites. Journal of virology 71:6662-6670. 

57. Zennou, V., F. Mammano, S. Paulous, D. Mathez, and F. Clavel. 1998. Loss of 
viral fitness associated with multiple Gag and Gag-Pol processing defects in 
human immunodeficiency virus type 1 variants selected for resistance to 
protease inhibitors in vivo. Journal of virology 72:3300-3306. 

58. Yusa, K., and S. Harada. 2004. Acquisition of multi-PI (protease inhibitor) 
resistance in HIV-1 in vivo and in vitro. Current pharmaceutical design 10:4055-
4064. 

59. Yoshimura, K., R. Kato, M. F. Kavlick, A. Nguyen, V. Maroun, K. Maeda, K. 
A. Hussain, A. K. Ghosh, S. V. Gulnik, J. W. Erickson, and H. Mitsuya. 2002. A 
potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 
(TMC-126), and selection of a novel (A28S) mutation in the protease active site. 
Journal of virology 76:1349-1358. 

60. Freire, E. 2002. Designing drugs against heterogeneous targets. Nature 
biotechnology 20:15-16. 

61. Tie, Y., P. I. Boross, Y.-F. Wang, L. Gaddis, F. Liu, X. Chen, J. Tozser, R. W. 
Harrison, and I. T. Weber. 2005. Molecular basis for substrate recognition and 
drug resistance from 1.1 to 1.6 A0 resolution crystal structures of HIV-1 protease 
mutants with substrate analogs. 5265-5277. 

62. Luque, I., M. J. Todd, J. Gomez, N. Semo, and E. Freire. 1998. Molecular basis 
of resistance to HIV-1 protease inhibition: a plausible hypothesis. Biochemistry 
37:5791-5797. 

63. Rose, R. B., C. S. Craik, and R. M. Stroud. 1998. Domain flexibility in retroviral 
proteases: structural implications for drug resistant mutations. Biochemistry 
37:2607-2621. 

64. Ellman, J., B. Stoddard, and J. Wells. 1997. Combinatorial thinking in chemistry 
and biology. Proceedings of the National Academy of Sciences of the United 
States of America 94:2779-2782. 

 158



65. Barril, X., R. E. Hubbard, and S. D. Morley. 2004. Virtual screening in 
structure-based drug discovery. Mini reviews in medicinal chemistry 4:779-791. 

66. Oprea, T. I. 2000. Property distribution of drug-related chemical databases*. 
Journal of computer-aided molecular design 14:251-264. 

67. Xue, L., J. W. Godden, and J. Bajorath. 1999. Database Searching for 
Compounds with Similar Biological Activity Using Short Binary Bit String 
Representations of Molecules. In J. Chem. Inf. Comput. Sci. 881-886. 

68. Willett, P., J. M. Barnard, and G. M. Downs. 1998. Chemical Similarity 
Searching. In J. Chem. Inf. Comput. Sci. 983-996. 

69. Good, A. C., and R. A. Lewis. 1997. New methodology for profiling 
combinatorial libraries and screening sets: cleaning up the design process with 
HARPick. Journal of medicinal chemistry 40:3926-3936. 

70. Gillet, V. J., W. Khatib, P. Willett, P. J. Fleming, and D. V. S. Green. 2002. 
Combinatorial Library Design Using a Multiobjective Genetic Algorithm. In J. 
Chem. Inf. Comput. Sci. 375-385. 

71. Schneider, G., M. L. Lee, M. Stahl, and P. Schneider. 2000. De novo design of 
molecular architectures by evolutionary assembly of drug-derived building 
blocks. Journal of computer-aided molecular design 14:487-494. 

72. Schneider, G. 2002. Trends in virtual combinatorial library design. Current 
medicinal chemistry 9:2095-2101. 

73. Gehlhaar, D. K., K. E. Moerder, D. Zichi, C. J. Sherman, R. C. Ogden, and S. T. 
Freer. 1995. De novo design of enzyme inhibitors by Monte Carlo ligand 
generation. Journal of medicinal chemistry 38:466-472. 

