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Flapping wing vehicles have become a compelling alternative to classical fixed

or rotary wing aircraft, especially as unmanned aircraft technology focuses on smaller,

more agile platforms. Flying insects provide an inspiration for the control of flapping

wing platforms, using limited computational resources in their specialized neural

pathways to generate robust, agile performance. The flapping wing design is less

studied, and the underlying physical principles are often more complex – non-linear

time varying dynamics are dominated by forcing due to complex, unsteady aero-

dynamics. Reduced order models are critical to formulating tractable sensing and

control concepts from the complex physics of flapping wing flight. Previous research

has focused on a single methodology for the estimation of flight dynamics. This dis-

sertation investigates the reduced order modeling of flapping wing flight dynamics

for the purposes of tractable simulation and control, comparing multiple method-

ologies. Simplification of rigid body vehicle dynamics due to both linearization and

time-invariance is discussed, and computational and experimental verification is pre-

sented for a simplified model of flapping wing aerodynamics. Additionally, a novel



method is presented to maximize the agility and performance of a flapping wing

vehicle when reducing the number of control inputs. These reduced order modeling

techniques are applied to both a model of a small flying insect and to a flapping

wing micro air vehicle.
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Abbreviations

CFD Computational Fluid Dynamics
IBINS Immersed Boundary Incompressible Navier Stokes
FAA Federal Aviation Administration
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
LTP Linear Time Periodic
MAV Micro Air Vehicle
OVERTURNS Overset Transonic Unsteady Reynolds-averaged Navier Stokes
RANS Reynolds Averaged Navier Stokes
SWaP Size Weight and Power
VTOL Vertical Take-Off and Landing

xix



Chapter 1: Introduction

1.1 Motivation and Background

1.1.1 Micro Air Vehicles

The history of aircraft innovation throughout the 20th Century subscribed to

the paradigm of ’higher and faster.’ This was especially true in the realm of surveil-

lance aircraft that had to outrun pursuing aircraft or surface to air missiles. In the

21st Century, another frontier for surveillance aircraft has opened in the opposite

direction: micro air vehicles (MAVs). The advent of MAVs will allow reconnais-

sance below the tree line, down urban streets, and into buildings. Dangerous areas,

concealed to high altitude reconnaissance, can now be scouted before sending in

personnel, potentially saving the lives of service members and first responders.

MAV technology has a variety of opportunities outside the realm of government

uses, and technology companies have recently begun to take notice. Unmanned air

systems (UAS) have the potential to revolutionize a variety of currently untapped

industries, including agriculture, civil engineering, architecture, and energy. [1] In

2013, Amazon, Inc. announced that it would begin using unmanned systems to

deliver packages to customers’ doorsteps. [2] Multiple companies have announced



Fig. 1.1: Micro air vehicle reconnaissance will allow soldiers to view interiors of unknown,

possibly dangerous, buildings. Search and rescue teams can explore unsafe struc-

tures without exposing themselves to danger.

plans to deliver medical supplies in remote areas via small unmanned systems. [3–5]

Facebook, Inc. has an ambitious plan to fly small unmanned solar powered systems

to provide internet communications to undeveloped regions. [6].

In 2016, the Federal Aviation Administration (FAA) released a set of rules to

govern appropriate use of small unmanned aircraft that will allow these businesses

and others to legally operate in the US national airspace. [7] The demand for small

unmanned air systems (both commercial and recreational) has been surprisingly

strong: in the first month of registration for such aircraft, over 300,000 owners

registered with the FAA. [8] With the new rules out in 2016, codifying the legal

use of the airspace for these aircraft, the business and economic case only grows

stronger.

Micro air vehicles are typically defined as an aircraft an order of magnitude

smaller than the smallest system at the turn of the century (this usually leads to a

definition of about 15 cm span). [9] The onset of MAV research is due to a variety
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Fig. 1.2: Future micro air vehicle applications are not limited to government work. Clock-

wise from top left: UPS delivery drone developed by CyPhy Works, Amazon’s

delivery octoquad, Zipline delivery system dropping medical supplies, and Face-

book’s Aquila solar powered communications aircraft.
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of technological precursors. Foremost among these advances is the availability of

brushless electric motors combined with higher energy density lithium-based bat-

teries. [10] Improved materials, especially composites, allows for construction of low

weight and high strength components. Finally, the advancement of micro electrical

mechanical systems (MEMS) has provided a variety of sensors useful for both vehicle

control and payload.

Micro air vehicle development derives from its the radio controlled aircraft

ancestry. Fixed wing MAVs were the first developed. Research into basic design

parameters for smaller, non-recreational aircraft began in the 1990’s. [9, 11] A vari-

ety of fixed wing designs began development soon afterwards. [12–15] These vehicles

struggle with the endurance and range limitations of small scale flight, and their

susceptibility to wind. With the goal of improving performance in these areas, aero-

dynamicists began to look at the complex unsteady flow structures at low Reynolds

numbers (i.e. below 105); work that is still ongoing. Even so, fixed wing designs

remain the best in terms of endurance and range for a given weight. A special set

of aircraft designs, flexible wings, was developed specifically to counter the suscep-

tibility of fixed wing MAVs to wind gusts. [16]

Rotary-wing MAVs offer the significant benefit over fixed wing designs by

allowing hover and vertical take-off and landing (VTOL). This capability is critical in

many missions, especially reconnaissance and surveillance. There are many variants

of these designs from a single rotor [21], to a coaxial rotor [17], to multirotors [22].

MAV rotorcraft are more difficult to design and build and have lower range and
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Fig. 1.3: A selection of the wide variety of MAVs. Clockwise from top left: a fixed wing

MAV (Black Widow [12]), coaxial rotor [17], Aerovironment Nano Hummingbird

[18], Harvard’s RoboBee [19], the Delfly Micro [20], micro helicopter (Walker

CB100), and a flexible wing MAV [16].

endurance than fixed wing MAV of a similar scale; however, the benefit of the VTOL

capability is often worth these performance sacrifices. Shrouded rotor concepts

have been developed with the aim of increasing endurance for hovering flight. [23]

Control of rotary wing systems is more difficult than for fixed wings, due to inherent

instabilities in vehicle dynamics. [24]

Flapping wing vehicles are the more complicated of MAV designs, inspired

by avian and insect flight. Avian-style designs (often referred to as ornithopters),

such as the RoboRaven [25] have a vertical wingstroke that generates thrust; lift is

generated by air flowing over the wing similar to a fixed wing. Insect-based designs

instead have a predominantly horizontal wingstroke that produces much of the lift.

Due to the horizontal insect stroke, flow over the wings is not required to generate
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lift, and such flapping wing MAVs are hover-capable. These designs range from the

scale of an insect [19] to that of a hummingbird [18]. The aerodynamics and control

of flapping wing systems are much more complicated than for rotary or fixed wing

designs, and the mechanical construction is more involved and suffers under the os-

cillatory motion required for flapping. However, the agility of flapping wing systems

may offer potential for gust-tolerant platforms, and the flapping wing motion could

provide aerodynamic benefits that increase endurance and range. Additionally, the

flapping wing design is much quieter, which can be essential for military missions.

Hover-capable flapping wing MAVs have similar control issues to rotorcraft,

due to unstable dynamics. Moreover, the control actuation is more difficult on

flapping wings, as there is no intuition and design basis as there is for rotorcraft.

Several designs have used a tail to stabilize the vehicle in flight. [20, 26, 27] The

tail reduces sensing and control requirements, but limits the vehicle’s agility and

increases it’s susceptibility to environmental disturbances. The Aerovironment Nano

Hummingbird, weighing only 19 grams with an endurance just over 10 minutes, is

a particularly impressive tailless design, and has excited the possibility for future

flapping wing system development.

1.1.2 MAV Technical Challenges

Design and operation of aircraft at smaller scales presents a variety of tech-

nical challenges. Size, weight, and power (or SWaP) restrictions are a concern for

any aircraft design, but even more so for MAVs. SWaP restrictions limit vehicle
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performance in all aspects of mission planning: endurance, range, maneuverability,

and payload capability. As MAV design scales are reduced, the vehicles suffer from

these restrictions even more (see Figure 1.4). Improvements in battery technology

have allowed small scale flight, but decreasing battery size still limits energy stor-

age. The ceiling on available power affects all aspects of vehicle design, including

propulsion, control, communications, and payload. Computing and sensing are also

severely limited by size and weight considerations. For small MAVs the electronics

must often be custom built to fit these SWaP concerns. Mechanical construction of

MAV-scale gearing and propulsion systems are also often custom-built, leading to

further efficiency losses.

Limits to vehicle range and endurance are exacerbated by aerodynamic scal-

ing. At low Reynolds numbers air becomes more viscous, decreasing the aerody-

namic efficiency of the lifting surfaces. Large boundary layers increase the drag,

and cause instabilities that lead to flow separation. Passive and active techniques

have been studied to transition the laminar flow to turbulent and reattach flow, but

these options are limited by construction and maintainability especially at smaller

scales. [29] For hover-capable MAVs (including both rotary-wing and flapping wing

platforms), the issue more complex. Shed boundary layers form vortex sheets that

disrupt the vertical airflow below the vehicle (see Figure 1.5) [30]. These higher in-

duced power requirements compound aerodynamic and SWaP constraints that limit

vehicle endurance.

Sensing and control are also impacted by scale. Smaller vehicles’ lower inertia
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Fig. 1.4: Flight time versus vehicle mass of several MAVs. Smaller vehicles struggle with

endurance, regardless of platform design. (from Floreano & Wood (2015) [28])
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Fig. 1.5: Thick turbulent vortex sheets form under a rotary wing at low Reynolds number.

(from Ramasamy et al. (2007) [31])

increases the speed of motion, rotational motion scales more strongly than transla-

tional. The mass of a vehicle scales with the cube of the length, while the moments

of inertia scale by L5. The beneficial result is an increase to vehicle agility, but it

requires faster sensing and control capabilities. Because of SWaP limitations, high-

bandwidth sensing and stability augmentation must operate with as little power

and weight as possible. Unmanned vehicle sensing is dominated by a combination

of GPS and inertial measurement units (IMUs) that track vehicle motion via trans-

lational and rotational accelerations. Neither of these sensors allow knowledge of

the surrounding environment, and GPS availability is limited for indoor operation.

Stability-enhancing mechanisms like a flybar or tail can reduce the speed of vehicle

motion, but they decrease maneuverability and make the vehicle more susceptible
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to environmental disturbances.

Environmental disturbances like wind gusts have proportionally greater effect

on smaller scale vehicles. MAVs require higher thrust to weight ratios to counter

sustained winds. Flexible wing vehicles are designed for the sole purpose of miti-

gating the gust-response issue of the fixed wing design. [16] Even light winds less

than 2 meters per second (about 5 miles per hour) can keep rotary-wing MAVs

grounded. [32] This limits MAV operation to indoor work, but fans, vents, and

drafts can create challenging situations for a small MAV indoors.

1.1.3 Flapping Wing Flight

While many of the performance and scaling limitations of fixed and rotary

wing flights are known, flapping wing flight offers a new paradigm. Like the soaring

birds that inspired the Wright brothers and their contemporaries, birds, bats, and

insects have long held the interest of those who hope to achieve robust stable flight

at small scales. At smaller scales, successful man-made designs become sparse; how-

ever there are a multitude of biological specimen to study (see Figure 1.6). Natural

flyers have been able to turn many of the above design challenges into advantages.

From a mechanical systems perspective, biological flapping wing systems achieve

truly impressive performance: about 50% of the body mass can be considered to be

devoted to payload and sensing, while only 30% to structure and 20% to propul-

sion. [33] Studying these biological systems can provide intuition for more successful

mechanical small scale flight.
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Fig. 1.6: Tennekes’ Great Flight Diagram shows relationship between cruising speed, wing

loading, and weight among insects, birds, and man-made aircraft. [34]
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The earliest interest in the field comes from biologists interested in the design

of the wings and the generation of aerodynamic forces. The highly unsteady and

viscous flow around flapping wings is inherently difficult to understand and estimate;

however, the popular saying that science cannot explain how a bee flies is certainly

an exaggeration. Birds and insects have exploited the unsteady aerodynamic phe-

nomena that limit the efficiency of their mechanical counterparts.

The importance of the unsteady aerodynamics is well documented and without

accounting for these effects, an insect would not be able to generate enough lift to

remain aloft. The laminar boundary layer separation on a flapping wing can manifest

in a leading edge vortex (LEV). Recent work by Lentink & Dickinson has shown

that spanwise flow generated by rotational acceleration keeps the LEV attached for

several wingstrokes. [35] On a rotorcraft, the LEV may detach after several chord

lengths of travel, but flapping wings stop and reverse motion twice each wingstroke.

The LEV is reformed every half-stroke due to more rotational acceleration. The

attached LEV and the low pressure it generates on the upper wing surface has been

proven vital to generating the necessary lift for insect flight. [36]

At stroke reversal, vortex shedding and wake capture have substantial effect

on the aerodynamic loading, but small changes in scale, wing planform, or kinemat-

ics could have dramatic effect on these unsteady phenomena. [38, 39] The benefits

of a ”clap and fling” of fluid around two wings meeting at the end of a stroke was

first suggested by Weis-Fogh in 1973, but only recently has computational and ex-

perimental techniques tested the concept in detail. [40, 41] Even with considerable
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Fig. 1.7: Flow structures around a flapping wing at insect scale: ”dss” refers to dividing

stream surface, ”le” designates leading edge, ”te” trailing edge, and ”SS vortex”

refers to the combined starting/stopping vortex. Spanwise flow is believed to

keep the leading edge vortex (LEV) attached over the span of a flapping wing

for several chord lengths. From Van den Berg & Ellington (1997) [37]
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investment, generating an intuition for these aerodynamic phenomena is difficult

enough that future researchers will undoubtedly be discussing the effects due to

individual parameters variation for many years to come.

Recently, sensing and control qualities have begun to attract more focus from

biologists interested in their agility and robustness in the face of environmental

disturbances. Insects display an impressive performance considering their small

neurological capacity. Engineers looking to extend the capabilities of MAVs that

suffer from similar SWaP constraints are taking notice of promise of robust and

agile performance as they develop platforms at increasingly smaller scales. Vision,

in particular, is a promising sensing modality that is currently underutilized, and

could replace or augment IMU sensors.

1.1.4 Flapping Wing Dynamical Modeling

Understanding the dynamics of an aircraft is integral to assessing its flying

qualities and to designing sensing and control strategies. The dynamics of a vehicle,

derived from Newton’s second law, determine the effect of outside forcing, via control

or disturbances, on the vehicle motion. By modeling the underlying physics, we can

design control inputs to reject environmental disturbances and select sensors that

are customized to vehicle motion. A dynamical model suggests natural modes of

motion that the vehicle will be more likely to move. These directions in vehicle state

may be more susceptible to wind gusts, and so control actuation can be designed

with this in mind. A full flight dynamical model is especially useful in designing
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Fig. 1.8: Typical feedback loop structure. Control inputs and environmental disturbances

are input to the system dynamics, onboard sensors detect the resulting vehicle

motion, and sensing data is used to estimate that motion for use in future con-

trol inputs. Understanding the dynamics of the system will inform design and

analysis of vehicle sensing and control.

closed loop control schemes to stabilize a naturally unstable platform, or to provide

autonomous control. Multivariable control design techniques (e.g. LQR, H∞) re-

quire a dynamical model. Additionally, sensing requirements can be customized for

better sensitivity these modal directions.

Insect’s sensory structure has been shown to extract motion from non-orthogonal

measurement axes, as opposed to the engineering standard of roll, pitch, and yaw

motion (see Fig. 1.9). [42] Biologists have proposed that the sensing structures may

be aligned instead with the most important insect motions required for flight. [43]

Dynamic estimates suggest that this may be the case, as Dipteran insects have means

via ocelli (simple eyes that detect rate changes) and halteres (under-developed hind

wings also used for rate sensing) to detect the most pertinent dynamical features at
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Fig. 1.9: Preferred sensing axes of the compound eyes (left) and ocelli (right) of a blowfly.

From Parsons et al. (2010) [42]

high bandwidth. [44, 45] Better dynamical models for flapping wing flight will give

a concept for how and why birds and insects apply sensing and control techniques,

as well as give inspiration to engineers hoping to apply these effective schemes to

flapping wing MAVs.

Flapping wing flight is complete with a myriad of complexities that impede

flight dynamical modeling. Even capturing and tracking the motion of insects is

a difficult challenge, as insects are difficult to control and tethering them leads to

unrealistic kinematic measurements. Additionally, flapping wing vehicles operate

at multiple time scales; vehicle dynamics and flight path modulation occur at a

much slower speed than the loads generated by the wing motion. Similar to rotor-

craft, aerodynamic forcing from the flapping wings is not constant throughout the

wingstroke. Unique to flapping flight, however, is the stroke reversal: as the wing

must stop motion after half a wingstroke and return back on the other half stroke.

Perhaps most challenging is the highly unsteady and viscous aerodynamics
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around a flapping wing. The LEV generated during flapping motion can collapse or

detach from the wing at different times of the wingstroke depending on the vehicle

scale. Tip vortices are also much larger and dominant at these smaller scales and for

these lower aspect ratio wings. The vortical structures are then shed into the wake

and re-encountered by the wing on the following half-stroke. [30] Independently,

these interactions are difficult to understand, but on a flapping wing they operate in

tandem and interact. The LEV spirals into the tip vortex, shedding from the wing

depending on Reynolds number, kinematics, and wing planform. How the wing

then interacts with the shed vorticity from previous half-strokes contains the same

variability.

In addition to the modeling of dynamical equations, the most effective means

to control these systems remains an open question. It is not clear which kinematic

motions are used by insects in flight to modulate their flight path, nor which would

be most valuable for a flapping wing MAV. Unlike man-made aircraft, where designs

over the past decades have coalesced on a few preferred means of actuation, insects

do not have clearly defined control inputs –there are no rudder, elevators, ailerons,

etc. on a fly.
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1.2 Previous Modeling of Flapping Wing Vehicle Dynamics

1.2.1 Bare-Airframe Dynamical Modeling

Recent investigations of insect flight dynamics have provided quantitative un-

derstanding of underlying flapping wing flight characteristics. Identification of an

insects bare-airframe dynamics allows researchers to better understand the sens-

ing and neural pathways necessary to stabilize and control insect flight. Taylor &

Thomas (2003) were the first to utilize linear dynamical modeling in empirically

describing desert locust in forward flight. [46] Researchers have since used experi-

mentation [47,48], computational fluid dynamics [49–52], and frequency-based meth-

ods [45] to identify the rigid body dynamics of a variety of insects at both hover

and forward flight.

Reduced-order Aerodynamic Modeling

Each of the above dynamical models required a selection of a methodology to

estimate aerodynamic loads on the flapping wing system. For several, a computa-

tional solver was used to solve the Navier-Stoke equations, and others developed an

experimental apparatus that measured loads on Reynolds number-scaled flapping

wings in mineral oil. These methods are expensive, both in money and time, and

are not currently an option for frequency-based system identification such as those

used by Faruque & Humbert (2010) that require multiple flight simulations with

varying control inputs. That work required a reduced-order aerodynamic method

18



to estimate the flapping wing loads.

The highly unsteady and viscous flow around flapping wings is inherently

difficult to model. Unsteady flow structures – particularly the leading edge vortex

– are critical to aerodynamic load generation at the insect scale. [36] A reduced

order aerodynamic model that results in an accurate estimation of vehicle dynamics

is extremely desirable; accurate low Reynolds number computational fluid dynamic

solvers for flapping wings are computationally expensive, and Reynolds number

scaled experimental setups are extremely expensive and time consuming to create.

Ellington (1984) demonstrated that unsteady mechanisms were necessary to

explain the generation of vertical forces necessary to keep insects aloft. [53] A purely

quasi-steady method of aerodynamic estimate would not provide the necessary lift.

