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In the study of finance, likelihood based or moment based methods are fre-

quently used to estimate parameters for various kinds of models given the sampled

return data. While the former method is not robust, the latter one suffers from loss

of efficiency and high noise-to-signal ratio in the data. In this paper, we investigate

the ergodic behavior of the bivariate series described by the Barndorff-Nielsen and
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estimation scheme for continuous models called the Negative Exponential Disparity

Estimator (NEDE) is studied. We apply this method and the classical Method of

Moments (MOM) to the BN-S model. Asymptotic properties of the NEDE and the

MOM estimator are proved, implementation details are provided.
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0. INTRODUCTION

Consider a frictionless1 financial market in which only one risky asset (stock

St) and one riskless asset with a constant risk free rate r are traded. To study

the dynamics of the log price process Rt D lnSt , various types of models based on

stochastic differential equations (SDE) have been proposed. In particular, models

which incorporate stochastic volatility have entered the mainstream as scholars and

market participants increasingly realize that the latent volatility is the key driving

force of the market. See Fouque, Papanicolaou, and Sircar [30] and a survey study

by Ghysels et al. [31] for more details. Several parametric estimation schemes

have consequently been designed and tested. We refer readers to the review by

Broto and Ruiz [21] on ARCH type models and the survey by Dotsis et al. [25] on

SDE type models. Among the estimation techniques, likelihood based and moment

based methods are the most popular choices. Although likelihood based methods

are optimal when one knows the true model, they may produce biased or unstable

estimators if the model specification is wrong. Also, when the marginal density of Rt

does not have a closed form expression, it is impossible or computationally expensive

to compute the likelihood. Moment based methods are easier to implement and

1A frictionless market is where all costs and restraints associated with transactions are non-
existent.



less affected by model misspecification at a mild cost of efficiency. But when the

number of parameters increases, the performance of moment based methods can

quickly deteriorate as the higher order moments can be greatly affected by outliers

and the noise in the data.

Recently, high frequency trading data have become widely available and a

popular data source for parameter estimation. However, most of the research focus

has been directed to estimating the variance (volatility) components of Rt (e.g.

[9] and [10]), by using various types of sums of lagged (log) returns proposed by

Barndorff-Nielsen and Shephard. While these efforts have resulted in many exciting

advances in the study of volatility, they do not suggest how to use such data to

estimate all parameters simultaneously in the model for Rt . While understanding

that volatility provides deeper insight into the market, being able to characterize

the dynamics of Rt is also important in different aspects of financial studies, for

example, estimating risk premia (cf Broadie et al. [20]) and computing the fair

value of the path dependent options.

In this paper, we try to address the above estimation problem by employing a

class of well studied estimators for i.i.d. data, called Minimum Disparity Estimator

(MDE). The basic idea of MDE is to minimize the distance between probabilities

suggested by the model and the ones estimated from the data. The key components

of the MDE are the user selected distance metric �, a family of parametric densities

m�.x/ indexed by � and the kernel density estimate f �.x/ computed from the

data. A special class of MDE called the Minimum Hellinger Distance estimator
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(MHD) has been studied by Beran [16], Tamura and Boos [71] and Simpson [65, 66].

Their results showed that MHD was robust against data contamination and model

mispecification with little cost of efficency. Lindsay [49] and Basu and Lindsay [12]

extended these results to general MDE for discrete and continuous models with i.i.d.

data. A recent simulation study conducted by Takada [70] showed that MHD can be

applied with low computation cost even when m�.x/ has no closed form expression.

Our study focuses on the stochastic volatility model proposed by Barndorff-

Nielsen and Shephard (BN-S model). We investigate one special class of MDE’s

called the Negative Exponential Disparity Estimates (NEDE) and apply it to esti-

mate all of the parameters in the BN-S model simultaneously. By explicitly deriving

the Taylor expansion of the Negative Exponential disparity with a special class of

the BN-S model, which we have not seen in other literatures before, we obtain a

concrete result on asymptotic properties of the estimator and provide the implemen-

tation details. Due to the fundamental difference between i.i.d. data and time series

data and time constraint, we leave the discussion of robustness for future work.

This paper is organized as follows. In Chapter 1, we introduce the BN-S

model and study how to derive the dynamics of the Volatility Index 2 (VIX) based

on the BN-S model. We show how to facilitate the parameter estimation by using

the VIX data. In Chapter 2, we prove the smoothness and differentiability of the

transition and stationary density of the bivariate process .Xi ; �
2
i / derived from the

BN-S model. Here, Xi D Ri �Ri�1 is the log return sequence and �2i is the squared

2The VIX is calculated and disseminated in real-time by the Chicago Board Options Exchange
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volatility sequence. They are both observed over discrete time points. The ˇ-

mixing property of .Xi ; �
2
i / with geometric mixing rate is proved. In Chapter 3,

we introduce the MDE proposed by Basu and Lindsay [12] for continuous models

and study one of its special cases, called the NEDE. General results concerning the

properties of the MDE are included in Appendix B.1. Technical details needed for

applying the NEDE to the BN-S model are covered in Appendix B.2. Appendix B.3

discusses the functional delta method as an alternative approach to study asymptotic

normality. In Chapter 4, we describe how to construct the Method of Moments

(MOM) estimator had we been able to observe the latent volatility. Computations

of various moments are put in Appendix C. In Chapter 5, we summarize the results

and discuss some aspects for future study.

4



1. BN-S MODEL, EQUIVALENT MARTINGALE MEASURE

(EMM) AND VIX2 DYNAMICS

1.1 BN-S Model and the Structure Preserving EMM Transform

In this section, we formally introduce the BN-S stochastic volatility model

and summarize some of the features and advantages of using this model. Then we

describe the structure preserving equivalent martingale measure transform proposed

by Nicolato and Venardos [55] for this model. The study of the EMM transform

is of great importance to asset pricing theory, but the merit of their result to our

study is that this special transform makes it straightforward to derive the dynamics

of VIX2. With the observable VIX data, we can estimate some parameters related

to the volatility process.

Recall we denote the log asset value process by Rt and the squared volatility

process by �2t . Assume all the processes are defined on a common filtered complete

probability space .˝; .Ft/0�t�T ;P/ up to a finite time horizon T . Under the BN-

S model, .Rt ; �
2
t / satisfies the following system of stochastic differential equations



(SDEs) under the statistical measure P:

8̂̂<̂
:̂

dRt = .�C ˇ�2t / dt C �t dWt C �dZ�t ; R0 D 0

d�2t = ���2t dt C dZ�t ; �20 > 0

(1.1)

with � > 0 and � � 0, where Z�t is the driving process with Lévy density w.x/

defined on RC (such process is also called a subordinator) and Wt is a standard

Brownian motion which is independent of Zt . In the literature, �2t is commonly

known as the (Non-Gaussian) Ornstein-Uhlenbeck (OU) process and Zt is called

the Background Driving Lévy process (BDLP).

Remark: In the original model specification, Barndorff-Nielsen and Shep-

hard used the centered process NZ�t D Z�t �EŒZ�t � in the dynamics of Rt . Nicolato

and Venardos [55] studied the Equivalent Martingale Measure for the BN-S model

and they used Z�t in the dynamics of Rt instead. As our study of the VIX2 dy-

namics is based on the formulae proposed by Nicolato and Venardos, and it is clear

that there is no major difference between using Z�t or NZ�t , we will use Z�t when

specifying the model for Rt .

Remark: The BN-S model can be used to model any asset (and its volatility)

traded in the market, but in order to relate the dynamic of �2t to VIX2, we will always

assume the St represents the S&P 500 index value.

There are several comments on the use of the OU process and the BN-S model:

� For �2t :
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(s1). The trajectory of �2t consists of upward jumps of Zt with periods of

downward exponential decay between them. This asymmetric behavior

is closer to the actual behavior of volatility than the symmetric one de-

scribed by constant volatility.

(s2). The mean reverting parameter � controls the serial dependence of the

process, with value close to 0 corresponding to a long memory process.

(s3). One can include more than one risk factor into �2t by superposition:

�2t D �
2
1t C �

2
2t where �2it D ��i�

2
itdt C dZi�i t for i D 1; 2:

Through this approach, one can include variation induced by a short-term

force, such as breaking news together with influences due to long-term

economic change.

(s4). The tail behavior of �2t is completely determined by the distribution of

Z1. Thus one can easily create a volatility process with heavy tail.

� For Rt :

(r1). It is common practice in finance to study quantities which depend on

the unobservable volatility process, in particular the integrated volatility,

through the quadratic variation of the price process. The specification of

Rt in the BN-S model gives a direct connection between the quadratic

variation of Rt and the integrated volatility
R h
0
�2s ds . We will discuss

this feature later in Chapter 4 to see how it helps to derive estimators for

7



the parameters using high frequency sampled returns.

(r2). The model captures volatility feedback by ˇ�2t in the expected return.

For a risk-averse (or risk-neutral) market participant, ˇ is nonnegative,

meaning that the investor expects higher return with higher volatility

(risk).

(r3). The model also incorporates the leverage effect by including the term

�dZ�t , through which the upward jumps of �2t induce downward jumps

in Rt . The strength of leverage is measured by j�j.

Next we introduce the Equivalent Martingale Measure (EMM) transform. The

EMM, risk neutral measure or Q-measure, is a probability measure under which the

current value of all financial assets is equal to the expected value of its future payoff

when discounted by the risk-free rate. In formal mathematical language, this means

that the discounted asset value e�rtSt is a martingale under Q, i.e.

e�rtSt D E
QŒe�rTST jFt �; for T � t

where Ft is the � -algebra generated by fSu; u � tg. The EMM is of great impor-

tance to financial asset pricing theory, as the existence of EMM is equivalent to

no arbitrage in the market (see Section 9.1 in [23] for more discussion). Therefore,

when a model for a financial asset is specified, one must prove the existence of the

EMM before any further analysis.

It turns out the market described by the BN-S model (1.1) is incomplete,

8



which can be intuitively understood as saying that one has no information about

the risk factor �2t . In an incomplete market, the EMM is non-unique, and there are

potentially infinite many EMMs (of possibly finitely many classes) for a specified

model. Then the expected future payoff of the asset always equals to the risk

free rate under any of these EMMs. Hubalek and Sgarra [37] studied a family of

EMM transforms for the BN-S model called the Esscher transform, and they gave

two approaches to characterize the change of measure. The structure preserving

equivalent martingale transform proposed earlier by Nicolato and Venardos [55] is a

special case of this family of the Esscher transform. It is called structure preserving

because the independence between Wt and Zt is preserved after the measure is

changed from P (statistical) to Q (risk-neutral). Such a result is generally not true

for the Esscher transform.

The structure preserving transform is of particular interest because the inde-

pendence between Wt and Zt under Q makes it possible to derive the dynamics

of VIX2 straight from its definition (cf [22] and [48]). Using the VIX data listed

on CBOE, one can estimate � and study the autocorrelation of the volatility time

series. This fact is very helpful when we study the MDE and MOM estimators

later. There are other advantages of this transform. For example, one can directly

compare the difference between parameters before and after the change of measure,

which facilitates the study of risk premia. Further, the characteristic function of Rt

under Q can be easily derived and one the Fast Fourier Transform (FFT) can be

used to study option pricing directly. Next we briefly summarize the result on the

9



structure preserving equivalent martingale transform.

To present the EMM result, we need to introduce some definitions:

� Assume the filtered complete probability space .˝; .Ft/0�t�T ;P/ satisfies the

following usual hypotheses:

(i) F0 contains all the P-null sets of F ;

(ii) Ft D
T
u>t Fu, all t , 0 � t � T ; that is, the filtration .Ft/0�t�T is right

continuous.

� A stochastic process R is said to be adapted if Rt 2 Ft for each t . A stochastic

process R is said to be càdlàg if it almost surely has sample paths which are

right continuous (càd), with left limits (làg).

� A process which is measurable with respect to the � -algebra S on ˝ � RC

generated by all left-continuous adapted processes is called predictable.

� Stochastic integral with respect to Brownian motion. For a predictable càdlàg

process R and Brownian motion W, .R �W /t is defined as:

.R �W /t ,
Z t

0

Rs�dWs D lim
jj�jj!0

nX
kD1

Rtk
�
WtkC1^t �Wtk^t

�

The limit, if exists, is understood as convergence in L2.P /.

� Stochastic integral with respect to Poisson random measures �. To simplify

the discussion, we focus on the random measures for Lévy processes. Suppose

a one dimensional Lévy process Zt has discontinuity at time Tn.!/ of size

10



Yn D ZTn � ZT�n for n � 1. Then its jump measure (i.e., Poisson random

measure) �Z is defined as:

�Z.!; �/ D
X
n�1

ı.Tn.!/;Yn.!// D
X

t2Œ0;T �;�Zt¤0

ı.t;�Zt /:

Intuitively speaking, for any measurable subset of A � R:

�Z.Œ0; t �; A/ WD number of jumps of Z occurring between

0 and t whose sizes belong to A:

Its compensator �Z.�; �/ is given by �Z.dt; dx / D dtw. dx / where w.�/ is the

Lévy measure of Zt . For a predictable random function f W ˝� Œ0; T ��Rd !

R, the stochastic integral of f with respect to the compensated jump measure

.�Z � �Z/ is defined as

f ? .�z � �Z/ ,
Z T

0

Z
Rd
f .s; y/

�
�Z.ds; dy/ � �Z.ds; dy/

�
D

Z T

0

Z
Rd
f .s; y/

�
�Z.ds; dy/ � w.dy/ds

�
:

Jacod [40] showed that f ? .�z � �Z/ was a martingale with respect to the

time parameter t in place of T .

� E.R/ denotes the Stochastic Exponential of a càdlàg process R. For a semi-

martingale R, E.R/ is defined as

E.X/ D exp

�
Rt �

1

2

h
R;R

i
t

� Y
0<s�t

.1C�Rs/ exp

�
��Rs C

1

2
.�Rs/

2

�

11



where �Rs D Rs � Rs� and ŒR;R�t is the quadratic variation process of R

given by

ŒR;R�t D lim
jj�jj!0

nX
kD1

�
Rtk �Rtk�1

�2
where � is a partition of the interval Œ0; t � and jj�jj is the mesh size. The

limit, if it exists, is understood as convergence in probability.

Remark More details about these notions can be found in [23], [41] and [61].

Now we are ready to state the result by Nicolato and Venardos. Define the

Cumulant Transform Function (CTF) �.�/ for Z1 as:

�.�/ D logE.e�Z1/ D

Z
RC
.e�x � 1/w.x/ dx (1.2)

for � < O� where O� D supf� 2 R W �.�/ < C1g. Note that � can be a complex

number, in which case we require that Re.�/ < O� . For the given Lévy density w.x/,

introduce a family of functions Y :

Y WD fy W RC ! RCj
R

RC.
p
y.x/ � 1/2w.x/ dx <1g:

Set wy.x/ D y.x/w.x/ for y 2 Y .

Lemma 1.1.1: (Nicolato and Venardos 2003, Theorem 3.2). Let y 2 Y .

Then the process

 t D
r � � � .ˇ C 1

2
/�2t � ��

y.�/

�t
;

12



where �y.�/ D
R

RC.e
�x � 1/wy.x/ dx for Re.�/ < 0, is such that

P

 Z T

0

 2s ds <1

!
D 1

and

L
y
t D E. �W C .y � 1/ ? .�z � �z//t 0 � t � T

is a density process. The probability measure Qy defined by dQy
D L

y
TdP is an

EMM and the dynamics of .Rt ; �
2
t / under Qy are given by:

8̂̂<̂
:̂
dRt = .r � ��y.�/ � 1

2
�2t /dt C �tdW

y
t C �dZ

y

�t
;

d�2t = ���2t dt C dZ
y

�t
; �20 > 0

(1.3)

where W y
t D Wt �

R t
0
 ds is a Qy standard Brownian Motion and Zy

�t
is a Qy Lévy

process with Lévy density wy.x/. Further, W y
t and Zy

�t
are independent under Qy .

Remark This lemma along with the derivation discussed in the next section

will be used to find the dynamics of VIX2 implied by the BN-S model. We focus

on the cases where the BDLP Zt is specified by the Gamma process or the Inverse

Gaussian process.

Remark Another important aspect in the EMM study is the price range

spanned by the value of a claim when a class of EMMs is used. We won’t discuss

this topic here as it is less relevant to the estimation problem in measure P. Interested

readers are advised to study Chapter 5 of [55].

13



1.2 Deriving the Dynamics of VIX2 implied by the BN-S Model

The key motivation to study the VIX is as follows. The purpose of VIX is to

measure the market expectation of near-term future volatility conveyed by S&P 500

stock index option prices, it is natural to treat it as a proxy to study the behavior

of the latent process �2t . Further, notice that the mean reverting parameter � is

unchanged in the EMM transform, the result in this section shows the VIX2
t process

also has the OU structure with exactly the same mean reverting parameter provided

that the dynamics of S&P 500 index is correctly specified by the BN-S model. This

suggests we can estimate � by using the sample autocorrelation function of VIX2.

Besides, the dynamics of VIX2 can be very useful in studying the fair value of

financial derivatives which use VIX as the underlying asset, but we will not pursue

this direction in our study.

Let Ft D �f.Rs; �
2
s /; 0 < s � tg

S
F0. Recall the following model-free

formula (definition) used by CBOE [22] to derive the current value of VIX square:

VIX2
t ,

2

�

X
i

�Ki

K2
i

QVi.Ki/ �
1

�

hFt.t C �/
K0

� 1
i2

where � D 30=365, QVi is the fair value of the out-of-the money SPX option with

strike Ki , and K0 is the highest strike below the index forward price Ft.t C �/. Lin

[48] shows that this definition is a discrete approximation to

2

�

h Z F

0

dK

K2
QP .K/ C

Z 1
F

dK

K2
QC.K/

i
D �

2

�
EQy

h
ln
StC�

Ster�
jFt

i
(1.4)

14



where QC and QP are the forward call and put prices. Therefore, under the BN-S

model, the dynamics of VIX2
t can be derived using the right-hand side of the above

equation.

VIX2
t D �

2

�
EQy

�
ln
StC�

Ster�
jFt

�
D �

2

�
EQy ŒlnStC� � lnSt � r� jFt �

D 2r �
2

�
EQy ŒlnStC� � lnSt jFt �

Using the dynamical equation (1.3) of Rt (i.e., lnSt) under Qy ,

lnStC� � lnSt

=
R tC�
t

.r � ��y.�/ � 1
2
�2s /ds C

R tC�
t

�sdW
y
s C

R tC�
t

�dZ�s

= r� � ���y.�/ � 1
2

R tC�
t

�2s ds C
R tC�
t

�sdW
y
s C �ŒZ

y

�.tC�/
�Z

y

�t
�;

which implies that

EQy ŒlnStC� � lnSt jFt �

D r� � ���y.�/ �
1

2
EQy

�Z tC�

t

�2s dsjFt
�

CEQy
�Z tC�

t

�sdW
y
s jFt

�
C �EQy

h
Z
y

�.tC�/
�Z

y

�t
jFt
i

D r� � ���y.�/ �
1

2
EQy

�Z tC�

t

�2s dsjFt
�
C � � �EQy ŒZ

y
1 �

The last equality is due to the time homogeneous property of a Lévy process. Finally

�
2

�
EQy ŒlnStC� � lnSt jFt �

D �2r C 2��y.�/C
1

�
EQy

�Z tC�

t

�2s dsjFt
�
� 2��EQy ŒZ1�
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If we assume that the Lévy process Zt has finite mean under both P and Qy ,

then

EQy ŒZ1� = @
@�
�y.�/

ˇ̌
�D0

=
R

RC xy.x/w.x/ dx .

Further, for s > t , by using integration by parts, one can derive

�2s D e
��.s�t/�2t C

R s
t
e��.s�u/ dZy

�u

and then

EQy Œ
R tC�
t

�2s dsjFt �

= EQy Œ
R tC�
t

e��.s�t/ ds �2t C
R tC�
t

R s
t
e��.s�u/ dZy

�u
ds jFt �

= 1
�
Œe��.t�t/ � e��.tC��t/� � �2t CE

Qy ŒZ1� �
R tC�
t

R s
t
e��.s�u/� du ds

= 1
�
Œ1 � e��� � � �2t CE

Qy ŒZ1� � Œ� �
1
�
.1 � e���/�

Thus, the �2
�

normalized conditional expectation of the log return under Qy

is given by:

�
2

�
EQy ŒlnStC� � lnSt jFt � D �2r C

1 � e���

��
�2t C

�
1 �

1 � e���

��

�
EQy ŒZ1�

C 2�

Z
RC
.e�x � 1 � �x/y.x/w.x/ dx :

Therefore, under the measure Qy , VIX2
t is given by:

VIX2
t D

1 � e���

��
�2t CD.�; �; y.�/; w.�// (1.5)

withD.�; �; y.�/; w.�// D 2�
R

RC.e
�x�1��x/y.x/w.x/ dxC.1�.1�e���/=.��//EQy ŒZ1�.

If one chooses �20
D
D

R1
0
e�t dZt as we do from this point on, then �2t is strictly
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stationary1, which implies VIX2
t is also strictly stationary. Let

Vt , VIX2
t �D.�; �; y.�/; w.�//.

Then Vt satisfies the following SDE under Qy :

dVt D ��Vtdt C
1�e���

��
dZ

y

�t
; V0

D
D

1�e���

��

R1
0
e�tdZ

y
t .

One can also derive the characteristic function for VIX2
t :

�VIX2t
.u/ D EQy

h
eiu.VtCD/

i
D eiuD �EQy

h
eiu

1�e���

��
�2t

i
D eiuD � �

y

�2t

�
1 � e���

��
u

�
D eiuD � �

y

�20

�
1 � e���

��
u

�

where �y
�2t
.u/ is the characteristic function of �2t under Qy .

From (1.5), one immediately gets the following properties for the moments of

VIX2
t :

� EQy ŒVIX2
t � D

1�e���

��
EQy Œ�2t �CD;

� VarQ
y

ŒVIX2
t � D .1�e

���

��
/2 VarQ

y

Œ�2t �;

� �Q
y

ŒVIX2
t ;VIX2

s � D �PŒ�2t ; �
2
s � D e��jt�sj.

From the last equation, one finds that if the VIX index accurately approx-

imates the left-hand side of (1.4), then the mean reverting parameter � can be

estimated by using the VIX2 data.

1See Lemma 2.1.1 and the following discussion.
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1.3 Examples of Structure Preserving EMM for the BN-S Model

In this section, we will study some analytic properties of two OU processes:

the Gamma OU (�-OU) process and the Inverse Gaussian OU (IG-OU) process. We

choose these two processes because, along with the Tempered Stable process, they

are the most analytically tractable pure jump processes with only positive jumps.

Besides, the Gamma OU process can be simulated very efficiently and is therefore

a good candidate for a simulation study. Further, empirical studies (cf [7]) have

shown that the distribution of volatility can be well approximated by the Inverse

Gaussian distribution.

We focus on the following three aspects: the characteristic functions of the

stationary distributions of these two processes, the corresponding structure preserv-

ing EMM transform and the VIX2
t dynamics. First we review some basics of the

Lévy -Khintchine formula (cf [63]).

For any Lévy process Zt , the distribution F of Z1 is infinitely divisible. The

Lévy - Khintchine decomposition formula states that the characteristic func-

tion of any infinitely divisible distribution can always be written in the following

form (when Z1 is univariate):

�Z1.u/ D exp

�
i
u �

�2

2
u2 C

Z
R
.eiux � 1 � iuxIfjxj<1g/˘. dx /

�
;
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where 
 2 R, �2 � 0 and ˘.�/ is a measure on R with

Z
R
.1 ^ x2/˘. dx / <1:

We say that Œ
; �2; ˘. dx /� is the Lévy triplet of Z1 and ˘.�/ is called the Lévy

measure of Zt . If ˘.�/ has a density w.x/ with respect to the Lebesgue measure,

we also refer to Œ
; �2; w.x/� as the Lévy triplet.

Since in the BN-S model, Zt is a subordinator and has positive jumps only,

then w.�/ is defined only on RC and
R 1
0
xw.x/ dx <1 because Zt has finite varia-

tion. The characteristic function Z1 is simplified to

�Z1.u/ D exp
n Z

RC
.eiux � 1/w.x/ dx

o
for u 2 R:

(1). BN-S model with � .�; ˛/-OU Volatility Process:

For a compound Poisson process Zt with Lévy density w.x/, we know its Lévy

triplet is given by:

hR 1
�1
xw.x/ dx ; 0 ; w.x/

i
.

In the Γ-OU case, the BDLP Zt is a Compound Poisson process with Lévy density

w.x/ D �˛e�˛x for x > 0. So it is easy to obtain that Zt has Lévy triplet

h
.1�e�˛.1C˛//�

˛
; 0; �˛e�˛x

i
,

and its CTF is �.�/ D ��
˛��

. It can be shown that �2t is a stationary process whose

marginal distribution is Gamma.�; ˛/. Thus �2t is also a Lévy process with the
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following Lévy triplet:

h�
˛
.1 � e�˛/; 0 ;

�

x
e�˛xIfx>0g

i
;

and its CTF is given by �� .�/ D ln
h� ˛

˛ � �

��i
for Re.�/ < ˛. Define the following

processes: 8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

y.x/ = Q� Q̨
�˛
e�. Q̨�˛/x, for Q�; Q̨ 2 RC

�y.�/ = Q��

Q̨��

 t =
r���.ˇC1=2/�2t ��.Q��/=. Q̨��/

�t
.

Let �Z denote the jump measure of Zt and �Z.x; t/ denote its compensator (in this

case, d�Z.x; t/ D ��˛e�˛x dx dt). Then, according to Corollary (3.3) in [55], the

process Lyt D E Œ �Wt C .y.x/� 1/ ? .�Z � �Z/�t 0 � t � T is a density. The EMM

transform which preserves the BN-S structure is given by dQy
D L

y
TdP . By (1.5),

VIX2
t D

1�e���

��
�2t C

h
2� Q��2

Q̨2�Q̨�
C .1 � 1�e���

��
/ � Q�
Q̨

i
:

Using (C.4), one can compute the following three moments (cross-moment):

� EQy ŒVIX2
t � D 2� Q��2

˛2�˛�
C
Q�
Q̨
;

� VarQ
y

ŒVIX2
t � D .1�e

���

��
/2 � Q�

Q̨2
;

� CovPŒRtCh �Rt ; �
2
tCh
� �2t � D �.1 � e��h/2�

˛2
.

(2). BN-S Model with IG.ı; 
/-OU Volatility Process:

Selected properties of the Inverse Gaussian (IG) distribution (following the

notation in [55]):
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(1) The density of the IG.ı; 
/ distribution is given by:

f .x/ D
ı
p
2�
eı
x�3=2 exp

�
�
1

2
.ı2x�1 C 
2x/

�
for x > 0:

The parameters ı and 
 are positive.

(2) If the random variable X1 follows an IG.ı; 
/ distribution, then by the Lévy

-Khintchine formula, its characteristic function is given by:

�X1.u/ D exp
�
ı.
 �

p

2 � 2iu/

�
D exp

�
ı
 � ı

p
2

qp

4 C 4u2 C 
2 C i ıp

2

qp

4 C 4u2 � 
2

�

The last equality follows from the square root formula for complex numbers.

One can also derive its Lévy triplet:

�
ı



.2˚.
/ � 1/ ; 0 ;

1
p
2�
ıx�3=2 exp

�
�

2x

2

�
Ix>0

�
;

where ˚.�/ is the cumulative distribution function for a standard normal ran-

dom variable.

(3) An IG.ı; 
/ random variable has CTF �IG.�/ D ı
 � ı.
2� 2�/1=2 and MGF

M.�/ D eı
�ı.

2�2�/1=2 defined for all � 2 .�1; 
2=2/ .

(4) The IG.ı; 
/ distribution is self-decomposable2.

Some basic properties of the IG.ı; 
/-OU process:

2A random variable (or equivalently, its distribution) is self-decomposable if its characteristic
function �.u/ satisfies �.u/ D �.c�1u/�c.u/ for some c > 1 and �c.u/ is the characteristic function
for some distribution.
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(1) If the BDLP Zt in the BN-S model has the following Lévy density:

w.x/ D
ı

2
p
2�
x�3=2.1C 
2x/e�

1
2

2x for x > 0;

with ı > 0 and 
 � 0, then �2t is a stationary OU process with IG.ı; 
/

marginal distribution;

(2) Z1 has CTF �.�/ D �ı.
2 � 2�/�
1
2 , which is well defined for Re.�/ < 
2=2;

(3) In the BN-S model with volatility assumed to be an IG.ı; 
/-OU process, if

� D 0, then the log return Rt is approximately Normal Inverse Gaussian (NIG)

distributed. The NIG distribution has density function

g.xI˛; ˇ; �; ı/ D a.˛; ˇ; �; ı/q
�x � �

ı

��1
K1

n
ı˛q

�x � �
ı

�o
exp.ˇx/

where a.˛; ˇ; �; ı/ D ˛=� exp.ı
p
˛2 � ˇ2 � ˇ�/, q.x/ D

p
1C x2 and K1

is the modified Bessel function of the third kind wiht index 1. Furthermore,

˛; ˇ; � and ı satisfy 0 � jˇj � ˛, � 2 R and 0 < ı. Barndorff-Nielsen [4] stud-

ied how the NIG distribution captured the important empirical phenomena of

stock return data.

According to Corollary 3.3 in [55], the set M IG of EMMs which preserves the

IG-OU structure is given by:

M IG D fQy
2M

0

W y.x/ D 1CQ
2x

1C
x
exp

h
�
1
2
. Q
2 � 
2/x

i
; for Q
 2 RCg

Here, M
0

is the set of EMMs where the structure of the SDEs (1.1) is preserved
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after the transform (possibly with different parameters). With the y.x/ specified in

M IG , one can find the  t in the same way as in the �-OU case, which leads to the

appropriate density process. Notice that in order to preserve the BN-S structure,

the coefficient ı is the same under P and Qy . Under Qy , Z1 has CGF �y.�/ D

�ı. Q
2 � 2�/�1=2 and �20 has CGF �D.�/ D ı Q
 � ı. Q
2 � 2�/1=2. By using the Lévy

density of Z1 under Qy , we can compute the following quantities used in formula

(1.5):

� EQy ŒZ1� D ı Q
�1;

� VarQ
y

ŒZ1� D 2ı Q
�3;

�
R

RC.e
�x � 1 � �x/y.x/w.x/ dx D �ı

�
1p
Q
2�2�

�
1
Q


�
.

