
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the
a. James clark school of engineering. It is a graduated national science

foundation engineering research center.

www.isr.umd.edu

Compositional Behavior Modeling and Formal
Validation of Canal System Operations
with Finite State Automata

Mark Austin
John Johnson

Isr TechnIcal rePorT 2011-04

Contents

1 Introduction 4

1.1 Problem Statement . 4

1.2 Compositional Software Development . 8

1.3 Scope and Objectives . 10

2 Process Modeling and Validation with LTSA 14

2.1 From Requirements to Behavior with LTSA . 14

2.2 Finite State Processing (FSP) Language Features . 15

2.2.1 Actions in LTSA . 18

2.2.2 Parallel Composition in LTSA . 18

2.2.3 Role of Shared Actions and Action Relabeling 20

2.2.4 Deterministic and Non-Deterministic Choice 21

2.2.5 Role of Tagged Processes . 21

2.2.6 Role of Guarded Actions . 23

2.2.7 Modeling of Shared Resources . 25

2.3 Model Checking in LTSA . 28

2.3.1 Model Checking Procedure . 28

2.3.2 Desirable Properties of System Behavior . 29

1

2.3.3 Model Checking in LTSA . 31

2.4 Systematic Organization of Processes into Layers . 36

2.5 Viewpoint-Action-Process Traceability . 39

3 The Panama Canal 41

3.1 Background and Capability . 41

3.2 Ship Transit . 41

3.3 Control of Ship Movement . 43

3.4 Limitations of Present-Day Canal Operations . 44

3.5 Panama Canal Renovation . 44

4 Behavior Modeling and Validation of a Two-Stage Lockset Operation 46

4.1 Model 1. Detailed Behavior Modeling of a Two-Stage Lockset 48

4.1.1 Basic Ship Behavior . 50

4.1.2 Traffic Demand Processes . 53

4.1.3 Lockset System Processes . 54

4.1.4 Lockset-Level Behavior . 62

4.1.5 Lockset-Level Safety and Liveliness . 62

4.2 Model 2. Simplified Models of Lockset-Level Behavior 67

4.2.1 Architecture of Lockset-Level Behavior Model 68

4.2.2 Alphabets for Models of Traffic Demand and Lockset Behavior 70

4.2.3 Viewpoint-Action-Process Traceability . 70

4.2.4 Viewpoint 1: Composition of Behavior for Ship Movement 74

4.2.5 Viewpoint 2: Composition for Verification of Safety Against Flooding 77

4.2.6 Viewpoint 3: Composition for Verification of Passageway Occupancy 78

2

5 Behavior Modeling and Validation of Canal-Level Operations 80

5.1 Process Architecture for the Full Canal Model . 82

5.2 Traffic Demand Model . 82

5.3 Composition of Full Canal Model . 84

5.3.1 Preliminary Composition . 84

5.3.2 Progress Checks . 85

5.3.3 Third Iteration of Lockset-Level Scheduler . 87

5.4 Viewpoint-Specific Behavior . 89

5.5 Maintenance, Accident and Emergency Concerns . 91

5.5.1 Fourth Iteration of Lockset-Level Scheduler 93

5.5.2 Canal-Level Monitor Processes . 96

5.6 Composition of Full Canal Behavior Model . 98

5.6.1 Viewpoint 1: Focus on Transit Operations . 98

5.6.2 Viewpoint 2: Focus on Emergency/Maintenance Operations 99

6 Conclusions and Future Work 102

Appendix 1. Detailed Behavior for a Two-Stage Lockset Module 107

Appendix 2. Simplified Two-Stage Lockset Module 112

Appendix 3. Full Canal Design 116

Appendix 4. Provision for Emergencies and Maintenance 122

3

Chapter 1

Introduction

1.1 Problem Statement

For more than two hundred years, canal systems have been designed to provide an economic

and reliable way of transporting of high-bulk goods and commodities over long distances. During

the 1800s, for example, inland waterways were built in North America and Europe to support new

streams of commerce enabled by the industrial revolution. Today, modern canal systems act as

critical links in world trade routes.

While it is certainly feasible to operate a canal system one ship at a time, economic

pressures nearly always dictate that canals deal with the concurrent real-time behavior of many

ships. Accordingly, the key objectives of canal traffic flow management systems are to: (1) prevent

overloading of the canal, and facilities and services that might affect safety, (2) develop strategies to

relieve these overloads, (3) oversee implementation of these strategies, and (4) minimize economic

penalties on shipping operators due to traffic congestion. Industrial-age canal systems have kept

these traffic management concerns in check through a reliance on human involvement in day-to-day

operations. However, now that traffic demands in modern canal systems have far exceeded early

expectations – Figure 1.1 shows, for example, crowding of ships in the Panama Canal – it is evident

that constraints on capability (e.g., maximum throughput, minimizing delays due to accidents

and maintenance) are increasingly due to a limited ability to sense the surrounding environment,

control system responses, and look ahead and anticipate events [7, 17, 26, 33]. Therefore, in an

effort to expand system functionality and improve performance canal management systems are

moving toward an information-age implementations where automation handles some operations

once handled by humans. Early indicators of this trend can be found in the Panama Canal, Turkey

(Bosporus Straights) and Korea (Tsushima Strait), where large investments have already been

4

Figure 1.1: Collage of ship activity in the Panama Canal (Left-hand graphic shows transiting ships
crowding Miraflores Locks and Lake; Right-hand graphic illustrates of limitations of present-day
canal capacity).

made to develop traffic management systems for narrow waterways. In each of these cases, decision

making is guided by GIS and data collected by land (sensors) centers [4, 14, 28].

We observe that as canal management systems become progressively diverse in their func-

tionality, and solutions increasingly reliant on automation, the challenge in creating good system-

level designs will steadily increase unless new approaches are developed. The traditional role of

engineering analysis of waterway systems has been to focus on performance, where sophisticated

techniques [9, 11, 41, 44] are justified by the adverse economics of poor system throughput (perhaps

caused by adverse weather conditions or accidents). However, now that there is a general trend to-

wards canal management systems relying on automation to achieve required levels of functionality

and performance, there is a need for new models that can capture correctness of system functional-

ity with respect to system goals. From the standpoint of system functionality, the natural question

to ask is: how do we know that an automated canal management system will always do the right

thing? The search for good answers to this question is complicated by several factors, including:

(1) Concurrent behaviors in both the operation of the vessels and elements of the canal system

(e.g., the pumps and lock gates) itself, and (2) A general trend toward the use of control strategies

that are partially or fully decentralized. A third source of difficulty is due to the increased role of

software necessary to the handle automation/control. Functionality for software systems is defined

by logic (not differential equations). As as result, a small fault in the software implementation can

trigger system level failures that are very costly and sometimes, even catastrophic [13, 16]. Lessons

5

learned from industry [16, 24, 37] indicate that almost all grave software problems can be traced

back to conceptual mistakes made before the system implementation even started.

Transition from Industrial- to Information-Age Capability

The transition from industrial- to information-age capability brings with it a strong need to

understand and overcome several important challenges. First, an implicit assumption in industrial-

age system implementations is that humans will do the right thing at the right time. Not only do

no such assurances exist for an automated system, but automated systems can sometimes fail in

new and unexpected ways. Perhaps the automation will do more than required?

Lessons learned from industry [16, 24, 37] indicate that there are now many automated

engineering systems with complexity approaching the point where validation of design correctness

will be impossible without mechanisms for pre-deployment reasoning about system requirements

and design built into the design process itself. These mechanism include [5, 36]:

1. Formal Models. To help prevent serious flaws in design and operation, design representations

and validation/verification procedures need to be based on formal languages having precise

semantics. The key problem with semi-formal validation procedures (e.g., UML and SysML

diagrams) is that they lack the precise interpretation of scenarios needed for rigorous analysis

and formal verification of system compliance. This can lead to system failure rates that are

unacceptably high.

2. Abstraction. Abstraction mechanisms eliminate details that are of no importance when

evaluating system performance and/or checking that a design satisfies a particular property.

Figure 1.2 shows, for example, a strategy of simplifying assembly of multi-layer systems

through repeated application of abstraction. While the “areas of concern” are likely to change

from one layer to the next, we need the overall complexity of models (i.e., no of states and

transitions) to remain independent of the underlying model fidelity. Otherwise, model size

will eventually grow to a point of being computationally intractable.

3. Decomposition. Decomposition is the process of breaking a design at a given level of hierarchy

into subsystems and components that can be designed and verified almost independently.

4. Composition. Composition is the process of systematically assembling a system from sub-

systems and components.

In established approaches to system design, and as shown along the left-hand side of Figure 1.3,

present-day procedures for “system testing” are executed toward the end of system development.

6

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

SubsystemComplex System Components

System assembly through integration of abstractions

System
functionality

Integration of
components

Focus on technology

abstraction

abstraction
abstraction

Figure 1.2: Simplifying system assembly through the use of abstraction (Adapted from Austin [3]).

Implementation

System Architecture

Formal Representation
of Requirements

Requirements

Testing

Implementation

Detailed Design

Preliminary Design

Requirements

In
cr

ea
si

ng
 c

os
t t

o
fix

 e
rr

or
s

Phase where
design errors
are found.

are made.
design decisions
Phase where

issues.
testing here ... to minor
Reduced reliance on

Build little design logic
models.
Analyze them thoroughly
for potential violation of
requirements.
Don’t move forward until
design (or parts of design)
are provably correct.

Early detection of errors and "system operation" that
is "correct−by−construction"...

Traditional Approach to Airportal
Design and Test.

Figure 1.3: Pathways of traditional and model-based system development (Adapted from Sidorova
[38]).

7

The well-known shortcoming of this approach is the excessive cost of fixing errors. Emerging

approaches to system design [24, 38, 43] are based upon formal methods and selective use of design

abstractions. The new approach benefits system design in two ways:

1. Concepts and notations from mathematics can provide methodological assistance, facilitating

the communication of ideas and the thinking process, and

2. Formal methods allow us to calculate some properties of a design. requirements and using

formal models for synthesis of architecture-level representations.

As illustrated along the right-hand side of Figure 1.3, the goal is to move design processes for-

ward to the point where early detection of errors is possible and system operations are correct-by-

construction [38].

1.2 Compositional Software Development

In each decade since the 1960s, remarkable advances in computer hardware and network-

ing technology have allowed for expanded expectations of computing; in turn, ever expanding

expectations have driven the need for new programming languages, new software development en-

vironments, and new application programs. As a case in point, prior to the early 1980s structured

approaches to engineering software development with the Fortran and C programming languages

were common place. Their primary purposes were to support development of numerical software

and operating system applications respectively. Then beginning in the mid 1980s and with much

fanfare, object-oriented approaches to engineering software development came into vogue. Early ad-

vocates promised: (1) improved mechanisms for the organization of software systems (e.g., through

class hierarchies and inheritance mechanisms), and (2) improved economics through better reuse

of software. After more than twenty years of use, it is now clear that early promises on ease of

reuse, ease of software assembly, and associated productivity improvements have fallen short. One

very simple problem is that you cannot create a new object-oriented program without having to

actually design and implement a new class. A second problem with class hierarchies and inheritance

mechanisms is that relationships among conceptual entities tend to be strongly coupled and quite

inflexible. When a software system’s requirements change, object-oriented software implementa-

tions do not naturally lend themselves to object removal, replacement and reconfiguration without

significant perturbations to other parts of the software.

During the past 20-30 years, a parallel development in computing has focused on the design

of computer languages for the modeling of systems having concurrent behaviors. Concurrency is a

8

−− Avoid deadlock

State−of−the−art concurrent computing

Mechanisms for coordination of events

−− Monitors
−− Semaphores
−− Mutual exclusion

Metrics for good performance

−− Avoid deadlock
−− Guarantee liveliness / progress

Difficulties

−− Very difficult for humans to identify
all possible interleavings of processes.

Software abstraction

−− Source code compiled into
machine code (C, Fortran) or bytecode (Java).

Concurrent process threads

Hierarchy of Computing Abstractions

Hardware devices

−− Precise timing!

−− Time is NOT a language element.
−− Simple programs (no concurrency) are perfectly predictable.

Software system / network of concurrent processes.

−− Satisfaction of timing deadlines
not perfectly predictible.

−− Liveliness / progress...

Figure 1.4: State-of-the-art computer modeling of systems having concurrent behaviors.

Automated Composition

User−Supplied

Commands

System Response

Constraints

Sensors

Traffic Environment

Model of Traffic Demand

Canal System

Continuous
Components

DiscreteControl

Distributed System Model

Subsystems

Inputs, Constraints

Figure 1.5: Automated assembly and behavior modeling of reactive processes.

9

fundamental aspect of life in a physical world. In addition to being logically correct, models need

to balance the desire for autonomy (i.e., allowing for independent, concurrent, actions) against

the need for scheduling/synchronization of events in order to get things done. State-of-the art

procedures – see Figure 1.4 – rely on “threads of control” and operating system mechanisms (e.g.,

semaphores, monitors, mutual exclusion) for the synchronization and constrained scheduling of

dependent processes. A good system design will achieve the dual objectives of avoiding deadlock

and guaranteeing that “something good” will eventually happen.

The central problem with traditional approaches to software validation is that they rely

on testing for the detection of errors. Although humans are quite adept at reasoning about small

numbers of concurrent physical processes in their day-to-day life, identifying all of the possible

interleavings among many concurrent system processes can be exceedingly difficult [39]. As a

consequence, deadlocks can also be extremely difficult to find, sometimes going undetected for

years [20]. Moving forward, we need methodologies for the synthesis and formal evaluation of

safety-critical systems whose operations must be both reliable and predictable.

These weaknesses have led to the design of a new generations of languages that can ef-

ficiently handle the bottom-up dynamic assembly of component and software systems through

scripting and composition mechanisms [29, 30, 31]. Instead of starting with highly nondetermin-

istic mechanisms (i.e., top-down specification of threads) and relying on the system developer to

prune nondeterminacy through the addition of constraints, the basic idea is to start with deter-

ministic composable mechanisms, and introduce nondeterminism only where it is needed. This

is a bottom-up approach to program assembly. Figure 1.5 shows, for example, a process mod-

eling framework for the systematic assembly (composition of concurrent lower-level processes) of

environmental (traffic demand) and distributed systems models (canal system) in a transporta-

tion systems application. Each component/subsystem will have behavior that can be modeled as

finite state machine and will be implemented as a finite state process. Architecture-level models

of behavior will be viewed as a network of interacting finite state machine processes, and will be

synthesized through a bottom-up composition of subsystem- and component-level behaviors.

1.3 Scope and Objectives

Our first steps toward understanding the above-mentioned issues focused on the use of

finite state automata for the top-down synthesis and analysis of behavior models for waterway

management systems. We have proposed a methodology for the incremental transformation of in-

formal operations concepts into system-level behavior models that are formal enough for automated

validation [18, 19].

10

This report, in contrast, approaches the behavior modeling and validation problems from a

combination of top-down and bottom-up perspectives. We explore the extent to which the principles

of composition, hierarchical decomposition, and targeted abstraction can be applied to behavior

modeling and formal validation of a real-world system such as the Panama Canal. System- and

lockset-level behavior will be driven by bi-directional streams of ship traffic. At the lockset level,

localized control will be employed for the safe, fair, and efficient scheduling of ship transit operations.

At the system level, the primary design concerns include provision for: (1) adjustment of operations

during emergency/maintenance events and, (2) cooperation of asynchronous lockset-level behaviors

to ensure efficient transit of ships through the canal system. Because emergency/maintenance events

will be detected at the lockset level, but controlled by a system-wide manager process, system-level

canal behavior will be defined by a network of partially synchronized processes.

This step forward brings with it several important challenges. How, for example, should the

behavior models and validation procedures be formulated so that lockset- and canal-system design

concerns can be considered separately? Second, it is well known that safety properties are compo-

sitional, but that progress properties are not [24]. This study seeks to understand the consequences

of the latter in a real-world application. We will see that naive approaches to composition lead to

process models that quickly become computationally intractable. Therefore, to keep the size and

complexity of the models in check, a second research challenge is one of combining formal models

with strategies for process decomposition and abstraction in such a way that system properties

may be formally evaluated with behavior models containing minimal detail.

The scope of investigation will be restricted to development of the two-layer behavior

model and sets of functional/test requirements, as shown in Figures 1.6 and 1.7. We will use

the labeled transition system analyzer (LTSA), a general-purpose tool designed for the high-level

behavior modeling of concurrent and distributed (software) systems [23, 43]. The primary purpose

of LTSA is to capture key interactions among systems and, thus, is most useful for modeling

and validating system functionality. Architecture-level models of canal behavior will be created

through the systematic assembly of lockset- and component-level behaviors. Design requirements

for safety and liveliness will be formally expressed as finite state processes. We will demonstrate

how safety validations can be accomplished through composition of finite state process models for

canal behaviors and requirements. Key questions include: (1) how can LTSA be used to organize

system behaviors into hierarchies of processes? (2) how can the overall size of process models be

controlled through the selective abstraction of actions in lower level process models? and (3) how

should validation work in conjunction with abstraction of process actions?

Chapter 2 covers the use of LTSA for process modeling of systems having concurrent behav-

iors, model checking, and procedures for the systematic organization of processes into layers. A new

11

Scheduler

Test

Verify the system

Validate the systemRequirements Design

Requirements Design

Implementation and Test

Ship Gate Pump

Reusable Component−Level Processes

Behavior

Behavior
Canal System

Lockset−Level

Canal System

Lockset−LevelLockset−Level

Canal System Canal System

Lockset−Level
Test

Behavior Modeling Definition

Figure 1.6: Step-by-step procedure for behavior model development, implementation, and test-
ing/validation.

--

Canal System Concerns

Functional Requirements

==

1. When an emergency or maintenance occurs, all canal traffic at the event must be

halted. Outbound traffic may clear the canal system. Traffic can resume after the

emergency has been cleared and/or maintenance has been repaired.

2. All east- and west-bound ships must be guaranteed to reach the Atlantic and Pacific

Oceans respectively.

--

Lockset Level Concerns

Functional Requirements

==

1. At any point in time, the scheduler must assign no more than one ship to a lockset.

2. All ships must acquire access to a lockset before they can depart.

3. Flooding must be prevented. A gate must not open until water levels on

both sides of the gate have been equalized.

4. All ships that request passage through the lockset must eventually depart the

lockset.

==

Figure 1.7: Canal and lockset-level requirements.

12

approach to validation based upon viewpoint-action-process traceability connections is proposed.

Details of the Panama Canal and its past- and present-day operation are described in Chapter

3. Chapter 4 covers behavior modeling and formal validation of a two-stage lockset operation.

In Chapter 5, behavior modeling and validation for system-level concerns (e.g., emergency and

maintenance) is covered. Chapter 6 covers conclusions and future work.