The Robofly experimental apparatus (see Figure 1.10) was used by Dickinson in

1999 to augment the quasi-steady aerodynamic model discussed earlier by Ellington

and include unsteady effects. [54, 55] By constructing lift and drag polars from a

rotating wing while the LEV was attached, this experimentally-derived quasi-steady

model includes additional lift and drag associated with the LEV. Adding terms for

wing rotation during pronation and supination, Sane & Dickinson (2002) were able

to model the lift for a Drosophila in hover and test the effect of varying several

kinematic parameters. [56]

Other, more mathematical approaches have been developed to capture the

effect of unsteady flows on flapping wings. Instead of an empirical quasi-steady es-

timate of the lift and drag on the entire wing as derived by Dickinson and his team,
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Fig. 1.10: The Robofly experimental test apparatus. [54]

these methods begin with a blade element approach. The wing is divided into many

spanwise elements and the aerodynamic loads are the sum of the individual loads

on each element. Such a formulation would rely on the extensive work of aerody-

namicists throughout the 20th Century that developed quasi-steady aerodynamic

models from thin airfoil theory. Wagner, Theodorsen, and others gave 2D analyti-

cal models for harmonically oscillated airfoils in inviscid flows; however these were

limited to specific environmental perturbations of the airfoil from the steady state

condition. [57–59] This limits utility in the case of flapping wings, where the wing

undergoes large changes in velocity and angle of attack throughout even an ideal

wingstroke.

A more suitable blade element construction is that of an indicial response,

where a set of aerodynamic flows are superimposed to create an appropriate solu-
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tion to a set of aerodynamic states. The superposition is determined by a set of

indicial responses calculated either computationally or experimentally. [60,61] This

methodology has focused exclusively on rotorcraft research until recently. Taha et

al. (2014) used superposition of quasi-steady circulation around each blade element

instead of angle of attack and blade speed to calculate lift for each element. [62]

This new quasi-steady method for estimating flapping wing flight promises for a

more precise estimate of the lifting loads especially during wing rotation at the end

of each half-stroke. In the current work, the empirically-derived quasi-steady model

of Dickinson et al. is utilized for its simplicity and to validate the previous work of

Faruque & Humbert.

Stroke Averaging

The flapping wings generate periodic forcing with each wingstroke that deter-

mines the vehicles motion. Vehicle motion from unsteady forcing can be broken into

two components, high frequency vibrations and the low frequency flight path. The

objective when identifying vehicle dynamics is an accurate estimation of the flight

path, and higher frequency content can be neglected for tractability. Vehicle inertia

limits the speed of a vehicle’s response to any periodic aerodynamic forcing, resulting

in a low frequency flight path from an averaged high frequency forcing. [63] Previ-

ous work on insect flight has shown that the assumption does weakens for smaller

systems that have fast dynamics with slower wingbeat frequencies. [64] Vehicle mo-

tion can be separated from within wingstroke motion by averaging the aerodynamic
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loading on the vehicle during the wingstroke.

This stroke-averaging assumption (sometimes referred to as ‘two-timing’) is

necessary to attain time-invariance of the stability and control matrices in the com-

mon form of the linear dynamical equations: ẋ = Ax+Bu, where x is the vector of

vehicle states, u is the vector of vehicle control inputs, A is the stability matrix, and

B is the control matrix. The purpose of any linear system modeling technique is to

identify the stability and control matrices that describe vehicle motion in response

to changes in state or control input. This formulation enables use of powerful linear

time invariant (LTI) analysis and control techniques.

Linear Dynamical Models

A variety of insect dynamical models have been given by Sun and colleagues,

including a hoverfly, cranefly dronefly, bumblebee, and hawkmoth, using a Navier-

Stokes computational solver to measure changes in loads due to perturbations away

from hover and forward flight. [49–51,65,66] These works have described a longitudi-

nal system dominated by unstable pitching and surging (fore-aft) oscillatory motion.

In hover, heave (vertical) motion is uncoupled and stable, while in forward flight,

heave is coupled to the unstable pitching and surging. Longitudinal instability is

caused by a large pitching moment caused by fore-aft motion. The static stability

created by increased drag on the system due to such motion does not provide enough

damping to mitigate this effect.

The time for a disturbance to double is about 100 ms for larger insects like the
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bumblebee and hawkmoth; the doubling time for smaller insects in these studies is

closer to 50 ms. These estimates suggest the biological sensing necessary to stabilize

such motion must operate at a fraction of the latency. Visual feedback is unlikely –

vision to motor delays are between 30-40 ms. [67,68] Halteres (underdeveloped hind

wings on Dipteran insects) appear well-suited to provide the equivalent of a high

bandwidth rate gyro. [69, 70] Halteres have been shown to operate with a delay of

about 3 ms, adequate for the instabilities discovered by Sun’s team. [71]

These results in longitudinal flight have been repeated by Faruque & Hum-

bert using a frequency-based method and quasi-steady aerodynamics for a hovering

Drosophila (fruitfly). [45] Faruque & Humbert’s model Drosophila is again domi-

nated by a large pitching moment due to fore-aft motion, yielding an instability

that must be accounted for by some feedback mechanism in their non-linear model.

Simple pitch-rate feedback to a control term that defines the average wing position

was shown to adequately stabilize the longitudinal motion.

While there has been general agreement about longitudinal flight between

these two models, the same is not true for lateral-directional flight. For longitudinal

flight especially, the modal structure of the linear dynamical system is agreed upon.

Sun and colleagues suggest that the lateral-directional system is also unstable and

dominated by coupled rolling and sideslip motion, along with an uncoupled sta-

ble yawing subsidence. [51] Faruque & Humbert’s work yields a marginally stable

system, with an oscillatory roll and sideslip motion. The stable yawing motion is

similar to that of Sun’s team. [72] The difference between the models is largely in

23



the roll moment due to sideslip motion – this is large and positive in Sun’s work,

but is negative in Faruque & Humbert’s model. Because the models are of different

insects with different kinematics, it is not immediately apparent that either of these

models is incorrect.

1.2.2 Modeling Flapping Wing Control

An insect’s maneuverability and responsiveness to environmental disturbances

depend on the effectiveness of wing kinematic inputs to impart aerodynamic loads

on the dynamical system. Identification of baseline flapping wing kinematic trajec-

tories is currently an active field of research that has been explored from multiple

perspectives: lift optimization, power optimization, and high speed videography of

freely-flying insects. [48, 73, 74] Using Robofly, Sane & Dickinson (2001) estimated

kinematics required to give enough lift: including the angle of attack, and the phas-

ing of pronation and supination in the wingstroke. [75] Berman & Wang utilized

a quasi-steady aerodynamic method to calculate the most energy-efficient hovering

flight for the fruit fly, bumble bee, and hawkmoth. [73] Identification of effective flap-

ping wing kinematic control inputs away from these baseline trajectories is integral

to determining the insect’s agility.

Several previous works have modeled the impact of control inputs via devi-

ations of the wing kinematics from the baseline. Lehmann & Dickinson (1998)

empirically investigated how several species of Drosophila vary stroke amplitude

and frequency to control vertical motion. [74] Zhang & Sun (2011) identified the
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linear contribution of several chosen control inputs to load generation using compu-

tational fluid dynamics (CFD) to calculate the unsteady aerodynamic loads on the

wings [65] Using the quasi-steady aerodynamic model and frequency-based system

identification techniques, Faruque & Humbert (2010) estimated the contribution of

select control inputs. [45, 72]

Control input identification gives intuition for how these specific control inputs

(usually flapping frequency, amplitude, stroke plane tilt, and fore-aft stroke plane

offset) directly effect aerodynamic loading on the insect and provide the opportunity

to utilize linear time invariant (LTI) control tools to address insect control strat-

egy. Similar to static stability tests, they explain little of how each input effects the

bare-airframe dynamics. It is more difficult to compare the effectiveness of individ-

ual kinematic inputs for the ability to generate insect motion. Humbert and Faruque

(2011) presented a methodology quantifying the control authority of kinematic con-

trol inputs by calculating the complete set of reachable states for combinations of

inputs. [76]

1.3 Dissertation Objectives and Approach

1.3.1 Objectives

The perturbation-based models of Sun and colleagues cannot be directly com-

pared to the system identification work of Faruque & Humbert. The Drosophila

modeled by Faruque & Humbert is not included in the variety of insect systems
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modeled by the former group. Even if it were, a direct comparison and verification

would require the kinematics and flight condition (e.g. forward flight or hover) to

be replicated as well. Such a comparison is necessary to ensure that each model

is correct, and more importantly that the methodology is applicable to dynamical

modeling of flapping wing systems.

The accuracy of system modeling based on the reduced-order aerodynamic

methods such as that of Faruque & Humbert is of particular importance. A quasi-

steady aerodynamic solver can yield dynamical models at a fraction of the cost

of experimental or computational modeling techniques. This will give freedom to

future designers of flapping wing systems for a first-run dynamical estimate, or to

resource-constrained biologists hoping to understand insect and avian sensing and

control. Quasi-steady aerodynamic methods allow simulation of a flapping wing

system for more than a few wingstrokes, a requirement for frequency-based system

identification like that of Faruque & Humbert, or for large scale studies of wing

kinematic changes.

The assumption of time invariance for smaller vehicles with fast wingstrokes

also remains in question. Wu & Sun (2012) demonstrated the limits of the assump-

tion for two model insects (dronefly and hawkmoth), discovering the split-timing

modeling technique introduces little variance in the results. [64] Thus, it is not clear

where the assumption may break down, and whether a time-invariant model will

be useful at the hummingbird scale, where we may expect the first flapping wing

MAVs. If applicable, a time invariant system would be much simpler for the design
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of on-board model-based control systems.

When previous work has included control inputs in the dynamical model, those

inputs were selected a priori. A method to construct optimal wing kinematic in-

puts from a general set are required. It is vital that such a selection accounts for

the inherent dynamics of vehicle motion, and not simply maximize generation of

aerodynamic loads. Gramian-based metrics proposed by Humbert & Faruque offer

a measure of wing kinematic control input effectiveness on the basis of reachabil-

ity and disturbance rejection. [76] A system’s reachability describes the amount of

control over the system’s state for a specific control input. Maximizing reachability

is analogous to improving maneuverability, while disturbance sensitivity describes

susceptibility to wind gusts. These gramian-based metrics allow integration of bare-

airframe dynamics in the selection of effective control inputs. Instead of selecting

control inputs by direct aerodynamic load, consideration can be given to the com-

bination of the direct load and the dynamic motion it imparts.

The present work is motivated by the requirement of a tractable model that

accounts for the above complications in flapping wing flight. The goal of this work

is to provide a basis for reduced-order modeling of flapping wing dynamical systems

by investigating the following:

1. Reduced-order aerodynamic methods for estimating flapping wing dynamics

are compared to more rigorous computational and experimental models. The

resulting dynamical model derived from experimentally-derived quasi-steady

aerodynamic estimate is compared to computational and experimental models
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based on identical systems with the same wing kinematics.

2. Time-variance assumptions are tested using periodic time modeling techniques

and comparing with time-invariant models. Analysis is performed at insect

scale, where aerodynamic forcing from wing flapping is much faster than the

rigid body motion, and at avian scale where the forcing is at a similar frequency

to vehicle motion.

3. A control-theoretic methodology is presented that selects flapping wing control

inputs from a general set. Reachability and disturbance gramians are utilized

as metrics to optimize kinematic control inputs for bare-airframe agility and

disturbance rejection. The result is a set of wing kinematic inputs that are

tuned to the specific dynamics of an individual vehicle.

1.3.2 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 provides a basis

for describing the motion of insect flight, and presents a high-speed camera setup for

capturing insect kinematic motion. Frequency-matched transcendental functions are

used to extract wing motion from captured data sets of forward-flying Drosophila,

providing reference wing kinematics for two forward flight conditions. A set of

idealized hovering kinematics with flat stroke plane is also defined, along with a set

of biologically-motivated wing kinematic control inputs.

Chapter 3 describes several methods of measuring aerodynamic loading on the
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flapping wing throughout the wingstroke. An experimentally-derived quasi-steady

routine is cost-effective, but unproven in providing accurate estimates of all unsteady

loads throughout a wingstroke. The IBINS incompressible flow solver models the

wing and body as a set of immersed boundaries in a Cartesian mesh. RoboFly pro-

vides verification of the computational model using a dynamically scaled-up version

of a Drosophila wing capable of a variety of wing and body motions. Results of the

three aerodynamic methods are verified using an example forward flight Drosophila

wingstroke. Aerodynamic power requirements are combined with inertial power to

provide a total power estimate for biological flapping wing flight.

Chapter 4 describes linear modeling of the homogeneous Drosophila dynamics.

Small perturbation theory linearizes the non-linear dynamics of the flapping wing

system. The stroke-averaging assumption is described, where the high frequency

dynamical forcing from flapping wing aerodynamic loads is discarded. Linear time

invariant dynamical models resulting from each of the aerodynamic calculations are

compared for the flight conditions described in Chapter 2. The stroke averaging as-

sumption is tested using Floquet decomposition to estimate the linear time periodic

model for forward flying Drosophila . A model-based control developed with the

forward flight time-invariant dynamics is tested on the time-periodic model.

Chapter 5 focuses on the modeling of flapping wing kinematic control in-

puts. Small perturbation theory is again used to generate linear time invariant

approximations to the effect of each control input. The biologically-motivated con-

trol inputs are evaluated according to a reachability metric, which is augmented
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to include power requirements to enact the motion. A novel method of generating

energy-optimal wing kinematic inputs is provided and applied to the forward-flying

Drosophila model.

Chapter 6 apples the modeling concepts of previous chapters to a hummingbird-

scale micro air vehicle. Longitudinal linear dynamics are estimated according to

small perturbation theory and compared to the much smaller Drosophila . Multiple

kinematic control inputs are evaluated according to the reachability metric, provid-

ing intuition for more effective vehicle control design. The time-invariant assumption

is tested for the vehicle model in both open and closed loop.
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Chapter 2: Flapping Wing Kinematics

2.1 Coordinates Definition

Unlike most birds1 that flap their wings primarily up and down to gain thrust,

Dipteran insects fly with a wingstroke primarily in a back and forth motion. The

wing’s leading edge remains constant throughout the stroke, but the upper surface

on the downstroke will become the lower surface on the upstroke. This motion

generates a force to counter gravity during both the downstroke and upstroke, giving

the ability to fly at slow speeds, and for some species, even hover. The wing motion

as viewed from the side is typically a flattened figure-8 shape rotated onto the

horizontal. Often this figure-8 has some curvature, bent up at the end of each half-

stroke. Figure 2.1 shows typical insect flapping motion in the form of a “dot-and-

stick” diagram; “dot”s show the leading edge of the wing and the “stick” protuding

below shows the wing pitch.

The purpose of this chapter is to define wing motion for a variety of flight

conditions. In order to describe the motion precisely throughout the stroke, some

definitions of coordinate systems are necessary. Throughout this work, the body

1 Hummingbirds are notably the only bird species to fly with similar kinematics to insects.



A B

Fig. 2.1: Insect flapping motion is horizontal. The downstroke (A) is followed by pitching

of the wing up (pronation) that rotates the leading edge of the wing to prepare

for the upstroke. The upstroke (B) is then followed by another pitching rotation

back (supination) so the leading edge is again forward for the downstroke. This

motion features lift generation during both half-strokes.

frame of an insect or flapping wing vehicle will be defined as a set of coordinates

at the center of gravity, with the x-axis forward, the y-axis out to the right side,

and the z-axis down. Note that the insect body will typically be pitched up during

flight. Figure 2.2 shows the body coordinates ê on an insect together with the right

wing coordinates p̂.

The wing coordinates system is located at the wing hinge, and is aligned with

the body coordinates when the wing is flat and level out to the side, but as the wing

moves, the wing coordinates will rotate with the wing. Thus the y-axis (p̂2) will

always remain along the span of the wing and x-axis (p̂1) will always point away

from the leading edge of the wing and align with the chord; meanwhile, the z-axis

(p̂3) will point down during the downstroke and up during the upstroke.

A set of three angles determines the position of the wing at any instant in
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Fig. 2.2: The body and wing coordinate systems. The body coordinate system ê is fixed

to the rigid insect body at the center of mass, with ê1 pointing in the direction

of forward flight, p̂2 pointing to the insect’s right, and p̂3 down. The wing

coordinate system p̂ remains fixed to the wing root, and rotates with the wing.

Thus, p̂1 always passes through the chord of the wing away from the leading

edge, p̂2 remains along the span of the wing, but p̂3 will be on the lower surface

during downstroke and upper surface during the upstroke.

time. These wing Euler angles are flapping angle (φ(t)), elevation angle (ζ(t)), and

pitch angle (α(t)). As shown in Figure 2.3, a 3-1-2 order of rotation is used to give

the current wing position; the wing is rotated first around p̂3 by flapping angle, then

around p̂1 (that has already moved due to the previous rotation) by elevation angle,

and finally pitched around p̂1 (after it has been moved due to both earlier rotations).

The rotation from the wing to body coordinates can be written using a combi-

nation of rotation matrices, as shown in Eq. 2.2. The rotation matrix Tbw transforms
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vectors from the wing to the body frame, such that [x]b = Tbw(φ, ζ, α) [x]w, where

x is a vector, [·]b denotes the body frame, and [·]w denotes the wing frame.

Tbw(φ, ζ, α) = T2(α)T1(ζ)T3(φ) (2.1)
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φ

ζ
α

Wing coordinates

aligned with

body coordinates Rotation around p̂
3

Rotation around p̂
1

Rotation around p̂
2

Fig. 2.3: The definition of wing kinematic angles is dependent on the order of the rotation,

in this case, a 3-1-2 rotation. When all wing kinematic angles are 0, the wings lie

flat to either side with the wing coordinate frame (p̂) aligned with the body frame

(ê). The first rotation about p̂3 is the flap angle φ. The second rotation about p̂1

occurs after the first rotation, by the elevation angle ζ. The final rotation about

p̂2 by the wing pitch angle α, occurs after both the φ and ζ rotations.
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Fig. 2.4: The insect motion capture setup. A snapshot of a Drosophila in the flight cham-

ber as photographed by the orthogonal camera setup. Digitization includes

marking the head, tail, wing root, and wing tip, and fitting a wireframe over

each wing.

2.2 Flight Capture and Kinematics Extraction

2.2.1 Flight Capture Apparatus

Cultures of Drosophila Melanogaster are released into a custom 10x10x8 inch

acrylic test chamber, and filmed with three orthogonal high-speed (7500 fps) digital

video cameras (Vision Research Phantom v710; 24-85 mm f2.8-f4 Nikkor Nikon

Zoom lenses) aligned 6 inches away from a common reference point in the center

of the test chamber, as shown in Fig. 2.4. While filming, the chamber is back-

lit with 3 Lowel V-lights, diffusing the high intensity light with translucent paper.

An exposure of 40 µs was chosen at a resolution of 1280x800 pixels. Due to the

short flight times of the Drosophila Melanogaster relative to human reaction time,
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capturing insects in the focal region of all three cameras required an automatic-

trigger system. The cameras were synced to within 1 µs, or about 0.02% of a

typical Drosophila wingstroke. A manual digitization to extract the body and wing

kinematics is performed using a modified version of Dr. Ty Hedrick’s freely available

MATLAB software [77]. The location of the head, tail, wing hinges, and wing tips

are digitized in each frame, and these points are used to extract all three body angles

and each wing’s stroke amplitude and elevation angles. A wire-frame of the wing is

inserted and rotated to fit the wing in each frame to extract the wing’s pitch angle.

2.2.2 Insect Forward Flight Kinematics Extraction

From the dozens of captured flight trials, two were selected that were closest

to straight and level flight. These two trials provided reference wing kinematics for

two reference flight conditions, one in slow forward flight and one in fast forward

flight. A mean value from the kinematics extraction of each flight trial is used for

both the body pitch and forward flight speed, whereas body sideslip, climb, roll,

and yaw were rounded down to zero. Body kinematics are considered constant for

the purposes of establishing a forward flight reference condition.

Wing kinematics are described by a set of three periodic functions that deter-

mine the position of the wing at any point in time according to the 3-1-2 rotation

described in Figure 2.3. Fitted frequency-matched functions of the digitized esti-

mates for the three wing angles were found using an ensemble averaging of curve fit

parameters. Curve fits of stroke angles, φr ,l (where [·]r ,l denotes the right and left
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Fig. 2.5: Digitization of free flight insect motion used for the forward flight reference con-

dition (a) in the body frame, where the kinematics can be seen to be relatively

constant, and (b) in the global frame, where the steady forward flight motion

can be seen.

wings, respectively) can be expressed by a single sinusoid, while wing pitch angles,

αr ,l , and elevation angles, ζr ,l , are a sum of two harmonics of the stroke angle. These

are frequency matched so that all terms in ζ(t) and α(t) have the same frequency

of φ(t), or a multiple of it. It was found that ζω1 and αω1 were equal to 1, while

ζω2 = 2 and ζω1 = 3 for both flight conditions studied here.

