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Chapter 1: Introduction and Specific Aims 

1. 1 Introduction 

An appreciation of biomolecular flexibility and dynamics is essential to an 

understanding of the processes necessary to life. The many roles of proteins in these 

processes (proteins make up structural elements of cells and organisms, enzymes 

catalyze biochemical reactions, transport proteins such as hemoglobin facilitate 

movement of essential chemical compounds, and generally proteins are involved in 

myriad biological processes) ultimately reflects both the large amount of information 

encoded in protein structures and the large range over which this information content 

can be varied by modification of these structures (dynamics). A key characteristic of 

proteins is their functional specificity—for example, a particular enzyme will bind a 

specific substrate partner and catalyze a specific chemical reaction. Frequently this 

specificity is such that a small change in the structure or dynamics of the enzyme or 

the ligand can dramatically change their binding affinity, and the activities of many 

enzymes are regulated by structural and dynamic changes induced by interactions 

with other molecules 1,2.  In order to comprehend the ways in which proteins achieve 

their biological functionality, we have to understand the ways in which the many 

parts of a protein molecule move and interact and to what extent these various 

motions are determined by molecular structure and intermolecular forces. 

Understanding the processes underlying protein stability, recognition, specificity, and 

catalysis requires knowledge of the atomic-level details of protein structure and 

dynamics. 
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Nuclear magnetic resonance (NMR) is conceptually beautiful and 

extraordinarily useful. NMR has been used to demonstrate textbook-like examples of 

the most fundamental principles of quantum mechanics 3,4. NMR can be used to 

determine four-dimensional (three spatial coordinates plus time) structures of 

molecules with intermolecular distance accuracy that “seemingly” violates the 

theoretical limit given by Heizenberg’s uncertainty relation 5. NMR is used daily in 

hospitals to non-invasively image human tissue for disease diagnosis. NMR provided 

the first experimental realization of a quantum computer 6,7. 

 For biology, NMR has been used to solve the structures of more than 5,000 

proteins and nucleic acids. Biomolecular structure determination (by NMR, X-ray 

crystallography, and other techniques) has revolutionized biochemistry. The 

uniqueness of NMR in this realm, however, is not in its ability to report on structure, 

currently it’s being outdistanced by crystallography in terms of resolution and output 

(X-ray crystal structures make up ~86% of the protein structures deposited in the 

protein data bank, while NMR structures make up only ~14%), but in its ability to 

report on biomolecules in solution. This is an obvious advantage, since it is in 

solution where most biomolecules perform their physiological function, but since 

molecules in solution are constantly tumbling and moving with thermal energy, 

solution NMR of biomolecules must necessarily include consideration of motions in 

the systems under study. NMR spin relaxation is caused by molecular motion 8, and 

spin relaxation determines the linewidths and thus the intensities of NMR signals. An 

NMR spectroscopist who studies proteins, therefore, even if their purpose is structure 

determination, must consider relaxation effects, and thus molecular motion, to 
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interpret spectra and design experiments. Because of the connection between 

structure and dynamics in NMR spectra, one possible future direction for NMR 

spectroscopy of biomolecules is simultaneous structure and dynamics determination 9. 

1.2 Motion in Proteins 

A brief review of protein structural and energetic properties is necessary as an 

introduction to consideration of their dynamics. A protein is essentially a large 

number of chemical groups linked by covalent bonds. A short length of polypeptide 

chain is shown in Fig 1.2.1. The atoms indicated in cyan make up what is termed the 

peptide plane. The partial double bond character of the CONH bond causes it to be 

impermissive to rotation, so the ω torsion angle typically has values very close to 

180o (or 0o for the less common cys stereoisomer) in proteins. However, many of the 

other covalent bonds are rotationally permissive, which allows the protein backbone 

some degree of flexibility. Steric repulsion is the primary limitation to the ranges of 

rotation of the torsion (dihedral) angles, φ and ψ, of a polypeptide. Librational 

movement of individual bonds (such as the backbone amide bond) are expected to be 

fairly uniform in magnitude along the polypeptide backbone 10,11, and backbone 

conformational fluctuations of φ and ψ angles on the sub-nanosecond timescale are 

by-nature anisotropic (with director postulated to be along the Cα-Cα axis). When a 

protein is folded into a globular structure consisting primarily of α-helices and β-

strands, the steric hindrance of the folded conformation causes the torsion angles in 

the secondary structure elements to take on characteristic values (visible from a 

Ramachandran plot) and affects the energy potential which determines the 
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fluctuations about these values. The steric hindrance of the particular type of amino 

acid side-chain group will also affect this potential as will any intramolecular 

interactions. Therefore the amplitudes of the anisotropic motions of a polypeptide 

chain will depend on its secondary and tertiary structure and show variation from 

residue to residue. 

 
 

R HR HR HHR HHR HHR HH
CCCCCCCCCCCCCCC
 

 

 

Figure 1.2.1. Schematic of a short length of polypeptide chain in a fully-extended conformation. 
Here R represents the side chain group and can be any of 19 of the 20 naturally occurring amino 
acids (Proline is predominately in the trans stereoisomer, not illustrated here). The π orbitals of the 
partial double bond between C’-O and  N-C’ creates the plane like character of the atoms indicated 
by the rectangles. The dihedral angles ψ and φ, through which the peptide planes can rotate, are 
indicated by arrows near the first alpha carbon. 
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Motions in proteins span a broad range of amplitudes and timescales. For 

example, a recent review of oxygen binding/release motions in myoglobin 12 cited 

examples of dynamic events ranging from femtosecond timescales all the way to the 

millisecond timescale. Protein motions can be broadly categorized as motions which 

are fast and highly localized, such as atomic level fluctuations (bond stretching and 

bond librations occur on fs-ps timescales), intermediate timescale motions which 

involve the collective motion of several atoms (unhindered surface sidechain motions 

occur on ps-ns timescales, “breathing” motions of the protein backbone occur on a ns 

timescale) and motions which occur on the scale of the whole molecule and over 
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longer times (the so-called conformational exchange motions—collective motion of 

large groups of atoms—occur on µs-ms timescales). However, the various motions in 

a protein are coupled to one another, and large-amplitude/long-timescale dynamic 

transitions naturally involve many smaller intermediate-amplitude/intermediate-

timescale transitions which involve many fast, local, atomic-level motions as well.  

There are several compelling arguments for the biological relevance of fast 

motions in the peptide planes and side chains. Besides several examples of fast 

motions during high energy events in proteins (e.g. bond breaking)12,13, the kinetic 

energy in the fast, low amplitude, high probability fluctuations in backbone φ/ψ 

torsion angles is a source of energy for large scale conformational changes14. Larger-

than-average-amplitude motions on the ps-ns timescale can therefore be suggestive of 

motions which occur during ligand binding as the fast motions indicate flexibility14. 

Furthermore, motions do not have to occur on the same time scale as a particular 

biological reaction in order to influence the reaction. When considered 

thermodynamically, the free energy of any reaction is a balance of enthalpic and 

entropic contributions to the free-energies of the initial and final states. Entropic 

effects due to changes in fast internal dynamics associated with molecular recognition 

processes have been shown to have a profound impact on binding affinities 2,15, 

though the binding itself often takes place on a much slower (µs-ms) timescale.  

 Additionally, the motions occurring in proteins while free in solution have 

relevance to their biological function. The postulation (originally advanced by 

Frauenfelder 16) that the “information content” for all motions (such as 
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conformational exchange motion upon ligand binding or the folding transition) is 

contained within (and therefore potentially extractable from) the thermally driven 

motions of the polypeptide backbone is recently being reasserted with growing 

credibility. Eisenmesser et al. have shown that the exchange motions that occur in the 

enzyme cyclophilin A during its function as a prolyl cis-trans isomerase are already 

present in the free enzyme 17,18. This implies that some functional motions in enzymes 

may be due to an “intrinsic plasticity”, determined by the enzyme’s amino-acid 

sequence. Intrinsic flexibility in biomolecules is also reflected in recent theoretical 

work 19, which uses a simple harmonic oscillator based potential applied to protein 

structures to successfully predict large-scale, low frequency normal-mode motions in 

proteins 20. Motions predicted in such a fashion were found to have good agreement 

with experimentally determined motions observed during protein-ligand binding, 

allostery, and catalysis 20-23, these motions are likely, therefore, to be “intrinsic”, i.e. 

determined by the structure and coded for by the amino acid sequence of the protein, 

and therefore under control of genetic selection.   

Techniques for the study of protein dynamics range from theoretical and 

computational modeling to measurement by X-ray diffraction, neutron and optical 

scattering, perturbation-relaxation type experiments (such as temperature- or pH-

jump experiments), time-resolved florescence spectroscopy, atomic force microscopy, 

and solution and solid-state NMR. Each dynamic process (i.e. motion) has a 

characteristic amplitude, time-scale, and energy and certain techniques are well suited 

for the study of specific types and timescales of protein motions.  
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 One of the most effective and widely used techniques for the study of internal 

protein dynamics on ps-ns timescales is solution NMR spin relaxation. In kinetics 

“relaxation” refers to the return of a system to equilibrium after a perturbation. NMR 

spin relaxation experiments are unique among perturbation-relaxation type 

experiments in that the perturbed variables (the nuclear spin degrees of freedom) 

involve energies which are very small (ħωΗ at 600 MHz is < 4·10-25 Joules, which is 

~10,000 times smaller than kBT at 20oC) and very weekly coupled to the ordinary 

conformational dynamics of the molecule. This means that the ordinary chemical 

energies and dynamic properties of the system are almost entirely unaffected by spin-

flips caused by NMR pulses.  NMR spectroscopy also enables investigation of 

motions at many atomic sites simultaneously, while methods such as stopped-flow 

fluorescence, fluorescent resonance energy transfer, and atomic force microscopy 

report on global motions of the molecule or dynamics at a particular reporter site. 

Furthermore, the connections between the coherences which give rise to peaks in an 

NMR spectrum and structural aspects of proteins is well established due to the 

extensive use of NMR in protein structure determination. Much insight into protein 

dynamics has been gained by NMR relaxation experiments.  

There are a multitude of NMR experiments for studying motion in proteins. In 

particular, 15N auto-relaxation, cross-relaxation, and cross-correlation experiments 

(e.g. 15N R1 and R2, 15N{1H} NOE, and cross-correlation rates) have been shown to 

give useful information about backbone motions on the ps-ns timescale. R2 is also, in 

principle, sensitive to motions on slower timescales. These experiments have their 

origins along with the very first NMR experiments 24, 8 and development of new 
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techniques and improvements to existing sequences are still underway (e.g. 25,26). 

There are a variety of methods for the derivation of motional parameters from spin-

relaxation data. Among these, the most frequently employed are the model-free 

analysis of Lipari and Szabo27,28, the extended model-free analysis proposed by Clore 

et al. 29, and spectral density function mapping 30,31.  Model-free analyses involve 

fitting relaxation rates to a specific form of the spectral density function (a sum of 

Lorentzian functions) involving parameters which describe the amplitude and 

timescale of the motions of the backbone bonds. The model-free parameters are 

extracted by minimization of a target function. It is termed “model-free” since it 

involves no assumptions about the model of motion (wobbling in a cone, Gaussian-

angular-fluctuations about specific orientations, jumping from site-to-site, etc. are 

examples of specific models of motion) or the specific trajectory of the bond vector, 

though it does assume a specific approximate form of the correlation/spectral density 

function of the motion (see Chapter 2). Model-free parameters have been reported for 

around 100 proteins, and have given insight into the dynamics involved in several 

important biological processes by providing a picture of local motions. 

Lipari-Szabo model-free parameters from 15N relaxation rates report on the 

timescale and degree of spatial restriction of the backbone N-H bond. These 

parameters reflect all motions of this bond on the ps-ns timescale–including very fast 

vibrational motion and fast bond librations27,28, though it has been shown that the 

largest contribution to this motion comes from the motions of the peptide planes and 

larger-scale segmental motions 32,11. In principle, these parameters contain a wealth of 

information about the individual or concerted motions of all the peptide planes in a 
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protein and can be used to test different motional models, to estimate conformational 

entropy, to validate molecular dynamics simulations, etc. However, in practice, there 

are many known sources of assumptions/errors/ambiguities in fitting relaxation data 

to an analytical form of the spectral density function, and these errors frequently 

preclude quantitative analysis of model-free parameters.  

15N spin relaxation rates are sensitive to any motion that modulates the 

effective magnetic field at the location of the 15N nucleus. This includes all 

reorientations with respect to the external magnetic field, any motion that modulates 

the through-space dipolar interaction with other nuclei, and any motion which causes 

interference of this dipolar interaction with other relaxation mechanisms (see Chapter 

4)33. Deconvolution of the effects of these motions into conceptually tractable parts 

(e.g. conformational exchange, overall tumbling, local motion of peptide planes, fast 

bond librations) can lead to uncertainty in motional parameters. Overall rotational 

diffusion is generally a larger cause of spin relaxation than fast, local motion of 

individual bonds or collective motions of groups of atoms 34, therefore the correct 

deconvolution of the overall tumbling is essential to an accurate picture of local 

motion.  

An additional source of inaccuracy of NMR relaxation derived motional 

parameters comes from inaccurate estimation of interaction parameters that influence 

relaxation. The values of these parameters are not known with adequate precision for 

relaxation analysis, and variation from residue-to-residue of these interaction 

parameters is rarely taken into account. This will be discussed in the following 

section.  
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1.3 Chemical Shielding Anisotropies in Proteins and Peptides 

1.3.1 Chemical Shieldings and their Relationship to Protein Structure 

Variation in the chemical shielding of nuclei makes NMR spectroscopy of 

complex biomolecules like proteins possible. It is this variation which causes 

magnetically inequivalent nuclei in a molecule to be distinguishable in an NMR 

spectrum.  The field felt by any given nucleus is slightly different from the applied 

magnetic field due to charged electrons circulating the nucleus.  This difference in the 

field felt by a particular nucleus in a molecule and that which would be felt by a 

theoretical bare nucleus (i.e. the applied external field) is called the chemical 

shielding of the nucleus. This quantity can be described as a fraction of the applied 

magnetic field, varies from site to site within the molecule, and contains a wealth of 

information for molecular structure prediction.  The chemical shielding, represented 

by σ, is observed through the NMR chemical shift, δ, which is related to the chemical 

shielding by the relationship: 

σσ
σ

σσ
δ −≈

−

−
= ref

ref

ref

1
)(

,       (1.3.1) 

where σref is the chemical shielding of the same nucleus in a reference compound. 

NMR chemical shifts are extremely sensitive to the chemical environment of 

nuclei and change with temperature, pH, molecular geometry, and in the presence of 

intermolecular interactions. The strong dependence of isotropic chemical shifts on 

protein structure has long been recognized—in particular, the correlation between 1Hα 

chemical shift and secondary structure has been studied, the periodicity of the HN 

chemical shift has been shown to reflect hydrogen bond length35, and the secondary 
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13Cα and 13Cβ chemical shifts have been shown to correlate with dihedral angles36,37. 

Computer programs have been developed that obtain backbone torsion angle 

restraints from 1Hα and 13Cα , and the very useful algorithm TALOS by Cornilescu et 

al.38 searches an empirical database for both sequence and chemical shift homology, 

and uses this information to predict backbone angles for protein structure calculation. 

Changes in 15N and 1H isotropic chemical shifts derived from conformational 

exchange contributions to relaxation rates have even been used to solve the structures 

of  “invisible”39 extremely low-population molecular states40.  

1.3.2 The Chemical Shielding Tensor  

The above discussion concerns what is termed the isotropic chemical shift. In 

most solution NMR experiments, the motion of the molecule averages the chemical 

shielding tensor of the nuclei under study so that only the isotropic value of the 

chemical shift remains.  However, the local electronic environment of a nucleus is 

almost never isotropic, and the anisotropy of the chemical shielding tensor is an 

important source of nuclear spin relaxation. The expression for this chemical 

shielding anisotropy (CSA) in terms of the principal components (eigenvalues) of the 

chemical shielding tensor is: 

[ ] 2/1222 )( zzyyzzxxyyxxzzyyxx σσσσσσσσσσ ++−++=∆       (1.3.2) 

1.3.3 Chemical Shielding Tensors in Proteins and Peptides  

Much is known about chemical shift tensors in molecules. 13C, 1H, 19F, 32P 

and 15N shielding tensors have been measured from solid state NMR and theoretically 

determined from quantum chemical calculations. 
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There is considerable debate surrounding both the variability and the average 

values of the 15N chemical shielding anisotropy in proteins. Previous to the 1990’s, 

most experimental information on the 15N CSA had come from solid-state NMR 

powder patterns or from rotation studies by solid-state NMR on crystals of small 

peptides (although only one CSA tensor has so far been reported from solid-state 

NMR on a single crystal 41). These studies provide a relatively narrow distribution of 

CSA’s, with a mean value of -156.0 ppm and a standard deviation of ~5.7 ppm 34. 

Table 1.3.1 shows a selection of solid state NMR measurements of 15N chemical shift 

tensors in peptides. The information in this table is taken from 34.  
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Table 1.3.1 15N chemical shift tensor principal values from solid-state NMR measurements. 
The information for this table was taken from Korzhnev (Korzhnev et al., NMR studies of 
Brownian tumbling and internal motions in proteins, Prog. in NMR Spect. 2001). See 
legend below for more information
Sample δxx
a δyy

a δzz
a δiso

b βc ∆δ=−∆σd

Ala*Ala 65.3 78.1 215.5 119.6 12.6o -144 
AcGly*AlaNH2 44.6 85.1 229.4 119.7 17.6o ± 2o -164.55 
(*Ala)n α -helix 47.7 64.1 213.7 108.5  -157.8 
(*Ala)n-5 β -sheet 53.7 71.4 210.7 111.9  -148.2 
(*Ala,Leu)n α -helix 44.7 66.6 213.7 108.3  -158.1 
(*Ala,Asp (OBzl))n α -helix 47.7 68.4 217.7 111.3  -159.7 
(*Ala,Glu (OBzl))n α -helix 48.7 66.4 215.7 110.3  -158.2 
(*Ala,Glu (Ome))n α -helix 46.7 67.8 214.7 109.7  -157.5 
(*Ala, Val)n β-sheet 44.7 72.1 211.7 109.5  -153.3 
(*Ala, Ile)n β -sheet 49.7 72.7 209.7 110.7  -148.5 
(*Asp (OBzl))n-1 αR –helix 48.7 62.5 214.7 108.6  -159.1 
(*Asp (OBzl))n-2 αL-helix 50.7 58 210.7 106.5  -156.35 
(*Asp (OBzl))n-2 αL-helix 49.7 57.1 211.7 106  -158.3 
(*Asp (OBzl))n-2 αL-helix 50.7 66.1 212.7 109.7  -154.3 
N-Ac*Gly 37.0 82.8 220.4 113.4 25.5o ± 1o -160.50 
(*Gly) collagen powder 42.3 67.0 223.4 110.9 24.5o ± 1o -168.75 
(*Gly) collagen oriented 42.3 67.0 223.4 110.9 24.5o ± 2o -168.75 
(*Gly) collagen 45.6 67.6 216.8 110.0 23o -160.20 
(*Gly) maganine 42.0 73.2 215.0 110.1 22o ± 2o -157.40 
Boc-(Gly)2 *Gly-OBzl 55.1 62.1 223.0 113.4 22o ± 1o -164.40 
Boc-(Gly)2 *Gly-OBzl 36.4 83.4 220.4 113.4 24o ± 1o -160.50 
Gly*Gly 46.8 79.7 220.8 115.8  -157.55 
Gly *Gly·HCL 57.3 59.8 210.0 109.0 18.6o ± 2o -151.45 
AcGly *GlyNH2 40.7 64.2 210.0 105.0 17.6o ± 2o -157.55 
Gly *Gly·HCL·H2O (powder) 58.5 64.1 209.5 110.7 25o ± 5o -148.20 
Gly *Gly·HCL·H2O (crystal) 60.3 70.9 215.9 115.7 21.3o -150.30 
(*Gly)n β-sheet 45.7 61.4 205.7 104.3  -152.15 
(*Gly)n 310-helix 49.7 62.8 214.7 109.1  -158.45 
(*Gly, Ala)n α -helix 44.7 57.6 212.7 105.0  -161.55 
(*Gly,Ala)n β -sheet 39.7 66.0 206.7 104.1  -153.85 
(*Gly,Leu)n α -helix 45.7 61.7 210.7 106.0  -157.00 
(*Gly,Leu)n β -sheet 40.7 66.2 206.7 104.5  -153.25 
(*Gly, Val)n β -sheet 39.7 74.6 203.7 106.0  -146.55 
(*Gly, Ile)n β -sheet 45.8 68.3 209.7 108.6  -152.65 
(*Gly,Lys(Z))n α -helix 40.7 69.2 208.7 106.2  -153.75 
(*Gly,Glu(OBzl))n α -helix 47.7 61.2 210.7 106.5  -156.25 
(*Gly,Sar)n 38.7 65.8 204.7 103.1  -152.45 
(*Phe) maganine 55.0 80.0 220.0 118.3 22o ± 3o -152.5 
AcGly *TyrNH2 52.1 77.1 209.3 112.8 19.6o ± 2o -144.70 
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a Here δzz > δyy > δxx are the frequency ordered principal values of the chemical shift tensor, and 
σzz < σyy < σxx (i.e σzz is the least shielded component) are the principal values of the 
corresponding shielding tensor. The relationship between these two conventions for the tensor is 
σ =−(δ−1 ·δiso) where δ is the chemical shift tensor and σ is the chemical shielding tensor. b The 
isotropic chemical shift δiso=(δxx+δyy+δzz)/3.c The angle between the least shielded axis, δzz, of the 
CSA tensor and the N-H bond.d ∆δ is the chemical shift anisotropy and is defined as 
∆δ=(δxx+δyy)/2-δzz. The chemical shielding anisotropy is therefore given by ∆σ=-∆δ=σzz-
(σxx+σyy)/2. 



Based on these type of measurements, early relaxation studies of backbone 

dynamics in proteins commonly assumed a value for the 15N CSA of -160 ppm in 

conjunction with a NH bond length of 1.02 Å42, though it was noted 43,44 that a value 

of -170 ppm provided a better fit to relaxation data in protein systems. CSA values 

can in principle be measured from changes in chemical shifts induced by weak 

alignment in a magnetic field, but the only studies thus far have not been able to 

distinguish site-specific CSA’s due to limited precision of available data, but have 

reported an average CSA value of -173 ppm 45 in the protein Ubiquitin and between -

172.1 and -174.4 in hen Lysozyme 46.  

Quantum mechanical calculations, however, indicate that the amide 15N CSA 

tensors in a protein depend on several parameters, including local backbone geometry 

and hydrogen bonding, which may vary substantially from residue to residue within a 

protein 47 48. Stretching of the H-N bond, caused by hydrogen bonding in a peptide 

has previously been studied by ab initio calculation. These effects on the CSA are 

small, ~3-9 ppm 47,49, when compared with the dependence of the 15N CSA values on 

backbone conformation from a similar calculation, which was ~30-40 ppm 47. A 

recent quantum mechanical calculation study of a series of model dipeptides and Ala-

X and X-Ala sequences (where X is any amino acid) in both α-helical and β-sheet 

conformations showed that the principal values of the tensor were significantly 

affected by hydrogen bonding at both the carbonyl group and the N-H bond, by the 

adjacent residues in the polypeptide sequence, and by backbone conformation 48.  

Interestingly, the magnitudes of the changes in the orientation of the tensor due to 

these effects were found to be insignificant compared to the changes in the principal 
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values. All of these calculations indicate that the variability of 15N CSA’s observed in 

peptides may not be fully representative of 15N CSA’s in proteins.  

Recently, several methods for measurement of 15N chemical shift anisotropies 

in solution have been proposed 50-56. Thus far, residue-specific solution measurements 

of the 15N CSA from relaxation measurements have been reported in three proteins: 

ubiquitin 50-52,54-57, ribonuclease H 53, and a small alpha helical protein, C12A-p8MTCP1 

58-60. These measurements make use of a variety of auto-, cross- and cross-correlation 

relaxation rates to determine the CSA. In all of these studies, the precision of the 

available relaxation data has been the limiting factor in determining if the distribution 

of 15N CSA’s measured in solution for proteins agrees with that which has been 

reported from solid-state NMR studies on peptides. Specifically in question is 

whether or not there is significant variability in the 15N CSA from residue-to-residue 

(or site-to-site) within proteins, if this variability can be related to protein structure 

and/or chemistry, and if this relationship matches that predicted by quantum 

mechanical calculations. 

Finding answers to these questions about the 15N CSAs also has important 

implications to our understanding of protein dynamics. Though important dynamic 

contributions to the free energies of reactions of biomolecules need not necessarily be 

the result of motion on the same timescale as the reaction , most biological interest is 

clearly focused on motions on the so-called “functional” timescale (i.e. on the µs-ms 

timescale range) where most biochemical processes occur. However, most simulation 

techniques (i.e. molecular dynamics) currently cannot adequately sample these long 

timescale motions and there is no way to effectively calibrate simulations on these 
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timescales. The calibration of molecular dynamics simulation of motion in proteins 

must therefore come from comparison of predicted fast (ps-ns) timescale motions 

with experiment. 15N NMR spin relaxation is an excellent method for experimental 

measurement of motions in proteins on this timescale, however CSA variability 

makes a significant contribution to experimental dynamic parameters derived from 

relaxation studies and, due to the computational cost of quantum mechanical 

calculation of large molecules, the CSA variability cannot be accurately simulated in 

even small proteins with reasonable computation times. Therefore quantitative 

calibration of MD simulation with experimental parameters derived from 15N spin 

relaxation requires experimental determination of the variability of the 15N CSA. 

Finally, knowledge of the 15N CSA values is important for the TROSY 

(Transverse Relaxation Optimized SpectroscopY) technique which reduces R2 

relaxation by making use of the component of a 15N-1H multiplet in which the CSA 

and dipolar relaxation mechanisms (see Chapter 2) partially cancel each other. 

Reduced R2 relaxation results in narrower and higher intensity signals in NMR 

spectra since the linewidths of NMR signals are proportional to R2. The TROSY 

technique is of particular utility in large molecules where the signals are significantly 

broadened because R2 is proportional to the molecule’s molecular weight. 

1.3 Scope of Present Work 

 We would like to use 15N NMR spin relaxation experiments measured at 

several field strengths to quantitatively evaluate the amplitudes and timescales of 

motions in a small protein, the third immunoglobulin binding domain of protein G 

(GB3) on the ps-ms timescale. Since the 15N CSA is a significant contribution to spin 
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relaxation, and the range of residue-to-residue variation in this parameter is still in 

question, it is necessary to measure the site-specific values of the 15N CSA in GB3 

prior to a quantitative analysis of the local motion. Currently solution NMR 

relaxation rates are the only method for experimental determination of the 15N CSA at 

all backbone sites in a protein. Such methods for determination of this parameter 

measure the field dependence of combinations of autorelaxation and/or CSA/dipolar 

cross-correlation relaxation rates, or use combinations of many cross-correlation 

rates, and it is of interest to see if CSAs measured using different methods agree. 

Since conformational exchange contributions to R2 (in the fast exchange limit) have 

the same field dependence as terms proportional to the 15N CSA, it is necessary to 

unambiguously identify residues involved in such motions and to quantify the 

magnitude of the exchange contributions. Furthermore, since the overall tumbling of 

a molecule is the strongest generator of spin relaxation, and since we would like to 

use both methods for CSA determination that involve particular models of motion and 

model-independent methods, any anisotropic motion must be correctly deconvolved 

from relaxation rates prior to the analysis of the 15N CSAs and prior to analysis of the 

the local motion. Any neglected anisotropy of the overall tumbling could potentially 

be misattributed to the CSA or to local motion, by a Lipari-Szabo analysis. 

1.4 Specific Aims 

15N CSA/dipolar cross-correlation rates (CCRs) will be of importance to three 

aspects of the above general project. These rates are important for identifying 

residues involved in conformational exchange motions, for determining the overall 

diffusion tensor of the molecule, and for measurement of site-specific CSAs. 
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Currently available methods for measurement of 15N CSA/dipolar cross-correlation 

rates (CCRs) in proteins rely on two (or more) experiments to measure build-up and 

decay of the involved coherences. Such “indirect” methods for measuring the CCR 

are potentially subject to inaccuracy due to experimental differences (in pulses or 

delays) between the two (or more) experiments. Direct methods, which measure the 

CCR from the ratio of the two components of the 15N doublet in a H-coupled 1H-15N 

HSQC-type experiment would not be subject to such inaccuracy. The application of 

such methods to biological macromolecules, however, could be complicated by signal 

overlap in the coupled 2D spectra, which may be particularly severe in the case of 

HSQC spectra of macromolecules with molecular weights greater than 10 kDa. 

Therefore schemes for spectral simplification that can be applied to H-coupled 1H-15N 

HSQCs are necessary, and these schemes must be tested within the context of CCR 

measurement to ensure that such schemes can be safely applied without introducing 

any scaling factors to measured CCRs. Here we present two such methods and test 

them on the GB3 domain: the IPAP method of spectral simplification proposed by 

Ottiger and Bax 61, and selection of the coherences corresponding to the individual 

doublet components before the CCR relaxation period by means of the spin-state 

selective S3E element proposed by Sørensen et al. 62.  

  The overall rotational diffusion of the molecule is a potential source of 

anisotropic motion which might have a site-specific contribution to 15N relaxation 

rates that could be misattributed to site-specific variation in the 15N CSA by model-

dependent methods for CSA determination or to conformational exchange motion in a 

standard Lipari-Szabo analysis of local motion. The overall rotational diffusion tensor 
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and correlation time of the GB3 domain will therefore be determined from 15N 

relaxation rates (R1, R2, 15N{1H} NOE) and from cross-correlation rates (hz and hxy, 

see Chapter 4). GB3 represents a particularly stable protein domain, with virtually no 

tendency to aggregate at high concentration, therefore the measured rotational 

diffusion parameters can be compared with the predictions of theoretical 

hydrodynamic models.  

A previous analysis of 15N relaxation rates in the GB1 domain reported 

elevated R2 values in the protein’s α-helix and attributed this elevation to exchange 

broadening. However, this analysis assumed an isotropic model for the overall 

diffusion of the GB1 domain, and it has since been shown 44,63,64 that neglecting 

significant rotational anisotropy can result in spurious identification of 

conformational exchange motion. A precursory examination of the protein data bank 

structure of the GB3 molecule reveals that the molecule is somewhat elongated in the 

direction roughly parallel to that of the helical axis of its α-helix. The principal values 

of the inertia tensor of GB3 calculated from the structure display anisotropy of Ixx/Izz 

=1.8, therefore it is likely that the diffusional anisotropy is significant. Furthermore 

the principal axis of the highly axially symmetric inertia tensor lies roughly parallel to 

the helical axis of the α-helix. To a very rough approximation, it is expected that the 

symmetry axis of the diffusion tensor be co-linear to the symmetry axis of the inertia 

tensor; such a condition would result in elevated R2 rates in the helix, since R2 is 

inversely proportional to the rate of tumbling (on the timescale expected for a 

molecule of GB3’s size), and, since the NH vectors in an α-helix are oriented 

approximately parallel to the helical axis and thus approximately parallel to the axis 
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of fast rotational diffusion. The diffusion and inertia tensors of GB3 and GB1 are 

expected to be very similar (the two domains have 96% sequence homology and 89% 

sequence identity), therefore it is possible that the elevated R2 rates observed in the 

helix of GB1 were due to rotational anisotropy rather than exchange broadening. This 

will be explored since, as mentioned above, it is necessary to quantify all exchange 

motion in the GB3 domain prior to an analysis of site-specific values of the 15N CSA. 

A comprehensive study of the 15N chemical shielding anisotropy in the GB3 

domain will be conducted using a combination of 15N relaxation and 15N CSA/dipolar 

cross-correlation measurements over a range of magnetic fields. This study will use 

both model-of-motion-independent methods and a method which involves a fit to a 

Lipari-Szabo “model-free” approximation of the spectral density function. The 

robustness of deriving the CSA from such a fit will be examined. The variability of 

the 15N CSA from each of these methods will be determined taking into account their 

different experimental uncertainties. 

Novel 15N relaxation rates in a protein in D2O from direct 15N detection will 

be presented and demonstrated on the GB3 domain. The proposed direct 15N-

detection experiments offer increased relative sensitivity to 15N CSA values and could 

provide a useful tool for accurate measurements of these parameters in proteins. In 

addition, by sampling the spectral density function at the frequencies ωD and ωD±ωN 

these measurements may provide potentially useful information about protein 

motions in the nanosecond time range not available from the conventional 

measurements in NH systems. Quantum mechanical ab initio calculations at the 

B3LYP6-311+G(2d,p) level will be conducted on the N-methylacetamide molecule in 
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the gas phase to explore the sensitivity of the 15N chemical shielding anisotropy to 

isotopic substitution of the directly bound hydron. 

Finally, motional parameters describing the amplitude and timescales of 

motions of the peptide planes in the backbone the GB3 domain will be estimated, 

using the measured diffusion tensor and chemical shift anisotropies. These motional 

parameters will be compared with motional parameters derived assuming isotropic 

diffusion and standard values for the 15N CSA. 
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Chapter 2: NMR Relaxation Theory 

Phenomenological descriptions of spin-relaxation accompanied the very first 

demonstrations of nuclear magnetic resonance 24 8. Spin-relaxation determines the 

intensities and linewidths of signals in NMR spectra, and many of the inventers of 

NMR 8,24,65-68, addressed various issues related to causes of these phenomena. 

Bloombergen, Purcell and Pound first presented the notion of “motional 

narrowing”—the idea that the fast tumbling of molecules explains the sharper lines in 

NMR spectra in gasses and liquids compared to solid-state NMR8. Van Vleck further 

developed this theory 69. Overhauser explained phenomenologically the dependence 

of the steady state NOE on motion 66 and Pines and Slichter further developed this 

theory 68. Abragam and Pound 65 and Solomon 67 developed expressions for R1 and 

R2, respectively, for two spin systems, modeling the spin-system as reorienting 

randomly and isotropically. Woessner extended the expressions for R1 and R2 to 

describe systems in which the molecular tumbling was anisotropic, and introduced the 

possibility of internal (local) motions of the inter-spin vector with respect to the 

molecular frame 70 71. Lipari and Szabo developed a very useful description of spin-

relaxation which allows characterization of amplitudes and timescales of motions 

faster than the overall tumbling at each site in a molecule by two motional-model-

independent parameters 27; as will be discussed further here and in subsequent 

chapters, these model-free parameters provide a physical picture of molecular 

motions.  

Here I illustrate how 15N spin relaxation rates in 15N-1H isolated spin pairs can 

be derived from the so called “master equation” of semi-classical spin relaxation 
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theory. The treatment here follows closely the work of Slichter 72, as well as two 

recent reviews 34,73. In final form, the expressions for the 15N relaxation rates (Eqs. 

2.5.1-2.5.10) contain information about the motions of 15N-1H bonds through their 

sampling of the spectral density functions. The 15N spin relaxation rates therefore, 

contain information about the dynamics of the polypeptide chain.  

2.1 The Lioville-von Neumann Equation 

The evolution of a spin-system, considered quantum mechanically, is 

described by a density operator, σ, with time-dependence given by the Liouville-von 

Neumann equation: 

],[ σσ Η
−

=
h

i
dt
d          (2.1.1) 

where the Hamiltonian can be split into two parts: 

)(10 tΗ+Η=Η         (2.1.2) 

the first of which, is time-independent, and the second, 0Η )(1 tΗ  is a randomly 

fluctuating perturbation to , such that 0Η 0)(1 =Η t  where the bar indicates a time-

average. In the so-called interaction representation, the Liouville-von Neumann 

equation is: 

]~),(~[~
1 σσ ti

dt
d

Η
−

=
h

,        (2.1.3) 

where the bar represents a time average for one member of the ensemble of spins (or 

according to the ergodic hypothesis equivalently represents an ensemble average over 

all the spins). Additionally, any operator in the interaction frame, Q~ has the 

relationship to Q in the stationary frame given by: 

 23 
 



titi

QeeQ 00~ Η−Η
= hh .         (2.1.4) 

The solution to the Liouville-von Neumann equation is given by: 

∫ Η−=
t

dtttit
0

1 ')]'(~),'(~[)0(~)(~ σσσ
h

.      (2.1.5) 

However this cannot be solved in this form as )'(~ tσ in the commutator under the 

integral is unknown. It can be approximated by: 

∫ Η−=
t

dttit
0

1 ')]0(~),'(~[)0(~)(~ σσσ
h

      (2.1.6) 

if  which implies 01 )( HtH << )(~ tσ  changes slowly with time. A second-order 

approximation is given by: 
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∫∫ ΗΗ−= σσσ
h

.   (2.1.7) 

This amounts to a perturbation expansion approach to the solution, placing the entire 

expression for )(~ tσ in Eq. 2.1.5, inside the commutator in Eq. 2.1.5. 

2.2 Hamiltonian for Spin Relaxation  

For 15N-1H spin systems, the time dependent perturbation )(1 tΗ to the 

stationary Hamiltonian experienced by the 15N nucleus is caused by fluctuation of the 

dipolar interaction with the 1H spin and by fluctuation of its chemical shielding. 

is therefore given by two terms, one arising from the dipole-dipole interaction 

between the 

)(1 tΗ

15N and HN nuclei, , and a second arising from the anisotropy of 

the nitrogen chemical shielding, : 

)(1 tDDΗ

)(1 tCSAΗ

)()()( 111 ttt CSADD Η+Η=Η ,              (2.2.1) 
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where the dipole-dipole and 15N chemical shielding anisotropy terms in the 

Hamiltonian in the laboratory frame (the frame with z-axis in the direction of the 

external magnetic field, Bo) are given by: 

( ))ˆ)(ˆ(32)(1 NHNH
DD rNrHNHdt ⋅⋅−⋅=Η

rrrr
,                                         (2.2.2) 

and 

NBN
CSA

rr
⋅⋅=Η σγ 0 .                                   (2.2.3) 

Here d is the dipole-dipole interaction constant, and depends 

on the gyromagnetic ratios of both 

)8/( 3
0 NHNH rd πγγµ h−=

15N and 1H, γN and γH, and the distance between 

the nuclei, rNH. H
r

 and N
r

are the angular momentum operators for the nitrogen and 

proton spins and  is the unit vector along the line connecting the nitrogen and 

proton nuclei, i.e. 

NHr̂

NH

NH
NH r

rr
r

=ˆ .  

In the dipolar interaction frame, the principal axes frame (PAF) with Z axis along the 

N-H bond, becomes: )(1 tDDΗ

( )zz
DD NHNHdt 32)(1 −⋅=Η

rr
.      (2.2.4) 

 in Eq. 2.2.3 σ  is the 15N chemical shielding tensor which describes the electronic 

environment of the nitrogen nucleus. If σ  is symmetric it has real eigenvalues and 

orthogonal eigenvectors and thus the transformation that diagonalizes σ  is a rotation 

to the chemical shielding interaction frame, the PAF of the chemical shielding tensor, 

where σ  is diagonal. In this frame, ∆σ is the anisotropy of this tensor, abbreviated 

CSA, and given by:74  
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2/1222 )( zzyyzzxxyyxxzzyyxx σσσσσσσσσσ ++−++=∆  ,     (2.2.5) 

and the rhombicity of the chemical shielding tensor is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−
=

σ
σσ

ξ xxyy ,         (2.2.6) 

where σxx, σyy, and σzz are the eigenvalues of the tensor in its PAF. contains 

both time-independent and time-dependent terms, but only the terms from the 

anisotropy contribute to relaxation since a nucleus with isotropic chemical shielding 

does not experience fluctuations in its magnetic environment due to rotation, though 

fluctuations in the diagonal terms contribute to R

CSAΗ

ex. CSAH can be separated: 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

∆
+⋅

++
=

++=Η

)2(
33 yyxxzz

zzyyxx
N

zzzzyyyyxxxxN
CSA
PAF

NBNBNBNB

NBNBNB

σσσσ
γ

σσσγ

rr .               (2.2.7) 

Note that the part contributing to relaxation can be written in a form identical to that 

of the dipolar Hamiltonian (Eq.2.2.4): 

( zzN
CSA NBNBt 3

3
)(1 −⋅

∆
−=Η

rr )σγ .      (2.2.8) 

The CSA interaction constant, c is given by: 

 c = γNBo∆σ/3 = -ωN ·∆σ/3.        (2.2.9) 

Both of the time-dependent Hamiltonians in Eqs. 2.2.4 and 2.2.7 can be 

separated as: 

∑=
m

mm ttFHNTtH ))(),((),()(1 ϕθ        (2.2.10)  

where the Tm are spin operators acting on the spin variables (operators N, H), and the 

Fm are spatial functions of the time-dependent angles ))(),(( tt ϕθ defining the 
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orientation of the interaction vector (either the bond vector or the symmetry axis of 

the CSA tensor) with respect to the laboratory frame (defined as the frame with z-axis 

along the external field). For both the dipole-dipole and CSA interactions, the 

functions Fm are proportional to second rank spherical harmonics Y2,m, the Tm and Fm 

are given by in Table 2.2.1 below: 

 

 

Dipole-dipole interaction: 
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where θDD(t) and ϕDD(t) define the orientation of the bond vector (dipole-dipole 

interaction vector) in the laboratory frame. For an axially symmetric chemical shift 

anisotropy interaction, θCSA(t) and ϕCSA(t) define the orientation of the symmetry axis 
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of the CSA tensor in the laboratory frame. For a rhombic CSA tensor, the tensor is 

expressed as the sum of two axially symmetric tensors 75. 