13

Chapter 2

Process Modeling and Validation with
LTSA

The labeled transition system analyzer (LTSA) is a tool for validating communication

and sequencing among entities in systems containing concurrent behaviors [25, 42, 43]. In LTSA,

processes correspond to sequences of actions. The power of LTSA lies in its ability to link processes

through shared actions and compose processes side by side to create systems running concurrently

on many levels. Spatial and temporal design concerns are not captured in LTSA (i.e., they are

abstracted from modeling consideration). The textual representation is the finite state process

(FSP) language. Labeled transition systems (LTSs) are the graphical representation. This tool

runs as an applet on JAVA Runtime Environment 1.3 or higher.

2.1 From Requirements to Behavior with LTSA

Behavior in the canal system is a hybrid of functional and event-driven system behavior.

From a vessel’s point of view, behavior corresponds to sequences of tasks/functions that need to be

completed, from arrival at the canal entrance through departure. When the tasks are complete, the

corresponding processes terminate. From a canal management perspective, however, control/sensor

processes run continuously, detecting and responding to events relevant to planned and unforeseen

events.

As indicated in Figure 2.1, the transformation from requirements to high- level design

occurs with the following activities: (1) identify main events, actions and interactions, (2) identify

main processes, (3) identify and define properties of interest, and (4) structure processes into an

14

Check traces of interest ...

Requirements

Check properties of interest
Model

Identify main events, actions, and interactions
Identify and define main processes ...
Identify and define properties of interest ...
Structure processes into an architecture

Scenarios / Use case models....
Properties of interest

Goals of the system...

Figure 2.1: From requirements to architecture-level design.

architecture. A top-down specification of required behavior for components can be specified through

the use of visual modeling languages such as UML. Each canal component or subsystem will have

behavior that can be defined by a finite state machine. Architecture-level models of behavior will be

viewed as a network of interacting finite state machine processes, and will be synthesized through

a bottom-up composition of component-level behaviors (details below).

2.2 Finite State Processing (FSP) Language Features

The purpose of this section is to briefly introduce features of the FSP (Finite State Pro-

cessing) language that will be used in development of behavior models for canal system operations.

Process modeling of component-level behavior can be specified directly through FSP code. If con-

current behaviors have common elements, then there will be an interleaving of behaviors linked at

common actions. Models of architecture-level behavior are obtained through the parallel composi-

tion of concurrent processes at the component level (details to follow below).

Relevant concepts include actions (including shared and guarded actions), parallel compo-

sition, choice, tagged processes (including action renaming), and modeling of shared resources. We

also show how UML sequence diagrams can be guide the specification of component-level processes

and their interaction.

Formal Definition of a Process. A labeled transition system (LTS) process contains: (1) all of

the states that a process may reach, and (2) all of the transitions it may perform. In mathematical

terms, a LTS process consists of a quadruple (S,A,△, q) where,

15

Input from
surrounding environment

Messages

Interface

Systems correspond to a network
of communicating objects.

O O O O
1 2 3 4

Component
Behavior
Models

System−Level
Behavior
Models

from Component−Level Behavior Models
Synthesis of System−Level Behavior Models

S
yn

th
es

is
 o

f B
eh

av
io

r
M

od
el

s

Figure 2.2: Two key elements of object-oriented development. Systems are modeled as networks
of communicating sub-systems and objects. Models of system-level behavior are synthesized from
component- and subsystem-level behaviors.

1. S is the set of states;

2. A = αP ∪ {τ}, where αP is the communication alphabet of P which does not contain the

internal action τ .

3. △ ⊆ S × A × S denotes a transition relation.

4. q is a state in S which indicates the initial state of P.

The set of actions relevant to a behavioral description of a process P is called its alphabet. And

it is denoted αP . We use the symbol π to represent an error state against which safety property

violations may be tested (details to follow). A process that transitions into an error state may

participate in no further transitions (i.e., the process deadlocks). The labeled transition system

(LTS) for process P = (S,A,△, q) transits into another LTS of P
′

=
(

S,A,△, q
′

)

with an action

αA if an only if
(

q, α, q
′

)

∈ △ and q
′

6= π where π is an error (or deadlock) state. Mathematically

we can state:

(S,A,△, q)
a
→

(

S,A,△, q
′
)

(2.1)

if and only if
(

q, α, q
′

)

∈ △ and q
′

6= π.

16

Rules on Restriction

P
a
→ P

′

P ↑ L
a
→ P

′

↑ L

(

a ∈ L,P
′

6= Π
)

(2.2)

P
a
→ Π

P ↑ L
a
→ Π

(a ∈ L) (2.3)

P
a
→ P

′

P ↑ L
τ
→ P ↑ L

(

a /∈ L,P
′

6= Π
)

(2.4)

P
a
→ Π

P ↑ L
τ
→ Π

(a /∈ L) (2.5)

Rules on Parallel Composition

P
a
→ P

′

P‖Q
a
→ P

′

‖Q

(

a /∈ αQ,P
′

6= Π
)

(2.6)

P
a
→ Π

P‖Q
a
→ Π

(a /∈ αQ) (2.7)

Q
a
→ Q

′

P‖Q
a
→ P‖Q

′

(

a /∈ αP,Q
′

6= Π
)

(2.8)

Q
a
→ Π

P‖Q
a
→ Π

(a /∈ αP) (2.9)

P
a
→ P

′

Q
a
→ Q

′

P‖Q
a
→ P

′

‖Q
′

(

a ∈ αP ∩ αQ,P
′

6= Π, Q
′

6= Π
)

(2.10)

P
a
→ P

′

Q
a
→ Q

′

P‖Q
a
→ Π

(

a ∈ αP ∩ αQ,P
′

= Π ∨ Q
′

= Π
)

(2.11)

Table 2.1: Translational Semantics for Restriction and Composition Operators

17

2.2.1 Actions in LTSA

Process behavior is defined through sequences of actions/transitions a process may perform.

If x is an action and P is a process, then the action prefix x->P describes a process that initially

engages in the action x and then behaves exactly as prescribed by P. In practical terms, an action

might be a communication, a signals, or perhaps, traditional execution of a task.

From a modeling and design standpoint, the alphabet of a model needs to be chosen

to support required decision making while also keeping models tractable. Thus, a key aspect of

alphabet design is to ignore actions and properties not immediately relevant to a particular activity

(or set of activities).

Observability of Actions. Observability of actions in a process can be controlled by a restriction

operator ↑. In more detail, the notation P ↑ L. represents the process projected from P in which

only the actions in the set L are observable. Equations 2.2 through 2.5 in Table 2.1 define the

transitional semantics of the restriction operator. As a case in point, equation 2.2 should be read

as follows: Suppose that process P transitions into P
′

through the application of action a. If action

a belongs to the set of observable actions in L (i.e., a ∈ L) and P
′

is not a deadlock state (i.e.,

P
′

6= π), then action a will transition P ↑ L into P
′

↑ L.

2.2.2 Parallel Composition in LTSA

Given two labeled transition systems (LTSs) P1 and P2, we denote the parallel composition

P1‖P2 as the LTS that synchronizes actions common to both processes and interleaves the remaining

actions. By extension the architectural-level behavior model is defined by:

Architecture-Level Behavior Model = P1‖P2‖P3 · · ·Pn (2.12)

where Pi is the finite state model for the i-th component among n interacting components. A

symbolic representation of this process is shown on the right-hand side of Figure 2.2. Joint behavior

is the result of all LTSs executing asynchronously, but synchronizing on all shared message labels.

At the component level, the nodes of a labeled transition system represent states the component

can be in. At the architecture level, labeled transition system nodes represent system-level states,

which, in turn, correspond to specific combinations of component-level states. Transitions are

labeled with messages sent between component processes.

18

Algebraic Properties of Parallel Composition. Table 2.1 provides a formal definition of

parallel composition of processes and their corresponding algebraic properties. The alphabet for

P1‖P2 is given by the union of alphabets for P1 and P2. Equations 2.6 through 2.11 define the

transitional semantics of the parallel composition operator. As indicated in equations 2.10 and 2.11

the composition operator is both commutative and associative. Finally, it is important to note that

the rules require that a composite process be trapped in an error state π if any of its constituent

processes is trapped.

Example 1. Modeling Behavior of a Door and Door Handle. In the fragment of code:

HANDLE = (down -> up -> HANDLE).

DOOR = (open -> close -> DOOR).

defines processes for a handle and a door, each having behavior defined by transitions between two

states. The alphabet for the HANDLE process is (down, up). The DOOR process has an alphabet

(open, close). Accordingly, for the handle and door, transitions are up and down and open and

close, respectively. Behavior of the handle is constrained to follow the action sequence: down ->

up -> down -> up -> down and so on. And behavior of the door is constrained to follow the

action sequence: open -> close -> open -> close -> open and so forth.

Behavior of the doorway system is defined via the parallel composition of HANDLE and DOOR

processes, i.e.,

||DOORWAY = (HANDLE || DOOR).

Composite process definitions (e.g., DOORWAY) are prefixed by a double vertical bar to distinguish

them from primitive process definitions. The composition result is illustrated in Figure 2.3.

The doorway process moves among four states having the following interpretation:

Component behaviors Composed behavior

------------------------------ ---------------------------------------

Handle System Door System System Tuple Simplified Notation

============================== =======================================

up close (up, close) State 0

up open (up, open) State 1

down open (down, open) State 2

down close (down, close) State 3

============================== =======================================

19

Figure 2.3: Composition of a doorway process from Door and Handle processes.

In the composite doorway system, the actions of HANDLE and DOOR may advance in any order,

subject to the action-sequence constraints within each of the individually specified processes. States

in the composite process are given by tuples where the first and second fields refer to the state of

processes HANDLE and DOOR respectively. However, to simplify notation, LTSA simply labels

the composite states with an integer (e.g., 0, 1, 2, 3 .. and so forth).

2.2.3 Role of Shared Actions and Action Relabeling

In the previous example, the alphabet of actions in door (i.e., open, close) is disjoint from

the alphabet of actions in handle (i.e., up, down). As a result, the door and handle processes can

advance in any order, subject to the action-sequence constraints within each process.

When action names in a process composition are common, these actions are said to be

shared. LTSA uses shared actions as the mechanism to synchronize interactions among processes.

While the shared actions may be arbitrarily interleaved, the shared actions must be executed

simultaneously by all participating processes.

Example 2. Shared action in Doorway Process Model. A reasonable constraint would be to

synchronize the handle down with door open, and handle up with door close, thereby reducing the

doorway process model to two states (see States 0 and 2) This is accomplished through relabeling

of the actions in HANDLE, followed by composition, i.e.,

||DOORWAY1 = (HANDLE || DOOR)/{down/open,up/close}.

||DOORWAY2 = (HANDLE || DOOR)/{open/down,close/up}.

20

In DOORWAY1 the action names close and open are changed to up and down, respectively. And as

illustrated in Figure 2.4, in DOORWAY2 the action name are switched.

Figure 2.4: Illustrate action relabeling in doorway system.

2.2.4 Deterministic and Non-Deterministic Choice

The FSP language provides mechanisms for deterministic and non-deterministic choice.

Their definitions are as follows (for details, see the LTSA book [24], pg. 15):

1. Deterministic Choice. If “x” and “y” are actions, then (x->P | y->Q) describes a

process which initially engages in either the actions x or y. The execution of action x will

have subsequent behavior described by P. Similarly, the execution of y will have subsequent

behavior described by Q.

2. Non-deterministic Choice. The process (x->P | x->Q) is non-deterministic because

after the action x, behavior may be described by either process P or process Q.

Example 3. Suppose that a sensor switches between two modes. Either it is polling for data, or

it is engaged until it released. This scenario can be easily implemented via,

SENSOR = (engaged -> released -> SENSOR

| poling -> SENSOR).

The corresponding LTS is as shown in Figure 2.5.

2.2.5 Role of Tagged Processes

Individual processes can be tagged, thereby providing a mechanism for more than one copy

of a process to be used and uniquely identified in a system model. The notation is as follows: a:P

prefixes each action label in the alphabet of process P with the label a.

21

Figure 2.5: LTS for sensor behavior.

Figure 2.6: Processes for individual sensors and a two-sensor system.

Example 4. Process Behavior in a Two-Sensor System. The fragment of code:

SENSOR = (engaged -> released -> SENSOR

| poling -> SENSOR).

||SENSORSYSTEM = (a:SENSOR || b:SENSOR).

takes the sensor process (SENSOR) defined in Example 3, and creates a composite process (SEN-

SORSYSTEM) from two individual sensor behaviors (i.e., a:SENSOR and b:SENSOR). As illustrated

in Figure 2.6, the result is a system having four states. Their interpretation is as follows:

--

Sensor System a:SENSOR b:SENSOR Interpretation

==

Composite state 0 state 0 state 0 a and b are poling

Composite state 1 state 0 state 1 a is poling, b is engaged

22

Composite state 2 state 1 state 1 a and b are both engaged

Composite state 3 state 1 state 0 a is engaged, b is poling

==

The second and third columns of this table show how permutations of the individual sensor states

relate to the composite system state (column 1). Also notice that because their are no shared actions

between processes, a:SENSOR and b:SENSOR, the interleaved processes may advance stepwise in any

order.

2.2.6 Role of Guarded Actions

An action that is conditional on a particular condition being true is terms a guarded action.

The FSP syntax for guarded actions is (when B x->P | y->Q). When guard B is true, actions

x and y are both eligible to be chosen. Otherwise, only action y can be chosen.

Example 5. The script of code:

const N = 3 // Number of ships passing through lock ...

const M = 4 // Number of states in holding pattern queue...

range IQ =1..M // Queue count

// Define input/output queues

QUEUEIN = QUEUEIN[1],

QUEUEIN[i:IQ] = (when (i<M) [i].arrive -> QUEUEIN[i%N+1]).

QUEUEOUT = QUEUEOUT[1],

QUEUEOUT[i:IQ] = (when (i<M) [i].depart -> QUEUEOUT[i%N+1]).

// Model spaces in lock

LOCK = SPACES[1],

SPACES[i:0..1] = (when(i>0) [j:1..N].arrive -> SPACES[i-1]

| when(i<1) [j:1..N].depart -> SPACES[i+1]).

// Create model of controled lock system behavior ...

||CONTROL = (LOCK || QUEUEIN || QUEUEOUT).

simulates a convoy of three ships passing through a single lock. From a process modeling perspec-

tive, the lock is a bounded buffer of maximum capacity one. The structure diagram for the QUEUE

and LOCK processes is as follows:

23

[1..3].arrive LOCKQUEUEIN QUEUEOUT

CONTROL

[1..3].depart

Figure 2.7: Structure diagram for control of three ships traversing a single lock.

Figure 2.8: Use of guarded actions for queue and canal behavior models.

The LTS diagrams for each of the processes is given in Figure 2.8. Lock behavior is defined by the

arrival of a ship (i.e., [1..3].arrival) followed by the departure of a ship (i.e., [1..3].depart).

Upon arrival, the ships are required to join a queue (QUEUEIN). Upon departure, the ships join a

second queue (QUEUEOUT). The number of ships is modeled by constant N = 3. Constant M =

4 captures the potential length of arrival and departure queue processes.

Required transformations among process states are efficiently defined through the use of

guarded actions. Queue processes, in particular, place constraints on the order in which ships can

arrive and subsequently depart. For example, the fragment of code:

QUEUEIN[i:IQ] = (when (i<M) [i].arrive -> QUEUEIN[i%N+1]).

defines the action [0].arrive between states 0 and 1, [1].arrive between states 1 and 2, and

[2].arrive between states 2 and 0. LTSA requires that processes be continuous; hence, we simply

wrap the loop of arrival/departure actions through use of modulo arithmetic (i.e., i%N+1). Similarly,

24

the script:

LOCK = SPACES[1],

SPACES[i:0..1] = (when(i>0) [j:1..N].arrive -> SPACES[i-1]

| when(i<1) [j:1..N].depart -> SPACES[i+1]).

sets up a process modeled as a resource defined in terms of spaces. The notation [i:0..1] indicates

that we are only using one space (but the code can be easily generalized to a lock having multiple

spaces). When a ship arrives, the number of available spaces in decremented by one – in other words,

the lock space is occupied. That space becomes available again when a ship departs. It follows

that the lock system has only two states, as indicated in the top left-hand corner of Figure 2.8.

Notice that from a lock perspective, ships can arrive and depart in any order (i.e., [1..3].arrive,

[1..3].depart).

2.2.7 Modeling of Shared Resources

In the previous example, orderly use of the lock system was enforced through the use of

queue processes. A second possible approach is to define independent ship processes, and then

simply state that the lock system process is a shared resource that can only be used by one ship

process at a time. With FSP, this is achieved with the double-colon syntax ::, as in {a1, a2, ..

ay}::P. The latter replaces every label n in the alphabet of P with labels a1.n, a2.n through ay.n.

Example 6. The following script of code defines basic processes for a lock scheduler and a ship

passing through a lock system.

// Define ship and scheduler processes.

SHIP = (approach -> lock.acquire -> lock.transit -> lock.release ->

depart -> SHIP).

SCHEDULER = (acquire -> transit -> release -> SCHEDULER).

// Compose behavior model for scheduler and three ships....

||LOCK = (a:SHIP || b:SHIP || c:SHIP || {a,b,c}::lock:SCHEDULER) \

{a.approach,a.depart,b.approach,b.depart,c.approach,c.depart}.

A model of lock-system behavior is obtained through the parallel composition of three ship behaviors

with an instance of the scheduler implemented as a resource constraint. Points to note are as follows:

25

LOCK

c:SHIP

b:SHIP

a:SHIP

lock:SCHEDULER

lock

lock

lock

acquire

transit

release

Figure 2.9: Structure diagram for lock system operating as a shared resource process.

Figure 2.10: Behavior modeling of a lock as a shared resource.

26

1. Figures 2.10 and 2.9 show the basic component processes, the composed lock-level process,

and a structure diagram for the lock system operating as a shared resource process. First,

three component-level ship processes are created (i.e., a:SHIP, b:SHIP and c:SHIP). A lock

scheduler walks ships through three actions: acquire, transit and release. Synchroniza-

tion of shop and scheduling activities is achieved through the action labels lock.acquire,

lock.transit and lock.release. Implementation of the shared resource is achieved with

{a,b,c}::lock:SCHEDULER)

2. The composed lock behavior (LOCK) has 15 states. A common strategy for simplifying

interpretation is to remove or hide states not relevant to an immediate decision. Hence, for

our purposes, the appendage,

{a.approach,a.depart,b.approach,b.depart,c.approach,c.depart}.

is a list of actions that are hidden in the state diagram. An equivalent notation is:

{{a,b,c}.approach,{a,b,c}.depart}.

