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ABSTRACT

The Center Manifold Theorem is applied to the local feedback stabilization of nonlinear
systems in critical cases. The paper addresses two particular critical cases, for which the
system linearization at the equilibrium point of interest is assumed to possess either a simple
zero eigenvalue or a complex conjugate pair of simple, pure imaginary eigenvalues. In either
case, the noncritical eigenvalues are taken to be stable. The results on stabilizability and
stabilization are given explicitly in terms of the nonlinear model of interest in its original
form, i.e., before reduction to the center manifold. Moreover, the formulation given in this
paper uncovers connections between results obtained using the center manifold reduction

and those of an alternative approach.
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1. INTRODUCTION

Recently, center manifold reduction has been employed in nonlinear stabilization, rc-
sulting in stabilizing control law designs for various classes of nonlinear systems in the
so-called “critical cases.” Critical cases occur when the linearized system at an equilibrium
point has at least one eigenvalue on the imaginary axis, with the remaining eigenvalues in
the open left half of the complex plane.

Aeyels [1], who initiated application of the center manifold reduction in nonlinear sta-
bilization, investigated the existence of smooth stabilizing feedback control laws for a class
of third-order nonlinear systems for which the linearized model possesses an uncontrollable
pair of pure imaginary eigenvalues. Behtash and Sastry [10] used the same approach to
study stabilization for nonlinear systems whose linearized model has two distinct pairs of
complex conjugate pure imaginary eigenvalues, or a double pole at the origin, or a polec
at the origin and a complex conjugate pair of pure imaginary eigenvalues. In [10], the
design was undertaken for the reduced system on the center manifold using normal form
calculations, and for simplicity, a scalar stable mode was assumed. Generally, there is a
need for considering cases with any finite number of stable modes. Moreover, it is desirable
to express the control laws directly in terms of the original model rather than in terms of
transformed versions.

A main goal of this paper is to derive such stabilizing control algorithms for general
nonlinear systems in critical cases. The development focuses on general nonlinear systems in
two specific critical cases. In the first critical case of interest here, a simple zero eigenvalue
occurs, while in the second case a pair of pure imaginary eigenvalues occurs. In either casc,
the critical eigenvalues of the linearized model need not be controllable. The feedback
laws obtained include purely linear state feedbacks, purely nonlinear state feedbacks and
feedback control laws containing both linear and nonlinear terms in the state. Results of

this paper are compared with those of 6], [7].

2. PRELIMINARIES

Consider a class of nonlinear autonomous systems

n = Ann + A€+ F(n,§) (la)
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€ = Agin + Apsé + G(n, ), (1b)

where n € IR", £ € IR™. In (1), A;j for 7,7 = 1,2 are constant matrices, and the functions
F,G are sufficiently smooth, with their values and first derivatives vanishing at the origin.
If Aip and Ajp; vanish, the matrix A;; has all its eigenvalues on the imaginary axis, and Asgy
is Hurwitz, then the Center Manifold Theorem asserts the existence of a locally invariant
manifold for (1) near the origin. This manifold is given by the graph of a function £ = /(7).
In applying the Center Manifold Theorem to feedback stabilization problems, it is
convenient to give a restatement of the theorem in a way that does not require vanishing
of the “linear coupling” matrices A2 and Ayy. This is especially true when the feedback
is allowed to possess linear terms. For the purposes of this paper, a restatement allowing
nonzero Az; but with A;9 = 0 suffices. A linear transformation of variables is now employed
to achieve this. Consider the equation
AM + MB = C, (2)
where A € ™™™, B € €™"*" and M,C € €™*". Forn = m and B = A7, Eq. (2)is a
Liapunov matrix equation [5]. Let F denote the linear operator
F:Mw— AM + MB (3)
for M € €™*".

The following result is a direct generalization of [5, Theorem F-1 and Corollary F-1a].