Thus VIX2
t under Qy can be expressed as:

VIX2
t D

1�e���

��
�2t C 2��ı

�
1p
Q
2�2�

�
1
Q


�
C

�
1 � 1�e���

��

�
�
ı
Q

:

Since �2t � IG.ı; Q
/, EQy Œ�2t � D ı= Q
 and VarQ
y

Œ�2t � D ı= Q

3, we have the moments

of VIX2
t :

� EQy ŒVIX2
t � D 2��ı

�
1p
Q
2�2�

�
1
Q


�
C

ı
Q

;

� VarQ
y

ŒVIX2
t � D

�
1�e���

��

�2
�
ı
Q
3

;

� CovPŒRtCh �Rt ; �
2
tCh
� �2t � D �.1 � e��h/ � 2ı


3
.
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2. SMOOTHNESS OF TRANSITION DENSITY, MARGINAL

DENSITY AND ERGODICITY

In the previous section we have modeled the VIX2
t process as an affine trans-

form of �2t with the similar OU structure. Since the moments of VIX2
t (�2t ) and

Rt are relatively easy to compute, it is natural to estimate the parameters in the

BN-S model by the method of moments. Although we can observe VIX2
t and Rt

at discrete time points Ti , we cannot observe the latent process �2t . This suggests

methods based only on the sampled return Xi D RTi � RTi�1 are needed to esti-

mate all the parameters in BN-S model under the statistical measure P. Notice that

the time series fXig is a sequence of dependent variables, so that extra conditions

need to be imposed on the covariance for making statistical inference. One of the

common assumptions is that the series has a strong mixing property (see [26] for

general discussion on various types of mixing notions). In this section, we will prove

f.Xi ; �
2
i /g is ˇ-mixing with geometric mixing rate (thus it is strong mixing). As

an application, we will use this conclusion to show the consistency and asymptotic

normality of the MDE and MOM estimator. Also, we prove the smoothness of the

density of Xi . This property is useful for computing the kernel density estimate.

Assume that we observe .N C 1/ pairs of data .Ri ; �
2
i / from .Rt ; �

2
t / on equi-



spaced time points Ti D iT=N for i D 0; 1; : : : ; N . Let Xi be the discrete time

increment process given by Xi D RTi � RTi�1 and �2i is the squared spot-volatility

process defined as �2i D �
2
Ti

. The joint dynamics of .Xi ; �
2
i / under P can be described

by the following system of equations:

8̂̂̂̂
<̂
ˆ̂̂:
Xi = �hC ˇ

ihR
.i�1/h

�2s ds C
ihR

.i�1/h

�s dWs C �
ihR

.i�1/h

dZ�s ; X0 = 0

�2i = e��h�2i�1 C
ihR

.i�1/h

e��.ih�s/ dZ�s �20
D
D

1R
0

e�s dZs

(2.1)

We choose this particular combination of the increment and spot process for

the following reasons:

(1) RTi (or Rt) itself is not a stationary process, whereas the increment process

Xi is stationary. Besides, the log return fRTi � RTi�1g is a more commonly

studied process in empirical finance;

(2) Xi alone is NOT a Markov chain, which excludes the use of powerful techniques

based on the Markov assumption;

(3) If under the statistical measure one can establish an affine relation between

�2i and other observable quantities, such as trading volume, then one can take

advantage of the joint mixing property of .Xi ; �
2
i / and estimate parameters

more efficiently, (cf Hubalek and Posedel [36]).

The main machinery we employ is the Foster-Lyapunov type geometric ergod-

icity criterion proposed by Nummelin and Tuominen [56]. In order to apply this
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criterion, we first need to show that the following two properties hold for .Xi ; �
2
i /

under certain conditions:

1. .Xi ; �
2
i / is a (strictly) stationary Markov chain where the support of its sta-

tionary distribution F has a non-empty interior;

2. The transition semigroup Pn for .Xi ; �
2
i / has the weak Feller property (the

definition is given in Section 2.2);

This chapter is organized as follows. First, we study the Markov property of .Xi ; �
2
i /

and show that this bivariate process is strictly stationary with some stationary distri-

bution F if a proper initial distribution is chosen. Second, we study the smoothness

of the transition and stationary probability measure. As a consequence, the Strong

Feller property for Pn is proved. At last we apply the theorem in [56] to prove that

.Xi ; �
2
i / is ˇ-mixing with geometric mixing rate.

2.1 Markov Property of .Xi ; �
2
i /

The Markov property of .Xi ; �
2
i / is readily established due to the BN-S model

specification: for any bounded function f .�; �/ defined on B.R;RC/, we have:

E.f .Xi ; �
2
i /jXi�1; Xi�2; : : : ; X1I �

2
i�1; �

2
i�1; : : : ; �

2
1 /

D E.f .Xi ; �
2
i /jXi�1; �

2
i�1/

D E.f .Xi ; �
2
i /j�

2
i�1/

since the behavior of Xi and �2i depend only on �2i�1 and the trajectories of
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Ws and Zs for s 2 ..i � 1/h; ih�. To justify the last equality, notice that from (2.1):

Xi D �hC ˇ
� ihZ
.i�1/h

e�s�2.i�1/h ds C

ihZ
.i�1/h

e�s
sZ

.i�1/h

dZ�u ds
�

C

ihZ
.i�1/h

�s dWs C �

ihZ
.i�1/h

dZ�s ;

Using the fact that Ws and Zs are processes with independent increments, one finds

Xi does not depends on Xi�1.

To prove the strict stationarity of .Xi ; �
2
i /, we will use a lemma concerning

the strict stationarity of �2t . First let us introduce the following terminology: for a

random variable X having characteristic function �X.u/, its characteristic exponent

is defined as  X.u/ D ln�X.u/.

Remark Sato and Yamazato used the term characteristic exponent in this

lemma as their work is based on the characteristic function (or Fourier transform) of

the density function. Compared to the CFT defined in Section (1.1), the Cumulant

Transform Function is based on the Laplace transform of a density function.

The following lemma, restated in our notations, provides a sufficient condition

for �2t to be strictly stationary.

Lemma 2.1.1: (Sato and Yamazato 1984, Theorem 4.1 and 4.2). Consider

the volatility process �2t in the BN-S model and let S and B.S/ denotes its sample

space and the Borel � -algebra generated by S respectively. Define the transition

probability Pt.x; A/ , P.�2sCt 2 Aj�
2
s D x/ with x 2 S and A 2 B.S/. Let the
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Lévy triplet of Z1 be .
; 0;˘/. Then the following two statements hold:

(a) Let � > 0. If Z
x>1

log x ˘. dx / <1; (2.2)

then there exists a limiting distribution F�20 such that

Pt.x; A/! F�20
.A/; as t !1

for any x 2 S and A 2 B.S/. This F�20 is self-decomposable and the unique

invariant distribution of �2t . Moreover, the characteristic function of F�20 is

given by

��20
.u/ D exp

�Z 1
0

 Z1.e
�su/ds

�
:

In particular, the Lévy triplet of �20 is given by Œ
�20 ; 0;˘�20 �, where


�20
D



�
C

Z
R

Z 1
0

e��sx
�
Ifje��sxj<1g � Ifjzj<1g

�
ds˘. dx /;

˘�20
.E/ D

Z 1
0

˘.e�sE/ds; E 2 B.R/:

Here  Z1 is the characteristic exponent of Z1 .

(b) Let � 2 S. If (2.2) fails to hold, then �2t has no invariant distribution, and

moreover, for any x 2 S, Pt.A; x/ does not converge to any probability mea-

sure as t !1.

One sees that by assuming (2.2) and choosing �20
D
D
R1
0
e�s dZs, the unique

invariant distribution, the continuous time process �2t as well as the discrete time
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process �2i are strictly stationary with marginal distribution F�20 . This implies the

sequence of Integrated Volatility
R ih
.i�1/h

�2s ds and
R ih
.i�1/h

dZ�s on successive time

intervals ŒTi�1; Ti � both form strictly stationary time series. Thus we find Xi is also a

strictly stationary process. Putting these results together, f.Xi ; �
2
i /; i D 1; 2 : : : N g

is a strictly stationary Markov chain with stationary distribution being the joint

distribution F of .X1; �
2
1 /.

2.2 Weak Feller Property of the Transition Semigroup .Pn/n2ZC

Following are some symbols to be used in this section:

� bB.S/: space of bounded and B.S/ measurable functions.

� Cb.S/: space of functions f defined on S which are bounded and continuous.

� C1c .S/: space of functions f defined on S which are infinitely many times

differentiable and have compact support.

� Essential supremum norm k k1 on functions:

k f k1WD inffC � 0 W jf .x/j � C for almost all x in its support g:

For the discrete time Markov chain .Xi ; �
2
i /, there is an associated transition semi-

group .Pn/n2ZC with the 1–step transition operator P1 defined by:

29



P1 f .x; v/ = EŒf .Xi ; �
2
i /jfXi�1 D x; �

2
i�1 D vg�

=
R

R

R
RC f .y1; y2/ P1. dy ; v/

for any bounded f W R � RC ! R, where P1.AI v/ , P ..Xi ; �2i / 2 Aj�i�1 D v/

for A 2 S is the 1-step transition probability measure. Recall .Pn/n2ZC (resp.

.Pt/t2RC) is called Weak Feller if Pnf 2 Cb.S/ (resp. Ptf 2 Cb.S/) for any

f 2 Cb.S/. To show the Weak Feller property for the semigroup .Pn/n2ZC , it

suffices to show that P has the Weak Feller property. In the rest of the section,

we will suppress the subscript n unless stated otherwise. One sees that the value

of P f .x; v/ depends on v only, so that P f .x; v/ is bounded and continuous in x

automatically. Therefore, it is only necessary to show, for v1; v2 2 RC, that

P f .x; v2/! P f .x; v1/ as v2 ! v1:

Theorem 2.2.1: Under the BN-S model, the transition operator P for .Xi ; �
2
i / is

(weak) Feller.

Proof : For v1; v2 2 RC:

jPf .x; v1/ � Pf .x; v2/j

D

ˇ̌̌̌
E
h
f .Xi ; �

2
i /jfXi�1 D x; �

2
i�1 D v1g

i
�E

h
f .Xi ; �

2
i /jfXi�1 D x; �

2
i�1 D v2g

iˇ̌̌̌
D

ˇ̌̌̌
E
h
E
�
f .Xi ; �

2
i /j�

2
i�1 D v1

�ˇ̌̌
�fZsg.i�1/h<s�ih

i
�E

h
E
�
f .Xi ; �

2
i /j�

2
i�1 D v2

�ˇ̌̌
�fZsg.i�1/h<s�ih

iˇ̌̌̌
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After conditioning on �fZsg.i�1/h<s�ih, the random element in Xi is the stochastic

integral
R ih
.i�1/h

�sdWs. It is easy to see that
R ih
.i�1/h

�sdWs is a Normal random

variable with mean 0 and variance ��2
h
.v/:

��2h .v/ ,
Z ih

.i�1/h

�2s ds D

Z ih

.i�1/h

e��sC�.i�1/h ds v C

Z ih

.i�1/h

Z s

.i�1/h

e��.s�u/ dZ�u ds

D
1

�
.1 � e��h/v C

1

�

Z ih

.i�1/h

Œ1 � e��.ih�u/� dZ�u

Since v1; v2 2 RC, the variance ��2
h
.v/ is always strictly positive. Further, let

�2i;v D e
��hv C

R ih
.i�1/h

e��u dZ�u and define function A.z; v/ as

A.z; v/ ,

h
z �

�
�hC ˇ��2

h
.v/C �

R ih
.i�1/h

dZ�u
�i2

2��2
h
.v/

:

Then by conditioning and expressing in terms of the normal density function,

jPf .x; v1/ � Pf .x; v2/j

D

ˇ̌̌̌
E
hZ

R
f .z; �2i;v1/ �

1q
2� ��2

h
.v1/
� e�A.z;v1/ dz

i

� E
hZ

R
f .z; �2i;v2/ �

1q
2� ��2

h
.v2/
� e�A.z;v2/ dz

iˇ̌̌̌

� E
hZ

R

ˇ̌
f .z; �2i;v1/ � f .z; �

2
i;v2
/
ˇ̌
�

1q
2� ��2

h
.v1/
� e�A.z;v1/ dz

i

C E
h Z

R

ˇ̌
f .z; �2i;v2/

ˇ̌
�

ˇ̌̌ 1q
2� ��2

h
.v2/
� e�A.z;v2/ �

1q
2� ��2

h
.v1/
� e�A.z;v1/

ˇ̌̌
dz
i

D E1 C E2
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To study E1, since f .x; v/ is continuous and j�2i;v1 � �
2
i;v2
j
a:s:
�! 0 when v2 ! v1, one

has jf .z; �2i;v1/ � f .z; �
2
i;v2
/j
a:s:
! 0. Further, since f .x; v/ is bounded by a constant

M ,

ˇ̌
f .z; �2i;v1/�f .z; �

2
i;v2
/
ˇ̌
�

1q
2� ��2

h
.v1/
�e�A.z;v1/ � 2M �

1q
2� ��2

h
.v1/
�e�A.z;v1/ a.s.

and the right-hand side integrates to 2M with respect to z. So by the Dominated

Convergence theorem (DCT),

Z
R

ˇ̌
f .z; �2i;v1/ � f .z; �

2
i;v2
/
ˇ̌
�

1q
2� ��2

h
.v1/
� e�A.z;v1/ dz ! 0 as v2 ! v1:

This implies E1 ! 0 as v2 ! v1.

Next we show the convergence of E2 by using the arguments in Scheffé’s the-

orem (cf [19], Theorem 16.12). To simplify the notation, let

d� D
1q

2� ��2
h
.v1/
� e�A.z;v1/ dz and ıv2 D

q
2� ��2

h
.v1/q

2� ��2
h
.v2/
� e�A.z;v2/CA.z;v1/

Then

Z
R

h 1q
2� ��2

h
.v1/
� e�A.z;v1/ �

1q
2� ��2

h
.v2/
� e�A.z;v2/

i
dz D

Z
R

h
ıv2 � 1

i
d�:

Let gv2 D 1� ıv2 , due to the continuity of
q
2� ��2

h
.v/ and e�A.z;v/ with respect to

v, we know that gv2
a:s:
! 0 almost surely when v2 ! v1. So the positive part gCv2 of
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gv2 converges to 0 almost surely. Moreover, 0 � gCv2 � 1 and 1 is integrable with

respect to d�, so the DCT applies and
R

R g
C
v2
d�! 0. But

Z
gv2d� D

Z
R

1q
2� ��2

h
.v1/
� e�A.z;v1/ dz �

Z
R

1q
2� ��2

h
.v2/
� e�A.z;v2/ dz D 0:

Therefore

Z
R
jgv2j d� D

Z
gv2�0

gv2 d� �

Z
gv2<0

gv2 d� D 2

Z
gv2�0

gv2 d� D 2

Z
R
gCv2d�! 0:

This implies the integral in E2 converges to 0 as v2 ! v1. One also observes

Z
R

ˇ̌
f .z; �2i;v2/

ˇ̌
�
ˇ̌ 1q
2� ��2

h
.v2/
� e�A.z;v2/ �

1q
2� ��2

h
.v1/
� e�A.z;v1/

ˇ̌
dz

�

Z
R
M
h 1q

2� ��2
h
.v2/
� e�A.z;v2/ �

1q
2� ��2

h
.v1/
� e�A.z;v1/

i
dz D 2M

Applying the DCT again we get E2 ! 0.

Combining the previous results we have Pf .x; v2/ ! Pf .x; v1/ as v2 ! v1.

And so P satisfies the Weak Feller property and the proof is complete. �

Remark It should be pointed out that any Ornstein-Uhlenbeck process is

weak Feller. Masuda ([52], Theorem 3.1) proved the strong Feller property for the

multidimensional OU process driven by a general Lévy process. In the next section,

we will use a similar approach to show the smoothness of the transition density and

the Strong Feller property of P .
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2.3 The Smoothness of the Transition and the Marginal Density

In this section we will find sufficient conditions for the smoothness, that is,

differentiability with respect to x and v, of the transition probability density and the

(stationary) marginal density. A direct consequence of the existence of the transition

density is that P is strong Feller, which strengthens the result in Theorem 2.2.1.

To study the smoothness of a probability measure, we need the following result:

Lemma 2.3.1: (Sato 1999, Proposition 28.1) Let a probability distribution

function F.x/ have characteristic function �.z/ on Rd which satisfies

Z
Rd
j�.z/j jzjn dz <1 (2.3)

for some n 2 ZC. Then F has a density f .x/ of class C n and the partial derivatives

of f .x/ of orders 0; 1; : : : ; n tend to 0 as jxj ! 1.

Using a similar approach as in Masuda [52], we prove the following result:

Theorem 2.3.2: Suppose that there exist constants ˛ 2 .0; 2/ and cw > 0 such that

Z
fxWjtxj�1g

.tx/2w.x/ dx � cw jt j
2�˛ (2.4)

for any t 2 R satisfying jt j � 1. Then the transition density p.�I v/ for .Xi ; �
2
i /

exists and its (partial) derivatives of all orders exist.
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Proof: Due to the stationarity of .Xi ; �
2
i /, for v > 01

�.u1; u2I v/ D E
h
eiu1XjCiu2�

2
j jf�2j�1 D vg

i
D E

h
eiu1X1Ciu2�

2
1 jf�20 D vg

i
:

Therefore,

�.u1; u2I v/ D exp.iu1�h/ �E

�
exp

n
iu1ˇ

Z h

0

�2s ds C iu1

Z h

0

�s dWs C iu1�

Z h

0

dZ�s

o
� exp

n
iu2e

��hv C iu2

Z h

0

e��.h�s/ dZ�s

o�
:

Since Ws is independent of the Z�s, by conditioning and unconditioning on

the complete trajectory of Z�s on s 2 .0; h�,

�.u1; u2I v/ D exp.iu1�h/ �E

�
exp

n
iu1ˇ

Z h

0

�2s ds �
u21
2

Z h

0

�2s ds C iu1�

Z h

0

dZ�s

o
�

exp
n
iu2e

��hv C iu2

Z h

0

e��.h�s/ dZ�s

o�
D exp.iu1�h/ �E

�
exp

n
iu1ˇ

Z h

0

e��s ds v �
u21
2

Z h

0

e��s ds v C iu2e
��hv

o
�

exp
n�
�
u21
2
C iu1ˇ

� “
Œ0;h��Œ0;s�

e��.h�u/ dZ�u ds

C

Z h

0

�
iu1�C iu2e

��.h�s/
�

dZ�s

o�
:

By using the fact that

Z h

0

Z s

0

e��.h�u/ dZ�u ds D ��1
Z h

0

Œ1 � e��.h�s/� dZ�s ;

1Since �2t ¤ 0 with probability 1, without loss of generality, we can always assume the volatility
in non-zero

35



we have in terms of g.s/ D 1�e��.h�s/

�
,

�.u1; u2Iv/ D exp.iu1�h/ �E

�
exp

n�
�
u21
2
C iˇu1

�
g.0/ v C ie��hu2v

o
� exp

n�
�
u21
2
C iˇu1

� hZ
0

g.s/ dZ�s C i

hZ
0

�
u1�C iu2e

��.h�s/
�

dZ�s

o�
:

Then the norm of �.u1; u2I v/ is given by

j�.u1; u2I v/j D exp

�
�
1 � e��h

2�
u21 v

�
�ˇ̌̌̌

E

�
exp

�Z h

0

�
�
1 � e��.h�s/

�

u21
2

C i
h�
�C

1 � e��.h�s/

�
ˇ
�
u1 C e

��.h�s/u2

i�
dZ�s

��ˇ̌̌̌
D exp

�
�
1 � e��h

2�
u21 v

�
� (2.5)ˇ̌̌̌

ˇE
"

exp

�Z h

0

�.sIu1; u2; �; h; ˇ; �/ dZ�s

�#ˇ̌̌̌
ˇ

where

�.sIu1; u2; �; h; ˇ; �/ D �g.s/
u21
2
C i

h�
�C g.s/ˇ

�
u1 C e

��.h�s/u2

i
:

The function g.s/ is non-negative, decreasing and concave upward in s on Œ0; h�. To

simplify the notation, we will use �.s/ instead of �.sIu1; u2; �; h; ˇ; �/ in the rest of

the proof.

Recall the Key Formula in [55]: Let f W RC ! C be complex and left contin-
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uous such that Re.f / � 0. Then

E

�
exp

�Z t

0

f .s/ dZ�s

��
D exp

�
�

Z t

0

�.f .s// ds

�
(2.6)

where �.�/ is the Cumulant Transform Function of Z1.

Since Re.�.s// � 0 for all s 2 Œ0; h�, the Key Formula applies. We have

ˇ̌̌̌
ˇE
�

exp
nZ h

0

�.s/ dZ�s

o�ˇ̌̌̌ˇ
D

ˇ̌̌̌
ˇexp

�
�

Z h

0

�.�.s// ds

�ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇexp

�
�

Z h

0

Z
RC
.e�.s/x � 1/w.x/ dx ds

�ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇexp

�
�

Z h

0

Z
RC
.eRe.�.s//x cos.Im.�.s//x/ � 1/w.x/ dx ds

Ci�

Z h

0

Z
RC
.eRe.�.s//x sin.Im.�.s//x//w.x/ dx ds

�ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇexp

�
�

Z h

0

Z
RC
.eRe.�.s//x cos.Im.�.s//x/ � 1/w.x/ dx ds

�ˇ̌̌̌
ˇ

D

ˇ̌̌̌
exp

�
�

Z h

0

Z
RC

�
e�g.s/

u2
1
2
x cos

�
Œ.�C g.s/ˇ/u1 C e

��.h�s/u2� x
�
� 1

�
� w.x/ dx ds

�
: .�/

In order to use Lemma 2.3.1 to prove the smoothness of the joint density, we

need to verify

“
R�R

j�.u1; u2I v/j � ju
2
1 C u

2
2j
k=2 du1 du2 <1 for some k > 0;
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and it suffices to show

“
R�R

j�.u1; u2I v/j � .ju1j
k
C ju2j

k/ du1 du2 <1 for some k > 0:

The main idea of the proof is the following three decompositions of the integration

region:

(1) First, choose a � 2 Œ0; h� such that the coefficient .� C g.s/ˇ/ of u1 in (2.5)

does not change sign when s ranges within Œ0;�� or Œ�; h�.

(2) Next, we wish to partition the integration over .u1; u2/ 2 R2 into two regions S

and its complement Sc. The region S is defined in such a way that the following

inequality holds for 8s 2 Œ0;�� (or Œ�; h�):

ˇ̌
.�C g.s/ˇ/u1 C e

��.h�s/u2
ˇ̌
� 1 if .u1; u2/ 2 S .

The reason for this special construction is that, when finding the upper bound

of .�/, we will encounter the integral on the left-hand side of (2.4) with t re-

placed by j.� C g.s/ˇ/u1 C e
��.h�s/u2j. By restricting .u1; u2/ in S , we can

use condition (2.4) on x. Meanwhile, the above construction indeed gives linear

bounds on u2 in terms of u1 when .u1; u2/ 2 S
c. Depending on the signs of the

parameter, one may have different bounds for u2, without further constraints

on the parameters, let us just denote those linear functions as l1, l2, l3 and l4.
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Since
ˇ̌̌
E
h
exp

nR h
0
�.s/ dZ�s

oiˇ̌̌
is trivially bounded by 1, one has

“
Sc

j�.u1; u2I v/j � .ju1j
k
C ju2j

k/ du1 du2

�

“
Sc

exp
n
�
v.1 � e��h/

2�
u21

o
.ju1j

k
C ju2j

k/ du1 du2

D

� Z
R�

l2Z
l1

C C

Z
RC

l4Z
l3

�
exp

n
�
v.1 � e�h/

2�
u21

o
.ju1j

k
C ju2j

k/ du2 du1 < 1:

So we need only to focus on the integration over S . The explicit forms of the

li ’s will be given later in the proof.

(3) Once � and S are given, for every .u1; u2/ 2 S , define another region SX � RC

by

SX , SX.�; u1; u2/

D

n
x W

ˇ̌
xŒ.�C g.s/ˇ/u1 C e

��.h�s/u2�
ˇ̌
�
�

2

for .u1; u2/ 2 S and s 2 .0;��g

Notice the integrand in .�/ is non-positive, so we can bound the integral of x

over RC by the one over SX . Using the inequality 1�cos.x/ � 2. x
�
/2 for jxj � �

and condition (2.4), we find the desired upper bound for .�/.

Next we give details on how to construct these partitions and prove the in-

tegrability. Since there are unknown parameters ˇ and � in the coefficient of u1,

to avoid adding more complexity to the already involved notations, we will proceed

in the proof by separate consideration of three mutually exclusive and exhaustive
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cases:

� Case 1: � < 0;

� Case 2: � D 0 and ˇ ¤ 0;

� Case 3: � D 0 and ˇ D 0.

Case 1 First, we study the sign of .�C g.s/ˇ/:

(1) ˇ < 0, then �C g.s/ˇ < 0 for all s 2 Œ0; h�.

(2) ˇ > 0 and 1C ��=ˇ < 0, then �C g.s/ˇ < 0 for all s 2 Œ0; h�.

(3) ˇ > 0 but 1C ��=ˇ � 0, then �C g.s/ˇ < 0 for all s > hC ��1 ln.1C ��=ˇ/.

One observes that by choosing � D h C ��1 ln.1 C ��=ˇ/, � C g.s/ˇ < 0 for

8s 2 .�; h�. Now fix this � and define S and SX respectively for .u1; u2/ and x by:

S ,
n
.u1; u2/ W u2 � ��u1 C e

�h or u2 � �e
�h.�C g.�/ˇ/u1 � e

�h when u1 � 0;

u2 � �e
�h.�C g.�/ˇ/u1 C e

�h or u2 � ��u1 � e
�h when u1 � 0:

o
:

and

SX ,
n
x W j.�C g.s/ˇ/u1 C e

��.h�s/u2j � x �
�

2

where x 2 RC ; .u1; u2/ 2 S ; s 2 .�; h�
o

One can verify that j.�C g.s/ˇ/u1 C e
��.h�s/u2j � 1 for .u1; u2/ 2 S .

The following figure explains the idea of S :
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Line L1:
u2 D �.�C g.�/ˇ/e

�hu1 C e
�h

Line L2:
u2 D ��u1 C e

�h

Line L3:
u2 D �.�C g.�/ˇ/e

�hu1 � e
�h

Line L4:
u2 D ��u1 � e

�h

When x 2 SX and s 2 .�; h�, the integral in .�/ with respect to x becomes:

Z
RC

�
e�g.s/

u2
1
2
x cos

�
Œ.�C g.s/ˇ/u1 C e

��.h�s/u2� x
�
� 1

�
w.x/ dx

�

Z
SX

�
e�g.s/

u2
1
2
x cos

�
Œ.�C g.s/ˇ/u1 C e

��.h�s/u2� x
�
� 1

�
w.x/ dx

�

Z
SX

�
cos

�
Œ.�C g.s/ˇ/u1 C e

��.h�s/u2� x
�
� 1

�
w.x/ dx

� �

Z
SX

2
Œ.�C g.s/ˇ/u1 C e

��.h�s/u2�
2x2

�2
w.x/ dx

� �
2cw

�2�˛

ˇ̌̌
.�C g.s/ˇ/u1 C e

��.h�s/u2

ˇ̌̌2�˛
The first inequality follows because the integrand is non-positive and SX � RC

and the second holds because the cosine term is non-negative on SX . The third

inequality uses the inequality 1 � cos x � 2
�
x
�

�2
for jxj � � . The last line holds

under the assumed condition (2.4).
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We can rewrite the term j.�C g.s/ˇ/u1 C e
��.h�s/u2j in the following way:

ˇ̌̌
.�C g.s/ˇ/u1 C e

��.h�s/u2

ˇ̌̌
D

ˇ̌̌
u1
�
�C

ˇ

�

�
C
�
�
ˇ

�
u1 C u2

�
e��h � e�s

ˇ̌̌

When .u1; u2/ 2 S , ju1.� C g.s/ˇ/C u2e
��.h�s/j > 1, so the term in the absolute

value does not change sign as s varies in .�; h�. Further, as e��s is a monotone

function of s for any fixed value of .u1; u2/, ju1.� C g.s/ˇ/ C u2e
��.h�s/j must

obtain its minimum either at � or h. That is, for any fix .u1; u2/:

ˇ̌̌
u1.�C g.s/ˇ/C u2e

��.h�s/
ˇ̌̌2�˛

� min
� ˇ̌̌
u1.�C g.�/ˇ/C u2e

��.h/
ˇ̌̌2�˛

; ju1.�C g.h/ˇ/C u2j
2�˛

�
, jc1u1 C c2u2j2�˛

for 8s 2 .�; h� with non-zero c1 D �Cg.�/ˇ; c2 D e
��.h/ (or c1 D �Cg.h/ˇ; c2 D

1).

Now we have an explicit bound on jEŒexpf
R h
0
�.s/dZ�sg�j on S :

ˇ̌̌̌
ˇE
�

exp
nZ h

0

�.s/ dZ�s

o�ˇ̌̌̌ˇ � exp

�
�K

ˇ̌̌
c1u1 C c2u2

ˇ̌̌2�˛�
;

where K D 2�hcw
�2�˛

.

At last, we are ready to show
’

R�R

j�.u1; u2I v/j � .ju1j
k C ju2j

k/ du1 du2 is
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finite. Recall the following decomposition shown earlier in the proof:

“
R�R

j�.u1; u2I v/j � .ju1j
k
C ju2j

k/ du1 du2

D

�“
S

C

“
Sc

�
exp

n
�
v.1 � e��h/

2�
u21

o
�

ˇ̌̌
EŒe

R h
0 �.s/dZ�s �

ˇ̌̌
.ju1j

k
C ju2j

k/ du1 du2

�

“
S

exp
n
�
v.1 � e��h/

2�
u21

o
� exp

�
�K

ˇ̌
c1u1 C c2u2

ˇ̌2�˛�
.ju1j

k
C ju2j

k/ du1 du2

C

“
Sc

exp
n
�
v.1 � e��h/

2�
u21

o
.ju1j

k
C ju2j

k/ du1 du2

D iC ii

Integral i is clearly finite since v > 0. For integral ii, jEŒe
R h
0 �.s/dZ�s �j has a trivial

upper bound 1, thus

ii �

Z
R�

Z ��u1Ce�h
�e�h.�Cg.�/ˇ/u1�e�h

exp
n
�
v.1 � e�h/

2�
u21

o
.ju1j

k
C ju2j

k/ du2 du1

C

Z
RC

Z �e�h.�Cg.�/ˇ/u1Ce�h
��u1�e�h

exp
n
�
v.1 � e�h/

2�
u21

o
.ju1j

k
C ju2j

k/ du2 du1

<1

We can conclude that under condition (2.4),

“
R�R

j�.u1; u2I v/j � ju
2
1 C u

2
2j
k=2 du1 du2 <1

for any positive integer k. So the transition density p.y1; y2I v/ is infinitely many

times differentiable in both arguments.
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Case 2 If � D 0 but ˇ ¤ 0, then .�/ becomes:

ˇ̌̌̌
ˇE
�

exp
nZ h

0

�.s/ dZ�s

o�ˇ̌̌̌ˇ
D

ˇ̌̌̌
ˇexp

�
�

Z h

0

Z
RC

�
e�g.s/

u2
1
2
x cos.Œg.s/ˇu1 C e

��.h�s/u2� x/ � 1
�
w.x/ dx ds

�ˇ̌̌̌
ˇ

<

ˇ̌̌̌
ˇexp

�
�

Z �

0

Z
RC

�
e�g.s/

u2
1
2
x cos.Œg.s/ˇu1 C e

��.h�s/u2� x/ � 1
�
w.x/ dx ds

�ˇ̌̌̌
ˇ

And the coefficient of u1 becomes g.s/ˇ. Evidently the sign of ˇ won’t affect the

final conclusion since we only require the sign of g.s/ˇ remains unchanged. By

assuming ˇ < 0 and choosing � to be strictly less than h (to avoid zero coefficient

of u1), define S and SX respectively for .u1; u2/ and x as follows:

S ,
n
.u1; u2/ W u2 � �g.�/ˇe

�.h��/u1 C e
�h

or u2 � �g.0/ˇe
�hu1 � e

�h when u1 � 0;

u2 � �g.0/ˇe
�hu1 C e

�h

or u2 � �g.�/ˇe
�.h��/u1 � e

�h when u1 � 0:
o

and

SX ,
n
x W jg.s/ˇu1 C e

��.h�s/u2j � x �
�

2
where x 2 RC ; .u1; u2/ 2 S ; s 2 Œ0;��

o
:

When .u1; u2/ 2 S , we have jg.s/ˇu1 C e
��.h�s/u2j � 1. Following the similar
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arguments in Case 1, one can show that for all .u1; u2/ 2 S and s 2 Œ0;��:

Z
RC

�
e�g.s/

u2
1
2
x cos

�
Œg.s/ˇu1 C e

��.h�s/u2� x
�
� 1

�
w.x/ dx

� �
2cw

�2�˛

ˇ̌̌
g.s/ˇu1 C e

��.h�s/u2

ˇ̌̌2�˛
Then the rest of the proof proceeds in the same way as Case 1 with the new region

S .