Each of these actions is simply replaced by a tau resulting in a system-level model containing

81 states. The lower schematic in Figure 2.10 (i.e., process LOCK) is the result of the original

lock process being minimized after the selected action have been hidden and then removed.

The minimized model has 7 states. Interpretation is rather straight forward – starting at

State 0, ships a, b, or c, may acquire, transit, and depart the lock, treating the latter as a

resource that is shared.

3. There are two ways to obtain a reduced (or minimized) model. The most straightforward

procedure is to select the option Minimize from within the Build pulldown menu in LTSA.

This option is appropriate when models are small, perhaps resulting from a small number of

process compositions. The principal shortcoming of this approach is that actions irrelevant

to a particular model or viewpoint of a design are carried along in all process compositions.

To combat the likelihood of exponential explosion in the number of states that need to be

considered, intermediate processes can be minimized by using the minimal command within

the FSP specification itself. For example,

minimal ||LOCK = ({a,b,c}:SHIP || {a,b,c}::lock:SCHEDULER) \

{{a,b,c}.approach,{a,b,c}.depart}.

27

2.3 Model Checking in LTSA

To keep system developments on course and to prevent serious design flaws, today we

seek validation (i.e., are we building the right product?) and verification (i.e., are we building

the product right?) procedures that support pre-deployment reasoning about system requirements

and design [5]. The key problem with semi-formal validation procedures (e.g., manual inspection

of UML diagrams) is that they lack the precise interpretation of scenarios needed for rigorous

analysis and formal verification of system compliance. As documented by Baier and Katoen [5]

and references therein, use of informal verification procedures can lead to system failure rates that

are unacceptably high.

The goals of model checking procedures are to avoid these limitations through their use of

formal descriptions of system behavior and properties expressed as logic formulae. Given a finite-

state model of a system and a formal property, model checking procedures systematically check

whether the property holds for that model.

2.3.1 Model Checking Procedure

Model checking begins with two activities that can occur concurrently. As shown along

the left-hand side of Figure 2.11, informal requirements are transformed into formal specifications

describing properties that any acceptable system implementation will satisfy. A property is an

attribute of a process that is true for every possible execution of that process. Typical properties

are of a qualitative nature (e.g., will the system ever reach a situation for which there is no pathway

forward?). Some model checking procedures even allow for evaluation of timing properties to be

checked (e.g., can a deadlock occur within the first 10 seconds of system operation?).

Then as illustrated on the right-hand side of Figure 2.11, a process model for behavior of the

engineering system is assembled. System models are mostly expressed using finite-state automata

(consisting of finite sets of states and transitions). To answer the above-mentioned questions in a

precise and unambiguous manner, the system behavior model must be sufficiently detailed, but not

too complex.

Model checking procedures examine the property specifications with respect to process

models. Three outcome are possible:

1. The property specification is satisfied,

28

Repair Process

Requirements

Formal Representation

Property Specification

Process

Process Modeling

Selection of Model

Model Checking

counter example
Not satisfied plus

Simulation
Memory
Insufficient

Property Satisfied....

Location of error

Figure 2.11: Model checking procedure and outcomes.

2. The property specification fails,

3. The model checking procedure fails because of insufficient computer memory.

When modeling checking procedures determine that property specification has failed, the result is

accompanied by a counter example. In most cases, the underlying cause of a property specification

failure can be identified through detailed analysis (i.e., simulation) of actions in the counter example.

Generally, this will lead to refinement in one or more of the model, the design or the property. A

third possibility is “insufficient memory.” The only practical way of dealing with this situation is

to reduce the size of the model and try again. Iterations of model checking continue until all of the

property specification violations have been repaired.

2.3.2 Desirable Properties of System Behavior

Our objective is to design behavior models having properties that are guaranteed to be

satisfied, including:

1. Safety. A safety property asserts that nothing bad happens,

29

2. Liveliness. A liveliness property asserts that “eventually” something good happens.

A complete treatment of liveliness involves reasoning with temporal logic, a topic beyond the scope

of this study. We will instead employ a restricted form of liveliness called progress:

2. Progress. A progress property asserts that it is always the case that an action is eventually

executed.

A good system design exhibits safety and liveliness/progress. Safety violations in behavior modeling

correspond to undesirable sequences of actions. For example, two systems should not simultaneously

attempt to acquire a shared resource. A safety violation will also occur if a state becomes blocked

and cannot make further progress (i.e., it becomes deadlocked). Liveliness concerns include the

ability of a process to eventually terminate and/or reach a critical state/action in its execution.

Mathematical Definition of Safety. A safety property prescribes a set of permissible traces

which, in turn, can be modeled as state machines. A deterministic property automaton is defined

T = (S,A,△, q). Property automaton are required to be free of trapped error states (i.e., π) and

τ transitions. A property violation occurs when it is possible for a distributed system to perform

a trace not acceptable to the property automaton. The computational procedure is as follows:

1. Create a image automaton that captures the prescribed property automaton and adds to it

possible violations leading to the π state.

2. Compose the image automaton with the system description to which it applies.

The image automaton is defined as T
′

=
(

S ∪ {π} , A,△
′

, q
)

. It is derived from T = (S,A,△, q)

by defining △
′

to be △∪
{

(s, a, π)|(s, a) ∈ S × A ∧ 6 ∃s
′

∈ S : (s, a, s
′

) ∈ △
}

The first part of the

image construction process ensures that △ is a subset of △
′

. The latter part of the construction

ensures that for any transition
(

s, a, s
′

)

belongs to △
′

−△ and s
′

equals π. It follows that:

1. Automata T and T
′

will have the same set of non-trapping traces (i.e., tr(T)) and

2. for any process P, P‖T
′

will not contain traces to π, if and only if tr(P ↑ αT) ⊆ tr(T).

Proofs can be found in Cheung et al. [8]. The second condition allows for the detection of safety

violations in a system by checking for the existence of trapping states the composite process formed

30

by the system process and the image automata. If the composed process contains error states, then

the safety property is violated.

Progress Properties and Analysis. As already noted, a progress property asserts that it is

always the case that an action is eventually executed. Progress analysis begins with a search for

sets of terminal states; that is, sets of states where every state is reachable from every other state

in the set via one or more transitions, and, there are no transitions from within the set to any

state outside the set. Given fair choice, each terminal set of states represents an execution where

each transition is executed infinitely often. With this framework in place, checking that a progress

property holds reduces to the problem of checking that the progress actions are part of each terminal

set [24].

2.3.3 Model Checking in LTSA

LTSA mechanically checks that the specification of a concurrent system satisfies the prop-

erties required of its behavior. Safety properties are specified in FSP by property processes (a.k.a.,

deterministic finite-state machines called property automata). Each property automaton specifies

the set of feasible execution sequences over the actions (transitions) that correspond to a safety

property of interest.

2

Property Automaton in LTSA

Deterministic Finite State Machine

Property

translation

a b

c
d

a b

d
c

{ b, c, d }

{ a, c, d }

{ a, b }

−1 0

0

1

1

2

Figure 2.12: Procedure for definition of property automata in LTSA

The upper diagram in Figure 2.12 shows, for example, a property expressed as a deterministic

31

Property Automata for System C

C

A B

Figure 2.13: Visual representation of system C composed from processes A and B, and, validation
of system C via composition with property automata.

Example path: ABACCCB

CB

A Unfolding

Figure 2.14: Evaluation of system properties through fsm unfolding and exhaustive search
.

finite state machine. The property states that action a must be followed by action b which, in turn,

can be followed by a sequence of action c or action d. Conversely, action b must be preceded by

action a, and so forth. LTSA creates an image automaton that captures the prescribed property

automaton and adds to it possible violations leading to an error state. Suppose, for example, that

action a has just completed. If the behavior model allows for any action other than b (i.e., the set

of actions { a, c, d}), then the property automaton will transition to the error state.

Safety properties are evaluated in a procedure that is remarkably straightforward. All that

we have to do is compose the property process with the system description process and look for

the existence of π (an error state) in the global LTS. See, for example, Figure 2.13. This procedure

works only because the (error) π state is preserved by both the restriction and composition operators

– the appropriate details can be found in the upper and lower sections of Table 2.1.

Progress properties have the syntax, progress P = { a1, a2, ... aN }. They assert

that in an infinite execution of the behavior model, eventually at least one of the actions a1, a2 ...

aN will be executed infinitely often.

32

From a user point of view, compositional approaches to behavior modeling and property

evaluation rely on two things: (1) construction of an equivalent state machine of the system ar-

chitecture against which properties can be checked, and (2) an explicit enumeration of states (also

known as reachability analysis) against which property satisfaction can be determined. Steps 1 and

2 are linked via a process where state machines are unfolded into large trees of equivalent states.

See Figure 2.14. Then, the tree of equivalent states is searched exhaustively to see if the required

properties are actually satisfied.

Example 7. The script of code:

// ===

// Jack and Diane have conversation over coffee

// ===

// Create a person who: (1) talks and drinks coffee, or

// (2) just waits and then drinks coffee

PERSON = (talk -> drink -> PERSON

| wait -> drink -> PERSON).

// Jack and Diane meet

minimal ||JACK_AND_DIANE_MEET = (jack:PERSON || diane:PERSON).

// To learn, conversation needs to be two way

TWO_WAY = (jack.talk -> diane.talk -> TWO_WAY).

// Define a property for polite conversation ...

property POLITE = (jack.talk -> diane.talk -> POLITE).

// Check that the conversation model is in fact polite ...

minimal ||JACK_AND_DIANE_LEARN = (JACK_AND_DIANE_MEET || TWO_WAY || POLITE) / {

jack.talk/diane.wait, diane.talk/jack.wait }.

// Check progress properties

progress DIANE_TALKS = { diane.talk }

progress JACK_TALKS = { jack.talk }

// ===

// End!

systematically assembles a behavior model for two people, Jack and Diane, in polite conversation.

The process hierarchy and sample LTSs assembled by this script are shown in Figures 2.15 and

2.16.

33

labeled process

JACK_AND_DIANE_MEET TWO_WAY POLITE

jack:PERSON diane:PERSON

PERSON

JACK_AND_DIANE_LEARN

Safety propertyBehavior model

Figure 2.15: Process hierarchy for behavior model and validation of polite conversation.

Figure 2.16: LTSs for processes in a behavior model of polite conversation.

34

The behavior modeling process begins with the definition of a generic PERSON, who can

talk and drink, or simply wait and then drink. Jack and Diane are simply labeled instances of the

process PERSON. The composed process JACK AND DIANE MEET captures all of the possible sequences

of actions that can occur. This model allows, for example, for one person to talk and talk and

talk, with the other person not getting a word in edgewise. To improve the meeting, the TWO WAY

process places a constraint on the conversation, in particular, that Jack and Diane need to engage

in alternate talking. The revised meeting model is,

||JACK_AND_DIANE_LEARN = (JACK_AND_DIANE_MEET || TWO_WAY).

But how do we know that this actually worked? To check that the composed model is in fact what

we want, we can define the property POLITE, i.e.,

property POLITE = (jack.talk -> diane.talk -> POLITE).

and then compose POLITE with JACK AND DIANE LEARN. Figure 2.16 shows the LTSs for each of

the constituent processes including POLITE. Notice that POLITE will transition to an error state if

Diane talks more than once or, alternatively, Jack talks more than once. If the composed process

(JACK_AND_DIANE_MEET || TWO_WAY || POLITE)

contains any of these sequences, then it too will also have an error state indicating that our model

of behavior is not polite. As it turns out, the composed process (see Figure 2.16) is free of error

states and the POLITE property is satisfied. The progress checks generate

Progress Check...

-- States: 8 Transitions: 16 Memory used: 1951K

No progress violations detected.

Progress Check in: 40ms

35

2.4 Systematic Organization of Processes into Layers

The well known difficulty in using exhaustive search techniques for validation of systems

having concurrent behaviors is that size of the state space expands exponentially with increasing

numbers of underlying processes (and actions therein). This is the state explosion problem. For

families of processes that are primarily autonomous, only minor reductions in the size of composed

processes will occur through constraints associated with synchronized actions. Techniques for

further reducing problem complexity can be classified into two broad categories [8, 10, 27]:

1. Reduction by Partial Ordering. Reduction is achieved by avoiding generation of all paths

formed by the same set of transitions.

2. Reduction by Compositional Minimization. Reduction is achieved through intermediate

minimization of subsystems.

Partial ordering methods rely on a restricted number of process interleavings to obtain a simplified

explorations of the state space. The key challenge is how to find the former while ensuring observable

behavior with respect to a property (previously required by a design specification) is not affected.

Researchers have determined a number of (rather complicated) solution strategies including use

of modified semantics and/or identification of dependencies among transitions [27, 32]. In each

case, the design property should view behavior of the simplified and full process models as being

indistinguishable [5, 12, 15, 21, 22]. Two processes are said to be in “weak equivalence” when

their observable behaviors are indistinguishable. Conversely, processes are said to be in “strong

equivalence” when their observable behaviors are indistinguishable, while also taking into account

unobservable behaviors. A mathematical treatment of weak/strong behavioral equivalence can be

found in Cheung and Kramer [8].

The method of reduction by compositional minimization aims for simplified models through

the removal of irrelevant detail. This method works well for systems that are naturally hierarchical

and/or evolve over time. Each composite process is formed via the composition of lower-level com-

posite processes and primitive processes (modeled as finite-state deterministic machines). The first

opportunity for simplification stems from the tendency of safety properties to be locally checkable

– validation can proceed without the need to assemble the global state space. And second, progress

properties rely on a set of actions being activated – most often they can be evaluated with respect

to actions at a particular level of detail, with lower level actions being removed from consideration.

Now let us assume that a violation has been detected and that a designer wishes know the

cause of the violation. This task is facilitated if debugging traces show as much detail as possible.

36

These dual criteria point to a natural tension in the methodology. We wish, on one hand, to simplify

models through removal of details. Yet at the same time, we need to maximize the availability of

information for debugging purposes.

Simple Network of Two-Level Process Models. In a study focusing on algorithms for re-

duction by composition, Cheung and Kramer [8] deal with these concerns by assuming that each

subsystem hides at its boundary only those internal actions that: (1) do not participate in inter-

process communications, and (2) are not globally observable. In other words, actions that do not

participate in interprocess communication and are not globally observable may be abstracted from

consideration in system analysis. Figure 2.17 shows, for example, a simple network of two-level

process models.

e3

Subsystem−Level Process Hierarchies

A B

C

Plan View of Networked Process Architecture

Subsystem Process C

a1

a2

b1

b2

b4a3a4 b3

Process A Process B

ED

F

Process EProcess D

Subsystem Process F

d1 d2

d3

e1 e2

Figure 2.17: Visual model of a simple network of two-level process models. Actions internal to
processes A, B, C and D are hidden. White dots represent requirements. Black dots represent
provisions.

As illustrated in Figure 2.18, systematic assembly of the behavior model occurs in three steps.

First, behavior models for subsystems C and F are created by computing (A||B) and (D||E)

respectively. Then, the system-level behavior model is simply given by the composition (C||F).

Process interactions are achieved through the matching of bindings on requirements and provisions

(see notation in black and white dots, respectively).

37

Simplified procedure for validation

C

A B

C

C*

abstractionabstraction

Step 3. Validate system−level concerns.

Step 1. Validate behavior of subsystem C.

Property automata for subsystem C

Property automata for system−level concerns.

Property automata for subsystem F

F

ED

F

F*

Step 2. Validate behavior for subsystem F.

of system−level concerns.

Figure 2.18: Systematic assembly of a two-level behavior model with property automata for vali-
dation of subsystem and system concerns.

38

When all of the actions in the low-level processes (i.e., A, B and D, E) are globally accessible,

then model checking follows the step-by-step procedure described in the previous section. But

now let us suppose that at system level (i.e., see Step 3 in Figure 2.18), such an approach is

computationally intractable. Moving forward requires that process model size be controlled through

the systematic removal of actions internal to processes C and F. The three-step procedure is as

follows:

1. Validation of safety and progress properties associated with subsystem C.

||C = (A || B)/{a1/b1,a2/b3}.

2. Validation of safety and progress properties associated with subsystem D.

||F = (D || E)/{d3/e3}.

3. Validation of safety and progress properties associated with system-level concerns.

||C_star = (C) @ { a4, a3, b3, b4 },

||F_star = (F) @ { d1, d2, e1, e2 },

||System_Model = (C_star || F_star).

The system-level model is now described entirely in terms of the set of actions { a4, a3, b3, b4, d1,

d2, e1, e2 }. Since all other actions are removed from consideration in the design, it is assumed that

properties associated with system-level concerns will be described only in terms of these actions. In

practice, however, no matter how well a system is organized into modules, so-called cross-cutting

concerns will still reach across hierarchies [2].

2.5 Viewpoint-Action-Process Traceability

In the work of Cheung and Kramer [8], compositional reduction analysis procedures as-

sume that a system can be organized into a modular architecture. Simplification of behavior models

occurs through the hiding of as many internal actions as possible in each subsystem. As a con-

sequence, the properties that are then available for reasoning in the model checking analysis are

constrained by the remaining set of observable actions.

This study also assumes that validation procedures can be simplified through the organi-

zation of processes into modules. But in a departure from past work, modules will have boundaries

(i.e., notions of inside and outside) that depend of a design viewpoint (or concern). We propose the

39

concern2

Design Concern Actions

processA
processB

processC
processD

processE
processF
processG

Participating Processes

action1

action2

action3

concern1

Figure 2.19: Schematic for tabular display of design viewpoint-action-process dependencies.

concept of viewpoint-action-process traceability as a means of representing connectivity between

the formal description of a design concern (viewpoint), sets of actions, and their participating pro-

cesses. See, for example, the linkages in Figure 2.19. We also immediately minimize the size of

all intermediate results. The result is a computational procedure where process models achieve

their required functionality, but may have a size that is orders of magnitude smaller than in the

all-in-one approach to composition.

40

Chapter 3

The Panama Canal

3.1 Background and Capability

The Panama Canal is an 80 kilometer passageway that joins the Atlantic and Pacific

Oceans at one of the narrowest saddles of the isthmus [33]. Canal operations date back to August

15, 1914, when, after more than a decade of construction, the S.S. Ancon was the first ship to

transit the canal. Soon thereafter (1920) the Chagres River was dammed to create Lake Gatun.

This enhancement increased both the transit capacity and size of ships that could pass through the

canal. At the time, the canal capacity could easily handle state-of-the art cargo ships.

For the past 88 years the canal has continued to operate with pretty much the same sets of

buttons, levers, and visual monitors, requiring only routine maintenance. During this same period,

however, the emergence of global business operations has led to a four-to-five-fold increase in traffic

demand. Nowadays, with round-the-clock operations (90% of total capacity), 13,000-14,000 ships

transport a total of 280 million tons of cargo through the canal annually, primarily on trade routes

between Asia and the Central and Eastern US. This represents approximately 5% of world trade.