φ(t) = φmsin(ωt) + φo (2.3)

ζ(t) = ζm1sin(ζω1ωt+ ζp1) + ζm2sin(ζω1ωt+ ζp2) + ζo (2.4)

α(t) = αm1sin(αω1ωt+ αp1) + αm2sin(αω1ωt+ αp2) + αo (2.5)

The right wing kinematic parameters for both flight conditions are given in Table 2.1,

and The right wing kinematics for each reference condition are shown in Figures 2.6
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& 2.7. The left wing has identical kinematics, but with a sign change for φl and ζl.

FF1 FF2

u0 7.07 cm/s u0 32.0 cm/s

f 233Hz f 200Hz

φm -66.4 φm -50.2

φo 16.8 φo 24.9

θm1 5.2 θm2 8.3 θm1 5.3 θm2 6.2

θω1 1 θω2 2 θω1 1 θω2 2

θp1 234.9 θp2 53.0 θp1 52.7 θp2 213

θo -7.62 θo -2.66

αm1 58.7 αm2 15.0 αm1 59.8 αm2 16.0

αω1 1 αω2 3 αω1 1 αω2 3

αp1 271.4 αp2 72.6 αp1 -9.16 αp2 293.3

αo 87.0 αo 94.5

Tab. 2.1: Kinematic parameters identified for freely-flying Drosophila in slow forward

flight (FF1) and fast forward flight (FF2). (All angles are in degrees.)
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Fig. 2.6: Captured wing kinematics (above) from slow forward flying Drosophila

Melanogaster. Phase portraits (below) show the leading edge of the wingtip

as a dot, with a protruding stick to show wing pitch.
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Fig. 2.7: Captured wing kinematics (above) from fast forward flying Drosophila

Melanogaster. Phase portraits (below) show the leading edge of the wingtip

as a dot, with a protruding stick to show wing pitch.
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2.3 Idealized Insect Kinematics

2.3.1 Hover Kinematics

In addition to the experimentally extracted kinematics from freely-flying in-

sects discussed above, this work will also present an idealized set of kinematics used

by Faruque et al. (2010) in order to present a comparison to those results. [45, 72]

These idealized kinematics are simpler, with a flat stroke plane and in hover, giving

the opportunity to examine a simpler set of dynamics as a benchmark before the

more complicated kinematics used by an actual insect in free flight. The flapping

angle is given by a sine wave, while the elevation angle is held to zero, and the pitch

angle is a square wave.
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Fig. 2.8: Flat wingstroke kinematics for an idealized hovering insect. Wing kinematic

angles (above) show a simple sine wave for the flapping angle and a square wave

for the angle of attack. A dot-and-stick diagram in a phase portrait (below)

provides more intuition for wing kinematics. Note the wing rotation is advanced

– it pronates and supinates well before wing reversal.
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2.3.2 Biologically-Motivated Control Inputs

Throughout this work, biologically-inspired wing kinematic control inputs are

utilized to give control to a platform. These are shown in Figure 2.9 amplitude

(φmax), stroke offset (φoff), and stroke plane tilt (β). Collective changes to these

inputs on both wings will affect longitudinal motion, while differential changes can

give lateral-directional control. Changing amplitude gives an overall increase in

forcing during the wingstroke; stroke offset changes the average location of the

wing, effectively moving the center of pressure and generating a pitching moment;

and stroke plane tilt is a rotation around p̂2 before the 3-1-2 rotations mentioned

above, tilting the thrust vector. The effectiveness of each of these control inputs

will be determined in later chapters.
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Fig. 2.9: Basic wing kinematic control inputs: stroke amplitude φmax, stroke bias φoff,

and stroke plane tilt β. Note that due to the orientation of the wing coordinate

y-axis p̂2, stroke plane tilt is positive when pitching the stroke plane back.

2.4 Summary

This chapter presented a framework for discussing flapping wing kinematics.

A set of coordinate frames are used to define wing motion in reference to the body

motion of the insect or flapping wing vehicle. Wing kinematics are described in

terms of a set of three Euler angles that rotate the wing according to periodic

equations. The kinematic equations for a hover reference condition are prescribed

as a flat stroke plane with wing pitch modeled approximately as a square wave.

A setup for flight capture and kinematic extraction was presented whereby

flight kinematics for Drosophila were captured for freely-flying insects. The kine-

matics for two forward flight reference conditions were described based on insect
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wing motion in flight as seen by the high-speed camera setup. A set of biologically-

motivated wing kinematic inputs were defined, including changes to stroke ampli-

tude, stroke offset, and stroke plane tilt.
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Chapter 3: Flapping Wing Aerodynamics

3.1 Motivation for Aerodynamic Modeling

Aerodynamic loads, along with gravity, are the primary forcing on the insect.

Any treatment of the dynamics of insect flight must begin with an estimation of

the loads exerted on the insect by the surrounding air. Both the insect scale and

the inherent complexity of the fluid flow make estimation of these loads notoriously

difficult.

The goal for this work is, in part, to determine the aerodynamic estimation

relevant to insect dynamical modeling. A thorough treatment of the individual effect

of each of the above aerodynamic phenomena is therefore outside the scope of this

work. However, a reduced order aerodynamic model that results in an accurate es-

timation of vehicle dynamics is extremely desirable; accurate low Reynolds number

computational fluid dynamic solvers for flapping wings are computationally expen-

sive, and Reynolds number scaled experimental setups like Dickinson’s RoboFly are

extremely expensive and time consuming to create. Some of the more complicated

aerodynamic effects of the flapping wing flow occur over short time spans relative

to the vehicle dynamics. As will be discussed in Chapter 4, high frequency aerody-



namic phenomena (e.g. the quick wing rotation and wake capture during pronation

and supination) may not have a dramatic effect on the overall vehicle dynamics be-

cause the associated loads occur over only a fraction of a wingstroke, while the body

dynamics operate on a time frame longer than several wingstrokes. To demonstrate

this, unsteady effects will be estimated with computational and experimental tech-

niques, and compared to a quasi-steady aerodynamic model that does not include

them.

3.2 Previous Insect Aerodynamic Modeling

Osborne (1951) and later Weis-Fogh (1972) first suggested a quasi-steady

model for estimating the instantaneous forces acting on a flapping wing [40, 78].

Ellington (1984) further developed the concept, but contradicted Weis-Foghs sug-

gestion that quasi-steady aerodynamics can result in the lift necessary for hovering

insect flight [53]. Ellington diligently documented insect morphological and kine-

matic features using techniques available at the time, but with a quasi-steady aero-

dynamic model constructed from conventional steady state estimates of lift and drag

coefficients failed to generate a feasible model that could predict the lift necessary

for flight.

Dickinson et al. (1999) used experimental data to augment the quasi-steady

aerodynamic model that includes unsteady effects. By constructing lift and drag

polars from a rotating wing while the LEV was attached, this experimentally-derived

quasi-steady model includes additional lift and drag associated with the LEV. By
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adding terms for wing rotation during pronation and supination, Sane & Dickinson

were able to model the lift for a Drosophila in hover and test the effect of varying

several kinematic parameters. Drag, however, was not as accurately modeled and

still suffered from inaccuracies compared to the experimental measurements from

RoboFly [56].

3.3 Aerodynamic Estimation Methods

Three aerodynamic techniques were utilized to estimate the loads on a flapping

wing: an experimentally-derived quasi-steady model, a computational fluid dynamic

(CFD) solver, and a scaled up robotic flapping setup (RoboFly). The purpose of

the CFD and RoboFly aerodynamic estimates is for verification of the less rigorous

quasi-steady methodology. The aerodynamic loads are estimated by each technique.

In this work the wing is treated as a rigid planar plate with Drosophila Mel-

onogaster morphology. Actual Drosophila wings do in fact flex, but precise measure-

ments of flexing are quite difficult to capture in flight. The small size of these insects

coupled with the high flapping speed and unpredictable movement through the focal

volume of the kinematic extraction setup lead to a course resolution, such that it is

difficult to capture torsion in particular with any accuracy. Moreover, wing flexing

is an active area of research in both the experimental and computational methods.

Aerodynamic scaling for similitude is necessary for both CFD and RoboFly.

The aerodynamics for a flapping vehicle with rigid wings can be scaled by two pa-

rameters: the Reynolds number, Re, and the reduced frequency, k [79]. The reduced
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frequency scales the unsteadiness of the flow, and results from nondimensionalizing

the Navier-Stokes equations with the flapping frequency. Reynolds number and re-

duced frequency are dependent on the mean chord length of the wing, c̄ = S/2R,

and the reference velocity, Uref = 4φmaxfR, which is the average wing tip speed as

specified in Refs. 55 and 80. The model Drosophila operates at a Reynolds number

near 120, and reduced frequency 0.2.

3.3.1 Quasi-Steady

The quasi-steady aerodynamic model is derived from the Dickinson transla-

tional lift and drag force, in which the lift and drag coefficients are experimentally

determined. This quasi-steady model is not the conventional aerodynamic quasi-

steady model, in which lift is linearly related to wing angle of attack with slope 2π.

Here, quasi-steady refers to the determination of lift and drag as functions exclu-

sively of the instantaneous air speed seen by the wingtip, Utip(t), and the angle of

attack at the wing tip, αtip(t). By incorporating much of the inherent unsteadiness

of flapping wing aerodynamics into the non-dimensional lift and drag coefficients, a

much simpler and tractable estimation of the aerodynamic loading is possible for a

wide range of flapping wing kinematics.

Lift is given by Eq. (3.1), where ρ is air density, S is the surface area of the

wing, and r̂2 is the non-dimensional second moment of wing area: r̂2 =
∫ 1

0
ĉr̂2dr̂,

where ĉ and r̂ are normalized chord and radius, respectively. The addition of the

second moment of wing area into the traditional equation for an aerodynamic force
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addresses the distribution of lift along the span of the wing, and allows lift along

the rotating wing to be calculated solely from tip velocity and angle of attack.

L(t) =
1

2
ρ‖Utip(t)‖

2Sr̂22CL(αtip(t)) (3.1)

A similar equation can be given for drag. The lift and drag coefficients were obtained

experimentally by Dickinson et al. (1999) using RoboFly, and approximated by

harmonic functions, as shown in Figure 3.1. These coefficients include the three

dimensional effects of a rotating wing, and unsteady effects including the leading

edge and tip vortex interaction. Other quasi-steady forces mentioned earlier, such

as added mass or wake capture, are not included in the present calculation.

Fig. 3.1: Lift and drag coefficients versus angle of attack for a rotating Drosophila wing

at constant angle of attack. From Dickinson et al. (1999).

Calculation of the wingtip velocity includes three terms: the first due to the

rotation of the wing, another due to the translation of the insect, and finally a term
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due to the insect’s rotation. As shown in equation 3.2, each term must be written

in the wing frame, which means including a transformation from the body frame to

the wing frame for the two terms resulting from insect body motion.

[Utip(t)]w = ωw(t)× [Rtip]w + [vb(t)]w +
[

ωb(t)× [Rtip(t)]b
]

w
(3.2)

The bracket notation refers to the reference frame where the equation is represented:

[·]b refers to the coordinate frame with the basis ê = [ê1, ê2, ê3]
T , and [·]w refers to

the coordinate frame with the basis p̂ = [p̂1, p̂2, p̂3]
T .

The motion is a combination of the body and wing kinematics. The wing

rotation rate, ωw(t) is given by the wing kinematics. The body translation, vb(t),

and rotation rate, ωw(t), could be related to a reference flight condition (e.g. forward

flight), a translation perturbation, or a wind gust. The location of the wingtip is

constant in the wing frame ([Rtip]w = [0, R, 0], where R is the wingspan). However,

due to the coordinate transformation, the wingtip location becomes a function of

time in the body frame: [Rtip(t)]b = h+ Tbw(t) [Rtip]w. The vector h is the distance

from the center of gravity to the wing hinge.

The angle of attack, is directly calculated from the components of Utip.

αtip(t) = tan−1

(

Utip(t) · p̂3
Utip(t) · p̂1

)

(3.3)

Once the tip velocity and angle of attack are known, the quasi-steady lift and

drag are calculated according to Equation 3.1. For the calculation of aerodynamic

moments, these forces are assumed to occur at the 60% span location. The forces
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and moments on the vehicle can be determined according to the equations below:

[Faero(t)]b = Tbw(t) [Faero]w = Tbw(t)T2(−αtip(t))







D(t)

0

L(t)






(3.4)

[Maero(t)]b = [R60(t)]b × [Faero(t)]b (3.5)

Given a set of wing and body kinematics, the quasi-steady model will estimate

the aerodynamic forces on a flapping wing with minimal computational expense.

By incorporating experimentally determined lift and drag coefficients, this estimate

includes some, but not all, of the unsteady loads. Aerodynamic phenomena such

as the LEV or tip vortex and the induced flow from lift that exist in the unsteady

flow of a rotating wing are included in this method, as they would be captured in

the experimentally-found lift and drag coefficients. The changes in loads due to

alterations in the flow structures due to previous kinematic motion, or to the wake

from previous wingstroke will not be accurate. Due to this, this experimentally-

derived quasi-steady method of aerodynamic estimate may capture the majority of

the flapping wing loads during the translation-dominated parts of the wingstroke;

the estimate is not expected to be accurate during wing rotation at pronation or

supination. During wing rotation, there are large changes in the flow structures

as the LEV detaches from the surface of the wing, and a new LEV forms on the

beginning of the next half-stroke. Additionally, a complex interaction with the

wake occurs at the beginning of the new half-stroke. None of these phenomena

will be accurately described by this simple quasi-steady method. The following two
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techniques will aid in determining the overall accuracy.

3.3.2 Computational Fluid Dynamics

The computation of flow around the Drosophila model is accomplished by

IBINS, an immersed boundary incompressible Navier-Stokes solver developed at

the University of Maryland. Development of IBINS for the purpose of flapping wing

aerodynamics can be found in Bush et al. (2008, 2010). [81, 82]. The Drosophila is

treated as three rigid bodies (the insect body with two wings) that move through a

stationary three dimensional Cartesian grid as shown in Fig. 3.2.

IBINS solves the incompressible Navier-Stokes equations using a semi-implicit

fractional time step similar to the method laid out in Kim and Moin (1984) [83].

The convective terms are discretized using a 2nd order Adams-Bashforth scheme and

the diffusive terms use a 2nd order Crank-Nicholson scheme. Spacial differencing

is 2nd order central except for regions of high convection, where 2nd order upwind

is used on the convective terms. Poisson’s equation for pseudo-pressure is solved

using Stone’s strongly implicit procedure and enforces the zero divergence criterion.

Pressure and shear forces on each facet of the immersed body are summed to obtain

the aerodynamic forces and moments of the entire wing body system about the

center of gravity. The simulation was run on a mesh size of 68 million nodes on a

quadcore Intel Xeon 2.8 GHz machine with 24 GB RAM.
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Fig. 3.2: The three immersed bodies (insect body and two wings) in the computational

flow domain. The body remains stationary in the Cartesian grid while both

wings rotate according to prescribed kinematics and force the aerodynamic flow.
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(a) (b)

Fig. 3.3: Iso-surfaces of q-criterion of vorticity for the idealized hover kinematics near

pronation. Vortical structures are shown attached to each wing and in the wake

from previous strokes.

3.3.3 RoboFly

To verify the accuracy of quasi-steady and computational results, experimental

estimates were sought. Through collaboration with Micheal Dickinson’s lab, then at

the University of Washington, the RoboFly setup was made available. The RoboFly

apparatus includes a pair of independently controlled Drosophila wings scaled up

to 0.23m in span. The apparatus was submerged in a tank filled with oil to give

Reynolds number aerodynamic similitude. The wings were driven according to the

slow and fast forward flight kinematics described in Chapter 2. To replicate forward

flight or translational perturbations from a reference condition, RoboFly could be

translated across the tank via a gantry system.
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Fig. 3.4: The Robofly experimental apparatus from below the flapping wings.

3.3.4 Comparison for Example Wingstroke

Figure 3.5 shows a comparison of longitudinal loads (fore-aft force, X ; vertical

force, Z; pitching moment, M) estimated by the three above modeling techniques

for the slow forward flight case. Lateral loads (side force, Y ; rolling moment, L;

yawing moment, N) are not shown because they are near zero due to cancellation

by movement of two symmetric wingstrokes. The majority of the force keeping the

vehicle aloft is generated during the downstroke (approximately t/T = [0.7, 0.1])

and the upstroke (approximately t/T = [0.3, 0.6]).

RoboFly and IBINS computational estimates are quite close. The quasi-steady

aerodynamic calculation also follows the two more rigorous estimates, but varies

slightly in two parts of the stroke. There are small dips in Z and oscillations in X
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near pronation (t/T = 0.25) and supination (t/T = 0.75). This is expected, and

can be attributed to the lack of rotational and wake capture estimates involved in

the quasi-steady calculation. Perhaps more interesting is the loss of lift between

t/T = [0.5, 0.7], that is seen in both the computational and RoboFly results, but

not the quasi-steady. This could be due to interaction with the previous wake and

the increase in downwash, reducing the perceived angle of attack on the wing. There

is little associated deviation in the X force, and this occurs when the wings are at

their lowest point in the stroke, lending credence to the concept. Regardless, the

quasi-steady model does capture the overall loads fairly well, without the expense of

the more rigorous experimental and computational techniques. As will be discussed

in the following chapter, high frequency errors between the aerodynamic models

may not be important to the overall dynamics of the system.
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Fig. 3.5: Longitudinal loads throughout a wingstroke for a Drosophila in slow forward

flight, as determined by the three modeling techniques: quasi-steady, computa-

tional, and experimental.
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3.3.5 Calculation of Power Required for Flight

Interaction Between Aerodynamic and Inertial Power

The total power required for flight consists of both aerodynamic and inertial

considerations. Aerodynamic losses are incurred by producing the lift required to

counteract the insect’s weight, termed induced power, and profile power required to

overcome the aerodynamic drag on the wings and body. Inertial power is induced

by the acceleration and deceleration of the wing. Inertial power includes not only

the acceleration of the wing’s mass but also the added mass of a volume of air near

the wing that is considered to move together with the wing. This added mass of air

that must be moved with the wing can be quite significant at small scales like that

encountered by a fruit fly.

Previous work by Ellington [84] describes a method of estimating the average

power required during a wingstroke, including all four terms: induced, profile, wing

inertia, and added mass. Lehmann and Dickinson [85] furthered this approach

by considering the efficiency gained by the reciprocal nature of the insect flapping

mechanism. They suggested that the excellent power efficiency seen by insects can

be a result of two effects: elastic energy storage and recovery of inertial power on the

decelerating portions of the wingstroke. The aerodynamic power required is always

positive and must be provided by the insect at all times throughout the stroke.

But the inertial power changes sign throughout the stroke. When the wings are

decelerating during the second half of each halfstroke, the inertial power can be used
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to mitigate aerodynamic power requirements – essentially using aerodynamic losses

to slow the wing down. Thus, the following equation for average power required is

obtained by breaking down the wingstroke into quarter strokes:

P̄tot =
1

4

4
∑

k=1

(P̄aerok + (−1)kη∗P̄inertk) (3.6)

where P̄aerok is the average aerodynamic power required during the kth quarter stroke,

and P̄inertk is the magnitude of the mean inertial power required during a quarter

stroke to accelerate or decelerate. The increased efficiency due to elasticity is rep-

resented by η∗ = 1− η, where η is the power retained due to elasticity of the wings.

Lehmann and Dickinson suggest 10%, which is used here. The coefficient (−1)k

will determine the sign change of inertial power depending on whether the wing is

accelerating or decelerating; as written, the kinematics are assumed to begin during

an accelerating phase.

Because the power required to stretch the flight muscles is insignificant com-

pared to the power required for contraction, any excess inertial power over that

required by the aerodynamics on decelerating portions of the stroke is considered

negligible. Lehmann and Dickinson use a rectification function R(x) that simply sets

all x lower than zero to zero. Assuming the wingstroke begins during an accelerating

phase, Equation 3.6 can be broken down into quarter strokes:

P̄tot =
1

4
[(P̄aero1 + η∗P̄inert1) +R(P̄aero2 − η∗P̄inert2) (3.7)

+(P̄aero3 + η∗P̄inert3) +R(P̄aero4 − η∗P̄inert4)] (3.8)
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Aerodynamic Power

The aerodynamic power throughout the wingstroke is measured directly by

IBINS calculations. At each surface facet on an immersed body, the power is cal-

culated by a dot product of the aerodynamic force on that facet with its velocity.