Case 3 If � D 0 and ˇ D 0, then

ˇ̌̌̌
ˇE
�

exp
nZ h

0

�.s/ dZ�s

o�ˇ̌̌̌ˇ
<

ˇ̌̌̌
ˇexp

�
�

Z h

0

Z
RC

�
e�g.s/

u2
1
2
x cos.e��.h�s/u2 x/ � 1

�
w.x/ dx ds

�ˇ̌̌̌
ˇ :

In this case there is no need to choose any �. The the region S simplified to

fu2 W ju2j > e�.h�s/g and SX D fx W je
��.h�s/u2jx �

�
2

for u2 2 S ; s 2 Œ0; h�g. Then

follow the arguments in Case 1 and use (2.4), one can verify the integrability.

To summarize, in all three cases of parameter specifications, p.y1; y2I v/ is

infinitely differentiable under the given conditions. �

Next we study the strong Feller property of P . Recall that P is called strong

Feller if

Pf 2 Cb.S/ for any f 2 bB.S/: (2.7)

That is, P maps a bounded S-measurable function to a continuous bounded S-
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measurable function. We need the following proposition for our proof.

Proposition 2.3.3: (Parseval and Plancherel, [77]) Let f .t/ and g.t/ be the

characteristic functions of two absolutely continuous distributions with density p.x/

and q.x/ respectively, then

Z
Rm
Œp.x/ � q.x/�2dx D

1

.2�/m

Z
Rm
jf .t/ � g.t/j2d t

provided that the integrals exist.

Lemma 2.3.4: Under condition (2.4), the transition operator P for .Xi ; �
2
i / is Strong

Feller.

Proof: Let �.u1; u2I v/ be the characteristic function of P.�I v/. From Theo-

rem 2.3.2 we know that under condition (2.4) one has
R

R2 j�.u1; u2I v/j du1 du2 <

1, which implies that the transition density p.�I v/ exists. In fact, one can also

show that
R

R2 j�.u1; u2I v/j
2 du1 du2 < 1 as we have an exponential bound on

j�.u1; u2I v/j. This implies p.�I v/ 2 L2 and we can use Proposition (2.3.3) to prove

the convergence of p.y1; y2I v2/ to p.y1; y2I v2/ when v2 ! v1.

Since the 1-step transition density p.y1; y2I v/ exists, to prove (2.7) it is equiv-

alent to prove

ˇ̌̌ Z
R

Z
RC
f .y1; y2/p.y1; y2I v1/ dy1 dy2�

Z
R

Z
RC
f .y1; y2/p.y1; y2I v2/ dy1 dy2

ˇ̌̌
! 0:
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as v2 ! v1. By the boundedness of f , one needs to show

Z
R

Z
RC
jp.y1; y2I v1/ � p.y1; y2I v2/j dy1 dy2 ! 0;

We want to use the Scheffé’s theorem again to show the above convergence. First

to show that

p.y1; y2I v2/! p.y1; y2I v1/ as v2 ! v1:

When v2 2 .v1 � �; v1 C �/, using the characteristic function expression (2.5):

j�.u1; u2I v1/ � �.u1; u2I v2/j
2

� 2
h
j�.u1; u2I v1/j

2
C j�.u1; u2I v2/j

2
i

D 2
ˇ̌̌
E
�

exp
˚ Z h

0

�.s/ dZ�s
	�ˇ̌̌2
��

exp
n
�
.1 � e��h/

�
u21 v1

o
C exp

n
�
.1 � e��h/

�
u21 v2

o�
� 4 exp

n
�
.1 � e��h/

�
u21 .v1 � �/

oˇ̌̌
E
�

exp
˚ Z h

0

�.s/ dZ�s
	�ˇ̌̌2

The last term is integrable following the proof of Theorem 2.3.2. Thus j�.u1; u2I v1/�

�.u1; u2I v2/j
2 is bounded by an integrable function which depends on v1 only. Fur-

ther observe that

j�.u1; u2I v1/ � �.u1; u2I v2/j
2

D

�
exp

n
�
.1 � e��h/

�
u21 v1

o
� exp

n
�
.1 � e��h/

�
u21 v2

o�
�

ˇ̌̌
E
�

exp
˚ Z h

0

�.s/ dZ�s
	�ˇ̌̌2

! 0
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as v2 ! v1. By the Dominated Convergence theorem and Proposition 2.3.3

Z
R

Z
RC

ˇ̌
p.y1; y2I v1/ � p.y1; y2I v2/

ˇ̌2
dy1dy2

D
1

4�2

Z
R2

ˇ̌
�.u1; u2I v1/ � �.u1; u2I v2/

ˇ̌2
du1 du2 ! 0:

To derive the convergence of jp.y1; y2I v1/�p.y1; y2I v2/j to 0 when v2 ! v1,

consider the L2 convergence above along the sequence fv2;1; v2;2; : : : ; v2;ng. Using

the argument in ([46], Pg. 292), one can find a subsequence fv2;n1; v2;n2; : : : ; v2;nkg

where p.y1; y2I v2;nk/ ! p.y1; y2I v1/ as k ! 1. As the L2 space is a complete

metrizable space, the convergence of along the subsequence is the same as the con-

vergence as in the original sequence.

Using Scheffé’s theorem as we did in the proof of the weak Feller property,

one finds Z
R

Z
RC
jp.y1; y2I v1/ � p.y1; y2I v2/jdy1dy2 ! 0

as v2 ! v1. Therefore, P is strong Feller. �

Remark:

(1) When Zt is a univariate subordinator, condition (2.4) is simplified to:

R 1=jvj
0

.vx/2w.x/ dx � cw jvj
2�˛ ,

R 1=jvj
0

x2w.x/ dx � cw jvj
�˛

for jvj > 1 and ˛ 2 .0; 2/. This condition in fact requires the Lévy process to

have high level activity for small jumps. That is, w.x/ needs to behave like

x�k for k 2 .1; 3/ when x is close to 0. This implies the pure jump process Zt
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has infinite many jumps (activities) in any finite time interval. Furthermore,

if k > 2, then Zt has infinite variation2. A nonparametric study conducted by

Todorov and Tauchen [72] suggests the activity level of the VIX is substantially

higher than a finite activity process. This fact justifies the condition (2.4) as

more than a technical convenience.

(2) It turns out that the �-OU process does not satisfy condition (2.4) while the

IG-OU process and Tempered-Stable-OU processes do. The reason is that the

BDLP for the �-OU process is not infinitely active on any finite time horizon.

Without condition (2.4) it will be hard to prove the smoothness of the joint

transition density, but still we can prove the smoothness of joint density of

.Xi ; �
2
i / thanks to the explicit characteristic function of �20 .

Theorem 2.3.5: Assuming that condition (2.4) holds, then the joint (stationary)

distribution F.x; v/ of .Xj ; �
2
j / has partial derivatives of all orders.

Proof: Let �.u1; u2/ be the characteristic function of F.x; v/. We want to

show the following is true for all positive k:

“
j�.u1; u2/j ju

2
1 C u

2
2j
k=2 du1 du2 <1:

In the study of the smoothness of the transition density, we derive the characteristic

function for the transition density p.y1; y2I v/. Following the same steps and by

2k > 2 is not in the scope of BN-S model since technically a subordinator doesn’t have infinite
variation.
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recognizing that �20 is independent of .Ws; Z�s/ for s 2 .0; h�, one can derive the

characteristic function �.u1; u2/ for F.x; v/ and get a similar upper bound:

j�.u1; u2/j

�

ˇ̌̌̌
E

�
exp

�h
.�
u21
2
C iˇu1/g.0/C iu2e

��h
i
�20

��ˇ̌̌̌
�

ˇ̌̌̌
ˇE
"

exp

�Z h

0

�.s/dZ�s

�#ˇ̌̌̌
ˇ

�

ˇ̌̌̌
E

�
exp

�h
.�
u21
2
C iˇu1/g.0/C iu2e

��h
i
�20

��ˇ̌̌̌
�

�
e�C.u1;u2/I.u1;u2/2S C jEŒe

R h
0 �.s/dZ�s � I.u1;u2/2Sc �j

�

where C.u1; u2/ D C1jc1u1 C c2u2j
2�˛ and g.0/, �.s/ and region S are defined

exactly the same as in the proof of Theorem 2.3.2. Since e�C.u1;u2/ dominates the

polynomials of u1 and u2 of all orders, so we need only to consider the finiteness of

the integral:

“
Sc

ˇ̌̌̌
E

�
exp

n
Œ.�

u21
2
C iˇu1/g.0/C iu2e

��h��20

o�ˇ̌̌̌
� .ju1j

k
C ju2j

k/ du2 du1

Recall the upper and lower bound on u2 in Sc are all linear in u1, it suffices to check

Z
R

ˇ̌̌̌
E

�
exp

n
Œ.�

u21
2
C iˇu1/g.0/C iu2e

��h��20

o�ˇ̌̌̌
� ju1j

kC1 du1 <1:

Choose an C2 such that C 22 g.0/=2 > 1. Considering the expected value term in the
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integrand for juj > C2,

ˇ̌̌̌
E

�
exp

n
Œ.�

u21
2
C iˇu1/g.0/C iu2e

��h��20

o�ˇ̌̌̌
� E

�ˇ̌̌̌
exp

n
Œ.�

u21
2
C iˇu1/g.0/C iu2e

��h��20

oˇ̌̌̌�
D E

�
exp

n
Œ�g.0/

u21
2
��20

o�
D exp

�Z 1
0

Z
RC

�
e�g.0/e

�s
u2
1
2
x
� 1

�
w.x/ dx ds

�
� exp

�Z �

0

Z
fxWg.0/

u2
1
2
x<1g

�
e�g.0/e

�s
u2
1
2
x
� 1

�
w.x/ dx ds

�
� exp

�Z 1
0

Z
fxWg.0/

u2
1
2
x<1g

�
1

4

�
g.0/e�s

u21
2
x
�
w.x/ dx ds

�
: .M/

The third equality uses the fact that �20
D
D
R1
0
e�sdZs and the last inequality holds

since ex � 1 < x=4 when �1 < x < 0. Since .g.0/
u21
2
x/ < 1 in the last integrand, by

condition (2.4),

Z
fxWg.0/

u2
1
2
x<1g

�
g.0/

u21
2
x
�
w.x/ dx �

Z
fxWg.0/

u2
1
2
x<1g

�
g.0/

u21
2
x
�2
w.x/ dx

� QCw

ˇ̌̌
g.0/

u21
2

ˇ̌̌2�˛
, C3ju1j4�2˛

Then M is bounded by:

M� exp
�
�
C3

4
ju1j

4�2˛
�

for sufficiently large u1. Therefore,

Z
R

ˇ̌̌̌
E

�
exp

nh
.�
u21
2
C iˇu1/g.0/C iu2e

��h
i
�20

o�ˇ̌̌̌
� ju1j

kC1 du1 <1:
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for any positive k. This implies the joint distribution F has partial derivatives of

all orders.

Lemma 2.3.6: If �2t is a � .˛; �/-OU process then the joint density f .x; v/ of

.Xi ; �
2
i / has all k-th order partial derivatives if � > k C 1.

Proof: Since in the �-OU case the process �2t is stationary and has a

Gamma.�; ˛/ distribution, we can use the explicit characteristic function of the

joint distribution F.x; v/ to study its smoothness. Similar to the proof of Theorem

2.3.5:

j�.u1; u2/j

�

ˇ̌̌̌
E

�
exp

n
Œ.�

u21
2
C iˇu1/

e��h

�
C iu2e

��h��20

o�ˇ̌̌̌
�

ˇ̌̌̌
E
h

exp
˚ Z h

0

�.s/ dZ�s
	iˇ̌̌̌

�

ˇ̌̌̌
E

�
exp

n
Œ.�

u21
2
C iˇu1/

e��h

�
C iu2e

��h��20

o�ˇ̌̌̌

with

�.s/ D �
u21
2
g.s/C i Œu1.�C g.s/ˇ/C u2e

��.h�s/�

and g.s/ D
�
1 � e��.h�s/

�
=�. The second inequality holds because Re.�.s// < 0 so

the norm is less than 1. Since the marginal distribution of �2t is Gamma.˛; �/, the

Laplace transform of the Gamma.˛; �/ density function is given by

EŒe��
2
0 � D

� ˛

˛ � �

��

for any � such that Re.�/ < ˛. Due to the fact that Re..�
u21
2
C iˇu1/

e��h

�
C
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iu2e
��h/ < 0 < ˛,

E

�
exp

n
Œ.�

u21
2
Ciˇu1/

e��h

�
Ciu2e

��h��20

o�
D

24 ˛

˛ C .
u21
2
� iˇu1/

e��h

�
� iu2e��h

35� :
Consider a subset S � RC

2
where both ju1j and ju2j are greater than some suffi-

ciently large positive number C4, we have for k � 1:

“
S

j�.u1; u2/j � ju
2
1 C u

2
2j
k=2 du1 du2

� QCk

“
S

ˇ̌̌̌
˛

˛ C .
u21
2
� iˇu1/

e��h

�
� iu2e��h

ˇ̌̌̌�
�

�
ju1j

k
C ju2j

k
�

du1 du2

<

Z
ju1j�C4

Z
ju2j�C4

Ck ˛
�h

˛2 C e�2�h

4�2
u41 C .

ˇe�h

�
u1 C e��hu2/2

i�=2 � �ju1jk C ju2jk� du1 du2 :

It is clear that when � > k C 1, the above integral is finite, then the joint density

f .x; v/ is k times differentiable. �

Remark To establish the smoothness property of the transition probability

distribution does not seem to be easy without the use of characteristic function. The

proof will be left for future research and will not be pursued further in this paper.

2.4 Geometric Ergodicity of .Xi ; �
2
i /

Here we list all the definitions and terminologies to be used in this section.

More details can be found in [53] and [54]. In Appendix A, we include four related
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lemmas and the proof of one lemma for the reader’s reference

1. ˛-mixing and ˇ-mixing: The notions of mixing are related to measuring

the dependence between � -fields. The mixing concept is particularly useful

when studying the consistency and asymptotic normality of statistics when

the underlying data is dependent. There are various notions of mixing and we

only focus on two of them. Let .˝;F ;P/ be a probability space and U , V be

two sub � � -algebras of F .

(a) ˛-mixing coefficient:

˛.U ;V/ D Sup
˚
jP.U /P.V / � P.U \ V /jIU 2 U ; V 2 V

	
˛-mixing is also called strong mixing. If the � -algebras are generated

by a stochastic process Xt , that is, Ft D N [ �fXs; s � tg, and U

and V are “separated” by k time units, that is, U D �fXs; s � tg and

V D �fXs; s � t C kg, then ˛.U ;V/ is also denoted as ˛X.k/.

(b) ˇ-mixing coefficient:

ˇ.U ;V/ D Eess-supfjP.V jU/ � P.V /jIV 2 V g.

If the � -algebras are generated by a Markov process Xt with limiting

distribution F and transition probability Pt.�; x/, then the ˇ-mixing co-

efficient ˇX.t/ is defined as:

ˇX.t/ ,
Z
k Pt.�; x/ � F.�/ kTV F. dx /

D

Z
sup
jf j�1

jPtf .x/ � F.f /jF. dx /
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where F.f / D
R
f .y/dy and kmkTV is the Total Variation Norm defined

by:

kmkTV , sup
f Wjf j�1

jm.f /j D sup
A2B.S/

m.A/ � inf
A2B.S/

m.A/:

for signed measure m on B.S/.

2. �-skeleton chain: Let X� be defined as the discrete-time Markov chain

regularly sampled from Xt at time points 0;�; 2�; : : : for a constant � > 0.

We call X� WD
�
X�
n

�
n2N0

with N0 D f0; 1; 2; : : :g the �-skeleton chain.

3. '-irreducible: For a � -finite measure ' on B.S/, a discrete time Markov

chain X� is called '-irreducible if
P1
nD1 Pn�.A; x/ > 0 for any x 2 S and

A 2 B.S/ such that '.A/ > 0. We shall omit the � when there is no confusion.

4. Simultaneously '-irreducible: Let .Pt/t2RC be the transition semigroup

generated by Xt . Then Pt is simultaneously '-irreducible (for some � -finite

measure ') if all the associated �-skeleton chains X� are '-irreducible.

5. Small Set A set C 2 B.X�/ is called a small set if there exists an n > 0 and

a non-trivial measure �n on B.X�/ such that for all x 2 C , B 2 B.X�/,

Pn.B; x/ � �n.B/

When the above inequality holds, we also say C is �n-small.

6. supp For a measure F defined on S, suppF denotes the Support of F , which

is the smallest closed subset A 2 S such that F.A/ D 1.
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The following theorem is the major machinery we employ to study the ergod-

icity and mixing rate for a discrete time Markov chain.

Proposition 2.4.1: (Nummelin and Tuominen 1982, Theorem 2.1 and 3.1).

Let x D .xn/n2N0 be a '-irreducible aperiodic Markov chain with an n-step transition

probability Pn.dy; x/ (the superscript n 2 N0 is suppressed when n D 1), and denote

the state space of x by .S;B.S//, where B.S/ is countably generated. Assume that

there exist a measurable function g W S ! RC, a small set K 2 B.S/ and constants

c1 2 .0; 1/ and c2 > 0 such that

sup
z2K

Z
Kc
g.y/P.dy; z/ <1; (2.8)

where Kc stands for the complement of K, and that

Z
g.y/P.dy; z/ � c1g.z/ � c2; (2.9)

for any z 2 Kc. Then x is geometrically ergodic, that is, there exists a constant

� 2 .0; 1/ such that

Z
kPn.�; z/ � F kTV F.dz/ D O.�

n/; as n!1: (2.10)

Remark From [26], the ˛ and ˇ mixing rates have the following relation:

2˛.U ;V/ � ˇ.U ;V/. The previous result shows x is also a strong mixing process

with geometric mixing rate.
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Remark For the continuous time multivariate Ornstein Uhlenbeck process,

Masuda (cf [52]) proved its exponential ergodicity with -̌mixing rate under rather

weak conditions. It turns out the technique used in the first half of the author’s

proof can be directly carried over to study .Xi ; �
2
i / in the BN-S model. See Lemma

A.2.1 and its proof in the appendix.

We first state a supplementary result:

Lemma 2.4.2: Under the BN-S model, any compact set A 2 B.R �RC/ is a small

set.

Proof: First to show the support of the joint distribution F of .X1; �
2
1 / has

a non-empty interior. Conditioning on �20 and fZs W s 2 .0; h�g, �
2
1 is a nonrandom

function of �20 and Zs, with X1 being normally distributed with support on the real

line. Further, the distribution of �20 is infinitely divisible and non-degenerate, so

its support is unbounded (cf [63], Corollary 24.4). Therefore by unconditioning, we

find F has support on R �RC.

It has been shown in Theorem 2.2.1 that .Xi ; �
2
i / is Weak Feller, by Lemma

A.1.2 (with ' D F ) we can conclude any compact set A 2 B.R�RC/ is a small set.

�

The main result in this section is the following:

Theorem 2.4.3: Let �20
D
D
R1
0
e�s dZs, and assume

EŒ.�20 /
p� < 1; (2.11)
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for some p > 0. Then .Xi ; �
2
i / is ergodic with geometric mixing rate.

Proof: Since .Xi ; �
2
i / is strictly stationary with �20

D
D
R1
0
e�s dZs, let F

denote its marginal distribution, then .Xi ; �
2
i / is an F -irreducible aperiodic Markov

chain. Further by Lemma 2.4.2, any compact set in B.R�RC/ is a small set. Then

by using the test function g.x; v/ D jvjp, the proof of Lemma A.2.1 applies and we

have the geometric ergodicity of .Xi ; �
2
i /. �

Remark We use the ˇ-mixing properties in two parts of our study: first

it guarantees the existence of the asymptotic variance of the moment estimators;

second, it guarantees the consistency of the kernel density estimate so we can study

the limiting distribution of the minimum disparity estimate.

Remark Another well studied model which describes the joint dynamics

of stock and its latent volatility is the COGARCH(1,1) model (see [44] and the

reference there in). The COGARCH(1,1) process G D .Gt/t�0 is defined as the

solution to the SDEs:

dGt = �t dLt

d�2t = .ˇ � ��2t / dt C '�2t dŒL;L�.d/t .

Here the Gt is the log stock price process with latent volatility �t . First noticing

that �2t is a special case of the generalized Ornstein-Uhlenbeck processes (cf [50])

and then applying the result of Fasen (cf [28]) one concludes that �2t is exponentially

ˇ-mixing. Huag et al. (cf [35]) showed that the mixing coefficient of the increment

process G.r/t WD Gt � Gt�r D
R
.t�r;t�

�sdLs is bounded by the mixing coefficient of
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�2t . This implies G.r/t is ˛-mixing (strong mixing) with exponential mixing rate.

Due to the similarity of the COGARCH(1,1) model and the BN-S model, one may

conjecture that the mixing property might be proved without using the Foster-

Lyapunov type criteria. We want to point out by taking our approach, we not

only get the desired mixing rate, but also establish the smoothness of marginal

distribution. Both components are important to study the limiting properties of

MDE.
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3. ESTIMATING PARAMETERS IN THE BN-S MODEL USING

MINIMUM DISPARITY ESTIMATION

It is well known that traditional parametric methods such as those based on

maximum likelihood are usually “automatically” optimal when the model specifi-

cation is correct. But they generally suffer under model misspecification and data

contamination and are poor performers from the robustness viewpoint. On the other

hand, classical robust estimates such as M-estimators, which are designed be “au-

tomatically” robust for location and scale parameters, generally suffer from loss of

first-order efficiency (cf Hampel et al. [32]). Although such efficiency loss is usually

small, constructing a robust and efficient M-estimator for parameters other than

location and scale is not always easy.

Donoho and Liu [24] studied the estimator O�.P / based on minimizing a certain

distance between a family of parametric models fP�g (indexed by �) and the true

distribution P. That is,

�.P;P O�/ D min
�
�.P;P�/;

where � is a metric between probability distributions. Donoho and Liu called this

kind of estimator a minimum distance estimator and they found that such estimator

was automatically robust against small deviations (measured by �) from the model



fP�g. To be more specific, they showed the following:

� O�.P / has within a factor of 2 the smallest sensitivity to small �-perturbations

among all Fisher consistent functionals, that is, those functionals T which

satisfy T .P�/ D � .

� It has within a factor of 2 the best breakdown point with respect to �-

contamination among Fisher-consistent functionals.

Remark See Huber and Ronchetti [38] for more discussion on sensitivity and

breakdown point.

Motivated by the pioneering work by Beran [16], Tamura and Boos [71] and

Simpson [65, 66], Lindsay [49] studied in depth the efficiency and robustness of a

class of minimum distance estimators, which he called the Minimum Disparity Es-

timators (MDE). In particular, he studied the Minimum Hellinger Distance (MHD)

estimator on i.i.d. count data which follows a multinomial model. Lindsay found

that the MHD method produces robust estimates while maintaining first-order (even

second-order) efficiency at the true model. Another important finding is that the

influence function, which is widely used as a measure of efficiency and robustness

for the M-estimator, can be very misleading in the study of MHD. Consider the

estimator (MLE, M-estimate or MDE) as a map or functional from the space of

densities to the parameter space. Let this functional be denoted as T and assume

it is Fisher consistent. Suppose the true distribution is t but what we observe is the
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density contaminated by amount � at a fixed point �:

t�.x/ WD .1 � �/t.x/ C ���.x/

where ��.x/ is the indicator function for �. Then the quantity �T.�/ WD T .t�/�T .t/

represents the bias caused by the contamination. Consider the Taylor approximation

�T.�/ WD T .t�/ � T .t/ � T 0.�/ � (3.1)

where T 0.�/ is the influence function of T defined by

T 0.�/ D
@

@�
T .t�/j�D0: (3.2)

Lindsay pointed out that T 0.�/ played a dual role in determining the asymptotic

variance of the estimate and also in controlling the magnitude of the bias. Thus if

we restrict ourselves to (3.1) only, then any first-order efficient estimate which has

the same T 0.�/ as the MLE will be deemed as efficient but nonrobust. But from the

study of MDE, Lindsay found that certain MDE’s attain the optimal efficiency while

retaining superior robustness compared to MLE in a location model. This led him

to claim the linear approximation (3.1) is incapable of fully explaining the efficiency

and robustness features of the MDE. He discovered a new class of functions, called

the Residual Adjustment function (RAF) to explain this new phenomenon (more

details to follow in the next section). Later, Basu and Lindsay [12] investigated

the properties of MDE under continuously distributed models and showed that the
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MHD estimator has bias similar to the Huber estimator while being more efficient in

the location model. Basu and Sarkar [13], Basu et al. [14] and Bhandari et al. [18]

extended the study to the Negative Exponential Disparity estimator (NEDE) and

its generalized version (GNEDE), and they found this family of estimators achieves

even better robustness against the MHD in the sense that the NEDE is also robust

against inliers, that is, the outcome values predicted to be very probable by the

model t but not expressed in the data.

In the rest of this chapter, we first summarize the findings by Basu and Lindsay

in [12]. Then we will present some asymptotic results of applying the NEDE to the

�-OU BN-S model.

3.1 Minimum Disparity Estimator for Continuous Models

The study by Basu and Lindsay [12] focuses on continuous models with i.i.d.

data. Most of the subsequent extensions are based on this general framework. We

first introduce the MDE proposed by these two authors, followed by the results

which demonstrate how the MDE maintains its balance between robustness and

efficiency. Finally, the consistency and asymptotic normality of the estimates are

discussed.

Consider a set of i:i:d: scalar observations fX1; X2; : : : ; Xng whose CDF and
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density are given by S.x/ and s.x/ respectively. Assume one has a family of densities

fm�.x/g indexed by an unknown parameter vector � . Construct the kernel density

estimate f �.x/ by a selected known kernel k.xI t; h/:

f �.x/ D

Z
k.xI t; h/ d OF .t/ (3.3)

where OF is the empirical distribution function. Next apply the same kernel smooth-

ing to the model and get

m��.x/ D

Z
k.xI t; h/m�.t/ dt : (3.4)

Now choose a strictly convex function G.�/ and construct a measure of “disparity”

between f �.x/ and m�
�
.x/:

�G.f
�; m��/ D

Z
G.ın.x//m��.x/ dx (3.5)

where

ın.x/ D .f �.x/ �m��.x//=m
�
�.x/ (3.6)

is called the Pearson residual at x with the superscript n denoting its dependence

on data. Then the MDE is defined to be the estimator O� which minimizes the

corresponding disparity (3.5). With different choices of G, one has several variants

of the MDE, for example:
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(1) Minimum Hellinger Distance (MHD):

HD.f �; m��/ D

Z �p
f �.x/ �

q
m�
�
.x/
�2

dx

where

G.ı/ D .
p
ı C 1 � 1/2:

(2) Blended Weight Hellinger Distance (BWHD):

BWHD˛.f
�; m��/ D

Z
.f �.x/ �m�

�
.x//2

.˛
p
f �.x/ � .1 � ˛/

p
m�
�
.x//2

dx

(3) Kullback-Leibler Divergence (LD):

LD.f �; m��/ D

Z
f �.x/ ln

�
f �.x/=m��.x/

�
dx

where

G.ı/ D .ı C 1/ ln.ı C 1/:

Note: in a discrete model without kernel smoothing, minimizing this divergence

essentially produces the Maximum Likelihood estimator.

(4) Negative Exponential Disparity (NED):

NE.f �; m��/ D

Z �
e�ı

n.x/
� 1

�
m��.x/ dx
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where

G.ı/ D e�ı.x/ � 1:

(5) Power Divergence (PD):

PD.f �; m��/ D

Z
f �.x/

˚
Œf �.x/=m��.x/�

�C1
� 1

	
dx =�.�C 1/

Remark For comparison between different disparities, see [13] and [57] for

more details.

Remark Using the Pearson residual ın.x/, the observation Xl is an outlier

(or surprising in Basu and Lindsay) if the value of f �.x/=m�
�
.x/ is large in its

neighborhood. And it is called an inlier if the value of f �.x/=m�
�
.x/ is close to 0.

To further study the analytic properties of the MDE, Lindsay introduced the

Residual Adjustment Function (RAF) A.ı/. The role of RAF is similar to the  -

function in the M-estimator, in the sense that they both carry the efficiency and

robustness information about the estimates. From the RAF, one can study the first-

order, second-order (even third-order) efficiency of the estimate and investigate the

trade-off between robustness and efficiency at the same time. We will discuss this

feature after we introduce some definitions and concepts.

(i) Residual Adjustment Function: for any chosen “distance” function G.�/
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that is twice differentiable, one can define the following function

A.ı/ D .1C ı/G 0.ı/ �G.ı/: (3.7)

As G is strictly convex, A.ı/ is a strictly increasing function of ı. Without

loss of generality, A.ı/ can be centered and rescaled so that A.0/ D 0 and

A0.0/ D 1. This centered and rescaled version of A.�/ is called the Residual

Adjustment Function. Further, if A.ı/ is twice differentiable with A0.ı/ and

A00.ı/.1C ı/ which are bounded on Œ�1;1/, it is called regular.

(ii) Transparent Kernel: Let r denote the gradient operator with respect to

� , i.e., r D
�
@=@�i ; : : : ; @=@�p

�T
. If the kernel k.xI t; h/ satisfies the following

condition:

C.�/r lnm�.X/CD D

Z
r lnm��.t/k.X I t; h/ dt

for all � 2 ˝ and some p �p nonsingular matrix C and p-dimensional vector

D, then k.xI t; h/ is called a transparent kernel for model m� . A simple exam-

ple is the case when m� is the Normal density and k.xI t; h/ is the Gaussian

kernel (see Proposition 3.1 in [12] for more details). The advantage of using

a transparent kernel is that there is no information loss when smoothing the

model. However, it is generally not possible to find a transparent kernel in

every model. But the simulation study conducted by Basu and Sarkar [13]

showed that smoothing the data and model by the same kernel can actually

67



increase the efficiency of MDE in some situations.

Next we will present the major findings by Basu and Lindsay. Each of the

findings corresponds to a Lemma or Theorem proved by these two authors. Since

these theorems are notationally heavy, the complete statements are put in the Ap-

pendix B.1 and only their implications are summarized here. Based on the study in

[12], the advantages of using the MDE are as follows.

(1) Efficiency (Lemma B.1.1 and Lemma B.1.2). Basu and Lindsay showed that

under some mild conditions on A.�/, all MDE, including the LDE, have the

same influence function at the model. This implies, if the kernel k.xI t; h/ is

transparent, that the MDE achieves the same optimal variance as the MLE.