Annual revenues account for 14 percent of Panama’s national GDP [17], as of 2006. These statistics

make the Panama Canal one of the world’s most important waterways [6, 17].

3.2 Ship Transit

Under ideal conditions a ship can transit the canal in approximately ten hours. As illus-

trated in Figure 3.1, a ship passing through the canal will ascend through a set of locks, traverse

Lake Gatun, and then descend through the lock system on the other side. The locks function

41

Figure 3.1: Plan and elevation views of Panama Canal.

flooding.
Double lock for safety against

Carribean ocean.

Central control room.

Cruise ship.

Figure 3.2: Gates of the Gatun locks open for a cruise ship making its way down to the Caribbean
end of the canal. The gates at both ends of the upper chamber are doubled for safety. (Adapted
from reference [34].)

42

as water lifts, raising ships from sea level to the elevation of Lake Gatun (26 meters above sea

level). The lock chambers are 33.53 meters wide, 304.8 meters long and 12m deep. The maximum

dimensions of a ship – so-called Panamax vessels – that can transit the canal are: 32.3 meters in

the beam, 12 meters draft, and 294 meters long (depending on the type of ship). Individual locks

are separated by gates. As a ship approaches the first chamber, valves below the compartment

are released and the water level adjusts to that outside of the canal. The gates then open and the

ship moves into the first chamber. After the gates lock, valves of the first and second chamber are

opened to allow the water level of the first chamber to rise and match the second chamber. The

gates open for a second time, allowing the ship to move into the second chamber. This repetitive

process continues until the ship reaches the Lake Gatun. The ship traverses the lake and then

descends through the exit lock system. The water used to raise and lower the vessels in each set

of locks comes from Lake Gatun by gravity, and is delivered to the locks through a system of main

culverts that extend under the lock chambers from the side walls and the center walls [33].

Ships are pulled through the lock systems by large locomotives on both sides of the canal.

This process is illustrated along the right-hand side of Figure 1.1. To prevent ships from bumping

into the canal side, care is needed to make sure tow wires on either side of the ship remain tight.

A second area of concern is the potential for downstream flooding of lands caused by a runaway

ship hitting a gate. Extra safety against this is provided by doubling the gates at both ends of the

upper chamber in each flight of locks. See, for example, the double gate setup in Figure 3.2.

3.3 Control of Ship Movement

Since all the equipment of the locks is operated electrically, the whole process of locking a

ship up or down can be controlled from a central control room, which is located on the center wall

of the upper flight of locks. The controls were designed from the outset to minimize the chances of

operator error, and include a complete model of the locks, with moving components which mirror

the states of the real lock gates and valves. In this way, the operator can see exactly what state

the locks and water valves are in. Mechanical interlocks are built into the controls to make sure

that no component can be moved while another is in an incorrect state; for example, opening the

drain and fill valves of a lock chamber simultaneously [34].

43

3.4 Limitations of Present-Day Canal Operations

The most important present-day problem dates back to the early 1990s, when the shipping

industry decided to build post-Panamax (or super cargo) ships capable of carrying two-to-three

times the cargo of present-day Panamax ships. Post-Panamax vessels currently account for 27%

of the world’s capacity of containerized shipping. However, this is expected to increase to 50

percent by 2010-2011. Pending obsolescence has put the Canal Authorities and, indeed, the whole

of Panama at a cross roads [6].

A second problem with present-day operations is severe congestion and costly delays caused

by accidents and maintenance operations. Accidents can be attributed to: (1) A steady increase

in the size and number of ships passing through the canal; (2) Increased work hours of the ship

pilots, and (3) A lack of maintenance on the canal infrastructure. The left-hand graphic in Figure

1.1 shows, for example, crowding of transiting ships in the Miraflores locks and lake. Lanes in

the Pedro Miguel, Miraflores and Gatun locks are 110 feet wide, and it is not unusual for a vessel

to have only two feet of clearance on either side. The standard way of compensating for these

difficulties is to introduce factors of safety into operational practices, and in the case of canals,

to rely on human involvement for visual reference and line-of-sight validation. The downside to

this approach is reductions in transit throughput during periods of low visibility. To date, these

inefficiencies have been tolerable only because canal operations are less than peak capacity.

3.5 Panama Canal Renovation

To ensure that the Panama Canal remains important to the container shipping industry

into the foreseeable future, the canal is now in the midst of a US $5.25 billion expansion [7, 26].

The new lock system will consist of three new locks on the Atlantic side and three new

locks on the Pacific side. Each lock chamber will be 427m long, 55m wide and 18.3m deep. The

dimensions of each lock chamber will be sufficient to support Post-Pamamax ships (366m long, 49m

wide and a maximum draft of 15m). Lake Gatun will be raised 1.5m. The new lock system will

use tug boats to position vessels, water from saving basins (for details, see Figure 3.3), and make

increased use of automation to support day-to-day operations (e.g., sensors and lasers to determine

the position of ships in the lock system) and to predict and plan for maintenance [17, 40].

The pathway from sensors to improved decision making is as follows: sensors gather data

which is fed to computers for advanced processing. The enriched information leads to better decision

44

Figure 3.3: Cross section of a laterally filled lock chamber [35].

making which in turn is fed back to automated control systems. Throughout this process, the

aforementioned barriers are overcome, thereby providing the desired results. Similar advances can

be found in Turkey (Bosporus Straight), where large investments for traffic management systems

have led to decision making procedures guided by GIS and data collected by land (sensors) centers

[14, 28].

45

Chapter 4

Behavior Modeling and Validation of
a Two-Stage Lockset Operation

In this chapter we formulate behavior models and validation procedures for ships transiting

the two-stage lockset shown in Figure 4.1.

Ships

Lock 2Lock 1

Figure 4.1: Elevation view of a two-stage lockset.

Queues of east-bound ships will ascend the lockset. West-bound ships will descend the lockset.

Ships traveling in both directions will arrive at the lockset and request permission to transit the

lockset. If the lockset system is empty and no other ships are waiting, then permission to acquire

the lockset system’s resources will be immediately granted. Otherwise, ships will be directed to

join a queue and wait until the lockset scheduler authorizes permission to access the lockset.

Figure 4.2 shows the essential details of a process modeling framework for the planning

and scheduling transit operations within a lockset, and later, the canal system. Planning objectives

feed into a task planner which, in turn, pass plans for ship transit to a scheduler. A good plan will

ensure that task operations are safe, and fair in the assignment of east- and west-bound transit

46

Hierarchiical Task Planning

�
�
�

�
�
�

�
�
�
�

�
�
�
�

Arrival Arrival

West−Bound Passageway Control

East−Bound Monitor

West−Bound Monitor

(Scheduler)

Gates Pumps

(Canal System)
Sequences
Action

East−Bound Passage

West−Bound Passage

Observations

East−Bound Queue

Observations

Initiate Passage

Observations

R
eq

ue
st

 p
as

sa
ge

East−Bound Passageway Control

(Ship Passage)
Constraints
Operational

Requests
Ship
Ordered

(Traffic Demand)

(Passageway Control)

Sequences
Action

Observations

State of Traffic Demand

East West

Ship
Passage
Actions

West−Bound Ships

West−Bound Queue

..........

Join queue

Jo
in

 q
ue

ue

East−Bound Ships

..........

Constitute

Planner

Canal Traffic

Planning Objectives

Plans

Observations

(Planner)

Figure 4.2: Schematic for scheduling and passageway control of ships transiting the canal system.

47

directions. The scheduler will receive east- and west-bound transit requests and schedule transit

operations in a manner consistent with the task planner. The scheduler will also communicate

permission for a particular ship to access the canal system to the passageway controllers. These

lower level processes will be responsible for synchronizing low level activities, such as incremental

ship movements with pump and gate operations.

Two models of lockset behavior will be formulated in this chapter. The first behavior model

will demonstrate that: (1) the composition and validation processes work, (2) behavior model size

will grow exponentially as a function of the number of ships transiting the canal system, and (3)

the details of process design matter. As outlined in Chapter 1, the behavior model will be created

through composition of processes on the lockset side (i.e., gates, pumps, ship and passageway

controls, scheduler) and the traffic demand side (e.g., queues of east- and west-bound ships). The

ship control and scheduler processes will be refined through two iterations of development. The

purpose of these iterations will be to show how tradeoffs exist in the assignment of responsibility

to processes versus their ability to multi-task. No effort will be made to remove actions not

immediately relevant to decision making.

The second model will demonstrate that the systematic and repeated application of viewpoint-

directed abstraction can keep the rate-of-growth of composed models in check. The second model

will be assembled from the same set of constituent processes as in the first model, but the pro-

cess composition will be organized into a multi-layer hierarchy. All intermediate process models

will be minimized. Also, all actions internal to the lockset operations will be systematically ab-

stracted from consideration in assessment of the ship behavior. This approach to abstraction stems

from the premise that if behavior of the detailed lockset model can be validated, then actions not

immediately coupled to ship transit actions (e.g., request, arrive, depart) can be removed from

consideration.

4.1 Model 1. Detailed Behavior Modeling of a Two-Stage Lockset

In this section we create a detailed behavior model for operations of a two-stage lockset

subject to east- and west-bound transit requests. A complete listing of the LTSA source code can

be found in Appendix 1.

Figures 4.3 and 4.4 show the process architecture for the behavior models. In keeping with

the principle of simplification through separation of concerns (see Figure 1.5), one process hierarchy

will be assembled for the lockset system (it will be the composition of scheduler, passageway control,

ship control, gate, pump and lock processes) and second process hierarchy will be assembled from

48

LOCKSET_SYSTEM

Processes

Traffic−demand
Processes

Lock System Architecture

Processes
Lockset−level

Lock 2

low:Gate high:Gatemiddle:Gatelow:Pump high:Pump

GATESYSTEM and PUMPSYSTEM processes

Ship 1 Ship 2

[1..NoShips].(east:SHIPS)

Lock 1

Scheduler

east:TransitDemand

east:ShipControl west:PassagewayControleast:PassagewayControl

Component−level

PumpPump

Figure 4.3: Elevation view of lockset, and component- and lockset-level process architecture.

49

the model of east- and west-bound traffic demand. The complete model of lockset behavior will

simply correspond the composition of lockset and traffic demand process models.

Most of the relationships in Figures 4.3-4.4 can be classified as “observation,” “action”

or “sequences of actions.” When the interaction between processes involves multiple actions, then

notation can be simplified by defining sets of actions and then simply referring to that set by name.

For example, the command

set TrafficControl = { request, acquire, depart }

establishes the set TrafficControl to represent actions associated with ship interactions with the

lockset system.

4.1.1 Basic Ship Behavior

In the simplest terms possible, a ship will transit a two-stage lockset by working through

the following step-by-step procedure:

Step 1. Request permission to pass through the lockset.

Step 2. Wait in the arrival area.

Step 3. Acquire permission to enter the lockset.

Step 4. Enter lock 1.

Step 5. Enter lock 2.

Step 6. Depart.

The execution of steps 1-6 requires a specific sequencing of messages among ship, ship control,

passageway control and scheduler processes, namely:

1. The Ship sends a message to the ship control requesting permission to transit the lockset. It

then joins a queue of waiting ships in the arrival area.

2. At some point later in time, the scheduler will send a message to the Ship and Ship Control

processes that it may acquire the resources of the lockset.

3. The passageway controller commands the ship to enter lock 1 (i.e., enterlock1).

4. The passageway controller commands the ship to enter lock 2 (i.e., enterlock2).

5. The passageway controller commands the ship to exit lock 2 and depart (i.e., depart).

50

LOCKSET_SYSTEM

SCHEDULER

PASSAGEWAYCONTROL_ASCEND PASSAGEWAYCONTROL_DESCEND

PUMPSYSTEM GATESYSTEM

EASTBOUND_SHIPCONTROL WESTBOUND_SHIPCONTROL

TRAFFIC_DEMAND
EASTBOUND

TRAFFIC_DEMAND
WESTBOUND

TrafficControl TrafficControl

GateCommandsPumpCommands

AscendCommands DescendCommands

TrafficControl

TRAFFIC_DEMAND

TrafficControl

Figure 4.4: Process architecture for two-stage lockset.

51

Ship

request

Waiting Area

request

acquire
acquire

Departure Area

In Lock2

In Lock1

depart
depart

enterlock1

enterlock2

Control
Ship

Control
Passageway

Scheduler
Lockset

Figure 4.5: Simplified communication among ship, ship control, passageway control and scheduler
processes for a ship transiting the lockset.

6. The passageway controller informs the lockset scheduler that the ship has departed lock 2.

Figure 4.5 provides a graphical summary of this sequence of message passing. The Ship time line

shows that as a vessel moves through the lockset system it will actually progress through four

spatial states; an arrival area, area lock1,, area lock2, and a departure area. For a ship ascending

the lockset, lock1 will be the lower lock. For a ship descending the lockset, lock1 will be the upper

lock. This subtle difference in context, coupled with the details of raising/lowering water levels

and opening/closing gates requires the implementation of two passageway controllers – one for

ascending the lockset and a second for descending the lockset.

Also notice that this model of ship behavior is deterministic – that is, the model assumes

that sequences of actions will actually occur as planned. This leaves the task of formulating behavior

models to the definition and composition of traffic demand and scheduler/ship control processes. A

more sophisticated (non-deterministic) model of ship behavior would include provision for normal

operations, plus breakdowns and accidents.

LTSA code. LTSA requires that processes operate continuously. Accordingly, in our preliminary

implementation basic ship behavior is defined by the circular process:

52

SHIP = (request -> acquire -> enterlock1 -> enterlock2 -> depart -> SHIP).

Shipping personnel are certainly involved in the execution of the actions request, acquire and

depart. The actions enterlock1 and enterlock2 are internal to the lockset itself. Hence, a much

better solution is to simply define the ship behavior as

SHIP = (request -> acquire -> depart -> SHIP).

and then design the scheduler and passageway control processes to properly sequence enterlock1

and enterlock2 among other low-level actions for pump and gateway control.

4.1.2 Traffic Demand Processes

Travel demand processes are defined for convoys of east- and west-bound ships. The

fragment of code:

const NoShips = 2

range S = 1..NoShips // ship identities

SHIP = (request -> acquire -> depart -> SHIP).

||EASTBOUND_SHIPS = ([i:S]:(east:SHIP)).

||WESTBOUND_SHIPS = ([i:S]:(west:SHIP)).

// Create circular queue of east- and west-bound transit requests.

EASTBOUND_REQUESTS = QUEUE1 [1],

QUEUE1[i:S] = ([i].east.request -> QUEUE1 [i%NoShips + 1]).

WESTBOUND_REQUESTS = QUEUE2 [1],

QUEUE2[i:S] = ([i].west.request -> QUEUE2 [i%NoShips + 1]).

||EASTBOUND_TRAFFIC = (EASTBOUND_SHIPS || EASTBOUND_REQUESTS).

||WESTBOUND_TRAFFIC = (WESTBOUND_SHIPS || WESTBOUND_REQUESTS).

defines arrays of processes for ships traveling in the east- and west-bound directions. The corre-

sponding actions are,

53

depart

EASTBOUND_SHIPS

EASTBOUND_TRAFFIC

WESTBOUND_SHIPS

WESTBOUND_TRAFFIC

TRAFFIC_DEMAND

request

request

WESTBOUND_REQUESTS

EASTBOUND_REQUESTSrequest

acquire

Figure 4.6: Process architecture for model of bi-directional (east- and west-bound) traffic demand.

[1].east.request [2].east.request [1].west.request [2].west.request

[1].east.acquire [2].east.acquire [1].west.acquire [2].west.acquire

[1].east.depart [2].east.depart [1].west.depart [2].west.depart

and so forth. By themselves, the composed processes EASTBOUND SHIPS and WESTBOUND SHIPS do

not imply an ordering of ships. This is handled by the circular queue of processes EASTBOUND REQUESTS

and WESTBOUND REQUESTS which ensure requests are handled in the same order in which they are

made. The overall traffic model is simply the composition of east- and west-bound traffic demands,

i.e.,

||TRAFFIC_DEMAND = (EASTBOUND_TRAFFIC || WESTBOUND_TRAFFIC).

as illustrated in Figure 4.6.

4.1.3 Lockset System Processes

The physical lockset system corresponds to an assembly of scheduler, passageway control,

ship control, and pump and gate processes. The lockset itself can be thought of a space process

that can handle, at most, one ship at a time.

Pump and Gate Processes. The lockset contains three gates (tagged, low, middle, and high)

and two pumps (tagged low and high). Gate and pump processes open and close gates and raise

and lower water levels. Unconstrained behavior of the lock system components in achieve through

composition of the pump and gate processes, e.g.,

54

||GATESYSTEM = (low:GATE || middle:GATE || high:GATE).

||PUMPSYSTEM = (low:PUMP || high:PUMP).

The GATESYSTEM and PUMPSYSTEM processes have 8 and 4 states, respectively.

It is important to note that in the present-day Panama Canal, water levels are lowered

via gravity with water being drained from lake Gatun. So use of the term “pumps” is a little

misleading. However, the renovated canal will cycle water from nearby ponds, and therefore, will

use pumps to raise/lower water levels.

Ship Controller Processes. Ship controller processes are shared resources responsible for main-

taining order between incoming requests and access to the lockset. This is achieved with the

fragment of code:

// Create east- and west-bound ship control processes

SHIPCONTROL = (request -> acquire -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]::east:SHIPCONTROL).

||WESTBOUND_SHIPCONTROL = ([i:S]::west:SHIPCONTROL).

At a glance (details to follow) it would seem that the ship control does the same thing as the

scheduler and, thus, is not really needed. The important distinction between these processes lies in

their view of ships – the ship controllers track the progress of specific ships by name. The lockset

scheduler’s relationship with ships is more abstract. It simply keeps track of incoming requests and

provides permission for east- and west-bound ships to acquire the locksets resources.

Passageway Controller Processes. Passageway control is responsible for sequencing the ship

and lockset actions (e.g., coordination of gate and pump operations) while a ship is inside the

lockset. Accordingly, the fragment of code:

// Lockset-Level Passage Control. Sequences of actions for "ascend" operation ...

55

PASSAGECONTROL_ASCEND = (ascend -> ASCEND

| resetlow -> low.pumpdown -> high.pumpdown -> ASCEND),

ASCEND = (low.opengate -> enterlock1 -> low.closegate -> low.pumpup ->

middle.opengate -> enterlock2 -> middle.closegate -> high.pumpup ->

high.opengate -> exitlock2 -> high.closegate ->

depart -> PASSAGECONTROL_ASCEND).

||EASTBOUND_PASSAGECONTROL = ([i:S]::(east:PASSAGECONTROL_ASCEND))/{

forall [i:S] { ascend/[i].east.ascend },

forall [i:S] { resetlow/[i].east.resetlow }}.