The summed power over all the facets of each body gives the aerodynamic power

requirement for each instant in time. An estimate of average aerodynamic power

required for each quarter stroke is obtained by a simple integration. Calculating

the power for individual quarter strokes is critical for the forward flight reference

condition considered here – the downstroke will necessarily produce higher loads

and also power requirements due to the added effect of the freestream velocity.

Inertial Power

The majority of inertial loading is obtained solely by the flapping in the stroke

plane. The inertial power required during a quarter stroke P̄inertk is calculated by

the change in kinetic energy during a quarter stroke:

Ekin =
1

2
Itotω

2 (3.9)

where Itot = Iw+Iadd is the combined moment of inertia of the wing and added mass

of air, and ω is the rotational speed of the wing. The wing and added mass inertias

are calculated according to Ellington [84]. Assuming inertial effects resulting from

the wing moving outside the stroke plane are negligible, the inertial power required

will be determined solely by the stroke angle. The magnitude of the inertial power

61



during each quarter stroke P̄inertk becomes constant; the sign changes depending on

whether the wing is accelerating or decelerating as indicated in Eq. 3.6.

P̄inert =
4

T

∫ T/4

0

Itotφ̇φ̈dτ (3.10)

Eq. 3.10 together with Eq. 2.5 yields the following expression for mean inertial power

required for a single wing during a quarter stroke:

P̄inert = 8π2Itotf
3φ2

max (3.11)

3.4 Summary

This chapter outlined the methodology for calculating aerodynamic loading

that will be used for modeling flapping wing vehicle dynamics. Three aerodynamic

estimation methods are presented: an experimentally-derived quasi-steady model,

the IBINS incompressible flow solver, and the RoboFly experimental setup. IBINS

and RoboFly are much more rigorous than quasi-steady method, and they will

capture the unsteady aerodynamics around the flapping wing. The quasi-steady

method will capture some of the unsteady effects due to the experimental basis

from which it was derived, but other aerodynamic phenomena will be unmodeled.

The three methods are compared for a set of Drosophila wing kinematics,

verifying the computational and experimental results. Longitudinal load results

showed that the quasi-steady method does capture most of the aerodynamic loading,

with some exception particularly at stroke reversal.

A calculation of power is also presented, based on a combination of aerody-
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namic calculation from IBINS and biologically-motivated inertial power consump-

tion. These calculations will be used in Chapter 5 for estimating power consumption

of flapping wing kinematic control inputs.
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Chapter 4: Dynamical Modeling

4.1 Rigid Body Dynamics

Rigid body equations of motion for a flapping wing vehicle or insect in flight

are derived from Newton’s second law of motion. For vehicles with an xz plane of

symmetry the equations reduce to the system of ordinary differential equations

X −mg sin(θ) = m(u̇+ qw − rv) (4.1)

Y −mg cos(θ) sin(φ) = m(v̇ + ru− pw) (4.2)

Z +mg cos(θ) cos(φ) = m(ẇ + pv − qu) (4.3)

L = Ixṗ+ qr(Iz − Iy)− Ixzpq (4.4)

M = Iyq̇ + rp(Ix − Iz) + Ixz(p
2 − r2) (4.5)

N = Iz ṙ − Ixzṗ+ pq(Iy − Ix) + Ixzqr (4.6)

where X , Y , and Z are the aerodynamic forces in the direction of body-fixed axes

ê1, ê2, ê3, and L, M , and N are the aerodynamic moments around the same axes.

The translation of the body is given by vb = uê1 + vê2 +wê3 and the rotation rate

of the frame is ωb = pê1 + qê2 + rê3. The longitudinal equations for X , Z, and

M can be decoupled from the lateral-directional dynamics. This allows treatment



of the complexities of modeling each aspect of flapping wings vehicle dynamics

independently.

4.1.1 Small Perturbation Theory

The system of ordinary differential equations can be linearized using small

disturbance theory, where the motion is assumed to be small deviations in the flight

path away from a reference condition. Each variable in Equation 4.6 is replaced

by the reference value plus some small deviation. For example, u = u0 + ∆u,

θ = θ0 +∆θ, X = X0 +∆X , etc. The reference condition could be any flight path,

but this work focuses on hovering and forward flight. This assumes that w0, v0, p0,

q0, and r0 are all set to 0.

Introducing this notation into the first differential equation in Eq. 4.6 and

neglecting products of any disturbance (as they are non-linear terms) results in

X0 +∆X −mg sin(θ0 +∆θ) = mu̇ (4.7)

At trim, all perturbations are zero, so the equilibrium equation is

X0 −mg sin(θ) = 0 (4.8)

By subtracting the equilibrium equation from Equation 4.7, and applying the small

angle theorem, the linear equation is reached

∆u̇ =
1

m
∆X − g∆θ (4.9)

The aerodynamic term ∆X incorporates any aerodynamic forcing on the sys-

tem in the ê1 direction, including changes in X due to state perturbations or due to
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control inputs. Taking the linear terms of a Taylor series expansion,

1

m
∆X = Xu∆u+Xw∆w +Xq∆q +Xθ∆θ +

1

m
Xδ∆δ (4.10)

where the terms X[·] are aerodynamic stability derivatives, scaled by the mass: X[·] =

1
m

δX
δ[·]

. The final term, ∆δ, incorporates the aerodynamic forcing due to all control

inputs. For the biologically-inspired control inputs discussed in Chapter 2, the

control term expands to

1

m
Xδ∆δ = Xφmax

∆φmax +Xφoff
∆φoff +Xβ∆β +Xf∆f (4.11)

Using small perturbation analysis, the nonlinear system is reduced to the fol-

lowing familiar form

ẋ(t) = A(t)x(t) +B(t)u(t) (4.12)

where A(t) is the stability matrix, B(t) is the control matrix, and x(t) and u(t) are

the vector of vehicle states and control inputs respectively.

For longitudinal flight, x = [u, w, q, θ]T , and u = [δφmax
, δφoff

, δβ, δf ]
T . The

corresponding stability and control matrices for longitudinal flight are

A(t) =











Xu(t) Xw(t) Xq(t) −g

Zu(t) Zw(t) Zq(t) + u0 0

Mu(t) Mw(t) Mq(t) 0

0 0 1 0











(4.13)

B(t) =











Xφmax
(t) Xφoff

(t) Xβ(t) Mf(t)

Zφmax
(t) Zφoff

(t) Zβ(t) Mf(t)

Mφmax
(t) Mφoff

(t) Mβ(t) Mf(t)

0 0 0











(4.14)
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Note that the stability derivatives are functions of time, and are periodic in T = 1/f .

The next section will discuss a further simplification from a linear time periodic

system to a linear time invariant system.

4.1.2 Wingstroke Averaging

Vehicle motion from unsteady forcing can be broken into two components,

high frequency vibrations and the low frequency flight path of the vehicle. Because

the flight path resulting from any forcing is the item of interest for the study of

vehicle dynamics, the high frequency content can often be neglected for tractability.

Vehicle inertia limits the speed of system response to any inputs, and a ”two-timing”

assumption gives resulting low frequency flight path from an averaged high frequency

forcing. [63]

For flapping wing vehicles, the aerodynamic forcing is often much faster than

the resulting vehicle motion, and this approach is often taken if the forcing frequency

is more than ten times that of the vehicle motion. [45, 86] For the Drosophila-scale

insect considered here, the frequency of the wing flapping (200 Hz) is much greater

than the speed of rigid body motion (about 6Hz [87]), such that the periodicity of

forcing causes a negligible effect on the motion of the vehicle. Wu and Sun [64]

showed that for larger insects with lower wingbeat frequencies this approximation

was not valid, while for a dronefly the assumption is valid. Here, this approximation

is tested by considering first the stroke-averaged forces in a time-invariant model,

and comparing the results with a time-periodic model that includes high frequency
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aerodynamic forcing.

When using this assumption, the wingstroke-averaged aerodynamic force is

used for the calculation of the stability and control derivatives in Equations 4.13

& 4.14. The stroke-averaged forces are simply F̄ = 1
T

∫ T

0
F(t)dt, where F(t) =

[X(t), Y (t), Z(t)]T is periodic in T .

4.2 Linear Time Invariant Models

As described in Chapter 2, three reference flight conditions are modeled: hov-

ering flight, slow forward flight, and fast forward flight. Dynamic models resulting

from quasi-steady aerodynamic technique are compared to the more rigorous com-

putational and experimental models. The linear time invariant dynamic models

result from the changes in stroke-averaged aerodynamic forces and moments due to

perturbations in state as estimated by each of the aerodynamic techniques.

4.2.1 Hovering Flight

For hovering flight, the flat stroke plane kinematics shown in Figure 2.8 are

used. An example of the change in longitudinal loads is given by Figure 4.1. The

quasi-steady and CFD estimates are comparable, and stroke-averaged loads change

similarly with perturbations in other states, as shown in Figure 4.2. Note that,

with the body axes having ê3 pointed down, a negative stroke averaged load in Z

is countering gravity. In this case, the Z force is higher in magnitude for the CFD

results, a result due to the force peaks seen during stroke reversal; similar peaks

68



0 0.2 0.4 0.6 0.8 1
-5

0

5

X
(N

)

×10−5

0 0.2 0.4 0.6 0.8 1
-5

0

5

Z
(N

)

×10−5

0 0.2 0.4 0.6 0.8 1

t/T

-4

-2

0

2

M
(N

m
)

×10−8

∆u = −0.44 m/s
∆u = −0.22 m/s
∆u = 0 m/s
∆u = 0.22 m/s
∆u = 0.44 m/s

Fig. 4.1: Aerodynamic loads of an idealized hovering Drosophila calculated by IBINS with

translational perturbations in the x-direction from hover. CFD results are solid

lines; Quasi-steady are dashed.
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have been seen for these kinematics by Dickinson et al. [54]

The vital feature for dynamical modeling, however, is actually the slope of the

linear regression through stroke-averaged points that give the stability derivatives

which constitute the stability matrix, A, of the longitudinal linear system model.

Thus, an offset in the estimated loads between the two different aerodynamic meth-

ods does not affect the dynamical modeling; however, a difference in the way the

loads change with state perturbations could have significant effect. In Figure 4.2,

the quasi-steady model proves capable of predicting the changes in stroke-averaged

loads except due to perturbations in ∆u, where the stability derivatives Xu and Mu

are under-predicted.

Figures 4.3 & 4.4 show the resulting eigenstructure of the system. Both the

quasi-steady model and the CFD model have a fast subsidence mode in the deep

left half plane, a slower subsidence mode also in the left half plane, and a pair of

oscillatory unstable modes in the right half plane. In Figure 4.4, we can see that the

fast subsidence mode (λ1) is comprised of motion in surge and pitch rate; the slow

subsidence mode (λ2) is the only mode containing heave motion; and the oscillatory

modes (λ3,4) show surge and pitch rate motion that will grow with time. This

is also the same form as other previously identified hovering insects, and, in fact,

longitudinal poles for helicopters in hover (albeit much faster motion in the insect

case). [45, 50, 88]

Faruque & Humbert (2010a) considered the same kinematics when estimat-

ing the LTI model of a hovering Drosophila-scale insect. That work involved a
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Fig. 4.2: Time-averaged aerodynamic loads of an idealized hovering Drosophila with per-

turbations in longitudinal states. Circles show X, triangles Z, and squares M ;

results from the quasi-steady model are in black, CFD in blue. The resulting

linear regressions are shown as dashed lines of the corresponding color.

frequency-based identification of the linear system from non-linear simulation, and

used the quasi-steady aerodynamic method. In order to reduce the inherent instabil-

ity of motion and make the linearization possible, a degree of q-feedback control was

added to that system. After adding the same degree of control on the Mq term to

the quasi-steady model, the resulting linearized system approaches the same model.
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Fig. 4.3: Longitudinal LTI modes of an idealized hovering Drosophila in slow forward

flight. Adding pitch rate feedback gives similar results to those presented in

Faruque and Humbert (2011a).

The modes of that system are included in Figure 4.3 with the results of Faruque et

al. (2011a) that considered the same kinematics.

These results allow a first glimpse of the effectiveness of the quasi-steady aero-

dynamic model in estimating flapping wing vehicle dynamics. The quasi-steady

model performs well, and estimates a very similar linear dynamic model to the

computationally-derived model. Moreover, a comparison with previous results by

Faruque et al. show that the small perturbation method of estimating the linear

dynamics aligns with frequency-based modeling.
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Fig. 4.4: Argand diagrams displaying the variation in eigenstructure for each aerodynamic

model. Each plot shows the components of the eigenvector plotted on the com-

plex plane, each component corresponding to an individual state. The first two

modes shown are subsidence modes, and eigenvectors exist completely on the

real axis. The second two modes are the oscillatory modes; the angle between u

and q components shows the lead or lag in phase of the interchange of motion

between the two components. Eigenvectors are scaled to unit norm. Note the

isolation of vertical motion to the slow subsidence mode, λ2.
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4.2.2 Forward Flight

Longitudinal Flight

In forward flight, RoboFly experiments were available to ensure that the CFD

results from IBINS were in fact accurately estimating the flapping wing aerody-

namics. The kinematics used in forward flight were determined from freely flying

Drosophila, as described in Chapter 2; the wing kinematics are provided in Figure

2.6.

The stroke-averaged longitudinal loads are shown in Figure 4.5 for slow forward

flight, and the resulting modes are shown in Figure 4.6. In this case, there is

remarkable similarity between the results of the two rigorous methods. Notably, the

quasi-steady method over-predicts the vertical stroke-averaged force compared to

RoboFly and IBINS CFD.

The fast forward flight modes are very similar to the slower reference condition,

as shown in Figure 4.7. The resulting linear modes of the system are similar in

structure to those of hover, with the exception that much more coupling exists in

the heave dynamics, as can be seen by looking at the eigenvector composition of

the fast forward flight in Figure 4.9. Increasing the reference speed has a stabilizing

effect, moving the oscillatory modes further to the left on the complex plane, in

exchange for slowing the rate of decay for the fast subsidence mode.

As in hover, the quasi-steady aerodynamic model provides a longitudinal for-

ward flight model that is verified by both the CFD and RoboFly results. The models
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Fig. 4.5: Time-averaged aerodynamic loads of a forward flying Drosophila with pertur-

bations in longitudinal states. Circles show X, triangles Z, and squares M ;

results from the quasi-steady model in black, CFD in blue, RoboFly in red. The

resulting linear regressions are shown as dashed lines of the corresponding color.

generated by the more robust aerodynamic estimates via CFD or RoboFly are as

close to the quasi-steady dynamics as to each other. While an offset in some of the

longitudinal loads exists, the stability derivatives and the resulting linear models
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Fig. 4.6: Longitudinal LTI modes of a forward flying Drosophila in slow forward flight.

are quite similar. This suggests that high frequency aerodynamic forcing within the

wingstroke has minimal effect on the overall longitudinal dynamics of a Drosophila-

scale flapping wing vehicle.
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Fig. 4.7: Longitudinal LTI modes of Drosophila in fast forward flight.
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Lateral-Directional Flight

The above analyses for hovering and forward flight dynamics only considered

longitudinal motion of the insect. An equivalent system in the form of Eq. 4.12 can

be derived for lateral-directional flight, where the state equation is x = [v, p, φ, r]T .

The stability matrix for lateral-directional flight is then

A(t) =











Yv Yp g Yr − u0

Lv Lp 0 Lr

0 1 0 0

Nv Np 0 Nr











(4.15)

The same methodology as above is used, but with perturbations in the lateral-

directional states. Figure 4.10 shows the stroke-averaged load results. Note that the

scale is much smaller for many of the deviations in stroke-averaged loads from the

reference compared to the longitudinal loads in Figures 4.2 & 4.5.

The case for quasi-steady estimation of lateral-directional flight is not as

strong. Many of the stability derivatives from the quasi-steady aerodynamic model

do not agree with those given by CFD. This leads to a very different lateral-

directional dynamical model, shown in Figure 4.11. RoboFly is not capable of

lateral-directional perturbations, and so the computational results cannot be vali-

dated with experimental results.

The discrepancy could be a result of high frequency aerodynamics that are

not included in the quasi-steady model. Figure 4.12 shows the rolling moment, L

throughout the wingstroke with perturbations in sideslip. The quasi-steady model

does capture most of the content contained in the CFD results; however, the CFD
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Fig. 4.10: Time-averaged aerodynamic loads of a forward flying Drosophila with pertur-

bations in lateral-directional states. Diamonds show Y , circles L, and triangles

N ; results from the quasi-steady model in black, CFD in blue. The resulting

linear regressions are shown as dashed lines of the corresponding color.

results are quite noisy due to the small signal (compare to Fig. 3.5) returned due to

these perturbations. The small differences between the quasi-steady rolling moment

and CFD rolling moment due to these perturbations cause the stability derivative
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Fig. 4.11: Lateral-directional LTI modes of Drosophila in fast forward flight.

(Lv) to be positive in the CFD case, or negative in the quasi-steady case. This sign

change in one stability derivative is enough to change the entire structure of the

linear model, and make it unstable.

The discrepancy may, however, be due to inaccurate predictions by the quasi-

steady aerodynamic method. Faruque & Humbert (2010b), also using the quasi-

steady code described stable lateral-directional modes similar to those given by the

quasi-steady method here: stable oscillatory roll motion near the imaginary axis,

and stable yaw subsidence modes. [72] Xu & Sun (2013), using a Navier-Stokes

solver, found a modal structure of bumblebees quite similar to that found in the

IBINS case here: stable oscillatory rolling motion, and an unstable yaw motion. [66]

Although these are for different insects with different kinematics, the aerodynamic

calculation is possibly the major contributing factor for the disparate results. Xu

& Sun have proposed that the sideslip motion (v) may cause a loss in axial velocity

along one of the wings. This could cause an instability in the LEV on the windward
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facing wing, altering the instantaneous lift and drag. A detachment of the LEV

on a single wing of the vehicle would cause a substantial rolling moment and could

certainly change the sign of Lv as seen in the above results. Such an unsteady

effect would not be incorporated into the quasi-steady aerodynamic method, and

would severely limit its use in lateral-directional flight estimates. Verification via

experiment or more accurate computation is necessary to definitively say whether

the quasi-steady method has failed in determining the lateral-directional dynamics.
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Fig. 4.12: Rolling moment throughout a wingstroke in fast forward flight for varying

sideslip. Quasi-steady results are dashed, CFD in solid.

4.3 Linear Time Periodic Model

Small insects such as Drosophila and Caliphora that have relatively low-mass,

rigid wings that flap at high frequency allow assumptions not applicable for larger

flapping systems. As the flapping wing system increases in size, the increased inertia
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in the wing wing increases the bending in the wing, and the time scale of the

wingbeat slows, approaching that of the flapping system. It is of particular interest

whether these assumptions of wing rigidity and time-scale invariance are applicable

to the hummingbird-scale, as this is the size of many proposed flapping wing MAVs.

In the above analyses we assumed that a ”two-timing” approach could be

taken to the vehicle dynamics such that only the aerodynamic loads averaged over

the wingstroke were important to the overall vehicle dynamics. In this section we

test that assumption.

The aerodynamic forcing on a flapping wing platform is periodic in T , and so

the linearized equations of motion can be considered on a periodic timeframe, where

the stability and control matrices are also periodic with the wingstroke period.

ẋ(t) = A(t)x(t) +B(t)u(t) (4.16)

where A(t + T ) = A(t) and B(t + T ) = B(t). The LTP characterization can be

accomplished using Floquet decomposition, which transforms the current periodic

system into a time invariant system. In the transformed coordinate system, common

LTI control and modeling techniques can be utilized. To find the transformation

between the LTP and LTI systems, the periodic A(t) must first be found. As before,

the matrix is composed of stability derivatives that describe changing aerodynamic

loads due to perturbations in state, but now those stability derivatives are periodic

in time. An example of the periodic loads changing with time and with perturbation

in the pitch rate, q, is given in Figure 4.13.

The goal of the Floquet decomposition is to find a linear transformation P (t)
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Fig. 4.13: Surface plots of forces and moments as functions of both time and perturbation

in pitch rate. The stability and control matrices can be characterized as func-

tions of time by measuring the change in loads with perturbations in state or

control input for each instant in time.