Although smoothing the model by a kernel will no doubt affect the performance

of the estimate, an appropriately chosen kernel will limit such efficiency loss, as

demonstrated by the simulation study in [12].

(2) Robustness (Lemma B.1.2). For the MDE, one has the following approximation

for the bias �T.�/:

�T.�/ WD T .t�/ � T .t/

� T 0.�/� C
1

2
T 00.�/�2 (3.8)

One notices that if the sign of T 00.�/ is negative, then the bias produced by the

MDE will be smaller than the one produced by the MLE. Basu and Lindsay

showed that, if the model is a one parameter exponential family with � being
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the location parameter and one uses the transparent kernel, then

T 00.�/ D A2 T
0.�/ f2.�/

where A2 D A00.0/ is called the curvature. It is not obvious under what con-

ditions f2.�/ and A2 are of opposite signs. However, if one chooses a dis-

parity which is controlled by some parameters, for example the BWHD where

A2 D 1 � 3˛, Basu and Lindsay showed that by increasing the value of ˛, the

robustness of the estimator increases at a small cost of mean square error.

(3) Consistency and Asymptotic Normality (Lemma B.1.3). For the estimator to be

consistent, one does not require the bandwidth h of the kernel density estimate

f �.x/ to converge to 0 as n!1. This saves the trouble of employing different

(adaptive) bandwidth selection schemes in estimating the kernel density.

3.2 Consistency and Asymptotic Normality of the NEDE in the

�-OU BN-S model

For the Negative Exponential Disparity Estimator (NEDE), we use

G.ı/ D e�ı � 2
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and find the estimate for � by minimizing

�NE .f
�; m��/ D

Z �
e�ı

n.x/
� 2

�
m��.x/ dx :

Unlike the more natural choice G.ı/ D e�ı � 1 which is equal to 0 when f � D

m�
�
, this specification produces a properly centered and scaled RAF A.ı/ which is

convenient in the study of robustness and the asymptotic normality. We see G.�/ is a

strictly convex function and bounded above by e� 2 for ı 2 Œ�1;1/. As mentioned

in the introduction of this chapter, the NEDE is robust against both the outliers

and the inliers, and it is second-order efficient at the model in the sense of Rao (see

Basu et al. [14]).

The differentiability and boundedness of G.�/ and its derivatives make the

expansion of �NE .f
�; m�

�
.x// easier. Compared to the general MDE, one might

expect to find less stringent conditions for consistency and asymptotic normality of

the estimator. But before we consider the limiting properties of the estimators, we

first discuss the issue of model identifiability and the uniqueness of the estimator.

These two basic concepts seem to be overlooked by many empirical studies.

Intuitively, a model g# is identifiable if different values of the parameter #

generate different probability distributions of the observable quantities. Since m�.x/

is the marginal density of Xi implied by the �-OU BN-S model, we shall approach

the identifiability discussion from decomposing the original price process St . Recall

the notions used in Chapter 1, according to Œ55�, the dynamics of St D e
Rt is given
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by

dSt D St�
�
bt dt C �t dWt C dMt

�
where the appreciation rate bt is given by the process

bt D �C ��.�/C .ˇ C 1
2
/�2t

and M D .Mt/ is the martingale Lévy process

Mt D

X
0<s�t

�
e��Z�s � 1

�
� ��.�/t:

In a hypothetical situation where the whole trajectory of St is continuously observed,

we can first extract the continuous parts Sct and the jumps part SJt from St and

then identify the parameter in the following way.

� As �2t has finite activity in the Gamma OU case, one recovers �2t and the in-

tegrated volatility
R t
0
�2s ds from the quadratic variation of Sct . Further notice

that the marginal distribution of �2t and
R t
0
�2s ds are uniquely determined by

.�; ˛/ and .�; ˛; �; t/ respectively. Therefore .�; ˛; �/ can be identified.

� Through the jump part SJt of the trajectory, one can identify � as the cumulant

transform function for the BDLP Zt in Gamma OU is known to eqaul ��=.˛�

�/.

� Finally, by the continuously derived bt and �2t , one can identify � and ˇ.

Remark A more realistic discussion of the identifiability issue is to consider

that one has observations over discrete time points only. Ideally, one expects the
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model is still identifiable if the sampling frequency is sufficiently large. But extensive

investigations over this issue in the literature seem to be missing.

In regard to the uniqueness of the estimator, we point to the following two

results by Basu et al. [14] where existence and uniqueness of the NEDE are dis-

cussed. In the following exposition, let G denote the space of continuous densities

topologized by the L2 norm and � denote the parameter space. Let TNE denote

the Negative Exponential disparity functional, that is

TNE .f / D argmin
�2�

�.f;m�/ D argmin
�2�

Z �
e�ı.x/ � 2

�
m�.x/ dx :

Note: In [14], Basu et al. did not use any kernel to smooth their model density

m�.x/, so the notations in their results are un-starred.

� Proposition 3.2.1: (Basu et al. 1997, Proposition 1) Assume that

(a) the parameter space � is compact;

(b) for �1 ¤ �2, m�1.x/ ¤ m�2.x/ on a set of positive Lebesgue measure;

(c) m�.x/ is continuous in � for almost all x (with respect to the Lebesgue

measure).

Then

(i) for any continuous density m, there exists a �m 2 � such that TNE .m/ D

�m;

(ii) for any �� 2 �, the value of TNE .m��/ is unique and equal to ��.
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� Proposition 3.2.2: (Basu et al. 1997, Proposition 2) Let m0.x/ be any

fixed continuous density and let fmn.x/g be a sequence of continuous densi-

ties. If TNE .m0/ is unique, then under the assumptions of Proposition 1, the

functional TNE is continuous at m0 in the sense that if mn.x/! m0.x/ in L1,

then TNE .mn/ converges to TNE .m0/ as n!1.

Due to the similarity between these two estimation methods proposed by Basu

and Lindsay [12] and Basu et al. [14], the Negative Exponential disparity to be

considered may also fail to have a unique minimizer. In this paper, we will impose

uniqueness assumptions on the disparity but not pursue the sufficient conditions of

uniqueness.

Uniqueness Assumptions

Recall the definition of f �.x/ and m��.x/ from (3.3) and (3.4). Let

m�.x/ be the marginal density of X1 implied by the �-OU BN-

S model and s�.x/ be the true density convolved by the kernel

k.xI t; h/ and define ı�.x/ D s�.x/=m��.x/ � 1. Assume

(U1) �s is the unique solution to the following disparity equation

in the sample space �.

r�.s�; m��/ D r

Z �
e�ı

�
s .x/ � 2

�
m��.x/ dx D 0:
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(U2) With probability approaching 1 as n!1, �n is the unique

solution to the disparity equation

r�.f �; m��/ D r

Z �
e�ı

n.x/
� 2

�
m��.x/ dx D 0

in a compact subset K of � which contains �s and does not

depend on n or data.

Remark The assumption (U1) is similar to Assumption 30 in Lindsay [49].

We point out that, when s.x/ � fm�g, assumption (U1) depends on the choice of

the kernel. If s.x/ ª fm�g, then this assumption is generally unverifiable.

For the rest of this section, fix the kernel k.xI t; h/ to be the Gaussian kernel

and we freely use the notational simplifications,

@i D
@

@�i
; @ij D

@2

@�i@�j
; @

ni
i D

@

@�
ni
i

:

Denote ı�s .x/ D s
�.x/=m�

�s
.x/ � 1. The following result holds.

Lemma 3.2.3: Let Ba denote the 5-dimensional sphere centered at �s with radius

a. If � > 7=2 in the �-OU BN-S model, then the Taylor expansion of the Negative

Exponential disparity

�.f �; m��/ D

Z �
e�ı

n.x/
� 2

�
m��.x/ dx
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with respect to � in the neighborhood Ba of �s is given by

�.f �; m��/ D �.f
�; m�

�s
/C

pX
iD1

@i�.f
�; m��/j�D�s.�i � �

s
i /

C
1

2

X
i

X
j

@ij�.f
�; m��/j�D�s.�i � �

s
i /.�j � �

s
j / (3.9)

C
1

6

X
n1C���CnpD3

@3

@
n1
1 : : : @

np
p

�.f �; m��/j�D�s �
.�1 � �

s
1/
n1 : : : .�p � �

s
p/
np

n1Š : : : npŠ

C op.a
4/

where

(1)

@i�.f
�; m��/

ˇ̌
�D�s

D

Z
R

exp
�
�
f �

m�
�s

C 1
�
�
f �

m�
�s

� @im
�

�s
.x/ dx

C

Z
R

�
exp

�
�
f �

m�
�s

C 1
�
� 2

�
@im

�

�s
.x/ dx

(3.10)

(2)

@ij�.f
�; m��/

ˇ̌
�D�s

D

Z
R

exp
�
�
f �

m�
�s

C 1
�
�
f �.x/2

m�
�s
.x/2

� @i lnm�
�s
.x/ � @j lnm�

�s
.x/ �m�

�s
.x/ dx

C

Z
R

exp
�
�
f �

m�
�s

C 1
�
�
f �.x/

m�
�s
.x/
� @ijm

�

�s
.x/ dx (3.11)

C

Z
R

�
exp

�
�
f �

m�
�s

C 1
�
� 2

�
@ijm

�

�s
.x/ dx

(3) The third derivatives

@3

@
n1
1 : : : @

np
p

�.f �; m��/j�D�s ; (3.12)

contain terms of the following forms:
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�
R

R e
�
f �

m�
�s
C1
�
f �.x/3

m�
�s
.x/3
� @i lnm�

�s
.x/ � @j lnm�

�s
.x/ � @k lnm�

�s
.x/ �m�

�s
.x/ dx

�
R

R e
�
f �

m�
�s
C1
�
f �.x/2

m�
�s
.x/2
� @i lnm�

�s
.x/ � @j lnm�

�s
.x/ � @k lnm�

�s
.x/ �m�

�s
.x/ dx

�
R

R e
�
f �

m�
�s
C1
�
f �.x/2

m�
�s
.x/2
� @ijm

�

�s
.x/ � @k lnm�

�s
.x/ �m�

�s
.x/ dx

�
R

R e
�
f �

m�
�s
C1
�
f �.x/

m�
�s
.x/
� @ijkm

�

�s
.x/ dx

�
R

R

�
e
�
f �

m�
�s
C1
� 2

�
� @ijkm

�

�s
.x/ dx

Proof: See Appendix B.2 for details. �

Remark Recall in the �-OU BN-S model, there are in total six parameters

to be estimated: .�; �; ˇ; �; �; ˛/. We estimate � separately from the VIX data

and use the estimate as the true value when estimating the remaining parameters.

Thus, � is set equal to 1 in the discussion of consistency and asymptotic normality

of .�; ˇ; �; �; ˛/.

Remark The above plug-in estimator approach is valid because the density

m�.x/ and its derivatives are continuous functions of �. If one checks the steps in

deriving the density m�.x/ (first part in Appendix B.2), in particular the definition

(B.11) and density expression (B.17), one finds that if � ¤ 1, we need only to replace

all h by �h inm�.x/ to get the completely specified density. Since h enters them�.x/

as a constant or integration limits, by recognizing all the integrands being used in

m�.x/ are continuous functions, we know that, m�.x/ and further its derivatives,

are all continuous functions of �.

To study the consistency of the NEDE, we prove the following result which
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considers the variance of the kernel density estimate f �.x/ based on the Gaussian

kernel and constructed on strong mixing data.

Lemma 3.2.4: Consider the kernel density estimate

f �.x/ D
1

n

nX
iD1

k.xIXi ; h/ D
1

nh

nX
iD1

1
p
2�

exp
h
�
.x �Xi/

2

2

i

Let fXig be a strictly stationary sequence with marginal density s.x/. Assume that

fXig is strong mixing with geometric mixing rate ˛m, i.e.

˛m D O.e�bm/

for b > 0. Then for 0 < �� 1

Var
�
f �.x/

�
�
1

n
s.x/ C

C

n
s.x/

2
2C�

for some constant C .

Proof: First recall a covariance estimate for strong mixing sequence given by

Doukhan ([26], Section 1.2 Theorem 3):

ˇ̌
Cov.Xi ; Xj /

ˇ̌
� 8˛

1=r

ji�j j
kXikp kXjkq

for all p, q; and r � 1 with 1
p
C

1
q
C

1
r
D 1. Here kXkp D EŒjX j

p�1=p. For a given

77



small �, let p D q D 2C� so r D 2C�
�

. Since Xi is strictly stationary,

Var
�
f �.x/

�
D

1

n2

h nX
iD1

EŒk.xIXi ; h/
2� C

XX
i¤j

Cov
�
k.xIXi ; h/; k.xIXj ; h/

�i
�
1

n2

h
nEŒk.xIX1; h/

2�

C

XX
i¤j

8 � exp
�
� bji � j j

�

2C�

�
�
�
kk.xIXi ; h/k2C�

�2i

Notice jk.xIXi ; h/j �
1

p
2�h2

a.s., therefore

�
kk.xIXi ; h/k2C�

�2
D

�
E
�
k.xIXi ; h/

2C�
�� 2

2C�

�

�
.2�h/�

1C�
2 E

�
k.xIXi ; h/

�� 2
2C�

D
�
2�h

�� 1C�
2C�

�
E
�
k.xIXi ; h/

�� 2
2C�

D
�
2�h

�� 1C�
2C� s�.x/

2
2C�

Denote c � b �
2C�

and observe that

XX
i¤j

exp
�
� cji � j j

�
D 2

�
.n � 1/e�c C .n � 2/e�2c C : : :C e�.n�1/c

�
:

Let s D .n � 1/e�c C .n � 2/e�2c C : : :C e�.n�1/c. Then

s � s � e�c D .n � 1/e�c C .n � 2/e�2c C : : :C e�.n�1/c

�

h
.n � 1/e�2c C .n � 2/e�3c C : : :C e�nc

i
D .n � 1/e�c � e�2c � e�3c � : : : � e�nc

D ne�c �
h
e�c C e�2c C e�3c C : : :C e�nc

i
:
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Thus

XX
i¤j

exp
�
� cji � j j

�
D

2

1 � e�c

�
ne�c �

�
e�c C e�2c C : : :C e�nc

��
<

2

1 � e�c

�
ne�c

�
D 2n

e�c

1 � e�c
:

This implies

XX
i¤j

8 � exp
�
� bji � j j

�

2C�

�
�
�
kk.xIXi ; h/k2��

�2i
<
16ne�c

1 � e�c
�
�
2�h

�� 1C�
2C� � s�.x/

2
2C� :

Let C D .16 e�c/=.1 � e�c/
�
2�h

�� 1C�
2C� . One has

Var
�
f �.x/

�
<
1

n
EŒk.xIX1; h/

2� C
C

n
s�.x/

2
2C�

D
1

n

Z
k.xI t; h/2s.t/ dt �

1

n
s�.x/ C

C

n
s�.x/

2
2C�

<
1

n
s�.x/ C

C

n
s�.x/

2
2C� : (3.13)

�

Based on the previous lemma, one has the following two convergence results.

Lemma 3.2.5: If the assumptions in Lemma 3.2.4 hold, then

(1)

f �.x/
P
! s�.x/ as n!1
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(2)

n1=4
�
.f �.x//1=2 � .s�.x//1=2

� P
! 0 as n!1

Proof: Since EŒf �.x/� D s�.x/, the first result is a direct consequence of

the Markov inequality. Consider the second result, for any given � > 0, by the

Chebyshev inequality:

P
�
n1=4jf �.x/ � s�.x/j > �

�
D P

�
jf �.x/ � s�.x/j > n�1=4 �

�
�

Var.f �.x//

.n�1=4�/2

! 0 pointwise for each x as n! 0:

Next, expand n1=4..f �.x//1=2/2 around .s�.x//1=2 for fixed x,

n1=4..f �.x//1=2/2 D n1=4..s�.x//1=2/2 C 2n1=4 ..s�.x//1=2/
�
.f �.x//1=2 � .s�.x//1=2

�
C
1

2
n1=4

�
.f �.x//1=2 � .s�.x//1=2

�2
One finds that

2 n1=4 ..s�.x//1=2/
�
.f �.x//1=2 � .s�.x//1=2

�
D n1=4

�
f �.x/ � s�.x/

�
�
1

2
n1=4

�
.f �.x//1=2 � .s�.x//1=2

�2
< n1=4

�
f �.x/ � s�.x/

�
a.s.

From the convergence of n1=4jf �.x/ � s�.x/j and the boundedness of s.x/, we get

the desired result. �

80



Let us first state the consistency result.

Theorem 3.2.6: Assume

� � > 7=2 in the model density m�.x/ described by the �-OU BN-S model,

where � D .�; ˇ; �; �; ˛/;

� fXig is a strictly stationary and strong mixing scalar-valued sequence with

geometric mixing rate;

� The matrix J �s.�s/ whose ij -th element is given by (3.11) with f �.x/ replaced

by s�.x/ is a positive definite matrix.

Then, the NEDE �n
P
! �s as n!1.

Proof: using the similar arguments in Lehmann and Casella [47], one considers

the behavior of �.f �; m��/ on the sphere Ba centered at �s with radius a. We will

show that for any sufficiently small a,

min
�2Ba

�
�.f �; m��/ � �.s

�; m�
�s
/
�
>
1

2
aTJ �s.�s/a (3.14)

with probability converging to 1. This implies that for any a > 0, as n ! 1, the

minimum disparity equation for �.f �; m�
�
/ attains its local minimum in Ba at �n

with probability tending to 1.

By Appendix B.2, all the coefficients of the Taylor expansion listed in Lemma

3.2.3 are absolutely integrable, independent of f �.x/. This means we can apply the

81



Dominated convergence theorem (DCT) to each coefficient. For example, consider

the following term in (3.11):

Z
R
e
�
f �

m�
�s
C1
�
f �.x/2

m�
�s
.x/2

� @i lnm�
�s
.x/ � @j lnm�

�s
.x/ �m�

�s
.x/ dx :

Observe that

ˇ̌̌
exp

�
�

f �

m�
�s
C 1

�
�
f �.x/2

m�
�s
.x/2

ˇ̌̌
� 2

is bounded by 2 independently of f �.x/ and

Z
R

ˇ̌̌
@i lnm�

�s
.x/ � @j lnm�

�s
.x/
ˇ̌̌
�m�

�s
.x/ dx <1

due to Proposition B.2.6 and Lemma B.2.12. Then by the Dominated convergence

theorem, we have

Z
R
e
�
f �

m�
�s
C1
�
f �.x/2

m�
�s
.x/2

� @i lnm�
�s
.x/ � @j lnm��s.x/ �m

�
�s.x/ dx

P
�!

Z
R
e
� s�

m�
�s
C1
�
s�.x/2

m�
�s
.x/2

� @i lnm�
�s
.x/ � @j lnm�

�s
.x/ �m�

�s
.x/ dx

as n ! 1. Similarly we can show the convergence for the rest of the coefficients.

Therefore, for terms in (3.10),

Z
R
e
� s�

m�
�s
C1
�
s�

m�
�s

� @im
�
�s.x/ dx C

Z
R
.e
� s�

m�s
C1
� 2/ @im

�

�s
.x/ dx

D

Z
R
A.ı�s .x// @im

�

�s
.x/ dx D 0

by the definition of �s, so the linear terms in (3.9) are of order a3 for large n. On
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the other hand, terms in (3.11) and (3.12) all converge to finite limits. This implies

that the cubic terms in (3.9) are of order a3 for large n. Finally, given that J �s.�s/

is positive definite,

min
�2Ba

�
�.f �; m��/ � �.s

�; m�
�s
/
�
>
1

2
aTJ �s.�s/a:

Therefore, for any small value a,

�.f �; m��/ > �.s
�; m�

�s
/

for all � on the surface of Ba for sufficiently large n. Since �n solves the minimum

disparity equation, i.e., minimizes �.f �; m��/, this means with probability approach-

ing 1, the local minimizer of �.f �; m��/ is in the interior of Ba. The consistency of

�n is proved. �

Next we discuss the asymptotic normality of the NEDE. In order to prove the

central limit theorem for NEDE, we first derive the asymptotic distribution of

p
n

Z
R

�
A.f �=m�

�s
� 1/ � A.s�=m�

�s
� 1/

�
rm�

�s
.x/ dx

where A.ı/ D 2� .2Cı/e�ı . Since the data fXig is a stationary ˇ-mixing sequence,

the following result by Ibragimov and Linnik [39] is useful.

Lemma 3.2.7: (Ibragimov and Linnik 1971, Theorem 18.5.3) Let the mean

zero stationary sequence Xj satisfy the strong mixing condition with mixing coeffi-
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cient ˛.n/, and let EjXj j
2Cı <1 for some ı > 0. If

1X
nD1

˛.n/ı=.2Cı/ <1;

then

�2 D E.X2
0 /C 2

1X
jD1

E.X0Xj / < 1;

and if � ¤ 0, then

lim
n!1

P
n
��1

1
p
n

nX
jD1

Xj < z
o
D ˚.z/;

where ˚.z/ is the standard Normal CDF.

Lemma 3.2.8: Let fXig satisfy the conditions in Lemma 3.2.4. Assume that the

RAF A.ı/ is regular and condition

Z
s�.x/

1
2C� jr lnm��s.x/j dx <1: (3.15)

holds for 0 < �� 1. Further assume that

E
ˇ̌̌ Z

k.x;X; h/A0.ı�s .x//r lnm��s.x/ dx
ˇ̌̌˝.2Cc/

<1 (3.16)

holds for some c > 0. Then

n1=2
Z h

A.ın/ � A.ı
�
s /
i
rm��s.x/ dx !MVN.0; V / (3.17)
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where V is given by

V D E.V ˝20 /C 2

1X
jD1

E.V0 V
T
j / < 1;

with T denoting the transpose of a vector and

Vj D

Z
k.x;Xj ; h/A

0.ı�s .x//r lnm��s.x/ dx :

Remark Given the variance upper bound in Lemma 3.2.5, we proceed through

the proof by following the approach in Basu and Lindsay ([12], Section 6).

Proof: Define the Hellinger residual �n and ��s as

�n D
.f �.x//1=2

m
�1=2

�s

� 1 and ��s D
.s�.x//1=2

m
�1=2

�s

� 1:

Let Yn.x/ D n1=2.�n.x/ � �
�
s .x//

2. Since for a; b � 0, .
p
a �
p
b/2 � ja � bj,

therefore, for k 2 Œ0; 2�,

EŒY kn � D E
h
nk=2

�.f �.x//1=2 � .s�.x//1=2
m
�1=2

�s

�2ki
�

nk=2

m�
�s
.x/k

E
hˇ̌
f �.x/ � s�.x/

ˇ̌ki
�

nk=2

m�
�s
.x/k

E
hˇ̌
f �.x/ � s�.x/

ˇ̌2ik=2
.4/
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By (3.13),

4 �
nk=2

m�
�s
.x/k

�C
n

�
s�.x/C s�.x/

1
2C�

��k=2
D

C k=2

m�
�s
.x/k

�
s�.x/C s�.x/

1
2C�

�k=2
< 1

The third line holds due to Lyapunov’s inequality. From Lemma 3.2.5 we know

Yn ! 0 in probability and we just show supnEŒY
k
n � is bounded for k 2 Œ0; 2/, then

lim
n!1

EŒY pn � D 0 for p 2 Œ0; 2/: (3.18)

Next introduce some notations:

� an.x/ D A.ın.x// � A.ı
�
s .x// and bn.x/ D .ın.x/ � ı

�
s .x//A

0.ı�s .x//.

� 
n D
R
n1=2.an.x/ � bn.x//rm

�

�s
.x/ dx and �n D n

1=2jan.x/ � bn.x/j.

By using the analytic property of a regular RAF A.ı/, Lindsay (1994, Lemma

25) proved

EŒ�n.x/� � BEŒYn.x/� for B > 0:

From (3.18), one can conclude EŒ�n.x/�! 0. Now

Ej
nj �

Z
E.�n.x//jrm

�

�s
.x/j dx

�

Z ��
s�.x/C s�.x/

1
2C�

��1=2
�
C 1=2

m�
�s
.x/
jrm�

�s
.x/j dx

D C 1=2
Z ��

s�.x/C s�.x/
1

2C�

��1=2
� jr lnm�

�s
.x/j dx (3.19)
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Since we have shown in Lemma B.2.12 that

jr lnm��.x/j � M.h;�/ .1C jxjl/

for some positive l and � in the neighborhood of �s. Then the integral (3.19) is

finite when (3.15) holds. Notice that (3.19) is independent of n, therefore we can

use the Dominated convergence theorem to conclude

n1=2
Z ˇ̌̌

A.ın.x// � A.ı
�
s .x// � .ın.x/ � ı

�
s .x//A

0.ı�s .x//
ˇ̌̌
rm��.x/ dx ! 0

as n!1. This means we can find the asymptotic distribution of (3.17) by studying

the limiting distribution of

n1=2
Z �

ın.x/ � ı
�
s .x/

�
A0.ı�s .x//rm

�

�s
.x/ dx

D n1=2
h1
n

Z nX
1

k.xIXi ; h/A
0.ı�s .x//r lnm�

�s
.x/ dx

�

Z Z
k.xI t; h/s.t/ dt A0.ı�s .x//r lnm�

�s
.x/ dx

i

One finds the above expression is in fact the root-n normalized sum of n mean

zero strongly mixing random vectors. By using Lemma 3.2.7 and the Cramér-Wold

device, it is asymptotically normal with mean 0 and variance-covariance matrix

given by V . �

Theorem 3.2.9: Assume the conditions in Theorem 3.2.6 and Lemma 3.2.8 hold.
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Then the NEDE �n satisfies

p
n.�n � �

s/
P
�! MVN.0; VNE /

where

VNE D J �.�s/�1VJ �.�s/�1:

Proof: The proof is carried out by first performing a second order Taylor

expansion to

r

Z �
e�f

�.x/=m�.x/C1 � 2
�

dx

with respect to � in the neighborhood of �s. Recall the consistency of �n proved

in Theorem 3.2.6 and the asymptotic result in Lemma 3.2.8, then the arguments in

Lehmann and Casella ([47], Theorem 5.1 (b), p 464) apply. �.

Remark From Lemma B.1.1, the asymptotic variance-covariance matrix of

�n is independent of G.ı/ D exp.�ı/� 2 when s.x/ � fm�.x/g. Since m�.x/ in the

�-OU BN-S model can be thought of a continuous mixture of Gaussian distributions

with different means and variances, we conjecture that the efficiency loss due to the

use of Gaussian kernel should be limited.

At the end of this chapter, we use a diagram (in next page) to illustrate how to

implement the NEDE with the �-OU BN-S model. There are several details worth

to mention first.

(1) Since the VIX is the expected future volatility, the VIX values which correspond
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to the current values of St are those ones 30 days (or 22 business days) ago.

(2) The data sampling frequency for the VIX data should be no lower than the

frequency for the S&P 500 data so to make sure the plug in estimator O� converges

at the same speed as the NEDE.

(3) Although there is no explicit form for m�.x/, one can jointly simulate .Xi ; �
2
i / to

compute m�.x/ numerically. Since the BDLP process Zt is a compound Poisson

process in the �-OU case, we can simulate .Xi ; �
2
i / very efficietly.

Collect 10-min
S&P 500 data
STi on Date d

Compute return
Xi D lnSTi � lnSTi�1

Compute the
kernel density

estimate f �.x/
D

1
n

P
i K.x;Xi I h/

Choose the NE disparity and minimize

�.f �.x/;m��.x// D
R �
e�f

�=m��C1 � 2
�
dx

NEDE
. O�; Ǒ; O�; O�; Ǫ /

Collect 10-min VIX
data on date .d � 30/

Use sample au-
tocorrelation

functions to get O�

Convolved the �-OU
BN-S model density
by kernel K.x; t I h/

to get m��.x/

Plug in
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4. ESTIMATING THE PARAMETERS IN THE BN-S MODEL

USING MOMENT BASED METHODS

From the study in Chapter 2, we have shown that .Xi ; �
2
i / is strictly stationary

and ˇ-mixing with geometric mixing rate. This enables us to use Birkhoff’s ergodic

theorem to study the limiting behavior of the moment estimators. However, as one

can not observe �2t in the empirical study, the conventional method of moments

can not be used unless other quantities known to be linearly dependent on �2t are

available. But if one is only interested in estimating the parameters in the volatility

components, then the estimators based on the realized multipower variations can

be used. In this section, we will discuss how to construct the MOM estimators and

study their asymptotic properties if .Xi ; �
2
i / are both observed.

Recall again we observe the processes Rt and �2t in a finite time horizon Œ0; T �

over .nC1/ equi-spaced time points Ti D i
T
n

for i D 0; 1; : : : ; n. The bivariate series

.Xi ; �
2
i / where Xi D RTi �RTi�1 has its dynamics defined by (2.1):

8̂̂<̂
:̂
Xi = �hC ˇ

R ih
.i�1/h

�2s ds C
R ih
.i�1/h

�s dWs C �
R ih
.i�1/h

dZ�s ;

�2i = e��h�2i�1 C
R ih
.i�1/h

e��.ih�s/ dZ�s .

If �20
D
D
R �1
0

e�s dZs, then the bivariate series is strictly stationary. There are



two features in the BN-S model that we should keep in mind when designing the

estimation scheme:

� Let � denote the parameters in the distribution of Zt . In the model speci-

fication above, the marginal distribution of �2i is independent of � while its

autocorrelation function only depends on �. So � and the mean reverting

parameter � can be estimated solely from f�2i g.

� The characteristic function of Xi is known explicitly for the �-OU and IG-OU

cases, but it is very complicated and it is impractical to derive moments of Xi

of order higher than 2.

Denoting the discretely observed squared volatility �2i by Vi . We propose to

estimate � D .�; �; ˇ; �; �/ by the following algorithm:

Step 1: Estimate � Recall that, as discussed in Section 1.2, we know

Vi is a strictly stationary series with finite mean and variance. Its autocorrelation

function is given by

Corr
�
Vi ; Vj / D e��ji�j j.

Fix i D 0 and let j range from 0 to d < n. Define the lagged-j sample autocovari-

ance functions and sample autocorrelation functions by

O'n.j / D
1

n

n�jX
kD1

.VkCj � NV /.Vk � NV / and Orn.j / D
O'n.j /

O'n.0/
:

Here NV D 1
n

Pn
kD1 Vk. One finds O'n.0/ D

1
n

Pn
kD1.Vk �

NV /2 is the MOM estimator
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for Var.�20 /. Denote . O'n.1/; : : : ; O'n.d// by O'. If there exists a sequence of O�n such

that

O�n D argmin
�>0

dX
jD1

�
Orn.j / � e

��j
�2
;

then, according to Spiliopoulos [67],

O�n ! � a.s. as n!1: (4.1)

In what follows, we suppress the subscript n in the estimators.

Step 2: Estimate � Here we avoid a general discussion but focus on the

�-OU and the IG-OU BN-S models, where � equals .�; ˛/ and .ı; 
/ respectively.