Theorem 1. Let n,m be positive integers. If the sum of any eigenvalue of 4 and any
eigenvalue of B is nonzero, then the linear matrix equation (2) has a unique solution for

matrix M.

We now apply the Center Manifold Theorem to the stability analysis of (1) for the
case in which Ayy = 0, with A2y not necessarily zero. Let Ass be Hurwitz and 4y, have all
its eigenvalues on the imaginary axis. By Theorem 1, the equation

ApE —EA;+ Ay =0 (4)
has a unique solution for the m x n matrix E. Letting v := £ — En, we can rewrite system
(1) as

n=Aun+ F(n,v+ En) (5a)

v = Asv+ G(n,v+ En)— E - F(n,v+ En). (5b)
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The Center Manifold Theorem for (1) can now be restated as follows:

Lemma 1. Assume A;; = 0, Az is Hurwitz, and all eigenvalues of A;; have zero real parts.
Then the origin of (1) is asymptotically stable (unstable) if the origin is asymptotically
stable (unstable) for the reduced model

n=Aun+ F(n,h(n) + En), (6)

where h satisfies the partial differential equation

Dh(n){Aun + F(n,h(n) + En)}
= As2h(n) + G(n, h(n) + En) — E - F(n, h(n) + En) (7)

with E the solution of Eq. (4) and boundary conditions: ~(0) = 0 and Dh(0) = 0.

We employ Taylor series expansions in the development below, using multilinear func-
tion notation for the terms in these expansions. The definition of multilinear function is

recalled as follows.

Definition 1. (e.g., [9]) Let V1, V5, ..., Vr and W be vector spaces over the same field. A

map 9 : Vi x Vo x ... x Vi —» W is multilinear (or k-linear) if it is linear in each of its

arguments. That is, for any v;,9; € Vi, ¢ = 1,...,k, and for any scalars «, d, we have
Y(vi,...,av; + @b, ..., 08) = ap(vy, ..., Vi, ..., VL)

+a,’(/)(’l)i,...,’5i,...,vk)- (8)

The integer k is the degree of the multilinear function .
The next definition deals with the special case in which Vi = Vo, = ... =V, = V.

Definition 2. [9] A k-linear function ¢ : V x V x ... x V — W is symmetric if the vector
¥p(v1,v2,...,0k) is invariant under arbitrary permutations of the argument vectors v;. A
function ¢ : IR" — IR™ is homogeneous of degree k (k an integer), if for each scalar a,

¢(an) = a*¢(n) for all n € IR".

Note that, in the sequel prime denotes the transpose of both vector and matrix and [

denotes the identity matrix.



3. GENERAL FRAMEWORK

Consider a nonlinear control system

1= Ann+ biu + F(n, ), (9a)
£ = Agof + byu+ G(1, £), (90)

where 7, ¢ are real vectors, and a preliminary block diagonalization has been applied to
remove any linear coupling term in the dynamics between n and £. For simplicity, u is
supposed to be a scalar control. It is not difficult to extend the study to the case in which
the input is a vector control. In the following, we apply the center manifold result in
Lemma 1 to design stabilizing control laws for (9) for which all eigenvalues of A;; lie on
the imaginary axis.

Let us first consider the case in which b; is nonzero. In the simple critical cases, where
A is the scalar 0 or is a 2 X 2 matrix with a pair of pure imaginary eigenvalues, linear
theory will imply the existence of a linear stabilizing feedback control for (9). Cousider
next the existence of a purely nonlinear smooth feedback (i.e., one with vanishing lincar
part).

Since now we focus on purely nonlinear stabilizing controllers, system (9) retains the
linear decoupling property upon control. Thus, if A, is stable, then according to center
manifold theorem (e.g., [3], [8]) there is a locally invariant manifold £ = h(y) for (9).