85



between the LTI and LTP coordinates:

x(t) = Pz(t)x̃(t) (4.17)

where x̃(t) is the state vector in the artificial LTI coordinates. This Pz(t) is also pe-

riodic. The transformation Pz(t) is found using fundamental solutions ψ(t) of A(t).

These fundamental solutions create a basis set for all solutions of the periodic sys-

tem, and are the solution to the ordinary differential equation, ψ̇(t) = A(t)ψ(t), with

any set of linearly independent initial conditions (e.g. ψ(0) = I). The fundamental

solutions are not periodic and change with every wingstroke; however, the transition

of the fundamental solutions from one period to the next, Q = ψ(t)−1ψ(t + T ), is

constant. This matrix Q is analogous to a state transition matrix, and takes the

form Q = eAzT , where the period of the flapping is T , and Az is the system matrix

in the new LTI coordinates (ż(t) = Azz(t), for zero inputs). Now the transformation

at every time can be found via

Pz(t) = ψ(t)e−Azt (4.18)

and use Equation 4.17 to transform between the LTP and LTI systems.

The stability of a periodic system can no longer be determined by the eigen-

structure of A(t). Instead, the magnitude of the eigenvalues of the Floquet transition

matrix, Q, must remain less than one for the system to be stable. A standard ex-

ample used to illustrate this is the system with

A(t) =

(

−1 + 1.5 cos2(t) 1− 1.5 sin(t) cos(t)

−1 − 1.5 sin(t) cos(t) −1 + 1.5 sin2(t)

)

(4.19)
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The eigenvalues of this periodic A(t) are constant with negative real components:

λ = −0.25± 0.6614j. The state transition matrix for this system, however, demon-

strates that the system is not stable, as it has exponentially growing solutions:

x(t, 0) =

(

et/2 cos(t) e−t sin(t)

−et/2 sin(t) e−t cos(t)

)

(4.20)

The Floquet transition matrix on the other hand has eigenvalues: λ = (0.002, 23.008).

The magnitude of the largest eigenvalue is well over 1, indicating that the system is

unstable.

Floquet decomposition was utilized to examine the longitudinal forward flight

Drosophila dynamics previously characterized using LTI stroke-averaged techniques.

Figure 4.14 shows a homogeneous response for a perturbation in heave velocity.

The distinction between the LTP and LTI models is evident in the higher definition

within wing strokes, especially for pitch rate. The two models are initially close

but will begin to diverge as the responses progress. This is not necessarily due

to modeling error; the cause is the systems inherent instability due to the pair of

oscillatory modes in the right half-plane. The stability as determined by Floquet

theory agrees with this result, since max
k

(‖λk(Q)‖) = 1.0586 > 1. Because the

system is unstable, small differences between the LTI and LTP models will cause a

divergence as time progresses.

The LTI forward flight Drosophila system can be stabilized by closing the loop

with state feedback. To model the LTP system, the closed-loop system matrix, ACL,
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Fig. 4.14: LTI and LTP initial condition responses for fast forward flight Drosophila dy-

namics with an initial vertical velocity, showing 10 wing strokes (about 0.05

seconds). The LTP model contains more information on scales between wing

strokes, evident here in the higher definition of the pitch rate response.
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is created using the time-varying A(t) and B(t), and constant gain matrix K.

ACL(t) = A(t)− B(t)K (4.21)

The gains were determined using LQR methods for full state feedback. The stability

of the LTP system is guaranteed, since max
k

‖λk(QCL)‖ = 0.9775 < 1. Figure 4.15

shows the closed loop LTI and LTP systems using the same gains, for the same

initial condition in Figure 4.14, but for many more time periods. The LTI response

is fairly close to the LTP, with the most variation occurring in pitch and pitch rate.

The variation between the LTI and LTP models is expected to more significantly

affect the vehicle dynamics for larger flapping wing vehicles with flapping frequencies

closer to the speed of the rigid body dynamics, such as those on the avian scale.
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Fig. 4.15: LTI and LTP initial condition responses for closed loop forward flight Drosophila

dynamics over 100 wingstrokes (about 0.5 seconds). Full state feedback and

LQR gains were utilized for closing the loop and stabilizing the system. The

LTI characterization is close to the LTP model for this small vehicle with fast

flapping frequency.
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4.4 Summary

This chapter describes reduced-order modeling of flapping wing vehicle dynam-

ics and applies the methods to hovering and forward flying Drosophila. Non-linear

rigid body equations are linearized about either reference flight condition using

small perturbation theory. By estimating aerodynamic loads with respect to state

and control input perturbations from the reference condition, stability and control

derivatives are found. The differential equations are periodic in T , the flapping

period. They can be made time invariant under the assumption that the forcing fre-

quency from the flapping wing aerodynamic loads is much higher than the frequency

of the dynamical motion. In this case, only stroke-averaged loading is important to

the dynamics of the vehicle.

A linear time invariant (LTI) model is presented for hovering and forward

flight Drosophila using multiple aerodynamic methods. A validated quasi-steady

aerodynamic model would save vast amount of computational and experimental ex-

pense for dynamical modeling of flapping wing flight. In longitudinal flight, the

system modal structure is similar to other hover-capable vehicles, in that slow sub-

sidence heave motion is largely decoupled from unstable pitching-surging motion.

The quasi-steady model is able to accurately model the longitudinal flight dynamics

in all cases, against computational results from the IBINS CFD solver, and experi-

mental results from RoboFly.

Quasi-steady estimates of lateral-directional flight model are inconclusive how-
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ever, as they do not match the computational results and RoboFly is not currently

capable of all lateral-directional motion required for dynamical modeling. This may

suggest that the changes in spanwise flow due to lateral-directional state perturba-

tions must be more accurately modeled by a quasi-steady technique. Alternatively,

the inconsistency could result from numerical issues: the stability derivatives in

question are very close to zero, and the eigenstructure changes dramatically when

the sign on the derivative is changed.

The time-invariant assumption is tested against a time-periodic model using

Floquet decomposition. The stability and control derivatives in this case are periodic

functions of time. Stability requirements are defined for time-periodic systems and

verified for the flapping wing case. The LTP model gives more resolution on the

within-wingstroke dynamics, but follows the LTI model closely. A full-state feedback

model-based control scheme based off the LTI system was shown to be effective for

the LTP dynamics as well.

An assumption is made during this linearization that the vehicle is in equi-

librium flight; that it is trimmed for that particular flight condition around which

the linearization occurs. This can be difficult to simulate for an insect, as the mass

properties are difficult to ascertain. Each insect has a variable mass, and the flight

capture of kinematics discussed in the previous section does not give knowledge

of which insect in the flight arena was captured, and therefore the mass proper-

ties remain unknown. Moreover, the methodology utilized here to compare aero-

dynamic methodologies does not allow a trimmed flight to be used across all the
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linearized models. The aerodynamic load estimate changes between the method,

and a trimmed vehicle would be forced to change the baseline wing kinematics, thus

preventing a proper comparison of the aerodynamic models. Given the goal for this

work is comparison of the flight dynamic models between the three aerodynamic

estimates, the choice was made to disregard the trim requirement for equilibrium

flight to focus on the differences in the flight models due to aerodynamics.
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Chapter 5: Control Input Modeling

The previous chapter described reduced-order modeling efforts of homogeneous

flapping wing flight. This chapter focuses on efforts to model flapping wing con-

trol inputs. Small perturbation theory is again used to describe linear deviations

in aerodynamic forcing from forward flight reference flight conditions. Biologically-

motivated control inputs are discussed first, followed by analysis on their effective-

ness using reachability metrics, and then a discussion of a more general framework

for selecting flapping wing control inputs that maximize the platform performance.

5.1 Biologically-Motivated Input Modeling

Perturbation in the reference wing kinematics yield changes to the aerody-

namic loads from the reference condition similar to perturbations in state from the

previous chapter. The control derivatives that constitute the control matrix, B, in

Equation 4.12 are the linear regressions of stroke-averaged changes to these loads.

For the biologically-motivated control inputs described in Chapter 2, the input

vector for longitudinal flight is u = [δφmax
, δφoff

, δβ, δf ]
T , giving the control matrix



for the LTI system:

B =











Xφmax
Xφoff

Xβ Mf

Zφmax
Zφoff

Zβ Mf

Mφmax
Mφoff

Mβ Mf

0 0 0 0











(5.1)

Figure 5.1 shows the variation of loads due to stroke amplitude throughout the

wingstroke. The stroke-averaged loads due to perturbation in each control input are

shown in Figure 5.2. As with the longitudinal stability derivatives for forward flight,

the quasi-steady loads are offset from the CFD estimates, but the linear change due

to perturbation from the reference condition matches well.

The system identified in the previous chapter (see Figures 4.7 & 4.9) shows

that the longitudinal dynamics are pitch-dominated, due to the unstable oscillatory

modes in the right half plane. It can be inferred that the control inputs that impact

the pitching moment, M , will greatly influence this unstable motion, and thus the

longitudinal motion of the vehicle as a whole. The stroke offset input, δφoff
, shows

the most promise in Figure 5.2, due to the high magnitude ofMφoff
. Both the stroke

amplitude, δφmax
, and frequency, δf , contribute to the heave motion.

Evaluating the stability derivatives directly gives some intuition for the effect

of each control input, but a better metric would take the vehicle dynamics into

account. For example, forcing a flight mode that is heavily damped will lead to less

impact than forcing a less damped or unstable flight mode. The following section will

describe a metric for evaluation of control inputs that includes the vehicle dynamics.
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Fig. 5.1: Aerodynamic loads for several perturbations of δφmax
during a wingstroke of

forward flying Drosophila estimated via IBINS CFD. The wing stroke begins

with the upstroke followed by the downstroke. The wing encounters higher local

velocity on the downstroke than the upstroke due to incoming flow, leading to

larger aerodynamic loading during the downstroke. Increasing δφmax
amplifies

loads throughout the stroke.
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Fig. 5.2: Stroke-averaged longitudinal loads due to perturbations in control inputs from

the forward flight reference condition. Circles show X, triangles Z, and squares

M ; results from the quasi-steady model in black, CFD in blue. The resulting

linear regressions are shown as dashed lines of the corresponding color.
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5.2 Reachability Analysis

5.2.1 The Reachability Gramian

To evaluate the effectiveness of control inputs, we use the flight dynamics

model developed in Sections 2.1 and 2.2 to consider the effect of the all unit norm

control inputs on the resulting motion of the insect. To do so, the control theoretic

framework of [76] is applied to quantify the reachable states for a given set of inputs

and analyze the fruit fly forward flight dynamics model developed in Section 3.

Controllability as an application of operator theory is the basis for determining the

reachable configurations under a class of inputs. The expressions for reachable states

may then be used to solve a least-squares optimization problem over all possible

function inputs. As a consequence of the cross coupling and rotational dominance

of the forward flight model, the controllability rank test indicates that the system is

controllable with any of the control inputs previously defined. Given the stringent

size, weight, and power demands on small air vehicles, a more refined analysis of

the relative controllability of each input is justified.

To do accomplish this, a controllability operator Ψc is introduced, which op-

erates on input u(t) ∈ U = Lp
2[0,∞)to X . The operator takes a time history in U

and outputs a final state in X as

Ψcu =

∫ 0

−∞

e−AτBu(τ) dτ. (5.2)

We define the reachable configuration space as the reachable states under a unit
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norm input, as

{Ψcu : u ∈ Lp
2[0,∞) and ‖u(t)‖ ≤ 1} , (5.3)

where unit norm is measured in total power required (inertial and aerodynamic).

This reachable configuration space is equivalent to the ellipsoid described by

Ec =
{

W
1

2
c xc : xc ∈ X and ||xc|| ≤ 1

}

. (5.4)

Ec defines an ellipse in Cn whose geometric properties are determined by the

infinite-time reachability gramian Wc for the LTI system,

Wc = ΨcΨ
∗
c =

∫ ∞

0

eAτBB∗eA
∗τ dτ ≥ 0 (5.5)

for stable systems. For unstable systems, the generalized gramian [89,90] must

be used, defined as

Wc =
1

2π

∫ ∞

−∞

(jω − A)−1BBT (jω − AT )−1 dω. (5.6)

The gramian Wc defined in Equation 5.6 collapses to the form in Equation 5.5

if A is stable.

A suitable metric for reachable space in Ec is given by the Frobenius norm of

W
1

2
c .

||W
1

2
c ||F =

√

trace
[

(W
1

2
c )∗W

1

2
c

]

. (5.7)

Additionally, directionality of the gramian can be beneficial in determining the state

directions most impacted by a particular control input. The principle axes of the

reachability ellipsoid Ec represent the directions in the state space that take the
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least control energy and are easiest to reach for the system. These axes are given

by the eigenvectors of the reachability gramian Wc and their lengths are given by

its eigenvalues.

5.2.2 Reachability Analysis of Biologically-Motivated Control Inputs

The gramian metric allows quantification of the effect of each control input

over time, resulting from the effect of the control input on the system dynamics.

The Frobenius norms of the reachability gramian for each control input is shown in

Figure 5.3. The unstable oscillatory motion does in fact dominate the effectiveness

of each control input. Stroke offset provides the most reachability for this Drosophila

system. The stroke plane tilt also provides significant response, while the effect of

amplitude and frequency is minimal.

By examining the reachable space defined by the reachability ellipsoid Ec, we

can also gain intuition for state space directionality of each control input. The

ellipsoid exists in the four-dimensional longitudinal state space (x = [u, w, q, θ]),

but can be projected onto two dimensions, and shown as an ellipse for legibility.

The projected ellipse is given by transformation W̃c = MWcM
T , where M is a

matrix composed of the desired basis vectors.

Figure 5.4 shows reachability ellipsoid projected onto [u, w] and [q, θ] planes

for each of the four example control inputs. Each ellipse represents the maximum

reachable states given by a unit norm control input composed exclusively of that

input. The reachable space given by a unit norm control input generated by a
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Fig. 5.3: Frobenius norm of the reachability gramian for each of the example control in-

puts.

combination of those control inputs is shown as a dotted black line. Figure 5.4

suggests that the majority of the reachable space is due to the influence of the

stroke offset control input (δφoff
); adding the other three inputs allows only slightly

more reachable states.

Each control input aligns with the dominating unstable motion in u and q,

with the notable exception of stroke amplitude (δφmax
). Amplitude offers far less

reachable space than the stroke offset, or even stroke plane tilt; however, its align-

ment along heave motion gives the system ability to operate vertically independent

of the unstable pitching/surging motion. Frequency modulation (δf ) activates the

pitching/surging motion along with heave. Thus alterations to amplitude, rather

than frequency, would be more effective in generating heave motion independent

of any other motion. Previous works have shown that free flying Drosophila in

fact use a combination of amplitude and frequency modulations to follow vertical

trajectories. [91–93]
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Fig. 5.4: Example control input reachability ellipsoids projected onto the [u,w] and [q, θ]

planes. Each ellipsoid corresponds to system reachability given unit energy of

that input (‖u(t)‖ = 1).
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5.2.3 Power-Normalized Reachability

The reachability metric describes the reachable state space for a vehicle given

unit control energy. The metric is useful when considering which control input is

most effective at driving a system in various state directions. By augmenting the

metric with the power consumed by each control input, the most power-efficient

control inputs can be determined.

A description of the estimation for power consumed as a function of both in-

ertial and aerodynamic power is given in Chapter 3. The aerodynamic power as it

varies over a wing stroke is shown in Fig. 5.5. Note that the stroke presented here

begins with the upstroke, followed by the downstroke, where the power required is

much greater due to the effect of the freestream velocity. The total power required is

a combination of this aerodynamic power and the inertial loading calculated accord-

ing to Eq. 3.7 and Eq. 3.11. Consulting Eq. 3.7, the asymmetry in the aerodynamic

power required between the two half strokes means the inertial loading contributes

the majority of the power required during the decelerating portion of the upstroke.

The decelerating portion of the downstroke will require much more inertial power

to completely mitigate the aerodynamic power.

The stroke-averaged total power required is linearized in the same method as

the aerodynamic loading to find the linear change in total power required, shown in

Fig. 5.6. We define the power matrix as the diagonal matrix comprised of the power

derivatives, E = diag{Pδφmax
, Pδoff , Pδβ , Pδf}. The control load available with a single
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Fig. 5.5: Aerodynamic power required during a single wingstroke with varying stroke am-

plitude. The wing stroke begins with the upstroke followed by the downstroke.
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due to incoming flow, resulting in larger aerodynamic power required during the
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Fig. 5.6: Stroke-averaged power required with perturbations to control inputs. This aver-

age power is a combination of both aerodynamic and inertial power; see Equation

3.7.
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X∗
δφmax

X∗
δφoff

X∗
δβ

X∗
δf

-0.198 2.30 -3.05 -0.245

Z∗
δφmax

Z∗
δφoff

Z∗
δβ

Z∗
δf

-0.830 -4.18 0.708 -0.640

M∗
δφmax

M∗
δφoff

M∗
δβ

M∗
δf

-370 -4.54e4 4.12e3 -315

Tab. 5.1: Power normalized control derivatives. Each derivative is scaled to show the

control force or moment obtainable with 1µJ .

unit of power is easily obtained by evaluating a power normalized control matrix,

B∗ = BE−1. For example, the first element of B∗ is X∗
δφmax

= Xδφmax
P−1
δφmax

which

describes the x-direction load that the stroke amplitude control input is capable of

producing with 1W of power. The power normalized control inputs are listed in

Table 5.1.

The power normalized derivatives allow an evaluation between the power ef-

fectiveness of control inputs in generating direct aerodynamic loads. At least for

the forward flight kinematics presented here, the results in Table 5.1 suggest that

kinematic changes to stroke offset and stroke plane tilt will be preferred by an insect

interested in conserving power. Changes to stroke plane tilt are the most power-

effective for direct forcing fore-aft translation, while stroke offset is the most effective

input for heave translation and pitching moment production.

Although the above results suggest that stroke amplitude and frequency changes

to wing kinematics consume a much greater amount of power than stroke offset or

stroke plane tilt, these results do not preclude the utility of changes in stroke am-
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Fig. 5.7: Power normalized reachability ellipsoids for each control input show that stroke

offset is an effective control term with lowest energetic cost.

plitude or frequency in insect control. Kinematic changes to stroke amplitude and

frequency may not be effective in terms of power regulation, but could remain an

integral part of the control input ensemble because the maximum load generated by

these inputs may be greater than the load generated by less power hungry kinematic

changes. For example, stroke offset may require much less power than stroke am-

plitude to produce a small amount of heave force, but changes to stroke amplitude

is capable of generating much greater force. Lehmann and Dickinson (1997) [85]

noted stroke amplitude changes by Drosophila responding to vertical motion, and

later found that frequency in particular is varied by species of Drosophila to account

for changes in weight among species [74].

Consideration of the direct control authority given by each control input gives

some intuition for the effectiveness of each input over individual states. However,
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Fig. 5.8: Power normalized reachability ellipsoids for pairs of control inputs again show

the great effectiveness of the stroke offset term.
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given the coupled nature of these equations in forward flight, this process does not

paint the whole picture. The reachability analysis considers input time histories

corresponding to energy cost. This is a measure of the agility or maneuverability

of the aircraft in the general sense: we ask how many vehicle states are reachable,

with a specific amount of control energy.

The current analysis considers the reachable state-space for input energy not

exceeding 1µJ. The reachability ellipsoids for each input are shown in Figure 5.7,

which shows the comparatively low energetic cost of using stroke offset. In practice,

more than one input is used to actuate an insect or micro aerial vehicle, thus the

consideration of combinations of inputs has a physical motivation. Figure 5.8 shows

the reachability ellipsoids under the same 1 µJ energetic contours but with pairs of

inputs. Again, the value of including a stroke offset term is evident.

These size measures are shown in Fig 5.9. Again, the much higher power ef-

ficiency of stroke offset as a control input is indicated. The Frobenius norm shows

that the reachable configuration space is with stroke offset and stroke plane incli-

nation (the two most power efficient controls) is 93 times larger than a feedback

strategy using amplitude and frequency (the least power efficient controls).

Previous research [85, 94–96] has provided experimental evidence for the use

of stroke amplitude and frequency for insect control of flight forces. There are a

number of competing objectives that could provide a compelling reason to choose

power-hungry control inputs in spite of the inputs’ power normalized effectiveness.