Since the marginal distribution of Vi is independent of �, � can be directly esti-

mated by the first two absolute moments of fVig without plugging in O�. Further,

the marginal distribution for Vi in the �-OU (IG-OU) BN-S model is simply the

Gamma.�; ˛/ (IG.ı; 
/) distribution, moments of which up to fourth order can be

computed efficiently by using the characteristic function. For a Gamma.�; ˛/ ran-

dom variable G:

EŒG� D �
˛

, EŒG2� D �.�C1/

˛2

EŒG3� D �.�2C3�C2/

˛3
, EŒG4� D �.�3C6�2C11�C6/

˛4

and for a IG.ı; 
/ random variable L:

EŒL� D ı



, EŒL2� D ı.ı
C1/


3

EŒL3� D ı.ı2
2C3ı
C3/


5
, EŒL4� D ı.ı3
3C6ı2
2C15ı
C15/


7

Let
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V 2 D 1
n

Pn
kD1 V

2
k

In the �-OU BN-S model, we solve

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

NV =
�

˛

V 2 =
�.� C 1/

˛2

and get

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Ǫ D
NV

V 2�. NV /2

O� D
. NV /2

V 2�. NV /2

(4.2)

In the IG-OU BN-S model, we solve

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

NV =
ı




V 2 =
ı.ı
 C 1/


3

and get

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Oı D

r
. NV /3

V 2�. NV /2

O
 D

r
NV

V 2�. NV /2

(4.3)

Step 3: Estimate .ˇ; �; �/ We need the the covariance of .X1; �
2
1 / and

moments of X1 to find these estimators. Letting h D 1 in equation (C.5), one has

Cov.X1; �
2
1 / D

�ˇ
�
C 2�

� �
1 � e��h

�
Var.�20 /:

Under the �-OU BN-S Model, the mean and variance of X1 are given by (C.2):

EŒX1� D h�C
h�.ˇ C ��/

˛

Var.X1/ D
�

˛2�2

�
.2ˇ2 C 4ˇ��/.e��h C .�h � 1//C h�2.˛ C 2��2/

�
:
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From Cov.X1; �
2
1 / and Var.X1/ the estimator of .ˇ; �/ can be derived by solv-

ing a system of equations with the restriction � < 0:

Ǒ D
1

O�h .e
O�h � 1/2bVar.�20 /

hp
2�1

C O� .1 � e
O�h/
�
2C e

O�h. O�h � 2/
�bVar.�20 /bCov.X1; �

2
1 /
i

(4.4)

O� D
1

2 O� O�h .e
O�h � 1/2bVar.�20 /

h
�
p
2�1

C 2 O� .�1C e
O�h/
�
1C e

O�h. O�h � 1/
�bVar.�20 /bCov.X1; �

2
1 /
i

(4.5)

where

�1 D O�
�
e
O�h
� 1

�3bVar.�20 /
h
2 O�
�
1C e

O�h. O�h � 1/
�bCov2.X1; �

2
1 /

C Ǫ O�h .e
O�h
� 1/

�
O�h � ǪbVar.X1/

�bVar2.�20 /
i

and

bVar.�20 / D V 2 � . NV /2

XV , bCov.X1; �
2
0 / D

1

n

nX
kD1

.Xk � NX/.Vk � NV /

O�2X , bVar.X1/ D
1

n

nX
kD1

.Xk � NX/
2

with NX D
1

n

nX
kD1

Xk D
1

n
.Rn �R0/

Then O� can be obtained from EŒX1�:

O� D
1

h
NX �

O�

Ǫ
. Ǒ C O� O�/ (4.6)
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Under the IG-OU BN-S Model, the mean and variance of X1 are given by

(C.3)

EŒX1� D
h.
�C ˇı C ı��/




VarŒX1� D
ı


3�2

�
.2ˇ2 C 4ˇ��/.e��h C .�h � 1//C h�2

�

2 C 2��2

��

solving the corresponding system of equations with the restriction � < 0:

Ǒ D
1

Oıh .e
O�h � 1/2bVar.�20 /

hp
2�2

C Oı .1 � e
O�h/
�
2C e

O�h. O�h � 2/
�bVar.�20 /bCov.X1; �

2
1 /
i

(4.7)

O� D
1

2 Oı O�h .e
O�h � 1/2bVar.�20 /

h
�
p
2�2

C 2 Oı .�1C e
O�h/
�
1C e

O�h. O�h � 1/
�bVar.�20 /bCov.X1; �

2
1 /
i

(4.8)

where

�2 D Oı
�
e
O�h
� 1

�3bVar.�20 /
h
2 Oı
�
1C e

O�h. O�h � 1/
�bCov2.X1; �

2
1 /

C O
2h .e
O�h
� 1/

�
Oıh � O
bVar.X1/

�i
And O� can be obtained from EŒX1�:

O� D
1

h
NX �

Oı

O

. Ǒ C O� O�/ (4.9)

At last, we discuss the consistency and asymptotic normality of the MOM
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estimators. Our first result considers the strong consistency of the sample moments

and the MOM estimators.

Theorem 4.0.10: For the .Xi ; �
2
i / considered in the �-OU BN-S model and the

IG-OU BN-S model,

(i) The sample moments are strongly consistent, i.e., as n!1

� NV
a:s:
�! EŒ�20 � and V 2

a:s:
�! EŒ.�20 /

2�;

� O'n.j /
a:s:
�! '.j / for j D 1; : : : ; d ;

� XV
a:s:
�! Cov.X1; �

2
0 /;

� NX
a:s:
�! EŒX1� and O�2X

a:s:
�! Var.X1/.

(ii) The MOM estimator O�M , . O�; Ǒ; O�; O�; O�/T is strongly consistent, that is

O�M
a:s:
�! .�; ˇ; �; �; �/T as n!1:

Proof: The first result is a direct application of the Birkhoff’s ergodic theo-

rem. For the second result, recall that O� is strongly consistent for � due to Spiliopou-

los [67]. The strong consistency of . O�; Ǒ; O�; O�/ under the �-OU (or IG-OU) BN-S

model comes from the fact that, if we replace the sample moments in equation (4.2),

(4.4) and (4.6) (or (4.3), (4.7) and (4.9)) by the corresponding population moments,

then the parameters .�; ˇ; �; �/ are continuous functions of the population moments.

Therefore, by the continuous mapping theorem, . O�; Ǒ; O�; O�/ are strongly consistent.

�
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Next we show the asymptotic normality of the sample moments.

Theorem 4.0.11: For the .Xi ; �
2
i / considered in the �-OU BN-S model and the

IG-OU BN-S model, the sample moments b� D . NV ; V 2; O'; XV ; NX; O�2X/ are asymp-

totically normal:

p
n
�b� � � � D

�! MVN.0;˙ / (4.10)

where

� D
�
EŒ�20 �; EŒ.�

2
0 /
2�; '; Cov.X1; �

2
0 /; EŒX1�;Var.X1/

�
and ˙ is the variance-covariance matrix given by

˙ D E
�
U˝20

�
C

1X
kD1

E
�
U0U

T
k

�

with the d C 5 dimension vector Ui defined as

Ui D

�
Vi ; V

2
i ; .ViC1 �EŒV1�/.Vi �EŒV1�/; : : : ; .ViCd �EŒV1�/.Vi �EŒV1�/;

.Xi �EŒX1�/.Vi �EŒV1�/; Xi ; .Xi �EŒX1�/
2
�T

Proof: Since in the �-OU BN-S model and the IG-OU BN-S model, all

moments of Xi and Vi are finite, the proof of Proposition 2 in Haug et al. [35] can

be directly carried over to our study with Yi in their proof replaced by Ui , and then

(4.10) follows. �

Let H denote the mapping from � to � D .�; �; ˇ; �; �/ defined by equations

(4.2), (4.1), (4.4) and (4.6) in the �-OU BN-S model (or (4.3), (4.1), (4.7) and (4.9)
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in the IG-OU BN-S model) with the sample moments replaced by the population

moments. We have the following asymptotic result of the MOM estimator O�M .

Theorem 4.0.12: The MOM estimator O�M D . O�; O�; Ǒ; O�; O�/ is asymptotically nor-

mal:

p
n
�
O�M � �/

D
�! MVN.0;˙M / (4.11)

as n!1. Where ˙M is given by

˙M D

h@H
@�
˙
@H
@�

T i

Proof: Use the conclusion in Theorem 4.0.11 and then apply the delta method

to the differentiable map H. �

Remark It should be pointed out that the MOM estimation is better suited

to estimate the parameters in VIX2
t as there are fewer (and simpler) moments to

compute. But Kagan and Nagaev [43] showed that moment-based estimators require

substantial amounts of data if one wants to consistently estimate more than two

population moments simultaneously. If we take into account the noise contained in

the high frequency data , moments based methods are probably not a good choice

for (jointly) estimating the parameters.

Remark As mentioned in the beginning of this chapter, if one is only in-

terested in the parameters .�; �/ in the BN-S model1, Realized Quadratic Varia-

1Here � can still be estimated by the autocorrelation functions of the VIX2 data
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tion and the more general Multipower Variation can be used to aid the estima-

tion. Recall we observe Rt over equi-spaced partition �n D fTn;0; : : : ; Tn;ng with

max1�k�nfTn;i � Tn;i�1g ! 0 as n ! 1. Let �n D T=n. The normed p-th power

variation proposed by Barndorff-Nielsen and Shephard (cf [9], [10], [11] and the

references in there) is defined as

�
nVp.X; �n/ D

nX
iD1

�
n
ˇ̌
RTn;i �RTn;i�1

ˇ̌p
:

A further extension is the normed p-th bipower variation:

Vr;s.X; �n; �


n; �

ı
n/ D

nX
iD1

�


n;iC1

ˇ̌
RTn;iC1 �RTn;i

ˇ̌r
�ın;i

ˇ̌
RTn;i �RTn;i�1

ˇ̌s
:

The purpose of constructing various realized (bi)power variations is to study the

quadratic variation of the return process Rt , whose form under the BN-S model is

given by

ŒR;R�t D

Z t

0

�2s ds C �
2
X
s�t

.Zs �Zs�/
2:

Woerner [81] showed

�
1�p

2
n V2.R; �n/ �

�1
2

P
!

Z h

0

� ss ds C
X

�2
�
.Rs �Rs�/

2
I 0 < s � h

�
�
1�p

2
n Vr;s.R; �n/ �

�1
r ��1s

P
!

Z h

0

� ss ds

for �r denoting the r� th absolute moment of a standard normal r.v.. By increasing

the data sampling frequency, i.e., letting �n ! 0,
R t
0
�2s ds and the sum squared-
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jumps �2
P
s�t.Zs � Zs�/

2 can be approximated with high accuracy. Therefore

one can use those realized variations as their limiting counterparts, that is, we can

assume
R t
0
�2s ds and �2

P
s�t.Zs �Zs�/

2 are actually observed, and one can choose

proper schemes to find the estimators for .�; �/. For further discussion, check [8],

[34], [42], [73], [78] and [80] for details.
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5. DISCUSSION AND FUTURE STUDY

In this thesis, we explore the applicability of the well studied Minimum Dis-

parity method for performing parameter estimation to the BN-S stochastic volatility

model. By proving the bivariate series .Xi ; �
2
i / implied by the BN-S model to be

geometric ergodic with smooth stationary distribution, we analyze the limiting prop-

erties of various estimators. In particular, we demonstrate how to combine the S&P

500 data and the VIX data to consistently estimate the parameters in the �-OU

BN-S model using the Negative Exponential disparity estimator. Consistency and

asymptotic normality of the NEDE are proved under relatively weak conditions. By

using the geometric ergodicity again and verifying the finiteness of the moments,

strong consistency and asymptotic normality of the MOM estimator are proved

under the �-OU and the IG-OU BN-S model, provided that both Xi and �2i are

observed. Although this conclusion is not directly applicable to empirical studies,

but one can still use the geometric ergodicity of the Xi to study other estimation

schemes based on functions of Xi .

In the process of this investigation, we found new problems arose from different

aspects of the study, for example, conceptual understandings, technical difficulties,

methodology issues and implementation challenges. Here we list a couple of topics



which we think deserved a closer examination in the future study.

(1) Numerical implementation of the NEDE. Although there is no data analysis

included in this study, from some trial simulations I find that it is possible for

the density m�.x/ implied by the �-OU BN-S model to have similar shape for

different sets of parameters. This suggests highly accurate and stable numeric

methods are required in order to produce consistent estimates for all parameters

simultaneously. The simulated annealing method used in Takada [70] does seem

to be a good candidate, however, one should keep the dimension issue in mind.

(2) Robustness of NEDE under dependent data. We have yet to produce discussions

over the trade-off between robustness and efficieny when applying the NEDE to

the �-OU BN-S model. This is partly due to the lack of a proper notion for

influence function under the jump diffusion model setting. As the traditional

influence function theory considers how single contamination affects an obser-

vation from an i.i.d. set of data, we need to consider the effect of an outlier

over all observations jointly. After some literature reviews, the pioneering work

by Martin and Yohai [51] who gave a general framework for influence func-

tion over time series and the recent study by Toronjadze [75] who investigated

influence function on stochastic equations for semimartingale seem to be the

right approach to define a concrete definition for influence function to the BN-S

model.

(3) Check the model goodness-of-fit. In this paper the disparity (deviation) concept

is used to drive the parameter estimation, but its classical role is to analyze the

102



goodness-of-fit of the given model. A proper goodness-of-fit test statistics for

our model should be derived to accompany the discussion of robustness and

efficicency.

(4) Perform Taylor expansion for other BN-S models. We use a very ad-hoc method

to justify the Taylor expansion for the �-OU BN-S model in Appendix B.2.

But it is no doubt that those steps are hard to be reproduced when the joint

distribution of increment processes (see (B.11)) is unknown. However, as the

moment bounds results (Proposition B.2.9 and Proposition B.2.10) in principle

hold for other BN-S models thanks to the Gaussian component, we can justify

the Taylor expansion for other models by showing the tails of those derivatives

grow at most in a polynomial order of jxj. Since the characteristic function

of Xi and its derivatives can be derived explicitly, a method to link the tail

behavior of functions to their Fourier (Laplace) transforms will help to solve

this problem.

(5) Extend the functional delta method. We find the functional delta method to be

a very convenient tool to study estimators which are functionals of the kernel

density estimate. Although one needs advanced functional analysis skills to

study various functional derivatives, compared the steps between Lemma 3.2.8

and those in Appendix B.3, one finds the central limit theorem can be directly

applied without passing the proof from Pearson residuals to Hellinger residuals.

(6) Model selection by using disparity. If we are able to extend the NEDE to

different families of stochastic volatility models, then we can use the disparity
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as a quantitative measure to choose the model with the best fit. It will be

interesting to compare such measure to the classical AIC and BIC under different

circumstances.

(7) Consider disparities between other densities. As nonparametric estimates for

characteristic functions, spectral densities and Lévy densities have been well

studied, we can estimate parameters by minimizing appropriate distances be-

tween these functions.
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APPENDIX



A. LEMMAS AND FACTS IN CHAPTER 2

A.1 Important Lemmas

Let X be a Markov chain defined on the sample space S and ' is a � -finite

measure defined on B.S/. Following are several useful results related to the study

of stability of Markov chain.

Lemma A.1.1: (Tuominen and Tweedie 1979, Proposition 1.2). If the tran-

sition operator .Pt/t2RC for a Markov process X is simultaneously '-irreducible,

then any �-skeleton chain of X is aperiodic.

Lemma A.1.2: (Meyn and Tweedie 1992, Theorem 3.4 (ii); Meyn and

Tweedie 2009, Theorem 5.5.7) Suppose X is '-irreducible and aperiodic. If

X has the Feller property and supp' has non-empty interior, then all compact sets

of S are small.



A.2 Exponential Ergodicity of univariate OU Process

Note: the result quoted below is the one-dimensional version of the original

theorem in [52].

Lemma A.2.1: (Masuda 2004, Theorem 4.3) Let � be positive and X be the

strictly stationary OU process given by

Xt D e
��tX0 C

R t
0
e��.t�s/dZs, t 2 RC

with a self-decomposable marginal distribution F . If we have

Z
jxjpF. dx / < 1 (A.1)

for some p > 0, then there exists a constant a > 0 such that ˇX.t/ D O.e�at/ as

t !1. In particular, X is ergodic.

Since the proof of our Theorem 2.4.3 is essentially the same as Masuda’s proof

to the above lemma. we excerpt the original proof from Masuda for reader’s refer-

ence. Some notations are slightly modified to be consistent with our discussion.

Proof: Let N D f1; 2; 3; : : :g, then for each � one has

X�
n D e

���X�
n�1 C �n;

where � D .�n/n2N is a sequence of independent and identically distributed random

variables with marginal law L.�1/ D L.
R �
0
e��.��s/dZs/. It is easy to see that X�
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is also strictly stationary with the same marginal distribution F as X .

Ergodic with Geometric Mixing rate. First, the author shows that X� is ge-

ometrically ergodic. Let SF denote the support of F , one has limn!1 Pn�.A; x/ D

limt!1 Pt.x; A/ D F.A/ for any � > 0 and A 2 B.SF /. Thus X .�/ is simultane-

ously F -irreducible. Hence by Lemma A.1.1, X .�/ is aperiodic for any �.

Without loss of generality, assume p 2 .0; 1�. Put ı D je���j. Under condition

(A.1), EŒjX1j
p� < 1, thus we will verify (2.8) and (2.9) for function g.y/ D jyjp.

Since we restrict � to be strictly positive, then ı < 1 for positive �. Fix this choice

of � for the rest of the proof.

From the strict stationarity of X�, one has

EŒj�1j
p� D EŒjX�

1 � e
���X�

0 j
p�

� EŒ.jX�
1 j C ıjX

�
0 j/

p�

D .1C ıp/EŒjX�
0 j
p� <1

Put C� D fx 2 SF W jxj � �g for some constant � > 0; then C� is a small set

since it is compact. Denote its complement as C c� . Then, since the support of F

is unbounded, so for any � the set C c� is not empty. As X�
0 D X0 is chosen to be
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independent of Zt , so X�
0 is also independent of �1, and one has

Z
C c�

jyjpP�.dy; x0/ � EŒje
���x0 C �1j

p�

� ıp�p CEŒj�1j
p� <1

for any x0 2 C�. Since this upper bound does not depend on x0, then (2.8) is

obtained. On the other hand, for x1 2 C
c
� , let c1 be a constant such that ı < c1 < 1.

Then, Z
C�

jyjpP�.dy; x1/ � EŒje
���x1 C �1j

p�

� ıjx1j
p
CEŒj�1j

p�

D c1jx1j
p
�
�
.c1 � ı/jx1j

p
�EŒj�1j

p�
�

D c1jx1j
p
� c2

Since EŒj�1j
p� is finite, one can choose � large enough so that c2 > 0. So we obtain

the bound (2.9), hence from Proposition 2.4.1 we concludes that X� is geometrically

ergodic.

Exponential Mixing rate. From the conclusion of step 1, there exists a constant

� such that � 2 .0; 1/ and

Z
sup
jf j�1

jPn�f .x/ � F.f /jF. dx / D O.�n/; as n!1 (A.2)

Denote by Œt � the integer part of t 2 RC, and let t� D Œt=��� and ft D Pt�f 2

bB.SF /. Then using the property of semigroup, the invariance of F and (A.2) yield
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that

ˇX t D

Z
sup
jf j�1

jPtf .x/ � F.f /jF. dx /

D

Z
sup
jf j�1

jŒPt� Pt�t�f �.x/ � F.f /jF. dx /

D

Z
sup
jf j�1

jŒPt� Pt�t�f �.x/ � F.Pt�t�f /jF. dx /

�

Z
R2

sup
jft j�1

jPt�ft.x/ � F.ft/jF. dx /

D O.�t�=�/

as t !1, so by taking a D �.log �/=� we complete the proof. �
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B. RESULTS, DERIVATIONS AND EXTENSIONS OF MDE

B.1 Efficiency, Robustness and Asymptotic Properties of MDE

Here we present the results by Basu and Lindsay which are related to the

efficiency and robustness of the MDE. The implications of these results have been

previously discussed in Section 3.1. We begin by defining some expressions (where

notations have been adapted to be consistent with the current discussion).

Let @j and @jk represent the partial derivatives with respect to �j and �j , �k

and write Quj .x; �/ D @j lnm�
�
.x/ and Qujk.x; �/ D @jk lnm�

�
.x/. Assuming that one

can interchange the order of differentiation and integration, let

u�j .x; �/ D

Z
k.xI t; h/ Quj .x; �/ dx D @j

Z
lnm��.x/k.xI t; h/ dx ;

u�jk.x; �/ D

Z
k.xI t; h/ Qujk.x; �/ dx D @jk

Z
lnm��.x/k.xI t; h/ dx :

Let the p�p matrix J �.�/ be defined as the information matrix corresponding to a

random variable with pdf m�
�
.x/, with its jk-th element is given by E� Œ�u

�
jk
.X; �/�.

Let s�.x/ D
R
k.xI t; h/s.t/ dt be the kernel smoothed version of s.x/. Recall � s is

defined as the minimizer of



�.s�; m�
�
/ D

R
G
�
s�.x/

m�
�
.x/
� 1

�
m�
�
.x/ dx :

Let ı�s .x/ D s
�.x/=m�

�s
.x/� 1. Define J �s.� s/ to be the p � p matrix whose jk-th

element is given by

Z
A0.ı�s / Quj .x; �

s/ Quk.x; �
s/s�.x/ dx �

Z
A0.ı�s /rjkm

�
�s.x/ dx

and let v�.t; � s/ be the p-dimensional vector whose j -th component is

Z
A0.ı�s / Quj .x; �

s/k.xI t; h/ dx �

Z
A0.ı�s / Quj .x; �

s/s�.x/ dx :

Lemma B.1.1: (Basu and Lindsay 1994, Lemma 5.1) Let S.x/ be the true

distribution which is not necessarily in the family of model fm�
�
.x/g. For the mini-

mum disparity functional T , let T .S/ D � s. Then the influence function of T (see

(3.2)) has the form T 0.y/ D ŒJ �s.� s/��1v�.y; � s/. If S D M�0 for some �0, then

the above reduces to T 0.y/ D ŒJ �.�0/�
�1u�.y; �0/. If in addition k is a transparent

kernel for the family M� then we get T 0.y/ D ŒI.�0/�
�1u.y; �0/, where I.�/ is the

Fisher information about � in m� .

Lemma B.1.2: (Basu and Lindsay 1994, Theorem 5.1) Let T 00.y/ D @2

@�2
T .M�;�/j�D0.

Then for an estimating function of the type
R
A.ın/rm�

�
.x/ dx , we have

T 00.y/ D T 0.y/
h Z
Qu2.x; �/m��.x/ dx

i�1˚
f1.y/C A2f2.y/

	
;
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where

f1.y/ D 2ru
�.x; �/ � 2E�

�
ru�.X; �/

�
C T 0.y/E�

�
r
2u�.X; �/

�
;

and

f2.y/ D Œu
�.X; �/��1

h Z
Qu2.x; �/m��.x/ dx

ih Z
k2.xIy; h/ Qu.x; �/.m��.x//

�1 dx
i

� 2

Z
k.xIy; h/ Qu2.x; �/ dx C T 0.y/

Z
Qu3.x; �/m��.x/ dx

Second, we present the result which considers the consistency and asymptotic

normality of the MDE. Again, we need to introduce some definitions.

Definition

� The kernel integrated family of distributions is smooth if the conditions of

Lehmann and Casella ([47], pp.440-441) are satisfied with m�
�
.x/ in place of

f .xj�/. Under those conditions, m�
�
.x/ is required to have a certain degree

of integrability and differentiability with respect to both x and � . Also, the

Fisher information matrix based on m�
�
.x/ needs to be finite.

� The true density s.x/ is compatible with m�.x/ if s.x/ > 0 on the common

support of m�.x/ and the functions Mjkl.x/, Mjk;l.x/, Mj;k;l.x/ have finite

expectations with respect to s�.x/; in addition (B.1) holds and the integralsR
.s�/.x/1=2j Quj .x/ Quk.x/j dx and

R
.s�/.x/1=2j Qujk.x/j dx are finite for all j and

k.
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Lemma B.1.3: (Basu and Lindsay 1994, Theorem 6.1) Suppose that the con-

ditions

j Qujkl.x/j �Mjkl.x/; j Qujk.x/ Qul.x/j �Mjk;l.x/; j Quj .x/ Quk.x/ Qul.x/j �Mj;k;l.x/

hold for all j , k and l , for all � in a neighborhood Ba of � s, where Mjkl.x/, Mjk;l.x/

and Mj;k;l.x/ have finite expectations with respect to m�
�
.x/ for all � 2 Ba. Assume

that the residual adjustment function A.ı/ corresponding to a particular dispar-

ity measure � is regular, m� is smooth, s.x/ is compatible with m� and the ma-

trix J �s.��/, as defined in Lemma B.1.1 is positive definite. Then there exists

a consistent sequence of roots �n to the minimum disparity estimating equations.

The asymptotic distribution of n1=2.�n � �
s/ is MVN with mean 0 and variance

ŒJ �s.� s/��1VsŒJ
�s.� s/��1 where Vs is the quantity V in (B.1) evaluated at � D � s.

Remark Basu and Lindsay did not provide a detailed proof of this theorem

in their paper and they pointed to [49] and [65] for further reference. After carefully

examining the proof in the referred literature, we believe an assumption on the

integrability of A.ı/ should also be included in the assumptions for completeness.

However, the authors actually assumed such integrability conditions implicitly when

deriving the minimum disparity estimating equations (see equation (2.6) in [12]).

We shall follow the arguments by Lehmann and Casella ([47] Chapter 6, The-

orem 5.1) and Lindsay ([49] Theorem 33) to produce a heuristic proof of Lemma

B.1.3. This helps to identify the sufficient conditions and their roles in proving the
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consistency and asymptotic normality of the general MDE. Besides, we would like to

find out the extra conditions needed when the data are dependent and the Negative

Exponential disparity is used.

In what follows, f �.x/ is the kernel density estimate computed based on n

i.i.d. data fxig. First, let us present several lemmas from [12] and discuss their

consequences.

(B-L1). ([12] Lemma 6.1, Lemma 6.2) n1=4.f �1=2.x/� s�1=2.x//! 0 with probability

1 if �.x/ <1 where

�.x/ D

Z
k2.xI t; h/s.t/dt � Œs�.x/�2:

(B-L2). ([12] Lemma 6.3 (i), Lemma 6.4, Lemma 6.5) If

Z
s�1=2.x/jr lnm��.x/j dx <1; (B.1)

then

R
n1=2

�
A.ın.x// � A.ı�s .x//

�
rm�

�
.x/ dx

and

R
n1=2.ın.x/ � ı�s .x//A

0.ı�s .x//rm
�
�
.x/ dx

are asymptotically equivalent. That is,

E

ˇ̌̌̌Z
n1=2

h
A.ın.x// � A.ı�s .x// � .ı

n.x/ � ı�s .x//A
0.ı�s .x//

i
rm��.x/ dx

ˇ̌̌̌
! 0
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(B-L3). ([12] Lemma 6.3 (ii), Corollary 6.1) Suppose that

V D Var
� Z

k.x;X; h/A0.ı�s .x//r lnm��.x/ dx
�

(B.2)

is finite, using the result in .1/, Basu and Lindsay showed

n1=2
Z �

ın.x/ � ı�s .x/
�
A0.ı�s .x//rm

�
�.x/ dx ! N.0; V /:

for a regular RAF A.�/. From the asymptotic equivalence shown in .B �L2/,

one has

n1=2
Z h

A.ın.x// � A.ı�s .x//
i
rm��.x/ dx ! N.0; V /: (B.3)

Result (B.3) implies the un-normalized integral converges to 0 as n!1. This fact

will be used in the study of consistency and of MDE.

A heuristic proof of Lemma B.1.3: Recall � s is the unique minimizer of

the disparity �.s�.x/;m�
�
.x//, that is, it solves

r�.s�.x/;m��.x// D r

Z
G.ı�s .x//m

�
�.x/ dx D 0:

where ı�s .x/ D .s
�.x/�m�

�s
.x//=m�

�s
.x/. Also, let �n be the solution to the minimum

disparity equation

r

Z
G.ın.x//m��.x/ dx D 0
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for each n where ın.x/ D .f �.x/ � m�
�
.x//=m�

�
.x/. As suggested in [47], to prove

the local consistency of �n, one considers the Taylor expansion of �.f �.x/;m�
�
.x//

on � in a small p-dimensional neighborhood Ba of � s with radius a. Recall @i D
@
@�i

and @
ni
i D

@

@�
ni
i

. Then,

�.f �; m��/ D �.f
�; m��s/C

pX
iD1

@i�.f
�; m��/j�D�s.�i � �

s
i /

C
1

2

X
i

X
j

@ij�.f
�; m��/j�D�s.�i � �

s
i /.�j � �

s
j /

C
1

6

X
n1C���CnpD3

@3

@
n1
1 : : : @

np
p

�.f �; m��/j�D�s �
.�1 � �

s
1/
n1 : : : .�p � �

s
p/
np

n1Š : : : npŠ

C op.a
4/

With a slight abuse of notation, we shall use m�
�s
.x/ and @im

�
�s
.x/ to represent

m�
�
.x/ and @im

�
�
.x/ evaluated at � D � s respectively. Notations for the higher order

derivatives will be understood similarly. We want to study asymptotic behaviors

of the terms in the above expansion. To apply the steps in Lehmann and Casella,

one needs to show, as n ! 1, the first derivatives of �.f �; m�
�
/ with respect to �

converge to 0, the matrix of second derivatives converges to a non-negative definite

matrix, and all the third derivatives converge to some finite quantities.

(1). Coefficients of the Linear Terms: @i�.f
�; m�

�
/

117



If differentiation and integration can be interchanged, one has

@i�.f
�; m��/j�D�s

D

Z
R
@i

h
G.ın.x//m��s.x/

i
dx

D

Z
R

h
G 0.ın.x//

f �.x/

�m�
�s
.x/2

� @im
�
�s.x/ �m

�
�s.x/CG.ı

n.x// @im
�
�s.x/

i
dx

D �

Z
R
A.ın.x// @im

�
�s.x/ dx :

It is clear that the condition needed for differentiating under the integral sign is:

Z
R

sup
�2Ba

ˇ̌
A.ın.x// @im

�
�.x/

ˇ̌
dx <1 (B.4)

To show the linear term converges to 0 as n ! 1 for � 2 Ba, it suffices to

show Z
R

�
A.ın.x// � A.ı�s .x//

�
@im

�
�s.x/ dx

P
! 0 as n!1;

because

R
R A.ı�s .x// @im

�
�s
.x/ dx D @i�.s

�; m�
�s
/ D 0

for all i by the definition of � s. From the result of (B.3), we know the above

convergence is true for all i . Therefore, the coefficients of the linear terms in the

Taylor expansion converge to 0.