// Lockset-Level Passage Control. Sequences of actions for "descend" operation ...

PASSAGECONTROL_DESCEND = (descend -> DESCEND

| resethigh -> low.pumpup -> high.pumpup -> DESCEND),

DESCEND = (high.opengate -> enterlock1 -> high.closegate -> high.pumpdown ->

middle.opengate -> enterlock2 -> middle.closegate -> low.pumpdown ->

low.opengate -> exitlock2 -> low.closegate ->

depart -> PASSAGECONTROL_DESCEND).

||WESTBOUND_PASSAGECONTROL = ([i:S]::(west:PASSAGECONTROL_DESCEND))/{

forall [i:S] { descend/[i].west.descend },

forall [i:S] { resethigh/[i].west.resethigh }}.

defines required sequences of gate, pump and ship movement actions for ships ascending and de-

scending the lockset system. As already mentioned at the top of this chapter, here we assume that

east- and west-bound ships will ascend and descend the lockset respectively. It is a trivial matter

to create a mirror passageway process with these dependencies swapped. Separate pathways are

provided for the case where water levels need to be adjusted (i.e., resetlow or resethigh). The

scheduler process will be designed to keep track of the chamber water levels and make appropriate

adjustments.

Also notice that for both east- and west-bound pathways, ships will be required to ascend

some locksets and descend others. To handle this requirement at the canal level, mirror copies

of the lockset system will be created with the east/west parameters swapped. Then when the

locksets are coupled with details of the traffic demand model, the appropriate sequences of high-

and low-level operations will be composed.

Lockset Scheduler Process. The lockset scheduler process is the “brains” of the lockset opera-

tion and, as such, its design is the most challenging part of the behavior model formulation. The

central design problem boils down to one of balancing services in multi-tasking environment. In

56

addition to being available to handle incoming transit requests, the scheduler needs to ensure that

operations are efficient and fair, and will work with other processes (e.g., ship control) to ensure

that physical (e.g., occupancy of lockset chamber) and operational constraints are respected. The

concurrent nature of these activities leads to conflicts in the operational flexibility of the scheduler.

For example, if the scheduler is busy monitoring the arrival/departure of a ship passing through

the lockset, then it may not be immediately available to handle incoming transit requests.

Preliminary Implementation. Figure 4.7 shows elements of the scheduler operation in our

preliminary implementation. The lockset scheduler will receive transit requests from east- and

west-bound ships and at some later point issues permission to the ship controllers to begin the

transit of a particular ship. The scheduler process needs to:

1. Take into account the number of ships waiting to transit the canal in either direction, and

implement an appropriate policy of fairness, and

2. Take the correct action without the forced imposition of physical constraints (e.g., a constraint

that says, at most, only one ship can occupy the lockset).

The fragment of code:

const NoShips = 2

range S = 1..NoShips // ship identities

// Setup constants that will used by the scheduler.

const East = 0

const West = 1

range TrafficDirection = East..West // traffic direction for next ship.

const Low = 0

const High = 1

range WaterLevel = Low..High // waterlevel in locks...

// ===

// Lockset Scheduler that accounts for lock occupancy and number

// of east- and west-bound ships waiting to pass through the lock.

// ---

// Variables:

//

// we = number of east-bound ships waiting (0..NoShips).

// ww = number of west-bound ships waiting (0..NoShips).

// td = traffic direction for next ship (East or West).

// wl = water level (Low or High).

// ===

57

Scheduler

east:acquire

west:acquire

east.depart

west.depart

west.requesteast.request

East−Bound Traffic West−Bound Traffic

Scheduler Process Model

SCHEDULER =
west.depart west.depart

west.requestwest.request

east.request

east.request

east.depart

east.depart

east.departeast.request

High

Low

East West

raise

lower lower

raise

WestEast

East West

Water Level

Current Traffic Direction

we

ww

we
ww

Lock System

Figure 4.7: Schematic for process design of the traffic scheduler.

Figure 4.8: Scheduler processes and actions when NoShips = 1.

58

SCHEDULER = SCHEDULER[0][0][East][Low],

SCHEDULER[we:0..NoShips][ww:0..NoShips][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER[we+1][ww][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER[we][ww+1][td][wl]

// East-bound assignments to ascend the lock system.

| when (ww >= 1 && we >= 1 && td == East && wl == Low) [i:S].east.acquire ->

ascend -> [i].east.depart -> SCHEDULER[we-1][ww][West][High]

| when (ww == 0 && we >= 1 && td == East && wl == Low) [i:S].east.acquire ->

ascend -> [i].east.depart -> SCHEDULER[we-1][ww][East][High]

| when (ww >= 1 && we >= 1 && td == East && wl == High) [i:S].east.acquire ->

resetlow -> [i].east.depart -> SCHEDULER[we-1][ww][West][Low]

| when (ww == 0 && we >= 1 && td == East && wl == High) [i:S].east.acquire ->

resetlow -> [i].east.depart -> SCHEDULER[we-1][ww][East][Low]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we >= 1 && td == West && wl == High) [i:S].west.acquire ->

descend -> [i].west.depart -> SCHEDULER[we][ww-1][East][Low]

| when (ww >= 1 && we == 0 && td == West && wl == High) [i:S].west.acquire ->

descend -> [i].west.depart -> SCHEDULER[we][ww-1][West][Low]

| when (ww >= 1 && we >= 1 && td == West && wl == Low) [i:S].west.acquire ->

resethigh -> [i].west.depart -> SCHEDULER[we][ww-1][East][High]

| when (ww >= 1 && we == 0 && td == West && wl == Low) [i:S].west.acquire ->

resethigh -> [i].west.depart -> SCHEDULER[we][ww-1][West][High]).

shows the scheduler implemented as a four-dimensional array of processes. The first and second

dimensions keep track of the number of ships waiting for transit in the east- and west-bound di-

rections (maximum value is NoShips). Variable we equals the number of east-bound ships waiting

(0..NoShips). And variable ww equals the number of west-bound ships waiting (0..NoShips). Di-

mensions three and four keep track of the current traffic direction (td = East or West) and water

level (wl = Low or High).

There are ten scheduler actions in our preliminary implementation:

Actions 1-2. Add requests to queues in the east and west-bound directions respectively. These

actions leave the current traffic direction (td) and water level (wl) unchanged.

Actions 3-6. Deal with actions to ascend the lockset system. An ascend operation decreases the

number of waiting east-bound ships by one (i.e., we-1).

59

Actions 7-10. Deal with actions to descend the lockset system. Each descend operation decreases

the number of waiting west-bound ships by one (i.e., ww-1).

Actions 3-10 make adjustments to the traffic direction to take care of: (1) issues of fairness, and

(2) the special case where a queue of waiting ships is empty and traffic demand simplifies to a

uni-directional flow. Fairness is implemented through a very simply policy – if ships are waiting to

traverse the canal in both the east- and west-bound directions (i.e. ww >= 1 and we >= 1), then

the traffic direction simply alternates between east- and west-bound directions. To get the process

started, east-bound ships go first. A more realistic policy would take into account the size of ships,

and possibly bundle them together as platoons. Also notice that size of the SCHEDULER process

increases with the value of NoShips. Figure 4.8 shows, for example, a partial view of the states

and actions in the scheduler process when NoShips = 1. Finally, the actions ascend, descend,

resetlow, and resethigh only synchronize with the appropriate passageway controllers. They are

neither part of the traffic demand nor ship behavior models.

A Second Implementation. The preliminary scheduler is limited in its ability to multi-task.

Transit requests can be handled in any order. However, while a ship is traversing the canal cham-

ber (i.e., between the actions acquire and depart), the scheduler process is unavailable to handle

incoming requests. We can overcome this problem through a slight re-definition of the ship control

processes, i.e.,

SHIPCONTROL = (request -> acquire -> depart -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]::east:SHIPCONTROL).

||WESTBOUND_SHIPCONTROL = ([i:S]::west:SHIPCONTROL).

Now ship control is responsible for ensuring that request, acquire, depart action sequences are

respected. This constraint specifically prohibits a ship from making a request to transit the canal

before it has departed. It also gives the scheduler more freedom to multi-task. The revised code is

as follows:

SCHEDULER = SCHEDULER[0][0][East][Low],

SCHEDULER[we:0..NoShips][ww:0..NoShips][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER[we+1][ww][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER[we][ww+1][td][wl]

60

// East-bound assignments to ascend the lock system.

| when (ww >= 0 && we >= 1 && td == East && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER[we-1][ww][East][High]

| when (ww >= 0 && we >= 1 && td == East && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER[we-1][ww][East][High]

// East-bound departures from the lock system.

| when (ww >= 1 && td == East && wl == High)

[S].east.depart -> SCHEDULER[we][ww][West][High]

| when (ww == 0 && td == East && wl == High)

[S].east.depart -> SCHEDULER[we][ww][East][High]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we >= 0 && td == West && wl == High)

[S].west.acquire -> descend -> SCHEDULER[we][ww-1][West][Low]

| when (ww >= 1 && we >= 0 && td == West && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER[we][ww-1][West][Low]

// West-bound departures from the lock system.

| when (we >= 1 && td == West && wl == Low)

[S].west.depart -> SCHEDULER[we][ww][East][Low]

| when (we == 0 && td == West && wl == Low)

[S].west.depart -> SCHEDULER[we][ww][West][Low]).

Now we see that the scheduler can handle incoming transit requests while the lockset chamber is

occupied.

Remark. The first and second implementations of the lockset scheduler are defined for bi-

directional transit operations without break. If there are no ships waiting to transit the canal in

a particular direction, then the scheduler operations default to the management of uni-directional

traffic. In Chapter 5, the scheduler will be extended to account for the proper handling of traffic

during maintenance and emergency events.

Interaction of Ship, Passageway and Scheduler Processes. When a SHIP process performs

the action request it is shared by the scheduler and, in fact, is a communication to the scheduler

that then uses that information to create a queue for the ships on that side of the lock. The

acquiring of the use of the lock, performed by the action acquire must be able to be performed

by the controller and the scheduler; meaning the scheduler must give the ship permission to pass

61

through, and the controller must be ready to send the ship through as well. For example, the

controller can make a ship wait by not sharing the acquire action until appropriate adjustments

to the water level have been made.

4.1.4 Lockset-Level Behavior

Lockset-level behavior model corresponds to a parallel composition of the lockset system

with the process model for traffic demand, i.e.,

||LOCKSET_SYSTEM = (SCHEDULER ||

WESTBOUND_SHIPCONTROL ||

EASTBOUND_SHIPCONTROL ||

WESTBOUND_PASSAGECONTROL ||

EASTBOUND_PASSAGECONTROL ||

PUMPSYSTEM || GATESYSTEM).

// Compose model of lockset system behavior ...

||LOCKSET_BEHAVIOR = (LOCKSET_SYSTEM || TRAFFIC_DEMAND).

The upper- and lower- blocks of Table 4.1 show process sizes for preliminary and second implemen-

tations of the scheduler process, and NoShips equal to 1, 2 and 3. In both cases, the fully composed

and minimized process models of lockset behavior have exactly the same number of states1. The

computational procedure works for NoShips equal to 1 and 2, but fails thereafter (due to a stack

overflow).

4.1.5 Lockset-Level Safety and Liveliness

As already noted in Chapter 2, a safety property asserts that nothing bad happens during

the canal operation. At the lockset level we need to ensure that:

1. The canal scheduler will not assign more than one ship to a lock,

2. Floods will be prevented by ensuring that a gate will not open before water levels on both side

of the gate are equalized.

Safety checks are compositional in the sense that if there is no violation at a subsystem level, then

there cannot be a violation when that subsystem is composed with other subsystems.

1All computations were conducted on an Apple Powerbook G4, with 1 GB of memory.

62

Part 1. Preliminary Implementation of the Scheduler.

No E-W Ship TRAFFIC_DEMAND SCHEDULER LOCKSET_SYSTEM LOCKSET_BEHAVIOR

Ships Model States States States States Minimized

===

1 [1..1] 9 33 4,096 4,096 4,096

2 [1..2] 324 132 7,680 8,192 8,192

3 [1..3] 6,561 352 11,264 36,864 ...failed!!

===

Part 2. Second Implementation of the Scheduler.

No E-W Ship TRAFFIC_DEMAND SCHEDULER LOCKSET_SYSTEM LOCKSET_BEHAVIOR

Ships Model States States States States Minimized

===

1 [1..1] 9 23 2,496 2,496 2,496

2 [1..2] 324 81 2,752 9,792 9,792

3 [1..3] 6,561 204 3,008 21,952 ...failed!!

===

Table 4.1: No of states in the lockset behavior model for NoShips = 1, 2 and 3.

Validate Safety Against Flooding

Safety properties are specified in FSP by property processes. As noted in Chapter 2, LTSA

requires that the property process specifications be deterministic. This constraint complicates

the verification of system safety against flooding because: (1) the traffic demand model is non-

deterministic (i.e., we have no control over the ordering of east- and west-bound transit requests),

and (2) water levels in the canal depend of the sequencing of east- and west-bound transits. The

abbreviated fragment of code:

// ===

// Validate that a flood will not occur in the lower locks.

// ===

// Check pump operation for a stream of east-bound ships

property LOWER_PUMPS = ([j:1..NoShips].east.acquire ->

ascend -> [j].east.depart -> [j].east.acquire ->

resetlow -> [j].east.depart -> LOWER_PUMPS).

// Check pump operation for a stream of west-bound ships

property RAISE_PUMPS = ([j:1..NoShips].west.acquire ->

descend -> [j].west.depart -> [j].west.acquire ->

resethigh -> [j].west.depart -> RAISE_PUMPS).

||SYSTEM_FLOOD_CHECK1 = (LOCKSET_SYSTEM || LOWER_PUMPS).

||SYSTEM_FLOOD_CHECK2 = (LOCKSET_SYSTEM || RAISE_PUMPS).

63

establishes properties for LOWER PUMPS and RAISE PUMPS associated with sequences of as-

cend and descend operations respectively. The purpose of these property checks is to ensure that

the double locksets will never open the gate when there is an imbalance in water levels on either

side of the first gate in transit. More precisely, if the canal handles a series of east-bound transit

requests then an ascend operation should always be followed by a resetlow action, the latter being

responsible for lowering water levels in the pumps. A detailed trace of actions generated from the

safety check for LOWER PUMPS in LTSA is as follows,

Trace to property violation in LOWER_PUMPS:

1.east.request

1.west.request

1.east.acquire

ascend

1.east.low.opengate

1.east.enterlock1

1.east.low.closegate

1.east.low.pumpup

1.east.middle.opengate

1.east.enterlock2

1.east.middle.closegate

1.east.high.pumpup

1.east.high.opengate

1.east.exitlock2

1.east.high.closegate

1.east.depart

1.east.request

1.west.acquire

descend

1.west.high.opengate

1.west.enterlock1

1.west.high.closegate

1.west.high.pumpdown

1.west.middle.opengate

1.west.enterlock2

1.west.middle.closegate

1.west.low.pumpdown

1.west.low.opengate

1.west.exitlock2

1.west.low.closegate

1.west.depart

1.east.acquire

ascend

Here we see that two ascend operations can occur, but only if they are separated by a descend

operation (i.e., a west-bound ship transits the system). In this particular case the safety violation

is okay because the west-bound ship will lower the water level, thereby allowing the second ascend

operation to proceed safely.

64

Validate Single Lock Usage

The fragment of code:

property LOCK_OCCUPANCY =

([j:1..NoShips].east.acquire -> [j].east.depart -> LOCK_OCCUPANCY

| [i:1..NoShips].west.acquire -> [i].west.depart -> LOCK_OCCUPANCY).

establishes a validation test for lock occupancy. The test basically says: if a specific ship acquires

resources of the lockset, then it needs to depart before another ship acquires the lockset. Any other

sequence of actions will result in an error.

Validation tests can also be established by defining an array of process states and letting

LTSA automatically generate transitions to an error state for actions not consistent with the process

definition. With the latter approach in mind, the fragment of code:

LOCK_OCCUPANCY = SPACES[1],

SPACES[i:0..1] = (when(i>0)

[j:1..NoShips].east.acquire -> SPACES[i-1]

| [j:1..NoShips].west.acquire -> SPACES[i-1]

| when(i<1)

[j:1..NoShips].east.depart -> SPACES[i+1]

| [j:1..NoShips].west.depart -> SPACES[i+1]).

creates a process for the lockset system modeled as resource that provides physical space for at

most one ship at a time. Physical considerations dictate that once a ship has occupied the space

in the lockset, it must depart before another ship can enter the lockset.

A basic implementation of this requirement is illustrated in Figure 4.9. Correct enforcement

of the physical space constraint corresponds to the lock process behavior alternating between states

0 and 1. Notice that the model simply keeps track of acquire and depart operations, and does not

include details of specific ship arrivals and departures.

The behavior model will contain errors if more than one ship acquires the space, or alter-

natively, when the lock system is occupied, more than one ship tries to depart the lock system.

LTSA accounts for these possibilities by automatically inserting actions that will lead to an error

state. Execution of the lock occupancy test is defined by fragment of code:

||LOCK_OCCUPANCY_CHECK1 = (LOCKSET_SYSTEM || LOCK_OCCUPANCY).

65

Figure 4.9: LTS diagram for the lockset system modeled as a single use space resource.

If LOCK OCCUPANCY CHECK1 contains an error state, then a pathway in the lockset system

exists where an acquire operation is followed by a second acquire and/or a depart action is followed

by a second depart operation. In either case, LOCK OCCUPANCY CHECK1 fails. For our model,

however, the composed model is free of an error state and the test passes.

Validate Progress of Ship Transit

Liveliness/progress properties assert that something eventually good happens. At the

lockset level, this translates to ensuring that if at ship makes a request to transit the lockset,

eventually it will transit and depart the system. The fragment of code:

progress EASTPASS = { [S].east.depart }

progress WESTPASS = { [S].west.depart }

simply checks that at least one of the ships (i.e., 1..NoShips) will depart in each of the east- and

west-bound directions,

66

4.2 Model 2. Simplified Models of Lockset-Level Behavior

From Section 4.1 it is evident that while the all-in-one approach to composition of lockset-

level process models, i.e.,

||LOCKSET_SYSTEM = (SCHEDULER ||

WESTBOUND_SHIPCONTROL ||

EASTBOUND_SHIPCONTROL ||

WESTBOUND_PASSAGECONTROL ||

EASTBOUND_PASSAGECONTROL ||

PUMPSYSTEM ||

GATESYSTEM).

||LOCKSET_BEHAVIOR = (LOCKSET_SYSTEM || TRAFFIC_DEMAND).

it technically permissible, in practice the approach is fundamentally flawed because for all but

the smallest problems, behavior models and their associated model checking procedures quickly

become computationally intractable. Indeed, with only one east-bound ship and one west-bound

ship, LOCKSET SYSTEM composes into a model with 4,096 states. See Table 4.1. When the number

of east- and west-bound ships is increased to three, the process model grows to more than 21,000

states.