Furthermore, h satisfies

Dh(n){A11n + biu(n, h(n)) + F(n, h(n))}
=Agoh(n) + bau(n, h(n)) + G(n, h(n)) (10)

with boundary conditions h(0) = 0 and Dh(0) = 0. Then, we seek a purely nonlincar

stabilizing feedback control law by using stability conditions for the reduced model
n = Aun+ biu(n, h(n)) + F(n, h(n)). (11)

Note that, for the case in which Ass is not stable, a linear state feedback I{5€ is needed to

first stabilize Agqy + by K.



Next, consider the case of b = 0 and assume the feedback control to be of the form

u(n,€) = Kin + K6 +U(n,€), (12)

where U(-,-) is a smooth, purely nonlinear function whose first derivatives vanish at the

origin. Rewrite the system dynamics (9) as

€ = by + (A + 02J )6 + bU(n, €) + G(n, €). (14)

From Eq. (14), the feedback has given rise to a linear coupling term bhetween 1 and
€ in the dynamics. As discussed in preceding section, there is a constant matrix E such
that, with v := { — En, the transformed version of the control system (13)-(14) is in block

diagonal form. Here, E is the (unique) solution of the Liapunov-like equation

bzI&’l + (A22 + bzf(z)E — FA;; =0. (15)

We assume that A,y + by K is stable. Moreover, since all the eigenvalues of 4;; lic on
the imaginary axis, then Theorem 1 guarantees existence of a solution E to Eq. (15). The

transformed dynamics in the states n and £ is then

i =Aun+ F(n,v+ En), (16a)
v = (A + b Ky)v+ b U(n, v+ En)+ G(n,v + En). (160)

Eq. (16) has a center manifold given by the graph of a function v = h(n), where I

satisfies

Dh(n){Aun + F(n,h(n) + En)} = (A2z + b2 K2)h(n)

+bU(n, h(n) + En) + G(n, h(n) + En) (17)

with boundary conditions ~(0) = 0 and Dh(0) = 0.
Lemma 1 implies asymptotic stability of the origin for (16) if the control gains L'y, \y
and the nonlinear function U are chosen such that (i) Ags + by I3 is Hurwitz, and (ii) the

origin of reduced model (16a) with v = h(n) is asymptotically stable.
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We now proceed to consider two special cases in which the system has only simple
critical modes (i.e., one zero eigenvalue or a pair of pure imaginary eigenvalues) and the

rest of the eigenvalues are stabilizable.

4. ONE ZERO EIGENVALUE

In this section, we first consider stability conditions for scalar systems with a zero
eigenvalue. These conditions are then employed in the design of stabilizing control laws for
higher order systems with a simple zero eigenvalue.

Consider a scalar real nonlinear system

i =dz® +ex®+.... (18)

Stability conditions for system (18) are given next.

Lemma 2. The origin is asymptotically stable for system (18) if d = 0 and ¢ < 0. The
origin is unstable for (18) if d # 0.

Now consider Eq. (9), with the scalar z replacing the critical state n, and with

f(2,€) ==F(z,¢)
=foz®? + 0 foel + ' feel + forot® + 37 fruel
+ 28 foge€ + feee(§,€:€) + O(l](2, OI1"), (19)
G(2,€) =" Gz + 2Guel + Gee(6,6) + 27 Grza
+ 2% Groel +2Gage(€,€) + Geee(€,€,€)
+O0(l|(z,&)I1). (20)

The coeflicients in the Taylor series expansions (19)-(20) are either constants or symmetric
multilinear functions of their arguments. For instance, feee(€,€,€) and Gee(€,€) denote a
symmetric trilinear scalar function and a bilinear vector function of £, respectively.

In the remainder of this section, stabilizing control laws will be obtained for systein

(9) under one or the other of the following two hypotheses.

Hypothesis 1A. The matrix 4;; = 0 is a scalar and b; # 0.
Hypothesis 1B. The matrix 411 = 0 is a scalar and b; = 0.
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4.1. The case by £ 0

In this subsection, we consider the case in which Hypothesis 1A holds. The control law
1s taken to be purely nonlinear. Existence of a linear stabilizing feedback for this case is
evident. Nonlinear feedback controllers are none the less desirable in certain applications.