2.3 Separation of Spin Operators and Spatial Functions 

 In general, any perturbing Hamiltonian can be written as a sum of terms from 

Table 2.1.1, where the sum over i indicates over all possible interaction (i.e. dipolar 

and CSA) terms: 

∑∑=Η
i

i
m

i
m

m
tFTt )()(1 .        (2.3.1) 

In the interaction representation, each of the spin operators rotates with a 

characteristic frequency: 

i
mT

><>=>=<< −Η−Η
βαβαβα βα ωω |||||~| )(00 i

m
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i
m

ti
i

m TeeTeT hh    (2.3.2) 

so that: 

i
m

tii
m TeT

i
mω=~ .         (2.3.3) 

The random spatial functions, average to zero so that )(tF i
m 0)(1 =Η t , and have time 

independent ensemble averages. One can write products of the in terms of time 

correlation functions: 

)(tF i
m

|)'(|)'(*)( '' ttCtFtF mm
i

m
i

m −= ,       (2.3.4) 

where  has the properties that, )(' tCmm 0)(' =∞mmC and )()( '' ττ mmmm CC −= . In terms 

of the time correlation functions, Eq. 2.1.7 can be written: 
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          (2.3.5) 
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where the integral in the instance m=m’ is performed by a change of variables, 

:''' tt −=τ  
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          (2.3.6) 

If decays with some characteristic time, τmmC c, so that )0()( mmcmm CC ≈< ττ , and 

0)( ≈>> cmmC ττ , and if the time, t, can be chosen so that the change in σ~ during t is 

small, and that τc<t then: 
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          (2.3.7) 

This then serves as a definition of the spectral density function, : )( i
m

i
mmJ ω

ττττω τωτω deCdeCJ
i
m

i
m i

mm
i

mm
i
m

i
mm )(2)()(

0
∫∫
∞+∞

∞−

== .    (2.3.8) 

For m ≠ m’, 
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          (2.3.9) 

If the frequency difference between the two states m and m’ is large, the terms 

proportional to Jmm will be larger than terms proportional to Jmm’. In terms of these 

spectral density functions, Eq, 2.3.5 now gives the master equation for a density 
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operator subject to a randomly fluctuating perturbation: 

)()]]~)0(~([,[
2
1)0(~)(~~

*
'2 mmm

m
eq

j
m

i
m JTTi

t
t

dt
d ωσσσσσ ∑ −−=

−
≈

h
,       (2.3.10)  

where we have chosen the evolution time, t, such that the change in the density matrix 

is small. Then the evolution of any observable, Q, is given by: 
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The i=j terms are autocorrelation functions and give rise to autorelaxation rates while 

the i≠j terms give rise to interference effects which are termed cross-correlations 

between relaxation pathways and contribute to cross-correlation rates (CCRs). 

2.4 Correlation and Spectral Density Functions 

For the general case of mono-exponential decay of the correlation function 

with one time-constant, as: 

ceFtFtFC mmmmm
ττττ /2)(*)()( −=+=      (2.4.1) 

the spectral density function can be calculated as: 
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Therefore, when the decay of the correlation function is described by a mono-

exponential function with characteristic time, τc, the spectral density function is given 

by: 

22

2

1
2)(

c

c
mm FJ

τω
τ

ω
+

=        (2.4.3)  

This then, is the spectral density for the reorientation of an interaction with 

respect to the magnetic field. Eq. 2.4.3 can be used to describe relaxation in a 15N-1H 

spin pair, where the spins are rigidly attached to a spherical molecule, with no motion 

of the relaxation interaction vector (the NH bond or the symmetry axis of the CSA 

interaction) except for that due to the isotropic overall rotation. In this case, the bond 

vector is randomly distributed in space and  
5
12 =mF  as 

5
1* '' mmmm FF δ=  due to the 

orthogonallity properties of the spherical harmonics. In general, the spherical 

harmonic functions (as in table 2.2.1) which appear in the spatial functions are related 

to the Wigner rotation matrices by the relationship:   
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l
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m
l DlY Ω

+
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π
φθ ,     (2.4.4) 

where is a Wigner rotation matrix )()(
, R

l
nmD Ω 76 which specify transformations of 

spherical tensors under rotations, with RΩ representing the set of Euler angles 77 that 

describe the rotation ( denotes the Euler angles θ, φ, ψ).  RΩ

instlab

t
instlabq

t
instlabq DDC

→

+
→→ ΩΩ= )()()( )2(

0,
*)2(

0,
ττ     (2.4.5) 

or resetting the zero of time: 

instlabinstlabqinstlabq DDC
→→→ ΩΩ= )()()( )2(

0,
0*)2(

0,
ττ     (2.4.6) 
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where the are the set of three Euler angles that specify the orientation of the 

unit vector describing the interaction (i.e. the symmetry axis of the CSA tensor or the 

NH bond vector for the dipolar interaction) in the laboratory frame. Here the 

can specify either the transformation of the coordinates of the bond vector 

from the lab frame to its instantaneous orientation (for dipolar interactions), or the 

transformation of the symmetry axis of a CSA tensor from the lab frame to its 

instantaneous orientation (for the CSA interaction). The brackets denote an ensemble 

average over all initial, , and final, , orientations.  

instlab→Ω

instlab→Ω

0
instlab→Ω τ

instlab→Ω

For conceptual convenience, the Woessner 70 71 and Lipari-Szabo 27 

descriptions involve factorization of the correlation function into terms representing 

different transformations, e.g.: 

∑ ∑
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loclabnqloclabmq DDDDC τ ,   (2.4.7) 

where the transformation from the lab frame to the instantaneous frame has been 

conceptually broken into the transformation from the lab frame to the time-averaged 

molecular frame (designated “loc”, assumed to be represented by the protein data 

bank structure of the molecule) and another transformation from the molecular frame 

to the instantaneous orientation at time t, designated “inst”. 

At this point an important approximation is made, namely that the overall 

tumbling and local motion of the interaction vectors are essentially independent. For 

isotropic overall diffusion and local motion, this amounts to re-writing Eq. 2.4.7 as:  
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where: 
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with the correlation for internal motion given by: 
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In terms of the more familiar spherical harmonics, and in the instance of isotropic 

overall diffusion, Eq. 2.4.8 can now be simplified to: 
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In the case of anisotropic overall rotation (where the effective correlation time 

about one direction in space is faster than others) the correlation function does not 

decay as a mono-exponential function with one correlation time. For anisotropic 

overall diffusion and local motion, the correlation function can be factored as: 
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        (2.4.12) 

Here, “dif” designates the PAF of the overall rotational diffusion tensor of the 

molecule. When the local motion is ignored, the coordinates in the average molecular 

frame (x, y, z) are related to the coordinates in the diffusion tensor frame (xd, yd, zd) by 

the simple rotation: 
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where the rotation matrix, ),,( ΨΘΦR , is given by: 
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         (2.4.14) 

where ={Φ, Θ, and Ψ} are the Euler angles relating the PAF of the diffusion 

tensor to the PAF of the averaged molecular reference frame. In the case of axial 

symmetry of the overall diffusion, Woessner showed that the spectral density function 

is given by: 
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Where the and are given by: ax
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             (2.4.17) 

The and are the principal components of the rotational diffusion tensor.  ||D ⊥D

For a molecule which may be modeled by a completely anisotropic diffusion 

tensor, the spectral density is given by: 
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with and  where by 

definition ( ≤ ≤ ). The A

3/)( zzyyxxiso DDDD ++= 3/)(2
zzxxzzyyyyxx DDDDDDD ++=

xxD yyD zzD i’s in Equation 2.4.18 are functions of the angles 

between the NH vectors and the principal axes of the diffusion tensor, such that: 
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          (2.4.20) 

where  22/)( DDDD isoisojjj −−=δ  (j = x, y, z).     (2.4.21) 

In the Lipari-Szabo approximation (also termed the “model free” 

approximation) the correlation time for internal motion, )(τIC , is approximated with 

a single exponential decay which agrees with Eq. 2.4.10 at τ = 0 and at τ = ∞, and 

bounds a region of the same area as bounded by Eq. 2.4.10 such that:  

( )ec eCCCeC IIII
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5
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The τ=0 limit of Eq. 2.4.10 is: 

               (2.4.23) 1)0( =IC

The ∞→τ limit depends on the specific model of motion, but is assigned such 

that , so that, in the Lipari-Szabo expansion with isotropic overall motion, 2)( SCI ≡∞

)(τC is approximated as: 

( )ec eSPSeCI
ττττ θτ /2

2
2/ ))(cos(

5
1)( −− −+=                (2.4.22) 

Here S is called the order parameter, and describes the degree of spatial restriction of 

the interaction vector such that S=1 corresponds to a single orientation and S=0 

corresponds to sampling of 180o of angular space, while τe is the local correlation 

time for the motion. 

2.5 Relaxation Rates  

If decoupling is properly applied during the relaxation delay and all 

interference terms are suppressed, relaxation rates, R1 and R2 contain only terms due 

to autocorrelation functions of the dipolar and CSA relaxation mechanisms. This 

means that the dipolar and CSA time-dependent perturbations to the Hamiltonian can 

be considered separately, and that the rates can be expressed as sums of spectral 

density functions for these interactions (JDD(ω) and JCSA(ω), respectively) multiplied 

by squared interaction constants (d2 and c2) with no interference terms. These rates 

are calculated using equation 2.3.12 where Q is the 15N angular momentum operator, 

Nz for longitudinal relaxation, Nx and Ny for transverse relaxation, and the are i
mT

 36 
 



given by Table 2.3.1. The spectral density functions are calculated from the time-

dependent angular functions in Table 2.1.1. i
mF

 For 15N relaxation rates in systems that can be approximated as two-spin, 15N-

{1H} spin systems: 
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When the spectral density function for the dipolar interaction, , and the 

spectral density function for the CSA interaction, , are similar enough to be 

approximated by one spectral density function, 

)(ωDDJ

)(ωCSAJ

)(ωJ , these equations reduce to their 

more familiar forms: 
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For a fully anisotropic CSA tensor, these expressions are: 
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which also reduce to Eqs. 2.5.3-4 when 
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The longitudinal and transverse 15N dipole-dipole/CSA cross-correlation rates 

(henceforth CCRs) will be discussed in Chapter 4. For completeness, these rates are 

given here in terms of the spectral density functions. The longitudinal, ηz, and 

transverse, ηxy, CCRs are given by: 
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for an axially symmetric 15N CSA tensor, and by: 

( ) ( ) ( ) ( )xxxyyzyyzzNNz PPdJ βσσβσσωωη coscos)[(2 22 −+−=       (2.5.9) 

( ) ( ) ++−= )](3)0(4][cos[
3

,,
2 N

CSADD
zz

CSADD
zzzxxzz

N
xy JJPd ωβσσωη     

( ) ( ) )](3)0(4][cos[ ,,
2 N

CSADD
yy

CSADD
yyxxxyy JJP ωβσσ +− ,    (2.5.10) 

for a fully anisotropic CSA tensor. P2(x) is the Legendre polynomial, and β is the 

angle between the unique axis of an axially symmetric CSA tensor and the NH bond 

vector, while βz, βx are the intervening angles between the principal axes (z and x) of 
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the fully anisotropic 15N CSA tensor and the NH bond vector. is the cross-

correlation spectral density function. 

)(, ωCSADDJ

 Taken together, the relationships for R1 and R2 given by Eqs. 2.5.3-2.5.4 

contain terms proportional to J(0), J(ωN), J(ωH), J(ωN+ωH), and J(ωN-ωH). Due to the 

inverse dependence on ω2 of the spectral density function (cf. Eq. 2.4.3 and 2.4.18), 

the spectral density functions at high frequencies are small relative to the spectral 

density functions at low frequencies. It has been shown 31 that since ωH≈10·ωN, to a 

good approximation: 

)()()( NHNHH JJJ ωωωωω −≈+≈       (2.5.11) 

This approximation can be improved by making the assumption 

that  where the first and second terms represent contributions to 

J(ω) from the overall and internal dynamics respectively, and requiring that the 

relationship between the spectral density at a single “equivalent” frequency, ω

2
2

1 /)( λωλω +=J

q, and 

J(ωH±ωN) is given by:  

)()(6)(5 NHNHq JJJ ωωωωω −−+=      (2.5.12) 

This relation can then be recast so that: 

ωq={5/(6/[1+(γN/γH)]2-1/[1-(γN/γH)]2)}1/2ωH,      (2.5.13) 

yielding ωq=0.870ωH. In an analogous manner, it can be shown that 78: 

)(6)()921.0(7 NHNHH JJJ ωωωωω ++−= ,    (2.5.14)  

and 

)(6)(6)()955.0(13 NHHNHH JJJJ ωωωωωω +++−= .   (2.5.15) 

 39 
 



These results are termed the reduced spectral density approximation 78,79, 

under which it follows that the approximate spectral densities at three frequencies can 

be obtained from 15N R1, R2, and NOE measurements at a single field, by: 

( )2
1 5)1()87.0( dRNOEJ HNH −= γγω     (2.5.16) 

( )
( )22

22
1

3
)87.0(921.087.07)(

cd
JdRJ H

N +
−

=
ωω     (2.5.17) 

( )
( )22

22
12

4
)87.0(87.062)0(

cd
JdRRJ H

+
−−

=
ω .    (2.5.18) 

 Alternatively, the high frequency contributions to the relaxation rates can be 

estimated using the above equations and subtracted from the measured relaxation 

rates to yield the so-called “reduced” relaxation rates52: 

R1′ = R1(1–1.249|γN/γH|(1-NOE))= 3(d2+c2)J(ωN)    (2.5.19) 

R2′ = R2 – 1.079|γN/γH|R1(1-NOE) = 0.5(d2+c2)(4J(0)+3J(ωN))    (2.5.20) 
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Chapter 3: Methods 

Since the discovery of nuclear magnetic resonance8,24, more than fifty years 

ago,  the technique has found myriad applications. The ability to observe signals from 

individual nuclei of biomolecules in solution, which is their natural environment, 

makes NMR attractive for studying structure, dynamics, and interactions in proteins 

and nucleic acids. NMR of biomolecules would likely be impossible, however, 

without several technical developments—Fourier transform spectroscopy 80, multi-

dimensional spectroscopy 81,82, pulse sequences making use of heteronuclei (pulse 

sequences making use of e.g. 13C or 15N as in all the experiments discussed below), 

and techniques for uniform and selective isotope labelling (to provide the spin ½ 

heteronuclei for these experiments)83, just to name a few. The possibility to extract 

distance information from proton NOESY spectra 84 led to the introduction of NMR 

as a technique for structural determination 85, but since NMR protein structure 

determination is accomplished by a search of the conformational space accessible to 

the polypeptide chain for the structure which best complies with experimental 

constraints, it would be impossible for large molecules were it not for the 

development of efficient and robust computational algorithms and improvements over 

the past several decades in computer speed.  

The development of experiments to measure spin-relaxation rates in proteins 

has led to the use of NMR to study motions in proteins. There exist experiments to 

measure auto-relaxation rates of 1H, 2H, and 13C and 15N nuclei in proteins, with the 

purpose of obtaining information about motions of peptide planes (13C, 15N and 1H) 
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83,86,87 and side chains (those already mentioned as well as 2H 88-91). Here I describe 

standard pulse-sequences to measure 15N relaxation (15N R1, R2 and the heteronuclear 

steady-state 15N-{1H} NOE). These rates contain contributions from ultrafast (<0.1 

picosecond) librational motion of N-H bonds which are fairly uniform throughout a 

protein, but are also sensitive to the anisotropic motions of the peptide-planes in the 

polypeptide backbone. Both the overall tumbling of the molecule and the fast (ps-ns) 

local motion of the peptide-planes contribute to these spin-relaxation rates. The 

deconvolution of these motions, and derivation of motional parameters from these 

rates will be explained and demonstrated in Chapters 4-6. Here I explain the technical 

details of the pulse sequences used for their measurement.     

In section 3.3 I discuss the biochemical methods used to express, purify, and 

characterize the GB3 domain. As mentioned above, all of the NMR pulse sequences 

used in this study rely on uniform 15N isotope labelling of the protein domain, and 

some of the experiments (see Chapters 3 and 7) require incorporation of 2H nuclei in 

either the protein or the solvent. The proper purification of the protein domain at 

sufficient concentrations (>1 mM) for good signal-to-noise ratios in NMR spectra 

with reasonable experiment times is imperative for obtaining precise relaxation rates 

(see section 3.2). The accuracy and precision of the relaxation rates is pivotal for the 

derivation of accurate and precise structural and dynamic parameters from these data.   
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3.1 NMR Pulse Sequences for Measurement of 15N Auto- and Cross-Relaxation 

Rates

3.1.1 An Introduction to NMR Pulse Sequences 

 In an NMR spectrometer, magnetization is excited (i.e. the populations of the 

spin states are perturbed from their equilibrium values) by radio-frequency pulses, 

which induce spin transitions; the magnetization is then allowed to evolve and is 

detected as a free-induction decay (FID). I will use the schematic diagram for an 

HSQC (Heteronuclear Single-Quantum Coherence) experiment shown in Figure 3.1.1 

as an illustration of a “typical” 2D NMR experiment. Here and throughout, I write the 

angular momentum operators for 1H and 15N nuclei as H and N, and develop the 

formalism in terms of these operators. However, the equations and the experiments 

are generally applicable to any heteronuclear coupled spins-½ system, so that they 

could instead be written in terms of I and S, where I and S represent generalized 

angular momentum operators for any nuclei. 

The three main steps of a 2D NMR pulse sequence are 1) excitation, 2) 

mixing, and 3) transfer and detection. These parts of the HSQC are indicated in 

Figure 3.1.1. In all steps the spin system evolves under the Zeeman Hamiltonian 

describing chemical shift and scalar coupling (J-coupling) interactions: 

zzHNzNzH NHJNH πωω 2++=Η       (3.1.1) 

where Hω and Nω are the Larmor frequencies of the H and N nuclei respectively and 

JHN is the scalar coupling constant between the H and N nuclei.  
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In the frame of reference which rotates about the direction of the external field 

(the z-axis in the laboratory frame) with angular frequency, ωx, each of the first two 

terms in the Hamiltonian can be written as: 

 zxzxrfxeff XX Ω=−=Η )( ωω ,     (3.1.2) 

where X can represent either H or N, ωxrf is the angular frequency of the rotating field 

for nucleus X, and Ωx is the chemical shift. This evolution is most conveniently 

described by a quantum mechanical “product operator” formalism, where the 

evolution of the density matrix describing the state of the two-spin system is followed 

in the basis of Cartesian components of the magnetization of the single spins H and N, 

where H and N refer to the angular momentum operators (in terms of the Pauli spin 

matrices) for the nuclei and of the two-spin order combinations HiNj., with i,j = x, y, z. 

Because the operators for the chemical shift evolution of spins H and N and the 

operator for the J-coupling evolution between spins H and N all commute with one 

another, the order in which the evolutions due to shift and coupling are considered is 

unimportant. 

For spin-operator N, the chemical shift part of the Hamiltonian has the 

form  where is the Larmor frequency of spin N. The chemical shift 

evolution during a period t is represented as: 

tN zNΩ NΩ

)sin()cos(
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tNtNN

tNtNN

NN

NxNy
tN

y

NyNx
tN

x

z
tN

z

zN

zN

zN

Ω−Ω⎯⎯ →⎯

Ω+Ω⎯⎯ →⎯

⎯⎯ →⎯

Ω

Ω

Ω

      (3.1.3) 

with identical equations for the Hi components of magnetization (where i = x, y, or z), 

substituting an H for N in 3.1.1 for proton evolution in terms of its chemical shift, 
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HΩ . For a coupled two-spin system, H and N, the part of the Hamiltonian due to 

week scalar coupling, JHN is zzHN NHJπ2 and the evolution of the Hi components of 

magnetization is described by: 

)sin(2)cos(
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2
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2

tJNHtJHH

tJNHtJHH

HH

HNzxHNy
tNHJ

y

HNzyHNx
tNHJ

x

z
tNHJ

z

zzHN

zzHN

zzHN

ππ

ππ
π

π

π

−⎯⎯⎯⎯ →⎯

+⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ →⎯

;   (3.1.4) 

and similarly for the Ni components of magnetization: 
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 The evolution of the two-spin operators is described by: 

    (3.1.6) 
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The Hamiltonian expression describing the radio-frequency pulses can be 

written as e.g., xNα=Η for an x pulse at the nitrogen resonance, or yNα=Η for a y-

pulse, where α is the flip angle of the pulse. For example, the rotation for a pulse at 

the nitrogen resonance created by a ±x pulse is given by: 
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For a ±y pulse, the expressions are: 
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     (3.1.9) 

If the spin under study has a high sensitivity (the sensitivity of a nucleus is 

determined by its gyromagnetic ratio, and γ1H = 2.675 x 108 (T·s)-1 while γ13C=6.728 x 

107 (T·s)-1and γ15N=-2.712 x 107 (T·s)-1) the excitation phase may consist of a simple, 

single radio-frequency pulse. Oftentimes the nuclei we want to study (e.g. 15N or 13C 

in proteins) are J-coupled to protons, and we can use this coupling to increase the 

signal from these “low sensitivity nuclei”. This type of excitation sequence is called 

an INEPT (Insensitive Nuclei Excitation via Polarization Transfer) sequence 92. 

During the excitation period (between points a and b in Figure 3.1.1), the J-coupling 

between spins H and N creates 2HzNy coherence (Eq. 3.1.5). The 2HzNy coherence 

builds up with a rate proportional to the coupling constant, JHN. Chemical shift 

evolution is refocused (caused to have zero net effect) on both channels H and N 

during the excitation step by sequences of the form τ-180o
N,H-τ in both the H and N 

dimensions.  

During the evolution period, (between points b and c in Figure 3.1.1) the 

magnetization is labeled for Fourier-transforming in the indirect dimension (the non-

proton dimension, the dimension of spin N). This means that during this period, an 

additional time delay, t1 is introduced for the N spin, and this delay is varied from one 

repetition of the pulse sequence to the next, without summing the FIDs from the 

various repetitions. The acquisition of many data sets with different values of t1 along 
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with the acquisition time (called t2) leads to compilation of a two-dimensional signal 

surface that is a function of variables (t1,t2) and can be Fourier-transformed into a 

bivariate function of (ω1,ω2). This allows the signal originating from the spin-system 

to be separated into a 2D map with one characteristic signal from each unique 

chemical environment of the pair of nuclei H and N. During the evolution phase of 

the experiment, it is common to employ a 180° pulse on spin H (see Figure 3.1.1) in 

order to cancel the effect of J-coupling during the delay t1. Alternatively, this 

decoupling can be performed by a train of pulses (labeled GARP in a pulse sequence, 

GARP stands for Globally optimized Alternating phase Rectangular Pulse 

decoupling). 

The mixing part of the NMR experiment involves transfer of magnetization 

back to the high sensitivity nucleus for detection and is followed by the detection 

itself. The transfer is accomplished by a backwards form of the INEPT sequence used 

during the excitation. Decoupling pulses are also applied during the detection period 

to ensure that the detected signal is modulated only by the chemical shift of spin H 

and not by the J-coupling constant, JNH. 
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Figure 2.1.2.  Heteronuclear single quantum coherence (HSQC) spectrum of the GB3 domain. 
The protein construct shown here consists of 56 amino acids. The residue numbers 1-56 
correspond to residues 6-61 in the sequence used in the crystal structure (1IGD.pbd Derrick and 
Wigley, 1994).  
 

 

 

Figure 2.1.1. Pulse sequence for a decoupled heteronuclear single quantum coherence (HSQC) 
experiment. In all pulse sequence figures the thin bars represent 90o pulses and thick bars 
represent 180o pulses. The phase of each pulse is indicated above the bar, if different from x. Here
the phase cycling is φ1=2(x), 2(-x); φ2=8(x),8(-x);φ3=y,-y;φ4=4(x),4(-x); and the receiver φrec=x,-x,-
x,x,2(-x,x,x,-x),x,-x,-x,x. The ideal value for ∆ is such that 2∆=1/(2JNH). 
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3.1.2 Longitudinal Relaxation, R1

In the absence of a magnetic field, the nuclear spin polarizations of molecules 

in solution are uniformly distributed in space—this means that the net nuclear 

magnetic moment of the sample is small. If a magnetic field is applied, thermal 

motions of the molecule in the sample result in a net magnetic anisotropy of the 

system, due to the extremely small energetic advantage of alignment of the spin with 

the magnetic field (ħωΗ at 600 MHz is < 4·10-25 Joules, which is ~10,000 times 

smaller than kBT at 20oC). If this magnetic moment is rotated into the plane 

perpendicular to the applied field by means of an rf pulse, the net nuclear spin 

magnetization in the z-direction will relax back to its equilibrium value according to 

the relationship: 

)1()( 1
0

tR
z eMtM −−= , 

where the rate constant, R1, is called the longitudinal relaxation rate of the nuclear 

magnetic moment or the spin-lattice relaxation rate. 

The pulse sequence used to measure R1 is shown in Figure 3.1.3. Here the 

magnetization in the z-direction is inverted with respect to its equilibrium state then 

allowed to relax. The excitation phase of this experiment has two steps: the first one, 

up to point a in the sequence, excites two-spin order antiphase coherence 2NyHz via 

the J-coupling evolution during the interval 2∆ (according to Eq.3.1.7); the second 

part of the excitation phase, from point a to point b, transforms the antiphase nitrogen 

magnetization into in-phase magnetization (2HzNy Nx), according to Eq.3.1.7. As in 

the HSQC, the delay ∆ is chosen such that 2∆=1/(2JNH) in order to cancel the cosine-

modulated components. For the 15N-1H J-coupling in the backbone amide bonds of 
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proteins, JNH is approximately 94 Hz, hence ∆= 1/4JNH ~ 2.7 ms, which allows for 

short transfer periods without significant losses of magnetization through transverse 

relaxation. The nitrogen single-quantum coherence prior to point b (Nx) is 

transformed into zero-quantum coherence (Nz) using the 90o pulse at point b and 

allowed to relax towards equilibrium with relaxation rate R1. The resulting 

magnetization is flipped back into the xy plane at the end of the relaxation interval 

and subsequently labeled by chemical shift evolution during t1. Composite-pulse 

decoupling is applied on the 1H spins during the relaxation delay (between points b 

and c, labeled GARP) to minimize systematic contributions from the time-dependent 

effects of dipolar 15N-{1H} cross relaxation (see section 3.1.4) and of cross-

correlation between dipolar and chemical-shift anisotropy relaxation mechanisms (see 

Chapter 4).The following reverse-INEPT period transform nitrogen single-quantum 

in-phase coherence into proton single-quantum coherence prior to detection. 
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Figure 3.1.3. Pulse sequence for measurement of longitudinal relaxation rate, R1. The phase 
cycling is φ1=x,-x; φ2=2(x),2(-x);φ3=4(x),4(-x);φ4=8(x),8(-x); and the receiver φrec=2(x,-x), 2(-x,x),
2(-x,x), 2(x,-x). The ideal value for ∆ is such that 2∆=1/(2JIS). The phase cycle for φ4 is such that 
both cosine and sine modulations of the chemical shift of 15N are detected during the t1 delay via 
time-proportional increments (States-TPPI). GARP stands for Globally Optimized Alternating 
Phase Rectangular Pulse Decoupling. The two low-power 90o pulses flanking the last nonselective 
180o pulse on protons (as part of the water suppression element) are 1ms long. 
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3.1.3 Transverse Relaxation, R2 

If the net magnetic moment of the sample at thermal equilibrium in a 

magnetic field (as discussed above) is rotated through an angle of π/2 about an axis 

perpendicular to the field by application of a radiofrequency pulse, the net spin 

polarization is in the plane transverse to the magnetic field of the spectrometer. This 

transverse magnetic moment will begin to relax towards zero as precessing spins 

loose coherence with each other. This relaxation is given by the relationship:  

2)cos()( 00
tR

y etMtM −−= ω , and , 2)sin()( 00
tR

x etMtM −= ω

where x and y are the axes perpendicular to the applied field (which is defined as in 

the z direction). The spin relaxation rate, R2, is called the transverse spin relaxation 

rate or the spin-spin relaxation rate. 

The pulse sequence for R2 measurement (Fig. 3.1.4) is very similar to the one 

used for measuring R1. Nitrogen single quantum in-phase magnetization is created at 

time point a in order to observe the decay of this coherence as a function of the 

evolution delay 4nε (adaptation of the spin-echo experiment with the Carr-Purcell-

Meiboom-Gill (CPMG) sequence93,94). During the evolution period, each 180o pulse 

about the x-axis rotates the equilibrium magnetization into the xy plane. The different 

effective magnetic fields felt by all the different nuclei in the sample cause the 

magnetization vectors from different nuclei to “fan out” i.e. they rotate with slightly 

different Larmor frequencies depending on the strength of the effective field where 

they are located (i.e. on their chemical shift as well as any field inhomogeneity). After 

some arbitrary time, an 180o pulse about the y axis reflects all the vectors in the xy 

plane and they continue to rotate, after a further time of equal duration to the first 
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delay they are again in phase in the y direction, and the signal is maximal. The 

application of 180o pulses in the middle of an evolution delay is called “refocusing” 

and a sequence of refocused evolution periods is known as a CPMG train 93,94. 

Though the signal is refocused, fluctuations in the magnetic field felt by the nucleus 

cause the magnitude of the signal to decay and R2 is determined from the exponential 

decay of the amplitudes of successive echoes. After the R2 evolution period, nitrogen 

magnetization is labeled with chemical shift evolution factors during t1 (between 

points b and c in Fig.3.1.3) and subsequently converted back into proton 

magnetization, as described above (reverse INEPT). During the R2 evolution period 

(inside the brackets in Fig 3.1.3) synchronous 180o hard pulses are applied at the 

proton frequency (not shown) to suppress the effects of cross-correlation between the 

dipolar and CSA relaxation mechanisms (see Chapter 4). 
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Figure 2.1.4. Pulse sequence for measurement of transverse relaxation rate, R2. The phase cycling
is φ1=x,-x; φ2=2(x),2(-x);φ3=4(x),4(-x);φ4=8(x),8(-x); and the receiver φrec=4(x,-x), 4(-x,x) . The 
relaxation time, τ=4εn. The ideal value for ∆ is such that 2∆=1/(2JIS). The phase cycle for φ4 is 
such that both cosine and sine modulations of the chemical shift of 15N are detected during the t1 
delay via time-proportional increments (States-TPPI). The two low-power 90o pulses flanking the 
last nonselective 180o pulse on protons (as part of the water suppression element) are 1ms long. 
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3.1.4 Heteronuclear 15N-{1H} NOE 

The heteronuclear steady-state nuclear Overhauser effect (NOE) experiment is 

a measurement of the heteronuclear NOE enhancement, which is related to the cross 

relaxation rate constant, σIS. The NOE enhancement for a two spin system is most 

frequently measured using the steady-state NOE difference experiment. In this 

experiment, two spectra are recorded and the ratio of the peaks in the two spectra is 

related to the NOE effect. In one spectrum, the H spin is saturated for a period of time 

long enough to establish the NOE effect on the N spin. Then a reverse INEPT 

transfers magnetization back to spin H for detection and the free-induction decay 

(FID) is recorded. The intensity of the peaks in this spectrum will be proportional to 

the NOE effect. In the other spectrum, the signal is recorded without proton 

saturation. The intensity of the peaks in this spectrum will be proportional to the 

equilibrium values (no NOE effect), and the NOE can then be calculated from the 

ratio of the intensities of the peaks in the first spectrum to the intensities of the peaks 

in the second spectrum. 

Water suppression in the NOE experiments was accomplished using the flip-

back scheme 95 to avoid problems due to amide proton-solvent exchange with a 

recycling delay of 4-5 s (magnetization transfer from water to amide protons, either 

via the dipolar interaction or hydrogen exchange, prohibits the use of water 

presaturation, as it can cause amide protons to relax to their thermal equilibrium value 

faster than their inherent R1). 
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Figure 2.1.5. Pulse sequence for measurement of the steady state 15N-{1H} NOE. The phase cycling 
is φ1=y,-y; φ2=2(x),2(-x),4and the receiver φrec=x,-x. The ideal value for ∆ is such that 2∆=1/(2JIS). 
The two low-power 90o pulses flanking the last nonselective 180o pulse on protons (as part of the 
water suppression element) are 1ms long.  
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3.2 Spectral Processing and Data Analysis 

To minimize temperature variations between the spectra acquired with 

different relaxation delays and to minimize the effect of possible sample instability 

during a series of measurements, the experiments were performed in an interleaved 

fashion, as a pseudo-3D experiment with the 2D planes in the F2 dimension 

corresponding to various relaxation delays. The acquisition order was designed so 

that cycling through various relaxation delays (in R1 or R2 experiments) or through 

NOE/NONOE 2D planes was performed prior to incrementing the evolution period in 

the indirect dimension (F1). Five to six 2D planes were recorded for each relaxation 

rate measurement, following the optimal sampling strategy 96. The relaxation delays 

for all experiments are shown in Table 3.2.1. The recycling delay was typically set to 

3.2 s for R2 and 1.7 s for R1. 
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Table 2.2.1. Relaxation delays for all experiments.
requency Measured rate Relaxation delay  
00 MHz ( 9.4 Tesla) R1 432, 432, 4, 432, 432, 4 ms 

R2 280, 280, 8, 280, 280, 8 ms 
NOE 4.5 s  
ηxy 0, 21.27, 31.91, 42.53, 53.19 ms 
ηz 0, 100, 200, 250, 300, 350 ms 

00 MHz ( Tesla) R1 504, 504, 4, 504, 504, 4 ms 
R2 248, 248, 8, 248, 248, 8 ms 
NOE 4.69 s 
ηxy 0, 31.91, 26.59, 42.55, 53.19 ms 
ηz 0, 100, 200, 250, 300, 350 ms 
R1(15N-{2H}) 0.15, 105.84, 209.13, 295.21, 

398.51 (x2), 605.1, 794.48 and 
1001.07 ms 

R2(15N-{2H}) 3.74, 103.10, 198.78 (x2), 265.02, 
323.90, 397.50 and 449.02 ms 

00 MHz ( Tesla) R1 440, 440, 4, 440, 440 ms 
R2 264, 264, 8, 264, 264 ms 
NOE 5 s 
ηxy 26.59, 31.91, 37.23, 42.55, 53.19 

ms 
ηz 0, 100, 150, 200, 300, 400 ms 
ηz (perdeuterated 
GB3) 

0, 100, 150, 200, 300, 400 ms 

R1ρ (repetition 
delay) 

1, 4, 8 ms 

00 MHz ( Tesla) R1 620, 620, 4, 620, 620, 4 ms 
R2 264, 264, 8, 264, 264, 8 ms 
NOE 4 s 
ηxy 26.59, 31.91, 37.23, 42.55, 53.19 

ms 
00 MHz ( Tesla) R1 672, 672, 4, 672, 672, 4 ms 

R2 248, 248, 8, 248, 248, 8 ms 
NOE 4.7 s 
ηxy 26.59, 31.91, 37.23, 42.55, 53.19 

ms 

 

Spectral peak intensities were extracted using software written in house 

AUTOPICK) in the Matlab programming environment. The position of maximum 
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intensity for each peak is found by iteratively moving the peak position from some 

user-supplied starting position for as many iterations as the intensity increases in 

either of the two-dimensions of the spectrum. The intensity of the peak at the 

maximum is determined using three-point parabolic interpolation. As a control, peak 

volumes for all planes in the 600 MHz R1 experiment were extracted using the 

PEAKINT subroutine of the XEASY software. The peak heights and peak volumes 

yielded equivalent values of the relaxation parameters from the exponential fitting 

procedure; however, slightly better fits (smaller χ2) and lower uncertainties were 

obtained for the peak-height analysis, therefore peak heights are used in all the 

analyses herein. The better fits of the peak intensities are possibly due to problems in 

the fitting of the lineshape in the peak-volume determination which are not present in 

the height determination, or due to spectral artifacts which influence the peak 

volumes but do not affect the peak intensities.  

The relaxation rates (R1 and R2) were obtained by least-square fitting of peak 

intensities in the corresponding series of 2D spectra to a mono-exponential decay. 

The fitting function has the form: 

ττ jR
jj eII −= )0()(  ,       (3.2.1) 

where Ij(t) is the intensity of a particular peak, j, as a function of relaxation time, τ; Rj 

is the fit relaxation rate (R1 or R2) constant for residue j, and Ij(0) is the intensity of 

peak j at time τ = 0 and was fit simultaneously along with R. The fit was performed 

using a Nelder-Mead simplex-based multivariable χ2 minimization. The 

heteronuclear NOE values were obtained from the ratio of peak intensities in the 

NOE and NONOE experiments. The exponential decays for residue Tyr3 from the 
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600 MHz R1 and R2 experiments are shown in Figure 3.2.1. The residuals from the 

experimental points and a fitting curve were used to estimate the width of the 

assumed-normal distribution of experimental points about the best fit curve. Random 

values of this distribution (generated by Monte-Carlo simulation of 500 synthetic data 

sets per residue) were then used to generate synthetic data sets, each with 

approximately the same residuals as the experimental data. These data were then fit to 

an exponential curve, to yield an ensemble of values for the decay rate. The 

uncertainty in the rate is the standard deviation of this ensemble. The obtained 

uncertainties depend on the input uncertainties in peak intensities—the uncertainties 

in peak intensities were calculated in two different ways (see below). 

 

spec

 
 

 

 

Figure 2.2.1. Linear fit of intensity decay on natural log scale for R1 and R2 experiments for Tyr3 
in GB3. Panel a shows R1 fit, where two data points were collected at 4 ms and 4 data points at 
504 ms. Panel b shows the R2 fit, where there are 2 data points at 8 ms and 4 points at 264 ms. 
Errors in intensities are smaller than data points in both fits. 
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The means and standard deviations of the signal in several sections of the 

tra that did not contain cross peaks or other signals (such as the water resonance) 

57 



were calculated to provide an estimate of the baseline offset and rms baseline noise 

level (σi). In all cases the mean was approximately zero, and less than the standard 

deviation, indicating that there was no appreciable baseline offset. The value of σi in 

all experiments was inversely correlated with the relaxation time consistent with the 

observation of Skelton et al.97. In experiments where it was possible, an estimate of 

the uncertainty in peak intensities was also obtained by comparison of intensities of 

peaks in duplicate (or quadruplicate in some cases) spectra using the method of 

Skelton et al.97.  The values obtained here, for the standard deviation in the peak 

intensities, σr, are between 1.5 and 10 times greater than the corresponding σi values, 

and the σr values are similarly inversely proportional to the relaxation time (this is in 

general agreement to previous observations for sensitivity enhanced relaxation rate 

measurements 97, although here we did not examine the detailed time dependence of 

σr and σi). For all experiments, the use of the σr values for the uncertainty in peak 

intensities resulted in uncertainties in the fit relaxation rates between 0.5%-2% (using 

a Monte-Carlo simulation of the peak intensities, see above) whereas using the σi 

values resulted in uncertainties between 0.05% and 0.7%. As a test of how well these 

estimates represent the actual reproducibility of the relaxation rates, duplicate R1 data 

sets were acquired at 600 MHz. The R1 values from the two data sets are extremely 

similar, with R1 rates for all residues being within 3%, indicating that our estimates of 

the uncertainty in the rates using the σr estimate of the noise in peak heights is 

reasonable. 

The uncertainties in the peak heights in the NOE experiments were estimated 

using the signal-to-noise ratio from integration of an area of the spectra (in the NOE 
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and NONOE experiments) containing no cross peaks. These errors were then 

propagated into the error in the NOE cross relaxation rate. 

3.3 Protein Expression, Purification, and Characterization 

The GB3 sample on which relaxation rates at 400-800 MHz were measured 

was a gift from the National Institutes of Health. This sample contained 1.8 mM 

uniformly 15N enriched GB3 in 265 mL of 30 mM phosphate buffer at pH 5.8 and 

approximately 9% (by volume) D2O. The 5.8 mM 15N labeled samples used for the 

direct nitrogen detection relaxation rate measurements as well as the perdeuterated 

sample used for comparison of longitudinal cross-correlation rates, were expressed 

and purified in the lab. The plasmid for these samples, which was also provided by 

NIH, was cloned into E.coli HMS174(λDE3) cells. Starter cultures were grown for 8 

hours at 37oC to an optical density value at 600 nm, OD600, greater than 0.5 using 

isolated bacterial colonies from plated cells. The cell culture was grown in auto-

inducing ZYP-5052 medium (recipe from Dr. William Studier, Brookhaven National 

Laboratory) with (NH4)2SO4 replaced with 15NH4Cl and Na2SO4 so that the only 

Nitrogen source available to the bacteria was 15N (isotope enrichment 99%). The 

cultures were also grown with 100mg ampicillin per liter of culture, as the E.coli cells 

are genetically modified to be resistant to this antibiotic. This culture was grown 

overnight (to an OD600>1) at 37oC in a shaker incubator which agitates at 200 rpm. 