(2). Coefficients of the Quadratic Terms: @ij�.f
�; m�

�
/

Let Qui.x; �/ , @i lnm�
�
.x/. If differentiation and integration can be inter-
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changed, one has:

@ij�.f
�; m��/j�D�s D

Z
R
@ij

h
G.ın.x//m��s.x/

i
dx

D

Z
R
A0.ın.x//

f �.x/

m�
�s
.x/2

� @im
�
�s.x/ � @jm

�
�s.x/ dx �

Z
R
A.ın.x// @ijm

�
�s.x/ dx

D

Z
R
A0.ın/.ın.x/C 1/ � Qui.x; �

s/ � Quj .x; �
s/ �m��s.x/ dx �

Z
R
A.ın/ @ijm

�
�s.x/ dx

This suggests the following conditions are needed:

Z
R

sup
�2Ba

ˇ̌
A0.ın/.ın.x/C 1/ � Qui.x; �/ � Quj .x; �/

ˇ̌
m��s.x/ dx

D

Z
R

sup
�2Ba

ˇ̌
A0.ın/ � Qui.x; �/ � Quj .x; �/

ˇ̌̌
f �.x/ dx <1

and Z
R

sup
�2Ba

ˇ̌
A.ın/ @ijm

�
�s.x/

ˇ̌
dx <1 (B.5)

Since f �.x/
P
! s�.x/, we can instead assume the last inequality holds with f �.x/

replaced by s�.x/. Notice that A0.ı/ is bounded because A.ın/ assumed to be

regular, the first condition simplifies to

Z
R

sup
�2Ba

ˇ̌
Qui.x; �/ � Quj .x; �/

ˇ̌̌
s�.x/ dx <1: (B.6)

Under (B.5) and (B.6), @ij�.f
�; m�

�
/j�D�s converges to

Z
R
A0.ı�s .x// Qui.x; �

s/ � Quj .x; �
s/s�.x/ dx �

Z
R
A.ı�s / @ijm

�
�s.x/ dx (B.7)
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in probability as n!1. We also need to assume that the matrix J where its ij -th

element given by the right-hand side of (B.7) is a positive definite matrix.

(3). Coefficients of the Cubic Terms: @ijk�.f
�; m�

�
/ or @ij;k�.f

�; m�
�
/

There are four types of cubic terms in the expansion and the computations

become quite involved. We skip the details and present the expressions after the

integrand has been differentiated. We also substitute f �.x/ by s�.x/ in the final

form of the conditions.

� For terms like
R

RA
00.ın/ f

�.x/2

m�
�s
.x/4
� @im

�
�s
.x/ � @jm

�
�s
.x/ � @km

�
�s
.x/ dx W recall

ın D f �.x/=m�
�
.x/ � 1, rewrite this integral as

R
R

�
A00.ın/f �.x/.ın C 1/

�
1

m�
�s
.x/3
� @im

�
�s
.x/ � @jm

�
�s
.x/ � @km

�
�s
.x/ dx

Since A00.ın/.ınC 1/ is bounded because A.ı/ is regular, one needs to assume

Z
R

sup
�2 QBa

ˇ̌
Qui.x; �/ � Quj .x; �/ � Quk.x; �/

ˇ̌
s�.x/ dx <1 (B.8)

� For terms like
R

RA
0.ın/ f

�.x/

m�
�s
.x/3
� @im

�
�s
.x/ � @jm

�
�s
.x/ � @km

�
�s
.x/ dx W since

A0.ın/ is bounded, one needs (B.8).

� For terms like
R

RA
0.ın/ f

�.x/

m�
�s
.x/2
� @ijm

�
�s
.x/ � @km

�
�s
.x/ dx W one needs to

assume Z
R

sup
�2 QBa

ˇ̌̌ @ijm��s.x/
m�
�s
.x/

�
@km

�
�s
.x/

m�
�s
.x/

ˇ̌̌
s�.x/ dx <1 (B.9)
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� At last, Z
R

sup
�2 QBa

ˇ̌
A.ın/ @ijkm

�
�s.x/

ˇ̌
dx <1 (B.10)

If condition (B.4) to (B.10) (except (B.7)) hold for all i ,j and k less than p,

then as n gets large we can show the coefficients of the linear terms are of order

Op.a
2/ while the coefficients of the quadratic and cubic terms are of order Op.1/.

This implies the leading order terms in the expansion are the quadratic ones with

order Op.a
2/. Then,

min
�2Ba

�
�.f �; m��/ � �.f

�; m��s/
�
> 0

with probability converging to 1. Therefore we know the disparity �.f �; m�
�
/ has a

local minimum in Ba and the minimizer �n 2 Ba for any a > 0 when n is sufficiently

large. This proves the consistency of �n.

Once the consistency of �n is obtained, one can prove its asymptotic normality

by performing the Taylor expansion on
p
nr

R
�.f �.x/;m�

�s
.x// dx with respect to

� and use the result in (B.3). �

Remark The above derivation is the generalization of the proof used in

Section 3.2. The main difference is assumption (B.4), (B.5) and (B.10) which involve

the boundedness (or integrability) of A.ı/.
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B.2 Deriving the Taylor Expansion of �.f �.x/;m��.x// with respect

to � in the �-OU BN-S Model

In this section, a detailed derivation of the Taylor expansion (3.9) discussed

in Section 3.2 is provided. Simliar notations previously defined in Section 3.2 will

be used here unless stated otherwise.

To begin with, the density of m�.x/ and its derivatives will be derived as they

will be repeatedly used in this section. Recall m�.x/ is the stationary density of Xi

defined in the BN-S model (equation (2.1))1:

X
ˇ̌̌ R h

0
�2t dt ;

R h
0

dZt � N
�
�C ˇ

R h
0
�2s dt C �

R h
0

dZt ;
R h
0
�2t dt

�
Notice that

R h
0
�2t dt D .1 � e�h/�20 C

R h
0
.1 � e�hCt/ dZt

So if we denote (suppressing the notation h in the names of the r.v.’s)

S D �20 ; Y D

Z h

0

.1 � e�hCt/ dZt ; and W D

Z h

0

dZt ; (B.11)

then the density of X is given by the following expectation:

m�.x/ D E
h 1p

2�..1 � e�h/S C Y /

exp
�
�
.x � � � ˇ..1 � e�h/S C Y / � �W /2

2..1 � e�h/S C Y /

�i
(B.12)

1the subscript i will be suppressed
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Since S is independent of .Y;W / and follows a Gamma.�; ˛/ distribution, so

to find the joint density of .S; Y;W /, we just need to find the joint density of .Y;W /.

In the �-OUcase, the BDLP Zt is a Compound Poisson process given by:

Zt D

NtX
iD1

bi where bi � Gamma.1; ˛/

and Nt is a Poisson.�t/ random variable. This implies we can rewrite Y and W in

the following way: conditioning on Nh D n, let 0 � T1 < T2 < : : : < Tn � h denote

the ordered jump times of Zt and let Ri D �ZTi denote the jump size at time Ti .

Then

Y D
X
Ti

.1 � e�hCTi /Ri and W D
X
Ti

Ri (B.13)

By this definition,

Y � .1 � e�h/W a.s.

We will use the joint density of (Ti , Ri)’s to find the joint density of .Y;W /. Con-

ditioning on Nh D n, Ti ’s are distributed as the order statistics of a sample of n

Uniform.0; h/ random variables. So the joint density function hT;n of Ti ’s is given

by:

hT;n.t1; t2; : : : ; tn/ D nŠ˘n
iD1

1

h
Ift1<t2<���<tn�hg D

nŠ

hn
Ift1<t2<���<tn�hg

Since Ri ’s are independent (with or without the conditioning) of the ti ’s and the

variables Ri are jointly independent, the joint density dR;n of R1; R2; : : : ; Rn is given

by:

dR;n.r1; r2; : : : ; rn/ D ˘n
iD1˛e

�˛riIfri�0g:
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Therefore, the joint density fT;R;n of (Ti , Ri)’s is given by:

fT;R;n.t1; : : : ; tn; r1; : : : ; rn/ D
nŠ

hn
Ift1<t2<���<tn�hg �˘

n
iD1˛e

�˛riIfri�0g:

Motivated by (B.13), consider the following transform H from .T1; : : : ; Tn; R1; : : : ; Rn/

to .U1; : : : ; Un; Y;W; V3; : : : ; Vn/:

Ui D Ti for i D 1; : : : ; n

Y D .1 � e�hCT1/R1 C .1 � e
�hCT2/R2 C : : :C .1 � e

�hCTn/Rn

W D R1 CR2 C : : :CRn

Vi D Ri for i D 3; : : : ; n

Then its inverse transform H�1 is given by:

R1 D
1

e�hCU2 � e�hCU1

�
Y � .1 � e�hCU2/W

�
C

1

e�hCU2 � e�hCU1

h
.1 � e�hCU2/

�
V3 C : : :C Vn

�
�
�
.1 � e�hCU3/V3 C : : :C .1 � e

�hCUn/Vn
�i

R2 D
1

e�hCU2 � e�hCU1

�
.1 � e�hCU1/W � Y

�
C

1

e�hCU2 � e�hCU1

h�
.1 � e�hCU3/V3 C : : :C .1 � e

�hCUn/Vn
�

� .1 � e�hCU1/
�
V3 C : : :C Vn

�i
and

Ti D Ui for i D 1; : : : ; n

Ri D Vi for i D 3; : : : ; n
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which can be written in a more compact form:

Ti D Ui for i D 1; : : : ; n

Ri D Vi for i D 3; : : : ; n

R1 D
1

e�hCU2 � e�hCU1

h
Y � .1 � e�hCU2/W C

nX
iD3

.e�hCUi � e�hCU2/Vi

i
R2 D

1

e�hCU2 � e�hCU1

h
� Y C .1 � e�hCU1/W C

nX
iD3

.e�hCU1 � e�hCUi /Vi

i

Recall R1 and R2 are Gamma.1; ˛/ random variables so they are both positive,

which implies, for given positive .Y;W /, that the Vi ’s and the ordered Ui ’s are

constrained in the following region �n.y; w/ for n � 3 and 0 � y � .1 � e�h/w:

�n.y; w/ ,
˚
.v3; : : : ; vn; u1; : : : ; un/ W 0 � u1 < u2 < � � � < un � h;

y � .1 � e�hCu2/w C

nX
iD3

.e�hCui � e�hCu2/vi � 0

and � y C .1 � e�hCu1/w C

nX
iD3

.e�hCu1 � e�hCui /vi � 0
	

that is

�n.y; w/ D
˚
.v3; : : : ; vn; u1; : : : ; un/ W 0 � u1 < u2 < � � � < un � h;

nX
iD3

.e�hCui � e�hCu2/vi � .1 � e
�hCu2/w � y

and

nX
iD3

.e�hCui � e�hCu1/vi � .1 � e
�hCu1/w � y

	
(B.14)
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Next compute the Jacobian matrix for H�1.

J D
@.T1; : : : ; Tn; R1; : : : ; Rn/

@.U1; : : : ; Un; Y;W; V3; : : : ; Vn/

D

0BBBBBBBBBBBBBBBBBBBBBBBB@

U1 U2 : : : Un Y W V3 : : : Vn

T1 1

T2 1

:::
: : :

Tn 1

R1 � � � � J1Y J1W � � �

R2 � � � � J2Y J2W � � �

R3 1

:::
: : :

Rn 1

1CCCCCCCCCCCCCCCCCCCCCCCCA

The empty elements in the matrix should be understood as 0, and the �’s

represent some non-trivial derivatives which do not contribute to the determinant

of J . One can show

JiY D
@Ri

@Y
D .�1/i�1

1

e�hCU2 � e�hCU1

and

J1W D
@R1

@W
D �

1 � e�hCU2

e�hCU2 � e�hCU1
; J2W D

@R2

@W
D

1 � e�hCU1

e�hCU2 � e�hCU1
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So the determinant of J can be computed:

jJ j D J1Y � J2W � J2Y � J1W

D
1 � e�hCU1

.e�hCU2 � e�hCU1/2
�

1 � e�hCU2

.e�hCU2 � e�hCU1/2

D
e�hCU2 � e�hCU1

.e�hCU2 � e�hCU1/2

D
1

e�hCU2 � e�hCU1

Therefore, the joint density of .U1; : : : ; Un; Y;W; V3; : : : ; Vn/ conditionally givenNh D

n is:

f.Y;W;U1;:::;Un;V3;:::;Vn/jNhDn.y; w; u1; : : : ; un; v3; vn/

D
nŠ

hn
If.v;u/2�n.y;w/g

� ˛ exp
n
�

˛

e�hCu2 � e�hCu1

�
y � .1 � e�hCu2/w C

nX
iD3

.e�hCui � e�hCu2/vi
�o

� ˛ exp
n
�

˛

e�hCu2 � e�hCu1

�
� y C .1 � e�hCu1/w C

nX
iD3

.e�hCu1 � e�hCui /vi
�o

� ˛n�2 exp
n
� ˛

nX
iD3

vi

o
:

Simplifying the expression,

f.Y;W;U;V/jNhDn.y; w; u1; : : : ; un; v3; vn/

D ˛2 exp
n
� ˛w �

˛

e�hCu2 � e�hCu1

nX
iD3

�
.e�hCui � e�hCu2/C .e�hCu1 � e�hCui /

�
vi

o
� ˛n�2 exp

n
� ˛

nX
iD3

vi

o
�
nŠ

hn
If.v;u/2�n.y;w/g

D
nŠ

hn
� ˛ne�˛w If.v;u/2�n.y;w/g (B.15)

127



The joint density of .Y;W /jNh D n is given by:

f.Y;W /jNhDn.y; w/ D
nŠ

hn
� ˛ne�˛w

“
�n.y;w/

dv du

In the case when Nh D 1 and Nh D 2, the joint density of .Y;W /jNh has a

slight different form. We derive them separately next.

� In the case Nh D 1, let T1 denote the unique jump time in Œ0; h�, and let

R1 D �ZT1 . Then the transform from .R1; T1/ to .Y;W / is given by:

W D R1; Y D .1 � e�hCT1/R1

with the inverse transform and the Jacobian J :

R1 D W; T1 D hC ln.1 �
Y

W
/; J D

1

Y �W
:

Using the fact that the joint density of .R1; T1/ is

f.R1;T1/.r1; t1/ D ˛ e
�˛r1

1

h
If0�t1�hg;

the joint density of .Y;W / is given by

f.Y;W /jNhD1.y; w/ D
˛

h
e�˛w

1

w � y
If0�hCln.1�y=w/�hg

D
˛

h
e�˛w

1

w � y
If0�y�.1�e�h/wg:

128



� Now, in the case Nh D 2, let T1 and T2 denote the ordered jump times in Œ0; h�

and let Ri D �ZTi for i D 1; 2. Using a change variables similar to that used

when Nh � 3, one can derive the conditional joint density of .Y;W;U1; U2/ in

the form:

f.Y;W;U1;U2/jNhD2.y; w; u1; u2/ D ˛
2 e�˛w

2

h2
If.u1;u2/2�2.y;w/g

where �2.y; w/ is defined to be the region where

�2.y; w/ D
˚
.u1; u2/ W 0 � u1 � h C ln.1 �

y

w
/

and h C ln.1 �
y

w
/ � u2 � h

	
Therefore, the joint density of .Y;W / is given by:

f.Y;W /jNhD2.y; w/ D
2˛2

h2
e�˛w ln

�
1 �

y

w

��1 �
hC ln

�
1 �

y

w
/
�

If0�y�.1�e�h/wg

Then the joint density of .Y;W / can be derived by unconditioning on Nh:

fY;W .y; w/ D

1X
nD0

f.Y;W /jNhDn.y; w/ �
e���n

nŠ

D e�˛w
˛ e��

h

1

w � y
If0�y�.1�e�h/wg (B.16)

C e�˛w
˛2 e��

h2
ln
�
1 �

y

w

��1 �
hC ln

�
1 �

y

w
/
�

If0�y�.1�e�h/wg

C e�˛we��
1X
nD3

�˛�
h

�n Z
�n.y;w/

dv du:
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Finally, we have the joint density of .S; Y;W /:

fY;W;S.y; w; s/ D
˛�

� .�/
s��1e�˛sfY;W .y; w/ (B.17)

The joint density of X1 under the Gamma BN-S model is given by the following

integral expression:

m�.x/ D

1Z
0

1Z
0

.1�e�h/wZ
0

fY;W;S.y; w; s/
p
2�
p
.1 � e�h/s C y

exp
n
�

�
x � � � ˇ..1 � e�h/s C y/ � �w

�2
2..1 � e�h/s C y/

o
dy dw ds (B.18)

To simplify the notations, let g.x; y;w; sI�/ and D denote the integrand and

the integration region over .y; w; s/ in (B.18) respectively. To study the derivatives

of m�.x/ with respect to �, it is equivalent to study the derivatives of g.x; y;w; sI�/

with respect to �. Introduce the following notations:

@1 D
@

@�
; @2 D

@

@ˇ
@3 D

@

@�
; @4 D

@

@�
and @5 D

@

@˛

Notations for higher order partial (cross) derivatives are defined similarly. For ex-

ample, @p22 D
@p2

@˛p2
and @35 D

@2

@�@˛
. The following proposition summarizes a useful

result.

Proposition B.2.1: All partial derivatives and cross derivatives of g.x; y;w; sI�/
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with respect to � of arbitrary order p can be written in the following form:

@p g.x; y;w; sI�/

@
p1
1 � � � @

p5
5

D

X
a

	1;a.h;�/ g.x; y; w; sI�/
xa1 ya2 wa3 sa4 .ln s/a5

..1 � e�h/s C y//a6
(B.19)

where the summation over a is finite and

� 	1;a.h;�/ is a generic function of the parameters h and � and the subscript

a D .a1; a2; a3; a4; a5; a6/;

� pi ’s are non-negative integers where p1 C p2 C : : :C p5 D p for p � 1.

� a1 to a6 are non-negative integers such that a1 and a6 are less than .p1Cp2C

p3/, a2 � .p1C2p2Cp3/, a3 � .p1Cp2C2p3/, a4 � .p1C2p2Cp3Cp5/

and a5 � p4.

Proof: To study partial derivatives of g.x; y;w; sI�/ with respect to � of

arbitrary order p, it is sufficient to compute the first order derivatives and derive

the general patterns from them. For partial derivatives with respect to �, ˇ and �,

@1 g.x; y;w; sI�/ D g.x; y;w; sI�/
x � � � ˇ..1 � e�h/s C y/ � �w

.1 � e�h/s C y

@2 g.x; y;w; sI�/ D g.x; y;w; sI�/
x � � � ˇ..1 � e�h/s C y/ � �w

.1 � e�h/s C y
� ..1 � e�h/s C y/

D g.x; y;w; sI�/
�
x � � � ˇ..1 � e�h/s C y/ � �w

�
@3 g.x; y;w; sI�/ D g.x; y;w; sI�/

x � � � ˇ..1 � e�h/s C y/ � �w

.1 � e�h/s C y
� w
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For partial derivatives with respect to .�; ˛/, first notice that:

@4 fY;W;S.y; w; s/ D ln˛ � fY;W;S.y; w; s/ �
 0.�/

� .�/
fY;W;S.y; w; s/

C ln s � fY;W;S.y; w; s/ � fY;W;S.y; w; s/C
˛

h
fY;W;S.y; w; s/

@5 fY;W;S.y; w; s/ D
�

˛
.�s/ � fY;W;S.y; w; s/ � w � fY;W;S.y; w; s/C

�

h
fY;W;S.y; w; s/

where  0.�/ is the diGamma function. Then,

@4 g.x; y;w; sI�/ D g.x; y;w; sI�/
�

ln s C ln˛ C
˛

h
�
 0.�/

� .�/
� 1

�
@5 g.x; y;w; sI�/ D g.x; y;w; sI�/

��
h
�
�

˛
s � w

�
From these computations, it is not difficult to see that higher order derivatives

have exact expressions obtained by successively differentiating g. For example,

@225 g.x; y;w; sI�/

D @5

�
g.x; y;w; sI�/

�
x � � � ˇ..1 � e�h/s C y/ � �w

�2
� g.x; y;w; sI�/ ..1 � e�h/s C y/

�
D g.x; y;w; sI�/

��
h
�
�

˛
s � w

�
�
�
x � � � ˇ..1 � e�h/s C y/ � �w

�2
� g.x; y;w; sI�/

��
h
�
�

˛
s � w

�
�
�
.1 � e�h/s C y

�
:

After expanding the square and cross multipling all terms, the derivative above is

in the form of (B.19) with a3 D a6 D 0, a1 and a4 ranging from 1 to 2, a2 and a5

ranging from 1 to 3. Further notice that the p-th order derivative of the Gamma
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function

dp

d�p
� .�/ D

Z 1
0

t��1e�t.ln t /p dt

is well defined for � > 0. Therefore, we can conclude that derivatives of g.x; y;w; sI�/

of any order can be written in the form of (B.19). �

A direct consequence of Proposition B.2.1 is that one can obtain upper bounds

for derivatives of g.x; y;w; sI�/. For example,

� j @1 g.x; y;w; sI�/j �
g.x; y;w; sI�/

.1 � e�h/

�
jxj C j�j C j�jw

s
Cjˇj.1�e�h/

�

� j @2 g.x; y;w; sI�/j � g.x; y;w; sI�/
�
jxjCj�jCjˇj..1�e�h/sCy/Cj�jw

�

� j @3 g.x; y;w; sI�/j �
g.x; y;w; sI�/

.1 � e�h/

h.jxj C j�j C j�jw/w
s

Cjˇj.1�e�h/w
i

� j @4 g.x; y;w; sI�/j � g.x; y;w; sI�/
�ˇ̌

ln˛
ˇ̌
C
 0.�/

� .�/
C1C

˛

h
Cj ln sj

�

� j @5 g.x; y;w; sI�/j � g.x; y;w; sI�/
��
˛
sCwC

�

h

�

The next proposition summarizes a general result.
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Proposition B.2.2: All partial and cross derivatives of g.x; y;w; sI�/ with respect

to � can be bounded by functions in the following form:

ˇ̌̌@p g.x; y;w; sI�/
@
p1
1 � � � @

p5
5

ˇ̌̌
�

X
l;q;r

	2;i.h;�/ jxj
l sq wr g.x; y;w; sI�/ (B.20)

where i D .l; q; r/ is a vector of integers such that 0 � l � p1 C p2 C p3, �.p1 C

p2 C p3/ � q � .p2 C p4 C p5/ and 0 � r � p1 C 2.p2 C p3/. Here 	2;i.h;�/ is

again a generic function of h and � and is continuous over � for � 2 Ba.

Proof: From the derivation of Proposition B.2.1, one can find the following

patterns:

� Differentiating �1(�), �2(ˇ) and �3(�) increases the order of jxj and 1
.1�e�h/sCy

by 1 respectively. But since the term 1
.1�e�h/sCy

is bounded above by 1
.1�e�h/s

,

we will focus on the order change of 1
s

only.

� Differentiating �2(ˇ) increases the order of s and y by 2.

� Differentiating �3(�) increases the order of w by 2.

� Differentiating �4(�) increases the order of ln s by 1. But as j ln sj is bounded

by 1
s

Ifs�1gCs Ifs>1g, we can treat the effect of this differentiation as increasing

the order of s and 1
s

by 1 respectively.

� Differentiating �5(˛) increases the order of s by 1.
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Now, by (B.19),

ˇ̌̌@p g.x; y;w; sI�/
@
p1
1 � � � @

p5
5

ˇ̌̌
�

X
a

	1;a.h;�/ g.x; y; w; sI�/
jxja1 sa2 j ln sja3 ya4 wa5

..1 � e�h/s C y//a6

�

X
a

	1;a.h;�/

.1 � e�h/a6
g.x; y;w; sI�/

jxja1 sa2 j ln sja3 ya4 wa5

sa6

�

X
a

	1;a.h;�/

.1 � e�h/a6�a4
g.x; y;w; sI�/

�
jxja1 sa2�a6 j ln sja3 wa4Ca5

�
�

	1;a.h;�/ a3Š

.1 � e�h/a6�a4
g.x; y;w; sI�/

�

X
a

�
jxja1 sa2Ca3�a6 wa4Ca5 C jxja1 sa2�a3�a6 wa4Ca5

�

The third inequality holds since y � .1 � e�h/w and .s C 1
s
/q � qŠ.sq C 1

sq
/.

Therefore, combining the patterns described above for the successive differentiations

and converting a to index i D .l; q; r/, one finds (B.20) holds with the given range

on l , q and r . �

Remark In fact, the upper bounds of the ranges of the indices are not critical

as all positive moments of S and W are finite. However, the minimum value which q

can take is important, because the negative q-th moment of a Gamma.�; ˛/ random

variable is finite only when � > q.

Next, we will use the following lemma to find the derivatives of m�.x/ with

respect to �. This lemma will be used throughout the rest of this section to justify

the validity of interchanging integration and differentiation.

Lemma B.2.3: (Billingsley 1995, Theorem 16.8) Let � be an open subset of

R and S be a measure space. Suppose that a function f W � � S ! R satisfies the
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following conditions:

(i) f .#; x/ is a measurable function of # and x jointly, and is integrable over x,

for almost all # 2 � held fixed.

(ii) For almost all x 2 S, f .#; x/ is an absolutely continuous function of # .

(iii) @f=@# is “locally integrable”, that is, for all compact intervals Œa; b� 2 �:

Z b

a

Z
S

ˇ̌̌ @
@#
f .#; x/

ˇ̌̌
dx d# <1 (B.21)

Then
R
S f .#; x/ dx is an absolutely continuous function of # , and for almost every

# 2 �, its derivative exists and is given by

@

@#

Z
S
f .#; x/ dx D

Z
S

@

@#
f .#; x/ dx

In regard to the partial derivatives of m�.x/ with respect to �, the following

result holds.

Proposition B.2.4: If � > 7=2, then the partial (cross) derivatives for m�.x/ of

order up to 3 can be computed by interchanging the differentiation and integration

in expression (B.18), i.e.

@p

@
p1
1 � � � @

p5
5

m�.x/ D

•
D

@p

@
p1
1 � � � @

p5
5

g.x; y;w; sI�/ dy dw ds

Proof: Observe that:
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� g.x; y;w; sI�/ is measurable in both .y; w; s/ and �, and it is integrable over

.y; w; s/ with � held fixed when � > 0.

� From Proposition B.2.2,
ˇ̌̌ @p

@
p1
1 � � � @

p5
5

g.x; y;w; sI�/
ˇ̌̌

is bounded over � for

finite .x; y;w; s/ when � 2 Ba, so g.x; y;w; sI�/ is an absolutely continuous

function of �.

� Recall Ba is the 5-dimensional sphere centered at �s with radius a. Let
R
B;a

denote the integration of � D .�; ˇ; �; �; ˛/ in the sphere Ba. By (B.20),

Z
Ba

•
D

ˇ̌̌ @p

@
p1
1 � � � @

p5
5

g.x; y;w; sI�/
ˇ̌̌
dy dw ds d�

�

Z
Ba

•
D

X
l;q;r

	2;i.h;�/ jxj
l sq wr g.x; y;w; sI�/ dy dw ds d� .4/

Recall the exponential term in g.x; y;w; sI�/ (B.18) is bounded by 1, and

1p
.1 � e�h/s C y

�
1p

.1 � e�h/s
:

4 <
X
l;q;r

Z
Ba

	2;i.h;�/ jxj
l

•
D

sq wr
fY;W;S.y; w; s/p
.1 � e�h/s C y/

dy dw ds d�

<
X
l;q;r

Z
Ba

	2;i.h;�/ jxj
l

p
1 � e�h

•
D

sq�1=2wrfY;W;S.y; w; s/ dy dw ds d�

D

X
l;q;r

jxjl
p
1 � e�h

Z
Ba

	2;i.h;�/EŒS
q�1=2W r � d�

<1

Since S � Gamma.�; ˛/ with � > 7=2 and q � �3 by Proposition B.2.2,

EŒSq�1=2� is finite. Further, W is a Compound Poisson random variable with
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all positive moments EŒW r � finite, therefore the last inequality holds.

According to Lemma (B.2.3), we can conclude that

@p

@
p1
1 � � � @

p5
5

m�.x/ D

•
D

@p

@
p1
1 � � � @

p5
5

g.x; y;w; sI�/ dy dw ds

for p � 3 when � > 7=2. �

The result in Proposition B.2.4 can be extended to study the derivatives of

m��.x/.

Proposition B.2.5: If � > 7=2, then the partial (cross) derivatives for m��.x/ of

order up to 3 can be computed by interchanging the differentiation and integration,

i.e.

@p

@
p1
1 � � � @

p5
5

m��.x/ D

Z
R

1
p
2�
e�

.x�t/2

2 �
@p

@
p1
1 � � � @

p5
5

m�.t/ dt

Proof: It is easy to see that function e�
.x�t/2

2 m�.t/ is a measurable function for

both t and � and integrable over t when � held fixed. Using the proof of Proposition

B.2.4, ˇ̌̌ @p

@
p1
1 � � � @

p5
5

e�
.x�t/2

2 m�.t/
ˇ̌̌
�

ˇ̌̌ @p

@
p1
1 � � � @

p5
5

m�.t/
ˇ̌̌

�

•
D

ˇ̌̌ @p

@
p1
1 � � � @

p5
5

g.t; y; w; sI�/
ˇ̌̌
dy dw ds

<
X
l;q;r

	2;i.h;�/ jt j
l

p
1 � e�h

•
D

sq�1=2wrfY;W;S.y; w; s/ dy dw ds

D

X
l;q;r

jt jl
p
1 � e�h

	2;i.h;�/EŒS
q�1=2W r � < 1

One concludes that e�
.x�t/2

2 m�.t/ is absolutely continuous with respect to � for all
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finite t. To verify condition (B.21), notice

Z
Ba

Z
R

ˇ̌̌@p e� .x�t/22 m�.t/

@
p1
1 � � � @

p5
5

ˇ̌̌
dt d�

<

Z
Ba

Z
R
e�

.x�t/2

2

X
l;q;r

jt jl
p
1 � e�h

	2;i.h;�/EŒS
q�1=2W r � dt d�

D

X
l;q;r

Z
R
e�

.x�t/2

2
jt jl

p
1 � e�h

dt

Z
Ba

	2;i.h;�/EŒS
q�1=2W r � d�

<1

for all finite x. Therefore, the conditions in Lemma B.2.3 are satisfied and the result

in the Proposition holds. �.

Knowing how to compute the derivatives of m��.x/, we turn to examine the

Taylor expansion in Lemma 3.2.3. The integrand of the disparity, i.e., G.ın/m��.x/,

is a measurable function of � and x jointly, and it is integrable over x when � held

fixed. Therefore, to study the interchange of differentiation and integration, one

needs to verify the following results when � is in the neighborhood of �s:

(I1). The density m��.x/ is absolutely continuous with respect to �i , .�i ; �j / and

.�i ; �j ; �k/ for all i , j and k ranging from 1 to 5.