We assume Asgs is stable and the scalar control input is of the form
u(z,€) =U(a,£)
=UgrZt + Tuzel + Eugel + Upprd®
+$2usz£+x£’ux556+u555(£7§a€)' (21)

According to center manifold theorem, the stability of the origin for (9) coincides with

the stability of the origin for the reduced model

& = byu(z, h(z)) + F(z, h(z)). (22)
Here, h solves Eq. (10) with 7 replaced by = and with boundary conditions 2(0) = 0 and
Dh(0) = 0. Indeed, solving (10) we have

h(z) = 2*hyy + O(|2]*), (23)

where

how = —Agy (batzy + Goy). (24)
From Lemma 2, we now have

Lemma 3. Let Ay, be stable. Under Hypothesis 1A, the origin is asymptotically stable
for (9) if frz + biugz = 0 and fope + bitzrs — (foe + b1ux5)A2_21(Gu + batige) < 0.

It 1s obvious from Lemma 3 that a purely quadratic stabilizing control law exists.

Corollary 1. Assume that A,; is stable. Under Hypothesis 1A, the origin of (9) is
asymptotically stabilizable by a purely quadratic feedback of the form u = wu, 2% + au,¢é

if A5Gl # 0.

Furthermore, below we have a purely cubic stabilizing controller for system (9) when

fex =0.



Corollary 2. Assume that A, is stable and f,, = 0. Under Hypothesis 1A, the origin of
(9) is asymptotically stabilizable by a purely cubic feedback of the form u = uy.2°.

For the case in which A, is not stable, a linear feedback K¢ is needed to guarantce
the existence of a locally invariant manifold. Then the design of stabilizing control laws

proposed in Lemma 3 and Corollaries 1 and 2 can be applied directly.

4.2. The case by =0

Next, we consider the case in which Hypothesis 1B holds and consider feedback control

has the form as

u(@,§) = bz + K26 + Uz, £) (:

V]
Ut
N

with k; a scalar control gain and the nonlinear control function U as in (21).
From Section 3, the stability of control system (9) in this critical case coincides with

the stability of the reduced model

& = f(z,h(z) + Ex), (26)

where E and h(-) solve Egs. (15) and (17), respectively, under the conditions: (.4gg + by Ky)
is stable and n and K are substituted by z and k, respectively.

As above, h is as in (23). We assume that Ays + by I{5 is stable. Solving Egs. (15) and
(17), we have

E = —(A22 + ng(z)_lbzkl, and (27)
hzr = (A22 + 621\"2)—1{[.&01 + f:cﬁE + Elf{EE]E - [blull
+Gyr + (bz’u,zg -+ sz)E -+ ng’U&E + G&(E, E)]} (28)

The reduced model (26) is then given by
t+ frat B+ B foge B + feee(B, B, E)}a” + O(Ja]"). (29)
Note that E and h as given in (27) and (28) depend on the control u. Using Lemma

2, we have the following stabilization result for control system (9).
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Lemma 4. Let the control input u be of the form as in (25). Then under Hypothesis 1B,
the origin of the closed-loop system (9) is asymptotically stable if Ags + by K is stable and

following two conditions hold:

foz + feeE+ E'fee E =0, and (30)
fxfhx:c + 2E,f55hxz‘ + fa:zx + fx:cﬁE
+ E'foee E + feee(E,E,E) < 0. (31)

where F is as in (27) and

hxx = - (A22 + b2l&’2)~1{b2uzx + Gxx
+(b2ux5—{—GxE)E-}—sz'IU&E—{-GfE(E,E)}. (32)

From Egs. (27) and (32), and the fact that Ass is invertible, we have E = 0 and h,, =
_Az—zl G for the uncontrolled system. The next stability criterion for the uncontrolled

version of system (9) follows readily from Lemma 4.