The cells were harvested and resuspended into 1xPBS (~5 ml per gram of cell 

paste), then this suspension was heated at 80o C for 15 min (vortexed 2-3 times during 

heating), then cooled on ice for 15 min. This processes served to “heat shock” the 

cells and causes efficient cell lysis. The Tm of GB3 is >86oC, so the protein is not 
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unfolded by the heating. The lysed cell suspension was then centrifuged at 16,000 

rpm in a 45Ti rotor for 30 min. The supernatant was then filtered and dialyzed 

overnight (at 4oC in 3.5kDa cutoff dialysis tubing) against 1.5 liters of 50 mM 

NaPO4, 0.5 M NaCl, and 0.1% sodium azide, at pH 5.5. 

The dialyzed sample was then concentrated in a 5 kDa cutoff concentrator unit 

in a table-top centrifuge to a volume of 8-10 ml. The GB3 sample was purified by 

size exclusion chromatography. For purification, the 8-10 ml of sample was divided 

over 4-5 separate but identical column runs of 2 ml sample (filtered through 0.45 µm 

syringe filter) each on a Pharmacia Superdex 16/60 75 Hi-Load Prep column. The 

column was equilibrated with 3-4 column volumes of 50 mM NaPO4, 0.5 M NaCl, 

and 0.1% azide, pH 5.5 buffer. The FPLC was run at 0.3 ml/min and fractions of 5-10 

ml were collected. The purified protein was examined by gel electrophoresis, and 

concentrated in a 5 kDa cutoff concentrator unit in a table-top centrifuge, then 

exchanged into 30 mM phosphate buffer with pH 5.8. The protein sample 

concentration was determined using absorbance at 280 nm (the extinction coefficient, 

ε, of GB3 at 280 nm is 8250 M-1cm-1). Approximately 9% (by volume) D2O was 

added to NMR samples. 
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 Chapter 4: CSA/dipolar Cross-Correlated Relaxation Rates 

4.1 CSA/Dipolar Cross-Correlated Relaxation 

15N-{1H} CSA/dipolar cross-correlation was introduced in Chapter 2 where 

relaxation rates arising from cross-commutators (  and  

where i≠j in Eq. 2.3.1) in the equation for evolution of an observable under the master 

equation were discussed and the expressions for these rates in terms of spectral 

density functions were given in Eqs. 2.5.7-2.5.8.In Chapter 3 cross-correlated 

relaxation effects were discussed as a possible complication to the measurement of 

]],,[[ j
m

i
m TTQ ]],,[[ i

m
j

m TTQ

15N autorelaxation rates. A physical explanation of the mechanism of CSA/dipolar 

cross-correlation is still needed; Figure 4.1.1 is a cartoon qualitatively depicting 

CSA/dipolar cross-correlation in a fictional 2D molecule. Here 2D nuclear spin, 15N, 

in an external magnetic field, Bo, and experiencing a through-space dipole-dipole 

interaction with a covalently bound 1H spin is depicted. The chemical shielding of the 

nitrogen nucleus is represented as an ellipse, where the long axis of the ellipse 

represents the most-shielded component (low field) of the chemical shielding tensor 

and the short axis of the ellipse represents the least-shielded (high field) component. 

The spin state of the 1H nucleus is represented by a thick arrow with spin state Hz=+½ 

an upwards pointing arrow and Hz=-½ a downwards pointing arrow. The dipolar field 

generated by the 1H nucleus is represented by dotted field lines. From the left panels 

(top and bottom) it is clear that if the nuclear spin of the 1H nucleus is aligned with 

the field (corresponding to spin state Hz=+½), the magnetic field at the 15N spin (BN) 

due to the dipolar coupling and the field anisotropy of the shielding tensor tend to 

reinforce each other. If the nuclear spin of the 1H nucleus is aligned anti-parallel to 
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the external field (corresponding to spin state Hz=-½), the dipolar and shielding 

anisotropy terms tend to oppose each other. This causes the magnetic field felt by the 

subpopulation of 15N spins bound to 1H spins in the spin-up (Hz=+½) position to be 

different than the magnetic field felt by the subpopulation of 15N spins bound to 1H 

spins in the spin-down position (Hz=-½) which results in two signals for each 15N 

nucleus (a 15N doublet) in a coupled 2D NMR spectrum. As discussed in Chapter 2, 

15N spin relaxation is caused by time-dependent fluctuations in the magnetic field felt 

by the 15N nucleus. These fluctuations are caused by the tumbling of the molecule in 

solution and local motions of the peptide planes and N-H bond. This is shown in 

Figure 4.1.1, where the left and right sides of the figures represent two different 

orientational states of the molecule with respect to the magnetic field. The 

variations/fluctuations in BN due to the tumbling of the molecule are represented by 

∆BN in the caption to Figure 4.1.1. The magnitude of these fluctuations will be larger 

for the subpopulation of 15N spins bound to 1H spins in the spin-up position than for 

the subpopulation of 15N spins bound to 1H spins in the spin-down position. This 

causes the subpopulation of 15N spins bound to 1H spins in the spin-up position to 

relax faster than the subpopulation of 15N spins bound to 1H spins in the spin-down 

position. Thus the two components of the 15N doublet have different relaxation rates 

and different linewidths. 

This differential relaxation is called 15N-{1H} CSA/dipolar relaxation 

interference or CSA/dipolar cross-correlation and the rates resulting from this 

relaxation interference are called 15N-{1H} CSA/dipolar cross-correlation rates 

(CCRs).  The 15N CSA/dipolar CCRs are of particular interest because they allow 
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measurement of the “projection” (through the Legendre Polynomial) of the 15N-1H 

internuclear vector on the 15N CSA 98,99,100.  
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Figure 4.1.1 Schematic illustration of the effects of 15N-1H CSA/dipolar cross-correlation in a 2D
model molecule. The anisotropic chemical shielding of the 15N nucleus is represented by an ellipse
where the long axis of the ellipse corresponds to the most shielded component of the chemical
shift tensor and the short axis corresponds to the less shielded component. The left-hand panels
represent one 2D molecular orientation of the 15N-1H spin system with the 1H spin in the spin up
(spin state Hz=+½ (top panel)) and spin down (Hz=-½ (bottom panel)) and the right-hand panels
represent another 2D molecular orientation with the up (down) 1H spin states also in the top
(bottom) panels. In a), the total magnetic field at the location of the 15N nucleus is given by
BN=Bo(1-σiso)-Bd-(∆σ/2) where Bd is the contribution to the magnetic field due to the dipolar
interaction with 1H and σiso and ∆σ are the isotropic chemical shielding and the CSA (defined
such that both are positive quantities). In b) BN=Bo(1-σiso)+Bd-(∆σ/2), in c) BN=Bo(1-
σiso)+Bd+(∆σ/2) and in d) BN=Bo(1-σiso)-Bd+(∆σ/2). The variation in the field BN as a)→c) (for 1H
spin up) ∆BN=2Bd+∆σ, is larger than the variation in BN as b) →d) (for 1H spin down) ∆BN=-
2Bd+∆σ, therefore the relaxation rate of the population of 15N spins bound to 1H spin up relaxes
faster than the population of 1N spins bound to 1H spin down. 
B0 

Measurements of 15N CSA/dipolar cross-correlation rates can be used to 

haracterize the overall and internal motions in proteins and nucleic acids 43,51,101,102, 

Dipolar field due to 1H opposes Bo
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103) and to determine the magnitude and orientation of 15N chemical shift tensors in 

proteins 50,51,56.  In Chapter 6 of this document, I describe how we use ηxy (the 

transverse 15N CSA/dipolar CCR) and ηz (the longitudinal CCR discussed in section 

4.4) measured in GB3 in combination with autorelaxation rates R1 and R2 to identify 

residues undergoing chemical exchange motions. In Chapter 7, I compare rotational 

diffusion properties of GB3 derived from ηz and ηxy to properties derived from 

autorelaxation rates, and use ηz and ηxy  (in combination with other rates) to 

determine site-specific chemical shielding anisotropies in GB3. 

4.2 Measurement of CSA/Dipolar CCRs from Coupled HSQC Spectra 

4.2.1 Direct versus Indirect Methods for CCR measurement  

As discussed above, there is great interest in the measurement of CSA/dipolar 

CCRs in proteins, hence many pulse sequences have been suggested for the 

measurement of these CCRs 43,99,104-108. In an NMR experiment, the transverse 15N-1H 

CSA/dipolar CCR, ηxy  given in terms of the spectral density functions in Eq. 2.5.7- 

2.5.10, describes how anti-phase two-spin order magnetization (e.g. NyHz) builds up 

from nitrogen single-spin order magnetization (e.g. Ny). The equations describing the 

decay and build-up of transverse components of magnetization for an isolated 15N-1H 

spin system in terms of the product operators describing magnetization in an NMR 

experiment as introduced in Chapter 3 (Eqs. 3.12-3.13) are: 
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where R2,N and R2,2HN are the transverse auto-relaxation rates of nitrogen and 

antiphase two-spin order magnetization, and ηxy,N is the transverse CCR of the 15N-1H 
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dipolar interaction with the 15N CSA. If we consider separately the projection of any 

nitrogen spin operator (Ny) onto the subspace Hz=+½ and Hz=-½, then:  

⎟
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Where is the projection of N)(1 upH
yN y onto the Hz=+½ subspace and is the 

projection of N

)(1 downH
yN

y onto the Hz=-½ subspace. It is computationally more convenient to 

use the operators in Eq. 4.2.1, which in terms of these projections are given by:  

)()( 11 downH
y

upH
yy NNN +=         (4.2.3) 

)()( 11

2 downH
y

upH
yzy NNHN −= .       (4.2.4) 

The existing approaches to measuring rates of CSA/dipolar cross-correlated 

relaxation (CCR) can be divided in two classes 109: J-resolved (or “direct”) and 

quantitative (or “indirect”) experiments. Most of these sequences can be characterized 

as indirect methods of measurement in that they measure the rate of conversion of one 

coherence into another via (at least) two separate experiments (e.g. 43,104). One 

experiment, denoted “A” is needed to measure the build up of the selected coherence 

(e.g. Ny from 2NyHz) and another experiment, “B” to measure the autorelaxation of 

the initial component (e.g. 2NyHz from 2NyHz). Small differences in experimental 

conditions or pulses between the A and B experiments can lead to deviations in the 

signal ratio between the two experiments and thus cause inaccurate measurements of 

the CCR. The published pulse sequences differ between experiments A and B in the 

number of pulses 43 or in the order in which the selection elements are applied 104. 

Imperfections in the parameters of these pulse sequences can lead to incomplete 

suppression of cross-correlated relaxation before and after the mixing period 109 and 
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can introduce deviations in the signal ratio between the two experiments that are 

difficult to quantify, as there is no direct control of the magnetization pathways. 

Recently an experimental scheme was proposed which attempts to completely 

balance differences in the evolution of the generated and detected coherences using 

the indirect approach 108; this scheme requires four separate experiments at each time 

point in the CCR decay (two for measurement and two for normalization) to ensure 

that all possible deviations are balanced.  

As explained schematically with Figure 4.1.1, the difference in linewidths of 

the up-field and down-field components of the 1H-15N scalar-coupled doublet is a 

direct result of CSA/dipolar cross-correlation relaxation. Therefore, it is 

straightforward to measure this rate constant from the time evolution of the ratio of 

the intensities of these components, in a direct fashion. In principle, the decay of the 

ratio of intensities is mono-exponential, the components of the nitrogen doublet are 

given by:  
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Using Eq. 4.1.2, the time derivatives of the up-field and down-field components are 

given by:  
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where JNH is the one-bond scalar coupling and and avR2
difR 2

1

2  are the average and 

half-difference of the relaxation rates for nitrogen in-phase ( ) and anti-phase 

( ) coherences. In proteins, the half-difference, 
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these rates is always smaller than the average, 
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1 , the two terms and 

are averaged exactly 
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99 so that the half-difference is zero for the period of the 

relaxation delay. Therefore the transverse relaxation rates of the two doublet 

components are given by: 
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Therefore the decay of the ratio of the volume of the upfield peak to the volume of 

the downfield peak is given by: 
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If instead the ratio of the intensities is taken, the expression will contain a time-

independent pre-factor, A: 
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where Sup and Sdn are the intensities of the upfield and downfield peaks, and Aup and 

Adn are factors related to their lineshapes, with A=Aup/Adn. Measurement of the CCR, 

then, in principle requires only one coupled HSQC-type experiment at each time 

 67 
 



point in the CCR decay, and on small proteins or proteins with particularly good peak 

separation this is the simplest and most straightforward way to measure the CCR. A 

pulse sequence for this type of measurement is shown in Figure 4.2.1 (called in-

phase, IP). The relaxation of interest takes place during the constant-time evolution 

period 2∆. Protons are not decoupled during the 15N evolution period. This results in a 

1H-coupled 1H-15N HSQC spectrum with resolved 15N spin doublet components. In 

this simple implementation of the experiment, both components of the doublet are in-

phase. The cross-correlation term, ηxy, can then be determined directly from fitting 

the time dependence of the ratio of these signals to a mono-exponential decay 

function (Eq. 4.2.10). However, for large or partially unfolded proteins, overlap of 

peaks becomes a concern since 1H-15N scalar coupled spectra have twice as many 

peaks as decoupled spectra.  

4.2.2 IPAP Method for Simplification of Coupled Spectra 

In 1998, Ottiger et al. introduced a method for the simplification of coupled 

spectra as an aid in the determination of J- and dipolar couplings from these spectra. 

This method, which is called “IPAP” for In-Phase Anti-Phase, involves acquiring two 

1H-15N scalar coupled spectra, one spectrum in which the two peaks of the nitrogen 

doublet have the same phase and one in which the two peaks have opposite phase 61. 

Experimentally, the reversal of the phase of the up-field component is brought about 

through the introduction of three pulses (shown in white in Fig. 4.2.2, we refer to 

these pulses as the “AP” element (for Anti-Phase) while their absence is referred to as 

the “IP” element (for In-Phase)). The addition of the processed in-phase and anti-

phase spectra results in one spectrum (the “summation” spectrum) which only has 
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peaks corresponding to downfield components. Similarly, the subtraction of the 

processed anti-phase spectrum from the processed in-phase spectrum results in a 

simplified spectrum (the “difference” spectrum) which has only the up-field 

components. This addition and subtraction process is shown schematically in Fig. 

4.2.3 and explained in detail below. The analysis of these simplified spectra 

eliminates problems due to signal overlap introduced by not suppressing the 1H-15N 

scalar coupling.      
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Figure 4.2.2 Pulse scheme for the measurement of transverse 15N CSA/dipole-dipole cross-correlation 
rates. AP (anti-phase) experiment. The AP element of the pulse sequence (as discussed in text) is shown 
in parentheses. The phases are φ1=-y,y, φ3=4{x},4{y},4{-x},4{-y}, φ4=8{x},8{-x}, φ5=-x, φ2=-y, -y, y, y and 
the receiver =x,–x,–x, x, -x, x, x, -x. Phases φ2 and φ3 and all gradients are as in 3.2.1 
 

 

 

 

 

 

Figure 4.2.1 Pulse sequence for the measurement of transverse 15N CSA/dipole-dipole cross-correlation rate 
from a coupled HSQC spectrum. IP (in-phase experiment) Narrow and wide pulses correspond to 90o and 180o 
flip angles respectively. The two low power pulses flanking the last nonselective 180o pulse on proton (as part 
of the water suppression element) are 1 ms long. The delay τ is set to 2.5 ms (~1/4JNH for amides), and the 
relaxation period 2∆ varies from one experiment to another. The phases are φ1=-y,y, φ3=4{x},4{y},4{-x},4{-y}, 
φ4=8{x},8{-x}, φ5=-x, φ2=2{x}, 2{-x} and the receiver =x,–x,–x, x. For quadrature detection, phases φ2 and φ3 are 
incremented in the States-TPPI fashion. All other pulses are along x. Gradients were sine-shaped with the 
following strengths: G1=12 G cm-1, G2=9 G cm-1, G3=18 G cm-1, G4=11 G cm-1, G5=24 G cm-1. Their 
durations were 600 µs, 600 µs, 700 µs, 600 µs and 700 µs respectively. 
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Figure 4.2.3 Sections of spectra recorded using the sequence in Figure 4.2.1 for the IP (labeled top 
right-hand corner) and Figure 4.2.2 AP versions, and then a section of the spectra that are the 
result of the addition and subtraction (simplified spectra). The red and black contours represent 
positive and negative intensities, respectively. The scaling factor, α, was optimized for 
cancellation of the residual intensities in the regions of the spectra where cancellation was 
expected by least-squares minimization. The value of α in each experiment was determined from 
49 non-overlapping doublets analyzed simultaneously. In the ηxy experiment which is presented in 
Figure 4.2.5, the values of α were between 1.067 and 1.070. 
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In the IPAP method two spectra are recorded with the 15N doublet being in-

phase (see above) and anti-phase (AP), and the two are added or subtracted to 

produce simplified spectra in which only one of the two components is retained while 

the other is eliminated.  When the AP element is introduced into the pulse sequence 

(Fig.4.2.2), the corresponding signals can be written as -fσup and fσdn , where f 

represents signal attenuation due to the AP element. To compensate for these losses 

and to achieve full cancellation of the unwanted signals, an empirically determined 

scaling factor α is applied to the AP spectrum prior to its addition to or subtraction 

from the IP spectrum. The ratio of the signals observed in the difference and sum 

spectra is then σdiff/σsum = (σup + α f σup) / (σdn + α f σdn) = σup/σdn,. This ratio of the 
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signals derived from the IPAP experiment is independent of the factors f and α, 

which eliminates any possible bias by an arbitrary scaling factor, even if α is not 

exactly set to 1/f. 

Both pulse sequences in Figures 4.2.1 and 4.2.2 make use of a constant-time 

spin evolution, in which signal evolution as a function of the incremented delay t1 is 

not directly modulated by spin relaxation 110. The lineshapes here strongly depend on 

signal apodization in t1. Therefore this sequence is subject to “wiggles” (base line 

oscillations) due to signal truncation if particular attention is not taken in selection of 

the window function applied in the t1 dimension. An extensive analysis indicates that 

of the standard set of window functions available within the XWINNMR package, 

squared sinc function provided the best results for GB3 spectra. 

We applied the sequences in Figures 4.2.1 and 4.2.3 to measurement of the 

transverse 15N CSA/dipolar cross-correlation rates in the GB3 domain. Representative 

mono-exponential fits (Eq.4.2.10) for a few residues using both peak intensities and 

peak volumes are shown in Figure 4.2.4. The ηxy values determined here directly 

from the 1H-coupled spectrum (IP experiment) are in good agreement with those 

derived from the indirect A/B method 43 (Fig. 4.2.5). The comparison provided a 

scaling factor of 1.07 to correct the results of the A/B method. A comparison of the η 

values derived from the coupled spectrum (IP) with those from the simplified spectra 

from the IPAP experiment (Fig. 4.2.5) demonstrates that the IPAP scheme does not 

introduce any bias in the data. These comparisons indicate that the suggested 

approach is an accurate method for measuring the 15N CSA/dipolar CCRs.  
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Figure 4.2.4 Representative decay curves for the ratios of (a) Representative decay curves for the ratios of (a) 
peak volumes and (b) peak intensities from the IP experiment and (c) of peak intensities in the IPAP 
experiment. Shown are data for residues A34 (circles), T53 (triangles), and W43ε (squares). The error bars are
comparable to the size of the symbols. The corresponding η values for these residues are 4.45±0.03 s-1, 
3.45±0.02 s-1, and 2.71±0.01 s-1 derived from the ratios of peak volumes and 4.50±0.01 s-1, 3.41±0.01 s-1, and 
2.71±0.01 s-1 from peak intensities, and 4.49±0.04 s-1, 3.41±0.01 s-1, 2.67±0.02 s-1 from IPAP peak intensities.  
 

 

 

 

Figure 4.2.5 The agreement between the ηxy values measured here using (a) A/B experiment (Tjandra, J. 
Am. Chem. Soc., 1996) versus the IP method, (b) A/B method  versus the IPAP scheme, and (c) IPAP versu 
the IP method. Only those spin systems (49 out of 56) that give isolated doublets were selected for the 
comparison with the IP data. The corresponding relaxation delays (∆) for the measurements using the A/B 
method were set to 31.91, 42.55, 53.19, and 63.82 ms. The data points in panels a and b fall on a straight line 
with the slope less than one (0.934±0.020 and 0.930±0.018, respectively, correlation coefficient R = 0.96), 
indicating a slight (7%) underestimation of the η values from the A/B method. This is a result of the 
difference in pulse sequences used in the experiments A and B and can be corrected by applying a uniform 
scaling factor of 1.07 to the η valued derived by the A/B method.  
 

 

 

 

 

 

 

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

 

 

η xy
 (A

/B
), 

s-1

ηxy (IP), s-1

a b

 

 

η xy
 (A

/B
), 

s-1

ηxy (IPAP), s-1

c

 
 

η xy
(IP

AP
), 

s-1

ηxy (IP), s-1

 

 72 
 



 

4.2.3 Real-time CCR delay experiment 

 As discussed above, the use of constant-time spin evolution has 

advantages and disadvantages for CCR measurement. Specifically, the constant time 

experimental scheme has the advantage that the signal linewidth in the 15N dimension 

is not directly related to 15N transverse relaxation, and, therefore, is less sensitive to 

line broadening in large proteins. However, the very small amount of signal decay as 

a function of t1 during the ct-evolution period can result in severe truncation artifacts 

in the F1 dimension, so the quality of the resulting spectra strongly depends on the 

applied window function. A mismatched apodization function could result in 

“wiggles” (base line oscillations) due to signal truncation in the 15N-dimension which 

can affect the amplitudes of 15N doublet components. Therefore, for applications to 

large proteins where relaxation broadening is a concern, the constant time scheme is 

the best choice. However, for small proteins and other molecules, where the 15N 

linewidths are not prohibitively large, a conventional (non-constant time) t1-evolution 

period significantly reduces possible truncation artifacts. 

Figure 4.2.6 shows a pulse sequence for measurement of transverse 15N 

CSA/1H-15N dipolar interference effects from 1H-coupled 1H-15N HSQC using the 

conventional t1-evolution period. As in the constant-time method, the signal overlap 

problem in the coupled spectra is addressed by using the IPAP scheme to simplify the 

coupled HSQC spectra. Application of this technique to the B3 domain of protein G 

shows that this method also provides accurate measurements of the 15N CSA/dipolar 

cross-correlation rates (Figure 4.2.7). The CCRs from these conventional t1-evolution 
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experiments are in agreement with the measurements using the IP and IPAP schemes 

and with corrected rates from the A/B experiment. Here the correction factor for the 

A/B experiment, obtained from a least-squares fit of the data to a linear model, is 

1.08. Though in panel d of Figure 4.2.7 it looks by eye as though there is some 

systematic offset of the A/B data when this 1.08 correction factor is applied, this 

factor minimizes the fit of the A/B data to the real time CCR experiment data.  
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Figure 4.2.6 Pulse sequence for the measurement of transverse 15N CSA/dipole-dipole cross-
correlation rate from a coupled HSQC spectrum using conventional (not ct) t1 evolution. IP and 
AP experiments (the AP element is left out of the pulse sequence when running the IP 
experiment) are shown. All phases and gradients are as in Figs 4.2.1-4.2.2. The delay τ is set to 2.5
ms (~1/4JNH for amides), ∆ is set to X, and t1 is varied.  
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Figure 4.2.7 The agreement between ηxy values measured using the experimental scheme shown above and 
those determined (a,b) from the constant time experiment and (c,d) using the A/B method. Panels (a) and (c) 
present the comparison on a per residue basis: ct-data are shown as open triangles (a) and the A/B data as 
open circles (c), while the data obtained using conventional t1 evolution are shown as solid squares. The 
correlation coefficient in (b) is r=0.92 and in (d) is r=0.93. A somewhat greater spread of the data points in 
(b) is due to truncation-related errors in the ηxy values from the ct-experiment. The data from the A/B 
method shown here were multiplied by a scaling factor 1.08, obtained from a linear least-squares fit of the 
A/B CCR rates to the real-time IPAP CCR experiment rates.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Influence of Additional Relaxation Mechanisms 
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 The expressions for the relaxation developed above assumed that the 15N-1H 

spin pair was isolated from all other spins and that all the relaxation was due to HDD 

and HCSA as defined in Chapter 2. Proteins, however, are spin dense systems, where 
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the 15N and 1H spins are coupled to many other protons within the molecule. If we 

represent the relaxation coefficients calculated above for the isolated case with 

subscript 0, and assume that the additional relaxation mechanisms act independently 

on the nitrogen and proton nuclei (i.e. there are no interference effects (CCRs) 

produced by these additional mechanisms),  
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where the primes indicate additional relaxation caused by additional spins. Eqs. 4.2.7 

and 4.2.8 taking into account the additional relaxation contributions can then be 

expressed as: 
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   (4.2.15) 

Now the relaxation rates of the individual components of the doublet are given by: 

)('
,12

1'
,22

)(
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1 up
HNxy

avupH RRRR +++= η  and )('
,12

1'
,22

)(
2

1 dn
HNxy

avdnH RRRR ++−= η  (4.2.16) 

where )('
,12

1 up
HR is not strictly equal to )('

,12
1 dn

HR . Kay et. al 111 consider the term '
,12

1
HR , as 

the half exchange-rate between the two doublet components due to spontaneous spin 
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flips of the proton (proton R1 relaxation). This is clearly in the slow-on-the-NMR-

timescale exchange regime, since the splitting between the two components of the 

doublet HzJ NH 94~
2

, is much greater than HzR H 54~'
,12

1 − . Therefore as long as the 

rate of exchange kex, for transition for the proton spin, Hz from spin-up → spin-down 

is equal to the rate for spin-down → spin-up, the decay of the ratio of the intensity of 

the upfield peak to the intensity of the downfield peak is still given by Eq. 4.2.11. 

Thus the time evolution of the ratio of the two components is insensitive to proton R1 

relaxation.  

 4.3 Spin State Selection for Measurement of CSA/dipolar CCRs  

A mono-exponential fit of the time evolution of the ratio of the intensities of 

the up- and down-field components of the nitrogen doublet using either the constant-

time evolution or the conventional t1 evolution schemes presented above, is the most 

straightforward way to obtain 15N CSA/dipolar CCRs. In large proteins, where 

spectral overlap is an issue, the IPAP method can be used to simplify the spectra. 

However, the addition and subtraction of the two spectra obtained from the in-phase 

and anti-phase experiments can be problematic in the instance of severe peak overlap. 

As discussed above, a small correction factor, fo, is used to compensate for any 

differences between the IP and AP experiments prior to their linear combination. It 

can be shown that errors in restored-peak intensities can arise from differences in 

relaxation properties of amides, resulting in a difference between the overall AP-

correction factor fo and the signal-specific correction factors (f1 and f2) for two 

overlapping signals (here designated S1 and S2). The relative error in the ratio of peak 
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intensities of the up- and downfield components of S1 can be approximated as 

δ(S1up/S1dn)IPAP ≈ ½ χ(S1up/S1dn)(f2-fo), where χ is the degree of overlap (i.e. the error 

in S1up due to the overlap is δS1up =χS2dn), and we assumed that f1, f2, fo ~ 1. 

Considering that the difference between the overall and the signal-specific correction 

factors in GB3 is at most ±5%, the error introduced in the IPAP approach is 

considerably smaller than that introduced by untreated overlap (where δ(S1up/S1dn)IP 

=χS1up/S1dn). It can be concluded that CCR measurements via coupled HSQC 

experiments introduce relative errors in the signal ratios of the order of the degree of 

overlap for in-phase coupled spectra analyzed alone, and about or less than 2.5% of 

the degree of overlap in IPAP experiments. Because of the different relaxation rates 

of S2dn and S1up, their ratio will depend on the CCR delay 2∆, which in turn could 

affect the measured values of η. 

One way to resolve this is the use of a spin-state selection method, to select 

the individual components of the 15N doublet prior to the relaxation period. Though 

less “direct” than the coupled HSQC method for CCR measurement, we have shown 

that this spin-state selection method is an improvement over the IPAP method for 

severely overlapping signals 112. This new direct method for measuring transverse 

cross-correlation rates selects coherences (single-transition operators) corresponding 

to a given component of the 15N doublet at the beginning of the CCR-decay period. 

The separate relaxation rates of the two components, R2±η, can thus be determined 

directly. Furthermore, the observed spectra are “simplified” (compared to a 1H-

coupled HSQC) as the number of signals is the same as in the decoupled spectrum.  
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In order to generate the single-transition 15N-operators we used the spin-state-

selective element (S3E) of Sørensen et al. 62. The S3E selects either the σup or the σdn 

component at the beginning of the CCR delay 2∆, depending on the phase cycle 

chosen. Alternative spin-state selection modules exist in the literature113 114 115, we 

have chosen the S3E building block because it can yield data with similar sensitivity 

to that of the IPAP sequence, when the scans for each of the selection phase cycles 

are stored separately and subsequently processed in linear combinations.  

The application of the S3E filter-CCR period-15N-evolution-without-

decoupling formula also has an advantage over other pulse sequence schemes using 

selection elements, in that selection of the desired component can be monitored and 

clean selection ensured by adjusting critical parameters of the sequence: the S3E delay 

2δ, and the 15N pulses (especially the 180° pulse in the middle of the selection filter). 

For example, a delay 2δ in the selection filter different from the optimal value for this 

parameter, 2δopt=1/(4J), leads to a decrease of the selected component by a factor of 

cos(2πJ(δ-δopt)) and  introduces an artifact signal in the spectra at the position of the 

unwanted component, with the intensity proportional to –sin(2πJ(δ-δopt)). The sign of 

the artifact is the same for both selected components and varies from positive to 

negative as a function of δ - 1/(4J).  Another critical factor for proper coherence 

selection is pulse calibration, especially the calibration of 15N pulses. The S3E 

selection module uses composite 180° pulses (90°y-180°x-90°y). A miscalibrated 

180°x 15N pulse in the middle of the composite pulse results in a decrease in the 

intensity of the selected component by a factor cos(α), where α is the deviation of the 

corresponding flip angle from 180o. In addition, spectral artifacts appear at the 
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position of the unwanted component, with intensities proportional to sin(α) if the 

upfield component is selected and –sin(α) in the case of the downfield component. 

Consequently, artifacts caused by the imperfection of the 180°-pulse in the middle of 

the composite pulse can be identified because they change sign depending on whether 

the pulse is longer or shorter than its ideal value. Within the approximation that the 

relaxation matrix is diagonal in the representation of single-transition operators, the 

presence of an unwanted signal belonging to the complementary component does not 

affect the measurement of the CCR, errors are only introduced when this additional 

signal overlaps with that of another amide.  

The S3E CCR experiment was tested on GB3 at 500 and 600 MHz. The results 

are in good agreement with those obtained from the IP/IPAP coupled HSQC 

experiments presented above (Fig 4.3.2). There is expected disagreement for 

overlapping residues; seven residues in GB3 show overlap only in the coupled 

spectra: K4,V5,A23,K24,A31,D47,A48 at 600 MHz and 

Q2,K4,V5,A23,D47,A48,V54 at 500 MHz (in green in Figure 4.3.2 a,b); the peaks 

were considered overlapping if their centers were separated by less than 0.6 ppm in 

15N and 0.06 ppm in the 1H dimension. Of these residues, A23 was most affected by 

the overlap: neither IP nor IPAP data (600 MHz) could be fitted well to an 

exponential decay, whereas the S3E data fit well. The results for the other overlapping 

residues follow the expected trend, with IPAP data in better agreement with the S3E 

results than the results of the IP-only method.  
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Figure 4.3.1 S3E-selective pulse sequence for measuring transverse 15N CSA/dipolar cross-
correlation rates using both conventional (A) and constant time t1 evolution (B) . Here the open bars 
represent composite 90°y-180°x-90°y pulses. The delays are: τ=2.6 ms, δ=1.22ms, the duration of the 
CCR-relaxation delay 2∆ is set to either zero or multiples of 1/J. The relative intensities of the 
gradients are G1:G2:G3=1:2.3:1.4. Two experiments are run with different phase cycles. The two 
spectra are then added (substracted) to yield the downfield (upfield) components. The phase cycling 
for the first experiment is φ1=x,-x, φ2=4(45°),4(225°), φ3=2(x),2(y); φ4=2(x),2(y), φ5=8(x),8(-x), 
φrec=x,2(-x),x,-x,2(x),2(-x),2(x),-x,x,2(-x),x while for the second experiment φ2=2(2(45°),2(225°)) and 
φ4=2(x),2(-y). 
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Figure 4.3.2 Correlation between ηxy measured at 14.1 T using the IP method (open circles) and using 
the IPAP method (filled squares) with ηxy measured using the S3E method (x-axis). The IP and IPAP-
derived values for each residue are connected by vertical lines. The correlation coefficient is 0.88 (S3E 
vs. IPAP) and 0.91 (S3E vs. IP) (for non-overlapping residues). The error bars reflect stochastic errors, 
calculated on the basis of thje S/N ratio of the spectra. The data points for residues affected by signal 
overlap in the coupled spectra are colored green.  
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4.4 Longitudinal CSA/dipolar CCR 

 An approximation was made in writing Eqs. 4.2.1, 4.2.7 and 4.2.8, namely 

that the 15N-1H spin pair was isolated from all other spins and that all the relaxation 

was accounted for in the Hamiltonians, HDD and HCSA. In sec 4.2.4, this 

approximation was lifted, and the relaxation equations for transverse relaxation of the 

up- and down-field components of the nitrogen doublet in the presence of other 

relaxation mechanisms were given in Eqs. 4.2.13-4.2.15. For longitudinal 

CSA/dipolar cross-correlated relaxation, the analogous relaxation equations for the 

isolated spin system are given by: 
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where R1,N, and R1,2HN are the longitudinal auto-relaxation rates of nitrogen and two-

spin order longitudinal magnetization respectively, ηz,N is the longitudinal 
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CSA/dipolar CCR of nitrogen. Longitudinal cross-correlated relaxation is slightly 

more complicated than transverse cross-correlated relaxation because the Nz and 

2NzHz operators commute with the scalar coupling Hamiltonian. However, if these 

components of magnetization can be averaged by experimental methods 101, the 

relaxation of the components will be given by: 
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for the longitudinal CCR experiment, with 1R as ⎟⎟
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2

2,1,1 HNN RR
.  

 However, there is an additional consideration when measuring the 

longitudinal CCR since proton spin diffusion may contribute to measured values of 

longitudinal cross-correlation relaxation 101,116. To examine the magnitude of this 

effect on longitudinal CCR’s in GB3 we measured ηz in both a protonated and 

deuterated GB3 sample and obtained results that were identical within the estimated 

errors of the measurement. Though the ηz values in the deuterated sample are 

systematically lower than those in the protonated sample, this difference is withing 

the experimental error of the measurement. We therefore conclude that the effect of 

spin diffusion on ηz can probably be neglected in this system. Figure 4.4.1 shows the 

pulse sequence for ηz measurement and Figure 4.4.2 shows the measured ηz values in 

protonated and deuterated samples of GB3. The possibility that the small difference 

between these measurements is systematic is still being explored. 
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Figure 4.4.1 Pulse sequence for measurement of longitudinal 15N CSA/dipolar CCR. The element labeled 
AP is omitted in the IP experiment. The phases are: φ1 = -y, y, φ3 =4{x},4{y},4{-x},4{-y}, φ4=8{x},8{-x}, 
φ5= - x; for the IP experiment φ2 =2{x},2{-x} and receiver = x,-x,-x,x, for the AP experiment:  φ2 = -y,-y, y, y 
and receiver = x,-x,-x, x,-x, x, x,-x. Phases φ2 and φ3 are incremented in the States-TPPI fashion. All other 
pulses are along x. Gradients were sine-shaped with the following strengths: G1 = 12 G/cm, G2 = 9 G/cm; G3 
= 18 G/cm; G4 = 11 G/cm; G5 = 24 G/cm, their durations were 600 µs, 600 µs, 700 µs, 600 µs, and 700 µs, 
respectively. This sequence implements elements for averaging the relaxation rates of the Nz and 2NzHz 
coherences as suggested in (Kroenke, J. Am. Chem. Soc., 1998) (indicated by horizontal brackets).  
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igure 4.4.2 Agreement of longitudinal 15N-{1H} CSA/dipolar CCRs, ηz, measured using the IPAP 
cheme in a fully protonated GB3 sample (filled squares, solid line) and a deuterated GB3 sample 
open circles, dotted line). The two measurements are very similar, indicating that for GB3 the 
ffect of proton spin diffusion on the measurement of ηz is small, though possibly not negligible 
ince the ηz rates in the deuterated sample are systematically less than in the protonated sample.  
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4.5 Conclusions 

 Direct methods for measuring the 15N CSA/dipolar cross-correlation rates in 

proteins are in good agreement with indirect methods (Figures 4.2.5b and 4.2.7d), but 

do not need to be corrected for scaling factors introduced by small differences in 

experimental conditions or pulses between the two experiments required for indirect 

measurement of the build-up of 2NyHz coherence from Ny coherence. We have shown 

here that 15N CSA/dipolar cross-correlation rates can be measured directly from the 

relative amplitudes of the up- and down-field 15N signals in a 1H-coupled 1H-15N 

HSQC spectrum. This type of measurement of CCRs from the ratio of intensities of 

doublet components is quite general for measuring cross-correlations for other 

interactions. Examples include measurements of cross-correlation rates between HN 

CSA and HN-15N dipolar coupling and between 13CO CSA and 13CO-13Cα dipolar 

interactions 73. The obvious advantage of this approach is that both signals are 

observed in the same spectrum and, therefore, no ambiguity associated with 

correction factors is involved. The application of this method to biological 

macromolecules, however, is complicated by signal overlap in the coupled 2D 

spectra, which may be particularly severe in the case of H-coupled 1H-15N HSQC 

spectra for macromolecules greater than 10 kDa.  

 We have shown that the IPAP scheme simplifies coupled 1H-15N HSQC 

spectra without causing deviations in cross-correlation rates. Both CCRs measured 

using the IP only sequence and the IPAP scheme agree with the indirect A/B method 

when the A/B method is scaled by a correction factor (Fig 4.2.5b).   
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 S3E spin-state selection of the individual (up- or down-field) component of the 

nitrogen doublet before the relaxation delay also alleviates problems due to spectral 

overlap. This correction is, in principle, even better than that of the IPAP scheme 

which can introduce very small errors in restored-peak intensities due to site-specific 

differences in relaxation properties of individual amides. CCRs measured using the 

sequence containing the S3E spin-state selection element agree with IPAP, IP, and 

scaled A/B method CCRs. 

 In subsequent chapters I will demonstrate the utility of 15N-{1H} CSA/dipolar 

CCRs to identifying conformational exchange motions, for determining the overall 

diffusion properties of a molecule, and for the determination of site-specific 15N 

CSAs in proteins. All of these applications rely on the accuracy and precision of the 

CCR rates, therefore the techniques presented here are valuable tools for improving 

our ability to probe both protein dynamics and protein chemistry.  
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Chapter 5:  Overall Rotational Diffusion Tensor of GB3  

5.1 Motivation 
 

Overall rotational diffusion is generally a larger cause of spin relaxation than 

fast, local motion of individual bonds or collective motions of groups of atoms 34. If it 

was not for the fact that proton relaxation in the nuclear Overhauser effect can be 

approximated as arising from the Brownian motion of a rigid molecule, current 

methods of NMR structure determination of proteins would not be possible. Since the 

overall tumbling has a much larger effect on nuclear spin relaxation rates than the 

motion of the NH bonds, the overall tumbling must be correctly determined before 

any accurate picture of local NH bond motion can be deconvolved from NMR spin-

relaxation rates. The dependence of spin relaxation rates on the angle between the 

dipole-dipole interaction and the symmetry axis for cylindrically symmetric rotational 

diffusion (also called axially symmetric or symmetric-top rotational diffusion) was 

first worked out by Woessner in 1962 70. The experimental diffusion tensor of a 

molecule in solution can be determined by fitting experimental NMR spin relaxation 

rates to these theoretical expressions using a χ2 minimization in the relevant 

parameter space. Whether a particular molecule is best described by an isotropic, 

cylindrically symmetric, or fully anisotropic rotational diffusion tensor can be 

evaluated using statistical criteria 117. 

However, this χ2 minimization in the instance of cylindrically symmetric (4 

parameter space) or fully anisotropic (6 parameter space) models of overall rotational 

diffusion requires considerably more computational effort than in the case of isotropic 
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overall diffusion (1 parameter space), and requires knowledge of the three-

dimensional structure of the molecule. Early studies of protein dynamics using NMR 

spin relaxation rates, therefore, frequently relied on the assumption that the molecular 

rotational diffusion could be approximated as isotropic. Such a study of the local 

dynamics of NH bonds in the B1 domain of protein G (called GB1, sequence 

homology to GB3=96%, sequence identity to GB3=89%) which is structurally very 

similar to GB3 found conformational exchange motions throughout the α-helix of the 

molecule 118. These motions were attributed to “breathing” motions of the helix with 

respect to the β-sheet. Since the time of this study, several methodological studies of 

techniques for analyses of local motion from NMR relaxation data have pointed out 

that microdynamic parameters derived from these data could be in error if the 

rotational anisotropy is not correctly taken into account (as pointed out in e.g. 119). 