Nonlinearities resulting from control input saturation could be driving the choice.
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A power hungry control input could be chosen over an efficient input if the load

required for a maneuver exceeds the capabilities of the efficient input.

5.3 Control Input Reduction

5.3.1 Defining a More General Set of Flapping Wing Control Inputs

The previous section considered a set of four biologically motivated wing kine-

matic control inputs for a flapping wing system. A wide array of choices exist

beyond these four, however. Studies of free flight Drosophila suggest that they are

capable of enacting impressive maneuvers even with small kinematic changes in a

combination of the three wing kinematic angles. [97] Some studies of insects in flight

have in fact shown that insects may use a ”paddling” motion to generate forward

acceleration. [39] Additionally, biological flyers may have structural and evolution-

ary limitations to kinematic inputs. So there may exist kinematic inputs that are

superior to the motions seen in insects or birds.

A general set of kinematic inputs can be defined using a Fourier series of

transcendental functions for each of the three wing Euler angles.

δφ(t) = aφ0 +

N
∑

n=1

aφn cos(2πnft+ bφn) (5.8)

δζ(t) = aζ0 +
N
∑

n=1

aζn cos(2πnft+ bζn) (5.9)

δα(t) = aα0 +

N
∑

n=1

aαn cos(2πnft+ bαn) (5.10)

An individual control input would be defined as an individual amplitude, a
[·]
n , with
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a set harmonic order, n, and phase shift, b
[·]
n . However, even considering just the

first harmonic of the three kinematic angles with a 10 degree discretization in phase

leads to a massive array of 60 control inputs. For the simple case with N = 1, the

control vector is

u =

[

aφ0 , a
φ
1

∣

∣

∣

bφ
1
=−π

, ..., aφ1

∣

∣

∣

bφ
1
=π
, aζ0, a

ζ
1

∣

∣

∣

bζ
1
=−π

, ..., aζ1

∣

∣

∣

bζ
1
=π
, aα0 , a

α
1

∣

∣

∣

bα
1
=−π

, ..., aα1

∣

∣

∣

bα
1
=π

]T

(5.11)

Implementation of this many inputs on a flapping wing platform would me-

chanically formidable, and so gaining intuition for the intelligent selection of these

kinematic control inputs could be utilized to maximize the performance of a flap-

ping wing platform. Rigorous modeling of the control derivatives for each input is

currently computationally intractable due to the large amount of inputs and the

computational expense for each run. The quasi-steady aerodynamic method pro-

vides a feasible modeling option to estimate the individual control derivatives for

each control input. Based on the previous modeling efforts for both perturbations

in state and the biologically-motivated control inputs, confidence is given for quasi-

steady method estimation of this wide array of control derivatives.

Before applying the reachability maximization to a more general set of wing

kinematic control inputs, those inputs effect on the system must be identified. Three

different general inputs in the form of Equation 5.11 are identified: one including

only first order Fourier terms on each of the three kinematic angles, another with

first and second order Fourier terms, and finally an input with first through third

order fourier terms. First order terms occur at the same frequency as the wing
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stroke, second order at twice the frequency, and third order at triple. The inputs

also include zeroth order terms – offsets in the average position of each kinematic

angle. The phase angles are discretized at 10 degrees for each of the inputs. Thus,

the first input vector (defined here un=1) contains 3 zeroth order terms and 57 first

order terms, for a total of 60 individual kinematic inputs. Including the second order

Fourier terms makes the second input (un=2) a vector of 117 inputs. The third-order

input vector (un=3) contains 154 inputs.

5.3.2 Energy-Optimizing Input Reduction

After estimating the wide control matrix, a reduction to fewer kinematic in-

puts is desirable. A simple reduction of a wide matrix is possible using singular

value decomposition (SVD). However, an SVD reduction does not consider the ho-

mogeneous dynamics of the flapping wing system, and as discussed in the previous

sections, the effectiveness of control inputs is dependent on these inherent dynamics.

The gramian metric provides an opportunity to develop a control input reduction

methodology that maximizes the reachability of the vehicle.

Define the problem as follows. Beginning with the system of equations

ẋ(t) = Ax(t) +Bu(t) , A ∈ R
n×n , B ∈ R

n×m (5.12)

where m >> n.

We would like to choose a single input, ũ(t) that consists of a linear combina-

tion of inputs u(t). This can be accomplished by introducing the unit norm vector
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q into the set of equations as follows

ẋ(t) = Ax(t) +Bqũ(t) , ‖q‖ = 1 ; q : R → R
m (5.13)

To maximize the system state energy, while minimizing the input energy, define

the following cost function as follows

J = max
q

sup
ũ 6=0

‖x‖2Rn

‖ũ‖2L2(−∞,0]

(5.14)

The Lebesgue 2-space, L2, defines the space of signals with finite bounded energy.

The norm ‖x‖2Rn is the energy of states (in the system state space Rn), while the

norm ‖u‖2L2(−∞,0] is the energy of past inputs (on the L2 space before t = 0). Thus,

the cost function J in Eq. 5.14 minimizes the past control energy required while

maximizing the state energy of the system.

The minimum input energy required to reach a given state at time t = 0 (x0)

can be described using the reachability gramian defined in equation 5.5. [98]

inf
u
‖u‖2L2(−∞,0] = xT

0W
−1
c x0 (5.15)

The cost function then reduces to the following

J = max
q

max
x0

x0
Tx0

x0
TW−1

c x0

= max
q

max
x0

x0
TWcx0 ; ‖x0‖ = 1 (5.16)

Douglas et al. (2004) describe a methodology to find q using a pair of eigen-

value problems. [99] This process is outlined as follows:

Step 1: Find maximizing x0 for the full input system by solving

112



Wcx0 = λmaxx0.

Step 2: Find the maximizing q for the initial state direction x0

BTXBq = λmaxq where X =
∫ 0

−∞
e−AT τx0x0

T e−Aτdτ .

Step 3: Find the reduced input reachability gramian for this q,

W̃c =
∫ 0

−∞
e−AτBqqTBT e−AT τdτ .

Step 4: Find norm of the reduced input reachability gramian,

‖W̃c‖ =

√

λmax

(

W̃c

)

.

Step 5: Return to Step 2 and repeat until ‖W̃c‖ converges.

The resulting vector q is the optimal linear combination of control inputs according

to the cost function in Eq. 5.14. This allows use of a single scalar input ũ that

combines m inputs from the original control vector u. The second, third, etc. most

effective linear combinations can be found by repeating the process with a reduced

control matrix, Bred = B(I − qqT ), which is a subtraction of the projection of q on

the control matrix.

The method is only applicable for a stable system. An unstable system’s

output energy would grow unbounded, and so the problem outlined above is ill-

defined for such systems. Because flapping wing dynamics are unstable, the method

will not work unless some feedback is applied to stabilize the system.
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5.3.3 Results for Forward Flying Insect

The above method for reducing the number control inputs with minimal loss in

system reachability is applied to the forward flying Drosophila longitudinal model.

A reduced input from the four biologically-motivated control inputs is discussed first

as a proof of concept, then followed by application to the general control inputs,

where an input reduction is shown to be useful for input selection.

Before optimal control input strategies can be investigated, the inherent sys-

tem dynamics must be stabilized. Pitch rate feedback is added to the longitudinal

system. The closed loop stability matrix is written as ACL = A−BK, with

K =







0 0 0 0

0 0 0 0

0 0 kq 0






(5.17)

where kq is the gain on the pitch rate feedback. Pitch rate feedback control is bi-

ologically motivated, as Dipteran insects utilize underdeveloped hind-wings, called

halteres, to quickly sense rotation rates. [100] It is suspected that this rate infor-

mation is quickly fed to the wing hinge actuation system to provide high frequency

pitch rate feedback. [45]

Biologically-Motivated Inputs

The optimal energy technique is used first for the biologically-motivated con-

trol inputs (u = [δφmax
, δφoff

, δβ, δf ]
T ). A combination of the four kinematic inputs is

chosen that is energy-optimal, such that it maximizes the reachable state space per

unit of control energy. The quasi-steady model is used for these results.
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Fig. 5.10: Pitch rate feedback is added to stabilize the longitudinal modes for the fast

forward flying Drosophila.

For ease of presentation, the state space can be scaled by a scaling matrix.

In this case, the system is scaled such that the lengths in the state space are in

centimeters instead of meters. The scaled matrix is Ascl = S−1
x ASx, where

Sx =











1e−2 0 0 0

0 1e−2 0 0

0 0 1 0

0 0 0 1











(5.18)

The control matrix should also be scaled, in this case by the largest expected

value of the individual control input. Then, Bscl = S−1
x BSu, where

Su =











5 0 0 0

0 10 0 0

0 0 10 0

0 0 0 20











(5.19)

Note that these scaling parameters are the same as the maximum deviation in each

parameter from Figure 5.2. The amplitude maximum was selected as half of the

offset because the peak to peak changes if δφmax
= 5◦ are the same as if δφoff

= 10◦.
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Figures 5.3 & 5.4 show that stroke offset contributes most of the reachable

space for the biologically-motivated inputs (the Frobenius norm of the reachability

gramian using just δφoff
is 96.8% of the norm from the set of all four inputs). A

reachability-maximizing combination of inputs should be expected to contain a large

stroke offset.

The input combination q1 resulting from the reachability-maximization is

shown in Figure 5.11. Stroke offset is the dominant control input in the combina-

tion, which attains a Frobenius norm that is 99.9% of the possible using all inputs.

The second linear combination, q2, shows the next most effective input after q1 is

removed from B, and provides only 6.1% of the maximum Frobenius norm. The

reachability ellipsoids for each of the linear combinations is provided in Figure 5.12.

This example suggests that the reachability-maximizing algorithm is working

as expected. The optimal linear combination includes a large amount of the most

effective control input (δφoff
), but provides more reachable space than that input

alone. Note that the reachable space is largely aligned along the u and q directions;

neither q1 or q2 provide input primarily along the w direction. A weakness of the

reachability-maximization is that some flight modes can be neglected due to damped

response in those state directions or dominant responses in other directions. In this

case, heave is much less responsive than the unstable pitching/surging response.

By maximizing reachability, the algorithm neglects to generate control inputs that

primarily effect heave motion.
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Fig. 5.11: Frobenius norm of the reachability gramian for the first two reachability-

maximizing combinations of the example control inputs. The linear combination

of these inputs is given below.

General Kinematic Inputs

By defining the wing kinematic control inputs in a general sense, a single con-

trol input containing many individual inputs of varying effectiveness can be com-

bined. If the inputs are set as a 1st order Fourier series as described in Equation

5.10, and the phase is discretized by 10 degree increments, there will be a control

input u(t) ∈ R60×1 and the control matrix will be extremely wide, B ∈ R4×60. Three

inputs are considered, each including increasing Fourier harmonics. The first input

vector (defined here un=1) contains 3 zeroth order terms and 57 first order terms, for

a total of 60 individual kinematic inputs. Including the second order Fourier terms

makes the second input (un=2) a vector of 117 inputs. The third-order input vector

(un=3) contains 154 inputs. The control matrix is calculated by varying each input

between -5 and 5 degrees, and calculating a linear regression through the stroke

117



-1 -0.5 0 0.5 1

u (m/s)

-0.5

0

0.5

w
(m

/
s)

[δφmax
, δφoff

, δβ , δf ]
T q1 q2

-60 -40 -20 0 20 40 60

q (rad/s)

-4

-2

0

2

4

θ
(r
a
d
)
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averaged points, as described in Section 5.1.

The reachability-maximizing algorithm is applied to the control matrix gen-

erated by each of the three input vectors: un=1, un=2, and un=3. The reachability

for the most effective input combination from each of the three vectors is shown

in Figure 5.13. As before, motion in u and q directions are dominant due to the

underlying system dynamics, but the reachable space is dramatically larger than for

the set of four biologically-motivated inputs (compare to Figure 5.12). In addition,

the control inputs continue to grow in effectiveness as control options from higher

frequencies are added, but state-space directionality is unchanged. This result sug-

gests that higher degrees of maneuverability can be achieved with the inclusion of

higher frequency kinematic control within the wingstroke.

Reachability-maximizing control inputs are shown in Figure 5.14. Each of the

control inputs relies on large deviations in the elevation angle, along with changes

to the stroke offset. Changes to amplitude are minimal, as are those to the angle

of attack. Including higher frequency content changes the preferred elevation angle.

When elevation is locked to the stroke frequency the elevation angle forms an oval-

shape in the stroke plane. Once second order components are added the reachability-

maximizing input amplifies the baseline elevation angle, resulting in kinematics that

resemble a U-shape. The third order input creates a complex, double figure-8 motion

in the stroke plane, while altering remarkably little in the wing pitch throughout

the stroke.
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control input (q) in black.

5.3.4 Discussion

Maneuverability may be key to survival for insects such as Drosophila for

predator evasion or reproductive success. Other insects such as Dragonflies rely on

high maneuverability for predatory behavior. A significant amount of research has

been devoted to observation of dipteran kinematic inputs to effect flight maneu-
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Fig. 5.15: Kinematics resulting from the reachability-maximizing linear combination of the

first and second harmonic un=2. Baseline kinematics are in red, reachability-

maximizing control input (q) in black.

vers, and improvements in visual tracking systems have allowed accurate motion

capture within the wingstroke. Dickinson et al. (1993) suggests that small wing

kinematic modifications at stroke-reversal can impart sufficient maneuvering loads

for insect flight. [96] And Fry et al. (2005) suggest U-shape wing kinematics can

benefit dipteran flight maneuvers. High drag on the wings near stroke reversal can

generate increased vertical force to assist in keeping the insect aloft. [91] The in-
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Fig. 5.16: Kinematics resulting from the reachability-maximizing linear combination of

the first through third harmonic kinematic control inputs, un=3. Baseline kine-

matics are in red, reachability-maximizing control input (q) in black.

creased drag at stroke-reversal due to the U-shape also occurs at the largest moment

arm away from the insect’s pitching axis; kinematic changes at stroke-reversal would

impart more pitching moment.

The analysis presented here supports this. In each of the three sets of general

inputs, the elevation angle is the dominant mode for generation of pitching motion,

and the largest changes in elevation angle occur during stroke reversals. The U-shape
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given by the second Fourier harmonic in Figure 5.15b, in particular, is similar to

kinematic inputs seen by Fry et al. (2005). Balint and Dickinson (2001) measured

elevation angle modulations for maneuvering blowflies, discovering both the oval

shape given by the first Fourier harmonic and the U-shape given by the second

harmonic. It is not currently clear why insects would select the first harmonic over

the second, if both are possible, when the latter would impart greater agility.

Most previous work, like that above of of Fry et al. and Balin & Dickinson

have focused on the study of equilibrium flight kinematics; however, the current

work presents options for control by deviation away from this equilibrium. Chen

& Sun present the control of Drosophila during takeoff. Their conclusion, that a

pitching moment is necessary during takeoff for flight stabilization, presents the best

available experimental example of wing kinematic control inputs for longitudinal

flight. Their measurements of wing kinematics to counter this pitching motion

shows direct evidence of large changes to the elevation angle to counter a pitching

motion.

The results presented here show little benefit to modulation of wing pitch

in imparting dynamical motion; however, several studies have demonstrated the

benefit of small pitch changes in generation of maneuvering loads. [54, 75] Motion

capture of Drosophila by Fontaine et al. (2009) reveal high frequency changes in

wing pitch, often at or near stroke reversals. Additionally, Ristroph et al. (2011)

demonstrate Drosophila generating forward flight motion via a ”paddling” motion

that is dependent on large changes in pitch. One possibility that wing pitch is not
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captured by the reachability-maximizing method is that the changes in pitch are not

intended to generate maximum maneuverability; instead they are stabilizing inputs

that moderate the insect’s flight path. Alternatively, this is due to the quasi-steady

aerodynamic modeling, which cannot capture high frequency flow changes around

the flapping wing that are more dynamic at stroke-reversals.

Insect wing kinematics are certainly not selected for maneuverability alone.

In particular, the methodology discussed here takes no structural requirements into

account. The mechanisms in the Drosophila wing hinge constrain the wing motion,

and are unlikely to allow full range of motion. Muscle and nerve linkages contain

couplings that limit available kinematic options. [101, 102] The third Fourier har-

monic reaches greater state space than the first or second harmonics (see Figure

5.13), but features kinematic variations not seen in most recordings of insect flight.

This suggests that such higher frequency kinematic inputs may not be feasible,

possibly due to mechanical constraints.

5.4 Summary

This chapter discussed linear modeling of control inputs for hovering and for-

ward flying Drosophila. Four biologically-motivated control inputs were evaluated

for effectiveness in driving the model insect dynamics: stroke amplitude, stroke off-

set, stroke plane tilt, and flapping frequency. A reachability metric was defined to

determine the capability of each input in driving the vehicle to the most states.

Because the longitudinal dynamics are dominated by pitching-surging motion, the
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inputs that drove these motions were most effective. Stroke offset and stroke plane

tilt were most effective at driving these modes, and therefore add the most to the

vehicle agility. Stroke amplitude and frequency are not as effective at driving the

pitching-surging motion, but amplitude especially gives greater control over heave

dynamics.

Aerodynamic and inertial power consumption were integrated into the reach-

ability analysis by normalizing control inputs with power consumption. Deviations

in stroke offset consume almost no power, and so the offset input becomes more

favored than it already was in the reachability metric. This would suggest that

barring structural or evolutionary restrictions on the kinematic inputs, the offset

would be displayed often by insects in free-flight.

A plethora of possibilities exist for wing kinematic inputs, and intelligently

reducing the number would be advantageous to study of insect flight as well as

flapping wing vehicle design. A novel technique was described to determine the

most effective wing kinematic control input for a given set of reference kinematics.

An input-to-output energy maximizing algorithm by Douglas et al. [99] is applied

to a Fourier series approximation of individual control inputs, whose effect on the

linear dynamics is estimated by the quasi-steady aerodynamic model. The two most

effective inputs were given by first harmonic changes to the deviation angle combined

with some stroke offset, and second harmonic changes to stroke amplitude combined

with offset.

The energy-optimizing control input is shown to contain some stroke-offset
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and amplitude changes, but is dominated by changes of the deviation angle away

from the equilibrium. Experimental evidence of insect control via deviation angle

exists via study of Drosophila and others in free flight. Multiple researchers have

questioned the purpose of the U-shape or figure-8 shape exhibited by the wingstroke

of these insects. Balint & Dickinson (2001) showed that blowflies use an oval-shaped

wingstroke and the U-shaped wingstroke at various times, while Fry et al. (2005)

discovered U-shape wingstrokes for Drosophila . Chen & Sun’s (2014) work on

Drosophila takeoff also demonstrates stark changes to the deviation angle away

from the equilibrium to counter pitching motion at the start of flight. These works

seem to validate the utility of deviation angle changes to the control of insect flight.

The reachability-maximizing work shown here does not predict wing pitch as

a useful control input for longitudinal flapping wing flight. Wing pitch alteration,

specifically in the motion of paddling – having higher pitch on one half stroke than

the other – has been shown by Fontaine et al. (2009) and Ristroph et al. (2011) to be

utilized by Drosophila to modulate forward flight speeds. A possible explanation is

that the insects are not perturbing the wing pitch with the purpose of maximizing

maneuverability, as the reachability-maximizing technique presented here presup-

poses. Alternatively, it is possible that the quick changes to pitch have an effect on

the stability of the LEV or other unsteady features that will not be modeled by the

quasi-steady aerodynamics.

In order to select the most effective kinematic input, it is necessary to model

a large array of kinematic variables. This is intractable with a Navier-Stokes solver
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with today’s computational speeds. Validation of the quasi-steady method for aero-

dynamic load estimation in longitudinal flight is key, as this allows the characteriza-

tion of a wide variety of kinematic control inputs. Application to lateral-directional

kinematic control must wait until a reduced-order aerodynamic method is validated

for a full 6DoF model.
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Chapter 6: Application to Flapping Wing Micro Air Vehicle

6.1 Motivation

Flapping wing micro air vehicles offer a new platform paradigm for small-

scale flight, but size weight and power constraints limit the availability of powerful

onboard processors or actuators. Additionally, smaller scale vehicles are subject to

the same environmental gusts that larger vehicles encounter. As the vehicle scale

decreases, the effect of these disturbances on the vehicle dynamics can be expected

to grow. Thus, the flapping wing platform’s agility and robustness to disturbance

is critical to their design. Understanding the inherent dynamics of flapping wing

flight at this scale can assist in the development of new inherently agile and robust

flapping wing vehicle designs.