Corollary 3. Suppose Hypothesis 1B holds. Then the origin is asymptotically stable for
(9) (with w = 0) if Ay, is stable, f;z = 0 and fozz — fIEAQ_Q1 G, <O.

In the rest of this subsection, we assume that the stability conditions given in Corollary
3 do not hold, and seek stabilizing control laws for system (9).

Linear stabilizing control laws follow readily from Lemma 4, and are as given next.

Proposition 1. Suppose Hypothesis 1B holds and let M := (Az2 + b2 [{3)~ 1. Then there
is a purely linear feedback which asymptotically stabilizes the origin of (9) if there exist

feedback gains k; and I, for which (Agg + b2 K3) is stable,
fow — k1 foeMby + kW, M fee Mby, =0,  and (33)
fres — foeMGee + ki {fee MGoe + 2G M fee — fore} My
+ K3 {0y M free Mby — froe MGee(Mby, Mby)
— 205 M fee MG og MU} — k3 { feee (Mbo, Mby, Mbs)
— 20, M fee MGee(Mby, Mby)} < 0. (34)
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Remark 1. The linear stabilizing control rule proposed in Proposition 1 is a composite-
type controller design. First, the feedback gain I, is chosen to stabilize state £&. Then the
remaining feedback gain k; is selected to satisfy the conditions (32) and (33) based on the

chosen gain Kj.

Since k; is a scalar, conditions (32) and (33) do not necessarily hold for any given Iy.
Thus, a stabilizing linear feedback does not always follow from Corollary 2. A special result,
for the case in which the non-critical state £ is a scalar, is given below to demonstrate such

a design is not vacuous. Note that Gee(€,€) 1= Gee€? in the next corollary.

Corollary 4. Suppose the non-critical state £ is a scalar and Hypothesis 1B holds. Then
there is a purely linear feedback which asymptotically stabilizes the origin of (9) if either
of the following conditions holds:

(1) fee = 0, fag # 0 and freGay = foaGug + 77 Geefi, < 0.
(ii) fee #0, ff£ —4frefee > 0 and either Gop + Goe ET 4+ Gee(ET)? < 0or Gy + Gue B~ +
Gee(E™)? > 0, where

1 .
E* = ﬂz{_fxﬁ 0/ fle —4fuafee} (35)

According to the stability conditions given in Lemma 4, the cubic terms of both the
function G and the control input u do not contribute to the stability criteria of system (9).

A general linear-plus-quadratic feedback control law can then be abstracted as

u(z,€) = k12 + K26 + uga® + sugel + E'ugel (36)

while the control gains satisfying the conditions of Lemma 4.

As implied by Lemmas 1 and 2 and the discussions above, we have the next result.

Lemma 5. Suppose Ay, is stable and Hypothesis 1B holds. Then there exists no purely
quadratic feedback stabilizer for the origin of system (9) if f;, # 0. However, the origin of
(9) is asymptotically stabilizable by a purely quadratic feedback of the form « = uy,a? if
fzz = 0 and freAs; by # 0.
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Note that the stabilization results given in Corollaries 1 and 2 and Lemma 5 agrec

with those obtained in [7].

5. PAIR OF PURE IMAGINARY EIGENVALUES

In this section, we consider system (9) in which A;; has a pair of pure imaginary
eigenvalues. Specifically, we take A1; to be of the form (38) below.