Specifically, it has been shown 44,63,64) that an analysis of 15N relaxation data which 

does not include significant rotational anisotropy could result in spurious 

conformational exchange motions. Analysis of a representative set of 878 protein 

structures suggests that about 70% of monomeric proteins have 1.2 < D||/D⊥ < 2 

(Geraghty et al, unpublished), which indicates that anisotropic rotational diffusion is 

quite general for proteins. 

 The shapes of both the GB3 and the GB1 domains display intermediate 

anisotropy; the inertia tensor of GB3 was calculated using the coordinates of the 

heavy atoms from the protein databank crystal structure (1IDG.pdb). The normalized 

values of the principal components of the inertia tensor are 1.80: 1.79: 1.00.  It is 

therefore possible that the overall rotational diffusion of GB3 is significantly 

 88 
 



anisotropic and that the assumption of isotropic rotational diffusion could result in 

overestimation of conformational exchange motions. Given this, it was of interest to 

determine the experimental diffusion tensor of GB3. This chapter describes the 

method and results of that determination, while the subsequent chapter discusses 

other experiments we conducted to identify and/or exclude conformational exchange 

motions in GB3.   

5.2 Method for Derivation of the Rotational Diffusion Tensor of A Molecule from 
NMR Relaxation Data 
 
 
5.2.1 Method for Derivation of Parameters that Describe Rotational Diffusion 
from 15N Relaxation Data. 
 

Anisotropic rotational diffusion of a molecule means that the 

rotation/reorientation of the molecule about some direction in space is faster than 

about other directions. This means that different 15N nuclei “feel” different overall 

correlation times, and have different spin-relaxation rates depending on the 

orientation of their dipolar interaction with 1H (their N-H bond vector) with respect to 

the principal axis frame of the rotational diffusion tensor. Given the structure of the 

molecule and experimental relaxation data (15N R1 and R2 and 15N{1H} NOE), the 

overall diffusion tensor can be calculated by minimization of the target function: 

∑
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where Nr is the total number of NH bond vectors in the analysis (usually the number 

of residues in the protein), and the parameter ρexp is the ratio of the reduced 15N 

transverse and longitudinal reduced relaxation rates (Eqs. 2.5.19-2.5.20): 
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σi denotes the experimental error in ρi for NH vector i. ρcalc is calculated using 

expressions for the theoretical dependence of this ratio on the overall correlation time, 

the principal values of the overall rotational diffusion tensor, and the angles between 

the axes of the diffusion tensor and the NH bond vectors. The ratio, R2′/R1′ (where R1′ 

and R2′ are defined in Eqs. 2.5.19-20), is used instead of the individual values of these 

parameters since this ratio is approximately independent of site-specific variations in 

rNH and the 15N CSA. Furthermore, the R2′/R1′ ratio is less sensitive to internal 

molecular dynamics120. 

The theoretical expressions for this ratio in the approximation of no local 

motion (i.e. S2 = 1 so that all terms proportional to (1-S2) can be ignored) and no 

chemical exchange, in the instances of isotropic and cylindrically symmetric 

rotational diffusion are given by 121:  
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where θ is the angle between the NH vector and the axis of the diffusion 

tensor, 1/|| −= ⊥DDε , ⊥= D61τ , with and representing the principal values of 

the diffusion tensor ( < ), and ω

||D ⊥D

⊥D ||D N the 15N Larmor frequency. In the case of 

axially symmetric rotational diffusion, the overall correlation time is given by 

).2(2/1)(2/1 || ⊥+== DDDtrcτ         (5.2.5)  

Equation 5.2.4 can be calculated from equation 5.2.2 and J(ωN) and J(0) calculated 

from the expression for the spectral density function (in the case of no local motion) 

with an axially symmetric diffusion tensor, Eq. 3.4.14. The expression in the fully 

anisotropic model of rotational diffusion is more complicated. It can be worked out 

(but is difficult to write) using equation 5.2.2 and the expression for the spectral 

density function (in the case of no local motion) for a fully anisotropic tensor (Eq. 

3.4.17).  

 In the most general case of a completely anisotropic diffusion tensor, six 

parameters have to be determined: the principal values of the tensor (Dx, Dy, Dz) and 

the three Euler angles (Φ, Θ, Ψ) that define the orientation of the principal axes frame 

of the tensor with respect to the molecular frame. In the axially symmetric case, the 

number of parameters is reduced to four: D|||, , and the two Euler angles (Φ, Θ). 

The search of the parameter space for the solutions which minimize Equation 5.2.1 

was performed using the computer program ROTDIF (developed in the lab) which 

uses a Levenberg-Marquardt minimization algorithm which has been shown to be 

much more efficient (and potentially more accurate) than grid-search methods

⊥D

120.  

5.3 The Rotational Diffusion Tensor of GB3  
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5.3.1 Relaxation Data 
 

The Relaxation data used in this analysis consisted of the rates of 15N 

longitudinal (R1) and transverse (R2) relaxation and the rate of 15N -1H cross-

relaxation measured via the steady-state 15N {1H } nuclear Overhauser effect (NOE) 

measured at 14.1 T and 24o C. The experiments were performed using the methods 

for relaxation rate measurement described in Chapter 3. 55 resolved backbone amide 

cross peaks were observed in the 2D spectra. Though they could be sufficiently 

resolved for assignment, residues Glu15 and Asn35 and Thr25 and Glu27 are not 

included in the analysis, as their signal intensities could be affected by spectral 

overlap. Gln2 (which is a mutation in our GB3 protein sample) was excluded from 

anisotropic analyses because it is not present in the available protein coordinates. The 

relaxation rates are shown in Fig. 5.3.1a-c. 
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Figure 5.3.1.  Relaxation Rates in GB3 at 600 MHz (14.1 Tesla). (a)-(c) Amide 15N relaxation 
rates at 14.1 Tesla, (a) R1, (b) R2, and (c) 15N{1H} NOE versus residue number for the B3 domain of 
protein G.  The error bars represent standard errors in the experimental parameters. (d) ρexp values 
(Eq. 5.2.2) versus residue number, (e) the polar angle, α, between each NH vector and the z-axis of 
the molecular frame, (f) τiso calculated using Eq. 5.3.1 versus residue number. The horizontal bars on 
the top indicate the positions of the secondary structure elements in the protein sequence.  
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The R1, R2 and NOE data (Fig.5.3.1a-c) show simultaneous decrease in the 

1/ β2 and α/ β3 loops, indicating that these are flexible regions in the protein. There 

s no such decrease in any of the relaxation parameters in the β2/α loop, however, 

nd in the loop connecting strands β3 and β4 there is a decrease in R1 and R2 but not 

n the NOE. Noticeably elevated R2 values are observed for the entire α-helix (Fig. 
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2b). The NOEs are also somewhat higher here than in the rest of the backbone, while 

the R1 values are at about the same level as in the other elements of the secondary 

structure. An elevation in R2 as observed in the α-helix could be indicative of 

conformational exchange on the microsecond-millisecond timescale. However, given 

the structure of GB3, it is difficult to imagine a physical model that would account for 

every residue in the helix (including those not facing the β-sheet) being involved in 

motion on the µs-ms timescale. The orientation dependence of the transverse 

relaxation rate could account for the elevation in R2 for residues in the α-helix if the 

helix axis of the GB3 domain is aligned parallel to the longitudinal axis of a prolate 

rotational diffusion tensor. This orientation would align the NH vectors in the α-helix 

along the axis of fast overall rotation – as the result, they would experience slower 

rates of overall tumbling (hence higher R2s) compared to the rest of the protein. 

 Figure 5.3.1d shows the experimental values of the parameter, ρexp, (Eq. 5.2.2) 

calculated from the relaxation rates. And Figure 5.3.1f shows the values of τiso 

calculated from ρexp using Eq. 5.2.3 which assumes isotropic overall rotation: 

 

N
iso ω

ρ
τ

1
3
4 exp −

=        (5.3.1) 

 There is systematic variation (mean 3.36 ns, standard deviation 0.18 ns, difference 

between max and min τiso of 0.77 ns) in these calculated values of τiso from residue-

to-residue, inconsistent with an isotropic model of overall diffusion, where all groups 

should experience the same overall correlation time. Figure 5.3.1e shows the values 
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of the polar angle, α, of each NH vector in the crystal structure of GB3 (1IGD.pdb) 

with respect to the z-axis of the molecular frame. There is some correlation between 

these angles and the values of ρexp and τiso, indicating that the protein does not tumble 

isotropically. 

 The residues with lower than average values of R1, R2, and the NOE were 

excluded from the set of residues used to derive the anisotropic overall rotational 

diffusion tensors. As mentioned above, the low values of these rates indicate that the 

NH bonds in these residues are undergoing motion on the ps-ns timescale. Due to this 

motion, the orientation of the NH vectors for these residues in the crystal structure 

“snapshot” might not be representative of the time-averaged orientation on the time 

scale of the overall rotation (which is on the order of ns). Since this time-averaged 

orientation of these residues is unknown, these residues must be excluded from the 

derivation of the anisotropic diffusion tensors. 

  

5.3.2 Comparison of the Experimental Isotropic, Axially Symmetric, and Fully 
Anisotropic Models for Describing the Overall Rotational Diffusion of GB3 
 

The parameters that describe the overall rotational diffusion of GB3 

determined from relaxation data (R1, R2, 15N{1H} NOE) at 600 MHz assuming three 

different models of motion (isotropic overall rotational diffusion, rotational diffusion 

which has a single symmetry axis (i.e. is axially symmetric), and fully anisotropic 

rotational diffusion) are given in Table 5.3.1 along with statistics describing the fit of 

the model to the data. Of note here, the numbers in parentheses represent standard 

errors in the parameters arrived at by Monte Carlo simulation of synthetic parameter 
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sets about the χ2 minimum using the method of χ2 boundaries as described in 117. 

These standard errors represent 68.3% confidence intervals in the fit parameter, but 

should not be compared with the standard deviations in the distribution of this 

parameter for all residues in GB3. Three different theoretical predictions of this 

diffusion tensor, using hydrodynamic models are shown in the bottom three rows (the 

methods for these predictions and their agreement with the experimental values are 

discussed in section 5.4). The orientation of the axes of the derived diffusion tensors 

with respect to the structure of GB3 are shown in Figure 5.3.1.  
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 Table 5.3.1.  Hydrodynamic characteristics of the GB3 domain derived from 15N relaxation 
data using various models of the overall tumbling and from hydrodynamics calculations 
 

el of overall 
motion 

Dx
a Dy

a Dz
a α b β b γ b τc c Aniso 

tropyd
Rhom 
bicitye

χ2/dff P g

opic  4.86 

(0.04) 

4.86 

(0.04) 

4.86 

(0.04) 

- - - 3.43 

(0.03) 

1 0 102.5 - 

l symmetry 4.45 
(0.11) 

4.45 
(0.11) 

6.07 
(0.33) 

94 
(7) 

69 
(12) 

- 3.34 
(0.11) 

1.37 
(0.06) 

0 8.4 4 10-17

anisotropy 4.13 
(0.24) 

4.60 
(0.18) 

6.25 
(0.34) 

85 
(10) 

68 
(7) 

179 
(14) 

3.34 
(0.10) 

1.43 
(0.09) 

0.37 
(0.24) 

6.2 5 10-3

oretical 
iction h  

4.36 4.99 6.01 70 84 152 3.22 1.29 0.71   

oretical 
iction I  

4.35 4.49 5.98 75 61 172 3.23 1.35 0.13   

oretical 
iction j

4.43 4.64 6.36 87 64 175 3.31 1.40 0.17   

 ers in the parentheses represent standard errors, arrived at by Monte Carlo simulation of synthetic parameter sets around 
 minimum using the method of χ2 boundaries as described in Press et al.  
cipal values (in 107 s-1) of the rotational diffusion tensor, ordered so that Dx ≤ Dy ≤ Dz . 
r angles {α,β,γ} (in degrees) describe the orientation of the principal axes frame of the rotational diffusion tensor with 

ct to protein coordinate frame. 
rall rotational correlation time (in ns) of the molecule, τc,=1/[2 Tr(D)]. 
 degree of anisotropy of the diffusion tensor, 2Dz/(Dx+Dy). 
 rhombicity of the diffusion tensor,  1.5(Dy - Dx)/[Dz - ½ (Dx+Dy)]. 
duals of the fit (χ2) divided by the number of degrees of freedom.  
ability that the reduction in χ2 (compared to the model in the row directly above it) could occur by chance. Both axially 
etric and fully anisotropic models are statistically a much better fit than the isotropic model.  

 results of hydrodynamic calculations using “dry” bead model, the bead radius was set to 1.4 Å. 
esults of hydrodynamic calculations using bead model and hydration shell, the bead radius was set to 1.0 Å with a 
tion shell of width 1.3 Å. 
esults of hydrodynamic calculations using HYDRONMR program (García de la Torre et al., 2000); parameter a was set to 
. 
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Figure 5.3.2. Ribb n representation of the tertiary structure of the GB3 domain, generated using MolMol (Koradi, 
J. Mol. Graph. 1996) with the orientation of the diffusion tensor axes (as indicated) obtained directly from 15N 
relaxation data for the axially symmetric (red) and fully anisotropic (blue) models and predicted theoretical (green)
using HYDRONMR, along with the unique axis of the inertia tensor (pink). Atom coordinates are from the crystal 
structure (1IDG.pd  (Derrick, J Mol. Biol. 1994). The orientations of all three diffusion tensors are similar within 
the experimental errors. The z-axis of the axially symmetric tensor makes an 8o angle with those for the fully 
anisotropic tensors, both measured and predicted using HYDRONMR. The difference in the orientation of the z-
axes of the fully anisotropic and the theoretical tensor is 3o. All these z-axes are oriented approximately along the 
α-helix axis: the tilt angle is 23o, 30o, and 28o, for the axially symmetric, fully anistotropic, and the HYDRONMR-
predicted tensors. imilar angles with respect to the unique axis of the inertia tensor are 10o, 18o, and 17o; this axis 
is tilted from the helix axis by 15o. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the axially symmetric model, the rotational diffusion tensor of GB3 is 

characterized by = 1.37 ± 0.06 and τ⊥DD /|| c = 3.34 ± 0.11 ns. The orientation of the 

unique principal axis of this tensor with respect to the crystal structure (Fig.5.3.2) is 

characterized by Euler angles, Φ = 94o ± 7o
 and Θ = 69o ± 12o. The smaller the angle 
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between the axis of the diffusion tensor and the α-helix axis (Fig.5.3.1) the more 

likely the observed elevation of the R2 values in this part of the protein are explained 

by the diffusional anisotropy of the molecule. Here the angle is only 23o for the 

axially symmetric tensor and 30o for the fully anisotropic tensor. The agreement 

between the experimental (ρexp) and fit (ρcalc, Eq 5.2.4) values of ρ as a function of 

the polar angle θ between the NH vector and the axis of the axially symmetric 

diffusion tensor is shown in Fig.5.3.2a The vertical spread of the data around the 

fitting curve, most pronounced near the maximum (at θ ~ 90o), indicates that the 

actual diffusion of the molecule is not perfectly cylindrically symmetric, but is 

slightly rhombic.  

 The characteristics of the fully anisotropic diffusion tensor are very similar to 

those for the axially symmetric tensor (Table 5.3.1, Fig.5.3.2). In the case of full 

anisotropy the description of ρ in terms of one angle between the NH vector and the 

axis of the diffusion tensor is not sufficient, as the orientation (azimuthal angle φ) of 

the NH vector with respect to the plane containing the other two axes of the diffusion 

tensor also has an effect on the relaxation parameters. A more detailed assessment of 

the quality of the fit can therefore be obtained from the three-dimensional surface 

shown in Fig 5.3.3c and representing the theoretical values of ρ as a function of θ and 

φ. For a prolate fully anisotropic diffusion tensor, the shape of this surface displays 

the symmetry of ρ, i.e. ρ(θ,φ)=ρ(180o-θ,φ)=ρ(θ,−φ)=ρ(θ,180o-φ)=ρ(θ,φ-180o). 

Analogous to the height of the curve in Fig 5.3.3a, the elevation of this surface 

depends on the principal values {Dx, Dy, Dz} of the diffusion tensor. The difference in 

height between the maxima and the saddle points is proportional to (Dy-Dx) and 
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vanishes for axially symmetric diffusion. For the axially symmetric model, this whole 

surface is projected onto an area on the ρ(θ) plot (compare Figs 5.3.3a,b). The upper 

and lower boundaries of ρ(θ) are given by φ = 0 and φ = π/2 and correspond to the 

cases where the NH vector lies in the Dx-Dz or Dy-Dz plane. The gap between the two 

boundaries varies with the angle θ; it is negligible for θ close to 0, it increases with 

the deviation of the NH vector from the z-axis and reaches maximum when θ= π/2. 

The top points of these curves correspond to the two limiting cases of the NH vector 

parallel to the Dx axis (θ = π/2,φ=0, upper boundary) or along the Dy axis (θ=π/2, φ = 

π/2, lower boundary). The data points located in the “hills and valleys” on Fig. 5.3.3c 

are projected onto the space between the red and green lines in Fig. 5.3.3b when the 

surface is projected onto the θ − ρ plane in the case of the axially symmetric model; 

this then explains the vertical spread in the data points around the fitting curve in 

Fig.5.3.3a. For an isotropic tensor the surface in Figure 5.3.3c is flat.  

From the chi-square per degree of freedom (χ2/df) of the fit (see Table 5.3.1), 

it can be seen that the axially symmetric and fully anisotropic tensors are a much 

better fit to the experimental data than the isotropic tensor (χ2/dfiso=102.5, 

χ2/dfax=8.4, χ2/dfani=6.2), while the fully anisotropic tensor was only a slight 

improvement over the axially symmetric tensor. As discussed above, the actual 

diffusion of GB3 is slightly rhombic, but whether or not the additional two 

parameters necessary in describing fully anisotropic diffusion (compared to axially 

symmetric diffusion) improve the modeling of the data sufficiently to statistically 

justify their introduction remains in question. A statistical F-test was performed to 

evaluate whether this slight improvement in χ2/df is significant. The probability that 
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the fully anisotropic tensor is a better fit purely by chance is 1/200. For F test 

statistics to be significant at the (1-α)% confidence level, this probability should be 

less than α. Therefore, the fully anisotropic model is the best model to a 99.5% 

confidence level. However, the rhombicity of the fully anisotropic diffusion tensor is 

very small, and close to the minimum identifiable rhombicity (0.3 for relaxation rates 

with 2% uncertainty 120). Therefore we concluded that the axially symmetric tensor 

and fully anisotropic tensor both provide approximately equal fits, so that to a good 

approximation, the diffusion of GB3 can be modeled by an axially symmetric 

diffusion tensor with the parameters in the second row of Table 5.3.1. This issue will 

be explored further in Chapter 7. 
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a
Figure 5.3.3.  Orientation dependence of ρexp. In (a) and (b) ρexp(black squares) are compared to 
pcalc (smooth curves) using an axially symmetric (a) and fully anisotropic diffusion tensor that 
minimizes the corresponding χ2/df function (Eq. 4.2.1). (b). In (a) the red curve corresponds to Eq. 
4.2.4 using the parameters in the second row of Table 4.3.1 In (b) are the curves representing the 
projection of the dependence on φ and θ in (c) onto the θ − ρ plane. The red and green lines indicate 
the positions of the φ=0o (NH vector along Dy) and φ=90o (NH vector along to Dx) as a function of θ. 
These lines are close together for GB3, reflecting its small rhombicity. (c) shows the complete surface 
(in grey) that represents ρcalc(φ,θ) calculated with the parameters in the third row of Table 4.3.1 for 
the fully anisotropic model. The red and blue points are pexp in GB3 colored according to whether 
they lie above (red) or below (blue) the ρcalc surface. 
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Figure 5.3.4.  (a) Correlation of ρexp and ρcalc for the axially symmetric (black points) and fully 
anisotropic diffusion tensors (red points). (b) Difference between ρexp and ρcalc divided by the 
error in pexp (σ) for each residue in GB3. Th  sum over all residues of the square of this 
difference is the function minimized in the program ROTDIF, Eq. 5.2.1. 
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omparison with Predictions from Theoretical Hydrodynamic Models 

Having experimental data for the rotational diffusion tensor of the protein, we 

ow test if theoretical models are capable of reproducing these results. 

retical prediction of the rotational properties of proteins in solution is complex, 

ly because it has to account for the unknown size and shape of the hydration 

 formed by nearby water molecules moving together with the tumbling protein 

cule. A detailed theoretical analysis should consider specific interactions 

een water molecules and protein atoms and the friction effects due to the 

hness of the protein surface 122. In addition, large-amplitude dynamics (e.g. of the 

 and/or termini) can alter the shape of the molecule in time, in which case a 

-body approximation is invalid. Here we considered several ways of theoretically 

cting the overall rotational diffusion tensor of GB3, based on several 

sentations of the protein’s structure, with increasing levels of modeling 

istication. 

 Simple Predictions based on the Stokes-Einstein-Debye Equation of 

tional Diffusion and Empirical Relations for Proteins. 

The rotational properties of a rigid rotor in a frictionless medium are 

cterized by its inertia tensor. The inertia tensor of GB3 was calculated using the 

inates of the heavy atoms from the crystal structure (1IDG.pdb). The inertia 

r of GB3 has normalized principal values of 1.80: 1.79: 1.00, indicating that the 

in can be modeled as an axially symmetric rotor. The unique axis of the tensor is 

ximately parallel to the α-helix axis as shown in Fig. 5.3.2.  
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The relationship between the inertia tensor of an object and its rotational 

diffusion tensor, relatively straightforward for rigid objects of simple shape, becomes 

more complex for realistic representations of a protein. A rough theoretical estimate 

of the principal components, Di (i = x, y, or z), of the diffusion tensor and of the 

overall correlation time, τc, of GB3 can be made assuming a Stokes-Einstein-Debye 

hydrodynamics model in which the protein is approximated as a rigid rotor in the 

shape of a sphere, cylinder, or prolate ellipsoid of revolution. 

The simplest model is to represent a protein by a sphere. Using the Stokes-

Einstein-Debye equation: τc = ηV/kbT, we obtain τc=1.64 ns. Here η is the solvent 

viscosity, T is temperature, kb is the Botzmann constant, and V is the volume of the 

molecule which we estimated from the molecular weight of the protein assuming that 

the specific volume is uniformly 0.73 cm3/g. 

The cylinder approximation using empirical relationships from the literature 

123 resulted in  = 1.45 and τ⊥DD /|| c = 2.35 ns, assuming solvent viscosity of 0.91 

cpoise at 24oC. The sizes of the molecule in the relevant dimensions (27Ǻ in the z 

and 16Å in both x and y, the axial ratio 1.69) were obtained from the crystal structure.  

For a prolate ellipsoid model, the ratio of the principal values of the diffusion 

tensor is approximately given by the empirical relationship 2/1
|||| )/(/ IIDD ⊥⊥ =  124, 

where and  are the principal components of the inertia tensor of the protein. 

Using this model for GB3, we obtained = 1.51 and τ

||I ⊥I

⊥DD /|| c =2.64 ns under identical 

solvent conditions. 
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5.4.2 Modern Hydrodynamic Models 

We then considered more sophisticated models that take into account atomic-

resolution details of the shape of the protein and attempt to include the effect of the 

solvent. Since a detailed picture of the protein’s interactions with the surrounding 

water molecules is not available, these interactions are modeled by including a 

hydration layer of uniform width that tumbles together with the protein. A more 

detailed theoretical analysis would consider specific interactions between water 

molecules and protein atoms 125 and the friction effects due to the fractal nature of the 

protein surface 122.  

Here we focused on two characteristics of the diffusion tensor: its anisotropy 

and the overall correlation time. We selected these parameters because of the opposite 

character of their dependence on the size of the hydration shell: adding a layer of 

water molecules will increase τc (as the rotating body is now larger) and decrease the 

D||/D⊥ (as the hydration shell enclosed protein is more rounded than the protein 

alone). Therefore a simultaneous comparison of the predictions for both 

characteristics of the tensor could provide insights into the optimal settings for 

theoretical hydrodynamic models.  

The so-called ‘bead model’ for prediction of the hydrodynamic properties of 

molecules approximates protein by a series of beads 126-128 placed at the coordinates 

of heavy atoms and with the bead size representing the average atomic radius. First 

we considered a “dry protein”. For the B3 domain of protein G we could reproduce 

the experimentally obtained value of τc for an atomic radius of 1.45Ǻ, and the 

experimentally obtained value of D||/D⊥ for a radius of 1.1Ǻ. 
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Theoretically, one average atomic radius should reproduce both experimental 

parameters of overall rotational diffusion. Therefore we conclude that the “dry 

protein” model is not adequate. We then included hydration shells of increasing 

thickness (0Ǻ -5Ǻ) to the protein bead model to test if this could reproduce the values 

of both experimental parameters (D||/D⊥ and τc) for one bead size and one shell 

thickness.  It turns out that several combinations of bead size and hydration shell 

thickness are consistent with the experimental values (see Fig. 5.4.1), given the 

experimental uncertainties. The optimal bead sizes ranged from 0.8 to 1.2 Ǻ and the 

corresponding values of the shell thickness from 1.5 to 1.2 Ǻ. These values are 

somewhat smaller than those typically assumed in hydrodynamic calculations—

probably reflecting the incomplete modeling of the solvation of the protein by a 

hydration layer of uniform thickness. For example, it has been shown that the 

hydration layer surrounding a protein consists of two different “types” of water 129 —

a few water molecules that remain tightly bound to the protein for long times (greater 

than the rotational correlation time of the molecule) and other water molecules still 

near the protein surface that experience much faster rotational and translational 

diffusion rates.  The results of the “dry” bead model with the bead radius set to 1.4 Å 

and the results of the bead model with hydration shell with bead radius of 1.0 Å and 

hydration shell width of 1.3 Å are shown in Table 5.3.1 for comparison with 

experimental data. 
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Figure 5.4.1.  Comparison of the measured characteristics, τc and D||/D⊥, of the diffusion tensor with 
the results of a hydrodynamic bead model calculations. Shown is the dependence of τc (top) and 
D||/D⊥ (bottom) on the hydration shell thickness for various atom “bead” sizes, indicated by the 
corresponding numbers for each line. The dashed lines represent the experimental values of the 
diffusion tensor characteristics derived for the axially symmetric model, while the shaded areas 
represent their 68.3%-confidence region. The vertical bars mark the regions which are inside the 
experimental errors for both measured parameters (D||/D⊥ and τc) for a particular bead size. 
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Another, more recent method for calculating surface effects of molecules in 

lution, uses a strategy known as shell modeling 130,131, where the hydration effects 

 represented by a shell covering the surface of the protein. This model is 

aracterized by a single parameter a that represents the sum of the thickness of the 

dration shell and the average atomic van der Waals radius in the molecule. For the 

 domain of protein G we were able to reproduce the experimentally obtained 

lues for both τc and D||/D⊥ for an a between 2.5Å and 2.8 Å (Fig. 5.4.2).  As shown 

Table 5.3.1 and Figure 5.3.1, both the principal values and the orientation of the 

lculated diffusion tensor are in remarkable agreement with the experimental data.  

suming an average atomic van der Walls radius of a heavy atom in the protein is 

out 1.5 Å, the hydration shell should have a thickness of between 1.0 Å and 1.3 Å.  
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This is generally consistent with the results of the bead model, where the hydration 

shell thickness was calculated to be between 1.2 Å and 1.5 Å.  

Values of parameter a between 2.5 Å and 2.8 Å are consistent with the results 

obtained by de la Torre et al. 130 who calculated rotational diffusion tensors for a 

variety of a values for 15 proteins covering a range of molecular weights from 2.93 to 

26.7 kDa. They found that in most cases experimental values of τc were reproduced 

with values of a between 2 Å and 4 Å.   
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Figure 5.4.2.  Comparison of the measured characteristics, τc and D||/D⊥, of the diffusion tensor with 
the results of the hydrodynamic shell model calculations. Shown is the dependence of τc (top) and 
D||/D⊥ (bottom) on the parameter a (average van der Waals radius of the atoms in the molecule, plus 
the thickness of the hydration shell).  The dashed lines, shaded regions, and vertical bars have the 
same meaning as in Figure 5.4.1.  
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onclusions and Discussion 

We determined experimentally the overall rotational diffusion tensor and 

elation time of the GB3 protein from 15N relaxation rates (R1, R2, 15N{1H} NOE) 

0 MHz. We found that to a good approximation, this protein can be modeled as a 

ate axially symmetric (symmetric-top) rotor with the ratio of the rate of 
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reorientation about the fast axis to a perpendicular axis,  of 1.37 and an overall 

correlation time, τ

⊥DD /||

c of 3.34 ns. The rotational diffusion of the protein is only very 

slightly rhombic, with =1.36 and =1.11, and the improvement in the 

fit of the relaxation data using this diffusion tensor was not found to have statistical 

significance compared to the fit using the axially symmetric diffusion tensor. We 

therefore conclude the rhombicity of overall rotational diffusion is negligible. This 

issue will be explored further in Chapter 7.    

yz DD / xy DD /

 These experimental results were then used to evaluate the predictions of 

theoretical hydrodynamic models with varyingly sophisticated models for the 

shape/surface of the protein. The experimental values of and τ⊥DD /|| c were found to 

be in good agreement with a “wet” bead model for three combinations of bead size 

and hydration layer thickness, the most physically reasonable of which had a bead 

size of 1.0 Å and hydration shell thickness of 1.3 Å, however these values for these 

parameters are difficult to reconcile with expectations based on the van der Waals 

radius of Carbon (1.7 Å) and the diameter of a water molecule (mean van der Waals 

diameter from 2.82 Å to 3.2 Å). The experimental values of and τ⊥DD /|| c and the 

orientation of the axes of the diffusion tensor of GB3 were also found to be in good 

agreement with the predictions of the hydrodynamic shell model generated by the 

HYDRONMR program. We were able to reproduce the experimentally obtained 

values for both τc and D||/D⊥ for an a between 2.5 Å and 2.8 Å, and the difference in 

the orientations of the z-axes of the experimental fully anisotropic tensor and the 

theoretical HYDRONMR tensor (with a = 2.8 Å) is only 3o. 
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Chapter 6:  Local Motion in GB3. 

6.1 Introduction 

Many biological processes (e.g. enzyme catalysis 132, allostery 133, ligand 

recognition and binding 16, and protein signaling 134) involve motions on the µs-ms 

time scale. Motion between two stable conformational states that occurs on the µs-ms 

timescale in proteins (so-called conformational exchange motion) has been suggested 

to be important in catalysis (135, 18,132) and may be rate-limiting in some examples of 

ligand binding (16). Much is known about such processes from kinetic studies of rates 

of conversion of substrates into products, and there is great interest in understanding 

how the conformational dynamics of the enzyme affects (or determines) these rates. 

Accurate identification of conformational exchange motions in proteins by NMR, a 

technique which has the unique ability to detect and characterize motions in proteins 

in solution, at a multitude of specific atomic sites, and over a range of timescales, is 

important for our understanding of the role these motions play in the biological 

function of proteins. 

As described in Chapter 3, the 15N transverse relaxation rate (R2) is sensitive 

to exchange motion because the exchange between the two different magnetic 

environments of the conformational states contributes to dephasing of transverse 

coherence. Such motions therefore, lead to an increase in R2, so that R2 is frequently 

written as the sum of R2free and Rex, where R2free is the relaxation rate constant in the 

absence of exchange, and when the exchange is fast on the NMR timescale Rex is 

related to the populations of the exchanging states (pA, pB) by: 
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BA
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ppR
2

~ ω∆ ,        (6.1.1) 

17 where ∆ω is the difference in frequency between the states A and B and kex is the 

sum of the forward (kAB) and reverse (kBA) rate constants for the exchange. 

Because of their potentially high content of biological information, Rex 

contributions to R2 have been the focus of many novel NMR measurement 

experiments 136-138 and several relaxation studies 139-142. In the previous chapter we 

described how rotational diffusion anisotropy led to elevation of the R2 values in the 

helix of the GB3 domain with respect to the R2 values in other parts of the protein. 

Such an elevation could be incorrectly identified as Rex motion, and indeed this 

elevation of R2 rates in the helix of the GB1 domain was mistaken for conformational 

exchange 118. Here we describe several ways of unambiguously identifying (or 

excluding) Rex contributions to R2. We applied these methods to the GB3 domain and 

determined that the only possible significant exchange contribution was in the residue 

Val39 located in the loop between the α-helix and β-strand β3. We also show that for 

GB3, Rex values derived from a Lipari-Szabo “model-free” analysis of the local 

dynamics of the NH bonds depend dramatically on the model of overall rotational 

diffusion used in the analysis. Only by using the anisotropic tensor derived in Chapter 

4 can the correct picture (significant Rex for Val39 only) of the motions of the 

individual NH bonds be determined. This illustrates the necessity of a correct 

treatment of overall rotational diffusion to the derivation of parameters describing 

localized motion in proteins from NMR relaxation data.   
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6.2 Combinations of Auto- and Cross-Correlation Relaxation Rates in GB3 Can 

Identify Conformational Exchange  

 Methods for identifying conformational exchange motions in proteins can be 

broadly categorized as those that require knowledge of the protein structure and/or 

assumptions about the local or overall motions and those which do not.  An example 

of the second type, a so-called “model-independent” approach is considered here, 

based on the direct comparison of R2 values with the transverse 15N CSA/dipolar 

cross-correlation rates, ηxy. Both ηxy and R2′ (see Eq. 2.5.20) depend on the same 

combination of spectral densities 50,51 (see Chapter 2 Eqs. 2.5.8 and 2.5.20), and thus 

sample motions on the same timescale, but unlike R2′,  ηxy contains no contribution 

from conformational exchange. In the absence of conformational exchange, ηxy 

should scale linearly with R2′, with the proportionality coefficient depending only on 

parameters reflecting local environment of the 15N nucleus: the NH bond length and 

the magnitude and orientation of the CSA tensor. Therefore, deviations from linearity 

of ηxy versus R2′ can be used to identify those sites involved in conformational 

exchange. As pointed out in 50, this analysis does not require, hence is not biased by, 

any information on the protein structure, shape, tumbling rates, or preferred axes of 

rotation.  

Figure 6.2.1 illustrates the linear relationship between ηxy and R2′ obtained by 

this comparison for GB3.  Deviations of the data points from the average line may 

represent conformational exchange, and/or local variations in the 15N CSA and the 

angle β between the CSA and dipolar interaction 50.  While site-specific variations in 

the CSA and/or β will presumably cause the data to be distributed on both sides of the 

 114 
 



average line (see Chapter 7 for a more complete discussion of the effect of site-

specific CSA values), the Rex contribution will increase R2 but not ηxy and therefore is 

expected to result in a horizontal shift of the data to the right. 
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Figure 6.2.1. Linear agreement between experimental values of ηxy and R2.  Residues in the α-
helix are shown as open circles, while the rest of the backbone amides are represented by solid 
circles. The fit line (solid) corresponds to a CSA of –160 ppm assuming a β angle of 20o (or 
equivalently to a CSA of -175 and 22o). and rNH=1.02Ǻ. The dashed lines represent the range of 15N 
CSA values (from –216 ppm to –125 ppm) observed in ubiquitin (here we assumed β=20o) while the 
dotted lines correspond to variations in β (20 ± 5o) for CSA=-160 ppm.  Note that all helix residues 
fall within region delimited by boundaries in variations in β and CSA and show no systematic shift to 
the right of the fit line, indicating that they are not involved in conformational exchange. The 
positions of Lys13, Val39, Trp43 and Glu56 are indicated. Of these residues, only Val39 shows a 
significant shift to the right of the fit line, though it remains within the bounds of variations in CSAs 
measured in ubiquitin. Also indicated are positions of Gly9 and Thr49 that, together with Val39, are the 
most right-shifted residues.  
 

The data points representing residues in the α-helix all fall to the left of or 

within the error bars from the average line (Fig.6.2.1, open circles represent residues 

in the α-helix). Since none of these residues is appreciably shifted to the right, we 

conclude that there is not conformational exchange in the helix.  Residues that show a 

noticeable right shift, such as Gly9, Val39, and Thr49, are possible candidates for 
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conformational exchange, though the presence of a small shift alone is not a sufficient 

condition for determination of conformational exchange as it may reflect residue-

specific variations in the 15N CSA or angle β (discussed in detail in Chapter 6) or 

some combination of these effects.  

In order to remove the uncertainty associated with the site-specific variations 

in the magnitude and orientation of the 15N CSA tensor, we also compared the ratio, 

ηxy/ηz , of the transverse and longitudinal cross-correlation rates with that for the 

corresponding relaxation rates, R2′/R1′. As shown in 101, in the absence of 

conformational exchange, the two ratios are equal within experimental errors. 

Therefore, such a comparison can be used as an indicator of the presence of 

conformational exchange which will increase R2′/R1′ but should not affect ηxy/ηz. We 

therefore derived an “exchange-free” estimate of R2′:   

R2free′ = (ηxy/ηz) R1′.         (6.2.1) 

The remarkable agreement between the actual and exchange-free values of R2′ 

(Fig.6.2.2a) supports the conclusion that most of the backbone amides in GB3, except 

Val39, are not involved in any conformational exchange motions. The conformational 

exchange contribution can be estimated from these data as (see also 101)  

Rex = R2′ - R2free′.               (6.2.2) 

This gives a Rex estimate of 0.50±0.05 s-1 for Val39(Figure 6.2.2b).   
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Figure 6.2.2. Comparison of the measured values of R2′ with their “exchange-free” estimates R2free′ 
(Eq. 6.2.1); the correlation coefficient between the two rates is r=0.96 (0.97 if Val39 is excluded). The 
shift f the data points to the right from the diagonal directly gives the Ro

 
 

ex values (shown in panel b). 
The s read of the data points around the diagonal and the small difference between the two ratios  
could be due to several factors, including measurement errors, the noncollinearity of the 

p
 

 

15N CSA and 
1H-15  dipolar interactions, and deviations of the N 15N CSA tensor from axial symmetry. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3 Picture of Local Motion in GB3 is Markedly Dependent on the Model of 

Overall Rotational Diffusion  
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The backbone microdynamic parameters (S2, τloc) and Rex contributions (if 

any) were determined for GB3 using the following three models of the overall 

rotational diffusion tensor: isotropic, axially symmetric, and fully anisotropic. The 

overall correlation time for the isotropic model was optimized simultaneously with 

the model-free analysis (see 143). The characteristics of the rotational diffusion tensor 

for anisotropic models were derived as described in Chapter 4 and then used to obtain 

residue-specific values of the microdynamic parameters. Values for S2 and Rex for 

each residue are shown in Fig. 6.3.1 
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Figure 6.3.1. Comparison of the model-free parameters for backbone dynamics in GB3, determined 
using the three models of the overall tumbling. (a) Squared order parameters for isotropic (solid 
squares), axially symmetric (open circles), and anisotropic (solid triangles) models. Panels b-d depict 
the Rex contributions to R2 obtained assuming (b) isotropic, (c) axially symmetric, and (d) anisotropic 
models of overall rotational diffusion. Insert in panel a is a blowup of the order parameters in the 
region of the α-helix, to demonstrate the similarities and the differences in order parameters for the 
three models. The horizontal bars on the top of panel a indicate the elements of secondary structure. 
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  All three models show a decrease in order parameters in the β1/β2 loop and 

n the loop between the α-helix and β3 indicating these are flexible regions. In the 

egion between β2 and the α-helix, and in the β3/β4 loop there is a small decrease in 

rder parameter, indicating that these regions are more flexible than the elements of 

econdary structure but less flexible than the other, more extended loops. All three 

odels show elevated order parameters in the region of the α-helix. The fully 

nisotropic and axially symmetric models predict slightly higher values for the order 
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parameters in this region than does the isotropic model. For most of the NH groups, 

the order parameters derived using the two anisotropic models are practically 

indistinguishable from each other; the exceptions are Leu12, Gly41, Asp47, and Ala48 

located in the flexible loops as well as Ala20 and Asp36 at the very edge of the β2 

strand and the α-helix, respectively. Excluding Ala20 and Asp36 from the list of 

protein core residues for the fully anisotropic diffusion tensor analysis results in a 

24% reduction in the χ2 of the fit while the values of the derived parameters (e.g., 

D||/D⊥, τc , etc.) stay within their respective confidence limits. If these values are then 

used to calculate order parameters, there is no perceptible change except for Ala20 and 

Asp36 where the agreement between the axially symmetric and fully anisotropic 

models is significantly improved.  

The values of local correlation time derived from these analyses varied from 0 

to 56 ps for the majority of backbone amides, except for those (16 residues for the 

isotropic and 8 and 9 for axially and fully anisotropic diffusion tensors) where the 

extended model-free approach 29 was required. In the latter case, the correlation time 

for slow motions varied from 0.80 to 3.56 ns.  