The reduced modeling efforts of previous chapters are not limited in scope to

insect flight. In this chapter many of the same modeling techniques that have been

previously applied to insects are applied again to a flapping wing micro air vehicle

(MAV). The MAV dynamical system is reduced to an LTI model by comparing

stroke-averaged aerodynamic loads to perturbations in state and control input. An

time-periodic model is developed by And reachability analysis provides a technique



to evaluating the flapping wing kinematic control inputs. The goal is the same: to

assess a vehicle’s inherent dynamical properties at the MAV-scale and to evaluate

the effectiveness of a variety of wing kinematic control inputs on the system.

Modeling at this larger scale does bring new challenges, particularly in esti-

mating the aerodynamic loading. Unlike the linear modeling techniques, the aero-

dynamic modeling methods are no longer valid. The quasi-steady model, IBINS

CFD, and RoboFly aerodynamic methods discussed in Chapter 4 will not properly

scale to an MAV-sized flapping wing.

This chapter will read as a return to each previous chapter of the dissertation

in miniature, as each aspect of modeling the MAV is taken into account. First is a

description of the specific vehicle that will be modeled along with a discussion of the

wing kinematics and kinematic inputs on the platform. This is followed by a section

on aerodynamic modeling with a CFD solver, OVERTURNS, that is capable of pro-

viding estimates of flapping wing loads at these MAV-scales. The LTI longitudinal

model is found by using the stroke-averaged loads, and then compared to a time-

periodic model that accounts for high-frequency aerodynamic loading. Finally, a

selection of wing kinematic control inputs are evaluated using the reachability anal-

ysis, and an energy-optimal combination of these inputs is found using the methods

of the previous chapter.
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(a) (b)

Fig. 6.1: The flapping wing MAV platform.

6.2 Flapping Wing Platform

The flapping wing design has been developed by researchers at University of

Maryland and University of Texas, Austin. Figure 6.1 shows the design of the

robotic flapper and the wing planform. The 62g vehicle has a 12 inch wingspan

and aspect ratio of 4.2. It flaps near 22 Hz, making the Reynolds number about

5.2× 104. The vehicle is similar to a hummingbird in scale. [103]

The vehicle uses a novel 5-bar mechanism to amplify the output of a crank-

rocker mechanism driven by a brushless motor. Two kinematic inputs are available

for vehicle control: amplitude and stroke plane tilt. The vehicle is capable of lifting

its weight, and currently is undergoing testing for the onboard controller to extend

hover to forward flight.
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6.3 OVERTURNS Computational Solver

The OVERTURNS CFD solver was developed in-house at the University of

Maryland, and has been used for MAV-scale aerodynamic modeling of multiple plat-

forms, including flapping wing. [104–106] OVERTURNS is a compressible structured

overset Reynolds-averaged Navier Stokes (RANS) solver. A MUSCL (Monotonic

Upstream-Centered Scheme for Conservation Laws) scheme with Roe flux differenc-

ing computes the inviscid terms of the RANS equations, while viscous terms are

calculated using a second order central differencing scheme. Low Mach precondi-

tioning is used to improve accuracy and convergence for flows well below the speed

of sound. [107, 108] Turbulent flow is handled by the Spalart-Allmaras model. [109]

A single wing was modeled with a plane of symmetry in the xz plane. This

reduced computational cost while maintaining the flow conditions for longitudinal

flight. A two mesh overset system was designed for this study, consisting of an O-O

conformal mesh for a flapping wing and a rectalinear background mesh. Chimera in-

terpolations exchange information between the wing and background meshes, using

implicit hole cutting. [104]

The O-O wing mesh was generated with the same morphology as the robotic

flapper, with a single wing span of 14 cm, and surface area of 63 cm2. Figure 6.2

shows the blade mesh used for this study. A background mesh to calculate the

aerodynamics in the wake was designed alongside the wing mesh. The mesh design

must be focused at the leading edge of the wing, where the leading edge vortex
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(a) (b)

(c)

Fig. 6.2: The overset mesh system used for this study. (a) The wing mesh surface with the

backround mesh behind, (b) a chordwise view of the O-O wing mesh extending

from the surface of the wing, and (c) a close-up view of the curvilinear O-O mesh

around the leading edge of the wing.
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formation takes place.

6.4 Linear Dynamical Modeling

The longitudinal dynamics of the flapping wing MAV are linearized using the

small perturbation method outlined in Chapter 4 from the rigid body equations of

motion in equation 4.6. The objective is to generate the stability matrix A(t) as

in Equation 4.12. OVERTURNS is used to calculate forces and moments on the

flapping wing at perturbations in state from the hover reference condition. When

modeling a time-invariant system, the stability matrix is constant, and stability

derivatives that make up its individual elements are linear regressions of wingstroke-

averaged loads. For a time-periodic system the stability matrix is periodic with

period T ; the stability derivatives are the periodic linear regressions at each moment

throughout the wingstroke.

6.4.1 Linear Time Invariant System

The linear model for the hovering flapper is similar in structure to the Drosophila

in hover, described in Chapter 4, but on slower time scale. Stroke-averaged longi-

tudinal loads are shown in Figure 6.4, and the resulting eigenstructure is given in

Figures 6.5 & 6.6. The dynamics are again dominated by a pair of unstable oscil-

latory modes in the right half plane that couple the fore-aft motion with the pitch

rate. This motion is coupled with a fast subsidence mode in the far left half plane

that will have little impact on the dynamics. As with the hovering Drosophila, heave
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Fig. 6.3: Longitudinal loads on the flapping wing MAV throughout the wingstroke for

variation in vertical motion, w, as estimated by OVERTURNS. Stroke reversals

occur at t/T = 0.25 and t/T = 0.75.

dynamics are uncoupled from the pitching-surging motion, and act according to a

slow subsidence mode.
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complete decoupling of the heave motion in the slow subsidence mode λ2.

6.4.2 Linear Time Periodic System

The two-timing assumption that enables LTI modeling via stroke-averaged

loads presumes a forcing frequency much higher than the speed of the vehicle mo-

tion. This is not true for the flapping wing MAV that has a flapping frequency of

only 22 Hz. The Floquet decomposition described in Chapter 4 gives a test of this

assumption to see if the LTI system given in Figures 6.5 & 6.6 are accurately model-

ing the dynamics. Using the same aerodynamic measurements from OVERTURNS,

the linearization of the loads can take place at every instant in time throughout the

wingstroke. Figure 6.7 shows the forces throughout the wingstroke, with perturba-

tions in heave velocity.

A comparison of the dynamic responses to a forward velocity for the two

models suggest that the two-timing assumption is not valid for the flapping wing

MAV. The LTP model displays better resolution of within-wingstroke dynamics,

as it did for the Drosophila in Figure 4.14; however, in this case, those within-

137



X
(N

)

-5

w (m/s)

0

-2

0

0

2

0.2

t/T

0.4 0.6 50.8 1

-5

w (m/s)

0-0.01
0

0

M
(N

m
)

0.2

t/T

0.4 0.6

0.01

50.8 1

Z
(N

)

-5

w (m/s)

-2

00

-1

0.2

0

t/T

0.4 0.6 0.8 51

Fig. 6.7: Surface plots of longitudinal forces and moments as functions of both time and

perturbation in heave velocity. Each of the five perturbation in ∆w are shown

in varying color bands.

138



0 10 20 30 40 50 60 70 80
-2

0

2
u
(m

/
s)

0 10 20 30 40 50 60 70 80
-0.2

0

0.2

w
(m

/
s)

0 10 20 30 40 50 60 70 80
-2

0

2

q
(r
a
d
/
s)

0 10 20 30 40 50 60 70 80

t/T

-0.5

0

0.5

φ
(r
a
d
)

LTI
LTP

Fig. 6.8: LTI and LTP initial condition responses for the hovering flapper MAV with an

initial forward velocity, showing 80 wing strokes (about 3.6 seconds). The LTP

model contains more information on scales between wing strokes, evident here

in the higher definition of the heave response. Both responses are unstable, but

the LTP builds instability more quickly. Also note the decoupling of the heave

response is an artifact of the LTI system.
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wingstroke loads have a much greater effect on the vehicle dynamics. The LTP

system predicts much faster growth of instability, leading to loss of hover within

about 80 wingstrokes, or less than 4 seconds of flight time. Initial flight tests with

the vehicle show similar results, hovering for about 5 seconds of flight time. [103]

Additionally, decoupling of heave motion predicted by the LTI model is not apparent

in the LTP version.

This reasserts assumptions of previous researchers that the time-invariance is

not likely applicable to mechanical flapping wing systems at the hummingbird scale.

Wu & Sun (2012) show that the time periodic solutions for the dronefly (88 mg) are

nearly identical to that of the time-invariant model. The larger hawkmoth (1.5 g)

showed significant quantitative deviation (although not enough to alter the overall

modal structure). [64] The dronefly has a particularly high flapping frequency for

its mass, and so the LTI model could be expected to perform well for that system.

The hawkmoth is closer to the scale of a hummingbird, and so deviation between

the two models is expected. The Drosophila discussed in this work is significantly

less massive than even the dronefly, but with higher flapping frequency (200 Hz vs

160 Hz for the dronefly).

The need for a time-periodic model for the flapping wing MAV is crucial

for controller design. In Section 4.3 a LQR controller designed from the forward

flying Drosophila LTI model, works well on the LTP model. A similar LQR con-

troller is designed to stabilize the LTI model of the hovering MAV, and is not

successful when used on the LTP model. The eigenvalues of the LTI model sug-
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Fig. 6.9: LTI and LTP initial condition responses for closed loop longitudinal dynamics

over 40 wingstrokes (about 1.8 seconds). Full state feedback and LQR gains were

utilized for closing the loop and stabilizing the system. The LTI characterization

fails to accurately predict the instability in the closed loop system.
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gest that it will be stabilized by the LQR controller: λCL = [−4.2748,−1.6329 +

2.5675j,−1.6329 − 2.5675j,−0.8936] However, the maximum eigenvalue of the pe-

riodic transition matrix remains unchanged with the addition of the closed loop

control: max
k

(‖λk(Q)‖) = max
k

(‖λk(QCL)‖) = 1.0314. Figure 6.9 shows the LTI

model is successfully controlled, and the disturbance in u is easily sent to zero. The

LTP model, with the same LQR gains, fails to stabilize, and begins to oscillate just

as in the open loop case.

6.5 Reachability Analysis for Kinematic Control Inputs

The effectiveness of the individual control inputs can be expressed by the

reachability gramian, as discussed in Section 5.2. Only two kinematic control inputs

for longitudinal flight are currently available on the flapper: amplitude, δφmax
; and

stroke plane tilt, δβ. [103] Here, the stroke offset input (δφoff
) is evaluated as well,

due to its effectiveness for the Drosophila models.

Stroke-averaged loads are calculated with perturbation in control input by

the OVERTURNS flow solver. According to the linear modeling above, we can

assume that the model will be dominated by the pitching-surging motion as with

the Drosophila Figure 6.11 shows that the direct effect of both the amplitude and

offset inputs is relatively uncoupled, with the amplitude driving heave motion, and

the offset providing control over the pitching moment, without affecting the vehicle

translation. Tilting the stroke plane gives both fore-aft motion and pitching moment

simultaneously.
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Fig. 6.10: CFD-estimated longitudinal loads on the flapping wing MAV throughout the

wingstroke for variation in the amplitude control input, δφmax
.
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Fig. 6.11: Stroke-averaged longitudinal loads for the flapping wing MAV in control input

perturbations away from the hovering flight condition.

143



[δφmax, δφoff , δβ]
T δφmax δφoff δβ q1 q2

‖ΓG̃‖ 9.53 0.30 8.08 5.06 9.53 0.29

Tab. 6.1: Hankel operator norms of the system for a variety of control input options. The

offset control input contributes most of the input-output energy for the system,

but a linear combination of inputs q1 can get even closer to the maximal value

that is given by a full range of the control inputs.

Because the oscillatory modes drive the linear dynamics of the flapper, the

control input that drives this mode most effectively will have the greatest Hankel

norm. Figure 6.12 shows that stroke offset control would give the greatest of the

three considered here. As with the Drosophila model, the amplitude does not con-

tribute much to the unstable oscillatory pitching-surging motion, and so the Hankel

norm is much lower than for the other two inputs. Amplitude does, however, di-

rectly drive the heave motion, which is evident in the projection of the Hankel norm

on the states.

The input reduction technique described in Section 5.3 is applied to the three

flapper control inputs. The optimal combination of the control inputs q1 is given by

a offset combined with tilting the stroke plane. Because of the heave decoupling in

the LTI model, the heave dynamics are unaffected. The second combination, q2 con-

tributes much less output energy, but drives the heave dynamics with predominantly

amplitude.
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Fig. 6.12: Above, the Hankel norm of system for individual control inputs. Below, the

projection of the Hankel norm onto the state-space for each input. Again,

the stroke offset, δφoff
, contributes the most output energy. Like the forward

flying Drosophila, the amplitude does not contribute high energy in the system

statespace, but does project onto the heave state substantially more than the

other control inputs.
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norms for the flapper control inputs for a hovering reference condition. On the

left are the results for the first, and most optimal, linear combination (q1); on

the right is the second most optimal (q2).
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6.6 Summary

This chapter applied the modeling techniques developed in previous chapters

on a hummingbird-sized flapping wing micro air vehicle. Kinematic measurements

of flapping wing motion is not currently available, so the similar hovering kinemat-

ics to the idealized Drosophila hover kinematics were used, with a flat stroke plane

and wing pitch approximated by a square wave. The OVERTURNS compressible

flow solver calculated aerodynamic loads around a rigid flapping wing. LTI models

showed similar dynamical model structure to the Drosophila but with slower dy-

namical speeds of motion. A decoupled heave slow subsidence mode is driven by

stroke amplitude. Unstable pitching-surging motion from a pair of unstable oscilla-

tory modes dominates the dynamics and can be driven by either a stroke plane tilt

or stroke offset control input.

Reachability analysis suggests that the MAV may benefit from the addition

of the stroke offset control input, as it is more effective in driving the pitching-

surging motion than the stroke plane tilt. Similar to the Drosophila , the MAV

control that is most effective of the four studied here is the stroke offest. Even at

a different scale, with different wing planform, and a different Navier-Stokes solver,

the result was that the stroke-offset control term was most valuable for generating

pitch moments, and governing the unstable pitch motion inherent to flapping wing

flight. The current platform in development has control solely via amplitude and

stroke plane tilt. This work suggests that these control inputs will be able to stabilize
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and control the system if capable of performing at the bandwidth required by the

instability. However, the platform may be more easily controlled by a stroke-offset

control mechanism.

Floquet decomposition for a periodic dynamical model shows that the LTI

results may be suspect, however. The flapping frequency is slow enough that the

“two-timing” assumption that worked for the Drosophila is not applicable to the

much larger flapping wing MAV. The time-periodic model displayed instability away

from the hover reference condition in about 4 seconds, which is similar to experi-

mental results. A model-based controller developed for the LTI vehicle model with

stroke-averaging assumptions failed to stabilize the LTP vehicle model, suggesting

that model-based controller design must take the within-wingstroke loading into

account.

The result of this work suggests that the time invariance assumption is useful

for biological studies of small insects, but not for larger insect or avian flight like that

of hawkmoths and hummingbirds, and even less so for engineers designing flapping

wing MAVs at larger scales. Standard discussions of helicopter control are typically

considered using an average model of flight. [88] This allows the engineer a tractable

set of linear equations useful for study of vehicle control. For flapping wing flight, at

least at the scale currently of interest to the MAV designer, time-periodicity cannot

simply be averaged away and remains yet another difficulty to overcome.
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Chapter 7: Conclusions and Future Work

Hover-capable MAVs are ideal for search and rescue missions in buildings too

dangerous to enter for emergency responders, or for military reconnaissance in areas

suspected to hide dangerous devices or personnel. Their small size leads to an agility

unmatched by larger aircraft, but also results in susceptibility to environmental

disturbances. Wind gusts that are insignificant on a human scale, such as a strong

exhaust from a vent or a gust through a window, could be disastrous on the scale

of the MAV. As hover-capable flapping wing vehicles are becoming available due to

the same technologies, they offer unique challenges in control design – unlike many

other MAV designs there is neither swashplate or tail rotor to provide control over

the vehicle motion. Moreover, although there are examples of impressive agility and

robustness to disturbance in the biological world, it is not yet clear how the MAV

equivalent will compare to similarly sized rotorcraft. Flapping wings hold potential

in terms of energy storage, maneuverability, and response to wind gusts, but they

also offer a unique challenge in both design, construction, and control.

Sensing and control design for flapping wing systems begins with an under-

standing of the dynamics of the platform. A model for the flight dynamics of a

system can describe the speed and direction of motion incurred by control inputs



and environmental disturbances. Understanding the natural motion of a flight vehi-

cle is vital for vehicle design, sensor selection, and implementation of vehicle control.

For the flapping wing vehicle, the complexity of the aerodynamic flows, time peri-

odic dynamics, and the variety of control inputs requires a reduced-order model for

the flight behavior.

7.1 Conclusions

This dissertation has presented reduced order models for both the insect sys-

tem (Drosophila ), and a larger hummingbird-scale flapping wing MAV. These mod-

els are relevant to better understanding sensing and control of both biological and

mechanical systems. The following are specific conclusions from this work:

7.1.1 Verification of a reduced-order aerodynamic method for dy-

namical modeling at insect scale

The first goal of this dissertation is a verification of an experimentally-derived

quasi-steady aerodynamic method for estimating flight dynamics. This was accom-

plished by identifying a model of the dynamics for Drosophila in both hovering and

forward flight using the quasi-steady aerodynamic model, the IBINS computational

solver, and the Robofly apparatus for verification. A linear time invariant (LTI)

model was given for hovering and forward flight Drosophila based on insect motion

captured in free-flight. The longitudinal LTI model structure was similar for all three
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aerodynamic estimation methods: quasi-steady, computational, and experimental.

Each of the models generated in this work agreed with previous research that the

longitudinal motion is dominated by unstable oscillatory motion in pitch and fore-

aft motion that is largely decoupled from heave motion. Moreover, the quasi-steady

aerodynamic model was no further from the more rigorous computationally-derived

model than it was from the experimental verification given via Robofly.

A reduced-order aerodynamic model that can correctly predict every aspect

of flapping wing flight for any specified set of wing kinematics is almost certainly

impossible. However, the question remains whether such an aerodynamic model

can be good enough to estimate the dynamics, regardless of some inaccuracies in

the within-wingstroke estimate. If so, the sensing and control design of flapping

wing vehicles can be informed by an estimate of the dynamical behavior of the

flapping system. Vehicle designers can arrange sensors to observe a particularly

sensitive dynamical motion, and selected sensor bandwidth to match expected speed

of vehicle motion. They can select actuators that counter specific instabilities, again

with knowledge of the necessary direction and speed of motion. Without a simpler

aerodynamic model, the estimate of the dynamics is unlikely except for the best

funded and longest term projects.

(i) Kinematics Extraction of Drosophila forward flight wing kinematics from

a high speed flight capture setup. In addition to a set of idealized hover

kinematics, two sets of forward flight kinematics were identified: a slow forward

flight at 7.07 cm/s, and a fast forward flight at 32 cm/s.
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(ii) CFD verification Verification of an immersed boundary incompressible flow

solver against experimental data for Drosophila-scale insect flight. The IBINS

code agreed with experimental RoboFly setup, and showed differences in lift

throughout the wingstroke of less than 3%.