(I2). Condition (B.21) holds with f .#; x/ replaced by functions of the following

forms

� @im
�
�.x/, @ijm

�
�.x/, @ijkm

�
�.x/

� @ijm
�
�.x/ � @km

�
�.x/

� @i lnm��.x/ � @j lnm��.x/ �m
�
�.x/
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� @i lnm��.x/ � @j lnm��.x/ � @k lnm��.x/ �m
�
�.x/

� @ijm
�
�.x/ � @k lnm��.x/ �m

�
�.x/

Let us motivate the idea of the derivation by looking at the expression (3.11)

in Lemma 3.2.3:

@ij�.f
�; m��s/ D

Z
R
e
�
f �

m�
�s
C1
�
f �.x/2

m�
�s
.x/2

� @i lnm��s.x/ � @j lnm��s.x/ �m
�
�s.x/ dx

C

Z
R
e
�
f �

m�
�s
C1
�
f �.x/

m�
�s
.x/
� @ijm

�
�s.x/ dx

C

Z
R
.e
�
f �

m�
�s
C1
� 2/ @ijm

�
�s.x/ dx

In order to derive (3.11) by interchanging the differentiation and integration, one

needs to show (I1) and (I2) hold for i; j ranging from 1 to 5:

� For (I1) to hold, m��.x/ needs to be absolutely continuous with respect to

�i and .�i ; �j /. One can show j @im
�
�.x/j, j @jm

�
�.x/j and j @ijm

�

�s
.x/j are

bounded by some continuous functions of �, i.e.

j @im
�
�.x/j � Ki.�/; j @jm

�
�.x/j � Kj .�/ and j @ijm

�
�.x/j � Kij .�/:

� For (I2) to hold, only the integrals

Z
Ba

Z
R

ˇ̌
@i lnm�

�s
.x/ � @j lnm�

�s
.x/ �m�

�s
.x/
ˇ̌
dx d�i d�j

and Z
Ba

Z
R

ˇ̌
@ijm

�

�s
.x/
ˇ̌
dx d�i d�j
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are required to be finite. If one can establish that,

max
�
j @i lnm��.x/j; j @j lnm��.x/j

�
� C.1C jxjl/

and

j @ij lnm��.x/j � Cij .1C jxj
lij /;

for some large constants C and Cij and positive integers l and lij , and if

further E�ŒjX jl �, E�ŒjX j2l � and E�ŒjX jlij � are finite and continuous functions

of .�i ; �j / in the neighborhood of �s, then

Z
Ba

Z
R

ˇ̌̌
@ij lnm��.x/

ˇ̌̌
dx d�i d�j D

Z
Ba

Z
R

ˇ̌̌
@ijm

�
�.x/

ˇ̌̌
�m��.x/ dx d�i d�j

�

Z
Ba

Z
Cij .1C jxj

lij / �m��.x/ dx d�i d�j

D

Z
Ba

Cij
�
1CE�ŒjX jlij �

�
d�i d�j

<1

and Z
Ba

Z
R

ˇ̌̌
@i lnm��.x/ � @j lnm��.x/

ˇ̌̌
�m��.x/ dx d�i d�j

�

Z
Ba

Z
C 2 .1C jxjl/2 �m��.x/ dx d�i d�j

D

Z
Ba

C 2
�
1C 2E�ŒjX jl �CE�ŒjX j2l �

�
d�i d�j

<1

Here, E�Œ�� refers to expectation taken with respect to m��.x/. Then the local

integrability condition (B.21) over .�i ; �j / can be established and Lemma B.2.3
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applies. �

There are two key components in the derivation. The first one is to show the

boundedness of derivatives of m��.x/, the other one is to analyze the tail behavior

of @i lnm��.x/ for large jxj. Since we use the Gaussian kernel, the following result

shows the equivalence between m��.x/ and m�.x/ in verifying these two components.

Proposition B.2.6: Considering the model density m�.x/ and the smoothed den-

sity m��.x/ in the �-OU BN-S model, if � > 7=2 and � is in a compact subset of

the sample space, then the following results hold.

(e1). If j @im�.x/j is integrable with respect to x, so is j @im
�
�.x/j.

(e2). If j @im�.x/j is bounded by a continuous function Ki.�/, then j @im
�
�.x/j is

also bounded by Ki.�/.

(e3). If further j @i lnm�.x/j � C.1C jxj
l/, then j @i lnm��.x/j � C

�.1C jxjl/.

(e4). Let EmŒ�� denotes the expectation taken with respect to m�.x/. Then for some

positive integer l ,

Em
�
jX jl

�
< 1 implies E�

�
jX jl

�
< 1

Remark All the derivatives shown in the above proposition can be replaced

by higher order derivatives up to order three. The first order derivative @i is used

for notation simplicity.
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Proof: By Proposition B.2.5, it is valid to interchange the integration and

differentiation when finding (higher order) derivatives for m��.x/. We will use this

result in this proof whenever needed without explicitly mentioning it.

For .e1/, by the change of variables x � t D u and t D v,

ˇ̌̌
@i

Z
R
m��.x/ dx

ˇ̌̌
D

ˇ̌̌ Z
R

Z
R

1
p
2�

e�.x�t/
2=2 @im�.t/ dt dx

ˇ̌̌
�

Z
R

Z
R

1
p
2�

e�u
2=2
ˇ̌
@im�.v/

ˇ̌
dv du < 1

For .e2/, assume
ˇ̌
@im�.t/

ˇ̌
� Ki.�/. Then

ˇ̌
@i m

�
�.x/

ˇ̌
�

Z
R

e�.x�t/
2=2

p
2�

ˇ̌
@i m�.t/

ˇ̌
dt

D

Z
R

e�z
2=2

p
2�

ˇ̌
@i m�.z C x/

ˇ̌
dz

�

Z
R

e�z
2=2

p
2�

Ki.�/ dz

D Ki.�/

For .e3/, notice that j @i lnm�.x/j � C.1Cjxj
l/ is equivalent to j @im�.x/j �

C.1C jxjl/m�.x/, therefore

@i m
�
�.x/ D

Z
R

e�.x�t/
2=2

p
2�

@im�.t/ dt

�

Z
R

e�.x�t/
2=2

p
2�

C.1C jt jl/m�.t/ dt

D C m��.t/ C C

Z
R

e�.x�t/
2=2

p
2�

jt jl m�.t/ dt (B.22)
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Consider the case where x � 1. From the result to be shown (Proposition B.2.10),

EŒjX jp� is a finite continuous function of � for any positive integer l . Let M D

sup�2Ba
EŒjX j10� and � to be an arbitrary small positive constant, i.e., 0 < �� 1.

It is easy to see, when x � 1, e��x xl < 1 for any l .

Z
t�Mx

e�.x�t/
2=2

p
2�

jt jl m�.t/ dt D

Z
t�Mx

e�.x�t/
2=2C�t

p
2�

.e��t jt jl/m�.t/ dt

<

Z
t�Mx

e�..xC�/�t/
2=2C�xC�2=2

p
2�

m�.t/ dt

� e�.M�1/
2x2=2C�Mx

�

Z
t�Mx

1
p
2�

m�.t/ dt

On the other hand,

Z
R

e�.x�t/
2=2

p
2�

m�.t/ dt >

Z
t�3x

e�.x�t/
2=2

p
2�

m�.t/ dt

> e�4x
2=2
�

Z
t�3x

1
p
2�

m�.t/ dt

> e�.M�1/
2x2=2C�Mx

�

Z
t�Mx

1
p
2�

m�.t/ dt

for large x and M . Therefore, the second term in (B.22) satisfies

Z
R

e�.x�t/
2=2

p
2�

jt jl m�.t/ dt D

Z
t�Mx

e�.x�t/
2=2

p
2�

jt jl m�.t/ dt C

Z
t�Mx

e�.x�t/
2=2

p
2�

jt jl m�.t/ dt

< M lxl
Z
t�Mx

e�.x�t/
2=2

p
2�

m�.t/ dt C

Z
R

e�.x�t/
2=2

p
2�

m�.t/ dt

<
�
M lxl C 1

�
�

Z
R

e�.x�t/
2=2

p
2�

m�.t/ dt

D
�
M lxl C 1

�
m��.x/

Plug this upper bound in (B.22) and .e3/ follows. The case where x � �1 can be
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proved similarly.

For .e4/,

E�ŒjX jl � D

Z
R
jxjl m��.x/ dx D

Z
R
jxjl

Z
R

1
p
2�

e�.x�t/
2=2m�.t/ dt dx

Use the following substitution,

x � t D u and t D v;

E�ŒjX jl � D

Z
R

Z
R

1
p
2�

e�u
2=2
jv � ujl m�.v/ dv du

�

Z
R

Z
R

1
p
2�

e�.x�t/
2=2 lŠ.jvjl C jujl/m�.v/ dv du

D

Z
R

1
p
2�
lŠ jujl e�u

2=2 du C lŠ

Z
R
jvjl m�.v/ dv du

<1

�

Proposition B.2.6 implies, to study the derivation of the Taylor expansion, we

need only to focus on m�.x/. As the absolute continuity of m�.x/ with respect to

� has been shown in the proof of Proposition B.2.5, it is left to prove

@p

@
p1
1 � � � @

p5
5

m�.x/ � C.1C jxjl/m�.x/ (B.23)

for large jxj. Recall that the derivatives to be considered are those with respect to

the parameter � D .�; ˇ; �; �; ˛/ and are of order up to 3. Before proving (B.23),
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let us first present some preliminary results.

Lemma B.2.7: For sufficiently large jxj and fixed .y; w/,

Z
R
sqg.x; y;w; sI�/ ds (B.24)

� 	3;q.h;�/ .1C jwj
q/

Z
R
g.x; y;w; sI�/ ds

and Z
R
sqg.x; y;w; sI�/ ds � M q

jxjq
Z

R
g.x; y;w; sI�/ ds (B.25)

where q is some positive integer and 	3;q.h;�/ is a continuous function of �.

Proof Consider the integral
”

D sqg.x; y;w; sI�/ dy dw ds and the reparametriza-

tion when x � 1:

� D x�; y D xt1; w D xt2 and s D xt3:

Let Ds denote the region f0 � t1 � .1 � e
�h/t2; 0 � t2 and 0 � t3g. One has

•
D

sq g.x; y;w; sI�/ dy dw ds

D

•
Ds

xqC3 t
q
3 g.x; t1; t2; t3I�/ dt1 dt2 dt3

D xqC�C3=2
•

Ds

t
q
3

fY;W .t1; t2/
p
2�
p
.1 � e�h/t3 C t1

˛�

� .�/
t��13 e�˛ x t3

exp
n
� x

�
1 � � � ˇ..1 � e�h/t3 C t1/ � �t2

�2
2..1 � e�h/t3 C t1/

o
dt1 dt2 dt3:

146



Isolate the integration with respect to t3,

•
D

sq g.x; y;w; sI�/ dy dw ds

D xqC�C3=2
1Z
0

.1�e�h/t2Z
0

˛�
p
2� � .�/

fY;W .t1; t2/

1Z
0

t
qC��1
3p

.1 � e�h/t3 C t1
exp

n
� x h.t1; t2; t3/

o
dt3 dt1 dt2

where

h.t1; t2; t3/ D

�
1 � � � ˇ..1 � e�h/t3 C t1/ � �t2

�2
2..1 � e�h/t3 C t1/

C ˛t3:

According to the Laplace method (cf [27], Section 2.4), for large x and fixed .t1; t2/,

the main contribution of the integral

I1.x/ D

1Z
0

t
qC��1
3p

.1 � e�h/t3 C t1
exp

n
� x h.t1; t2; t3/

o
dt3:

comes from the integration in the neighborhood of the locally minimizing values of

h.t1; t2; t3/ (if any) over t3. To find the critical numbers, one solves @h=@t3 D 0. It

turns out that this is a quadratic equation with one root negative and the other root

given by

t�3 D
1

.eh � 1/2.eh.2˛ C ˇ2/ � ˇ2/
�

�
� eh.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/ t1Cq

e2h.eh � 1/3.eh.2˛ C ˇ2/ � ˇ2/.� � 1C �t2/2
�

D �
eh

eh � 1
t1 C

ehp
.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/

ˇ̌
� 1C � C � t2

ˇ̌
(B.26)
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Evaluating h00.t1; t2; t3/ at t�3 , one gets

h00.t1; t2; t
�
3 / D

e�2h
p
.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/3

j � 1C � C � t2j
> 0

We know t�3 is in fact a global minimum of h.t1; t2; t3/ which in turn maximizes

e�xh.t1;t2;t3/. If t�3 > 0, by the Laplace method,

I1.x/ � e
�xh.t1;t2;t

�
3 /

.t�3 /
qC��1p

.1 � e�h/t�3 C t1

s
2�

xh00.t1; t2; t
�
3 /

as x !1. It is clear that we can isolate the integral over s for

”
D g.x; y;w; sI�/ dy dw ds

and perform the same reparameterization to get

•
D

g..x; y;w; sI�/ dy dw ds

D x�C3=2
1Z
0

.1�e�h/t2Z
0

˛�
p
2� � .�/

fY;W .t1; t2/ I0.x/ dt1 dt2

where

I0.x/ D

1Z
0

t��13p
.1 � e�h/t3 C t1

exp
n
� x h.t1; t2; t3/

o
dt3:

Applying the Laplace method:

I0.x/ � e
�xh.t1;t2;t

�
3 /

.t�3 /
��1p

.1 � e�h/t�3 C t1

s
2�

xh00.t1; t2; t
�
3 /
:
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Therefore,

I1.x/ � I0.x/ .t
�
3 /
q

D I0.x/

�
�

eh

eh � 1
t1 C

eh
ˇ̌
� 1C � C � t2

ˇ̌p
.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/

�q
� qŠ I0.x/

�� eh

eh � 1
t1

�q
C

� eh
ˇ̌
� 1C � C � t2

ˇ̌p
.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/

�q�
� qŠ I0.x/

�
t
q
2 C

� eh
ˇ̌
� 1C � C � t2

ˇ̌p
.eh � 1/.eh.2˛ C ˇ2/ � ˇ2/

�q�
� I0.x/ 	3;q.h;�/ .1C t

q
2 /

The second inequality holds because t1 � .1�e
�h/t2. If we reparameterize .t1; t2; t3/

back to .y; w; s/, we see that (B.24) holds.

If t�3 < 0, then there is no minimizer of h.t1; t2; t3/ since t3 is defined on

Œ0;1/. This implies for the corresponding .y; w/ value, g.x; y;w; sI�/ decreases

exponentially fast over s when s � 1. Using the similar tail estimate approach in

the proof of Proposition B.2.6, one can show

Z
R
g.x; y;w; sI�/ ds >

Z
s>Mx

sq g.x; y;w; sI�/ ds

for x � 1 and large M , so that

Z
R
sqg.x; y;w; sI�/ ds D

Z
s�Mx

sqg.x; y;w; sI�/ ds C

Z
s>Mx

sqg.x; y;w; sI�/ ds

< .M qxq C 1/

Z
R
g.x; y;w; sI�/ ds :

Therefore the bound (B.25) holds.
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When x � �1 and x ! �1, one can consider the following reparameteriza-

tion

� D �x�; y D �xt1; w D �xt2 and s D �xt3:

with the corresponding

h.t1; t2; t3/ D

�
1C � C ˇ..1 � e�h/t3 C t1/C �t2

�2
2..1 � e�h/t3 C t1/

� ˛t3:

By the same arguments above, one can show the bounds (B.24) and (B.25) are valid.

�

Next we consider the finiteness of the exponential moments of Y , W , S and X .

This result will come handy later when estimating the tail mass of some integrals.

We first state a known result related to moments of functions of Lévy process.

Lemma B.2.8: (Sato 1999, Theorem 25.3) Let Zt be a Lévy process with Lévy

measure w.x/. If h.x/ is a submultiplicative, locally bounded, measurable function

on R, then EŒh.Z1/� is finite if and only if

Z
jxj>1

h.x/w.x/ dx <1:

Proposition B.2.9: For random variables Y , W and S defined in (B.11), one has

(m1). For 8c1 < ˛ EŒe
c1W � <1 and EŒe

c1

1�e�h
Y
� <1.

(m2). EŒec2.YCW /� <1 if c2 <
˛

2�e�h
.
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(m3). EŒec3S � <1 for c3 < ˛.

Proof: Since W is a Compound Poisson random variable with Lévy measure

w.x/ D �˛e�˛x, by Lemma B.2.8, EŒec1W � < 1 for 8c1 < ˛. From the definition

(B.11), Y � .1 � e�h/W a.s., thus EŒe
c1

1�e�h
Y
� � EŒec1W � < 1. Further, if c2 is

chosen in such a way that c2.2 � e
�h/ < ˛, then EŒec2.YCW /� < 1 holds. Finally,

S � Gamma.�; ˛/ implies EŒec3S � <1 for 8c3 < ˛.

�

Proposition B.2.10: There exists a positive number b such that EmŒe
bjX j� < 1.

As a consequence, all polynomial moments of X are finite.

Proof: Recall if � � N. Q�; Q�2/, then

EŒeb � � D Q� exp
�
b Q� C

b2

2
Q�2
�

and EŒe�b � � D Q� exp
�
� b Q� C

b2

2
Q�2
�

Since

EmŒe
bjX j� < EmŒe

bX � C EmŒe
�bX �:

for b > 0, consider those two terms separately,

EmŒe
bX � D E

h
EŒebX jY;W; S�

i
D E

h
exp

�
b�C bˇ..1 � e�h/S C Y /C b�W

�
� exp

�b2
2
..1 � e�h/S C Y /

�
� ..1 � e�h/S C Y /

i
:

It is clear that we need only to consider the finiteness of EmŒe
bX � when ˇ > 0.
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Grouping those terms which increase as .Y;W; S/ increases, one finds to guarantee

EmŒe
bX � <1, it is sufficient, by independence of S,Y, to show

E
�

exp..1 � e�h/.b
2

2
C bˇ/ S/

�
<1

and

E
�

exp..b
2

2
C bˇ/ Y /

�
� E

�
exp..1 � e�h/.b

2

2
C bˇ/W /

�
<1:

The term b�W is dropped because � < 0. By Proposition (B.2.9), the expectations

above are finite if the following inequality holds,

.1 � e�h/.
b2

2
C bˇ/ < ˛: (B.27)

Solving this quadratic inequality with respect to b, we find the roots are given by

b� D �ˇ ˙

r
ˇ2 C

2˛

1 � e�h
:

Since one of the roots is positive, then

0 < b � �ˇ C

r
ˇ2 C

2˛

1 � e�h
:

gives the solution to (B.27). One finds there must exist some positive b where

EmŒe
bX � <1.

Now we turn to examine EmŒe
�bX �. By the similar arguments above, to guar-
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antee EmŒe
�bX � <1, consider

EmŒe
�bX � D E

h
EŒe�bX jY;W; S�

i
D E

h
exp

�
� b� � bˇ..1 � e�h/S C Y / � b�W

�
� exp

�b2
2
..1 � e�h/S C Y /

�
� ..1 � e�h/S C Y /

i
:

To make the expectation finite, one ends up solving the following two inequalities:

� .1 � e�h/ �
�b2
2
� bˇ

�
< ˛

� .1 � e�h/ �
�b2
2
� bˇ

�
� b� < ˛

for ˇ < 0. It is not difficult to see both inequalities contain positive solutions,

therefore EmŒe
�bX � <1 for some b > 0. And we can conclude that

EmŒe
bjX j� < EmŒe

bX � C EmŒe
�bX � <1 for some b > 0:

�

Remark Since S is a Gamma r.v. and W is a compound Poisson r.v. with

jump sizes following the exponential distribution, the exponential moments of S and

W , if exist, are continuous functions of the parameters. Therefore, the polynomial

moments of jX j are bounded by finite continuous functions of �.

The last result gives an upper bound for the integral

•
D

wrg.x; y;w; sI�/ dy dw ds
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Lemma B.2.11: The following inequality holds for sufficiently large jxj

•
D

wr g.x; y;w; sI�/ dy dw ds < (B.28)

	4;r.h;�/ jxj
r

•
D

g.x; y;w; sI�/ dy dw ds

Proof: Recall the definition of g.x; y;w; sI�/ from (B.18):

g.x; y;w; sI�/ D
fY;W;S.y; w; s/

p
2�
p
.1 � e�h/s C y

exp
n
�

�
x � � � ˇ..1 � e�h/s C y/ � �w

�2
2..1 � e�h/s C y/

o

When x � 1, for a given large positive constant M > 0, consider the decom-

position of the integral on the left-hand side of (B.28),

•
D

wr g.x; y;w; sI�/ dy dw ds

D

� 1Z
0

M
j�j
xZ

0

.1�e�h/wZ
0

C

1Z
0

1Z
M
j�j
x

.1�e�h/wZ
0

�
wr g.x; y;w; sI�/ dy dw ds

�

1Z
0

M
j�j
xZ

0

.1�e�h/wZ
0

M r

j�jr
xr g.x; y;w; sI�/ dy dw ds

C

1Z
0

1Z
M
j�j
x

.1�e�h/wZ
0

wr g.x; y;w; sI�/ dy dw ds

�
M r

j�jr
xr
•

D

g.x; y;w; sI�/ dy dw ds C

•
Dx

wr g.x; y;w; sI�/ dy dw ds
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where

Dx ,
˚
0 � y � .1 � e�h/w;

M

j�j
x < w and 0 � s

	
(B.29)

To prove (B.28), it suffices to show

•
Dx

wr g.x; y;w; sI�/ dy dw ds <

•
D

g.x; y;w; sI�/ dy dw ds (B.30)

for sufficiently large x. Since S � Gamma.�; ˛/ with � > 7
2
,

•
Dx

fY;W;Sp
.1 � e�h/s C y

<

•
Dx

fY;W;Sp
.1 � e�h/s

< 1

Therefore, by Cauchy-Schwartz inequality,

•
Dx

wr g.x; y;w; sI�/ dy dw ds

�

•
Dx

s
fY;W;S.y; w; s/

p
2�
p
.1 � e�h/s C y

�

wr

s
fY;W;S.y; w; s/

p
2�
p
.1 � e�h/s C y

dy dw ds

�

�•
Dx

fY;W;S.y; w; s/
p
2�
p
.1 � e�h/s C y

dy dw ds

�1=2
��•

Dx

w2r
fY;W;S.y; w; s/

p
2�
p
.1 � e�h/s C y

dy dw ds

�1=2
D R

1=2
1 � R

1=2
2

To get the upper bound of
”

Dx
wr g.x; y;w; sI�/ dy dw ds , let us first con-
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sider R1. Choose c1 < ˛, it is not difficult to see

R1 �

•
Dx

fY;W;S.y; w; s/
p
2�
p
.1 � e�h/s

dy dw ds

D
1p

2�.1 � e�h/

•
Dx

1
p
s
fY;W;S.y; w; s/ dy dw ds

D
EŒS�1=2�p
2�.1 � e�h/

P
�
W >

M

j�j
x
�

�
EŒS�1=2� EŒec1W �p

2�.1 � e�h/
exp

�
� c1

M

j�j
x
�

The last line holds since the upper bound of P
�
W > M

j�j
x
�

can be derived from

the result .m3/ of Proposition B.2.9 and the Markov inequality.Next we consider

R2. Choose the same c1 as in R1 and another constant � such that 0 < �� ˛
2
,

R2 D

•
Dx

e��w w2r
e�wfY;W;S.y; w; s/
p
2�
p
.1 � e�h/s C y

dy dw ds

�
1p

2�.1 � e�h/

•
Dx

1
p
s
e�w fY;W;S.y; w; s/ dy dw ds

D
E
�
S�1=2

�p
2�.1 � e�h/

�E
�
e�W IfW�M

j�j
xg

�
�

E
�
S�1=2

�p
2�.1 � e�h/

�

q
E
�
e2�W

�q
E
�
IfW�M

j�j
xg

�
<

E
�
S�1=2

�p
2�.1 � e�h/

�

p
EŒe2�W � EŒec1W � exp

�
�
c1M

2j�j
x
�

The second line holds because e��ww2r < 1 for large w. Therefore,

R
1=2
2 �

�
E
�
S�1=2

�p
EŒe2�W � EŒec1W �p

2�.1 � e�h/

�1=2
exp

�
�
c1M

4j�j
x
�

(B.31)
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Combining the bounds on R1 and R2,

•
Dx

wr g.x; y;w; sI�/ dy dw ds (B.32)

<
E
�
S�1=2

�
EŒe2�W �1=4p

2�.1 � e�h/

�
EŒec1W �

�3=4
� exp

�
� c1

3M

4j�j
x
�

Next we consider finding the lower bound of the
”

D g.x; y;w; sI�/ dy dw ds .

Define a subset QDx of D by

QDx W

n
0 < w � Uw where Uw is the median of the distribution of W

and s >
ı

1 � e�h
x for ı > 0

o

Since Y � .1 � e�h/W a.s. by there definitions, QDx is bounded on .y; w/ and

such that

P
�
.Y;W / 2 QDx

�
D

1
2
.

Notice that x � Uw , one has

�
x � � � ˇ

�
.1 � e�h/s C y

�
� �w

�2
2..1 � e�h/s C y/

�

�
x � ˇ.1 � e�h/s

�2
.1 � e�h/s

C

�
� � ˇy � �w

�2
.1 � e�h/s

:

Maximize the first term on the righ-hand side with respect to s gives

3ˇ.1 � e�h/s D x
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Then it is clear that when .y; w; s/ 2 QDx

�
x � ˇ.1 � e�h/s

�2
.1 � e�h/s

�

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.1 � ˇı/2

ı
x

4ˇ

3
x

Therefore �
x � � � ˇ

�
.1 � e�h/s C y

�
� �w

�2
2..1 � e�h/s C y/

� QCx C "x

where QC D min
�
.1 � ˇı/2=ı; 4ˇ=3

�
and "x ! 0 as x !1. One then finds

•
D

g.x; y;w; sI�/ dy dw ds

�

•
QD

g.x; y;w; sI�/ dy dw ds

�
1
p
2�

•
QD

fY;W;S.y; w; s/p
.1 � e�h/s C y

exp
�
� QCx � "x

�
dy dw ds

�
exp

�
� QCx � "x

�
p
2�

•
QD

fY;W;S.y; w; s/
p
2s

dy dw ds

�
exp

�
� QCx � "x

�
2�

h 1
2

Z 1
ı

1�e�h
x

˛�

� .�/
s��3=2e�˛s ds

i
�

exp
�
� QCx � "x

�
4�

exp
�
�

˛ı

1 � e�h
x
�

(B.33)

Compared two inequalities given by (B.33) and (B.32), it is always possible to

find such an M , which depends on the parameters, c1, ı and h, that (B.30) holds.

The case where x � �1 can be shown similarly, therefore the conclusion (B.28) is

justified. �
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At last, we give the tail estimate for @i lnm�.x/.

Lemma B.2.12: For the model densitym�.x/ in the �-OU BN-S model. If � > 7=2,

then the following bound holds with p � 3

@p

@
p1
1 � � � @

p5
5

m�.x/ � C.h;�/ .1C jxj
l/m�.x/ (B.34)

for some constant C.h;�/ and integer l which depend on .p1; : : : ; p5/.

Proof: From Proposition B.2.2,

@p

@
p1
1 � � � @

p5
5

m�.x/ <

•
D

X
l;q;r

	2;i.h;�/ jxj
l sq wr g.x; y;w; sI�/ dy dw ds :

By Lemma B.2.7 and Lemma B.2.11,

•
D

X
l;q;r

	2;i.h;�/ jxj
l sq wr g.x; y;w; sI�/ dy dw ds

<
X
l;q;r

	i.h;�/jxj
lCqCr

•
D

g.x; y;w; sI�/ dy dw ds

for sufficiently large jxj. And we know the boundedness of @p

@
p1
1 ���@

p5
5

m�.x/ in the

proof of the result (B.34) is justified. �

The previous discussions have provided the required details to justify the in-

terchange of differentiation and integration for deriving the Taylor expansion. For
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illustration purpose, let us apply the steps discussed above to verify:

@

@ˇ@˛

Z
R

�
e�ı

n

� 2
�
m��.x/ dx D

Z
R

@

@ˇ@˛

�
e�ı

n

� 2
�
m��.x/ dx (B.35)

Remark As shown in Proposition B.2.6, it is sufficient to focus on m�.x/

instead of the kernel convolved density m��.x/ in order to apply Lemma B.2.3, we

thus replace the m��.x/ by m�.x/ in the expression (B.35) for notation simplicity.

Recall the expression (3.11) in Lemma 3.2.3, define �25.�/ by

�25.�/ ,
@

@ˇ@˛

�
e
�
f �

m�
C1
� 2

�
m�.x/

D e
�
f �

m�
C1
�
f �.x/2

m�.x/2
� @2 lnm�.x/ � @5 lnm�.x/ �m�.x/ dx (B.36)

C e
�
f �

m�
C1
�
f �.x/

m�.x/
� @25m�.x/ dx C .e

�
f �

m�
C1
� 2/ @25m�.x/ dx

(1) First we show @2m�.x/, @5m�.x/ and @25m�.x/ can be computed for ˇ 2 Ba;2 ,

Œˇs � a; ˇs C a� and ˛ 2 Ba;5 D Œ˛
s � a; ˛s C a� by interchanging differentiation

and integration. From Proposition B.2.1 and B.2.2,

@2 g.x; y;w; sI�/ D g.x; y;w; sI�/
�
x � � � ˇ..1 � e�h/s C y/ � �w

�
@5 g.x; s; y; wI�/ D g.x; s; y; wI�/

�
�
�

˛
s � w C

�

h

�
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with their absolute values bounded by

j @2 g.x; y;w; sI�/j � g.x; y;w; sI�/
�
jxj C j�j C jˇj..1 � e�h/s C y/C j�jw

�
j @5 g.x; s; y; wI�/j � g.x; s; y; wI�/

��
˛
s C w C

�

h

�
It is easy to see g.x; y;w; sI�/ is absolutely continuous with respect to ˇ and

˛ since the derivatives exist and are bounded on Ba;2 and Ba;5 for all finite jxj.

Notice that we can bound g.x; y;w; sI�/ by

g.x; y;w; sI�/ �
1p

.1 � e�h/s
fY;W;S.y; w; s/ or

g.x; y;w; sI�/ �
1
p
y
fY;W;S.y; w; s/

Then it is easy to check, for fixed x:

ˇ̌̌
@2m�.x/

ˇ̌̌
�

•
D

ˇ̌̌
@2 g.x; y;w; sI�/

ˇ̌̌
dy dw ds

�

•
D

�
jxj C j�j C jˇj..1 � e�h/s C y/C j�jw

�
g.x; y;w; sI�/ dy dw ds

�
�
jxj C j�j

�•
D

1p
.1 � e�h/s

fY;W;S.y; w; s/ dy dw ds

C

•
D

jˇj

q
.1 � e�h/s fY;W;S.y; w; s/ dy dw ds

C

•
D

�
jˇj
p
y C

j�j
p
1 � e�h

w
p
s

�
fY;W;S.y; w; s/ dy dw ds

�
jxj C j�j
p
1 � e�h

EŒS�1=2� C

q
ˇ2 .1 � e�h/EŒS1=2�

C jˇjEŒW 1=2� C
j�j

p
1 � e�h

EŒS�1=2� �EŒW � (B.37)

, K2.�/
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and

ˇ̌̌
@5m�.x/

ˇ̌̌
�

•
D

ˇ̌̌
@5 g.x; y;w; sI�/

ˇ̌̌
dy dw ds

�

•
D

��
˛
s C w C

�

h

�
g.x; s; y; wI�/ dy dw ds

�
�

˛
p
1 � e�h

EŒS1=2� C
1

p
1 � e�h

EŒS�1=2� �EŒW �

C
�

h
p
1 � e�h

EŒS�1=2� (B.38)

, K5.�/

Since we know

EŒS�1=2� D
� .� � 1=2/
p
˛ � .�/

; EŒS1=2� D

p
˛ � .� C 1=2/

� .�/
; and EŒW � D

�

˛
;

it is clear that

Z
Ba;2

•
D

ˇ̌̌
@2 g.x; y;w; sI�/

ˇ̌̌
dy dw ds dˇ < 1

and Z
Ba;5

•
D

ˇ̌̌
@5 g.x; y;w; sI�/

ˇ̌̌
dy dw ds d˛ < 1

So Lemma B.2.3 applies and one has

@2m�.x/ D

•
D

�
x � � � ˇ..1 � e�h/s C y/ � �w

�
g.x; y;w; sI�/ dy dw ds

(B.39)
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and

@5m�.x/ D

•
D

�
�
�

˛
s � w C

�

h

�
g.x; y;w; sI�/ dy dw ds (B.40)

The same approach can be used again to study the @25m�.x/ with more involved

computations and gets the following result:

@25m�.x/ D

•
D

�
x � � � ˇ..1 � e�h/s C y/ � �w

�
�

�
�
�

˛
s � w C

�

h

�
g.x; y;w; sI�/ dy dw ds (B.41)

Remark These results are exactly the conclusion of Proposition B.2.4.