The most striking difference between the isotropic and anisotropic models is 

in the conformational exchange motions (Fig.6.3.1b-d). The isotropic model predicts 

conformational exchange in a stretch of 13 residues, Glu24, Lys28-Ala34, and Asp36-

Asp40, covering the entire α-helix (note that Thr25, Glu27, and Asn35 were excluded 

due to signal overlap), while significantly fewer sites show this type of motion when 

rotational anisotropy is taken into account. Only for Val39 do all three models agree, 

making it likely to exhibit conformational exchange. However, the value of Rex for 
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this residue (0.78 s-1, 0.51 s-1, and 0.28 s-1 for the isotropic, axially symmetric, and 

fully anisotropic models, respectively) seems to depend heavily on the model of 

overall motion. The other Rex predictions of the anisotropic models, for Asp36, Thr44, 

Phe52, and Val54 (axially symmetric) and Val21, Trp43 (fully anisotropic) are not 

consistent between these two models nor with the isotropic model. Most of these Rex 

values are too small (e.g. less then 0.1 s-1 for Asp36, Thr44, Val54 and < 0.17s-1 for 

Val21, Phe52) to indicate real conformational exchange motion and probably represent 

errors in model selection.   

Unlike the isotropic model which is essentially structure-independent, these 

anisotropic analyses all rely on information about the protein structure (specifically 

the orientation of the NH vectors with respect to the diffusion tensor) and, therefore, 

could be biased, if our derivation of the diffusion tensor (see Chapter 4) is in error. 

This could be particularly important for flexible regions of the protein, where the 

crystal structure might provide a snapshot rather than a representative orientation in 

solution, while a limited number (typically ~20) of structures in the NMR ensemble 

might not provide proper conformational sampling. In addition, the results of model-

free analysis could be biased by the underlying assumptions about the spectral density 

function and/or by the model-selection procedure. Therefore independent validation 

of these predictions is required based on methods (see section 6.2 and below) that do 

not directly require the knowledge of protein structure or any assumptions about 

models of motion. 
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6.4 Identification of Conformational Exchange Motion through the Field 

Dependence of 15N Relaxation Rates  

Another model-independent method for differentiating between 

conformational exchange and the effects of overall rotational diffusion relies on the 

field dependence of the Rex terms (Rex ∝ Bo
2 see Eq. 6.1.1) in R2. It is convenient to 

combine the available 15N relaxation parameters in the following form 52,144: 
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The field-independent terms, 4d2J(0) and ((Rex/ωN
2)+2(CSA/3)2J(0)), can be 

determined as the offset and slope, respectively, in the ω2-dependence of RJ, using 

relaxation measurements at multiple fields. This equation and information derived 

from it is discussed further in Chapter 7. As pointed out in 52, this multiple-field 

method alone does not allow separate determination of the Rex and CSA terms. 

However, it provides a direct relationship between these quantities, independent of 

any assumption about the overall or local motion, and therefore allows validation of 

the predictions of the model-free analysis. For example, for the data measured at two 

fields, indicated below by the subscripts ‘1’ and ‘2’, a little algebra on Eq. 6.4.1 gives 

the exchange contribution at a particular 15N Larmor frequency, ωN: 
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This equation allows determination of the Rex term as long as 15N CSA for a given 

group is known. In the absence of information about site-specific 15N CSA in GB3, it 
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is impossible to use this equation to accurately determine Rex (see Chapter 7). 

However, since a uniform 15N CSA value was assumed for the model-free analysis, 

Eq. 6.4.2 can be used to verify the predicted Rex values. Figure 6.4.1a depicts the Rex 

term derived from Eq.6.4.2 for an average 15N CSA of -160 ppm (as was assumed in 

the model free analysis). The figure also indicates the expected range of Rex 

variations, assuming the range of 15N CSA values in GB3 is similar to that observed 

in ubiqutin 51,52.  

 
Figure 6.4.1. Rex values calculated from the experimental data at 9.4 and 14.1 Tesla using Eq.4 and 
assuming -160 ppm as an average 15N CSA value. Dashed horizontal bars in f indicate the average 
levels of Rex that one would obtain from Eq.4 for the indicated boundary CSA values.  
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Comparison of these Rex values with the model-free results (Fig. 6.3.1b-d) for 

us models of overall diffusion described in the previous sections suggests that 

sotropic model clearly gives false values of Rex for all residues in the region of 

3-Asp40, except Val39
. As mentioned above, all overall models predicted 

ormational exchange contribution for Val39. A Rex value slightly above the 

se” level, cf. Fig.6.3.1f, is obtained from Eq.4 for Lys13, consistent with the 

ictions from both anisotropic models, but not with the Rex estimate from Eq.6.4.2. 

x term also derived from Eq.6.4.2 for Trp43 seems to support the prediction from 
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the fully anisotropic model (Figs. 6.4.1 and 6.3.1d). This latter prediction, however, is 

probably not real, as it holds only for 3 out of the 24 NMR structures (see next 

section) and is not consistent with the Rex values obtained from Eq.6.2.2 (Fig.6.2.2b). 

Lys31 has a large predicted value of Rex from Eq.6.4.2, and from all but one of the 24 

NMR structures (Fig.6.5.1) but no Rex is predicted for this residue when the 

orientation from the crystal structure is used and negligible Rex is predicted for this 

residue using Eq.6.2.2 (Fig. 6.2.2). 

Note that, like the model-independent approaches presented in the previous 

section, the analysis based on Eq.6.4.2 does not require any information on protein 

structure or dynamics, and therefore is not biased by any assumption about the 

structure of protein molecule or its diffusion tensor.    

 

6.5 Structural Dependence of Microdynamic Parameters and Conformational 

Exchange Motions 

Both the axial and fully anisotropic models (but not the isotropic model) 

suggest Rex contributions for Lys13, and Glu56. Note that Val39 is located in the middle 

of a flexible α/β3 loop, Lys13 is at the end of a flexible loop β1/β2, and Glu56 is the C-

terminal residue. The orientation of the NH vector for these residues might not be 

well defined, so the predicted Rex values could be due to the orientation dependence 

of a particular “snapshot” of the NH bond orientation in the crystal structure rather 

than a real conformational exchange motion. To determine if such a bias due to 

orientation in the crystal structure exists, we performed similar analysis using a 

bundle of 24 NMR structures of GB3 (PDB file 2IGH) 145. For all these structures, a 
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fully anisotropic model predicted conformational exchange for Val39, indicating that 

these motions are likely to be real (see also below). No Rex contribution was found in 

Glu56 for any of the 24 NMR structures, so the conformational exchange predicted for 

this residue was probably due to bias. Rex terms (although small, less than 0.2 s-1) 

were obtained for Lys13 in 16 out of the 24 NMR structures. This suggests that the 

predicted conformational exchange for Lys13 is not likely to be due to bias caused by 

the use of the (single) crystal structure.  

 

 

 

Figure 6.5.1. Model-Free Rex values based on the first 12 NMR structures from the 24 structure bundle 
(2IGH.pdb) assuming a fully anisotropic diffusion tensor. There is no predicted Rex contribution for Glu56 for any 
of the structures. There are predictions of Rex motion for all 12 structures for Val39, Glu24, and Lys31. However, 
if the NH orientations of Glu24 and Lys31 from the crystal structure (1IGD.pdb) are used, there is no such Rex 
prediction. This indicates that the model-free Rex predictions for these residues are not physical. 
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6.6 Relaxation-Compensated CPMG Measurements Detect Conformational 

Exchange on Slower Timescales 

 
Finally, we also conducted relaxation-compensated CPMG (Carr-Purcell-

Meiboom-Gill) spin-echo measurements 137,146 using the pulse sequence of Loria and 

Palmer 137, to investigate if there are any conformational exchange motions on a 

slower timescale, from 1 ms up to several ms, which the conventional R2 

measurement would not sense (see Chapter 3). In these experiments, the adiabatic 

transverse relaxation rate for a particular frequency ( CPMGν ) of pulses in a spin-echo 

pulse train is given by: 

exAPIP RRRR
CPMG

+−+= )1()(2 εεν ,       (6.6.1) 

where RIP and RAP are the transverse relaxation rate constants for in-phase and 

antiphase transverse coherences respectively (see Chapter 3), and ε is a constant 

(between 0 and 1) representing the population differences between in-phase and 

antiphase coherence as a function of the scalar coupling evolution of the Hamiltonian. 

For two exchanging sites, the rate constant for the exchange is given by: 
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in the fast exchange limit. Both ε and Rex in equation 6.6.1 and 6.6.2 depend on 

CPMGν , however, in the limit that  
NHCPMG

CPMG J4
11

<=
ν

τ , ε ≈ 1, and if N and H are 

decoupled throughout the experiment, ε = 1. In our experiment, the rate constants for 

in-phase and antiphase coherences are explicitly averaged (exactly as in the 

longitudinal cross-correlation rate measurement scheme presented in Chapter 4), so 

 125 
 



that ε = 0.5 for all CPMGν . The difference in two values of R2( CPMGν ) is then indicative 

of an exchange contribution on a timescale between the two values of CPMGτ .  

We measured R2( CPMGν ) with CPMGτ  from 1ms up to 8ms in GB3. The 

difference in these rates ∆R2( CPMGν ), for all residues in GB3 are shown in Figure 

6.6.1 and their values are close to 0 throughout the protein. This indicates no 

significant conformational exchange motion on the 1ms to 8ms timescale for those 

backbone amides for which 0 is within the experimental uncertainty of this 

measurement. Of note, there are five small stretches of residues in GB3 (4-5, 7-8, 33-

34, 46-50, 54-55) and a few other residues (29, 39, 42) where ∆R2=0 is not within the 

standard error (68% confidence interval) and for all of these residues the non-zero 

value of ∆R2 is positive, and the distribution of ∆R2  is not centered about zero. This 

could indicate small conformational exchange contributions on the ms timescale for 

these residues, or an underestimation of the experimental errors in the R2 rates.               

 
Figure 6.6.1. Conformational exchange in GB3, determined using the relaxation compensated 
CPMG sequence. ∆R2(υCPMG)=R2(τCPMG = 8 ms)-R2(τCPMG = 1ms) at 600 MHz is plotted versus 
residue number. There is little significant exchange in GB3 on this timescale (also, see text).  
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6.7 Conclusions 

Our analysis of model-free parameters describing the motion of NH bonds in 

the backbone of GB3 from 15N relaxation data shows that the isotropic and 

anisotropic models of the overall tumbling result in markedly different pictures of 

local motion; the main difference is in the interpretation of the elevated R2 values in 

the α-helix: the isotropic model results in conformational exchange throughout the 

entire helix, whereas no exchange is predicted by anisotropic models that place the 

longitudinal axis of diffusion tensor almost parallel to the helix axis. Both axially 

symmetric and fully anisotropic models for the overall motion fit the experimental 

data significantly better than does the isotropic model.  

Since the results of the anisotropic models could be biased by the available 

structural information, additional, model-independent methods for identification of 

exchange motions are required which do not rely on knowledge of protein structure or 

assumptions about its dynamics in order to distinguish the correct picture of motion. 

Three such methods are applied here to differentiate between the effects of 

conformational exchange and rotational anisotropy: a comparison of the CSA/dipolar 

cross-correlation rates (ηxy, ηz) with relaxation rates (R2, R1), the estimation of Rex 

terms from 15N relaxation data at two fields, and relaxation-compensated CPMG 

measurement of exchange from experiments with different values of υCPMG to identify 

exchange on longer timescales (1-8 ms). These methods are (1) sensitive to 

conformational exchange, and (2) do not require knowledge of protein structure or (3) 

any assumption about the spectral density function, and therefore can be used to 
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either identify potential sites for conformational exchange or verify the absence 

thereof. These analyses provide no indication of conformational exchange in the 

helix, consistent with the predictions of the model-free analysis using anisotropic 

models for the overall diffusion. This confirms our derived values of the parameters 

describing the overall diffusion tensor of GB3 (Chapter 4).  

Furthermore, subsequent independent studies of GB3 have show that the order 

parameters arrived at here, using the axially symmetric diffusion tensor, are in 

excellent agreement with those derived from residual dipolar couplings measured in 

five alignment media147,14,148,149. This serves as an additional conformation that there 

is no significant conformational exchange motion and further supports the axially 

symmetric model of the overall rotational diffusion of GB3 (Chapter 4).   
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Chapter 7:  15N Chemical Shielding Tensors in GB3  

7.1 CSAs from NMR Relaxation Data; a Discussion of Current Techniques and 
Measurements 

7.1.1 Motivation 

 There are a variety of recent techniques for measurement of the individual 

chemical shift anisotropies of backbone 15N atoms in proteins in solution from auto 

and cross-correlation relaxation rates 50-53 54-56. Thus far, residue specific solution 

measurements of the 15N CSA from relaxation measurements have been reported in 

three proteins: ubiquitin 50-56, ribonuclease H, and a small alpha helical protein, 

C12A-p8MTCP 158-60.  

Measurements in ubiquitin 51,52 revealed a range of site-specific backbone 15N 

CSA values, from approximately –120 to –220 ppm, with a mean of –157 ppm and a 

standard deviation of 19 ppm. This range includes data for both conformationally 

well-defined amides and those located in the flexible regions. The angle between the 

unique axis of the 15N CST and the NH bond was found to vary from 6o to 26o, with 

the mean of 15.7o and standard deviation (std) of 5o 51,52. These findings were 

confirmed by independent relaxation studies in ubiquitin 57 based on a model-free 

form of the spectral density function. A higher in absolute value average CSA of –

173 ppm (converted to an NH distance of 1.02Å) with site-to-site variation (see 

section 7.4.5) of up to ±17 ppm was derived from shieldings in peak positions in 

weakly aligned solutions of ubiquitin 45, while recent MAS studies 150 of aligned 

ubiquitin in a similar medium yielded –162.0 ± 4.3 ppm for 15N CSA and 18.6o ± 0.5o 

for the angle, in agreement with those from previous 15N relaxation data 51,52. A recent 

 129 
 



study 54 combining new experimental measurements in ubiquitin with the literature 

data 51,57, resulted in an even higher mean 15N CSA of –179.6 ppm (converted to NH 

distance of 1.02 Å) and a very low CSA variability (Λ = ±5.3 ppm, with upper limit 

±9.4 ppm at 95% confidence). However, the results of another recent study based on 

a combination of fourteen auto- and cross-correlation rates in ubiquitin 56 agree with 

the earlier data, and give average CSAs ranging from –146.4 to –164.0 ppm and the 

angles from 17.5-18.9o, depending on the choice of local motional model, with 

standard deviations from 10.1 to 13.7 ppm, and the site-to-site variability, Λ, ranging 

from 7.8 to 10.5 ppm, depending on the model of local motion. 

A similar range of site-specific 15N CSA values (–129 to –213 ppm) was 

reported for ribonuclease H 53, although with a somewhat different mean (–172 ppm), 

of a selection of well-ordered amides. For this subset of residues, the site-to-site 

variability in CSA was estimated to be ±5.5 ppm (upper limit ±9.6 ppm at 95% 

confidence), assuming a Gaussian distribution for the 15N CSA. This number is 

relatively small, given the ~30 ppm range of variation in the isotropic chemical shifts, 

and could be a result of the limited experimental precision in the CSA data, as the 

experimental uncertainties (±13 ppm) in the individual 15N CSA values in that paper 

are noticeably bigger than the reported variability. Also, the analysis of such a 

restricted subset of amides (these selected “well ordered” amides account for only 

about 50% of the backbone amides in ribonuclease H) clearly precludes a definitive 

conclusion about the true range of variation in the CSA. 

In the small alpha helical protein, C12A-p8MTCP1 58-60, an analysis of R1, R2, 

and NOE rates at five field strengths found a mean CSA of -164 ppm with no 
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appreciable variability in the CSA above the uncertainty, though it should be noted 

that in this analysis all residue-specific field dependence was interpreted as due to 

conformational exchange motion (i.e. using Eq. 5.4.2, these contributions were 

subtracted out of R2 prior to the CSA analysis). Such interpretation erroneously 

attributes any actual variability in the CSA to site-specific variability in the exchange 

contribution to R2 and thus no conclusions can be drawn about the true range of 

variation in the 15N CSA from this analysis. 

In all of these studies, the precision of the available relaxation data has been a 

limiting factor in determining if the distribution of 15N CSA’s measured in solution 

for proteins agrees with that which has been reported from solid-state NMR studies 

on peptides. Specifically in question is whether or not there is significant variability 

in the 15N CSA from residue-to-residue (or site-to-site) within proteins and if this 

variability can be related to protein structure and/or chemistry. Additional studies of 

the distributions of 15N CSAs in other proteins are required to answer this question  

7.1.2 Discussion of Multifield Analyses of 15N Relaxation Rates  

When NMR relaxation measurements are made on multiple spectrometers, 

there is always the risk that small differences in sample conditions (e.g. in 

temperature or pH) or in experimental conditions (e.g. in pulse miscallibration or 

water suppression) or hardware will cause the measurements at multiple fields to be 

seemingly inconsistent with one another. Additionally, if the majority of residues are 

involved in conformational exchange motions, τc estimated from ρ ratios (as 

described in Chapter 4) at different fields will seem to depend on the field strength. 

However, even for proteins where precautions were taken to keep sample, 
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experimental, and hardware conditions at multiple fields identical, and where 

conformational exchange was unlikely, inconsistencies in microdynamic parameters 

at multiple field strengths have been noted. 

The problem of fitting relaxation data measured at several fields to the Lipari-

Szabo form of the spectral density function was previously noted by Farrow et al. 78, 

who observed that order parameters obtained from fitting relaxation data measured at 

several field strengths have low precision (though they should, in principle, be more 

accurate than order parameters obtained from data at one field strength) due to poor 

fits of multi-field data to a LS spectral density function. Other examples of 

discrepancies in the LS parameters derived from relaxation measurements at several 

fields can be found elsewhere 34,44,151 and have been attributed to various hypotheses 

such as time-diapason of intermolecular motions, additional ps-ns “floppiness” of 

proteins, and a failure of the LS spectral density function to accurately describe 

motions in proteins.  Notably, Tjandra et al. have observed that using a value for the 

15N CSA of -170 ppm provided a better fit of LS spectral densities to relaxation rates 

in perdeuterated HIV protease measured at 360 and 600 MHz. 

 The chemical shielding anisotropy contribution to spin-relaxation is a field 

dependent effect. In conventional analyses of 15N relaxation data this contribution is 

assumed to be uniform for all amides in the polypeptide backbone of the protein 

under study. It has previously been shown through computer simulation that 

significant variability in the 15N CSA from residue to residue could lead to significant 

discrepancies in dynamic parameters at multiple fields 100. However, an experimental 

verification of the variability in the 15N CSA as the cause of discrepancy in dynamic 

 132 
 



parameters estimated from 15N relaxation measurements at multiple fields has been 

missing.   

7.1.3 Agreement of Diffusion Tensor of GB3 Derived from Auto and Cross-
Correlation Relaxation Rates at Five Spectrometer Fields as Evidence that 
Relaxation Experiments Have Similar Conditions.  

For this analysis, the transverse (R2) and longitudinal (R1) 15N relaxation rates 

and the steady-state 15N{1H} NOEs in GB3 were measured at five magnetic fields, 

9.4, 11.7, 14.1, 16.4 and 18.8 T of the same GB3 sample described in Chapter 3. The 

transverse (ηxy) and longitudinal (ηz) 15N CSA/dipolar cross-correlation 

measurements were performed at four fields (9.4, 11.7, 14.1, and 18.8 T) for ηxy and 

at three fields (9.4, 11.7, and 14.1 T) for ηz. Fifty out of fifty-five amides were 

analyzed; residues Glu15, Thr25, Glu27, and Asn35 were excluded because of signal 

overlap and Val39 due to conformational exchange 152. Gln2 was excluded from LS 

analyses since the atom coordinates for this residue (which is a mutation in our 

sample relative to the wild-type GB3 protein) were not available from the crystal 

structure. 

There is a difference between these measurements and those analyzed in 

Chapters 4-6 in that the errors in the rates discussed previously were estimated by 

integrating regions of spectra containing no cross peaks, whereas here they were 

estimated from repeated (quadruplicate) measurements, using the method of 97. In 

both cases the errors in the rates were estimated using a Monte Carlo simulation of 

500 experimental data sets per residue and assuming a normal distribution of 

experimental errors in peak intensities. The experimental errors in relaxation rates 

using the repeated measurements were generally 2 to 10 times larger than those 
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estimated from integration of the spectral noise and were around 1% on average: 

1.16%, 0.83%, 1.43%, 1.09%, and 1.37% for R1; 1.21%, 1.21%, 1.33%, 0.96%, and 

1.30% for R2, and 1.13%, 1.14%, 1.05%, 1.00%, and 1.06% for NOE values 

measured at 9.4, 11.7, 14.1, 16.4, and 18.8 Tesla, respectively. The average errors in 

ηxy were 1.37%, 1.50%, 1.67%, and 1.47% at 9.4, 11.7, 14.1 and 18.8 T, respectively; 

the errors in ηz were 1.27%, 1.16%, and 1.52% at 9.4, 11.7, and 14.1 T.

The axially symmetric diffusion tensors as derived from the relaxation 

measurements at each field individually are shown in Table 7.1.1 along with χ2/df 

describing the statistical goodness of fit. Isotropic and fully anisotropic diffusion 

tensors were also determined at each field strength, though in all cases the axially 

symmetric diffusion tensor was a sufficiently good fit to data as determined by F-test 

comparison with the isotropic and fully anisotropic models (see Chapter 4). The 

general agreement of the parameters describing the overall diffusion for all of the 

measurements indicates that there are no substantial experimental variations even 

though the measurements were made on different probes in different countries and 

separated in time by several months. Axially symmetric diffusion tensors derived 

from cross-correlation rate measurements (ηxy, ηz) as described in 101 are shown for 

comparison. 
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Table 7.1.1 (a) Characteristics of the overall rotational diffusion tensor of GB3 derived from 15N relaxation data at five 
magnetic fields. The NH vectors for this analysis were taken from the original crystal structure of GB3 (PDB entry 1IGD.pdb 
(Derrick and Wigley, 1994)). Also shown are the diffusion tensors derived from the CCR’s ηxy and ηz. 
 

gnetic 
ield 
esla) 

1H 
resonance 
frequency 

(MHz) 

D⊥
a 

(107 s-1) 

D|| 
a  

(107 s-1) 

Φο b 

 

Θο b 

 

τc 
c  

(ns) Anisotropyd χ2/dfe Pf

From auto- and cross-relaxation rate measurements  

9.4 400 4.40(0.19) 6.13(0.62) 89(18) 66(23) 3.35(0.20) 1.39(0.13) 0.64 6·10-11

11.7 500 4.45(0.31) 6.20(1.12) 95(15) 68(19) 3.31(0.32) 1.39(0.24) 0.69 4·10-13

14.1 600 4.45(0.15) 6.05(0.44) 90(8) 70(10) 3.34(0.14) 1.36(0.09) 0.72 2·10-13

16.4 700 4.44(0.14) 6.24(0.41) 99(7) 63(11) 3.31(0.13) 1.41(0.08) 0.88 6·10-19

18.8 800 4.46(0.08) 6.15(0.27) 100(7) 67(10) 3.32(0.08) 1.38(0.06) 0.74 3·10-14

Averaged tensor 4.44 6.14 99 66 3.33 1.38   

Global-fit tensor 4.44 6.14 95 66 3.33 1.38 0.72 6·10-15

From cross-correlation rate measurements  

9.4 400 4.50(0.16) 6.00(0.52) 101(9) 77(13) 3.33(0.16) 1.33(0.11) 0.66 9·10-11

11.7 500 4.38(0.12) 6.14(0.40) 90(6) 59(9) 3.36(0.12) 1.40(0.08) 0.96 1·10-12

14.1 600 4.40(0.06) 6.20(0.19) 93(4) 65(6) 3.33(0.06) 1.41(0.04) 0.51 3·10-17
 

 

 

 

Numbers in the parentheses represent standard errors. 
a Principal values of the rotational diffusion tensor. 
b Polar and azimuthal angles {Θ, Φ} (in degrees) describe the orientation of the diffusion tensor axis with 
respect to protein coordinate frame. 
c Overall rotational correlation time of the molecule, τc=1/[2 tr(D)]. 
d The degree of anisotropy of the diffusion tensor, D||/D⊥. 
e Residuals of the fit divided by the number of degrees of freedom 
f The probability that the reduction in the χ2 compared to the isotropic diffusion model occurred by chance.
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Table 7.1.2. (b) Characteristics of the overall rotational diffusion tensor of GB3 derived from 15N 
relaxation data at different magnetic fields using two different residual dipolar coupling refined 
structures of GB3 (PDB entry 1P7E.pdb and 1P7F.pdb (Ulmer and Bax, 2003).  
 

sonance 

quency 
D⊥

a D||
a Φ b Θ b τc 

c Anisotropyd χ2/dfe

7E.pdb:        

0 MHz 4.49(0.38) 6.15(1.42) 106(21) 63(22) 3.31(0.43) 1.37(0.31) 0.94 

0 MHz 4.38(0.51) 6.25(1.92) 91(25) 63(32) 3.33(0.55) 1.43(0.41) 0.91 

0 MHz 4.46(0.15) 6.03(0.43) 98(9) 60(13) 3.34(0.14) 1.35(0.09) 0.76 

0 MHz 4.45(0.12) 6.23(0.38) 104(7) 54(13) 3.30(0.12) 1.40(0.08) 1.53 

0 MHz 4.54(0.17) 6.02(0.48) 103(13) 53(21) 3.31(0.15) 1.33(0.09) 1.12 

7F.pdb:        

0 MHz 4.48(0.38) 6.15(1.40) 103(20) 70(22) 3.31(0.42) 1.37(0.30) 0.94 

0 MHz 4.38(0.51) 6.26(1.96) 90(23) 70(31) 3.33(0.56) 1.43(0.42) 0.90 

0 MHz 4.46(0.15) 6.04(0.44) 96(9) 66(13) 3.34(0.14) 1.36(0.09) 0.73 

0 MHz 4.44(0.13) 6.24(0.37) 100(7) 60(14) 3.31(0.12) 1.41(0.07) 1.58 

0 MHz 4.54(0.17) 6.02(0.49) 100(13) 59(20) 3.31(0.15) 1.33(0.10) 1.12 

The good agreement (within the experimental errors) between the diffusion 

sors determined at different fields indicates that there is no significant difference in 

 experimental conditions (in particular, temperature) between the measurements on 

ferent spectrometers—this then justifies the simultaneous analysis of these 

axation data acquired at various fields for the purpose of extracting field-

ependent parameters, such as the CSA, S2 etc. Note also that there is practically no 

ference between the diffusion tensors derived using the crystal and RDC-refined 

136 



crystal structure of GB3 (Table 7.1.1a,b). Also there is no significant difference 

between the diffusion tensor obtained from a simultaneous (global) fit of all the data 

and the result of averaging the diffusion tensors obtained at each field (Table 7.1.1a). 

Therefore for our LS analyses, we used the diffusion tensor resulting from the 

simultaneous fit of all data.  

7.1.4 R’2free versus R2’ as Evidence there is no Significant Conformational 
Exchange Contribution to R2 in Measurements at Five Fields.  
 

A conformational exchange contribution to R2 in the case of fast exchange has 

the same field dependence as the ∆σ2 term (e.g. Eqs.7.2.7 and 7.2.10 below), and 

special care is required in order to separate them. We assume throughout this paper 

that the conformational exchange contribution to R2 is negligible, which (as discussed 

in Chapter 5 based on data at 600 MHz) holds for all residues in GB3 except possibly 

Val39. As shown in Figure 7.1.1, this result is supported by relaxation rates measured 

at 400 MHz, 500 MHz. 
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Figure 7.1.1 The agreement between the measured R2s and their reconstructed “exchange-free” 
values, R’2free =R1’·ηxy/ηz. Shown is the agreement between the values of R2’ and R’2free in GB3 at 9.4 
(black squares), 11.7 T (red circles) and 14.1 T (green triangles). Here Rex motions are manifest as shifts 
of data points to the right of the diagonal and in principle, should be proportional to the strength of the 
applied magnetic field squared. The only residues which show such shifts in GB3 are indicated with 
arrows and text labels.  Ala20 shows a large shift to the right at 9.4 T, but no such shift at higher fields, 
indicating that this shift is most likely due to experimental error rather than Rex motion. Similarly for the 
large shift of Thr11 at 11.7 T. Only Val39 in GB3 has a shift that gets increasingly larger with field 
strength.     
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7.2 Model independent methods for measurement of 15N CSA from Relaxation 
Rates at Several Field Strengths. 
 

We derived the 15N chemical shielding anisotropies from measured relaxation 

and cross-correlation rates using three different model-of-motion independent 

methods outlined below. These methods for determining the 15N CSA involve linear 

fits of combinations of relaxation data at several field strengths versus the square 15N 

Larmor frequency or the 1H Larmor frequency and do not involve any assumptions 

about the type of motion of the NH bond. Still there are several assumptions involved 

in these methods, the validity of which affects the accuracy of the derived CSAs. 

These assumptions are discussed in detail in section 7.6.1. 
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7.2.1 The R/η method. 
 

This method is a generalization of that of 51 and is based on the idea that the 

ratio of the corresponding cross-correlation and auto-relaxation rates is independent, 

to a  good approximation, of the spectral densities J(ω) 50,101: 

gzxy dc
cdRR

2
'' 22

12 +
==

ηη
                   (7.2.1) 

Here cg = – ωN ·∆σg/3 and represents the 15N CSA contributions to cross-correlation 

rates, where 74 

[ ] 2/1222 )( zzyyzzxxyyxxzzyyxx σσσσσσσσσσ ++−++=∆  ,             (7.2.2) 

is related to c as defined in Chapter 2, and:  

( ) ( ) ( ) ( )xyyxxzyyzzg PP βσσβσσσ coscos 22 −+−=∆ ;  (7.2.3) 

σii are the principal values of the 15N CST. ∆σg has the meaning of a “projection” of 

the CSA tensor onto the NH vector and can be represented as ∆σ times an orientation 

factor. Under the assumption of an axial symmetry of the 15N CST (σxx=σyy=σ⊥, 

σzz=σ||), Eqs.7.2.2 and 7.2.3 simplify into their more conventional forms (e.g. 50):  

∆σ = σ|| – σ⊥ and ∆σg = ∆σ ·P2(cosβz).     (7.2.4) 

The primes in Eq.7.2.1 indicate “reduced” relaxation rates (Eqs. 3.5.17-

3.5.18). Equation (7.2.1) can be recast to yield a linear dependence on ωN
2,  

( ) 2
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which can then be fit to a straight line, m · x+ b  (where x=ωN
2), using a simple linear 

regression. This form allows a direct determination of ∆σg and ∆σ from the intercept 

b and the slope m of this line: 

∆σg = –3d / b;         (7.2.8)   

∆σ = –3d (m / b)½ .        (7.2.9) 

The choice of the sign in Eq.7.2.9 reflects negative 15N CSA, in agreement with solid-

state NMR data. For an axially symmetric 15N CST this gives 51,52 (cf. Eq.7.2.4) σ|| – 

σ⊥= –3d (m/b)½ and P2(cosβz) = (m·b)–½.    

7.2.2 The 2R2-R1 method.  

This method is based on a quadratic field dependence of the following combination of 

the auto-relaxation rates (e.g. 52), 

2R2′ – R1′ = 4 d2 J(0) + (4/9) J(0) (∆σ)2 ωN
2 ,             (7.2.10) 

which allows determination of J(0) and ∆σ from the slope m and the intercept b of the 

line m · ωN
2 + b representing a linear dependence of 2R2′ – R1′ on ωN

2: 

J(0) = b / (4d2);             (7.2.11) 

∆σ = –3d (m / b)½ .             (7.2.12) 

In this method, the spectral density J(0) is determined from the intercept of the fitting 

line, and therefore is independent of the 15N CSA. Given the results of Chapter 6, we 

assume throughout this analysis that the conformational exchange contribution to R2 

is negligible, which holds for all residues in GB3 except possibly Val39 152. When 

present, conformational exchange contribution (in the case of fast exchange) has the 

same field dependence as the (∆σ)2 term (e.g. Eqs.7.2.7,7.2.10), and special care is 
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required in order to separate the two contributions 52,101. An illustration of this fit for 

three residues in GB3 is shown in Figure 7.2.1.  
 

 

 

Figure 7.2.1 Representative fits of the dependence of 2R2′ – R1′ on ωN
2.  

Shown are fits from the 2R2-R1 method for three residues in GB3. This plot also illustrates the variation in the 15N 
CSA values between these residues. The amides shown here have very similar values of J(0), as evidenced by the 
fact that they have the same intercept b (cf. Eq. 7.2.11), but exhibit strikingly different slopes reflecting the difference 
in their CSA values (Eq. 7.2.12). The plots of 2R2′ – R1′ versus ωN

2 for all residues in GB3 can be found in the 
Appendix. The error bars here and in all other figures represent standard errors (corresponding to 68.3% confidence 
intervals).   
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7.2.3 The 2ηxy - ηz method.   

This method utilizes a linear field dependence of the combination of the cross-

correlation rates:  

 2ηxy – ηz = -(8/3) d ∆σg
 ·J(0) ωN = m· ωN,              (7.2.13) 

which allows determination of the product, ∆σg·J(0), directly from the slope m of the 

fitting line with zero intercept: 

 ∆σg·J(0) = -m ·3/(8d).            (7.2.14) 
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This method has an advantage over the abovementioned methods in that it is not 

affected by possible conformational exchange contribution to R2 and it does not 

require correction for the high-frequency components of the spectral density (cf. 

Eqs.7.2.5, 7.2.6).  The drawback is that it does not allow separate determination of 

∆σg and J(0). However, if one of these parameters is known (e.g. J(0) from the 2R2-

R1 method), then the other one (in this case, ∆σg) can be directly obtained from 

Eq.7.2.14. 

7.2.4 Robust Analysis of Data.  

The methods described above usually rely on a least-squares fit of 

experimental data. Given the small number of available experimental data points per 

residue, the results of such fit are susceptible to experimental errors. Measures were 

taken to ensure that the conditions of each experiment were identical within practical 

limits; however, there are outlying data points in several residues, as can be seen, for 

example, from the linear regression plots (Appendix A). These deviations do not 

seem to come from the random noise in the spectra, but rather are a result of spectral 

artifacts caused by baseline drift, water suppression problems etc, the distribution of 

which is unknown and cannot be readily determined from the small sample of 

measurements. Least-squares fits (including linear regression) are particularly 

susceptible to outliers 117,153,154, as their contributions to the target function increase as 

a square of the deviation from the fitting curve. In light of this, for each method of 

deriving the CSA, in addition to the “standard” least-squares regression analysis, two 

so-called “robust” regression methods117,153 were used to obtain alternative values of 

the CSA and other pertinent parameters, with slightly different weights given to 
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outlying data points. A least-squares regression involves minimization of the target 

function, 2

2
1)( zz =ρ , where z is given by ( )

i

i
predmeas

i

y
xyyz

δ
−

= , and yi
meas and ypred(xi) 

are the measured and predicted data, respectively, for a given residue, and δyi is the 

experimental uncertainty in yi
meas. For this type of ρ(z), the more deviant the point 

from the model, the greater the weight that this point is given in the minimization. 

Robust regression methods involve minimization of alternative functions of z. Here 

we use two such functions as the target of the minimization117,153: (1) the absolute 

value of z ( zz =)(ρ ), in which all deviant points are given the same relative weight, 

and (2) )
2
11log()( 2zz +=ρ , where the relative weight given to deviant points 

initially increases with deviation (while z < 2 ) and then decreases so that those 

points which are the furthest from the fitting curve are given the least relative weight.  

For the majority of residues in GB3 the results of the least-squares regression 

and the two robust methods agreed within their estimated uncertainties. For these 

residues the average of the parameters from the three types of regression is reported. 

As the experimental uncertainties in the derived parameters we report the biggest of 

the errors from the least-squares fit (using standard equations117 for uncertainties in 

linear regression parameters or Monte-Carlo simulations) and from the robust 

methods (using Monte-Carlo simulations), estimated by propagating the experimental 

errors in relaxation and cross-correlation rates.  

For those few residues were the three methods disagreed (i.e. where using a 

different weight function for the same data set resulted in significant changes in the 

derived fitting parameters) no CSA is reported – except those cases where the 

 143 
 



deviation in the CSA derived from the least-squares regression can be unambiguously 

ascribed to undue weight given to a single clearly outlying data point (see examples 

in Appendix A). For these residues, the average of the two robust methods is 

reported. All three fits (least-squares and the two robust methods) for each model-

independent method for every amide are shown in Appendix A.  

7.3 Analyses of Relaxation Data Using the Lipari-Szabo Approximation. 

While the methods outlined above are independent of the model of local and 

overall motion, the following two approaches to determination of the 15N CSA use a 

specific, so-called  “model-free” or Lipari-Szabo (LS)  form of the spectral density 

function 27-29 that describes the backbone dynamics in terms of an order parameter S 

and a correlation time τloc of local motion (see Chapter 2). Previously, this type of 

inclusion of CSA in the derivation of the LS parameters has been used to assess the 

accuracy of overall rotational diffusion parameters 151.   

7.3.1 “Standard” Lipari-Szabo approach (LS).  

The now standard, LS-type analysis of the relaxation data (R1, R2, NOE) (see 

e.g. 143,155) was performed using the program DYNAMICS and assuming a uniform 

15N CSA value, as described in 143,152. Up to eight motional models (listed in 143) were 

considered per residue, depending on the number of available observables. The 

overall tumbling of GB3 was assumed anisotropic, described by the average diffusion 

tensor shown in Table 7.1.1. For amides in the loop regions, where the NH vector 

orientation is probably less well defined than in the elements of secondary structure 

we assumed the overall tumbling was assumed isotropic, in order to avoid bias by a 
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particular loop conformation captured in the crystal structure. Using the anisotropic 

diffusion model and crystal structure coordinates for residues in the loop regions 

resulted in slightly different values of the order parameters 152 but did not alter the 

conclusions of the analysis. The same approach was also adopted for the other LS-

based models throughout this paper.         

7.3.2 Lipari-Szabo Approach Including the CSA (LS-CSA).  

This approach is an extension of the “standard” LS analysis of the relaxation 

data (R1, R2, NOE) (see above) that here includes site-specific 15N CSA (∆σ) as an 

additional adjustable parameter. The LS-CSA method, therefore, yields ∆σ and the 

conventional LS parameters (e.g. S2, τloc) and possibly Rex, depending on the model 

selection for local dynamics. Up to eight motional models (listed in 143) were 

considered per residue, depending on the number of available observables. For these 

purposes, the recent version of our computer program DYNAMICS 152 that already 

accounts for the overall rotational anisotropy was upgraded to include ∆σ as an 

additional fitting parameter in a simplex-based optimization.   

The robustness of this procedure of deriving the ∆σ was tested on 1,000 sets 

(per model) of synthetic relaxation data (R1, R2, NOE at the five field strengths) 

containing 1% experimental noise. The range of the input parameters for simple LS 

models was: S2 from 0.6 to 1, τloc from 0 to 100 ps (typical range of values for 

elements of secondary structure), and ∆σ from -100 to -300 ppm. The output order 

parameters and the ∆σ were within 4.38% (mean 0.004%, std 1.08%) and 6.68% 

(mean -0.012%, std 1.71%), respectively, from their input values, though only 94.9% 
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of the data could be fit to within a 95% confidence level with this level of noise. In 

the case of the “extended model-free” model 29, the fast dynamics were characterized 

by Sfast
2 from 0.7 to 1 (with S2 = Sslow

2 ·S2
fast < S2

fast) and τfast from 0 to 100 ps, while 

the slow motions had Sslow
2 from 0.6 to 1 and τslow from 200 to 500 ps. Here the 

output order parameters and the ∆σ were within 4.78% (mean 0.008%, std 1.11%) 

and 8.93% (mean -0.02%, std 1.86%), respectively, from their input values, and 

95.9% of the data could be fit to within a 95% confidence level with this level of 

noise. No Rex contributions to R2 were included in the simulation. From these 

analyses, we concluded that the order parameter and CSA could be fit to within 

reasonable uncertainty with the existing errors in the experimental relaxation data. 

7.3.3 Lipari-Szabo Analysis of Spectral Densities (LS-SDF).  

The CSA values were also derived by simultaneous fitting of the spectral 

densities measured at all five fields to a LS spectral density, JLS(ω) 27, that describes 

local dynamics in terms of S2 and τloc only. The JLS(ω) values included the effect of 

the overall rotational anisotropy 70,156, calculated from the diffusion tensor 

characteristics (Table 7.1.1) and the orientation of a given NH vector reconstructed 

according to the crystal structure of GB3 (1IGD.pdb). For each residue, the 

experimental values of the spectral density function J(ω) at ω=0, ωN, and 0.87ωH 

were directly derived from the relaxation data (R1, R2, NOE) at each field strength 

using the reduced spectral density approximation 78,79, as outlined in Chapter 2 (Eqs. 

2.5.16-2.5.18). Altogether this resulted in 15 values of J(ω) per residue, five of which 

were J(0) values derived from different-field measurements and which are expected 
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to be the same within experimental precision. The LS parameters, (S2, τloc), and the 

15N CSA value for each residue were obtained from an unconstrained nonlinear 

minimization of the following target function: 

( ) ( ) 2
2 ∑ ⎥

⎦

⎤
⎢
⎣

⎡ −
=

i i

iLSi
MF J

JJ
δ

ωω
χ      (7.3.4) 

where the sum is over all available ωi values for a given residue, and δJi represents 

the experimental error in J(ωi). This method is analogous to the “classical” LS 

analysis except that reduced spectral densities are being used and the CSA is an 

additional fitting parameter. 