First, however, consider the stability of a planar system

n=Aun+Q(n,n)+Cln,n,n)+--, (37)

where n = (z,y)', and

Ay = (_222 %1> (33)

with ©;Q9 > 0. Without loss of generality, we may express the quadratic and cubic terms

in Eq. (37) in the form

2 2
q112° + q12TY + q13Y
,n) = , 39
Q(’? 77) (qz1m2 + goazy + q23y2) (39)

3 2 2 3
[ c11z” + 1227y + c132y” + c1ay >
Cmn,m) = <621$3 + 2072y + coszy® + coay® )’ (40)

respectively. Note the linearization of (37) at the origin has the pair of pure imaginary
eigenvalues +i1/€1{)o, where i = /—1.
Applying a general stability criterion for planar systems undergoing Hopf bifurcation

(see, e.g., [8]), we find that a sufficient condition for the stability of the origin for (37) is:

1{ ( 1 n 1 ) ( 1 n s )+ 2
3 q22 Q2C.I21 0 q23 Q2 o) q11 Q%CIB 2(111Q21

2Q,

Q 1 Q.
— = q13ges + 3(ci1 + mmc13 + 2 a0 + —2c4)} < 0. (41)
9

3Q, 3 4

In the following, we apply the stability criterion (41) to the design of stabilizing control
laws for the more general (nonplanar) system (9) in which both n = (z,y) and b, =

(b11,b12)" are two-dimensional vectors, and F(n, ) = (flz,y,6),9(z,y,8)) .
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Results obtained in this section will apply under one or the other of the following two

hypotheses.

Hypothesis 2A. The matrix A;; (appearing in (9)) is a 2 X 2 matrix of the form (38)
above, and b # 0.
Hypothesis 2B. The matrix A;; (appearing in (9)) is a 2 x 2 matrix of the form (38)

above, and b; = 0.

5.1. The case b; # 0

First, we consider the case in which at least one of b;; and b5 is nonzero. Although this
assumption guarantees the controllability of the subsystem (9), here we consider only purely
nonlinear control laws. Assume that As; is stable and the control input v = U(a,y,£) is
a smooth, purely nonlinear function. From Section 3, the stability of the origin of (9) now

coincides with the stability of the origin of the reduced model

¢ =y + b U(z,y, h(z,y)) + f(z,y, h(z,y)) (42)

y ==z +b12U(,y, h(z,y)) + g(z, y, h(z,y)). (43)
Here, h solves Eq. (10) with 7 replaced by (z,y)" and with boundary conditions k(0) = 0
and Dh(0) = 0. Indeed, h takes the form

h(2,y) =2"har + 2yhay +y*hyy + O(||(2, 9)II°), (44)
where hyg, hzy, hyy are constant vectors.

In the following, we restrict the nonlinear control function U to be a function of & and

y only, as follows:
U('T"? Y, St) :uxxl,Z + ugyzy + uyyy2 + urzx$3

+ troy2®y + usyyry® + uyyyyt. (45)
A stability criterion for the control system (9) in this case is given next.

Lemma 6. Suppose Aj;; is stable and Hypothesis 2A holds. Then the origin is asymptot-
ically stable for (9) if

1 1
(brougy + gzy){@—z-(bmum + gz2) + m(blzuyy + gyy)}
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1 Q
~ (b1augy + fxy){Q_l(bllum + feo) + Q_z(blluyy + fyy)}
1

2 2825

-+ ﬁ;’(blluzx + fxz)(bIZUJ,‘x + g:cx) - Q—%(blluyy -+ fyy)(bl2uyy + .(/yy)
Qs

+ 3{b11uxzz + fxzz + fthz:c + E(blluxyy + fryy + fthyy + fyfhl‘y,)

1
+ '§(b12u:mcy + 9rzy + grfha:y + gyﬁha:x)

Qy
+ ﬁ:(bl?uyyy + Gyyy + yehyy)} <0, (46)

where

hoy ={A%y + 401021} 71{2Q5(uyybo + Gyy)

- ZQl(urzb2 + sz) - A22(uxyb2 + ny)}a (47)
hgy = — Az_zl(usz2 + Goe + Qthy)a (48)
hyy = — Azwzl(“yybfl + Gyy — Quhay). (49)

It is observed from Lemma 6, generically there exists a quadratic-plus-cubic feedback
stabilizer for system (9). In addition, a purely quadratic state feedback stabilizing control
law and a purely cubic state feedback stabilizing control law follow readily from Lemina 6

as given in the next two corollaries.