The hypothesis of our investigation is that these difficulties can be mitigated by exploiting

the natural structure of canal system behavior models. In related work, Cheung and Kramer [8]

point out that when systems have a structure that is naturally hierarchical, safety properties tend

to be associated with a particular subsystem. Therefore, in their evaluation there is no need to

consider actions belonging to other subsystems. Moreover, progress properties rely on a set of

actions being activated; most often they can be evaluated with respect to actions at a particular

level of detail, with lower level actions being removed from consideration.

To address these concerns, in this section we derive a systematic procedure for composing

models for specific viewpoints. Viewpoints serve two purposes. First, they motivate the generation

of abstractions relative to a design concern (e.g., safety and progress checks). Their second purpose

is one of simplification – by systematically removing actions that are not related to a design decision,

models can be trimmed to minimize their complexity (e.g., generation of simplified abstractions

for “higher-level” modeling). In the terminology of Cheung and Kramer [8] this is called partial

ordering.

We propose a simple method for partial ordering achieved through the assembly action-

process relationships and the identification of families of processes common to actions and groups

67

of actions. We also immediately minimize the size of all intermediate results. The result is a

computational procedure where process models achieve their required functionality, but may have

a size that is orders of magnitude smaller than in the all-in-one approach to composition. Details

of the appropriate source code are located in Appendix 2.

4.2.1 Architecture of Lockset-Level Behavior Model

Figures 4.10 and 4.11 show abstract and detailed process hierarchy views of: (1) the

traffic demands process interacting with the lockset system process, (2) the lockset system process

organized into lockset control and passageway system process hierarchies, and (3) processes for

compositional validation of lockset behavior properties. We employ white and black dots to show

dependencies between the process hierarchies.

The traffic demand process model consists of families of east- and west-bound ships; it will

stay exactly as formulated in Section 4.1.

The design challenge lies in the formulation of simplified versions of the LOCKSET SYSTEM

process model. In the initial model formulation, models of lockset system behavior were defined

through “all-in-one composition” of seven basic processes (i.e., SCHEDULER, WESTBOUND SHIPCONTROL

and so forth). Now, assembly of the model occurs over three layers:

1. LOCKSET CONTROL is the composition of scheduler and east- and west-bound ship controls.

2. PASSAGEWAY SYSTEM is the composition of ascend and descend processes, plus processes for the

pump and gate systems.

3. Gate and pump systems are defined through the composition of individual pump and gate

processes. These details are not shown in Figure 4.11.

The LOCKSET SYSTEM and TRAFFIC DEMAND processes are connected by request, acquire, and depart

actions. White and black box notation shows dependencies of the actions. For example, a ship will

request transit of the lock system – the request is the requirement, the lockset system provides for

processing of the request.

With this process hierarchy in place, the fundamental question is: can it lead to process

models that are smaller (i.e., abstract) and/or capable of validating properties? We explore the

potential benefits of the opportunity by defining alphabets for each process and then building tables

68

Model of Lockset Behavior

[1..NoShips].{east, west}.acquire
TRAFFIC_DEMAND LOCKSET_SYSTEM

[1..NoShips].{east, west}.request

Abstract View

[1..NoShips].{east, west}.depart

Processes for Validation of System Properties

LOCK_OCCUPANCYLOWER_PUMPS RAISE_PUMPS

Figure 4.10: Schematic for development of simplified models of lockset system behavior. White
dots represent requirements. Black dots represent provisions.

EASTBOUND_SHIPCONTROL WESTBOUND_SHIPCONTROL

SCHEDULERLOCKSET_CONTROL

depart

acquire

request

PUMPSYSTEM GATESYSTEM

PASSAGEWAY_CONTROL_DESCEND

PASSAGEWAY_SYSTEM

PASSAGEWAY_CONTROL_ASCEND

LOCKSET_SYSTEM

departAscendCommends DescendCommands

Figure 4.11: Schematic for development of simplified models of lockset system behavior. White
dots represent requirements. Black dots represent provisions.

69

of action-process dependencies. The latter, in turn, allow for assembly of viewpoint-action-process

dependencies.

4.2.2 Alphabets for Models of Traffic Demand and Lockset Behavior

By default, processes in LTSA are defined through the specification of sequences of actions.

These actions, in turn, define an alphabet from which processes are assembled.

When models of lockset-level behavior are constructed with one east-bound ship and one

west-bound ship, the traffic demand and the lockset system alphabets have 6 and 28 actions re-

spectively. See Tables 4.2 and 4.3. The model of traffic demand is composed from 4 processes. The

lockset system model is composed from 11 processes.

4.2.3 Viewpoint-Action-Process Traceability

To systematically determine which parts of the behavior model can be omitted without

affecting a pre-defined viewpoint, we propose that the process-action dependency be reversed. That

is, for each action (or, when appropriate, group of actions) a list of dependent processes is assembled.

Then, if a viewpoint is defined in terms of critical actions, traceability links can be established from

a viewpoint to dependent actions to dependent processes. Table 4.5 shows traceability dependencies

in the pathway from viewpoints, to actions, to dependent processes.

Viewpoint 1. Simplified model of ship movement (i.e., a minimal version LOCK SYSTEM),

Viewpoint 2. Passageway Safety against Flooding (i.e., LOWER PUMPS and RAISE PUMPS), and

Viewpoint 3. Passageway Occupancy (i.e., LOCK OCCUPANCY).

All three viewpoints can be evaluated through the composition of SCHEDULER, SHIPCONTROL and

PASSAGECONTROL processes (and variations thereof) in a manner consist with the process hierarchy

defined in Figure 4.11, i.e.,

||LOCKSET_CONTROL = (SCHEDULER || WESTBOUND_SHIPCONTROL || EASTBOUND_SHIPCONTROL).

||PASSAGEWAY_SYSTEM = (WESTBOUND_PASSAGECONTROL || EASTBOUND_PASSAGECONTROL).

||LOCKSET_SYSTEM = (LOCKSET_CONTROL || PASSAGEWAY_SYSTEM).

The underlying assumption in this model is that the processes LOCKSET CONTROL and PASSAGEWAY SYSTEM

will be autonomous and only synchronize through shared actions. As implemented, however,

70

Process Alphabet

EASTBOUND_TRAFFIC.EASTBOUND_SHIPS.1:east:SHIP [1].east.{acquire, depart, request}

EASTBOUND_TRAFFIC.EASTBOUND_REQUESTS [1].east.request

WESTBOUND_TRAFFIC.WESTBOUND_SHIPS.1:west:SHIP [1].west.{acquire, depart, request}

WESTBOUND_TRAFFIC.WESTBOUND_REQUESTS [1].west.request

Table 4.2: Alphabet for model of traffic demand.

Process Alphabet

SCHEDULER {[1].{east, west}.{acquire, depart, request},

{ascend, descend, resethigh, resetlow}}

WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL [1].west.{acquire, request, depart}

EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL [1].east.{acquire, request, depart}

WESTBOUND_PASSAGECONTROL. {[1].west.{{depart, enterlock1, enterlock2, exitlock2},

{1}::west:PASSAGECONTROL_DESCEND {high, low}.{closegate, opengate, pumpdown, pumpup},

middle.{closegate, opengate}}, {descend, resethigh}}

EASTBOUND_PASSAGECONTROL. {[1].east.{{depart, enterlock1, enterlock2, exitlock2},

{1}::east:PASSAGECONTROL_ASCEND {high, low}.{closegate, opengate, pumpdown, pumpup},

middle.{closegate, opengate}}, {ascend, resetlow}}

PUMPSYSTEM.low:PUMP low.{pumpdown, pumpup}

PUMPSYSTEM.high:PUMP high.{pumpdown, pumpup}

GATESYSTEM.low:GATE low.{closegate, opengate}

GATESYSTEM.middle:GATE middle.{closegate, opengate}

GATESYSTEM.high:GATE high.{closegate, opengate}

LOCK_OCCUPANCY [1].{east, west}.{acquire, depart}

Table 4.3: Alphabet for lockset system model and LOCK OCCUPANCY process needed for vali-
dation of lock occupancy.

71

Sets of Actions Dependent Processes

ascend SCHEDULER

resetlow EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

descend SCHEDULER

resethigh WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

[1].west.{acquire, request} SCHEDULER

WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

[1].east.{acquire, request} SCHEDULER

EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

[1].east.depart SCHEDULER

EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

[1].west.depart SCHEDULER

WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

low.{pumpdown, pumpup} PUMPSYSTEM.low:PUMP

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

high.{pumpdown, pumpup} PUMPSYSTEM.high:PUMP

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

low.{closegate, opengate} GATESYSTEM.low:GATE

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

middle.{closegate, opengate} GATESYSTEM.middle:GATE

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

high.{closegate, opengate} GATESYSTEM.high:GATE

WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

[1].west.{ enterlock1, WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

enterlock2, exitlock2 }

[1].east.{ enterlock1, EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

enterlock2, exitlock2 }

Table 4.4: Action-process relation ships in lockset system model.

72

Viewpoint 1: Simplified model of ship movement (i.e., processes LOCK_SYSTEM)

Defining Actions Dependent Processes

[j:1..NoShips].east.request SCHEDULER

[j:1..NoShips].east.acquire WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

[j:1..NoShips].east.depart EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

[j:1..NoShips].west.request EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

[j:1..NoShips].west.acquire WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

[j:1..NoShips].west.depart

EASTBOUND_TRAFFIC.EASTBOUND_SHIPS.1:east:SHIP

EASTBOUND_TRAFFIC.EASTBOUND_REQUESTS

WESTBOUND_TRAFFIC.WESTBOUND_SHIPS.1:west:SHIP

WESTBOUND_TRAFFIC.WESTBOUND_REQUESTS

Viewpoint 2: Passageway Safety against Flooding (i.e., processes LOWER_PUMPS and RAISE_PUMPS)

Defining Actions Dependent Processes

ascend, SCHEDULER

descend, EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

resetlow, WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

resethigh, WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

[j:1..NoShips].east.acquire EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

[j:1..NoShips].east.depart

[j:1..NoShips].west.acquire EASTBOUND_TRAFFIC.EASTBOUND_SHIPS.1:east:SHIP

[j:1..NoShips].west.depart EASTBOUND_TRAFFIC.EASTBOUND_REQUESTS

WESTBOUND_TRAFFIC.WESTBOUND_SHIPS.1:west:SHIP

WESTBOUND_TRAFFIC.WESTBOUND_REQUESTS

Viewpoint 3: Passageway Occupancy (i.e., process LOCK_OCCUPANCY)

Defining Actions Dependent Processes

[j:1..NoShips].east.{acquire} SCHEDULER

[j:1..NoShips].east.{depart} EASTBOUND_PASSAGECONTROL.{1}::east:PASSAGECONTROL_ASCEND

[j:1..NoShips].west.{acquire} WESTBOUND_PASSAGECONTROL.{1}::west:PASSAGECONTROL_DESCEND

[j:1..NoShips].west.{depart} WESTBOUND_SHIPCONTROL.{1}::west:SHIPCONTROL

EASTBOUND_SHIPCONTROL.{1}::east:SHIPCONTROL

EASTBOUND_TRAFFIC.EASTBOUND_SHIPS.1:east:SHIP

EASTBOUND_TRAFFIC.EASTBOUND_REQUESTS

WESTBOUND_TRAFFIC.WESTBOUND_SHIPS.1:west:SHIP

WESTBOUND_TRAFFIC.WESTBOUND_REQUESTS

Table 4.5: Schematic for viewpoint-action-process traceability in lockset model.

73

PASSAGEWAY SYSTEM is not fully autonomous and, in fact, only responds to actions instigated by

the scheduler (i.e., a master-slave relationship among processes). Moreover, although the east- and

west-bound passageway processes share common actions (e.g., enterlock1, enterlock2) and theo-

retically synchronize on those actions, in practice, the scheduler process ensures that this never

happens – the canal system is handling either an east-bound ship or a west-bound ship, but never

east- and west-bound ships concurrently. Together these observations suggest that reliable evalu-

ation of the viewpoints may be possible by using even fewer processes than as indicated in Table

4.5.

4.2.4 Viewpoint 1: Composition of Behavior for Ship Movement

This viewpoint is motivated by the need for a simplified model of ship movement (i.e., a

minimal version LOCK SYSTEM), which downstream, will be suitable for inclusion in a canal-level

model of behavior. With the above-mentioned observations in place, the fragment of FSP code:

minimal ||LOCKSET_CONTROL = (SCHEDULER || WESTBOUND_SHIPCONTROL || EASTBOUND_SHIPCONTROL).

minimal ||PASSAGEWAY_SYSTEM = (WESTBOUND_PASSAGECONTROL || EASTBOUND_PASSAGECONTROL) @ {

resethigh, resetlow, ascend, descend,

[S].east.depart, [S].west.depart }.

// Lockset system that interacts with the traffic demand model...

minimal ||LOCKSET_SYSTEM1 = (LOCKSET_CONTROL).

// Lockset system that omits details of the pump and gate operations

minimal ||LOCKSET_SYSTEM2 = (LOCKSET_CONTROL || PASSAGEWAY_SYSTEM).

// ===

// Viewpoint 1. Composition of Behavior for Ship Movement.

// ===

minimal ||LOCKSET_BEHAVIOR1 = (LOCKSET_SYSTEM1 || TRAFFIC_DEMAND) @ {

[S].{east,west}.request,

[S].{east,west}.acquire,

[S].{east,west}.depart }.

minimal ||LOCKSET_BEHAVIOR2 = (LOCKSET_SYSTEM2 || TRAFFIC_DEMAND) @ {

[S].{east,west}.request,

[S].{east,west}.acquire,

[S].{east,west}.depart }.

74

implements and minimizes two versions of LOCKSET SYSTEM, one that includes LOCKSET CONTROL

and PASSAGEWAY SYSTEM, and a second model LOCKSET SYSTEM based on LOCKSET CONTROL alone.

Notice that for the PASSAGEWAY SYSTEM process we only carry forward actions that are critical

to communication between LOCKSET CONTROL and PASSAGEWAY SYSTEM (i.e., resethigh, resetlow,

ascend, descend), and/or the ship movement model (i.e., [S].east.depart, [S].west.depart). Finally,

two versions of lockset behavior are composed.

Figures 4.12 and 4.13 show representative lockset and lockset-system behaviors when No-

Ships = 1. The important point to note is that east- and west-bound requests for transit can

arrive in any order. However, once a request is made, it cannot be made again until transit of the

locksystem is complete. Moreover, in the case where one east-bound request and one west-bound

request have been made, the east-bound request will acquire access to the lockset system first. This

strategy is encoded within the scheduler.

Scalability of the Lockset Behavior Model. Table 4.6 shows the size of the constituent

processes as a function of NoShips.

No E-W Ship TRAFFIC_DEMAND SCHEDULER LOCKSET_CONTROL PASSAGEWAY_SYSTEM

Ships Model States States Minimized States Minimized States

===

1 [1..1] 9 23 26 4

2 [1..2] 324 81 26 4

3 [1..3] 6,561 204 26 4

===

No E-W Ship LOCKSET_SYSTEM1 LOCKSET_SYSTEM2 LOCKSET_BEHAVIOR1 LOCKSET_BEHAVIOR2

Ships Model Minimized States Minimized States Minimized States Minimized States

===

1 [1..1] 26 26 12 12

2 [1..2] 26 26 48 48

3 [1..3] 26 26 108 108

===

Table 4.6: No of states in the lockset behavior model for NoShips = 1, 2 and 3.

Not only are the process sizes several orders of magnitude smaller than in the initial formulation (for

details, see Table 4.1), but the computational procedure remains computationally tractable. The

dual strategy of only including processes related to a specific decision, and incrementally assembling

minimized processes has a huge impact on the computational feasibility of the analysis. As a case

75

Figure 4.12: Lockset control for NoShips = 1.

Figure 4.13: Lockset behavior for NoShips = 1.

76

Figure 4.14: Passageway system for NoShips = 1.

in point, consider the PASSAGEWAY SYSTEM model. Pump and gate processes each have two states.

The decision to exclude three pump and two gate processes from the process model automatically

reduces the size of the process model by a factor of 2*2*2*2*2 = 32. Still, when NoShips = 3, the

unminimized PASSAGEWAY SYSTEM model has 15*15 = 225 states. The minimized model has only 4

states and, in fact, this doesn’t change with increasing numbers of ships.

4.2.5 Viewpoint 2: Composition for Verification of Safety Against Flooding

Viewpoint 2 focuses on a minimal process composition for verification of safety against

flooding. Flooding will occur if a gate is opened when there is an imbalance in water levels on

either side of the gate. As already explained, safety properties can be defined through the FSP

code:

property LOWER_PUMPS = ([j:1..NoShips].east.acquire ->

ascend -> [j].east.depart -> [j].east.acquire ->

resetlow -> [j].east.depart -> LOWER_PUMPS).

property RAISE_PUMPS = ([j:1..NoShips].west.acquire ->

descend -> [j].west.depart -> [j].west.acquire ->

resethigh -> [j].west.depart -> RAISE_PUMPS).

The first property states, for example, that if the canal handles a series of east-bound transit

requests then an ascend operation should always be followed by a resetlow action, the latter being

77

responsible for lowering water levels in the pumps. Now, instead of verifying these properties

against the complete process model, we simply check safety against LOCKSET SYSTEM1, i.e.,

||SYSTEM_FLOOD_CHECK1 = (LOCKSET_SYSTEM1 || LOWER_PUMPS).

||SYSTEM_FLOOD_CHECK2 = (LOCKSET_SYSTEM1 || RAISE_PUMPS).

Traces to property violations in the lower and upper pumps are as follows:

Trace to property violation in LOWER_PUMPS: Trace to property violation in RAISE_PUMPS:

1.east.request 1.east.request

1.west.request 1.east.acquire

ascend ascend

1.east.depart 1.east.depart

1.east.request 1.east.request

1.west.acquire 1.west.request

descend 1.east.acquire

1.west.depart resetlow

1.east.acquire 1.east.depart

ascend 1.west.acquire

resethigh

Here we see that two ascend operations can occur, but only if they are separated by a descend

operation (i.e., a west-bound ship transits the system). In this particular case the safety violation

is okay because the west-bound ship will lower the water level, thereby allowing the second ascend

operation to proceed safely.