7.4 Site-Specific CSAs in GB3. 

7.4.1 Site Specific ∆σ, ∆σg, and the Principal Values and Orientations of the 
Assumed Axially Symmetric Chemical Shielding Tensors. 
 

The values of the residue-specific 15N CSAs measured in GB3 using the 

model-independent methods (2R2-R1 and R/η) are shown in Figure 7.4.1a versus 

residue number. The secondary structure of the protein is indicated by bars at the top 

of the figure. 

The 2R2-R1 Method.  The 15N ∆σ values and the spectral density J(0) were 

determined directly from the observed field dependence of the combination of 

reduced auto-relaxation rates, 2R2′ – R1′ (as in Fig. 7.2.1). Relaxation data (R1, R2, and 

NOE) at all five fields were used for each residue. The data were fitted to a linear 

dependence on ωN
2 (Eq.10) using the three linear regression methods (least-squares 

and two robust methods) as discussed earlier; the quality of the fit for each residue is 
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shown in Appendix A. All three regression methods had good agreement (both slope 

and intercept agreed within the experimental uncertainty) for 38 out of 50 residues in 

GB3. For an additional 9 residues (Leu12, Ala20, Val21, Gly38, Asp40, Asp47, 

Ala48, Thr49, and the C-terminal residue, Glu56) the two robust methods agreed 

within their experimental uncertainties (68.3% confidence interval). Only for 3 

residues (Lys10, Gly41, and Lys50, all of which are in the loops in GB3) can no 

definitive CSA be reported because all three regression methods disagree for the 2R2′ 

– R1′ fit.  

The average site-specific 15N CSA values from the three fits are presented in 

Fig.7.4.1 (solid squares), the values of J(0) are shown later on in Fig.7.5.2 (solid 

squares) in comparison with J(0) values calculated from order parameters. The site-

specific 15N CSAs from this method range from –111.3 ±1.7 ppm (Leu12) to –241.0 

±8.7 ppm (Phe52), with a mean of <∆σ> = –174.2 ppm and a standard deviation of 

22.2 ppm. The median ∆σ is –175.4 ppm, in good agreement with the mean, 

indicating that the mean is not dominated by a small number of outliers (Table 7.4.1). 

The average estimated relative uncertainty is 2.67% for J(0) and 3.44% (or 6.0 ppm) 

for ∆σ. 

The R/η Method. This method is based on the field dependence of the ratio of the 

(reduced) auto-relaxation rate (R2′ or R1′) and the corresponding 15N CSA/dipolar 

cross-correlation rate (ηxy or ηz, respectively), Eqs.1-9. Both R2′/ηxy and R1′/ηz ratios 

are expected to have the same values (Eq.7.2.1), therefore these data were analyzed 

together. The analysis included R2′/ηxy data at four fields and R1′/ηz at three fields for 

each residue. Using both R2′/ηxy and R1′/ηz data improves the accuracy of analysis by 
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increasing the number of data points included in the fit. In addition, the R1′/ηz values 

have the advantage of being free of any contribution from conformational exchange. 

The quality of the fit for each residue in GB3 is shown in Appendix A. All three 

regression methods had good agreement (both slope and intercept agreed within the 

experimental uncertainty) for 37 out of 50 amides in GB3. For an additional 7 

residues (Gly9, Thr11, Lys13, Ala26, Gly38, Phe52, and the C-terminal Glu56) the 

two robust methods agreed within their experimental uncertainties (68.3% confidence 

interval). For 6 residues (Leu12, Ala20, Asp40, Gly41, Ala48, and Thr49, all of 

which are in loop/turn regions of GB3), no CSA is reported here because all three 

regression methods disagree in the R/η fit. The 15N CSA values (∆σ) obtained using 

this approach are shown in Fig. 7.4.1, the values of ∆σg are presented in Fig. 7.4.2. 

These 15N CSAs range from –127.9 ±4.0 ppm (Gly38) to –237.9 ±11.1 ppm (Phe52), 

with a mean value of –177.4 ppm and a standard deviation of 19.5 ppm. The median 

is –178.4 ppm. The average estimated level of the experimental errors is 4.23% (or 

7.5 ppm) for ∆σ.  

The angles βz derived from these ∆σ and ∆σg values assuming axial symmetry 

of the 15N CST are shown in Fig. 7.4.2c (black squares). The range of βz values is 

from 7.5o (Val6) to 27.6o (Thr11) with a mean value of 19.9o and standard deviation 

of 4.5o, in agreement with the βz values observed in ubiquitin. Very similar βz values 

were also determined from a combination of the ∆σg values from the 2ηxy-2ηz 

method with the ∆σ values from 2R2-R1 (see below).  

Note that using the mean of R2′/ηxy and R1′/ηz as the R/η value at a given field 

(where both data are available at 9.1, 11.7, and 14.1 T) resulted in the CSA values 
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from –127.9 to –237.9 ppm with a mean CSA of –177.4 ppm and a standard deviation 

of 19.5 ppm. These results have an overall correlation coefficient of 0.97 to CSA 

values obtained using the individual measurements. Fitting the R2′/ηxy values alone 

gave 15N CSA values in the range from –140.5 to –234.8 ppm, with a mean of –179.2 

ppm and a standard deviation of 19.2 ppm, with a correlation coefficient of 0.91 to 

the CSAs derived from both transverse and longitudinal data. The R1′/ηz data alone 

yielded CSAs from –129.9 to –251.6 ppm, with a larger absolute values of the mean 

(–185.5 ppm) and standard deviation (23.9 ppm). These data show a poor correlation 

(r=0.13) with the CSAs obtained from both transverse and longitudinal data together, 

which likely reflects a lesser accuracy of the R1/ηz data alone due to a narrower range 

of magnetic fields covered by the ηz measurements.  

The 15N CSAs obtained by the R/η method are expected to be independent of 

the magnitude of the spectral density function. Indeed, the Pearson’s correlation 

coefficient r between the J(0) values derived from the 2R2-R1 method (these values 

are independent of ∆σ) and the CSA values from the R/η approach was –0.23. 
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Figure 7.4.1 (a) The site-specific 15N CSAs, from the 2R2-R1 method (black squares), R/η method 
(blue circles), and the LS-CSA method (green triangles) versus residue number. The secondary 
structure of GB3 is indicated at the top of the panel. (b) Correlation between 15N CSA values measured 
using the model-independent methods, 2R2-R1 and R/η. The Pearson’s correlation coefficient r for these 
two data sets is 0.79; 81% of these CSA data agree within the experimental uncertainties. These values 
improve to r=0.80 and 87% agreement if only those data (shown as solid squares) where the least-squares 
fits pass the 95%-confidence level χ2/df cutoff are considered. (c) Correlation between the CSAs from 2R2-
R1 and LS-CSA methods. The correlation coefficient is 0.95; it decreases to r=0.93 if only those fits that 
pass the χ2/df cutoff (solid squares) are included, though the percent agreement improves from 94% to 
96%. (d) Correlation between the results from R/η and LS-CSA methods. The correlation coefficient is 
0.80 and remains unchanged when the χ2/df cutoff is applied (solid squares). The percent agreement 
increases from 84% for all considered residues to 88% for those residues with the χ2/df below the cutoff 
value. In all correlation plots (panels b-d) the solid symbols represent values obtained for least squares fits 
that passed the χ2/df cutoff while open symbols correspond to the remaining residues. Outliers and extreme 
values of the CSA are labeled. Note that those few residues that show significant differences in the CSA 
values between the methods are all located in the loops/termini. Also in the loops are all residues where 
only one out of the three methods resulted in an acceptable fit (panel a). 
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Quality Control Using the 2ηxy-ηz Method. The field dependence of the cross-

correlation data alone yields the product of ∆σg and J(0). This analysis is independent 

of the auto-relaxation data. We then used the value of J(0) derived from the 2R2-R1 

method  (this value is independent of ∆σ) to obtain ∆σg (Fig.7.4.2). The ∆σg values 

 151 
 



thus obtained range from –107.2 (±1.2) ppm for Leu12 to –186.1 (±1.0) ppm for 

Ala34, with the mean value of –154.4 ppm, and a median at –154.1 ppm. These 

values were then compared with the ∆σg values derived from the R/η approach, 

which are independent of J(0). The excellent agreement (r=0.94 for all residues, and 

0.96 for filled symbols, Fig.7.4.2b) between the values of the same parameter 

determined independently from different sets of measurements is a quality control 

measurement. Assuming axial symmetry of the 15N CST, and using ∆σ values from 

the 2R2-R1 method, we determined the angle βz between the unique (least shielded) 

component of the tensor and the NH bond vector (Fig.7.4.2c). These βz values are in 

very good agreement (r=0.93) with βz derived from the R/η method described above.  

  
 

 

 

 

Figure 7.4.2 The values of ∆σg and the βz angles from the R/η and 2ηxy-ηz methods 
(a) Measured site-specific 15N ∆σg values for GB3 from the R/η (squares) and the 2ηxy-ηz methods 
(circles). The ∆σg values range from –108.9 ppm (Ala20, 2ηxy-ηz) to –189.8 ppm (Phe52, 2ηxy-ηz). (b) 
Correlation between ∆σg values measured using the R/η and 2ηxy-ηz methods. The correlation coefficient is 
0.94 for all residues and 0.95 for only those fits that pass the χ2/df cutoff. (c) βz angles (in degrees) 
determined from the R/η method (squares) and by combining the ∆σg values from the 2ηxy-ηz method with 
the ∆σ values from 2R2-R1 (circles). The Pearson’s correlation coefficient for the agreement of the β angles 
from these two measurements is 0.94. The derivation of βz assumed axial symmetry of the 15N chemical 
shielding tensor. The secondary structure of GB3 is indicated on the top of panels (a) and (c). 
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Methods Based on the Lipari-Szabo Form of the Spectral Density Function. There 

is good agreement between the results of the LS-CSA and LS-SDF methods: for the 

residues in the secondary structure, the CSAs from the two methods agree within their 

errors and have a correlation coefficient of 0.98. The order parameters and τloc values 

derived using these methods agree within their respective errors for all but two 

residues (Ala23 and Lys28) in the secondary structure. For those residues were there 

is good agreement, this indicates that the use of approximate reduced spectral 

densities does not significantly alter the values of the fit parameters.  

Furthermore, the CSA values from these two approaches based on the LS 

form of the spectral density function are in good agreement with the results of the 

model-independent approaches (Fig.7.4.1c,d). For all residues in GB3, the Pearson’s 

correlation coefficient is 0.95 between the CSAs from the LS analyses and the 2R2-R1 

method and 0.80 between the CSA values from the LS analyses and those measured 

using the R/η  method. The range of 15N CSAs obtained from all abovementioned 

methods for each residue in GB3 is shown in Fig. 7.4.3, together with a histogram of 

the average CSA values (from the three determination methods) for each residue. 

These site-specific 15N CSA values were then combined with the isotropic chemical 

shift data in order to reconstruct the individual components of the 15N CST in GB3, 

assuming axial symmetry of the tensor (Tables 7.4.2a,b).  

The lower correlation between the LS analysis and the R/η methods in 

comparison with that between the LS and the 2R2-R1 method is potentially 

interesting. This might be due to a difference in the motions or chemical shifts 

sampled by cross correlation and auto-relaxation rates. Another possible explanation 
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of this is that the LS and 2R2-R1 analyses use the same experimental data (R1, R2, and 

the NOE at five field strengths), while the R/η analysis additionally includes the cross 

correlation rates. The good correlation between the LS and 2R2-R1 results implies that 

the difference in the type of analyses does not make a significant difference in the 

derived values of the CSAs, whereas the somewhat low correlation between the LS 

and R/η CSAs could be due to the different types of analyses or to different sampling 

of motions by the different measured rates (CCRs versus auto-relaxation rates), and it 

is difficult to discriminate between these two possibilities from this data. 
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Table 7.4.1. Statistics of the 15N CSA values in GB3 determined here using several methods. 

 

 

Analyzed set 
of residues 

Number of 
residues  

max(∆σ)a

(ppm) 
min(∆σ)b

(ppm) 
<∆σ>c

(ppm) 
µd

(ppm) 
mediane

(ppm) 
<δ∆σ>f

(ppm) 
std(∆σ)g

(ppm) 
Λh

(ppm) 

Alli 47 -111.3 -241.0 -174.2 -173.9 -175.4 6.0 22.2 21.4 

χ2/dffit<95% 
cutoff 32 -154.0 -207.0 -178.1 -178.2 -178.9 7.0 12.9 10.6 

α-helixj 11 -140.4 -198.2 -175.8 -176.4 -177.0 7.6 18.1 14.1 

β-strandsj 19 -154.0 -241.0 -180.3 -180.2 -177.5 7.3 19.1 16.3 

Alli 44 -127.9 -237.9 -177.4 -177.2 -178.4 7.5 19.5 17.6 

χ2/dffit<95% 
cutoff 33 -155.7 -203.5 -178.2 -178.2 -178.3 7.8 12.5 10.2 

α-helixj 11 -141.6 -203.5 -177.6 -179.3 -178.3 9.2 16.7 8.3 

β-strandsj 19 -159.2 -237.9 -181.1 -180.7 -178.5 7.5 18.3 14.7 

Alli 32 -126.0 -243.4 -176.9 -176.9 -176.8 3.1 20.0 19.2 

χ2/dffit<95% 
cutoff 25 -158.1 -201.9 -178.3 -178.3 -177.2 3.3 12.6 11.9 

α-helixj 11 -126.0 -196.9 -174.3 -174.3 -180.5 3.4 21.3 19.9 

β-strandsj 16 -159.3 -243.4 -180.7 -180.6 -175.9 3.1 20.9 19.6 

 

 
Alli 50 -111.3 -240.8 -174.2 -173.8 -175.9 7.1 22.2 21.2 

χ2/dffit<cutoff 35 -155.7 -203.4 -177.7 -177.2 -178.3 7.9 11.9 9.1 

α-helixj 11 -136.0 -196.3 -176.0 -177.3 -184.6 9.2 18.1 12.0 

β-strandsj 20 -159.8 -240.8 -180.3 -179.9 -177.8 8.2 18.6 14.5 
 

 

 

 

 

 

 

a The smallest absolute value of the 15N CSA.  
b The largest absolute value of the 15N CSA. 
c The arithmetic mean of measured values of the 15Ν CSA. 
d The value of µ that maximizes the likelihood function p(µ,Λ) (Eq. 6.4.1); µ is an estimate of the true mean of the CSA 
distribution. 
e Median of measured values of the 15N CSA. 
f The arithmetic mean of experimental uncertainties in the 15N CSA. 
g The standard deviation of the measured values of the 15N CSA. 
h The value of Λ that maximizes the likelihood function p(µ,Λ); Λ is an estimate of the true site-to-site variability in the 
CSA distribution. 
i All residues with acceptable agreement of regression methods (out of 50 analyzable residues, see text). 
 j The α-helix in GB3 extends from Ala23 to Asp36 with Thr25, Glu27, and Asn35 impossible to resolve in the spectra 
due to overlap (hence 11 analyzable residues). The β-strands comprise Tyr3-Ile7, Gly14-Lys19, Val42-Asp46, and 
Thr51-Thr55, with Glu15 excluded due to overlap (altogether 20 analyzable residues). Gln2 was excluded from the LS 
analyses.  
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Table 7.4.2a Site-specific components of the chemical shift tensor (assumed axially symmetric). The
error in δiso assumed to be negligible relative to the error in ∆δ. Here: 

3/2|| δδδ ∆+= iso  and 3/δδδ ∆−=⊥ iso , so that ⊥−=∆ δδδ || and 3/)2( ||δδδ += ⊥iso . 
The experimental uncertainty indicated in parentheses. 
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Residue ∆δ δiso δ|| δ┴
2 195.94 (5.23) 123.13 253.76 (3.48) 57.81 (1.74) 
3 168.11 (6.85) 123.87 235.95 (4.57) 67.84 (2.28) 
4 159.82 (8.08) 122.34 228.88 (5.38) 69.06 (2.69) 
5 168.7 (7.78) 126.29 238.76 (5.19) 70.06 (2.59) 
6 162.06 (7.56) 126.87 234.91 (5.04) 72.85 (2.52) 
7 160.36 (9.71) 125.32 232.22 (6.47) 71.87 (3.24) 
8 177.36 (9.19) 128.83 247.07 (6.12) 69.71 (3.06) 
9 172.46 (4.49) 110.05 225.03 (2.99) 52.57 (1.50) 

10 193.68 (7.18) 120.44 249.56 (4.79) 55.88 (2.39) 
11 186.81 (7.72) 108.68 233.22 (5.15) 46.41 (2.57) 
12 111.26 (1.71) 125.43 199.61 (1.14) 88.35 (0.57) 
13 158.6 (5.78) 123.36 229.09 (3.85) 70.49 (1.93) 
14 191.5 (9.05) 109.06 236.72 (6.03) 45.22 (3.02) 
16 166.83 (12.36) 115.45 226.67 (8.24) 59.84 (4.12) 
17 187.32 (8.52) 111.54 236.41 (5.68) 49.1 (2.84) 
18 178.31 (7.02) 114.84 233.71 (4.68) 55.4 (2.34) 
19 172.59 (7.72) 124.03 239.08 (5.14) 66.5 (2.57) 
20 128.09 (2.04) 124.38 209.77 (1.36) 81.68 (0.68) 
21 186.34 (5.33) 115.24 239.47 (3.55) 53.13 (1.78) 
22 179.31 (8.97) 115.11 234.65 (5.98) 55.34 (2.99) 
23 168.95 (8.03) 120.88 233.51 (5.35) 64.56 (2.68) 
24 191.21 (8.63) 118.73 246.2 (5.76) 54.99 (2.88) 
26 136.01 (13.94) 125.00 215.67 (9.29) 79.66 (4.65) 
28 174.16 (11.56) 116.20 232.31 (7.71) 58.15 (3.85) 
29 160.03 (11.41) 121.97 228.65 (7.61) 68.62 (3.80) 
30 192.95 (7.96) 119.51 248.14 (5.31) 55.2 (2.65) 
31 184.55 (8.3) 122.67 245.7 (5.54) 61.15 (2.77) 
32 185.17 (8.19) 119.39 242.83 (5.46) 57.66 (2.73) 
33 196.28 (9.74) 120.19 251.04 (6.49) 54.76 (3.25) 
34 185.03 (7.94) 122.28 245.63 (5.29) 60.6 (2.65) 
36 161.59 (5.71) 121.00 228.73 (3.81) 67.14 (1.9) 
37 173.19 (7.51) 115.09 230.56 (5.01) 57.36 (2.5) 
38 138.95 (4.05) 107.95 200.59 (2.7) 61.63 (1.35) 
40 163.32 (1.5) 127.72 236.61 (1.00) 73.28 (0.50) 
41 154.88 (0.84) 107.04 210.29 (0.56) 55.41 (0.28) 
42 176.23 (10.22) 120.20 237.68 (6.81) 61.46 (3.41) 
43 203.35 (5.34) 130.83 266.4 (3.56) 63.05 (1.78) 
44 180.2 (6.41) 114.42 234.55 (4.27) 54.36 (2.14) 
45 179.82 (6.83) 119.97 239.85 (4.55) 60.03 (2.28) 
46 190.59 (8.77) 128.11 255.17 (5.85) 64.58 (2.92) 
47 154.85 (4.01) 124.68 227.91 (2.67) 73.07 (1.34) 
48 215.48 (1.77) 119.61 263.26 (1.18) 47.78 (0.59) 
49 131.07 (4.04) 102.95 190.33 (2.69) 59.26 (1.35) 
50 187.75 (4.98) 122.77 247.93 (3.32) 60.18 (1.66) 
51 175.59 (8.09) 111.02 228.08 (5.39) 52.49 (2.70) 
52 240.76 (11.05) 130.91 291.41 (7.37) 50.66 (3.68) 
53 192.8 (9.6) 117.40 245.93 (6.4) 53.13 (3.20) 
54 181.43 (5.13) 122.99 243.95 (3.42) 62.51 (1.71) 
55 164.08 (6.59) 123.88 233.26 (4.39) 69.18 (2.2) 
56 162.96 (5.66) 133.42 242.07 (3.78) 79.1 (1.89) 



Table 7.4.2 (b) Site-specific components of the chemical shielding tensor (assumed axially symmetric). Here: 
3/2|| σσ ∆=  and 3/σσ ∆−=⊥ , so that ⊥−=∆ σσσ || and 02 || =+⊥ σσ . 

Residue 
∆σ σ|| σ┴

2 -195.94 (5.23) -130.63 (3.48) 65.31 (1.74) 
3 -168.11 (6.85) -112.07 (4.57) 56.04 (2.28) 
4 -159.82 (8.08) -106.55 (5.38) 53.27 (2.69) 
5 -168.7 (7.78) -112.46 (5.19) 56.23 (2.59) 
6 -162.06 (7.56) -108.04 (5.04) 54.02 (2.52) 
7 -160.36 (9.71) -106.91 (6.47) 53.45 (3.24) 
8 -177.36 (9.19) -118.24 (6.12) 59.12 (3.06) 
9 -172.46 (4.49) -114.97 (2.99) 57.49 (1.5) 

10 -193.68 (7.18) -129.12 (4.79) 64.56 (2.39) 
11 -186.81 (7.72) -124.54 (5.15) 62.27 (2.57) 
12 -111.26 (1.71) -74.17 (1.14) 37.09 (0.57) 
13 -158.6 (5.78) -105.73 (3.85) 52.87 (1.93) 
14 -191.5 (9.05) -127.66 (6.03) 63.83 (3.02) 
16 -166.83 (12.36) -111.22 (8.24) 55.61 (4.12) 
17 -187.32 (8.52) -124.88 (5.68) 62.44 (2.84) 
18 -178.31 (7.02) -118.87 (4.68) 59.44 (2.34) 
19 -172.59 (7.72) -115.06 (5.14) 57.53 (2.57) 
20 -128.09 (2.04) -85.39 (1.36) 42.7 (0.68) 
21 -186.34 (5.33) -124.23 (3.55) 62.11 (1.78) 
22 -179.31 (8.97) -119.54 (5.98) 59.77 (2.99) 
23 -168.95 (8.03) -112.63 (5.35) 56.32 (2.68) 
24 -191.21 (8.63) -127.48 (5.76) 63.74 (2.88) 
26 -136.01 (13.94) -90.68 (9.29) 45.34 (4.65) 
28 -174.16 (11.56) -116.11 (7.71) 58.05 (3.85) 
29 -160.03 (11.41) -106.69 (7.61) 53.34 (3.8) 
30 -192.95 (7.96) -128.63 (5.31) 64.32 (2.65) 
31 -184.55 (8.3) -123.03 (5.54) 61.52 (2.77) 
32 -185.17 (8.19) -123.45 (5.46) 61.72 (2.73) 
33 -196.28 (9.74) -130.86 (6.49) 65.43 (3.25) 
34 -185.03 (7.94) -123.35 (5.29) 61.68 (2.65) 
36 -161.59 (5.71) -107.73 (3.81) 53.86 (1.9) 
37 -173.19 (7.51) -115.46 (5.01) 57.73 (2.5) 
38 -138.95 (4.05) -92.63 (2.70) 46.32 (1.35) 
40 -163.32 (1.5) -108.88 (1.00) 54.44 (0.5) 
41 -154.88 (0.84) -103.25 (0.56) 51.63 (0.28) 
42 -176.23 (10.22) -117.48 (6.81) 58.74 (3.41) 
43 -203.35 (5.34) -135.57 (3.56) 67.78 (1.78) 
44 -180.2 (6.41) -120.13 (4.27) 60.07 (2.14) 
45 -179.82 (6.83) -119.88 (4.55) 59.94 (2.28) 
46 -190.59 (8.77) -127.06 (5.85) 63.53 (2.92) 
47 -154.85 (4.01) -103.23 (2.67) 51.62 (1.34) 
48 -215.48 (1.77) -143.65 (1.18) 71.83 (0.59) 
49 -131.07 (4.04) -87.38 (2.69) 43.69 (1.35) 
50 -187.75 (4.98) -125.17 (3.32) 62.58 (1.66) 
51 -175.59 (8.09) -117.06 (5.39) 58.53 (2.7) 
52 -240.76 (11.05) -160.5 (7.37) 80.25 (3.68) 
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53 -192.8 (9.6) -128.53 (6.4) 64.27 (3.2) 
54 -181.43 (5.13) -120.96 (3.42) 60.48 (1.71) 
55 -164.08 (6.59) -109.38 (4.39) 54.69 (2.2) 
56 -162.96 (5.66) -108.64 (3.78) 54.32 (1.89) 

 

 

 

 

 

 

Figure 7.4.3. Site-specific 15N CSA values, averaged over all three methods, show significant CSA variability in GB3. (a) 
Range of 15N CSAs for each backbone amide in GB3 from the three methods (2R2-R1, R/η, and LS-CSA) shown as solid vertical 
bars. The open symbols represent the average site-specific CSA, ∆σ, from the three methods; the error bars represent the 
maximum error from the three methods for each residue. (b) A histogram of the average site-specific CSA values shown in panel 
(a). Including these average site-specific CSA values into the analysis of the derivation of the true CSA values (Eq.7.4.1.) resulted 
in the true mean µ = –173.8 ppm and the site-to-site variability Λ = 21.2 ppm (Table 7.41). The black curve represents a Gaussian 
distribution with the mean of –174.2 ppm and the standard deviation of 22.2 ppm. The dashed curve is also a Gaussian, with the 
same mean but with a standard deviation of 13.0 ppm – this curve corresponds to the case when all seven outliers in panel (b) are 
taken out.   
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7.4.2 Correlation of ∆σ with Isotropic Chemical Shift and Structure. 

Once the site-specific values of the anisotropy have been determined, it is 

potentially interesting to examine the correlations (or lack thereof) between the 

measured chemical shielding anisotropies and structural parameters in the protein 

obtained from independent measurements. We observed no significant correlation 

between CSA values and the isotropic chemical shift (Figure 7.4.4). The Pearson’s 

r117 describing the correlation is r=0.1, however, there is a slight tendency for nuclei 
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with lower-than-average 15N isotropic shifts to have lower-than-average 15N |∆σ|s and 

for nuclei with higher-than-average isotropic 15N chemical shifts to have higher-than-

average absolute values of the CSAs.  

 Figure 7.4.4 CSAs in GB3 as a function of their isotropic chemical shifts (chemical shift scale shown from right to 
left s is conventional). Some residues in GB3 with particularly high or low values of the isotropic shift are labeled in 
this
 a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 01 0 51 1 01 1 51 2 01 2 51 3 01 3 5
-1 0 0

-1 2 0

-1 4 0

-1 6 0

-1 8 0

-2 0 0

-2 2 0

-2 4 0

-2 6 0

A la 4 8

A la 2 6
A la 2 0

L e u 1 2

G ly 3 8

G ly 4 1

A s p 4 9

G lu 5 6

T rp 4 3

 

 

1 5 N  δ is o ,  p p m  

P h e 5 2

∆σ
, p

pm

 Figure 7.4.5 CSAs in GB3 as a function of amino acid type. 
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With amino acid type as well, there is no significant tendency (see Figure 

7.4.5). Here ∆σ/δiso represents the chemical shielding anisotropy normalized by the 

isotropic chemical shift, and is plotted versus amino acid type. The correlations 

between the isotropic shifts and amino acid type, and nearest neighbor effects on 

isotropic shifts are well characterized 157 158, so it was of interest to separate the 

dependence of the anisotropy of the shielding tensor on various parameters from the 

dependence of the isotropic chemical shift. Of note, the aromatic residues in GB3 

(Phenylalanine, Tyrosine, and Tryptophan) all have higher-than-the-average absolute 

values of ∆σ/δiso.  

The mean CSAs of residues in the α-helix and β-strands are shown in Table 

7.4.1. There is a weak correlation between the βz angles and secondary structure, with 

slightly smaller angles in the β-strands (mean angle 18.9o) and turns (mean angle 

19.1o) than in the helix (where the mean angle is 21.0o). Both the CSAs and βz angles 

show smaller variation in the α-helix (where the standard deviations in the CSA and 

the angle are 18.1 ppm and 3.1o, respectively) compared to the β-strands (18.6 ppm 

and 4.7o), and even larger variations were observed in the loops/turns (26.3 ppm and 

7.5o), possibly consistent with significantly different electronic arrangement in the 

secondary structures. 

Figure 7.4.6 depicts the correlation between ∆σ/δiso with the three dihedral 

angles: φ, ψ, and ω in degrees. The correlation for the residues in the beta sheets is 

better than in the α-helix, possibly reflecting that the ranges of both φ and ψ values, 

as well as the ∆σs, in the beta sheets are considerably broader than the corresponding 

ranges in the α-helix. There is no discernable correlation between ∆σ/δiso and ω. 
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Figure 7.4.6 Residue-specific values of the anisotropy of the chemical shielding tensor, ∆σ, normalized by the 
isotropic chemical shift and plotted as a function of the backbone dihedral angles, φ, ψ, and ω in degrees. 
Various residues are labeled with residue number and amino acid type for reference. The green and red dashed lines 
in the φ and ψ plots correspond to the results of linear least-squares fits of the residues in the beta sheets (red) and α-
helix (green). 
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7.4.5 Variability in the CSAs in GB3 Separated from Uncertainty 

The observed range of site-specific 15N CSA values reflects both true CSA 

variability and random statistical errors in the measured parameters 53. To address the 

actual variability of the CSA tensor we adopted the same statistical approach as in 

53,54 that assumes that the CSA values in proteins follow a Gaussian distribution. 

Assuming that the experimentally determined uncertainties are correct, the “true” 

values of the mean CSA (µ, in ppm) and site-to-site CSA variability (Λ, also in ppm) 

can be determined by maximizing the following likelihood function 54, 117 :  

  ( )
( ) ( )∏

=
⎟⎟
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1

22

2
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σδ
σµ

σδπ
µ . (7.4.1) 

Here N is the number of residues probed in the measured distribution, ∆σi and δ∆σi 

are the measured CSA value and its experimental uncertainty for residue i.  

The likelihood functions p(µ,Λ) generated from the results of each of the three 

CSA determination methods are shown in Fig. 7.4.7. From the 2R2-R1 method, the 

normally distributed CSA values in GB3 are characterized by a mean of µ = –173.9 

ppm and the site-to-site variability Λ = 21.4 ppm (see Eq. 7.4.1). We estimate a joint 

95% confidence interval for µ from this method to range from –165.7 to –182.2 ppm 

and for Λ from 16.6 to 28.6 ppm (Fig. 7.4.7). It is worth pointing out that a qualitative 

appreciation of the site-to-site variability in the CSA in GB3 is evident from a 

comparison of the linear dependence of 2R2′ – R1′ on ωN
2 (Eqs.7.2.10-7.2.12) for 

three residues with similar J(0) values (Fig. 7.2.1). From the R/η method, the 

maximization of the likelihood function yielded the true variability in ∆σ of Λ = 17.6 

ppm and a true mean CSA of –177.2 ppm. We estimate a 95% confidence interval on 
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µ from this method to be from –169.9 to –184.6 ppm and for Λ from 13.2 to 24.3 ppm 

(Fig. 7.4.7). 

 The true mean CSA values (µ) from these methods are slightly higher in 

absolute value than those observed earlier in ubiquitin (mean CSA = –157 ppm) 

51,52,57 and in Rnase H (µ = –172 ppm) 53, and slightly lower than those recently 

reported for ubiquitin 54 (µ = –179.6 ppm when scaled to a NH bond length of 1.02 

Å), although within the average uncertainty of both of these measurements. The true 

site-to-site variability Λ in 15N CSA obtained here is comparable to the standard 

deviation of the CSA values in ubiquitin 51,52 but significantly bigger than the 

Λ values reported for Rnase H 53 and recently for ubiquitin 54. The CSA distribution 

in ubiquitin, reconstructed from the individual CST components reported in 56, is in a 

better agreement with our data for GB3: the standard deviations in these CSAs range 

from 10.1 to 13.7 ppm, and the site-to-site variability, Λ, from 7.8 to 10.5 ppm, 

depending on the model of local motion. 

The value of Λ extracted from the observed site-specific CSA values, 

naturally, depends on the experimental uncertainties in CSA. Therefore, at least in 

principle, higher Λ values in GB3 could be a result of an underestimation of the 

experimental errors in the CSA. However, several lines of evidence suggest that this 

is not the case here. First of all, the residuals of fit from the diffusion tensor analyses 

(Table 7.1.1, rightmost column) are smaller than the ideal value of χ2/df ~ 1. This 

suggests that the errors in the relaxation and cross-correlation rates were possibly 

overestimated rather than underestimated. Second, the residuals of fit in the LS 

analysis (uniform CSA of –160 ppm) of the autorelaxation data and NOEs at each 
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field separately passed the goodness-of-fit test for the overwhelming majority of 

residues in GB3 (98%, 96%, 100%, 98%, and 84% of residues passed the 95% 

confidence test at 9.4, 11.7, 14.1, 16.4 and 18.8 T, respectively, and 97% overall), 

also suggesting that the errors in the relaxation data were not underestimated. Third, 

in order to reduce Λ to the 5 ppm level reported in 53,54, we had to scale up 

significantly the experimental errors in CSA (by a factor of 3 for the R/η method, 4 

for the LS-CSA method, and >6.5 for the 2R2-R1 method) assuming that all errors are 

uniformly underestimated. This scaling factor is too big, given the reasonable χ2/df 

values in all other fits presented here.  

In addition, to further explore this issue, we introduced a certain χ2/df cutoff 

level (determined here by a 95% confidence level for the goodness-of-fit test 117) as a 

highly conservative criterion for eliminating fits from consideration here. This cutoff 

excludes those residues where the robust regressions were acceptable but the χ2/df of 

the least-squares fit was too high due to an outlier that was effectively ignored by the 

robust methods: there are 9 such exclusions from the 2R2-R1 method, 6 from R/η and 

4 from the LS-CSA fit. The reasons for these outliers are unclear and do not appear to 

be systematic. For example, for the 800 MHz rates it seems possible that the different 

method of water suppression used in the R1 and R2 experiments may have affected the 

values of these rates for residues at the extreme edges of the spectra (e.g. Thr49 and 

Glu56), however this is clearly not the cause of the outliers at 400-700 MHz. Visual 

inspection of the spectral regions of the other outliers does not show any obvious or 

systematic deviations in baseline levels or lineshapes.  If these outliers are removed, 

so that only those residues with the χ2/df of the least-squares fit lower than its 95% 
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confidence limit are considered (32 amides from the 2R2-R1 method, 33 from R/η, 

and 25 from LS-CSA, represented by the filled symbols in Figs. 7.4.1b,c,d, and Fig. 

7.4.2b), the CSA variability from each method is reduced to what could probably be 

considered its lower bound in GB3: Λ2R2-R1=10.6 ppm, ΛR/η=10.2 ppm, and ΛLS-

CSA=11.9 ppm. These estimates of the site-to-site CSA variability are still, 

consistently, almost a factor of two higher than those reported for Rnase H 53 or 

recently for ubiquitin 54).  

The results obtained here also differ from the 15N CSA statistics in short 

peptides, where for a set of 39 solid-state NMR data (summarized in 34) we estimate a 

mean CSA of –155.8 ppm and a standard deviation of the distribution of 5.8 ppm. 

The bigger range of CSA variability in GB3 compared to peptides could reflect 

greater internal structural heterogeneity in proteins.  

To explore the effect of outliers as a possible source of the higher CSA 

variability observed here, we excluded from the set of residues for which p(µ, Λ) was 

generated for each method the extrema of the corresponding CSA range (Fig.7.4.1a, 

Fig.7.4.3b). The mean CSA values were largely unchanged (µ=–174.0, –177.4, and –

176.3 ppm, for 2R2-R1, R/η, and LS-CSA, with Leu12 and Phe52, Ala26 and Phe52, 

and Gly38 and Phe52, excluded respectively) and the measures of the site-to-site 

variability Λ were reduced to 17.2, 14.1, and 13.3 ppm, respectively. Restricting the 

CSA distribution even further by excluding all seven outliers in Fig.5.4.3 (Leu12, 

Ala20, Ala26, Gly38, Ala48, Thr49, and Phe52), thus effectively reducing the 

distribution to that contained within the dashed Gaussian curve shown in Fig. 7.4.3, 

reduced the calculated site-to-site CSA variability Λ to 11.5, 13.8, and 13.1 ppm (for 
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2R2-R1, R/η, and LS-CSA, respectively), while the values of the true mean µ were 

only slightly affected (–176.5, –177.9, and –176.3 ppm, respectively). These 

exclusions also resulted in similar changes for the distribution function generated 

from the average CSAs of the three methods (Fig. 7.4.3): µ = –175.1 ppm and Λ = 

13.5 ppm. Note that all these reduced estimates of the site-to-site variability in 15N 

CSA are still significantly larger than those reported in 53,54.  

In summary, all these data then suggest that the site-to-site variability in 15N 

CSA reported here for GB3 is most probably correctly estimated, or underestimated. 

This conclusion has important implications for the analysis of protein dynamics, since 

this degree of variability in the 15N CSA means that the assumption of a uniform 15N 

CSA value could result in significant errors in LS parameters.      
8
es
 

 

 

 

 

   

Figure 7.4.7 The likelihood functions (Eq. 7.4.1) obtained from different methods illustrate the significant site-
so-site variability in the 15N CSA values. Contour plots of the likelihood functions p(µ, Λ) (Eq. 7.4.1) 
corresponding to the 15N CSA values from the three methods (2R2-R1 (black), R/η (blue), and LS-CSA (green)) (a) 
for all analyzed residues in GB3 and (b) for only those residues where χ2/df from the least-squares fits passed the 
goodness-of-fit test at a 95% confidence level. Also shown (in cyan), for comparison, is the analogous likelihood 
function obtained for the recently reported 15N CSAs in ubiquitin (Damberg, J. Am. Chem. Soc. 2005), scaled to a 
NH-bond length of 1.02 Å. The location of the maximum for each function is indicated by a dot (see also Table 
7.4.1), the contour lines represent  68.3%, 90% and 95% bivariate confidence regions for µ and Λ. In panel a, the 
95% joint confidence intervals (in ppm) for µ and Λ are (–165.7, –182.2) and (16.6, 28.6) from 2R2-R1, (–169.9, –
1 4.6) and (13.2, 24.3) from R/η, and (–168.0, –185.7) and (14.3, 27.3) from LS-CSA methods. For a subset of 
r idues (panel b) that pass the χ2/df cutoff, the corresponding confidence intervals for µ and Λ are (–172.7, –185.2) 
and (6.8, 17.1) from 2R2-R1, (–172.5, –183.9) and (6.4, 15.8) from R/η, and (–171.8, –184.7) and (8.5, 18.0) from 
LS-CSA methods. 
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It is potentially interesting to examine the CSA variability obtained here in 

relationship to the spread in the isotropic chemical shifts in GB3. The isotropic 

chemical shift (δiso) and the CSA are both combinations of the principal values of the 

15N CST: 3/)(3/)( zzyyxxrefzzyyxxiso σσσσδδδδ ++−≈++= ; 

2/)( yyxxzz σσσσ +−≈∆ , where σref is the isotropic shielding of the reference 

compound, and the equation for ∆σ used here is an approximate form of Eq.7.2.2, 

which is exact in the case of the axial symmetry of the CST, Eq.7.2.4.  Assuming a 

random model, when all three components of the 15N CST are allowed to vary from 

site to site and are normally distributed with equal variances 33, one can obtain from 

these equations the following relationship between the standard deviations in the CSA 

(here referred to as the variability Λ) and in the isotropic chemical shift (∆δiso):  

isoδκ ∆⋅=Λ
2

3 .        (7.4.2) 

where κ is a numeric coefficient reflecting the interrelationship between the 

individual components of the CST: 

xyzyzx

xyzyzx

RRR
RRR

2223
223

+++
+−−

=κ       (7.4.3) 

Here Rij is the correlation coefficient between σii and σjj. In a particular case when all 

three CST components vary completely independently, κ =1. Given the standard 

deviation of the isotropic chemical shift in GB3 is 6.5 ppm, the expected value of Λ 

in this case is 13.8 ppm. This number is smaller than the CSA variability obtained for 

all residues in GB3 (Λ2R2-R1=21.4, ΛR/η=17.6, and ΛLS-CSA=19.2 ppm) but slightly 

larger than the values (Λ2R2-R1=10.6, ΛR/η=10.2, and ΛLS-CSA=11.9 ppm) obtained 
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when considering only those residues with χ2/df below the 95% goodness-of-fit 

cutoff. The deviation in the value of κ from 1 suggests that the individual components 

of the 15N CST tensor are not independent from each other, however, it is impossible 

at this stage to draw a more definitive conclusion about the correlation coefficients 

between the individual components, and further studies are required to address this 

issue. 