Corollary 5. Let Aj; be stable and Hypothesis 2A hold. Then the origin of system (9) is
stabilizable by a purely quadratic state feedback of the form u = u 2y if

1 1 Q,
bn{'ﬁ:(ﬂyy — foz) + Qg h-%—fyy}
1 -1 Q2 2 -1 ~
— 2{Q2(29ye — 8fue) A%y + = fye + 9oe}(ASy +4Q1Q0) 7  Agaby £0. (50)
3 2

Corollary 6. Let Ay; be stable and Hypothesis 2A hold. Then the origin of system (9) is

stabilizable by a purely cubic state feedback of the form u = uz ;203 + 1wy y @y +uryyay® +
Uyyyy®-

14



5.2. The case by =0

Next, we consider the case in which Hypothesis 2B holds, i.e., b = 0 and A;; is as in

(38). Let the control input be of the form

u =ki1z + kioy + K26 + U(z, y,§), (51)

where U is defined in (45).
Assume that Ay + b2 K5 is stable. From Section 3, the stability of the origin of (9)
agrees with the stability of the origin of the reduced model
¢ =y + f(z,y, 1z + E2y + h(z,y)) (52)

Here, E = (E;, E;) and h(z,y) are the solutions of Eqs. (15) and (17), respectively, with
Ky = (k11, k12).
Since (Ag2+by I(3) is stable, matrices (Aze+b2 K5)2 + Q1 Qo I and (Ao +0o [{5)2+4Q, Q0 T
are then both invertible.
Let
H(z,y) :=bU(z,y, E1z + Esy) + G(z,y, E1z + Eqy)
— f(z,y, Byz + Eay) By — g(2,y, E1a + Eay)E»

=" Hay + 2y Haoy +y* Hyy + O(JI(z, y)I1°)- (54)

As before, we take A to be of the form (44). Solving Eqgs. (15) and (17), we have
E] = — {(Azz + bz]&’z)Z + QlQ2I}_1{k]1(A22 -+ bz[&’z) — szm[}bg (55)
Eg = — {(Azz + bg]i’2)2 -+ 9192[}—1{]%’12(1422 -+ bz[&rz) =+ \Qlkllf}bz (56)

and

hxy :{(A22 + b2[&’2)2 + 491921}_1{2Q2Hyy -2 H,,

— (Aga + 0 Ky)Hy, ), (57)
her = — (Agg + by J2) 7 (Haw + Qahay), (58)
hyy = — (Ags + b K3) ™ (Hyy — Quhay). (59)
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The reduced model (52)-(53) is obtained as

T =y + fxz$2 + fzywy + ]Eyyy2 + fmz$3
+meywzy+fzyyxyz +fyyyy3 +O(_H($7y)||4) (60)
?J = — 9237 + ﬁm$2 -+ gxyl'y + gyyy2 -+ gzxxmg

‘|‘gwy$2y+§zyy$yz +§yyyy3 +O(H($ay)||4)- (61)

Here, fij, Gijs fijk and §gijk, ¢, 7,k € {z,y, 2}, denote the new versions of the quadratic terms
and cubic terms, the values of which are given in Appendix A.
Referring to the stability criterion (41) and the preceding discussions, we obtain sta-

bility conditions for the control system (9) as summarized in the following lemma.

Lemma 7. Suppose Hypothesis 2B holds and that the control input is of the form (51)
with nonlinear function U as in (45). Then the origin of Eq. (9) is asymptotically stable
if A9y + b I{5 1s stable and

.1 1 A T § FN 2 .
gzy(ﬁ;'gxx + ﬁ:gyy) - fxy(Q_lfzr + 'ﬁ’%’fyy) + '@fzzgxx

20, . . 0, . 1. Q, _
— —g—z?fyygyy + 3(f11:$ + Efzyy + "?;grajy '{"' S_z';gyyy) < 0 (62)

Remark 2. From (62) and Appendix A, we observe that only quadratic terms of the
function G, and the linear and quadratic terms of the control input « contribute to the
stability conditions. A linear and/or quadratic feedback stabilizing control law readily
follows from Lemma 7. Moreover, a stability criterion for the uncontrolled version of

system (9) is also implied by Lemma 7 by letting v = 0.