(2) We use Lemma B.2.12 to study the tail behavior of @2m�.x/, @5m�.x/ and

@25m�.x/ for large jxj. Using the expressions of these three derivatives we

derived in step (1), we immediately have

@2m�.x/ � Q	2.h;�/ .1C jxj
2/m�.x/

@5m�.x/ � Q	5.h;�/ .1C jxj
2/m�.x/

and @25m�.x/ � Q	25.h;�/ .1C jxj
3/m�.x/

for sufficiently large jxj.

Now, we are ready to justify (B.35).

(ex.1).
�
e�ı

n

� 2
�
m�.x/ is integrable with respect to x for fixed ˇ and ˛.
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(ex.2). For @25
�
.e�ı

n

� 2/m�.x/
�

given by (B.36),

ˇ̌
@25
�
.e�ı

n

� 2/m�.x/
�ˇ̌
�

2

m�.x/
�
ˇ̌
@2m�.x/

ˇ̌
�
ˇ̌
@5m�.x/

ˇ̌
C 4

ˇ̌
@25m�.x/

ˇ̌
�

2

m�.x/
�K2.�/ �K5.�/ C 4K25.�/

Since m�.x/ is bounded away from 0 (see its definition at (B.18)), 1
m�.x/

is

a bounded function for all finite x. Therefore, .e�ı
n

� 2/m�.x/ is absolutely

continuous with respect to both ˇ and ˛.

(ex.3). Notice that,

Z
R

ˇ̌̌
@25

�
.e�ı

n

� 2/m�.x/
�ˇ̌̌

dx

� 2

Z
R

ˇ̌ @2m�.x/

m�.x/

ˇ̌
�
ˇ̌ @5m�.x/

m�.x/

ˇ̌
�m�.x/ dx C 4

Z
R

ˇ̌
@25m�.x/

ˇ̌
dx

� 2 Q	2.h;�/ Q	5.h;�/

Z
R
.1C jxj2/2 �m�.x/ dx

C 4 Q	25.h;�/

Z
R
.1C jxj3/ �m�.x/ dx

It is not difficult to see the last line is a continuous function of the ˇ and ˛,

therefore, it is locally integrable in Ba with respect to ˇ and ˛.

At last, Lemma B.2.3 applies and we have (B.35) verified. Using similar steps,

one can justify the Taylor expansion in Lemma 3.2.3 is valid provided that � > 7=2
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B.3 Deriving Asymptotic Normality by the Functional Delta

Method

In Section 3.2, we discuss how to derive the consistency and asymptotic nor-

mality for the NEDE. Recall the key step is to show (3.17)

n1=2
Z h

A.ın/ � A.ı
�
s /
i
rm��.x/ dx !MVN.0; V /:

In the coming short paragraph, we will present a different approach to study its

asymptotic normality. To simplify the discussion, we shall shift the focus temporarily

to the conventional minimum distance estimator where the kernel k.xI t; h/ is only

used to smooth the empirical distribution function but not the model CDF. We still

use the �-OU BN-S process as the model process. Let Ofn.x/ D
1
n

P
k.xIXi ; h/

denote the kernel density estimate and let s.x/ denote the true stationary density

of Xi . Similar to Section 3.2, given a family of model fm�.x/g indexed by unknown

parameter �, we compute the estimator O� by

O� D argmin
�2�

�. Ofn; m�/ D argmin
�2�

Z
G. Ofn.x/;m�.x//m�.x/ dx : (B.42)

One easily notices that, unlike the MDE studied in Chapter 3, the above disparity

�.�; �/ contains no kernel smoothed model density m�.x/. Basu et al. [14] studied

the above estimate with i.i.d. data where G.�/ corresponds to the Negative Expo-

nential disparity. In what follows, we use the functional delta method and study
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the asymptotic normality of

p
n

Z
R

�
A
� Ofn
m�s
� 1

�
� A

� s

m�s
� 1

��
rm�s.x/ dx (B.43)

for Negative Exponential disparity function G.�/ with the data generated by a ˇ-

mixing process. Notice that in (B.43), the integral is an integrated functional of the

kernel density estimate Ofn.x/, and the results in Aı̈t-Sahalia [1, 2] can be applied to

derive its asymptotic distribution.

Remark The motivation for including this section is twofold. The delta

method itself is an intuitive yet powerful method to study the limiting distribution

of functions of random variables. The functional delta method and the associated

Von Mises calculus are particularly useful for many M-estimators problems. In fact,

we have used the conventional delta method in Chapter 4 to derive the asymptotic

normality of the MOM estimators. Second, one will find the method to be shown

cannot be used directly to study the MDE described in Section 3.2. We hope to

use this section to motivate extending the functional delta method to wider class of

statistical functionals. As the focus here is to present the functional delta method,

we will only study the asymptotic distribution of (B.43) but not pursue the asymp-

totic normality for O�. Consistency of O� can be proved by similar steps described in

Section 3.1 and Section 3.2, we won’t elaborate the details here.

For completeness of our discussion, we summarize the results by Aı̈t-Sahalia

in [1] and [2] in the following exposition. Consider Rd -valued random variables
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X1; X2; : : : ; Xn identically distributed as s.�/ with cumulative distribution function

S.x/ D
xR
�1

s.t/ dt where x D .x1; x2; : : : ; xn/. Assume the following regularity

conditions:

(F-D1). The sequence fXig is a strictly stationary ˇ-mixing sequence satisfying:

k�ˇk ! 0

for some fixed � > 1 as k !1.

(F-D2). The density function s.�/ is continuously differentiable on Rd up to order s.

Its successive derivatives are bounded and in L2.Rd /. Denote C s as the space

of density functions satisfying this assumption.

(F-D3). For the kernel K used to compute Ofn.x/, assume

(i) K is an even function integrating to one;

(ii) The kernel is of order r D s where r is an even interger such that:

1) 8p 2 Nd with jpj � p1 C : : :C pd 2 f1; : : : ; r � 1g, one has

1Z
�1

x
p1
1 � � � x

pd
d
K.x/ dx D 0

2) 9p 2 Nd with jpj D r and

1Z
�1

x
p1
1 � � � x

pd
d
K.x/ dx ¤ 0
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3)
1Z
�1

kxkr
ˇ̌
K.x/

ˇ̌
dx <1

(iii) K is continuously differentiable up to order sC d on Rd , and its deriva-

tives of order up to s are in L2.Rd /.

(F-D4). As n!1, the bandwidth hn ! 0 in such a rate that

n1=2hen C
�
n1=2h2mn

��1
! 0:

Assumption A4 is also denoted as A4.e;m/.

Consider a functional ˚Œ:� defined on an open subset of C s with the L2 norm

and taking values in R. We say ˚ is L.2;m/-differentiable at F in C s if it admits

a first order Taylor expansion:

˚ŒF CH� D ˚ŒH�C ˚ .1/ŒF �.H/CR˚ ŒF CH�

with R˚ ŒF CH� D O.kHk
2
L.2;m/

/, where ˚ .1/ŒF �.�/ is a continuous linear functional

(in H) and L.2;m/ is the sum of the L2 norm of all the derivatives of H up to

order m. If the above expansion holds uniformly on H in any compact subset K

of C s and j˚ .1/ŒF �.H/j � C.K/kHkL.2;s/, then ˚ is said to be L.2;m/-Hadamard-

differentiable at F .

Remark For more discussion on differentiablity on statistical functionals,

see [1], [29] and [79].
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Next, introduce the real-valued integrated functional ˚.F / given by:

˚.F / �

1Z
�1

!.x/	
�
x; F .1/.x/; F .2/.x/; : : : ; F .m/.x/

�
dx ;

˚.F / is defined on an open subset of C s with the L2 norm. Focusing on the

case where x is univariate and let OFn be the kernel CDF estimator of fXig i.e.,

OFn D
R x
�1
Ofn.t/ dt , the following lemma holds.

Lemma B.3.1: (Aı̈t-Sahalia 1993 Corollary 1, Aı̈t-Sahalia 1995) Assume

that !.x/ is .m � 1/ times continuously differentiable and that 	 is max.2;m/-

times continuously dfferentiable. Then under Assumptions A1 - A4.r;m/:

(i) The functional ˚ defined on an open subset U s of C s by:

˚.F / �

1Z
�1

!.x/	
�
x; F .1/.x/; F .2/.x/; : : : ; F .m/.x/

�
dx

is L.2;m/-Hadamard-differentiable at the true CDF F with functional deriva-

tive given by:

'ŒF �.x/ D

mX
qD1

.�1/q�1
@q�1

@xq�1

�
!.x/

@	

@F .q/

�
x; F .1/.x/; : : : ; F .m/.x/

��
(B.44)

(ii)

p
n
˚
˚. OFn/ � ˚.S/

	 D
! N.0; V˚ ŒF �/
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with:

V˚ ŒF � D

1Z
�1

'ŒF �.x/2s.x/ dx �
� 1Z
�1

'ŒF �.x/s.x/ dx
�2

(B.45)

C 2

1X
kD1

1Z
�1

1Z
�1

�
sk.x; y/ � s.x/s.y/

�
'ŒF �.y/ 'ŒF �.x/ dy dx

where sk.x; y/ is the joint density of .Xi ; XiCk/.

Remark Aı̈t-Sahalia ([1] 1993) studied the functional delta method with

assumption (F-D2) given by

The CDF S is continuously differentiable on Rd up to order s C d . The

density s.�/ has a compact support contained in Rd . s.�/ and its derivatives

are zero on the boundary of the support.

Also, he used L1 norm to study the derivatives of ˚ with respect to F . Whereas

in [2], Aı̈t-Sahalia relaxed the condition to allow for CDF with unbounded support

and use L2 norm to studied the functional derivative. Lemma B.3.1 above is stated

in the form of [1] with the corresponding norm changed from L.1; m/ to L.2;m/.

Remark Assumption (F-D2) considers the regularity of the true underlying

density, which also guarantes the finiteness of the variance of Ofn. Assumption (F-

D3) is satisfied in our study as we use the Gaussian kernel. Assumption (F-D4) is

a standard assumption on the bandwidth which makes sure the bias of the kernel

density estimate goes to 0 as sample size increases.

To apply Lemma B.3.1 to study (B.43), we need to compute the derivative of
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the integrated functional

˚ŒS� D

Z
R
A
�S .1/
m�s
� 1

�
rm�s.x/ dx :

It is easy to see that

	
�
x; S .1/.x/; S .2/.x/; : : : ; S .m/.x/

�
D A

�S .1/
m�s
� 1

�

According to (B.44), m D 1 and @	
@S.1/

D A0
�
ıs
�
�

1
m�s .x/

. Therefore, the derivative

'ŒF �.�/ of the functional ˚ŒS� is given by

'ŒF �.x/ D A0
�
ıs
�
� r lnm�s.x/ (B.46)

By Lemma B.3.1,

Lemma B.3.2: Assume the conditions in Lemma B.3.1 hold and A.ı/ is a regular

RAF. If

V D E.'ŒF �.X0/
˝2/ C 2

1X
jD1

E.'ŒF �.X0/ 'ŒF �.Xj /
T / < 1;

then

p
n

Z
R

�
A
� Ofn
m�s
� 1

�
� A

� s

m�s
� 1

��
rm�s.x/ dx

D
�! MVN.0; V /

as n!1.
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C. MOMENTS AND CROSS-MOMENTS COMPUTATION

We begin this section by referring to a result in Cont and Tankov ([23] Sec

2.2.5) which considers the relation between moments, cumulants 1 and central mo-

ments. This result will help determining whether to use sample absolute moments

or sample central moments when constructing the MOM equations.

Let X be a random variable and �.u/ be its characteristic function. If �.u/ ¤ 0

in a neighborhood of u D 0, then one can define a continuous function  X.u/ as the

logarithm of �.u/ in the neighborhood of zero by

 X.0/ D 0 and �X.u/ D expŒ X.u/�: (C.1)

The  X.u/ is called the Cumulant Generating Function (CGF) of X2. If �.u/ ¤ 0

for all u, then  X can be extended to all R. The k-th Cumulant is defined as

ck.X/ D
1
ik
@k X .u/

@uk

ˇ̌̌
uD0

:

We can define the k-th moment mk for X similarly by

mk D
@kMX .u/

@uk

ˇ̌̌
uD0

for k � K

1In [23], the authors used the Cumulant Generating function to define cumulants. When the
moment generating function is well defined, one can also use the Cumulant Transform function
defined in (1.2) to compute the cumulants.

2It is also called log-characteristic and characteristic exponent in different literatures



provided that the Moment Generating Function (MGF) MX.u/ D EŒexp.uX/� and

its first K derivatives are well defined in the neighborhood of 0.

Denote the k-th central moment of X by �k.X/ D EŒ.X�E X/
k�, then ck.X/,

�k.X/ and mk.X/ for k D 1; 2; 3; 4 are related in the following way:

c1.X/ D m1.X/ D E X;

c2.X/ D �2.X/ D m2.X/ �m1.X/
2 D Var.X/;

c3.X/ D �3.X/ D m3.X/ � 3m2.X/m1.X/C 2m1.X/
3;

c4.X/ D �4.X/ � 3�2.X/

See [23] Section 2.2 for more details.

C.1 Moments of X1

Recall we derive �X.u/ in Chapter 2 with the assumption that � D 1. In this

section, we will drop this assumption when using �X.u/ to compute the moments of

X1.

Redefine the functions g1 and g2 as follows:

g1.sIu; �; ˇ/ D �
.1�e��h/e�s

2�
u2 C iˇ .1�e

�h/e�s

�
u ;

g2.sIu; �; ˇ; �/ D �
1�e��hC�s

2�
u2 C i�uC i 1�e

��hC�s

�
ˇu :
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The characteristic function of X1 is given by:

�X1.u/ D E
h
eiu�h eiuˇ

R h
0 �

2
s ds eiu�

R h
0 dZs e�

u2

2

R h
0 �

2
s ds
i

D eiu�h exp
� R1

0

R
RC.e

g1 x � 1/w.x/ dx ds
�

exp
�
�
R h
0

R
RC.e

g2 x � 1/w.x/ dx ds
�

D eiu�h �1.uIˇ; �; ˛/ �2.uIˇ; �; �; ˛/

It turns out that even in the � -OU case where w.x/ takes the simple form

�˛e�˛x, �2.u/ can end up to be very complicated. Therefore, we will only include

the complete expression for �2.u/ in the � -OU case for illustration.

1 �-OU BN-S Model. In this case, �.�/ D ��
˛��

and w.x/ D �˛e�˛x for

the Compound Poisson process Zt . After some computations, one can get

�1.uIˇ; �; ˛/ D

�
1C

.1 � e��h/u2 � 2iˇ.1 � e��h/u

2˛�

���
:

Define the following functions:

f1.uI�; ˇ; �; �; ˛/ D
˛�

�.u2 C 2˛ � 2iu.ˇ C �//

f2.uIˇ; �; ˛/ D 2u˛ˇ � u
3�

f3.uI�; ˇ; �; �; ˛/ D u
2.˛ C 2�.ˇ C �//C 2˛2

f4.uI�; ˇ; �; �; ˛/ D .e
h
� 1/u4 C 4eh˛2

C

�
.4eh � 2/˛ C 4.ˇ C �/

�
.eh � 1/ˇ C eh�

��
u2
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f5.uI�; ˇ; �; �; ˛/ D .e
h
� 1/2u4 C 4e2h˛2

C 4
�
ˇ2 � eh.˛ C 2ˇ.ˇ C �//C e2h

�
.ˇ C �/2 C ˛

��
u2

and �2.uIˇ; �; �; ˛/ is given by

�2.uIˇ; �; �; ˛/ D exp
n
� �h� C f1

�
2h � log

�
4e2h.˛2 C u2�2/

�
C log.f5/

� 2i arctan
�f2
f3

�
� 2i arctan

�
� 2

f2

f4

���

The mean and variance of X1 are given by:

EŒX1� D h�C
h�.ˇ C ��/

˛
(C.2)

VarŒX1� D
�

˛2�2

�
.2ˇ2 C 4ˇ��/.e��h C .�h � 1//C h�2.˛ C 2��2/

�

2 IG-OU BN-S Model. In the IG-OU case, �.�/ D �ı.
2 � 2�/�1=2 and

w.x/ D ı

2
p
2�
x�3=2.1C 
2x/e�

1
2

2x for the BDLP Zt . �1.uIˇ; ı; 
// is given by:

�1.u; ˇ; ı; 
/ D ı
�

 �

q

2 C .1 � e�h/u.u � 2iˇ/

�
:

We have the mean and variance of X1:

EŒX1� D
h.
�C ˇı C ı��/



(C.3)

VarŒX1� D
ı


3�2

�
.2ˇ2 C 4ˇ��/.e��h C .�h � 1//C h�2

�

2 C 2��2

��

175



C.2 Covariance of .RtCh�Rt ; �
2
tCh��

2
t /, .Rh�R0; �

2
h/ and .Xj ; Xk/

1. Covariance of .RtCh �Rt ; �
2
tCh
� �2t /

By the definition of the BN-S model (1.1),

RtCh �Rt D �h C ˇ

tChZ
t

�2s ds C

tChZ
t

�s dWs C �

tChZ
t

dZ�s :

We compute the covariance between RtCh �Rt and �2
tCh
� �2t to demonstrate that

parameter � does control whether the increments of Rt and �2t are positively or

negatively correlated.

CovŒRtCh �Rt ; �
2
tCh
� �2t �

= EŒ.RtCh �Rt/.�
2
tCh
� �2t /� �EŒ.�

2
tCh
� �2t /� �EŒ.RtCh �Rt/�

= EŒ.�2
tCh
� �2t / �h� C ˇ EŒ

R tCh
t

.�2
tCh
�2s � �

2
t �

2
s /ds�

CEŒ.�2
tCh
� �2t /

R tCh
t

�sdWs� C �EŒ.�2
tCh
� �2t /

R tCh
t

dZ�s �

= I + II + III + IV

Second equality holds due to the stationarity of �2t . For these four terms we

have:

I = 0 since �2t is stationary;

III = 0 since Wt is a standard Brownian motion and it’s independent of �2t ;
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When t � s � t C h, one has:

EŒ�2t �
2
s � D Cov.�2t ; �

2
s /CEŒ�

2
t � �EŒ�

2
s �

D Corr.�2t ; �
2
s /Var.�20 /CE.�

2
0 /
2

D e��.s�t/ � Var.�20 /CE.�
2
0 /
2 and

EŒ�2
tCh
�2s � D e

��.tCh�s/ � Var.�20 /CE.�
2
0 /
2

II = ˇ
R tCh
t

e��.tCh�s/ds � Var.�20 / �
1
2

R tCh
t

e��.s�t/ds � Var.�20 /

=
�
ˇ Œ� 1

�
e��.tCh�s/

ˇ̌tCh
t
� � ˇ Œ� 1

�
e��.s�t/

ˇ̌tCh
t
�
�
� Var.�20 /

= 0

For the last term:

IV = �EŒ.e��h � 1/�2t
R tCh
t

dZ�s C
R tCh
t

e��.tCh�u/dZ�u �
R tCh
t

dZ�u�

= IV.1 + IV.2

Due to the independent increment properties of Lévy process Zt , �
2
t is inde-

pendent of
R tCh
t

dZ�s . We get

IV.1 D ��h.e��h � 1/EŒ�20 �EŒZ1� D ��h.e��h � 1/EŒZ1�
2:

To compute IV.2, first notice that Zt is a subordinator, so it is of finite variation

and the stochastic integral can be understood in the Lebesgue-Stieljes sense. Thus

for any refining partition3 �n D ft D T0 < T1 < T2 < : : : < Tn D t C hg whose grid

size converges to 0 as n!1,

3A sequence of partitions f�ng is called refining if the set of partition points fTmj g is a subset
of fT nj g for all m < n
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Pn�1
iD0.Z�TiC1 �Z�Ti /

a:s:
�!

R tCh
t

dZ�u andPn�1
iD0 e

�Ti .Z�TiC1 �Z�Ti /
a:s:
�!

R tCh
t

e�udZ�u

This implies

In ,
Pn�1
iD0 e

�Ti .Z�TiC1 �Z�Ti / �
Pn�1
iD0.Z�TiC1 �Z�Ti /

a:s:
�! I ,

R tCh
t

e�u dZ�u �
R tCh
t

dZ�u D e��.tCh/ IV.2

as n!1. Next consider the random variable V , e�.tCh/.Z�.tCh/�Z�h/
2. For any

given partition �n, using telescoping sum we can rewrite V as
Pn�1
iD0 e

�.tCh/.Z�TiC1�

Z�Ti /�
Pn�1
iD0.Z�TiC1�Z�Ti /, from which we see V � In a.s. since e�.tCh/ � e�Ti . If we

assume Z1 have finite variance, then EŒV � D e�.tCh/EŒZ2
�h
� <1, so EŒIn�! EŒI �

as n!1 by the Dominated Convergence theorem. Let �n denotes the equi-spaced

partition with Ti D t C ih
n

for n D 2k; k 2 ZC, We will use the limit of EŒIn� to

compute EŒI �.

EŒIn� D E
h n�1X
iD0

e�Ti .Z�TiC1 �Z�Ti / �

n�1X
iD0

.Z�TiC1 �Z�Ti /
i

D E
h n�1X
iD0

e�Ti .Z�TiC1 �Z�Ti /
2
C

n�1X
iD0

X
j¤i

e�Ti .Z�TiC1 �Z�Ti /.Z�TjC1 �Z�Tj /
i

D

n�1X
iD0

e�.tCih=n/EŒZ2�h
n

� C

n�1X
iD0

n�1X
j¤i

e�.tCih=n/EŒZ�h
n
�2

Since
n�1X
iD0

EŒZ2�h
n

� D

n�1X
iD0

VarŒZ�h
n
� C

n�1X
iD0

EŒZ�h
n
�2

D

n�1X
iD0

�h

n
VarŒZ1� C n .

�h

n
/2EŒZ1�

2;
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EŒIn� D e�t

"
n�1X
iD0

ei
�h
n
�h

n
� VarŒZ1� C

n�1X
iD0

ei
�h
n .
�h

n
/2 � n �EŒZ1�

2

#

D e�t
�
�h � VarŒZ1�

1

n

e�h � 1

e
�h
n � 1

C �2h2 �EŒZ1�
2 1

n

e�h � 1

e
�h
n � 1

�
! e�t

�
�h � VarŒZ1�

e�h � 1

�h
C �2h2 �EŒZ1�

2 e
�h � 1

�h

�
D e�t.e�h � 1/ � VarŒZ1� C e�t.e�h � 1/�h �EŒZ1�

2

D EŒI �

From the above result we have IV.2 D �.1 � e��h/
�
VarŒZ1�C �hEŒZ1�

2
�
, so

Cov.RtCh �Rt ; �
2
tCh � �

2
t / D IV D �.1 � e��h/VarŒZ1�: (C.4)

2. Covariance of .Rt �R0; �
2
h
/

The covariance to be computed will be used in Chapter 4 to construct the

MOM estimators. Using the definition of Rt ,

Cov.Rh �R0; �
2
h
/

= EŒ.Rh �R0/ �
2
h
� �EŒ�2

h
� �EŒRh �R0�

= EŒ�h�2
h
� C ˇ EŒ

R h
0
�2s ds �2

h
� C EŒ

R h
0
�s dWs �

2
h
� C �EŒ

R h
0

dZ�s �
2
h
�

�EŒ�2
h
� �
�
�C ˇhEŒ�2

h
� C ��hEŒZ1�

�
= ˇ EŒ

R h
0
�2s ds �2

h
� C �EŒ

R h
0

dZ�s �
2
h
� � ˇh

�
EŒ�20 �

�2
� ��h

�
EŒ�20 �

�2
Recall term II in the computations of Cov.RtCh �Rt ; �

2
tCh
� �2t /,

E
� Z h

0

�2h �
2
s ds

�
D

Z h

0

h
e��.h�s/ � Var.�20 / C

�
EŒ�20 �

�2i
ds

D
1

�

�
1 � e��h

�
Var.�20 / C h

�
EŒ�20 �

�2
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and use term IV in Cov.RtCh �Rt ; �
2
tCh
� �2t /,

�E
� Z h

0

dZ�s �
2
h

�
D � �h e��h

�
EŒ�20 �

�2
C �

�
1 � e��h

�h
Var.Z1/C �hEŒZ1�

2
i

D � �h e��h
�
EŒ�20 �

�2
C �

�
1 � e��h

�h
2Var.�20 /C �h

�
EŒ�20 �

�2i
D 2�

�
1 � e��h

�
� Var.�20 / C ��h

�
EŒ�20 �

�2
Therefore,

Cov.Rh �R0; �
2
h / D

ˇ
�
1 � e��h

�
�

Var.�20 / C ˇh
�
EŒ�20 �

�2
C 2�

�
1 � e��h

�
Var.�20 / C ��h

�
EŒ�20 �

�2
� ˇh

�
EŒ�20 �

�2
� ��h

�
EŒ�20 �

�2
D

�ˇ
�
C 2�

� �
1 � e��h

�
Var.�20 /: (C.5)

3. Covariance of .Xj ; Xk/

Since Xi is strictly stationary, the covariance of .Xj ; Xk/ should only depends

on jj � kj. This means it is sufficient to compute Cov.X1; Xj / for j > 1. We

will use the characteristic function of .X1; Xj / to find their covariance. Recall if

EŒX1Xj � <1, then

1

i2
@2

@u1 @u2
�X1;Xj .u1; u2/

ˇ̌̌
u1D0;u2D0

D EŒX1Xj �:
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From the BN-S structure, we know

X1 D �hC ˇ

Z h

0

�2s ds C

Z h

0

�sdWs C �

Z h

0

dZ�s

Xj D �hC ˇ

Z jh

.j�1/h

�2s ds C

Z jh

.j�1/h

�sdWs C �

Z jh

.j�1/h

dZ�s

Since �2s D e
��s�20 C e

��s
R s
0
e�u dZ�u , one has

Z jh

.j�1/h

�2s ds D

Z jh

.j�1/h

e��s ds �20 C

Z jh

.j�1/h

Z s

0

e�u dZ�u e
��s ds

D
1

�

�
e�.j�1/�h � e�j�h

�
�20

C

.j�1/hZ
0

jhZ
.j�1/h

e��s ds e��u dZ�u C

jhZ
.j�1/h

jhZ
u

e��s ds e��u dZ�u

D
1

�

�
e�.j�1/�h � e�j�h

�
�20 (C.6)

C

.j�1/hZ
0

e�u

�

�
e�.j�1/�h � e�j�h

�
dZ�u C

jhZ
.j�1/h

1 � e�j�hC�u

�
dZ�u

To get the joint characteristic function for .X1; Xj /, let us first exam iu1X1C

iu2Xj :

iu1X1 D i�hu1 C
�
iˇu1 �

u21
2

�1 � e��h
�

�20

C

Z h

0

�
i
�
�C ˇ

1 � e��hC�s

�

�
u1 �

1 � e��hC�s

2�
u21

�
dZ�s

iu2Xj D i�hu2 C
�
iˇu2 �

u22
2

�e�.j�1/�h � e�j�h
�

�20

C

Z .j�1/h

0

��
iˇu2 �

u22
2

��
e�.j�1/�h � e�j�h

�e�s
�

�
dZ�s

C

Z jh

.j�1/h

�1
�

�
iˇu2 �

u22
2

��
1 � e�j�hC�s

�
C i�u2

�
dZ�s
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Using the fact that Zt has independent increments over non-overlapped intervals,

we can decompose the integrals in iu2Xj into integrals over .0; h�, .h; .j � 1/h� and

..j � 1/h; jh�. Define the following functions:

g1.u1; u2I s; �; h; ˇ/ D e
�s

��
iˇu1 �

u21
2

�1 � e��h
�

C

�
iˇu2 �

u22
2

�e�.j�1/�h � e�j�h
�

�
g2.u1; u2I s; �; h; ˇ; �/ D i

�
�C ˇ

1 � e��hC�s

�

�
u1 �

1 � e��hC�s

2�
u21

C

�
iˇu2 �

u22
2

��
e�.j�1/�h � e�j�h

�e�s
�

g3.u2I s; �; h; ˇ/ D
�
iˇu2 �

u22
2

��
e�.j�1/�h � e�j�h

�e�s
�

g4.u2I s; �; h; ˇ; �/ D
1

�

�
iˇu2 �

u22
2

��
1 � e�j�hC�s

�
C i�u2

Then �X1;Xj .u1; u2/ is given by:

�X1;Xj .u1; u2/ D e
i.u1Cu2/�h � E

h
exp

n Z 1
0

g1dZs

oi
� E
h

exp
n Z h

0

g2 dZ�s

oi
� E
h

exp
n Z .j�1/h

h

g3 dZ�s

oi
� E
h

exp
n Z jh

.j�1/h

g4 dZ�s

oi
D ei.u1Cu2/�h � exp

n Z 1
0

�.g1/ds
o
� exp

n
�

Z h

0

�.g2/ds
o

� exp
n
�

Z .j�1/h

h

�.g3/ds
o
� exp

n
�

Z jh

.j�1/h

�.g4/ds
o

(C.7)

where as before �.:/ is the CTF of Zt . To compute 1
i2

@2

@u1 @u2
�X1;Xj .u1; u2/ju1D0;u2D0,

one may use the following steps if one assumes
R1
0
x2w.x/ dx < 1. Take �1 D
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exp
� R1
0
�.g1/ds

�
as example,

@

@u1
�1.u1; u2/

ˇ̌̌
u1D0;u2D0

D �1.0; 0/ � lim
u1!0
u2!0

@

@u1

Z 1
0

Z
RC
.eg1.u1;u2Is;h;ˇ;�/x � 1/w.x/ dx ds

D lim
u1!0
u2!0

Z 1
0

Z
RC

@

@u1
.eg1.u1;u2Is;h;ˇ;�/x � 1/w.x/ dx ds

D lim
u1!0
u2!0

Z 1
0

Z
RC

h
eg1.u1;u2Is;h;ˇ;�/x

�
iˇ � u1

�1 � e��h
�

e�s
i
x w.x/ dx ds

D

Z 1
0

Z
RC

h
iˇ
1 � e��h

�
e�s

i
x w.x/ dx ds

One can verify the interchange differentiation and limit with integration under the

assumption that
R1
0
x2w.x/ dx <1, thus the above simplification is valid. We can

apply the above techniques to all �i ’s and compute the EŒX1Xj �.

In the �-OU BN-S model:

Cov.X1; Xj / D
e�.jC1/�hˇ�

˛2�2

�
e�h � 1

�2
(C.8)�

2ˇ� C e�h
�
ˇ.��h � � C 1/C �.��hC 2/�

��

In the IG-OU BN-S model:

Cov.X1; Xj / D
e�.jC1/�hˇı

˛3�2

�
e�h � 1

�2
(C.9)�

2ˇı
 C e�h
�
ˇ.ı
.�h � 1/C 1/C �.ı
�hC 2/�

��

Although both expressions are very involved, but it is not difficult to find that
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they both decay exponentially fast as j ! 1. As a last remark, the approach

we take to find the covariance between X1 and Xj does not apply to finding the

variance of X1, because we have implicitly assumed Xj ¤ X1 when deriving their

joint characteristic function.
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190
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