For example, it follows from Eq.7.4.2 that a positive correlation between σxx 

and σyy, both being independent of σzz will give κ < 1 (with the lower bound at 

52=κ ), while an anti-correlation of these two components will result in κ > 1 (up 

to 2 ) with the upper bound on the CSA variability at Λ = 3 ∆δiso (or 19.5 ppm for 

GB3). It has been suggested 159 that σxx and σyy possibly vary in an anti-correlated 

manner – this would be consistent with the CSA variability in GB3 larger than 13.8 

ppm. However, if the 15N CST is truly axially symmetric (i.e. σxx = σyy , hence Rxy = 

1), then the Λ value is expected to be smaller, isoδ∆=Λ 523 , which gives the CSA 

variability around 12.3 ppm for GB3, again assuming that σxx and σzz (or σ⊥ and σ|| in 

this case) are normally distributed and vary independently. A positive correlation 

between σ⊥ and σ|| will further reduce the Λ values, down to zero at full correlation, 

while the anti-correlation will result in greater Λs, with an upper bound at Λ = 6 

∆δiso= 39 ppm. Using the correlation coefficients calculated from a collection34 of 39 

solid-state NMR data on short peptides, Rzx= 0.06, Rzy = 0.43, Rxy = – 0.12, one would 

expect Λ of 14 ppm in GB3. Inserting into Eq.7.4.2 the correlation coefficients 

between the individual components of the 15N CST recently measured in ubiquitin 56, 
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we estimate Λ to range from 9.6 to 13.3 ppm in ubiquitin (where the standard 

deviation in the isotropic chemical shift is 5.9 ppm) and from 10.5 to 14.6 in GB3. 

7.5 Backbone Order Parameters in GB3 from Multifield 15N Relaxation Data; The 

Effect of Site-Specific versus Uniform 15N CSAs 

7.5.1 Backbone Order Parameters: Assuming a Uniform 15N CSA. 

When relaxation data (R1, R2, NOE) at several fields are available, order 

parameters for a given NH vector can be obtained from the data at each field 

separately or from a simultaneous fit of the relaxation data for all available field 

strengths. Because the LS backbone dynamics should not depend on the applied 

magnetic field, all these order parameters are expected to agree with each other.   

We first analyzed the relaxation data at each field separately using a standard 

LS approach 152 assuming a uniform value of 15N CSA of –160 ppm. In all these 

analyses the quality of fit was very good: the residuals of the fit for the majority of 

residues (96% at 9.4T, 96% at 11.7 T, 98% at 14.1 T, 94% at16.4 T, 84% at 18.8 T, 

and 94% overall) were within the acceptance level for a 95%-confidence goodness-

of-fit test 117, which indicates that the uncertainties in the experimental data are 

correct or overestimated. However, there is a striking discrepancy between the 

derived order parameters corresponding to different field strengths (Fig. 7.5.1a); for 

most residues in GB3 the observed variation in the derived S2 values among the fields 

exceeds their experimental uncertainties. Even in well-ordered parts of the protein, 

the difference in derived S2 between 800 and 400 MHz data exceeds 0.10 for some 

residues. Similar results were obtained when using 15N CSA of –170 ppm or the mean 
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CSA of –174.2 ppm (the mean CSA from the three determination methods, 2R2-R1, 

R/η, and LS-CSA). The observed disagreement between the derived S2 values 

obtained for the same NH group from the measurements at different fields thus raises 

significant concern about the accuracy of the order parameters derived by the 

standard analysis. 

We also attempted to analyze simultaneously the relaxation data at all five 

fields using a uniform CSA of –160 ppm and the average diffusion tensor and NH 

vector orientations from the crystal structure. This analysis indicated serious 

problems of fitting—only 8 out of 51 (Tyr3, Lys4, Leu5, Val6, Thr16, Ala23, Lys28 

and Ala29) amides had residuals of the fit (χ2) which passed the goodness-of-fit test 

at 95% confidence level 117. Using a uniform CSA of –170 ppm did not significantly 

improve the fit: here only 12 residues (Tyr3, Lys4, Leu5, Thr16, Thr18, Lys19, 

Ala23, Lys28, Gln32, Asp46, Thr51, and Thr55) had acceptable χ2 values. Using the 

mean CSA value of –174.2 ppm (see above) gave only 14 residues (Gln2, Tyr3, Leu5, 

Thr16, Thr18, Lys19, Ala23, Lys28, Gln32, Ala34, Val42, Tyr45, Asp46, and Thr51) 

with acceptable χ2 values. These results from multiple approaches clearly indicate 

that the conventional LS approaches assuming a uniform 15N CSA fail to describe the 

multi-field experimental data in GB3.  

It is noteworthy that for most residues in GB3, the observed difference in the 

order parameters appears systematic, i.e. it increases with the field strength (Figs. 

7.5.1a,e). This behavior could arise from conformational exchange contributions to 

15N R2 not accounted for in the analysis or deviations in the site-specific values of 15N 

CSA from their assumed values. Site-specific deviations in the 15N-1H bond length 
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from a uniform value of 1.02 or 1.04 Å could also result in erroneous order 

parameters; however, the currently available experimental data on variations in the 

NH bond length in proteins are insufficient to rigorously address this issue. A failure 

of the LS spectral density model to accurately represent data at multiple fields cannot 

be excluded (e.g. 151,160), particularly with regard to the assumption of uncoupled 

local and global motions, however our analysis indicates that a modified LS model 

(using site-specific CSAs) fits the observed spectral densities in GB3.  

Several lines of evidence suggest that conformational exchange is not the 

source of the observed discrepancy in the order parameters in GB3. As shown in 

Chapter 6, conformational exchange contributions are negligible for most of amides 

in GB3, except possibly Val39. This conclusion is also confirmed by the agreement 

(Fig. 7.1.1) between the measured R2s and their reconstructed “exchange-free” values 

101, R2free′ =R1′·ηxy/ηz. The exclusion of conformational exchange as a possible cause 

of the observed discrepancy between the S2 values is further supported by the results 

of a LS analysis of the data at the individual fields. Here, 12 (excluding Val39) 

residues (Tyr3, Leu5, Ile7, Thr16, Ala23, Tyr33, Asp36, Asn37, Asp40, Thr44, 

Ala48, and Thr51) required a Rex-containing model of local motion 143 at 18.8 T, 

where the Rex contribution is expected to be the strongest. These Rex values were 

relatively small (maximum 0.53±0.10 s-1 for Asp36 at 18.8 T) and likely reflect errors 

in LS model-selection, because the only residue that systematically showed 

conformational exchange at all five fields was Val39. In addition, excluding R2s from 

the simultaneous analysis of the five-field data (hence using only R1s and NOEs, as 

suggested in 151) did not improve the quality of fit for CSA=-160 ppm: only 9 
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residues passed the goodness-of-fit test (Tyr3, Leu5, Lys13, Thr16, Lys19, Ala23, 

Ala29, Thr51, and Thr5) in this case. Note also that in terms of spectral densities, the 

presence of Rex contribution will affect J(0) but not the J(ωN) values (Eqs 7.3.2, 

7.3.3), hence the introduction of the Rex terms might force the J(0) values from 

different fields to converge, but will not improve the fit of spectral densities at ω=ωN 

(Fig.7.5.2) derived assuming a uniform CSA of –160 ppm (see below). Finally, the 

Rex-free values of overall diffusion tensor obtained solely from the cross-correlation 

measurements are in excellent agreement with those from the R2/R1 ratio (Table 

7.1.1). 
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Figure 7.5.1 Shown are backbone order parameters in GB3 derived from a LS analysis of the 15N relaxation data (R1, R2, 
NOE) at different fields (left panels). Right panels represent the differences, ∆S2=S2 – S2(9.4T), between the S2 values at a 
particular field and at 9.4 Tesla, where the 15N CSA contribution to 15N relaxation rates is the weakest. (a, f) The LS analysis 
was performed in a conventional way, i.e. assuming a uniform CSA of –160 ppm for all residues. (b, g) The LS analysis was 
performed assuming a uniform CSA of –174.2 ppm (the average of the site-specific CSAs in GB3, see Table 1) for all 
residues. (c, h) Site-specific 15N CSA values from the 2R2-R1 method were used as input parameters. (d, i) Site-specific 15N 
CSA values from the R/η method were used as input parameters. (e, j) The LS analysis was performed for each field 
separately using the site-specific CSAs derived from the global fit (LS-CSA) of all five fields. Also shown as open circles in 
panel (d) are the order parameters from the global fit. The coloring is as follows: the 18.8T data are shown in black, 16.4 T in 
red, 14.1 T in green, 11.7 T in blue, and 9.4 T data in cyan. The dashed horizontal lines represent the average estimated level 
(±0.029) of the experimental uncertainty in ∆S2.  Val39 has been removed from all panels because of the conformational 
exchange contribution (Hall, J. Biomol. NMR 2003). In order to exclude deviations in S2 due to a change in the model 
selection for different fields in a few residues, all data presented here were obtained assuming a model of local motion (model 
2 in (Mandel, J. Mol. Biol., 1995), model “B” in (Fushman, J. Mol. Biol., 1997) that includes S2 and τloc as fitting parameters. 
Our model-selection analysis showed that for the majority of residues in the secondary-structure elements of GB3 this was the 
preferred model (Hall, J. Biomol. NMR 2003). Allowing freedom in the model selection led to even greater discrepancies 
between the order parameters from different fields, which, however, exhibit the same behavior as shown here. As a measure of 
the discrepancy in order parameters, the rmsd from the average (over all five fields) S2 value for each method is 0.024 (panel 
a), 0.015 (b), 0.010 (c), 0.012 (d), and 0.009 (e), calculated for the secondary structure elements only. 
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7.5.2 Backbone Order Parameters: the Effect of Site-Specific 15N CSAs. 

To verify that the observed field-dependence in the order parameters 

(Fig.7.5.1a) could reflect site-specific variations in the 15N CSA unaccounted for in 

the conventional LS analysis, we performed the same derivation as above, this time 

using as input the site-specific 15N CSA values measured using the model-

independent approaches. As shown in Figs. 7.5.1b,c,f,g, the inclusion of site-specific 

15N CSA has dramatically reduced the variation in the order parameters among the 

fields, which is now within the level of experimental noise for most residues.  

We therefore modified the LS analysis by including CSA as an additional 

fitting parameter (LS-CSA method, Materials and Methods). This resulted in a 

significant improvement in the quality of fit of the five-field data analysis for the 

majority of residues in GB3. For example, when the 15N CSA was allowed to vary in 

the LS-CSA method, the mean χ2/df for residues in the secondary structure dropped 

from 7.12 (for a uniform CSA of –160 ppm) to a value of 0.92. All of the secondary 

structure residues except for Ala26 and Phe52 now have χ2/df low enough to pass the 

goodness-of-fit test at a 95% confidence level. Altogether, 47 out of 49 analyzed 

residues exhibited a decrease in χ2 of the LS fit, and in 40 residues there is also a 

decrease in χ2/df. The residues where the χ2/df is not improved (Asn8, Leu12, Lys13, 

Thr16, Gly38, Asp40, Gly41, Asp47, and Thr49) are all in flexible regions of GB3 

except for Thr16 for which the resulting CSA (–162.3 ppm) is very close to –160 ppm 

and the residuals of fit were already sufficiently low: χ2/df =0.56 and 0.67 for the LS 

and LS-CSA methods, respectively. 
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For those residues where a reduction in χ2 was accompanied by an increase in 

the number of fitting parameters (33 residues in GB3), a statistical F-test was 

performed 117 to determine if the improvement in the χ2 was significant. For 31 (94%) 

of these residues, the reduction in the χ2 is statistically justified at a 95% significance 

level or higher (i.e. the probability, P, that the reduction in χ2 occurred by chance is P 

< 0.05). For 25 (76%) of these residues the significance level is higher than 99% (i.e. 

P < 10-2), and for 22 (67%) of these residues the significance level is even higher than 

99.9% (i.e. P < 10-3). 

 The order parameters derived from a simultaneous (global) fit of data from all 

five fields using the LS-CSA method are shown as open symbols in Fig 7.5.1d. All 

three regression methods had good agreement (within the experimental uncertainty 

for both S2 and the CSA) for 28 out of 49 amides in GB3 (Gln2 not included here 

because its coordinates are unavailable from the crystal structure). For an additional 

four residues (Gly9, Asp36, Asn37, and Gly41) the two robust methods agreed within 

their experimental uncertainties (68.3% confidence interval). For 17 residues (Tyr3, 

Ile7, Asn8, Lys10, Thr11, Leu12, Ala20, Val21, Asp22, Gly38, Asp40, Asp46, 

Asp47, Ala48, Thr49, Lys50, and the C-terminal Glu56), all of which are either in the 

loops/termini or at the edges of secondary structure elements, no CSA is reported here 

for the LS-CSA method because all three regression methods disagreed for either S2 

or ∆σ.  

  The “model-free” site-specific 15N CSA values were in the range from –126.0 

± 3.9 ppm (Ala26) to –243.4 ± 4.7 ppm (Phe52), with a mean of –176.9 ppm, a 

median of –176.8 ppm, and standard deviation of 20.0 ppm. The average estimated 
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level of the experimental errors is 1.76% (or 3.1 ppm) for the CSA, which gives a true 

site-to-site CSA variability Λ of 19.2 ppm and a true mean of –176.9 ppm. We 

estimate a 95% confidence interval from this method to be from –167.7 to –186.0 

ppm for µ and from 14.2 to 27.6 ppm for Λ (Fig.7.4.7). 

Using these site-specific 15N CSA values as input for the LS analyses at 

separate fields resulted in a further reduction in the spread of the order parameters 

among the fields (Figs. 7.5.1d,h). These results clearly indicate that the discrepancy in 

the order parameters in Fig.7.5.1a is caused by site-specific variations in the 15N 

CSA. To further validate the characteristics of the backbone dynamics (S2, τloc) 

derived simultaneously with site-specific 15N CSAs (LS-CSA method), we compared 

the spectral density J(ω) at ω=0 reconstructed from these data with J(0) values 

obtained directly from the 2R2-R1 method  (recall that this latter J(0) is independent 

of the 15N CSA). The good agreement between the two values of J(0) (Fig.7.5.2) for 

the secondary structure elements of GB3 thus validates the LS parameters derived 

using the LS-CSA method.  
 

 

 

Figure 7.5.2. The agreement between the spectral density component, J(0), measured using the 2R2-R1 
method and reconstructed from the LS parameters. The spectral density component J(0) obtained from the 
2R2-R1 method directly (solid symbols) and calculated from the order parameters and local correlation times 
obtained in the LS-CSA  method (open symbols). Throughout this paper, the factor 2/5 arising from the 
normalization of the spectral density of the overall rotational diffusion is explicitly included in the corresponding 
expression for J(ω).  
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7.5.3 LS Fit of the Spectral Densities Directly. 

A direct analysis of the spectral densities produced similar results. For a 

uniform CSA of –160 ppm, the χ2/df of the fit of the spectral density functions at all 

five fields for the secondary structure elements of GB3 ranges from 0.46 (Tyr16) to 

20.6 (Trp43) with a mean value of 4.73. The quality of the fits of the spectral density 

functions for Phe30 is shown in Fig.7.5.3. Overall, major discrepancies between the 

experimental data and the LS model were for ω=0, due to the spread in the J(0) 

values derived at various fields, and at ω=ωN, where the experimental J(ωN) values 

noticeably deviate from the theoretical curve. There is a good agreement for the high-

frequency components (which are CSA-independent), particularly taking into account 

the reduced spectral density approximation 79,78 (Eq.7.3.1) made when deriving 

J(0.87ωH) from the experimental data. 

The inclusion of CSA as a third fitting parameter (in addition to S2 and τloc, 

see LS-SDF in Materials and Methods) resulted in the reduction of the residuals of fit 

for 29 out of 35 residues (or 83%) in the secondary structure elements; the χ2/df with 

this additional adjustable parameter ranged from 0.3 (Thr18) to 6.1 (Phe52) with a 

mean of 1.25. The LS-SDF method resulted in a significantly better convergence of 

J(0) values from different fields and, at the same time, in a better fit of the J(ωN) 

values (Fig.7.5.3). A similar improvement in the fit was obtained when using site-

specific CSA values from the 2R2-R1 method, resulting in reduced χ2/df for 27 

amides in the secondary structure. 
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Figure 7.5.3. Representative LS fit of all spectral density components from the five-field measurements for Phe30. Symbols 
depict the J(ω) values for ω = 0, ωN, and 0.87ωH derived from relaxation data for each field separately (Eqs. 15-17) 
assuming CSA of –160 ppm (open circles, left panel) or -174.2 ppm (open circles, right panel) or the CSA value of –199.1 
ppm for Phe30 that optimizes the fit (solid circles both panels). The corresponding fit curves are shown as dashed and solid 
lines, respectively. Shown in the insets is a blow up of the regions corresponding to ω= ωN and 0.87ωH, indicated as “ωN” 
and “ωH”. The values of S2 and τloc were 0.93 and 3.0 ps when using CSA of –160 ppm, 0.89 and 7.4 ps when using CSA of 
–174.2 ppm, and 0.81 a d 10.3 ps for the fit CSA values. A 35-fold decrease in χn

 the LS-S

 

2/df was observed when using the CSA and 
the LS parameters from DF fit compared to -160 ppm, and a 12-fold decrease in χ2/df compared to when using -
174.2 ppm. The ∆σ value derived using the 2R2-R1 method (–194.3 ppm for Phe30) resulted in a fit which was practically 
indistinguishable from the LS-SDF fit shown here, as does the use of the CSA value (∆σ = –196.9 ± 2.93 ppm) from the 
LS-CSA fit for Phe30.  
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7.6 Discussion and Conclusions 

7.6.1 Possible Sources of Systematic Errors in 15N CSA Determination from 

Multiple-Field Data. 

In addition to the imprecision in the CSA values caused by random noise 

associated with the measurements, there could be systematic errors – largely 

inaccuracy – stemming from the underlying assumptions in the analysis. Here we 

focus on some of them, a detailed analysis can be found elsewhere 100. 

The N-H bond length. As it is clear from Eqs. 7.2.9, 7.2.12, and 7.2.14, the 15N CSA 

values are determined via the dipolar term d, and therefore depend on our knowledge 
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of the NH-bond length. Here, we have, as is customary, assumed a uniform value of 

the NH bond. Site-to-site variations in rHN will necessarily affect the ∆σ values. 

However, the currently available information on the variations in the NH-bond length 

is insufficient for a rigorous analysis of this issue. Also, the CSA values derived here 

were obtained assuming the NH-bond length of 1.02 Å. For comparison with the CSA 

data obtained for rHN =1.04 Å, our results should be uniformly scaled by 

(1.02/1.04)3=0.94 (see also 100). Thus, the mean 15N CSA and the site-to-site 

variability (average of all three methods) obtained here correspond to –164.3 ppm and 

20.0 ppm, respectively, if rHN is 1.04 Å.   

The spectral densities.  The usual assumption made when analyzing 15N relaxation 

data, be it LS approach or the model-independent analyses, is to neglect the 

difference between the spectral densities describing the effect of motion on the 

contributions to spin Hamiltonian from the 15N-1H dipolar interaction (JDD(ω)) and 

from the 15N CSA (JCSA(ω)), i.e. JDD(ω)=JCSA(ω)=J(ω). In general, however 161,100, 

JDD(ω) ≠ JCSA(ω), and a correction for the difference between the spectral densities 

can be included as: 

fcorrect ⋅∆=∆ σσ ,       (7.6.1) 

where f is the correction factor: f = [JDD(0)/JCSA(0)]½  for the 2R2-R1 method, f = 

{[4JDD(0)+ 3JDD(ωN)]/[4JCSA(0)+ 3JCSA(ωN)]}½ for R2/ηxy and f = 

[JDD(ωN)/JCSA(ωN)]½ for R1/ηz..There are several reasons why the spectral densities 

JDD(ω) and JCSA(ω) are not the same 100. First, the nature of the chemical shielding 

suggests that it will fluctuate when the local environment of a nucleus changes as a 

result of internal motions in a protein. Not only the orientation (as usually assumed in 
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the equations relating relaxation rates to the spectral densities) of the CST but also the 

principal values themselves are expected to fluctuate. In contrast, the NH-bond length 

is less likely to change with motion, except possibly when transient hydrogen 

bonding occurs during protein dynamics. Note also that the changes in local 

environment that modulate the CST do not necessarily have to affect the orientation 

of the NH bond. A detailed analysis of the “breathing” of the 15N CST requires 

molecular dynamics simulations (e.g.162).  

Second, even when neglecting the differences in the mechanisms of 

modulation of these two tensors by motions within a protein, the difference between 

the spectral densities is expected to arise from the fact that the CSA and dipolar 

tensors are not collinear. As follows from our data (Fig.7.4.2c), the average angle βz 

between the NH vector and the z-axis of the CSA tensor is 19.9o. The effect of CSA-

dipolar noncollinearity on the contribution to the spectral density from anisotropic 

overall tumbling has been analyzed in detail in 161. Our calculations  using the 

average site-specific CSAs from the three methods and the βz angles (from R/η, 

Fig.7.5.2c) for GB3 resulted in the contributions from the noncollinearity to 

relaxation and cross-correlation rates that were on average within their respective 

experimental errors. As a result, the inclusion of these corrections in the model-

independent and LS methods outlined above had no significant effect on the derived 

CSA values. 

  In addition, because of the anisotropic character of backbone motion in 

proteins 163,164, where the principal mode of motion is rocking of the peptide plane 

about the Cα−Cα axis, the CSA-dipolar noncollinearity will result in different 
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amplitudes (and associated order parameters) of the NH-vector and CSA tensor 

motions. To investigate the effect of noncollinearity due to anisotropic backbone 

motions, we explored the difference in the order parameters for the NH vector and for 

a vector (representing the σzz axis) tilted by 20o towards the carbonyl atom in the 

peptide plane in a model system undergoing angular fluctuations about the Cα−Cα 

axis. We found that the maximum difference in the squared order parameters for these 

vectors was 5%, with SCSA
2 always smaller than SNH

2, for a rotational angle of 40o, 

which is well above the maximum amplitude of Gaussian angular fluctuations about 

this axis recently reported for GB3 148. Assuming that the correlation time of GAF 

motion is similar to that of the LS model, and that the order parameters are close to 1, 

Eq.7.6.1 gives f ≈ SNH/SCSA < 1.03. This difference in the order parameters is 

insufficient to account for the large variability in the CSA that we observe in GB3. 

For example, if we assume for the sake of argument that the CSA in GB3 has a 

uniform value of –174.2 ppm, the factor f would have to range from 0.7 to 1.6 (hence 

JDD(0)/JCSA(0) from 0.5 to 2.6) to account for the observed range of CSAs from the 

2R2-R1 method. Similarly, to account for all the variability in the R/η measurements 

with respect to the average, f would have to vary from 0.7 to 1.4.  

The assumption of axial symmetry of the overall tumbling. The order parameters and 

the 15N CSA values derived from the LS-based methods (but not those from the 

model-independent approaches) are sensitive to the model of overall tumbling used 

for the analysis. As presented here, the overall tumbling of GB3 in solution is 

anisotropic. While the axially symmetric and fully anisotropic tumbling models both 

provide a significant improvement in the fit over the isotropic diffusion model, the 
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axially symmetric model for the overall tumbling was assumed here, based on several 

lines of evidence.  

(1) The molecular shape of GB3 to a good approximation is axially symmetric. The 

ratio of the principal values of the inertia tensor of the molecule is 1.80:1.79:1.00. 

Moreover, theoretical predictions for GB3 (Chapter 5) based on hydrodynamic 

calculations using HYDRONMR program gave a rotational diffusion tensor with ratio 

of principal components of 1.00:1.05:1.43, which suggests a high degree of axial 

symmetry.  

(2) The fully anisotropic diffusion tensor derived from the relaxation data also shows 

a high degree of axial symmetry, with the principal values of the tensor, Dxx and Dyy, 

within their mutual errors at all fields. Also a global fit of the relaxation of data at all 

five fields resulted in a diffusion tensor with near zero rhombicity (0.08). This is also 

reflected in the large experimental uncertainties in the orientation of the x- and y-axes 

of the fully anisotropic tensor (angle Ψ), indicating that the orientations of these axes 

of the diffusion tensor are not well defined.      

15N CSAs and the order parameters: what errors in the order parameters to 

expect? 

As shown here, relaxation data at five spectrometer fields allowed an accurate 

assessment of the site-specific 15N CSAs, and these values, in turn influenced the 

order parameters extracted from the data (Fig.7.5.1). Because measurements at 

multiple fields (particularly higher fields) are not always available to a general NMR 

user, it is instructional to estimate here the level of uncertainties in the order 

parameters expected from the use of a constant CSA instead of the true CSA values. 

A comparison of the order parameters obtained from the LS-CSA analysis of all five-

 182 
 



field data with those obtained for a typical field of 14.1 T, assuming a constant CSA, 

gave pair-wise rmsd values of 0.06 (or 6.5%, range of deviations from –0.06 to 0.11) 

for –160 ppm and 0.04 (or 4.1%, range from –0.09 to 0.07) for –174.2 ppm. The 

corresponding numbers for 11.4 T were, naturally, smaller: rmsd = 0.04 (4.9%, range 

from -0.04 to 0.09) for –160 ppm and 0.03 (3.2%, range –0.07 to 0.06) for –174.2 

ppm. This comparison included only residues in the secondary structure of GB3, the 

deviations in the loop regions could be larger. Thus, even at low fields, the errors in 

the order parameters might not be negligible, particularly for those applications where 

quantitative changes in order parameters are of importance (as e.g. entropy changes 

monitored by 15N relaxation). 
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Dyy
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(107 s-1) 

Dzz 
a 

(107 s-1) 

Φο b 

 

Θο b 

 

Ψο b 

 

τc 
c  

(ns) 
Anisotropyd rhombicitye χ2/dff

From auto- and cross-relaxation rate measurements 

9.4 4.17(0.34) 4.56(0.26) 6.32(0.58) 87(16) 60(12) 155(42) 3.33(0.16) 1.45(0.15) 0.30(0.06) 0.61 

11.7 4.28(0.16) 4.68(0.28) 6.22(0.49) 94(12) 77(16) 141(28) 3.29(0.13) 1.39(0.12) 0.34(0.06) 0.58 

14.1 4.39(0.18) 4.54(0.32) 6.03(0.67) 91(13) 76(19) 125(52) 3.34(0.17) 1.35(0.16) 0.14(0.03) 0.74 

16.4 4.35(0.19) 4.55(0.24) 6.17(0.40) 101(12) 62(9) 95(51) 3.32(0.11) 1.39(0.10) 0.18(0.03) 0.88 

18.8 4.44(0.82) 4.49(0.67) 6.15(2.21) 101(20) 66(10) 117(259) 3.31(0.54) 1.38(0.52) 0.04(0.03) 0.79 

 4.41 4.50 6.11 97 67 104 3.33 1.37 0.08 0.71 

From cross-correlation rate measurements 

9.4 4.28(0.33) 4.66(0.24) 5.99(0.40) 97(20) 67(18) 130(63) 3.35(0.13) 1.34(0.11) 0.37(0.08) 0.61 

11.7 4.24(0.41) 4.48(0.32) 6.22(0.85) 90(14) 55(11) 141(77) 3.34(0.22) 1.43(0.21) 0.19(0.05) 0.94 

14.1 4.35(0.25) 4.44(0.20) 6.24(0.66) 93(9) 65(6) 169(53) 3.33(0.16) 1.42(0.16) 0.07(0.02) 0.54 
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 l

Figure 7.6.1. CSAs determined using the LS-CSA method assuming the fully anisotropic rotational diffusion tensor 
(given in Table 7.6.1) plotted versus CSAs determined using the LS-CSA method assuming the axially symmetric 
rotationa  diffusion tensor (given in Table 7.1.1). 
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7.6.2 Conclusions 

This is a comprehensive study of the 15N chemical shielding anisotropy in the 

GB3 domain based on a combination of 15N relaxation and CSA/dipolar cross-

correlation measurements at five static magnetic fields. The analysis was performed 

using various combinations of the experimental data and using model-independent 

approaches as well as methods based on Lipari-Szabo approximation. The results 

indicate significant site-to-site variations in the principal values and the orientation of 

the 15N CSA, similar to those observed earlier in ubiquitin 51,52. Our estimates of the 
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true variability in the 15N CSA in GB3 depend to some degree upon which method for 

determining the CSA was used and which subset of residues is considered. These 

estimates range from 10.2 ppm (for the 33 residues that pass the χ2/df cutoff from the 

R/η method) to 21.4 ppm for all 47 residues from the 2R2-R1 method. Although this 

range of values could be a result of limited statistics, all of these estimates are still 

larger than the derived variability in the 15N CSA from studies of ribonuclease H 53 or 

recently of ubiquitin using a subset of the methods used here 54. The true mean CSA 

values range from –173.9 ppm (2R2-R1) to –177.2 ppm (R/η). Our data show that 

using the site-specific values of the 15N chemical shielding anisotropy obtained here 

significantly improves the agreement between LS order parameters measured at 

different fields and allows simultaneous fit of the 15N relaxation data at five fields to 

LS spectral densities. These findings emphasize the necessity of taking into account 

the variability of the 15N chemical shielding tensor for accurate analysis of protein 

dynamics from 15N relaxation measurements. This can be achieved by including CSA 

as an additional fitting parameter in the LS analysis of multiple-field data, provided 

the sample temperature and other experimental conditions are the same at all 

fields/spectrometers. These analyses also show that the Lipari-Szabo form of the 

spectral density provides a satisfactory approximation for the experimental spectral 

densities obtained using a reduced spectral density approach.  
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Chapter 8:  Novel Solution-State Relaxation Measurements  

8.1 Motivation 

During the last two decades, during which much progress has been made 

towards eliminating the size limitation on molecules which can be studied by NMR, 

much work has focussed on pulse-sequences observing the proton (1H nucleus), the 

most sensitive among the nuclei present in biological molecules. Due to its large 

gyromagnetic ratio (γH=2.675x108 (T·s)-1), a proton undergoes the strongest 

interactions and has the fastest transverse relaxation—the former is an advantage in 

terms of sensitivity (protons are easy to excite) while the latter is a disadvantage 

(proton signals decay rapidly, and are broadened, especially in large molecules). 

Recent advances in NMR probe technology have made so-called “direct-detection” 

experiments on heteronuclei (e.g. 13C and 15N) increasingly practical. Here we 

demonstrate the utility of direct-detected 15N relaxation experiments to measure 

relaxation in 15N-{2H} groups in proteins.   

As discussed previously here, and in 30,78, derivation of protein dynamics from 

NMR 15N spin relaxation rates is an underdetermined problem: there are a multitude 

of interaction and motional parameters (dipolar coupling constants, chemical shift 

tensors, characteristics of the overall and local motions) that have to be obtained from 

a few experiments. The techniques of spectral density function mapping (developed 

by 30) and reduced spectral density function mapping 78 79 allow characterization of 

local motions of N-H bond vectors from 15N relaxation data without assumptions 

about the specific form of the spectral density function—however, the spectral 

density function is only sampled by 15N-{1H} relaxation rates at a limited number of 
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specific frequencies (J(ωN) J(ωH) and  J(ωN±ωH)) so derivation of all of the 

parameters (for an extended Lipari-Szabo model there is the possibility of 7: S2, τloc, 

S2
fast, τfast, Rex, ∆σ, and  rNH) which describe both the motion (S2-Rex)and the structure 

of the residue-specific spin system (∆σ and rNH) is problematic.  

As discussed in Chapter 7, there is strong evidence that the 15N CSA varies 

from site to site in GB3, therefore the site-specific CSA values are essential for an 

accurate picture of protein dynamics. While 15N CSA values can be obtained by 

combining relaxation measurements at several fields (as was described in Chapter 7), 

the accuracy and precision of such analysis could be limited by the low CSA 

contribution to 15N relaxation at the magnetic fields currently available. For example, 

the CSA contributes only 12% of the 15N transverse relaxation rate at 9.4 T, and even 

at 21.1 T its contribution is only about 41% (for a protein with a rotational correlation 

time of 5 ns). It has also been postulated 165 that the N-H bond distance, rNH, might 

vary from site-to-site within a protein, possibly with a strong dependence on 

hydrogen bonding. Thus far, there has been no successful method for the separation 

of these effects (variation of the ∆σ and variation of rNH) in relaxation rates or in their 

effects on derived dynamic parameters.  

Here we use heteronuclear-detected experiments to measure 15N relaxation 

rates in proteins in D2O, where the dipolar contribution is lessened by replacing the 

dipolar-coupled partner (1H) with a deuteron. Although the fast NH bond librations 

might be affected by the 1H 2H replacement, the motions of the peptide planes and 

larger-scale segmental motions—the major contributors to NMR-detected local 

dynamics in the backbone 32,11 —are expected to be much less sensitive to the 
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deuteration. Because 15N CSA is the major mechanism of 15N relaxation in the ND 

spin pair, the proposed measurements could provide a more sensitive probe for 

determining 15N CSA tensors. Because these rates have less relative sensitivity to the 

dipolar coupling, they are less sensitive to variation in the NH bond length.   

In addition, this method has the potential of extending the current repertoire of 

spectral densities sampled by 15N relaxation measurements, as the relaxation rates in 

the ND spin system are sensitive to motional averaging at different frequencies than 

in the NH pair. Specifically, relaxation rates in 15N-{2H} systems sample the spectral 

density function at J(ωN), J(ωD), and  J(ωN±ωD), and it has been shown 25 that at these 

frequencies the spectral density function describing motion of the 15N-2H bond is in 

agreement with what is predicted from the sampling of that of the 15N-1H bond 25. 

This means that a combination of relaxation rates in 15N-{1H} and 15N-{2H} systems 

samples the spectral density function at 8 frequency-points (J(0), J(ωN), J(ωD), J(ωH), 

and  J(ωN±ωD), J(ωN±ωD)) with two points (J(ωN) and J(0)) sampled by rates from 

both systems. Of these values, J(ωN+ωD) is particularly interesting, because due to the 

opposite signs of ωN and ωD, it is at a particularly low frequency (26, 31, and 36 MHz 

at proton resonance frequencies of 500, 600 and 700 MHz) and is expected to be 

sensitive to motions in the ns range 25.       

The lower sensitivity of nitrogen detection compared to hydrogen detection 

can be compensated, at least in part, by the use of specially designed probes 166. In 

addition, the 15N signals are significantly sharper than 1H signals, which partially 

recovers losses in sensitivity. When fast-relaxing systems are studied, it becomes 

increasingly common to make use of the early techniques employing heteronuclei for 
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the starting magnetization and the signal detection 167. Recently, it has been shown 

that pulse sequences using 13C detection are more sensitive than the classical 1H-

detected ones in the presence of fast relaxation induced by a paramagnetic center 168. 

This has triggered the development of 13C detection methods for applications to large 

proteins 169,170,171.  

 

 

 

 

Table 8.1.1. Percent contribution to 15N R1 and R2 in 15N-{1H} and 15N-{2H} spin systems at 800 MHz 
from dipolar (terms which contain JDD(ω)) and CSA (JCSA(ω)) relaxation for a protein with a tumbling 
time of 5 ns. It has been assumed that the rates (R1 and R2) can be written as sums of these terms, i.e. R1 

= Γz
DD+ Γz

CSA and R2 = Γxy
DD+ Γxy

CSA. No quadrupolar relaxation terms are included here, since 
deuterium decoupling was applied throughout the relaxation delay.  

τc=5ns, 800 
MHz (18.8 T) 

Γz
DD

(% of R1) 
 

Γz
CSA

(% of R1) 
 

Γxy
DD

(% of R2) 
 

Γxy
CSA

(% of R2) 
 

15N-{1H} 
 

64 36 64 36 

15N-{2H} 
 

42 58 15 85 
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 400 MHz 500 MHz 600 MHz 700 MHz 800 MHz 
 s-1 s-1 s-1 s-1 s-1

R1 15N-{2HN}a 0.85 0.72 0.61 0.52 0.45 
R1 15N-{1HM}b 0.09 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.03 (0.00) 
R1 15N-{2HS}c 0.87 0.74 0.63 0.54 0.46 
R1 15N-{13CM}d 0.15 (0.01) 0.11 (0.01) 0.08 (0.01) 0.06 (0.01) 0.05 (0.00) 
R1 15N(CSA)e 0.43 0.52 0.58 0.62 0.66 
R1 (total)f 1.54 1.43 1.34 1.27 1.20 
R1 (w/o 13C)g 1.39 1.33 1.26 1.20 1.15 
R1 (w/o 13C,2HS)e 1.36 1.30 1.24 1.19 1.14 
Measured  1.17 (0.11) 1.10  (0.16) 1.06  (0.23)  
R2 N-{2HN}a 0.82 0.72 0.65 0.59 0.54 
R2 N-{1HM}b 0.16 (0.02) 0.15 (0.02) 0.14 (0.02) 0.14 (0.02) 0.13 (0.02) 
R2 N-{HS}c 0.87 0.78 0.70 0.64 0.59 
R2 N-{13CM}d 0.19 (0.02) 0.16 (0.01) 0.14 (0.01) 0.13 (0.01) 0.12 (0.01) 
R2 N(CSA)e 0.85 1.25 1.72 2.26 2.87 
R2 (total)f 2.07 2.34 2.71 3.17 3.72 
R2 (w/o 13C)g 1.89 2.18 2.56 3.04 3.60 
R2 (w/o13C,2HS)h 1.83 2.12 2.51 2.98 3.54 
Measured  2.03  (0.21) 3.05  (0.44) 2.91  (0.42)  
      
R1 15N-{1HN}a 3.22 2.57 2.07 1.68 1.39 
R1 15N-{1HM}b 0.10 (0.01) 0.08 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 
R1 15N-{13CM}d 0.15 (0.01) 0.12 (0.01) 0.09 (0.01) 0.07 (0.01) 0.06 (0.01) 
R1 15N(CSA)e 0.43 0.54 0.63 0.70 0.76 
R1 (total)f 3.90 3.31 2.86 2.51 2.25 
R1 (w/o 13C)g 3.74 3.19 2.77 2.44 2.19 
Measured 2.96  (0.21) 2.57 (0.17)   2.26  (0.14) 2.04  (0.15) 1.87  (0.16) 
R2 N-{1HN}a 5.15 4.80 4.54 4.33 4.18 
R2 N-{1HM}b 0.16 (0.02) 0.15 (0.02) 0.14 (0.02) 0.13 (0.02) 0.13 (0.02) 
R2 N-{13CM}d 0.17 (0.02) 0.15 (0.01) 0.13 (0.01) 0.12 (0.01) 0.11 (0.01) 
R2 N(CSA)e 0.71 1.04 1.43 1.86 2.35 
R2 f 6.18 6.13 6.23 6.45 6.77 
R2 (w/o 13C)g 6.01 5.99 6.10 6.33 6.66 
Measured 4.78  (0.42) 4.81  (0.42) 5.02  (0.45)    5.28  (0.51) 5.58  (0.67) 

Table 8.1.2.  Calculated contributions to 15N R1 and R2 in 15N-{1H} and 15N-{2H} spin systems in GB3 
at five fields from various relaxation mechanisms. There are no quadrupolar relaxation terms included 
here, since deuterium decoupling was applied throughout the relaxation delay.  
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Numbers in parentheses represent standard deviations over all residues and are given for structure-dependent 
parameters. Rates were calculated with the assumption of isotropic overall diffusion (though the anisotropy of 
GB3 is a significant contribution to the variation of 15N relaxation rates of individual residues, the averages-over-
all residues of the rates are fairly insensitive to the anisotropy) and of no local motion (S2 =1) with spectral 
density function given by: 

2)(15
2)(

c

cJ
ωτ
τω

+
= , where τc is the rotational correlation time.  

a Contribution to N relaxation from dipolar interaction with directly bound hydron, bond distance assumed to 
be 1.02 Å. 
 Contribution to N relaxation from dipolar interactions with all other protons in the molecule (coordinates 

generated using X-plor on crystal structure 1IGD.pdb). 