4.2.6 Viewpoint 3: Composition for Verification of Passageway Occupancy

This viewpoint model is designed for verification that the lockset control will not act in a

manner inconsistent with physical constraints on the lockset chamber occupancy. Again, the lock

occupancy constraint can be represented:

LOCK_OCCUPANCY = SPACES[1],

SPACES[i:0..1] = (when(i>0)

[j:1..NoShips].east.acquire -> SPACES[i-1]

| [j:1..NoShips].west.acquire -> SPACES[i-1]

| when(i<1)

[j:1..NoShips].east.depart -> SPACES[i+1]

| [j:1..NoShips].west.depart -> SPACES[i+1]).

Validation of the lock occupancy property is achieved through its composition with LOCKSET SYSTEM1,

i.e.,

78

||LOCK_OCCUPANCY_CHECK1 = (LOCKSET_SYSTEM1 || LOCK_OCCUPANCY).

79

Chapter 5

Behavior Modeling and Validation of
Canal-Level Operations

Now that simplified models of lockset behavior are in place, we can move onto the specifi-

cation, composition, and validation of behavior models for the complete canal operation. This step

forward requires several important extensions to the model. First, the traffic demand model will

be expanded to include ascend/descend operations through the three locksets; in turn, this change

will trigger minor adjustments to lockset-level schedulers. Second, functionality of the scheduler

will be extended so that it can properly respond to maintenance/emergency events. Overall control

and scheduling of traffic activities in response to an emergency/maintenance will be handled by a

canal-level monitor process.

We already know from Chapter 4 that the lockset-level model of behavior is safe and that

it satisfies liveliness/progress checks. Safety checks are compositional meaning that if a safety

property is satisfied at the lockset level of concern, then it will also be satisfied at the canal level.

But progress properties are not compositional. We will see that very subtle features in the lockset-

level scheduler (not important to safety or progress) suddenly become critically important at the

canal level. Thus, in order to guarantee progress properties, this chapter also contains a fourth

revision of the scheduler process. Finally, we will see that because the Pacific, Middle and Atlantic

locksets have behavior models that operate independently (i.e., no coupling of actions between

models), a key challenge is state explosion. To overcome this problem (or, at least, keep state

explosion at bay), strategies of targeted abstraction developed in Chapter 4 will also be applied to

the full canal model.

Appendix 3 contains the LTSA source code for the full canal model. Appendix 4 contains

extensions of the full canal model to include provision for maintenance and emergency concerns.

80

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
Multi−Scheduler Design and Application

Atlantic
Scheduler Scheduler

Pacific Middle
Scheduler

AscendingDescending

Ascending Descending

Figure 5.1: System-level view of scheduling/control of ship behaviors. See Appendix 3.

Breakdown

BreakdownBreakdown

CANAL_TRAFFIC_DEMAND

WESTBOUND_CANAL_TRAFFICEASTBOUND_CANAL_TRAFFIC

CANAL

MONITOR

LOCKSET_SYSTEMLOCKSET_SYSTEMLOCKSET_SYSTEM

ATLANTICPACIFIC MIDDLE

restart

PANAMA_CANAL SYSTEM

restart

restart

Figure 5.2: Process architecture for full canal model. White dots represent requirements. Black
dots represent provisions.

81

5.1 Process Architecture for the Full Canal Model

Figures 5.1 and 5.2 contain birds-eye views of canal-level transit operations and schematics

of the process architecture for the full canal model (white dots represent requirements; black dots

represent provisions). The canal traffic demand model will be a composition of EASTBOUND and

WESTBOUND traffic. East-bound ships will ascend the Pacific and Middle locksets, cross lake Gatun

(details not shown), and then descend the Atlantic lockset. West-bound ships will ascend and

descend the Atlantic and Pacific and Middle locksets respectively.

The Panama Canal System corresponds to a parallel composition of three lockset-level

processes (i.e., the Pacific, Middle and Atlantic lockset systems). As already noted, east-bound

ships will ascend through the Pacific and Middle locksets. West-bound ships will ascend through

the Atlantic lockset. To accommodate the latter, a mirror version of the lockset scheduler will be

implemented (i.e., where west-bound ships ascend the lockset).

A canal monitor process will will be responsible for coordinating transit activities dur-

ing maintenance and emergency events, and for restoring normal operations after the event has

past. The canal monitor will communicate to lockset level scheduler processes which, in turn, will

synchronize with passageway controller processes. We employ the action set:

set Breakdown = { emergency, maintenance }

to simplify the description of communication between the lockset and monitor processes.

The two principle design concerns at the canal level are: (1) ensuring maintenance and

emergency events are properly handled, and (2) ensuring progress checks at the lockset level prop-

agate up to the canal level.

5.2 Traffic Demand Model

The full canal traffic demand model is a direct extension of lockset traffic demand model.

For east-bound traffic, transit requests will be handled at the Pacific lockset in the same order

in which they are made. Similarly, for west-bound traffic, transit requests will be handled at the

Atlantic lockset in the same order in which they are made. For both east- and west-bound traffic,

transit is simply defined as a chain of three lockset traversals.

82

The LTSA source code is as follows:

// ===

// Create system-level model of east- and west-bound traffic demand.

// ===

// Create circular queue of east- and west-bound transit requests.

EASTBOUND_REQUESTS = QUEUE1 [1],

QUEUE1[i:S] = ([i].east.request -> QUEUE1 [i%NoShips + 1]).

WESTBOUND_REQUESTS = QUEUE2 [1],

QUEUE2[i:S] = ([i].west.request -> QUEUE2 [i%NoShips + 1]).

// Create circular queue of east-bound ship traffic

EASTBOUND_CANAL_SHIPS = (pac.[i:S].east.request ->

pac.[i].east.acquire ->

pac.[i].east.depart ->

mid.[i].east.request ->

mid.[i].east.acquire ->

mid.[i].east.depart ->

atl.[i].east.request ->

atl.[i].east.acquire ->

atl.[i].east.depart -> EASTBOUND_CANAL_SHIPS).

||EASTBOUND_CANAL_REQUESTS = (pac:EASTBOUND_REQUESTS ||

mid:EASTBOUND_REQUESTS ||

atl:EASTBOUND_REQUESTS).

||EASTBOUND_CANAL_TRAFFIC = (EASTBOUND_CANAL_SHIPS ||

EASTBOUND_CANAL_REQUESTS).

// Create circular queue of west-bound traffic

WESTBOUND_CANAL_SHIPS = (atl.[i:S].west.request ->

atl.[i].west.acquire ->

atl.[i].west.depart ->

mid.[i].west.request ->

mid.[i].west.acquire ->

mid.[i].west.depart ->

pac.[i].west.request ->

pac.[i].west.acquire ->

pac.[i].west.depart -> WESTBOUND_CANAL_SHIPS).

||WESTBOUND_CANAL_REQUESTS = (atl:WESTBOUND_REQUESTS ||

mid:WESTBOUND_REQUESTS ||

pac:WESTBOUND_REQUESTS).

||WESTBOUND_CANAL_TRAFFIC = (WESTBOUND_CANAL_SHIPS ||

WESTBOUND_CANAL_REQUESTS).

// Compose models of canal traffic demand and lockset actions.

83

minimal ||CANAL_TRAFFIC_DEMAND = (WESTBOUND_CANAL_TRAFFIC ||

EASTBOUND_CANAL_TRAFFIC).

Points to note:

1. The full canal system will be modeled as a composition of three lockset systems (i.e., pac:SCHEDULER,

mid:SCHEDULER and atl:SCHEDULER) plus the appropriate ship control processes. The traf-

fic demand model will be a composition of east- and west-bound traffic demand processes.

The Panama Canal system model will be a composition of three lockset-level processes (i.e.,

pac:SCHEDULER, mid:SCHEDULER and atl:SCHEDULER) plus a canal monitor process. Key

steps in the traffic demand model will synchronize with scheduler actions – for example,

pac.[i].east.acquire indicates that the i-th east-bound ship acquires permission to enter

the Pacific lockset.

2. Actions of the form atl:WESTBOUND REQUESTS ensure that requests are handled in the same

order that they are made. Notice that this occurs at each of the three lock sets.

3. The lockset-level behavior model assumed continuous traffic demand. In the full canal model,

transit operations in one or more directions may be halted in response to lockset maintenance

and/or emergency events.

5.3 Composition of Full Canal Model

5.3.1 Preliminary Composition

East and west-bound ascend operations are handled by the scheduler processes SCHEDULER EBA

and SCHEDULER WBA. Composition of the canal-level behavior model involves carrying forward only

those actions associated with ship transit operations and/or handling of emergency and mainte-

nance operations.

// ===

// Compose and minimize lockset system models. Focus only on ship actions ..

// ===

84

minimal ||PACIFIC_LOCKSET_SYSTEM = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL || pac:EASTBOUND_SHIPCONTROL) @ {

pac.[S].{east,west}.{request, acquire, depart }}.

minimal ||MIDDLE_LOCKSET_SYSTEM = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL || mid:EASTBOUND_SHIPCONTROL) @ {

mid.[S].{east,west}.{request, acquire, depart }}.

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL || atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.{request, acquire, depart }}.

The canal-level lockset system is given by the parallel composition of Pacific, Middle and Atlantic

lock sets, i.e.,

minimal ||LOCKSET_SYSTEM = (PACIFIC_LOCKSET_SYSTEM ||

MIDDLE_LOCKSET_SYSTEM ||

ATLANTIC_LOCKSET_SYSTEM).

The complete model of canal behavior is given by:

minimal ||CANAL_BEHAVIOR = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM).

5.3.2 Progress Checks

From the previous chapter we already know that once ship makes a request to transit a

lockset it will eventually transit the system. This property is guaranteed through design of the

lockset-level scheduler. But progress properties are not compositional – just because a sub-system

works doesn’t mean that progress at the system level will also occur.

The uni-directional traffic model compiles and runs without a problem. However, when

the full canal model is composed with a bi-directional traffic model, the result in a progress error.

The detailed trace of actions to deadlock is as follows:

Bi-Directional Traffic Interpretation

Progress Check...

-- States: 93 Transitions: 149 Memory used: 3036K

85

Finding trace to cycle...

Finding trace in cycle...

Progress violation for actions:

{atl, mid, pac}[1].{east, west}.{acquire, depart, request}

Trace to terminal set of states:

atl.1.west.request -- West-bound ship transits

atl.1.west.acquire Atlantic lockset.

atl.1.west.depart

pac.1.east.request -- East-bound ship transits

pac.1.east.acquire Pacific lockset.

pac.1.east.depart

mid.1.east.request -- East-bound ship transits

mid.1.east.acquire Middle lockset.

mid.1.east.depart

mid.1.west.request -- West-bound ship requests transit of Middle lockset.

atl.1.east.request -- East-bound ship requests transit of Atlantic lockset.

Cycle in terminal set:

Actions in terminal set:

{}

Progress Check in: 32ms

As illustrated in Figure 5.3, this scenario corresponds to the situation where two ships successfully

traverse a small number of locksets and then simply deadlock.

MIDDLE

CANAL_TRAFFIC_DEMAND

WESTBOUND_CANAL_TRAFFICEASTBOUND_CANAL_TRAFFIC

LOCKSET_SYSTEMLOCKSET_SYSTEMLOCKSET_SYSTEM

ATLANTICPACIFIC

Progress Violation

PANAMA_CANAL SYSTEM

Figure 5.3: Schematic of progress violations in full canal model. White dots represent requirements.
Black dots represent provisions.

86

A detailed examination of the trace reveals the following points:

1. A west-bound ship traverses the Atlantic lockset. Since their no east-bound ships waiting

transit the lockset, the current traffic direction is set to West.

2. Then, an east-bound ship traverses the Pacific lockset. Again, since their no west-bound ships

waiting to immediately transit the lockset, the current traffic direction is set to East.

3. Step 2 is repeated for the Middle lockset. The ship departs the lockset with the current traffic

direction set to East.

4. The deadlock occurs when an east-bound ship attempts to enter the Atlantic lockset and a

west-bound ship attempts to enter the Middle lockset.

At the point of deadlock both ships are attempting to acquire the resources of a lockset where there

is no oncoming traffic, and, where the current traffic direction (i.e., td) opposes the direction of

ship traffic. The first obvious question is: why wasn’t this picked up at lockset level? And second,

if the lockset level model is free of deadlocks, then in what fundamental ways do the lockset- and

canal-level models differ?

The lockset level model is free of deadlocks – that takes care of the first question. So this

moves us onto consideration of the second issue. It is important to note that design of our second

iteration scheduler is based (implicitly) on continuous streams of traffic. When a ship departs the

lockset, the next event is request access to transit the lockset again. However, when a ship departs

a lockset at the canal level, it either proceeds to another lockset or loops around to transit the

canal system again. From an implementation standpoint, this means that a lockset may need to

admit a ship even if it is traveling in a direction that opposes the current traffic direction.

5.3.3 Third Iteration of Lockset-Level Scheduler

To overcome these problems, the third iteration of implementation for the lockset-level

scheduler contains additional tests for when east- and west-bound ships may acquire the lockset.

The implementation also keeps track of the chamber usage.

The details of source code are as follows:

87

const Empty = 0

const Occupied = 1

range ChamberUsage = Empty..Occupied // chamber usage

.... code removed

// Version 1: East-bound ships ascend through lockset (i.e., pacific/middle locksets).

SCHEDULER_EBA = SCHEDULER_EBA[0][0][Empty][East][Low],

SCHEDULER_EBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_EBA[we+1][ww][cu][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_EBA[we][ww+1][cu][td][wl]

// East-bound assignments to ascend the lock system.

| when (ww == 0 && we >= 1 && cu == Empty && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww == 0 && we >= 1 && cu == Empty && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

// East-bound departures from the lock system.

| when (ww >= 1 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][West][High]

| when (ww == 0 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][East][High]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we == 0 && cu == Empty && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we == 0 && cu == Empty && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

// West-bound departures from the lock system.

| when (we >= 1 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][East][Low]

| when (we == 0 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][West][Low]

).

88

In the previous iteration, permission to acquire the lockset was based exclusively on queues of

waiting ships (i.e. we and ww) and the current traffic direction (i.e., td equals either East or West).

The latter requirement is now dropped. In particular, when the west-bound queue is empty an

east-bound ship can acquire the lockset resources, without regard to the current traffic direction.

The same condition holds for west-bound ships. When ships are waiting to transit the lockset in

both the east- and west-bound directions, then the current traffic direction alternates between East

and West (i.e., e-w-e-w...). This is the implementation of fairness.

5.4 Viewpoint-Specific Behavior

The third iteration scheduler has a slightly larger number of states than its second iteration

counterpart (e.g., when NoShips = 1 the second and third generation schedulers have 23 and 33

states respectively). Furthermore, when NoShips = 1, the minimized individual locksets and canal

behavior processes have 12 and 371 states respectively. LOCKSET SYSTEM has 123 = 1,728 states.

Increasing NoShips to 2 results in individual lockset process models having 64 states. The composed

LOCKSET SYSTEM has 643 = 262,144 states. A run-time error occurs during the minimization of 218

states in the canal behavior process.

In all of these cases, graphical representations of the state models are too large to be useful.

Hence, we simplify our examination of overall canal-level behavior by creating viewpoint-specific

behavioral abstractions. Two cases are considered here.

Lockset-Level Behavior. The fragment of code:

minimal ||CANAL_VIEWPOINT1 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

pac.[S].{east,west}.request, pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

creates a minimal full canal model with all actions hidden except pac.[S].east,west.request,

pac.[S].east,west.acquire and pac.[S].east,west.depart. In other words, this viewpoint

focuses exclusively on canal-level behavior at the Pacific lockset. See Figure 5.4.

Behavior of West-Bound Ships. The fragment of code:

minimal ||CANAL_VIEWPOINT3 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

89

Figure 5.4: Behavior of Pacific Lockset when NoShips = 1.

Figure 5.5: Behavior of west-bound ships when NoShips = 1.

90

{pac,mid,atl}.[S].west.request, {pac,mid,atl}.[S].west.depart }.

creates a minimal full canal model with all actions hidden except those associated with west-bound

traffic. See Figure 5.5.

5.5 Maintenance, Accident and Emergency Concerns

Continual maintenance work on the Panama Canal and its associated facilities is needed

to keep it in good working operation. This is typical of many large-scale infrastructure systems.

Maintenance activities include dredging channels, scheduling overhauls of locks, and repairing and

replacing machinery [1]. As previously mentioned, some maintenance activities on locksets are

only possible when it is out-of-operation. Accidents are primarily restricted to collisions in fog and

between ships sharing the same lockset (not modeled in this study). Fortunately, the number of

accidents is small (e.g., only 10 reported in 2006). The Panama Canal Authority has an emergency

plan in place to deal with oil pollution [1, 34].

Modeling Emergency and Maintenance Concerns. We assume that emergency and main-

tenance events will both originate at the lockset-level (e.g., due to a collision). While emergency

events can occur any time, maintenance can be scheduled to occur only when the lock is vacant.

In either case, the lockset scheduler will inform the canal monitor of an event. The canal monitor

will then mandate appropriate restrictions to transit operations in the east- and west- directions.

Our preliminary implementation assumes that all incoming traffic will be immediately

halted. All outgoing traffic will be allowed to continue onwards and clear the system. This simple

policy leads to Figure 5.6, a schematic of system-level response to maintenance/emergency events in

the Pacific, Middle and Atlantic locksets. Schematics for the Pacific, Middle and Atlantic locksets

are shown in columns 1 through 3 respectively. A shaded box indicates that the canal system will

be shut down. An empty box indicates that the canal system can continue operating. Now suppose

that an accident occurs in the Pacific Lockset, for example. It makes sense to let all outgoing

traffic continue their transit to the Atlantic and to halt all incoming traffic. Eventually queues

of ships in the permissible directions of operation will clear and the system will wait until the

maintenance/emergency is cleared and operation restarts.

91

East−Bound Traffic

Pacific Lockset Maintenance / Emergency

Middle Lockset Maintenance / Emergency

Atlantic Lockset Maintenance / Emergency

West−Bound Traffic

West−Bound Traffic

West−Bound Traffic

East−Bound Traffic

East−Bound Traffic

Figure 5.6: Schematic of system-level response to maintenance/emergency events in the Pacific,
Middle and Atlantic locksets.

92

5.5.1 Fourth Iteration of Lockset-Level Scheduler

In the first three iterations of development of the scheduler process, transit operations

are assumed to operate continuously (and without interruption). Now, in response to a mainte-

nance/emergency event, the traffic flow will be constrained in directions consistent with the policies

of Figure 5.6. The set of constants

const Free = 0

const ForceEast = 1

const ForceWest = 2

range ForcedDir = Free..ForceWest

represent the three modes of directional transit operation. To handle these events, a sixth dimension

– “Forced Direction” – is added to the scheduler implementation. Its variables (i.e., fd) are activated

only after the departure of a ship and while another lockset is halted in either an emergency or

maintenance task.