(iii) Longitudinal flight modeling A verification of previous flapping wing longi-

tudinal dynamical modeling that is dominated by an unstable pitching-surging

motion, relatively uncoupled from stable heave motion. Similarity between the

different aerodynamic methods suggests that while the quasi-steady aerody-

namic estimate does not give the most accurate aerodynamic loading within

a wingstroke, the resulting dynamical motion remains consistent. In fact,

the time to double of the quasi-steady method is between the CFD and ex-

perimental estimates for both the slow and fast forward flight cases. The

quasi-steady estimate gives a doubling time of 53.6 ms for the slow forward

flight, while CFD gives 43.1 ms, and Robofly 50.3 ms. In fast forward flight,

the times to double are 100.7 ms, 105.8 ms, and 79.1 ms respectively. The

heave-dominated subsidence modes are even closer in agreement. This suggests

that the experimentally-derived reduced-order aerodynamic model would be

useful to a flapping wing vehicle designer at this scale, or to a interested biolo-

gist studying wing kinematics for such an insect. This suggests no complicated

aerodynamic phenomena resulting from longitudinal motion that substantially

changes the flapping wing vehicle dynamics.
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(iv) Lateral-Directional flight modeling Indication that the experimentally-

derived quasi-steady aerodynamic estimate is inappropriate for modeling lateral-

directional dynamics of Drosophila-scale insect flight. Here, the quasi-steady

and computational models disagreed substantially (the Robofly apparatus did

not have the range of motion to provide the lateral-directional model). Both

models show a system dominated by yaw motion in each of the four modes;

the similarities end here, however. The quasi-steady model provides a pair of

stable oscillatory modes with rolling-yawing motion, and two yaw subsidence

modes. The computational model is unstable with a yaw-dominated mode

in the right half-plane. A roll-yaw oscillatory motion similar to that found

by the quasi-steady method appears far more stable. This may suggest that

the quasi-steady model shown here, which does not accurately model changes

in spanwise flow due to lateral-directional state perturbations, should not be

utilized in such dynamical modeling. Alternatively, the inconsistency could

result from numerical issues, and the linearization is not appropriate.

7.1.2 Time-invariance assumptions

The second goal of this work is an investigation of the importance of time

periodicity in flapping wing flight. The dynamics of a flapping wing system are

inherently periodic; however, a linear time invariant (LTI) model of the system is

often preferable for its simplicity in control scheme implementation. For vehicles

with much slower dynamics than the unsteady forcing, a time-scale separation via
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stroke-averaging yields an LTI system model. This assumption was tested in this

work for two model systems: the Drosophila-scale model, and a hummingbird-scale

flapping wing MAV in development.

(i) Drosophila-scale time invariance The concept of separating time scales

was tested on the Drosophila model by comparing the time-invariant model

with a time-periodic model. This resulted in confirmation that the time-

invariant assumption is appropriate for Drosophila-scale modeling. By con-

sidering within-wingstroke aerodynamic loading, the LTP model shows better

resolution in between wingstrokes, but gives comparable results in simulation

to the LTI model. A feedback control strategy based on the LTI model is

shown to work well with the more accurate LTP model.

(ii) Hummingbird-scale MAV longitudinal model A longitudinal model was

identified using the OVERTURNS computational solver for a hummingbird-

sized flapping wing MAV. Linear modeling techniques applied to a hummingbird-

scale flapping wing MAV suggest similar modal structure to the Drosophila,

but at slower dynamical speeds – loss of hover occurs after 4 seconds. This is

similar to initial testing that shows loss of hover after about 5 seconds.

(iii) Hummingbird-scale MAV time invariance An assumption of time-invariance

is shown to be ineffective in accurately modeling dynamics of a hummingbird-

scale flapping wing MAV due to within-wingstroke aerodynamic loading. For

this larger scale vehicle, with slower wing beat frequency, the periodic model
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does not follow with the time-invariant, and it is evident that within-wingstroke

forcing is important to the overall vehicle dynamics. The LTI model showed

a heave mode decoupled from the unstable pitch-surge motion, but the ac-

tual time-periodic longitudinal system is completely coupled. A closed loop

controller designed using the LTI model was unable to stabilize the LTP sys-

tem, indicating that the LTI system would not be useful for control modeling.

A designer of the control for such a vehicle should be aware of the coupling

between all longitudinal motions and the LTI system would be misleading.

7.1.3 Control input selection for flapping wing flight

The third objective of this work is a methodology to select control inputs for

flapping wing flight from a general set. A wide variety of available wing kinematic

options for flight control, and the appropriate selection of appropriate control for

feedback is not obvious. Previous researchers that have estimated the effects of

control inputs on the vehicle dynamics have had to select kinematic perturbations

to the baseline based on intuition or imitation of insect flight. However multiple

studies suggest that insects utilize a wide range of kinematic inputs to control flight,

including amplitude, frequency, wing pitch, and deviation from the stroke plane. It

is not apparent whether insects and birds select wing kinematic inputs to maximize

control authority or minimize power consumed, nor is it clear what limitations exist

in terms of mechanical or structural stress in the wing hinge or wing itself. In is

work a reachability metric is utilized for evaluation of specific control inputs to flight
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dynamic models.

(i) Reachability metric To verify the effects of this maximization, reachability

is maximized using a linear combination of a set of four biologically-motivated

wing kinematic inputs. Because the longitudinal dynamics are dominated

by pitching-surging motion, the inputs that drove these motions are most

effective. The pitch-offset term was the most effective of the four in inciting

pitching motion (the fore-aft change in center of pressure generates a large

pitching moment). These results suggest that stroke offset is among the most

power-effective control for both the Drosophila and MAV models. Evaluation

of four biologically-motivated wing kinematic inputs using power-normalized

reachability analysis suggests that stroke offset is also the most power-effective

control of those four.

(ii) Reachability-maximizing control input selection An extension of reach-

ability analysis is presented that provides the most energy-optimal control

inputs from a general set. The reachability of the platform can be maximized

by a linear combination of an array of control inputs; this maximizes the agility

of the linear model.

(iii) Drosophila control input selection A general set of kinematic control in-

puts were defined using Fourier harmonics and their effect on reaching longitu-

dinal states was identified using quasi-steady aerodynamic calculations. Both

the first and second order kinematic inputs activate the pitch-surge mode of
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the vehicle dynamics. Indeed, activation of this mode is what makes these

inputs more energy-optimizing. The most energy-effective linear combination

of biologically-motivated control inputs for Drosophila in forward flight are

given. Identification of a wide array of control inputs is possible due to the

ability of the quasi-steady method to model Drosophila in longitudinal flight.

The energy-optimizing control input is shown to contain some stroke-offset

and amplitude changes, but is dominated by changes of the deviation angle

away from the equilibrium.

(iv) Hummingbird-scale MAV control input selection Stroke offset is most

effective input (of the four inputs studied) at driving the hummingbird-scale

MAV according to reachability metrics. The current platform in development

has control solely via amplitude and stroke plane tilt. This work suggests that

these control inputs will be able to stabilize and control the system if capable

of performing at the bandwidth required by the instability. However, the

platform may be more easily controlled by a stroke-offset control mechanism.

7.2 Future Work

This dissertation leads to several possibilities for continuation in studying re-

duced order flapping wing models. First, and most obviously, the contributions are

mostly aligned along the longitudinal dynamics. Because small changes in the results

lead to such large dynamic changes, this suggests that the LTI model may not be

appropriate to model the dynamics. However, the lateral directional dynamics were
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difficult to verify due to experimental limitations on RoboFly. With additional de-

grees of freedom to that apparatus (or another similar setup), the lateral-directional

motion can be better characterized.

Another assumption made throughout this work is that the wings remain

rigid throughout the wingstroke. While the rigid assumption was required to make

the computations and experiments tractable, flexibility of the wings is noted and

likely important to the aerodynamic forcing, especially as the scale increases and the

inertia of the wing grows. Previous work has shown that hoverflies exhibit significant

wing twist variation throughout the stroke, ostensibly with the goal of decreasing

drag in forward flight. [110] At larger scales, such as for the hummingbird MAV,

we can expect these effects to increase in effect. One method would be to couple

the wing’s structural dynamics with the CFD, but this is quite computationally

expensive when multiple CFD-CSD runs are needed for each stability or control

derivative. This has been done previously using OVERTURNS for the avian scale.

[106] Another possibility is prescribing known kinematics on a wing mesh from

known kinematics measured from a insect, bird, or MAV in flight. This eliminates

some of the computational cost, but requires accurate a priori kinematic extraction.

The dynamics of a hummingbird-scale flapping wing MAV were found using a

time-periodic model forced from CFD calculations. Experimental verification would

be useful to show that the dynamics are accurately modeled. Flexing of the flapping

wing during flight is documented by the designers of the MAV and will undeniably

have an effect on the aerodynamic forcing and therefore the vehicle dynamics. [103]
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Augmentation of the OVERTURNS flow solver to address wing flexibility is ongoing,

and will account for these issues.

Additionally, no applicable quasi-steady routine is available for comparison

at the flapping wing MAV scale. A quasi-steady aerodynamic model would be

useful for quickly testing alternative kinematics and for suggesting optimal control

inputs. However, the effect of within-wingstroke forcing on the overall dynamics

may indicate that such a quasi-steady model will not be effective without capturing

all the aerodynamic loading during stroke reversals and wake capture. Moreover

the unsteady effects at these Reynolds numbers tend to become more difficult to

predict, particularly because the LEV is not as stable at smaller scales and tends to

burst or detach during the stroke. [111]

The energy-optimizing control input routine would benefit from experimental

validation. The algorithm suggests some non-intuitive and quite interesting possi-

bilities as the most effective. Although many of the previous kinematic modeling

efforts have focused on the kinematics required for maximum or most efficient lift,

some have noted that a change in elevation angle out of the stroke plane could be

quite beneficial for control purposes. [75] If the dynamical model is valid, there is

no reason to immediately discount the suggested kinematic inputs, but an example

of an insect in flight or validation via experiment would lend more credence to the

methodology. Additionally, in an actual flight control design, it is necessary to have

inputs that activate multiple state-directions, thereby decoupling the motion in the

states, so the pilot has control in more than one direction. It would be advanta-
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geous to mold the energy-optimizing technique described in this chapter to prefer

user-defined directions in state, giving the designer more ability to set the resulting

state directions given by the energy-optimal control.

The energy-optimizing kinematic inputs are currently based on an infinite-

time horizon state reachability. Due to the time horizon, unstable and undamped

linear modes will always dominate the optimal inputs. This may not always be in

the vehicle design’s best interest, as it is often more important to know what states

you can reach in a limited time. An augmentation of the technique to limit the

time-horizon could lead to an interesting and perhaps more useful set of inputs.

Additionally, an extension to a time-periodic formulation could allow development

of high frequency kinematic inputs within a single wingstroke period.
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Appendix A: Compilation of Stability and Control Derivatives

A.1 Drosophila

Quasi-Steady CFD RoboFly

u w q u w q u w q

Hover

X[·] -5.5 -0.10 0.0 -2.7 -0.20 -0.1 − − −

Z[·] 0.0 -3.9 0.0 -0.1 -2.9 0.0 − − −

M[·] 1930 1720 -7.2 2940 1335 -8.7 − − −

FF1

X[·] -3.9 0.5 0.0 -4.4 1.5 0 -11.5 -1.6 0

Z[·] 0.1 -6.6 0.10 -1.1 -7.6 0.1 10.0 -11.5 0.1

M[·] 4103 -174 -8.6 4667 1758 -3.2 7593 944 -13.3

FF2

X[·] -2.8 -0.29 0.001 -4.83 1.48 -0.034 -3.69 -1.63 0.003

Z[·] -0.70 -3.6 0.330 -2.18 -3.95 0.323 -1.37 -4.97 0.332

M[·] 1893 -2096 -3.92 1897 -387 -11.5 1873 -317 0-8.45

Tab. A.1: Longitudinal stability derivatives for the Drosophila in the three flight condi-

tions studied in this work: hover, slow forward flight (FF1), and fast forward

flight (FF2). The estimates based on each of the three aerodynamic methods

are given here. Robofly results were not available for the hover condition. See

discussion of these results in Chapter 4.



Quasi-Steady CFD

v p r v p r

FF2

Y[·] -1.90 0 0 -3.4 0 -0.3

L[·] -1640 -23 9.9 1122 13.6 -23.6

N[·] 31860 30 -224 24480 -37 -177

Tab. A.2: Lateral-Directional stability derivatives in the fast forward flight condition

(FF2). The estimates based on the quasi-steady aerodynamic method and IB-

INS CFD solver are given here. Robofly results were not available for lateral-

directional perturbations. See discussion of these results in Chapter 4.

Quasi-Steady CFD

δφmax
δφoff

δβ δf δφmax
δφoff

δβ δf

FF1

X[·] 0.018 0.011 -0.214 -0.063 − − − −

Z[·] -0.351 0.0 -0.027 -0.151 − − − −

M[·] 15.6 -596.1 153.6 33.0 − − − −

FF2

X[·] -0.026 0.017 -0.093 -0.005 -0.031 0.009 -0.028 -0.015

Z[·] -0.191 0.0 0.003 -0.030 -0.132 -0.016 0.007 -0.0377

M[·] -204.7 -217.5 32.3 -26.2 -59.4 -179.6 38.04 -18.5

Tab. A.3: Longitudinal control derivatives in the two flight conditions considered in this

work: slow forward flight (FF1), and fast forward flight (FF2). The estimates

based on the quasi-steady aerodynamic method and IBINS CFD solver are

given here (CFD results are not available for control perturbations in FF1).

See discussion of these results in Chapter 5.
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A.2 Flapping Wing MAV

CFD

u w q

Hover

X[·] -2.4047 0.1903 -0.2553

Z[·] -0.0339 -0.8517 -0.0071

M[·] 2.6200 0.2472 -1.5701

Tab. A.4: Longitudinal stability derivatives for the flapping wing MAV in hover. See

discussion of these results in Chapter 6.

CFD

δφmax
δφoff

δβ

Hover

X[·] -0.0011 0.0221 0.4231

Z[·] -0.4801 -0.0048 -0.0029

M[·] -0.0958 -8.5505 -5.5670

Tab. A.5: Longitudinal control derivatives for the flapping wing MAV in hover. See dis-

cussion of these results in Chapter 6.
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Appendix B: Compilation of Linear Dynamical Systems



Quasi-Steady CFD RoboFly

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

λ 9.1796± 22.9250i -3.9000 -31.0591 9.8087± 28.8250i -2.8546 -31.0629 − − −

Hover

u 0.0085± 0.0119i -0.6162 0.0123 0.0063± 0.0098i -0.4121 0.0076 − − −

w 0.0000 0.6917 0.0000 0.0 0.9078 0.0000 − − −

q 0.9991 -0.3648 -0.9994 0.9994 0.0736 -0.9995 − − −

θ 0.0150∓ 0.0376i 0.0935 0.0322 0.0106∓ 0.0311i -0.0258 0.0322 − − −

λ 12.9358± 29.5812i -6.6375 -38.3341 16.0955± 29.5674i -7.2183 -40.1727 13.7717± 35.8609i -12.5201 -51.3233

FF1

u −0.0053∓ 0.0071i -0.0388 0.0074 0.0036± 0.0071i 0.3369 0.0067 0.0032± 0.0049i 0.0510 -0.0048

w −0.0016± 0.0024i -0.9208 0.0031 0.0014∓ 0.0021i -0.8950 0.0033 0.0027∓ 0.0018i -0.4113 -0.0013

q −0.9995 0.3837 -0.9996 0.9995 0.2896 -0.9997 0.9996 -0.9072 0.9998

θ −0.0124± 0.0284i -0.0578 0.0261 0.0142∓ 0.0261i -0.0401 0.0249 0.0093∓ 0.0243i 0.0725 -0.0195

λ 6.4625± 29.9637i -4.6400 -18.5995 6.5488± 23.9468i -4.6136 -28.7748 8.7612± 23.9157i -4.9637 -29.6658

FF2

u 0.0090± 0.0050i -0.6460 -0.0338 0.0103± 0.0104i -0.1626 0.0120 0.0101± 0.0110i -0.1365 0.0137

w 0.0032∓ 0.0098i -0.5832 -0.0235 0.0038∓ 0.0109i -0.8071 0.0140 0.0053∓ 0.0103i -0.8004 0.0142

q 0.9994 0.4815 0.9977 0.9990 0.5547 -0.9992 0.9991 -0.5723 -0.9992

θ 0.0069∓ 0.0319i -0.1038 -0.0536 0.0106∓ 0.0388i -0.1202 0.0347 0.0135∓ 0.0368i 0.1153 0.0337

Tab. B.1: Longitudinal modes for the Drosophila in the three flight conditions studied in this work: hover, slow forward flight (FF1),

and fast forward flight (FF2). Robofly results were not available for the hover condition. See discussion of these results in

Chapter 4.
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Quasi-Steady CFD

λ1 λ2 λ3 λ1 λ2 λ3

λ −10.6± 4.94i -54.1 -190.6 13.3 -51.25 −83.2± 26.5

FF2

v −0.0077 -0.0062 -0.002 −0.0074 -0.0035 0.0036

p −0.272± 0.0772i -0.0447 0.045 0.53 -0.55 −0.23∓ 0.12

φ −0.0239± 0.004i 0.0 0.0 0.04 -0.107 0.002∓ 0.021

r −0.959 -0.999 -0.999 0.844 -0.835 0.966

Tab. B.2: Lateral-directional modes for the Drosophila in the fast forward flight condition

(FF2). Robofly results are not available for lateral-directional perturbations.

See discussion of these results in Chapter 4.

CFD

λ1 = 0.1719± 2.4332i λ2 = −0.8480 λ3 = −4.3223

Hover

u 0.7264 -0.1022 0.7150

w −0.0027± 0.0101i 0.9936 0.0056

q 0.3708∓ 0.5165i -0.0308 -0.6811

θ −0.2005∓ 0.1665i 0.0363 0.1576

Tab. B.3: Longitudinal modes of the flapping wing MAV in hover. See discussion of these

results in Chapter 6.
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Appendix C: Flapping wing aerodynamic loads

C.1 Drosophila

C.1.1 Stability Derivatives
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Fig. C.1: Longitudinal loads calculated by the quasi-steady method over a single

wingstroke for the Drosophila in hover. Left three plots show loads for vary-

ing ∆u, center 3 show loads for varying ∆w, right 3 show loads for varying

∆q.
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Fig. C.2: Longitudinal loads calculated by IBINS CFD over a single wingstroke for the

Drosophila in hover. Left three plots show loads for varying ∆u, center 3 show

loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.3: Longitudinal loads calculated by quasi-steady method over a single wingstroke

for the Drosophila in slow forward flight. Left three plots show loads for varying

∆u, center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.4: Longitudinal loads calculated by IBINS CFD over a single wingstroke for the

Drosophila in slow forward flight. Left three plots show loads for varying ∆u,

center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.5: Longitudinal loads measured using Robofly over a single wingstroke for the

Drosophila in slow forward flight. Left three plots show loads for varying ∆u,

center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.

172



0 0.5 1
-2

0

2

X
(N

)

×10−5

0 0.5 1
-2

0

2

Z
(N

)

×10−5

0 0.5 1

t/T

-1

0

1

M
(N

m
)

×10−8

0 0.5 1
-2

0

2
X

(N
)

×10−5

0 0.5 1
-2

0

2

Z
(N

)

×10−5

0 0.5 1

t/T

-1

0

1

M
(N

m
)

×10−8

0 0.5 1
-2

0

2

X
(N

)

×10−5

0 0.5 1
-2

0

2

Z
(N

)

×10−5

0 0.5 1

t/T

-1

0

1
M

(N
m
)

×10−8

Fig. C.6: Longitudinal loads calculated using the quasi-steady method over a single

wingstroke for the Drosophila in fast forward flight. Left three plots show loads

for varying ∆u, center 3 show loads for varying ∆w, right 3 show loads for

varying ∆q.
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Fig. C.7: Longitudinal loads calculated by IBINS CFD over a single wingstroke for the

Drosophila in fast forward flight. Left three plots show loads for varying ∆u,

center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.8: Longitudinal loads measured using Robofly over a single wingstroke for the

Drosophila in fast forward flight. Left three plots show loads for varying ∆u,

center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.9: Lateral-directional loads calculated by the quasi-steady method over a single

wingstroke for the Drosophila in fast forward flight. Left three plots show loads

for varying ∆v, center 3 show loads for varying ∆p, right 3 show loads for varying

∆r.
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Fig. C.10: Lateral-directional loads calculated by IBINS CFD over a single wingstroke for

the Drosophila in fast forward flight. Left three plots show loads for varying

∆v, center 3 show loads for varying ∆p, right 3 show loads for varying ∆r.
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C.2 Flapping wing MAV
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Fig. C.11: Longitudinal loads calculated by OVERTURNS CFD over a single wingstroke

for the flapping wing MAV in hover. Left three plots show loads for varying

∆u, center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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Fig. C.12: Longitudinal loads calculated by OVERTURNS CFD over a single wingstroke

for the flapping wing MAV in hover. Left three plots show loads for varying

∆u, center 3 show loads for varying ∆w, right 3 show loads for varying ∆q.
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