74. Grzybowski, B. A., A. V. Ishchenko, C. Y. Kim, G. Topalov, R. Chapman, D. 
W. Christianson, G. M. Whitesides, and E. I. Shakhnovich. 2002. Combinatorial 
computational method gives new picomolar ligands for a known enzyme. 
Proceedings of the National Academy of Sciences of the United States of 
America 99:1270-1273. 

75. Bohm, H. J. 1994. On the use of LUDI to search the Fine Chemicals Directory 
for ligands of proteins of known three-dimensional structure. Journal of 
computer-aided molecular design 8:623-632. 

 159



76. Pearlman, D. A., and M. A. Murcko. 1996. CONCERTS: dynamic connection of 
fragments as an approach to de novo ligand design. Journal of medicinal 
chemistry 39:1651-1663. 

77. Sun, Y., T. J. Ewing, A. G. Skillman, and I. D. Kuntz. 1998. CombiDOCK: 
structure-based combinatorial docking and library design. Journal of computer-
aided molecular design 12:597-604. 

78. Murray, C. W., D. E. Clark, T. R. Auton, M. A. Firth, J. Li, R. A. Sykes, B. 
Waszkowycz, D. R. Westhead, and S. C. Young. 1997. PRO_SELECT: 
combining structure-based drug design and combinatorial chemistry for rapid 
lead discovery. 1. Technology. Journal of computer-aided molecular design 
11:193-207. 

79. Elaine C. Meng, B. K. S. I. D. K. 1992. Automated docking with grid-based 
energy evaluation. In J. Comput. Chem. 505-524. 

80. Jones, G., P. Willett, and R. C. Glen. 1995. Molecular recognition of receptor 
sites using a genetic algorithm with a description of desolvation. Journal of 
molecular biology 245:43-53. 

81. Goodsell, D. S., and A. J. Olson. 1990. Automated docking of substrates to 
proteins by simulated annealing. Proteins 8:195-202. 

82. Rarey, M., S. Wefing, and T. Lengauer. 1996. Placement of medium-sized 
molecular fragments into active sites of proteins. Journal of computer-aided 
molecular design 10:41-54. 

83. Baxter, C. A., C. W. Murray, D. E. Clark, D. R. Westhead, and M. D. Eldridge. 
1998. Flexible docking using Tabu search and an empirical estimate of binding 
affinity. Proteins 33:367-382. 

84. Schulz-Gasch, T., and M. Stahl. 2003. Binding site characteristics in structure-
based virtual screening: evaluation of current docking tools. Journal of 
molecular modeling (Online) 9:47-57. 

85. David, L., R. Luo, and M. K. Gilson. 2001. Ligand-receptor docking with the 
Mining Minima optimizer. Journal of computer-aided molecular design 15:157-
171. 

86. Kairys, V., and M. K. Gilson. 2002. Enhanced docking with the mining minima 
optimizer: acceleration and side-chain flexibility. Journal of computational 
chemistry 23:1656-1670. 

 160



87. Garrett M. Morris, D. S. G. R. S. H. R. H. W. E. H. R. K. B. A. J. O. 1998. 
Automated docking using a Lamarckian genetic algorithm and an empirical 
binding free energy function. 1639-1662. 

88. Given, J. A., and M. K. Gilson. 1998. A hierarchical method for generating low-
energy conformers of a protein-ligand complex. Proteins 33:475-495. 

89. K. W. Foreman, A. T. P. J. B. R. K. A. D. 1999. Comparing search strategies for 
finding global optima on energy landscapes. 1527-1532. 

90. Sheridan, R. P., Kearsley,S.K. 1995. Using a genetic algorithm to suggest 
combinatorial libraries. J. Chem. Inf. Comput. Sci 35:310-320. 