Similarly, although Lemma 7 addresses the design of a linear feedback stabilizing
control law, such a linear stabilizing control law need not exist. In the next result, we
consider a special case of which the non-critical state £ of system (9) is a scalar. Since £
is a scalar, as observed from Eqs. (55)-(56), we always have solutions for the control gains
k11 and kq; for arbitrary given values of E;, Fy and Kj. According to the formulations as

in Appendix A, we can select B4 = 0 and E; large enough (or Ey = 0 and E; large enough)
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such that the condition (62) in Lemma 7 holds while geee < 0 (feee < 0). The following

result hence readily implied by Lemma 7.

Corollary 7. Suppose the non-critical state £ is a scalar and Hypothesis 2B holds. Then

there is a purely linear feedback which asymptotically stabilizes the origin of (9) if either

Jeee <0 or geee <O.

Referring to Eqgs. (54)-(56), for the general case of which the state £ of system (9)
may not be a scalar, we have H(z,y) = bU(z,y,0) + G(z,y,0) while ky; = k12 = 0 and

K, = 0. A purely quadratic stabilizing control law can then be obtained as follows.

Corollary 8. Assume that Hypothesis 2B holds, Ass is stable and the origin of system (9) is
unstable. Then a purely quadratic stabilizing feedback in the form u = g, 2% +ugyry+uyyy?
exists for the origin of (9) if one of the following three conditions holds:

(1) Mo Aazby # 0, or

(i) {(3fz¢ + 59v¢)A% +2Q1Mo}by #0, or
(ii1) {2Q2Mo — F2(5foe + gye) A7y }o2 # 0, where

1 _ Q _
Moy 25{92(29116 - 8sz)A221 T _Q_jfyﬁ + ga:E}(A§2 + 42, Q1) (63)

We note that Aeyels’ stabilization conditions for a third-order system [1] are special
cases of those given in Corollary 8. Moreover, Corollary 8 easily extends to the case in
which Asy is not stable but the pair (Aag, b2) is stabilizable. This involves use of an
additional linear feedback K€ to ensure the existence of a locally invariant manifold and
the stability of the Jacobian matrix of Eq. (95). Furthermore, we note that the stabilizing
control laws obtained in Corollaries 6 and 8 agree with those obtained by Abed and Fu [6],
where an asymptotic expansion method based on bifurcation analysis is used for controller

design.

6. CONCLUDING REMARKS

In this paper, the center manifold reduction technique has been applied to the smooth

feedback stabilization of nonlinear systems in two critical cases. The stabilizing control
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laws were obtained in a two step composite-type design. Linear stability for the noncritical
state ¢ is first ensured, then the remaining control gains are chosen to stabilize the orign
of the reduced model whose eigenvalues all lie on the imaginary axis. Stabilizing control

laws have been designed in linear and/or nonlinear feedback form.
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APPENDIX A

The coefficients in the Taylor expansions of f,§ are given below in terms of those of

f,g. Here, p denotes either f or g, and i # j for 1,5 € {z,y} with Ej;) = E1, and Ef,) = E».
pii = pii + pie Epy) + Ejjpec By
pij = pij + pieEj + pie B + 2B pec By
piii = piii + piie Epiy + Efypice Bpiy + peee(Eyy, Epay, Epip)
+ pichii + 2E[; pechii
piiy = pichii + pichij + 2E; pechii + 2Ef; pechi;
+ piij + pije Bl + piie B + Epypiee Ely

+ 2E{;pice Epj) + 3peee(Ep, B, Eyyy).
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