15

b 15

c Result given in a, corrected for impurity of the solution. In D2O solution we estimate 3% 1H content. The 
relaxation for exchangeable groups (such as backbone amides) in a solvent which is a mixture of species is bi-
exponential:  where ftR

i
tR

i
is efef −− +− )1( i is the volume fraction of the impurity, Rs is the relaxation rate 

when bound to the majority solvent constituent (given in a), and Ri is the relaxation rate when bound to the 
impurity. In a mostly D2O solution which contains some 1H impurity, fitting the bi-exponential relaxation to a 
mono-exponential function results in an overestimation of Rs.  
d Mean-over-residues of the contribution to 15N relaxation from dipolar interactions with all 13C nuclei in the 
protein assuming 100% isotopic enrichment. 
e Contribution to 15N relaxation rate from 15N chemical shielding anisotropy (assumed to be -170 ppm). 
f Total 15N relaxation rate (sum of contributions b-e for 15N-2H rates and a-b and d-e for 15N-1H rates). 
g Total relaxation rate in 15N-only labeled proteins (sum of contributions b, c, and e for 15N-2H rates and a, b, and 
e for 15N-1H rates).  
h For 15N-{2H} measurements in 15N only labeled proteins with non-Inept filter (sum of contributions a, b, and e).
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8.2 What is the Effect of 1H 2H Isotopic Substitution on the CSA of the 15N 

Nucleus in a Peptide? A Quantum Mechanical Study  

8.2.1 Expectation Based on the Observed Effect on the 15N Isotropic Chemical 

Shift 

A simple “back of the envelope” calculation of the expected magnitude of the 

change in the 15N shielding anisotropy upon isotopic substitution of the directly 

bonded proton with a deuteron, )()( 2121 1515

HHHH NN →∆∆=→∆∆ δσ , based on the 

size of the shifts in the isotropic chemical shifts, , assuming axial 

symmetry of the 

)( 2115

HHN
iso →∆δ

15N CSA tensors for both 1H and 2H bound nuclei is shown below: 

 

 

)()()( 1221 151515

HHHH N
iso

N
iso

N
iso δδδ −=→∆

))(2)((
3
1))(2)((

3
1)( 11

||
22

||
21 1515151515

HHHHHH NNNNN
iso ⊥⊥ +−+=→∆ δδδδδ  

   ))()((
3
2))()((

3
1 121

||
2

||

15151515

HHHH NNNN
⊥⊥ −+−= δδδδ  

   ))(
3
2)(

3
1 2121

||

1515

HHHH NN →∆+→∆= ⊥δδ  , 

)( 2115

HHN
iso →∆δ is known to be small (<1 ppm in proteins172), since this quantity is 

two orders of magnitude smaller than ≅∆ )(115 HNδ 170 ppm, it can be approximated 

as zero relative to this parameter, therefore the above relation gives: 
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  , so that ))(2),( 2121
||

1515

HHHH NN →∆−≅∆ ⊥δδ

))()(())()(()( 11
||

22
||

21 1515151515

HHHHHH NNNNN
⊥⊥ −−−=→∆∆ δδδδδ  

   ))()(())()(( 121
||

2
||

15151515

HHHH NNNN
⊥⊥ −−−= δδδδ

  , can be approximated as: )()( 2121
||

1515

HHHH NN →∆−→∆= ⊥δδ

)(3)(
2
3)( 2121

||
21 151515

HHHHHH NNN →∆−≅→∆≅→∆∆ ⊥δδδ , 

so that finally:| | < | | < | |.  )( 2115

HHN →∆ ⊥δ )( 21
||

15

HHN →∆δ )( 2115

HHN →∆∆δ

In 1HN-N systems, the parallel component of the CST is the least shielded (most high-

field) component, i.e. | |> | |. In the event of )(1
||

15

HNδ )(115

HN
⊥δ 1H 2H isotope 

substitution, it has been shown in other NH systems 173,174 that the anharmonicity of 

the bond potential energy and the larger deuteron mass result in a shortening of the 

effective 2HN-N distance as compared to the 1HN-N distance. This results in a higher 

electron density in the N-2H bond compared to the N-1H bond, which corresponds to 

a small increase in the 15N isotropic shielding. There is no available experimental 

information on the effect of 1H 2H isotope substitution on the individual 

components of the 15N CST or on the anisotropy in the literature, however, it is 

expected from the geometry of the peptide backbone that the absolute value of the 

effect on the δ⊥ components (i.e.| | and/or | | and )( 2115

HHN →∆ ⊥δ )( 2115

HHN
yy →∆δ
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| ) |) will be very small. If these changes are indeed negligible, it 

follows from above that, , so 

. As mentioned above, in 

proteins is < 1 ppm, so 

( 2115

HHN
xx →∆δ

)(3)( 2121
||

1515

HHHH N
iso

N →∆=→ δδ

),(3)( 2121 1515

HHHH N
iso

N δδ ∆=→∆∆ )( 2115

HHN
iso →∆δ

)( 2115

HHN →∆∆δ  (and necessarily )( 2115

HHN →∆∆δ  which 

is equivalent) should be < 3 ppm, which is well within the estimated experimental 

errors of the measurement of  from solution relaxation measurements. )(115

HNσ∆

Within the limits of the Born-Oppenheimer approximation, where the motions 

of the nuclei are very slow compared to the motion of the electrons, the electronic 

properties (e.g. chemical shielding) can be calculated with the nuclear positions being 

treated as fixed parameters. It should be feasible to perform an ab initio calculation of 

the effect of isotope substitution on the individual components of the 15N CST, 

including the effect of changes in the N-{1,2H} bond length. Stretching of the 1HN-N 

bond, caused by hydrogen bonding in a peptide has previously been studied by ab 

initio calculation. These effects on the CSA are small, ~3-9 ppm 47,49, when compared 

with the dependence of the 15N CSA values on backbone conformation from a similar 

calculation, which was ~30-40 ppm 47. A recent quantum mechanical calculation 

study of a series of model dipeptides and Ala-X and X-Ala sequences (where X is any 

amino acid) in both α-helical and β-sheet conformations showed that the principal 

values of the tensor were significantly affected by hydrogen bonding at both the 

carbonyl group and the N-H bond (which have been shown to stretch the N-H bond), 

by the adjacent residues in the polypeptide sequence, and by backbone conformation 
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48.  The magnitudes of the changes in the orientation of the tensor due to the effects 

were found be insignificant compared to the changes in the principal values. 

8.2.2 Ab Initio Quantum Mechanical Calculations 

 In order to confirm the prediction of our “back of the envelope” calculation 

that the change in the 15N chemical shift anisotropy due to isotopic substitution of the 

proton by a deuteron would be within the errors of our CSA measurement methods, 

we performed several quantum mechanical ab initio calculations of the optimized 

geometry and chemical shift tensors of a protonated and deuterated (at the N site) 

form of the N-methylacetamide molecule in the gas phase. The optimized geometry 

of N-methylacetamide using a restricted Hartree-Fock calculation is shown in Figure 

8.2.1. We chose this molecule because it is the simplest model for the amide linkage 

of peptides and proteins. Previous ab inito studies of the 15N chemical shift tensor 

have shown both the principal values and orientations of this tensor to be sensitive to 

the way in which the solvent is modeled 175. However, to a good approximation, the 

calculated tendencies in these parameters are independent of solvent model 48. Since 

we are primarily interested in the difference in the anisotropy of the tensor between 

the states with bound proton and bound deuteron, and not in the absolute value of the 

components of the tensor in either case, we believe we can use the results of 

calculation in the gas phase. 
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Figure 8.2.1. Geometry of the N-methylacetamide (NMA) molecule at 0 Kelvin in the gas phase as 
calculated using a restricted Hartree-Fock optimization with a 6-311+G(2d,p) basis set. All 
calculations were repeated for both isotopomers of NMA (the molecule shown here and the 
molecule in which the amide proton was substituted with a deuteron. 
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Figure 8.2.2. Schematic illustration of the expected orientation of the principal components of the 15N CSA 
tensor (green) with respect to the peptide plane (light blue). σzz corresponds to the least shielded (most high 
field) component of the tensor, and lies approximately in the peptide plane, tilted from the NH bond by in-
plane angle βz. σyy is the next least shielded component and is expected to be roughly orthogonal to the 
peptide plane (i.e. βx~90o), while σxx is the most shielded component and lies in the peptide plane, 
perpendicular to σzz. 
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lation we did was a restricted Hartree-Fock calculation using a 

 For CH3-15N1H-CO-CH3 this calculation predicted a 

 N-H bond length of 0.983 Å, a 15N isotropic chemical shift, 

 a 15N chemical shielding anisotropy, ∆σ of 128.5 ppm. 
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Nitrogen chemical shifts are referenced to 0 ppm proton, based on the method of 

Wishart et al. 176. As expected, none of the values of these parameters are similar to 

what we experimentally observe in proteins in solution at 297 K (where rNH=1.02-

1.04 Å, δiso=100-135 ppm, ∆σ = 100-300 ppm). For CH3-15N2H-CO-CH3 the 15N-2H 

bond length was 0.984 Å, the 15N δiso was 192.9 ppm, and ∆σ = 127.4 ppm. For this 

calculation, therefore, the 15N-2H bond length was 0.002 Å longer than the 15N-1H 

bond length and the 15N nucleus in 15N-{1H} was 0.1 ppm more shielded than in 15N-

{2H}, and the difference in anisotropy,  was -1.1 ppm (the )( 2115

HHN →∆∆σ 15N 

shielding in 15N-{2H} was slightly less anisotropic) . Furthermore,  

from this calculation was primarily due to changes in the shielding of the σ

)( 2115

HHN →∆∆σ

zz and σxx 

components of the tensor upon deuteration (in agreement with our intuitive 

predictions) with almost no change in σyy, the principal component which is 

orthogonal to the peptide plane. In CH3-15N1H-CO-CH3 the principal values of the 

shielding tensor were: σxx=103.59 σyy=196.75 σzz=278.65; in CH3-ND-CO-CH3 they 

were σxx=104.18 σyy=196.74 σzz=277.85. Therefore =0.59 ppm, 

= -0.01 ppm, and =-0.80 ppm. Though the relative 

magnitudes of the changes in the principal components agree with our expectation 

from the geometry of the molecule, the changes in the CSA and bond length are in the 

opposite directions (here  is negative and the 

)( 21 HHxx →∆σ

)( 21 HHyy →∆σ )( 21 HHzz →∆σ

)( 2115

HHN →∆∆σ 15N-2H bond length is 

longer than the 15N-1H bond length) as our expectation (section 8.2.1). 

 The geometry optimization for this calculation took 3 hours, the frequency 

calculation took 1 day and 16 hours, and the calculation of the NMR chemical shifts 
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of 15N and 1H and 2H took 15 minutes. All calculations were performed on a Dual-

CPU 2.5 GHz Apple G5 using the program Gaussian and initiated by graduate 

student Merle Zimmermann in the laboratory of Dr. John Tossell at UMD. 

B3LYP Calculation 

The second calculation we did used a B3LYP6-311+G(2d,p) approach (this 6-

311+G(2d,p) basis set is larger than that used in the Hartree-Fock calculation). For 

CH3-15N1H-CO-CH3 this calculation predicted a vibrationally averaged N-1H bond 

length of 0.998 Å, a 15N isotropic chemical shift, δiso of 153.97 ppm, and a 15N 

chemical shielding anisotropy, ∆σ of 115.11 ppm. For CH3-15N2H-CO-CH3 the N-2H 

bond length was 1.006 Å, the 15N δiso was 153.75 ppm, and ∆σ = 114.23 ppm. For 

this calculation, the vibrationally averaged N-2H bond length was 0.008 Å longer than 

the N-1H bond length and the 15N nucleus in 15N-{1H} was 0.22 ppm more shielded 

than in 15N-{2H}, with =-0.88 ppm. In CH3-)( 2115

HHN →∆∆σ 15N1H-CO-CH3 the 

principal values of the shielding tensor were: σxx=66.84 σyy=164.36 σzz=230.71; in 

CH3-15N2H-CO-CH3 they were σxx=67.33 σyy=164.01 σzz=229.90, therefore the 

changes in the components were all of roughly similar magnitude: 

=0.49 ppm, = -0.35 ppm, and =-0.81 

ppm. In general, this calculation predicts that all changes in all parameters (both the 

bond length and chemical shielding) to be so small as to be negligible to NMR 

relaxation experiments. The calculation time was similar to the time for the Hartree-

Fock calculation. 

)( 21 HHxx →∆σ )( 21 HHyy →∆σ )( 21 HHzz →∆σ

 

MP2 Calculation 
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 The third and final calculation we did of the 15N chemical shifts in the NMA 

molecule was an MP2 calculation using the 6-311+G(2d,p) basis set. For CH3-15N1H-

CO-CH3 this calculation predicted a vibrationally averaged N-1H bond length of 

0.969 Å, a 15N isotropic chemical shift, δiso of 168.8 ppm, and a 15N chemical 

shielding anisotropy, ∆σ of 146.8 ppm. For CH3-15N2H-CO-CH3 the N-2H bond 

length was 0.960 Å, the 15N δiso was 166.2 ppm, and ∆σ = 154.6 ppm. For this 

calculation, therefore, the N-2H bond length was 0.009 Å shorter on average than the 

N-1H bond length and the 15N nucleus in 15N-{1H} was 2.6 ppm more shielded than in 

15N-{2H}, with =7.8 ppm. These changes are in the opposite 

direction to the changes in these parameters from the previous two calculations, 

however the direction of the changes predicted here (shorter bond length and greater 

shielding for 

)( 2115

HHN →∆∆σ

15N-{2H}) are in agreement with experimental data on other NH 

containing compounds 173,174. In CH3-15N1H-CO-CH3 the principal values of the 

shielding tensor were: σxx=64.95 σyy=174.88 σzz=266.72; in CH3-15N2H-CO-CH3 

they were σxx=51.08 σyy=178.15 σzz=269.24. Therefore, the largest change was in 

=-13.87 ppm, followed by = 3.27 ppm, and 

=2.53 ppm. This calculation took significantly more time than either 

the Hartree-Fock or B3LYP calculations. 

)( 21 HHxx →∆σ )( 21 HHyy →∆σ

)( 21 HHzz →∆σ

8.2.3 Conclusions 

 It is difficult to draw any definitive conclusions about the effect of deuteration 

on the 15N CSA from these calculations, since the results of the various calculations 

did not agree even inasmuch as regarding the direction of the trends. The one 
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conclusion that can be drawn is that the effect of deuteration on the 15N CSA is 

expected to be small with respect to the 15N CSA itself; calculated values of 

 ranged from -1.1 to 7.8 ppm, and in all cases was smaller in 

absolute value than 8 ppm. Even in the MP2 calculation, which predicted a largest 

change in the CSA due to deuteration (7.8 ppm), this effect was only at the level of 

~5% of the CSA in the 

)( 2115

HHN →∆∆σ

15N-{1H} system. This is comparable to the level of 

experimental uncertainty in our measurement of the CSA from the field dependence 

of relaxation data.  

8.3 Pulse Sequences, Spectra, and Rates  

8.3.1 Pulse Sequences for Measurement of 15N R1 and 15N R2 using Direct 

Nitrogen Detection. 

 Pulse sequences for 1D 15N-detected R1 and R2 measurements are shown in 

Figure 8.3.1 (a) and (b).  The relaxation delays for the R1 experiments were 11.15, 

105.84, 209.13, 295.21, 398.51 (x2), 605.1, 794.48 and 1001.07 ms and for the R2 

experiments 3.74, 103.10, 198.78 (x2), 265.02, 323.90, 397.50 and 449.02 ms. The 

pulse repetition delays δ were of 2 ms and 200 µs in the R1 and R2 experiments, 

respectively. The delay τ was 10 µs. The phases were: φ1=(y,-y), φ2=(8x,8(-x)), 

φ3=(2(-y),2y), φ4=(4x,4(-x)) and φrec=(x,2(-x),x,-x,2x,-x) in the R1 experiment and 

φ1=(y,-y), φ2=(2x,2(-x)) and φrec=(x,2(-x),x) in the R2 experiment (the latter phase 

cycle is based on a recently published modification of the CPMG experiment 26). The 

number of scans was from 4k to 8k, depending on the total relaxation period. Waltz65 

decoupling was applied during the acquisition on the 1H and 2H channels; this 
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consists of an MLEV4 supercycle of the basic waltz16 element (waltz64) with an 

additional 90° pulse at the end of the supercycle for increased performance with 

respect to decoupling sidebands. The acquisition time was 300 ms. 15N pulses were 

applied at 16.6 kHz, while the 2H decoupling was at a power level of 880 Hz. A low-

power 90o pulse followed by a gradient was applied at the beginning of the sequences 

in order to defocus the 15N magnetization prior to the relaxation period. The 2H 

spectrometer lock was kept on during the relaxation period ∆ (2.9 s) and switched off 

just prior to the first rf pulse.  

The measurements were performed on a 5.8 mM sample of protein G (GB3) 

152 in D2O at 11.7 T and 24oC, on a 5mm Z-Gradient P/C/N-H/D QNP CryoProbe 

using a cryogenically cooled preamplifier for all nuclei. The cooled 15N preamplifier 

in the QNP probe offers a 4-fold gain in sensitivity compared to conventional 

broadband and QNP probeheads and approximately similar sensitivity increase with 

respect to the TXI or TCI cryoprobes. Our data indicate that the proposed 

measurements are still feasible using broadband and cryo-TXI probes, on fairly 

concentrated protein samples. 
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Figure 8.3.2. Pulse sequences for 1D 15N-detected R2 measurement. The phases cycle is: φ1=(y,-y), 
φ2=(2x,2(-x)) and φrec=(x,2(-x),x). Sine-bell shaped gradients with a duration of 1 ms and ratios of 
intensities of G1:G2=-5:2. The number of scans was from 4k to 8k, depending on the total relaxation 
period. See caption to Figure 8.2.2 for further experimental parameters. 
 

 

 

Figure 8.3.1. . Pulse sequences for 1D 15N-detected R1 measurement. The phases cycle is: φ1=(y,-y), 
φ2=(8x,8(-x)), φ3=(2(-y),2y), φ4=(4x,4(-x)) and φrec=(x,2(-x),x,-x,2x,-x). Sine-bell shaped gradients with 
a duration of 1 ms and ratios of intensities of G1:G2:G3=-5:2:1.4. The number of scans was from 4k to 
8k, depending on the total relaxation period. Waltz65 decoupling was applied during the acquisition on 
the 1H and 2H channels; this consists of an MLEV4 supercycle of the basic waltz16 element (waltz64) 
with an additional 90° pulse at the end of the supercycle for increased performance with respect to 
decoupling sidebands. The acquisition time was 300 ms. 15N pulses were applied at 16.6 kHz, while the 
2H decoupling was at a power level of 880 Hz.
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Figure 8.3.3. . 15N-detected spectrum of GB3 (pH 5.5, 24oC), recorded at 11.7 T with 4096 scans and a relaxation 
delay of 2.9 s (total time 4h). The residue numbers are indicated at the frequency position of the corresponding 15N 
resonance. All the assigned signals originating from backbone amides that could be resolved are labeled with the 
residue number, the indole signal of Trp43 is labeled 57. Circles without labels correspond to signals in overlap. 
 

 

 

 
 
 
 
 
 
 
 
 
 

8.3.2 Measured Rates 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8.3.4. Representative fitting curves for R1 and R2 measurements are shown for Glu24 and 
Lys50, as indicated. Peak intensities in a series of 1D spectra recorded with different relaxation delays 
were fit to a mono-exponential decay.  
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Figure 8.3.5. Longitudinal (R1) (cyan) and transverse (R2) (orange) 15N relaxation rates in GB3 in D2O, 
determined using 15N direct detection at 11.5 T (500 MHz 1H frequency). The cartoon at the top 
indicates the location of the secondary structure elements. 
 

 

 

The 15N relaxation rates R2 and R1 were measured using the pulse sequences 

own in Figures 8.3.1 and 8.3.2. Representative fitting curves are shown in Figure 

.3. The 15N relaxation data are depicted as bars in Fig. 8.3.4 as a function of 

idue number. The profile here is similar to that of the relaxation data in H2O (cf. 

apter 5 Figure 5.3.1), in that the transverse relaxation rates in the α-helix are 

ghtly higher than those measured in the rest of the protein, although the difference 

not as striking as for the H2O data. This suggests that the elevated relaxation rates 

 amide nitrogens in the helix are not due to higher CSA values, otherwise the rates 

this region would be more elevated in the data recorded in D2O compared to data in 

O. As was shown in Chapter 5, the profile of relaxation rates in GB3 is mainly 

termined by the overall rotational diffusion properties of the molecule; the elevated 

s in the α-helix are the result of the unique principal axis of the diffusion tensor of 

3 being approximately parallel to the helix axis (hence to NH vectors in the helix) 
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and approximately perpendicular to NH vectors in the beta sheet. This effect is less 

pronounced in D2O, because the CSA tensors – the main contributors to 15N 

relaxation – in the beta-sheet residues are tilted from the NH vectors, and are 

therefore more aligned with the main diffusion axis (a 17o tilt of the CSA in the 

peptide plane corresponds to an average 10o tilt towards the diffusion tensor for beta 

sheet residues). The CSA tensors in the alpha-helix are correspondingly less well 

aligned with the helical axis (and therefore with the diffusion tensor axis) than their 

NH vectors, due to this same tilt, the combined effect being that there is less of an 

elevation of transverse relaxation rates in the helix with respect to the transverse 

relaxation rates in the sheets. The low values of both relaxation rates in the β1/β2 and 

α/β3 loops are due to increased mobility in these regions.  

 
 

8.4 Diffusion Tensor of GB3 in D2O Solution Derived from 15N Direct Detection 

Relaxation Rates: Proof of Principle  

In order to validate the relaxation data obtained by 15N direct detection, we 

used them to determine the overall rotational diffusion tensor of GB3, for comparison 

with this tensor derived in H2O. 

8.4.1 Subtraction of Contributions to the Relaxation Rates Based On Model-Free 

Parameterization 

 Recall that the method for fitting the diffusion tensor of a molecule uses a 

ratio of “reduced” relaxation rates (Eq. 5.2.2), usually obtained by subtracting the 

components of the spectral density involving the hydrogen frequency (in the NH 
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pair). This is done so that the ratio, ρ, is independent, to a first approximation, of the 

15N CSA values and of the order parameters describing local backbone motion. To 

adapt this method to ND systems, the spectral densities J(ω) at frequencies involving 

deuterium frequency (ωD, ωD±ωN) were subtracted from the measured R1 and R2 

values as follows:  

[ )()(6
3
8' 2

11 NDND JJdRR ωωωω −++−= ],     (8.4.1) 

[ ])()(6)(6
3
4' 2

22 NDNDD JJJdRR ωωωωω −+++−= ,  (8.4.2) 

where 3
0

42
1

ND

DN

r
d γγ

π
µ h

−=  is the dipolar coupling constant in the ND pair. The 

spectral densities were calculated using the model-free assumption 27. As shown in 25, 

the model-free form of the spectral density is applicable to ND bond dynamics in 

deuterated amides. Given the tensor in H2O was shown to be axially symmetric to a 

good approximation, axial symmetry was assumed for the overall rotational diffusion 

tensor here. The ND bond length was set to 1.02 Å. The subtracted J(ω) components 

(Eqs. 8.4.1-8.4.2) and the R2′/R1′ ratio are independent of 15N CSA, therefore the 

diffusion tensor can be derived without making any assumption regarding the CSA 

values 120. The calculation of the J(ω) components to be subtracted assumed the 

diffusion tensor determined from 15N relaxation data for GB3 in H2O at 14.1 T 

(Chapter 5, and see below). In addition to this partial subtraction of the spectral 

densities associated with N-D dipolar interaction, a second calculation was performed 

in which the entire dipolar contribution to the relaxation rates was subtracted, as 

follows:  
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                                                                                                             (8.4.4)   

 

8.4.2 Diffusion Tensor of GB3: Proof of Principle 

Since a large fraction of the 15N relaxation in ND pairs is due to CSA 

modulation (see Table 8.1.2), and the orientations of the principal components of the 

CSA tensor are unknown a priori, it is unclear whether the derivation of the overall 

diffusion tensor from these data using the same methodology applied to relaxation 

rates in NH pairs will result in reasonable values. The problem is as follows: the 

method for derivation of the overall diffusion tensor (e.g. using the ROTDIF 

algorithm) uses the orientations of the NH bond vectors from the crystal structure of 

the protein as representative of the directions of the relaxation-active interactions. 

While this is probably a good approximation in NH systems where the dipolar 

interaction is the major contribution to relaxation, in ND pairs where the CSA 

interaction is more important (see Table 8.1.2), the orientation of the relaxation-active 

interaction may (1) not be vectorial (if the 15N CSA is not axially symmetric), and (2) 

provided the vector representation is applicable, the orientation of this “CSA vector” 

may not be along the ND bond. However, at 500 MHz there is still a significant 

contribution to ND relaxation rates from the dipolar interaction (see Table 8.1.2), 

there is some evidence that the 15N CSA is approximately axially symmetric (see 

Table 1.3.1), and that the angle between this symmetry axis and the bond vector is 
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small (~20o-30o, see Figure 7.4.2b). Given all of this, it is interesting to see if the 

conventional methods for derivation of the rotational diffusion tensor give results 

which are in agreement with those derived on the GB3 sample in H2O. 

The anisotropies and orientations of the derived diffusion tensor are shown in 

Table 8.4.1 in comparison with those determined from 15N relaxation rates measured 

in H2O using conventional methods. The observed slower tumbling of GB3 in D2O 

(τc =4.2-4.3 ns versus 3.3 ns in H2O) is consistent with a 1.25-fold higher viscosity of 

D2O solvents 177. This tumbling time also agrees with the value of 4.55±0.24 ns 

obtained from 15N relaxation data measured for the residual NH groups 

(approximately 2-3%) in this GB3 sample in D2O using conventional INEPT-based 

2D methods. Furthermore this tensor determination procedure is self-consistent in 

that the output τc value from the ROTDIF calculation agrees well with the input value 

used for the subtraction of dipolar contributions. 

 209 
 



Sp

1

(sa
H

15

(sa
D

 
Table 8.4.1. Characteristics of the overall rotational diffusion tensor of GB3 determined in H2O
and D2O solvent 
 

in pair J(ω) components 
subtracted β a ξ a τc b D||/D⊥

b Φ c Θ c

0 d 0 d 3.3 (0.1) 1.4 (0.1) 92 (6) 72 (7) 5N-1H  
mple in 

2O) 
J(ωH), J(ωH±ωN) 

-3 e 0 e 3.3 (0.1) 1.4 (0.1) 95 (6) 68 (7) 

0 d 0 d 4.2 (0.4) 1.3 (0.2) 103 (28) 68 (23) 
J(ωD), J(ωD±ωN) 

17 e 2 e 4.2 (0.4) 1.3 (0.2) 96 (26) 75 (21) 

0 d 0 d 4.3 (0.5) 1.3 (0.3) 105 (34) 66 (29) 

 
N -2H 
mple in 

2O) 
 J(0), J(ωN),J(ωD), 

J(ωD±ωN) 
24 e 3 e 4.3 (0.4) 1.3 (0.3) 98 (26) 77 (23) 

 

 

 

 

 

 

Numbers in the parentheses represent standard deviations. 
a The angles β and ξ (in degrees) correspond to a tilt of the interaction axis away from the NH bond (see text).
b The overall correlation time τc = 1/[2(D||+2D⊥)] (in nanoseconds) and the anisotropy, D||/D⊥, of the diffusion 
tensor. 
c The angles Φ and Θ  (in degrees) determine the orientation of unique axis of the rotational diffusion tensor 
with respect to the protein coordinate frame.   
d  The angles β and ξ were fixed at 0, i.e. the interaction axis was assumed to be in the direction of the N-H 
bond. 
e
 The angles β and ξ were adjusted as a result of a grid search minimizing the residuals of fit. 
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8.4.3 Relative Orientation of the CSA and Dipolar Relaxation Mechanisms  

We then used our 15N relaxation data in 15N-{2H} systems to explore the 

orientation of the CSA tensor with respect to the peptide plane. The determination of 

the diffusion tensor of a protein from 15N relaxation data uses the dependence of the 

relaxation rates on the angles between the principal axes of the tensor and the 

symmetry axis of the relaxation-active terms in the spin Hamiltonian. In 15N-{1H} 

systems the orientation dependence of the 15N–1H dipolar interaction is the primary 

contribution to the time-varying magnetic field at the site of the 15N nucleus, and thus 

the primary contribution to the orientational dependence of 15N relaxation rates comes 

from the angle between the NH bond and the axis of the diffusion tensor. In 15N-{2H} 

spin systems, the CSA contribution is the larger term and therefore the orientation of 

the 15N CSA tensor becomes the determining factor for the orientation dependence of 

the 15N relaxation rates. Because the chemical shift is sensitive to the local 

distribution of electron density, the 15N CSA tensor’s orientation is in general 

different from that of the NH-bond vector. The anisotropy of local backbone motions 

could also contribute to the difference between average orientations of the CSA and 

dipolar tensors. To account for the possible difference in the orientations of the 

relaxation-active interaction and the NH vector, we allowed the modeled symmetry 

axis of the chemical shift to deviate from the NH bond in both in-plane and out-of-

plane directions using two degrees of freedom described by the angles β and ξ. The 

angle β measured the deviation of the interaction frame from the NH orientation in 

the peptide plane, with the positive direction towards the carbonyl nucleus of the 
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previous residue (i.e. here β measures βz in Fig.8.2.2). The angle ξ measured the 

deviation away from the peptide plane, with the positive sign corresponding to a 

clockwise rotation about the N-H bond (when looking from H to N). The tilt of the 

interaction axis was assumed to be the same for all residues in the protein. The 

ROTDIF analysis was performed on a {β, ξ} grid, and the resulting values of the 

target function obtained from all grid points were compared, in order to find the 

orientation of the axis that minimizes the difference between the experimental and 

back-calculated values of ρ.  

Using reduced relaxation rates (Eq. 8.4.2), the optimal orientation of the axis 

of interaction was found to be approximately in the peptide plane and titled by 17o 

from the NH-bond-vector towards the carbonyl atom.  When the entire dipolar 

contribution was subtracted from the relaxation rates, this fit resulted in a further 

increase, to 24o, in the tilt angle β in the same direction of rotation. Given the 

relatively broad minimum of the target function versus angle β, these numbers are in 

good agreement with one another. Although the reduction in χ2 compared to zero-tilt 

model is not dramatic, likely reflecting the limited precision of the data, the statistical 

F-test gave confidence levels of 83 and 85%, respectively, for the two levels of 

subtraction. The out-of-plane tilt angle ξ was small (2o-3o) and statistically 

insignificant. The slight increase in the tilt angle when the dipolar contribution to 

relaxation was completely subtracted agrees with the idea that the observed behavior 

is the result of an interplay between the orientations of the dipolar and CSA 

interactions. In a control analysis of 15N relaxation data for GB3 in H2O, the 
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minimum was found within 3o of the NH vector orientation, as expected (see Figure 

8.4.1). 

 

 

 
 
 

Figure 8.4.1. Variation in the residuals of the fit (from ROTDIF analysis), as the main interaction 
frame is tilted away from the direction of the NH vector, while remaining in the peptide plane 
(angle ξ = 0). Shown is the value of the target function per degree of freedom (χ2/df) from a least-
square fit of experimental data assuming axial symmetry of the overall rotational diffusion tensor. The 
curves correspond to D2O rates with subtraction of the dipolar contributions at frequencies containing 
combinations of the deuterium Larmor frequency (Eqs.8.4.2, open triangles) and at all frequencies 
(Eqs.8.4.3, solid triangles) and the H2O rates (solid circles) 
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8.5 Conclusions  

Here we have used heteronuclear-detected experiments to measure 15N 

relaxation rates in GB3 in D2O, where the dipolar contribution is lessened by 

replacing the dipolar-coupled partner (1H) with a deuteron. We have shown that these 

rates have increased relative sensitivity to the 15N CSA compared to relaxation rates 

in 15N-1H systems. This additional sensitivity allowed us to estimate the average of 

the angle between the 15N CSA and the 15N-2H bond from the orientation dependence 

of a ratio of 15N relaxation rates. This angle was found to be between 17-24o to 80% 
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confidence in agreement with previous estimations from combinations of auto and 

cross-correlation rates at several fields (Chapter 7, Figure 7.4.2c). In order to 

determine that the CSA of 15N in 15N-{2H} systems was similar in magnitude to the 

15N CSA in 15N-{1H} systems, we performed quantum mechanical ab initio 

calculations at the B3LYP6-311+G(2d,p) level on the N-methylacetamide molecule. 

 from these studies were small compared to the )( 2115

HHN →∆∆σ 15N CSA, and on 

order of the expected error for CSA determination using 15N relaxation rates. 
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Chapter 9:  Summary and Concluding Remarks 

9.1 Summary of Results 

New direct methods for measuring the 15N CSA/dipolar cross-correlation rates 

(CCRs) in proteins were presented and shown to be in good agreement with indirect 

methods when an arbitrary scaling factor (here observed to be between 4-7%) is 

applied to the cross-correlation rates measured by the indirect methods. It was shown 

here that 15N CSA/dipolar CCRs can be measured directly from the relative 

amplitudes of the up- and down-field 15N signals in a 1H-coupled 1H-15N HSQC 

spectrum. The obvious advantage of this approach is that both signals are observed in 

the same spectrum and, therefore, no ambiguity associated with correction factors is 

involved. The application of this method to biological macromolecules, however, is 

complicated by signal overlap in the coupled 2D spectra, which may be particularly 

severe in the case of H-coupled 1H-15N HSQC spectra for macromolecules greater 

than 10 kDa. With this in mind, two direct methods were proposed for 15N/CSA 

dipolar CCR measurement (the IPAP and S3E methods) based on spectral 

simplification schemes. It was shown that no scaling factor is needed for these direct 

methods, since the CCRs from the direct methods are in agreement with the CCRs 

obtained directly from the time evolution of the ratio of the components of the 15N 

doublet in a coupled HSQC-type spectrum.  

 It was shown that the IPAP scheme simplifies coupled 1H-15N HSQC spectra 

without causing deviations in cross-correlation rates from those measured with the 

simple IP scheme. Both CCRs measured using the IP only sequence and the IPAP 
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scheme agree with the indirect A/B method when the A/B method is scaled by a 

correction factor. There is no such need for a scaling factor between the IP and IPAP 

derived CCR.  S3E spin-state selection of the individual (up- or down-field) 

component of the nitrogen doublet before the relaxation delay also alleviates 

problems due to spectral overlap. This experiment is, in principle, even better than 

that of the IPAP scheme, which might introduce very small errors in restored-peak 

intensities of overlapping peaks due to site-specific differences in relaxation 

properties of individual amides. CCRs measured using the sequence containing the 

S3E spin-state selection element agree with IPAP, IP, and scaled A/B method CCRs. 

There is no need for a scaling factor between the S3E and IP derived CCRs. 

  The overall rotational diffusion tensor and correlation time of the GB3 

domain were determined from 15N relaxation rates (R1, R2, 15N{1H} NOE) at 600 

MHz. It was found that to a good approximation, GB3 can be modeled as a prolate 

axially symmetric (symmetric-top) rotor with the ratio of the rate of reorientation 

about the fast axis to a perpendicular axis,  of 1.37 and an overall correlation 

time, τ

⊥DD /||

c of 3.34 ns. The improvement in the fit of the relaxation data using the fully 

anisotropic diffusion tensor ( =1.36 and =1.11) was not found have 

statistical significance compared to the fit using the axially symmetric diffusion 

tensor.  These experimentally determined parameters describing the overall diffusion 

of the GB3 domain were shown to be in general agreement with the predictions of 

theoretical hydrodynamic models. Furthermore, this diffusion tensor derived from 

data at 600 MHz was found to be in excellent agreement with the GB3 diffusion 

tensor derived from measurements at additional spectrometer fields, 400-800 MHz, 

yz DD / xy DD /
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with a globally-fit diffusion tensor using all the data combined, and with the diffusion 

tensor derived from cross-correlation rates at fields 400-600 MHz.  

An analysis of Lipari-Szabo model-free parameters describing the motion of 

NH bonds in the polypeptide backbone of the GB3 domain from 15N relaxation data 

shows that the isotropic and anisotropic models of the overall tumbling result in 

markedly different pictures of local motion; the main difference is in the 

interpretation of the elevated R2 values in the α-helix: the isotropic model results in 

conformational exchange throughout the α-helix, whereas no exchange is predicted 

by anisotropic models that place the longitudinal axis of diffusion tensor almost 

parallel to the helix axis. Both axially symmetric and fully anisotropic models for the 

overall motion fit the experimental data significantly better than does a model with an 

isotropic diffusion tensor. Based on statistical F-tests, we conclude that the overall 

rotational diffusion of GB3 is best modeled as axially symmetric, and that the fully 

anisotropic description of the diffusion tensor is not statistically warranted.  

Since the results of the Lipari-Szabo analysis using the anisotropic models of 

overall diffusion could be biased (see Chapter 4), additional, model-independent 

methods for identification of exchange motions which do not rely on knowledge of 

protein structure or assumptions about its dynamics were required in order to 

unambiguously distinguish the correct picture of local motion of peptide planes. 

Three such methods were applied to differentiate between the effects of 

conformational exchange and rotational anisotropy: a comparison of the CSA/dipolar 

cross-correlation rates (ηxy, ηz) with relaxation rates (R2, R1), the estimation of Rex 

terms from 15N relaxation data at two fields, and relaxation-compensated CPMG 
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measurement of exchange from experiments with different values of υCPMG to identify 

exchange on longer timescales (1-8 ms). These methods are all sensitive to 

conformational exchange, and do not require knowledge of the protein structure or 

any assumptions about spectral density functions, and therefore can be used to either 

identify potential sites for conformational exchange (or verify the absence thereof). 

These analyses provide no indication of conformational exchange in the helix, 

consistent with predictions of the Lipari-Szabo analysis using the axially symmetric 

or fully anisotropic overall diffusion tensor.  

A comprehensive study of the 15N chemical shielding anisotropy in the GB3 

domain was presented based on a combination of 15N relaxation and 15N CSA/dipolar 

cross-correlation measurements at five static magnetic fields. The analysis was 

performed using various combinations of the experimental data and using model-

independent approaches as well as methods based on Lipari-Szabo approximation. 

The results indicate significant site-to-site variations in the principal values and the 

orientation of the 15N CSA, similar to those observed earlier in ubiquitin 51,52. Our 

estimates of the true variability in the 15N CSA in GB3 depend to some degree upon 

which method for determining the CSA was used and which subset of residues is 

considered. These estimates range from 10.2 ppm (for 33 residues that pass the χ2/df 

cutoff from the R/η method) to 21.4 ppm for all 47 residues from the 2R2-R1 method. 

Although this range of values could be a result of limited statistics, all of these 

estimates are still larger than the derived variability in the 15N CSA from studies of 

ribonuclease H 53 or recently of ubiquitin using a subset of the methods used here 54. 

The true mean CSA values range from –173.9 ppm (2R2-R1) to –177.2 ppm (R/η). 
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Our data show that using the site-specific values of the 15N chemical shielding 

anisotropy obtained here significantly improves the agreement between LS order 

parameters measured at different fields and allows simultaneous fit of the 15N 

relaxation data at five fields to LS spectral densities. These findings emphasize the 

necessity of taking into account the variability of the 15N chemical shielding tensor 

for accurate analysis of protein dynamics from 15N relaxation measurements. This can 

be achieved by including the 15N CSA as an additional fitting parameter in the LS 

analysis of multiple-field data, provided the sample temperature and other 

experimental conditions are the same at all fields/spectrometers. These analyses also 

show that the Lipari-Szabo form of the spectral density provides a satisfactory 

approximation for the experimental spectral densities obtained using the reduced 

spectral density approach. 

Novel methods for measurement of 15N relaxation rates in a protein in D2O 

using direct 15N detection were presented and demonstrated on the GB3 domain. By 

sampling the spectral density function at the frequencies ωD and ωD±ωN these 

measurements provide potentially useful information about protein motions in the 

nanosecond time range not available from the conventional measurements in NH 

systems. In addition, the proposed direct 15N-detection experiments offer increased 

sensitivity to 15N CSA values and could provide a useful tool for accurate 

measurements of these parameters in proteins. Quantum mechanical ab initio 

calculations at the B3LYP6-311+G(2d,p) level were conducted on the N-

methylacetamide molecule in the gas phase to explore the sensitivity of the 15N 

chemical shielding anisotropy to isotopic substitution of the directly bound hydron. 
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)( 2115

HHN →∆∆σ  from these studies ranged from -1.1 to 7.8 ppm, and in all 

calculations was smaller in absolute value than 8 ppm, and therefore on order of the 

expected error for CSA determination using direct detected 15N relaxation rates. 

9.2 Scope for Future Studies 

  15N NMR spin relaxation rates contain a wealth of information about 

chemistry, structure, and dynamics in biomolecules. However, there is not yet a 

generalized “best approach” to deconvolution of the individual contributions to these 

rates of a multitude of interaction and motional parameters (e.g. dipolar coupling 

constants, chemical shift tensors, characteristics of the overall and local motions). The 

development of such a generalized approach was not the goal of this work, but a 

necessary step towards such an approach is an exploration of the boundaries of 

applicability of current methods for dynamics analysis. Specifically in question here 

were the degree of overall diffusional anisotropy that can safely be neglected in 

determination of the local backbone peptide plane dynamics, and the effect on these 

dynamics of variability of the 15N CSA from residue to residue within proteins. 

 It was found that for the GB3 domain, a Lipari-Szabo analysis using an 

isotropic model of the overall rotational diffusion resulted in spurious conformational 

exchange motions and an underestimation of order parameters for all residues in the 

α-helix. When an anisotropic model of overall diffusion is assumed, it becomes clear 

that there is no significant conformational exchange motion in the GB3 domain with 

the possible exception of residue Val39. However, there seems to be no significant 

difference between the Lipari-Szabo parameters derived using the axially symmetric 

and fully anisotropic tensors. The overall rotational diffusion of GB3 is axially 
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symmetric to a good approximation, thus from this protein it is impossible to discern 

the effects of neglecting rhombicity of the diffusion tensor. A protein with significant 

rhombicity of overall rotational diffusion would be needed for such an analysis.  

  Here I have presented a thorough analysis of the variability in the 15N CSA in 

GB3. Still in question is the variability of the internuclear 15N-1H bond from residue 

to residue within the protein. Since the 15N CSA values in all the methods presented 

in Chapter 7 are determined via the dipolar term d, they therefore depend on our 

knowledge of the NH-bond length. Here, we have, as is customary, assumed a 

uniform value of the NH bond, so site-to-site variations in rHN will necessarily affect 

the determined CSA values (a deviation in the bond length by δrHN will introduce an 

error in the CSA value of the order of 3(δrHN/rHN)). The direct-detected relaxation 

rates presented in Chapter 8 have the potential to help discern the effect of the 

variability in rHN, since they are significantly less sensitive to the values of rHN. 

Measurements at several field strengths will be necessary for a robust application of 

model-independent methods for CSA determination from these rates.  
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