91. DongXiang Liu, H. J., KaiXian Chen, and RuYun Ji. 1998. A New Approach to 
Design Virtual Combinatorial Library with Genetic Algorithm Based on 3D 
Grid Property. J. Chem. Inf. Comput. Sci 38:233-242. 

92. Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. 
S. Currier, J. J. Eron, Jr., J. E. Feinberg, H. H. Balfour, Jr., L. R. Deyton, J. A. 
Chodakewitz, and M. A. Fischl. 1997. A controlled trial of two nucleoside 
analogues plus indinavir in persons with human immunodeficiency virus 
infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical 
Trials Group 320 Study Team. The New England journal of medicine 337:725-
733. 

93. Molla, A., G. R. Granneman, E. Sun, and D. J. Kempf. 1998. Recent 
developments in HIV protease inhibitor therapy. Antiviral research 39:1-23. 

94. Coffin, J. M. 1995. HIV population dynamics in vivo: implications for genetic 
variation, pathogenesis, and therapy. Science 267:483-489. 

95. Prabu-Jeyabalan, M., E. A. Nalivaika, N. M. King, and C. A. Schiffer. 2003. 
Viability of a drug-resistant human immunodeficiency virus type 1 protease 
variant: structural insights for better antiviral therapy. Journal of virology 
77:1306-1315. 

96. King, N. M., M. Prabu-Jeyabalan, E. A. Nalivaika, and C. A. Schiffer. 2004. 
Combating susceptibility to drug resistance: lessons from HIV-1 protease. 
Chemistry & biology 11:1333-1338. 

97. Surleraux, D. L., A. Tahri, W. G. Verschueren, G. M. Pille, H. A. de Kock, T. 
H. Jonckers, A. Peeters, S. De Meyer, H. Azijn, R. Pauwels, M. P. de Bethune, 
N. M. King, M. Prabu-Jeyabalan, C. A. Schiffer, and P. B. Wigerinck. 2005. 

 161



Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. 
Journal of medicinal chemistry 48:1813-1822. 

98. King, N. M., M. Prabu-Jeyabalan, E. A. Nalivaika, P. Wigerinck, M. P. de 
Bethune, and C. A. Schiffer. 2004. Structural and thermodynamic basis for the 
binding of TMC114, a next-generation human immunodeficiency virus type 1 
protease inhibitor. Journal of virology 78:12012-12021. 

99. Morris, R. J. 2004. Statistical pattern recognition for macromolecular 
crystallographers. Acta crystallographica 60:2133-2143. 

100. Chen, Z., Y. Li, E. Chen, D. L. Hall, P. L. Darke, C. Culberson, J. A. Shafer, 
and L. C. Kuo. 1994. Crystal structure at 1.9-A resolution of human 
immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally 
bioavailable inhibitor of the HIV proteases. The Journal of biological chemistry 
269:26344-26348. 

101. A. D. MacKerell, J., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. 
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, 
L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. 
Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, 
R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. 
Karplus. 1998. All-Atom Empirical Potential for Molecular Modeling and 
Dynamics Studies of Proteins. Journal of Physical Chemistry B 102:3586-3616. 

102. E. E. Kim, C. T. B., M. D. Dwyer, M. A. Murcko, B. G. Rao, R. D. Tung, and 
M. A. Navia. 1995. Crystal structure of HIV-1 protease in complex with VX-
478, a potent and orally bioavailable inhibitor of the enzyme.  117:1181 – 1182. 

103. Krohn, A., S. Redshaw, J. C. Ritchie, B. J. Graves, and M. H. Hatada. 1991. 
Novel binding mode of highly potent HIV-proteinase inhibitors incorporating 
the (R)-hydroxyethylamine isostere. Journal of medicinal chemistry 34:3340-
3342. 

104. Ohtaka, H., A. Schon, and E. Freire. 2003. Multidrug resistance to HIV-1 
protease inhibition requires cooperative coupling between distal mutations. 
Biochemistry 42:13659-13666. 

105. Velazquez-Campoy, A., S. Vega, and E. Freire. 2002. Amplification of the 
effects of drug resistance mutations by background polymorphisms in HIV-1 
protease from African subtypes. Biochemistry 41:8613-8619. 

106. http://hivdb.stanford.edu/cgi-bin/PRMut.cgi. 

 162

http://hivdb.stanford.edu/cgi-bin/PRMut.cgi


107. Nikitin, S., N. Zaitseva, O. Demina, V. Solovieva, E. Mazin, S. Mikhalev, M. 
Smolov, A. Rubinov, P. Vlasov, D. Lepikhin, D. Khachko, V. Fokin, C. Queen, 
and V. Zosimov. 2005. A very large diversity space of synthetically accessible 
compounds for use with drug design programs. Journal of computer-aided 
molecular design 19:47-63. 

108. Sheridan, R. P., S. G. SanFeliciano, and S. K. Kearsley. 2000. Designing 
targeted libraries with genetic algorithms. Journal of molecular graphics & 
modelling 18:320-334, 525. 

109. Pegg, S. C., J. J. Haresco, and I. D. Kuntz. 2001. A genetic algorithm for 
structure-based de novo design. Journal of computer-aided molecular design 
15:911-933. 

110. Brown, R. D., and Y. C. Martin. 1997. Designing combinatorial library mixtures 
using a genetic algorithm. Journal of medicinal chemistry 40:2304-2313. 

111. Gillet, V. J., W. Khatib, P. Willett, P. J. Fleming, and D. V. Green. 2002. 
Combinatorial library design using a multiobjective genetic algorithm. Journal 
of chemical information and computer sciences 42:375-385. 

112. Wright, T., V. J. Gillet, D. V. Green, and S. D. Pickett. 2003. Optimizing the 
size and configuration of combinatorial libraries. Journal of chemical 
information and computer sciences 43:381-390. 

113. Agrafiotis, D. K., and W. Cedeno. 2002. Feature selection for structure-activity 
correlation using binary particle swarms. Journal of medicinal chemistry 
45:1098-1107. 

114. van Soest, A. J., and L. J. Casius. 2003. The merits of a parallel genetic 
algorithm in solving hard optimization problems. Journal of biomechanical 
engineering 125:141-146. 

115. Greg Burns, R. D., James Vaigl. 1994. LAM: An Open Cluster Environment for 
MPI. 

116. Sprous, D. G., D. R. Lowis, J. M. Leonard, T. Heritage, S. N. Burkett, D. S. 
Baker, and R. D. Clark. 2004. OptiDock: virtual HTS of combinatorial libraries 
by efficient sampling of binding modes in product space. Journal of 
combinatorial chemistry 6:530-539. 

117. Kim, E. E., Baker, C.T.,  Dwyer, M.D.,  Murcko, M.A., Rao, B.G.,  Tung, R.D.,  
Navia, M.A. . 1995. Crystal Structure of HIV-1 Protease in Complex with Vx-

 163



478, a Potent and Orally Bioavailable Inhibitor of the Enzyme J.Am.Chem.Soc 
117. 

118. Baldwin, E. T., T. N. Bhat, S. Gulnik, M. V. Hosur, R. C. Sowder, 2nd, R. E. 
Cachau, J. Collins, A. M. Silva, and J. W. Erickson. 1993. Crystal structures of 
native and inhibited forms of human cathepsin D: implications for lysosomal 
targeting and drug design. Proceedings of the National Academy of Sciences of 
the United States of America 90:6796-6800. 

119. Irwin, J. J., and B. K. Shoichet. 2005. ZINC--a free database of commercially 
available compounds for virtual screening. Journal of chemical information and 
modeling 45:177-182. 

120. Gilson, M. K., H. S. Gilson, and M. J. Potter. 2003. Fast assignment of accurate 
partial atomic charges: an electronegativity equalization method that accounts 
for alternate resonance forms. Journal of chemical information and computer 
sciences 43:1982-1997. 

121. Dash, C., A. Kulkarni, B. Dunn, and M. Rao. 2003. Aspartic peptidase 
inhibitors: implications in drug development. Critical reviews in biochemistry 
and molecular biology 38:89-119. 

122. Fusek, M., and V. Vetvicka. 2005. Dual role of cathepsin D: ligand and 
protease. Biomedical papers of the Medical Faculty of the University Palacky, 
Olomouc, Czechoslovakia 149:43-50. 

123. Koehl, P. 2006. Electrostatics calculations: latest methodological advances. 
Current opinion in structural biology 16:142-151. 

124. Baker, N. A. 2005. Improving implicit solvent simulations: a Poisson-centric 
view. Current opinion in structural biology 15:137-143. 

125. Prabu-Jeyabalan, M., E. Nalivaika, and C. A. Schiffer. 2002. Substrate shape 
determines specificity of recognition for HIV-1 protease: analysis of crystal 
structures of six substrate complexes. Structure 10:369-381. 

126. Rajeshwar D. Bindal, J. T. G., and John A. Katzenellenbogen. 1990. J. Am. 
Chem. SOC. 112:7861-7868. 

127. Kim, E. E., Baker, C.T.,  Dwyer, M.D.,  Murcko, M.A.,  Rao, B.G.,  Tung, R.D.,  
Navia, M.A. 1995. Crystal Structure of HIV-1 Protease in Complex with Vx-
478, a Potent and Orally Bioavailable Inhibitor of the Enzyme J.Am.Chem.Soc 
117:1181. 

 164



128. MacKerell, A. D., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. 
J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. 
Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. 
Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. 
Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. 
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of 
Proteins. In Journal of Physical Chemistry B. 3586-3616. 

129. Stephen L. Mayo, B. D. O., William A. Goddard III. 1990. DREIDING: a 
generic force field for molecular simulations J. Phys. Chem 94:8897-8909. 

130. A. D. MacKerell, J., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. 
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, 
L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. 
Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, 
R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. 
Karplus. 1998. All-Atom Empirical Potential for Molecular Modeling and 
Dynamics Studies of Proteins. Journal of Physical Chemistry B 102:3586-3616. 

131. Foo, L. C., and M. Mafauzy. 1999. Does the use of mean or median Z-score of 
the thyroid volume indices provide a more precise description of the iodine 
deficiency disorder status of a population? European journal of endocrinology / 
European Federation of Endocrine Societies 141:557-560. 

132. Prejdova, J., M. Soucek, and J. Konvalinka. 2004. Determining and overcoming 
resistance to HIV protease inhibitors. Current drug targets 4:137-152. 

133. Weber, J., J. R. Mesters, M. Lepsik, J. Prejdova, M. Svec, J. Sponarova, P. 
Mlcochova, K. Skalicka, K. Strisovsky, T. Uhlikova, M. Soucek, L. Machala, 
M. Stankova, J. Vondrasek, T. Klimkait, H. G. Kraeusslich, R. Hilgenfeld, and 
J. Konvalinka. 2002. Unusual binding mode of an HIV-1 protease inhibitor 
explains its potency against multi-drug-resistant virus strains. Journal of 
molecular biology 324:739-754. 

134. Fernandes, M. X., V. Kairys, and M. K. Gilson. 2004. Comparing Ligand 
Interactions with Multiple Receptors via Serial Docking. 1961-1970. 

135. Lamb, M. L., K. W. Burdick, S. Toba, M. M. Young, A. G. Skillman, X. Zou, J. 
R. Arnold, and I. D. Kuntz. 2001. Design, docking, and evaluation of multiple 
libraries against multiple targets. Proteins 42:296-318. 

136. Chema, D., D. Eren, A. Yayon, A. Goldblum, and A. Zaliani. 2004. Identifying 
the binding mode of a molecular scaffold. Journal of computer-aided molecular 
design 18:23-40. 

 165



137. Lowrie, J. F., R. K. Delisle, D. W. Hobbs, and D. J. Diller. 2004. The different 
strategies for designing GPCR and kinase targeted libraries. Combinatorial 
chemistry & high throughput screening 7:495-510. 

138. Pierce, A. C., G. Rao, and G. W. Bemis. 2004. BREED: Generating novel 
inhibitors through hybridization of known ligands. Application to CDK2, p38, 
and HIV protease. Journal of medicinal chemistry 47:2768-2775. 

139. Lipinski, C. A. 2003. Chris Lipinski discusses life and chemistry after the Rule 
of Five. Drug discovery today 8:12-16. 

140. Mohan, V., A. C. Gibbs, M. D. Cummings, E. P. Jaeger, and R. L. DesJarlais. 
2005. Docking: successes and challenges. Current pharmaceutical design 
11:323-333. 

141. Feher, M. 2006. Consensus scoring for protein-ligand interactions. Drug 
discovery today 11:421-428. 

 

 

 

 166


	ABSTRACT
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1. Introduction
	1.1 AIDS and HIV
	1.1.1 AIDS epidemiology
	1.1.2 AIDS infection
	1.1.3 HIV structure
	1.1.4 The life cycle of HIV
	1.1.5 Anti-HIV therapy
	1.1.6 HIV protease
	1.1.7 HIV protease inhibitors
	1.1.8 Clinical resistance
	1.1.9 Design strategies for mutation resistant HIV protease 

	1.2 Combinatorial library design
	1.2.1 Combinatorial library and virtual screening
	1.2.2 Docking and scoring
	1.2.3 VDock
	1.2.4 Genetic algorithm

	1.3 Overview of the thesis

	Chapter 2. The Substrate Envelope Hypothesis
	2.1 Introduction
	2.2 Materials and methods
	2.2.1 Computational methods
	2.2.2 Binding data
	2.2.3 Clinical relevance of mutations

	2.3 Results
	2.3.1 Fit of inhibitors to substrate density
	2.3.2 Binding affinities to wild-type protease and mutants
	2.3.3 Clinical relevance of protease mutants
	2.3.4 Correlation of Vout with sensitivity to clinically rel

	2.4 Discussion

	Chapter 3. Combinatorial Library Design
	3.1 Introduction
	3.2 Methods
	3.2.1 Genetic algorithm
	3.2.3 Additivity method
	3.2.3 Evaluation of additivity and GA methods
	3.2.4 Construction of compounds
	3.2.5 Substituent libraries
	3.2.6 Protein structures
	3.2.7 Docking and scoring

	3.3 Results
	3.3.1 Convergence of VDock
	3.3.2 Characterization of compound libraries
	3.3.3 Assessment of additivity
	3.3.4 Retrieval of computational binders
	3.3.5 Docking energy scores of top compounds

	3.4 Discussion
	3.5 Conclusions

	Chapter 4. Design, Synthesis, and Biological Evaluation of H
	4.1. Introduction
	4.2 Methods
	4.2.1 Computational methods
	4.2.2 Enzymatic assays
	4.2.3 X-ray crystallography
	4.2.4 Analysis of the effect of sulfonamide geometry on the 

	4.3 Results
	4.3.1 Computational design of combinatorial libraries
	4.3.2 Binding affinity and resistance to mutation
	4.3.3 Docked structures of inhibitor complexes
	4.3.4 Crystal structures of HIV-1 protease complexes
	4.3.5 Consequences of sulfonamide geometry

	4.4 Discussion
	4.5 Conclusions

	Chapter 5. General Discussion
	5.1 Design strategy
	5.2 Combinatorial library design
	5.3 Docking and scoring functions

	Chapter 6. Conclusions
	References