The abbreviated details of FSP code are as follows:

// ===

// Lockset schedulers for east- and west-bound traffic.

// ---

// Variables:

//

// we = number of east-bound ships waiting (0..NoShips).

// ww = number of west-bound ships waiting (0..NoShips).

// td = traffic direction for next ship (East or West).

// cu = chamber usage (Empty, Occupied).

// wl = water level (Low or High).

// fd = forced traffic direction (Free, ForcedEast, ForcedWest).

// ===

// Version 1: East-bound ships ascend through lockset (i.e., pacific/middle locksets).

SCHEDULER_EBA = SCHEDULER_EBA[0][0][Empty][0][Low][Free],

SCHEDULER_EBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel][fd:ForcedDir] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_EBA[we+1][ww][cu][td][wl][fd]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_EBA[we][ww+1][cu][td][wl][fd]

// East-bound assignments to ascend the lock system.

93

.... details removed

// East-bound departures from the lock system.

.... details removed

// Traffic forced in East and West directions

| when (ww >= 1 && cu == Occupied && td == East && wl == High && fd == ForceEast)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][East][High][fd]

| when (ww == 0 && cu == Occupied && td == East && wl == High && fd == ForceWest)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][West][High][fd]

// West-bound assignments to descend the lock system.

.... details removed

// West-bound departures from the lock system.

.... details removed

// Traffic forced in East and West directions

| when (we >= 1 && cu == Occupied && td == West && wl == Low && fd == ForceWest)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][West][Low][fd]

| when (we == 0 && cu == Occupied && td == West && wl == Low && fd == ForceEast)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][East][Low][fd]

// Initiate single directional traffic

| when (cu == Empty && fd == Free)

forceWest -> SCHEDULER_EBA[we][ww][cu][West][wl][ForceWest]

| when (cu == Empty && fd == Free)

forceEast -> SCHEDULER_EBA[we][ww][cu][East][wl][ForceEast]

| when (cu == Empty)

freeflow -> SCHEDULER_EBA[we][ww][cu][td][wl][Free]

// Emergency and Maintenance Functions

| emergency -> emergency_resolved -> restart -> SCHEDULER_EBA[we][ww][cu][td][wl][fd]

| when (cu == Empty)

maintenance_req -> maintenance_complete -> restart ->

SCHEDULER_EBA[we][ww][Empty][td][wl][fd]

).

Points to note:

94

1. The scheduler implementation allows for an emergency event that can occur anytime. Mainte-

nance requests will be accepted only when the lockset is empty (i.e., cu == Empty).

2. By default, permissible directions of traffic flow will be “Free” from constraint. Strategies for

ensuring bi-directional traffic flow are embedded into the logic of the scheduler. Moreover,

in the absence of maintenance/emergency events, the fourth implementation of the scheduler

operates in a manner identical to version 3.

3. Once a maintenance/emergency event occurs, permissible traffic directions at the lockset level

will be constrained to be east-bound (i.e., ForceEast) and west-bound (i.e., ForceWest). Issues

of fairness no longer apply. Instead, the transit goal is to clear the system of traffic.

4. When NoShips = 1, the minimized lockset system model:

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart,

atl.forceWest, atl.forceEast, atl.freeflow,

atl.maintenance_req, atl.restart, atl.emergency }.

contains 72 states (up from 33 states in the previous version). Notice, however, that the

sets of actions associated with transit operations (e.g., request, acquire and depart) are

decoupled from those for maintenance, emergency and forced flow actions. Removing actions

associated with the handling of emergency/maintenance events, i.e.,

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart }.

reduces the model size to 8 states. Conversely, removing actions associated with the ship

transit,

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.forceWest, atl.forceEast, atl.freeflow,

atl.maintenance_req, atl.restart, atl.emergency }.

reduces the model size to only 4 states.

5. Notice that no provision is made for the handling of cascading failures.

95

5.5.2 Canal-Level Monitor Processes

The canal-level monitor process is responsible for restricting transit operations during

and in response to maintenance and emergency events. While the scheduler process has separate

provisions for handling maintenance and emergency events, these differences are not discernible to

the monitor since in both cases, transit operations in the affected lockset are simply halted.

The essential details of FSP code are as follows:

// ===

// Canal Monitor Process interacts with locksets and controls traffic only when

// there is an emergency or maintenance underway.

//

// Activities..

//

// 1. Most of the time the Canal Monitor is just waiting (monitoring)

// 2. Notes an emergency has occur in the atl. and issues shutdown

// 3. Restart occurs when the emergency has been cleared (not right away)

// 4. Issues command for maintenance

//

// Variables

//

// oa = operational mode for Atlantic lockset.

// om = operational mode for Middle lockset.

// op = operational mode for Pacific lockset.

//

// Activities are repeated for each lockset monitor...

// ===

CANAL_MONITOR = CANAL_MONITOR[0][0][0],

CANAL_MONITOR [oa:LockOperation][om:LockOperation][op:LockOperation] = (

// Waiting for a maintenance or emergency event

{atl,mid,pac}.[S].{east,west}.acquire -> wait-> CANAL_MONITOR [oa][om][op]

// Emergency/maintenance event in Atlantic lockset

| when (oa == BiDirectional)

{ atl.emergency, atl.maintenance_req } ->

mid.forceWest -> pac.forceWest -> CANAL_MONITOR [Halted][Descend][Descend]

| when (oa == Halted)

atl.restart -> mid.freeflow -> pac.freeflow -> CANAL_MONITOR [0][0][0]

// Emergency/maintenance event in Middle lockset

| when (om == BiDirectional)

{ mid.emergency, mid.maintenance_req } ->

96

pac.forceWest -> atl.forceEast -> CANAL_MONITOR [Descend][Halted][Descend]

| when (om == Halted)

mid.restart -> pac.freeflow -> atl.freeflow -> CANAL_MONITOR [0][0][0]

// Emergency/maintenance event in Pacific lockset

| when (op == BiDirectional)

{ pac.emergency, pac.maintenance_req } ->

mid.forceEast -> atl.forceEast -> CANAL_MONITOR [Descend][Ascend][Halted]

| when (op == Halted)

pac.restart -> mid.freeflow -> atl.freeflow -> CANAL_MONITOR [0][0][0]

// Ensure that traffic can never be in only one direction through the lock...

| pac.forceEast -> pac.freeflow -> CANAL_MONITOR [oa][om][op]

| atl.forceWest -> atl.freeflow -> CANAL_MONITOR [oa][om][op]

).

// ==

// Control policy for canal monitor forced flow of traffic direction.

// ==

CANAL_MONITOR_TRAFFIC_CONTROL = (

forceEast -> freeflow -> CANAL_MONITOR_TRAFFIC_CONTROL

| forceWest -> freeflow -> CANAL_MONITOR_TRAFFIC_CONTROL).

Points to note:

1. The set of variables

const BiDirectional = 0

const Halted = 1

range LockOperation = BiDirectional..Halted // mode of transit operation.

keeps track of the lockset transit operations.

2. The CANAL MONITOR TRAFFIC CONTROL process implements a control policy for monitor man-

dated traffic flow that basically says forceEast or forceWest actions must be followed by

a freeflow action. Implementation of this policy ensures that the monitor cannot over-ride

strategies of fairness built into the scheduler logic.

3. The CANAL MONITOR and CANAL MONITOR TRAFFIC CONTROL processes have 54 and 3 states

respectively.

97

5.6 Composition of Full Canal Behavior Model

The full canal behavior behavior corresponds to a canal-level traffic demand model com-

posed with the ensemble of lockset-level processes. As indicated by the fragment of code:

// ===

// Complete model of canal behavior

// ===

minimal ||CANAL_MONITOR_SYSTEM = (CANAL_MONITOR ||

pac:CANAL_MONITOR_TRAFFIC_CONTROL ||

mid:CANAL_MONITOR_TRAFFIC_CONTROL ||

atl:CANAL_MONITOR_TRAFFIC_CONTROL).

minimal ||FULL_CANAL_SYSTEM = (LOCKSET_SYSTEM || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_BEHAVIOR = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM).

the procedure for process composition is remarkably straight forward. However, due to the overall

size and number of processes, the principal challenge is one of avoiding state explosion. Consider,

for example, the simplest case: NoShips = 1. The canal-level traffic demand model has 81 states.

The minimized canal monitor system (i.e., CANAL MONITOR SYSTEM) has 21 states. Each of the

minimized lockset system models will have 72 states. Given that the lockset systems are completely

uncoupled processes, and that the monitor is only loosely coupled to the locksets, the fully composed

model will be approximately 723 × 21 = 7,838,208 states. Not surprisingly, minimization of the

FULL CANAL SYSTEM process fails due to a stack overflow!

5.6.1 Viewpoint 1: Focus on Transit Operations

As previously demonstrated, problems of state explosion can be avoided through the sys-

tematic removal of detail not relevant to a particular design concern or viewpoint.

As a case in point, the fragment of code:

98

minimal ||PACIFIC_LOCKSET_SYSTEM1 = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL || pac:EASTBOUND_SHIPCONTROL) @{

pac.[S].{east,west}.request, pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

minimal ||MIDDLE_LOCKSET_SYSTEM1 = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL || mid:EASTBOUND_SHIPCONTROL) @ {

mid.[S].{east,west}.request, mid.[S].{east,west}.acquire,

mid.[S].{east,west}.depart }.

minimal ||ATLANTIC_LOCKSET_SYSTEM1 = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL || atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request, atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart }.

minimal ||LOCKSET_SYSTEM1 = (PACIFIC_LOCKSET_SYSTEM1 || MIDDLE_LOCKSET_SYSTEM1 ||

ATLANTIC_LOCKSET_SYSTEM1).

minimal ||FULL_CANAL_SYSTEM1 = (LOCKSET_SYSTEM1 || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_VIEWPOINT1 = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM1) @ {

pac.[S].{east,west}.request, pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

systematically assembles a full canal behavior model where details not relevant to normal transit

operations are removed. In the LOCKSET SYSTEM processes, for example, only the request, acquire

and depart actions are retained. Actions associated with maintenance and emergency events are

removed from further consideration. As a result, the scheduler process size is reduced to only 8

states (down from 72 states).

For the purposes of illustration, the FULL CANAL VIEWPOINT1 process model focuses on

transit operations at the Pacific lockset alone. The fully composed model contains 81 × 10752 =

870,912 states. The minimized model contains only 8 states. See Figure 5.7.

5.6.2 Viewpoint 2: Focus on Emergency/Maintenance Operations

This viewpoint assumes that the traffic operations function correctly and focuses, instead,

on sequences of actions associated with maintenance and emergency events. The fragment of code:

minimal ||PACIFIC_LOCKSET_SYSTEM2 = (pac:SCHEDULER_EBA ||

99

Figure 5.7: Behavior of ships transiting the Pacific lockset.

Figure 5.8: Abbreviated view of behavior associated with maintenance/emergency events.

100

pac:WESTBOUND_SHIPCONTROL ||

pac:EASTBOUND_SHIPCONTROL) @{

pac.forceWest, pac.forceEast, pac.freeflow,

pac.maintenance_req, pac.restart, pac.emergency}.

minimal ||MIDDLE_LOCKSET_SYSTEM2 = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL ||

mid:EASTBOUND_SHIPCONTROL) @ {

mid.forceWest, mid.forceEast, mid.freeflow,

mid.maintenance_req, mid.restart, mid.emergency}.

minimal ||ATLANTIC_LOCKSET_SYSTEM2 = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.forceWest, atl.forceEast, atl.freeflow,

atl.maintenance_req, atl.restart, atl.emergency}.

minimal ||LOCKSET_SYSTEM2 = (PACIFIC_LOCKSET_SYSTEM2 ||

MIDDLE_LOCKSET_SYSTEM2 ||

ATLANTIC_LOCKSET_SYSTEM2).

minimal ||FULL_CANAL_SYSTEM2 = (LOCKSET_SYSTEM2 || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_VIEWPOINT2 = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM2) @ {

{pac,mid,atl}.forceWest,

{pac,mid,atl}.forceEast,

{pac,mid,atl}.freeflow,

{pac,mid,atl}.maintenance_req,

{pac,mid,atl}.restart,

{pac,mid,atl}.emergency}.

generates LOCKSET SYSTEM processes that contain only the actions associated with emergency, main-

tenance and directed traffic operations. The fully composed model contains 81× 19 = 1,539 states.

Minimization reduces the number of states to 15. Figure 5.8 contains a partial view of behav-

ior associated with maintenance/emergency operations – it shows, in particular, that a mainte-

nance/emergency event at the Atlantic lockset will be followed by actions directing the Middle and

Pacific locksets to process only west-bound traffic.

101

Chapter 6

Conclusions and Future Work

The conclusions of this work are as follows:

1. The Panama Canal is typical of many large-scale infrastructure systems (e.g., buildings; water,

rail, and power networks) in sense that working lifecycles last decades, incremental develop-

ment occurs in a piecemeal fashion, and development procedures are often less than formal.

When engineers do not have models to formally understand behavior, decision making and

design tradeoffs occur in the face of incomplete information and uncertainty. This approach

to design and operation of the Panama Canal has worked for more than nine decades.

2. This project has been motivated by the observation that as modern canal management systems

move toward increased use of automation in their day-to-day operations, a looming problem is

the need for formal approaches to behavior modeling and validation of correctness of system

functionality. Solutions to this problem are complicated by the large number of concurrent

processes defining component- and system-level behavior. Part of this problem can be solved

through hierarchal decomposition of processes, with each level in the hierarchy dealing with

a specific set of design concerns. Decomposition does not solve the problem completely,

however, because naive approaches to the parallel composition of processes quickly become

computationally intractable. To overcome the latter problem, we have proposed a mechanism

for process abstraction via viewpoint-action-process traceability. The repeated application

of abstraction and process minimization leads to behavior models having size that remains

almost constant with respect to problem size (e.g., number of ships traversing the canal

system).

3. This project has been enabled by finite state process formalisms and the labeled transition

analyzer (LTSA). LTSA has its roots in the analysis of computer operating system processes;

yet, as we have shown in this report, fundamental properties for behavior and design can be

102

placed in a canal design setting. When this project began we expected that the definition,

assembly and validation and system processes would be straightforward. We certainly did not

appreciate the critical role that repeated applications of targeted process abstraction would

play in keeping models computationally tractable. And we certainly didn’t expect that we’d

be coding four versions of the lockset level scheduler!

4. Future work will focus on several important extensions. First, in this study we have investigated

the correctness of system functionality with respect to the sequencing of actions. The time

needed to complete these actions has been abstracted from consideration. We are currently

working on a new behavior model of the canal system represented by networks of timed

automata. This extension offers the possibility of formally examining the correctness of canal

management operations in terms of delays.

Although we have talked about the need for sensor-enabled control, the lockset model does

not explicitly contain sensor processes. A second generation of process models would place

sensors at the center of monitoring activities – to detect the arrival of ships, monitor water

levels, and ensure locks are restricted to single use operations. An important benefit of this

approach is that ships do not need to be modeled as processes. Instead, they are simply

viewed as objects that are directed to pass through the canal system. An example of this

approach to modeling can be found in Jeff Magee and Jeff Kramer’s book [24], in the form

of a parcel router (page 295), where packages are sent through a series of splitting chutes

and sensors read their destinations and flip doors open and shut to send the parcels to their

corresponding bins at the end of the chutes.

Acknowledgment. This work reported in this paper was supported, in part, by a summer grant

to the first author from the NSF Research Experiences for Undergraduates (REU) Program.

103

Bibliography

[1] 2008. Panama Canal Maintenance, Britannical Online Encyclopedia, See
http://www.britannica.com/EBchecked/topic/440784/Panama-Canal/40008/Maintenance,
Accessed September 2008.

[2] Arnautovic E., and Kaindl H. Aspects for Crosscutting Concerns in System Architectures. In
CSER: Conference on Systems Engineering Research, University of Southern California, Los
Angeles, April 2003.

[3] Austin M.A. Information-Centric Systems Enginering. Lecture Notes for ENPM 643/ENSE
623, Institute for Systems Research, University of Maryland, College Park, MD 20742., Septem-
ber 2008.

[4] Austin M.A. (with help from Baras J.). An Introduction to Information-Centric Systems
Engineering. Tutorial F06, INCOSE, Toulouse, France, June 2004.

[5] Baier C. and Katoen J.P. Principles of Model Checking. MIT Press, Cambridge, MA 02142,
2008.

[6] Balaguer A. Weighing the future, a lock at a time: six years after taking control of the Panama
Canal, Panamanians face new challenges to keep this vital waterway economically viable and
to protect their livelihood. Americas, 59, January-February 2007.

[7] Bidding: Firms Eye Billions in Expansion Work At Panama Canal. ENR: Engineering News-
Record, 258(12), 2007.

[8] Cheung S.C., and Kramer J. Checking Safety Properties Using Compositional Reachability
Analysis. ACM Transactions on Software Engineering and Methodology, 8(1), January 1999.

[9] Dai, M. D. and Schonfeld, P. Metamodels for Estimating Waterway Delays Through a Series
of Queues. Transportation Research, 32(1):1–19, 1998.

[10] Dams D., Gerth R., Knaack B., and Kuiper R. Partial-Order Reduction Techniques for Real-
Time Model Checking. Formal Aspects of Computing, 10(5-6):469–482, 1998.

[11] DeSalvo, J. S. and Lave. L. B.. An Analysis of Towboat Delays. J. Ttranspn Econ. Policy.,
pages 232–241, 1968.

[12] Devadas S. and Keutzer K. An Automata-Theoretic Approach to Behavioral Equivalence.
Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE Interna-
tional Conference on Computer Aided Design, pages 30–33, November 1990.

104

[13] Famous Software Bugs (Accessed May 2007), 2007. See http://infotech.fanshawec.on.ca/ gsan-
tor/Computing/FamousBugs.htm.

[14] Gribar J.C., and Bocanegro J.A. Passage to 2000 (Moderization of the Panama Canal). Civil
Engineering Magazine, December 1999.

[15] Goguen J. and Grigore Rosu G. Hiding more of hidden algebra. In FM’99 – Formal Methods,
pages 1704–1719. Springer, 1999.

[16] Jackson D. Dependable Software by Design. Scientific American, 294(6), June 2006.

[17] James T. All Locked Up. Computing and Control Engineering, 17:16–21, 2006.

[18] Kaisar E., and Austin M.A. Synthesis and Validation of High-Level Behavior Models for
Narrow Waterway Management Systems. Journal of Computing in Civil Engineering, ASCE,
21(5):373–378, September 2007.

[19] Kaisar E., Austin M.A., and Papadimitriou S. Formal Development and Evaluation of Narrow
Passageway System Operations. European Transport/Transporti Europei, 34:88–104, December
2006.

[20] Lee E.A. Computing Foundations and Practice for Cyber-Physical Systems: A Preliminary
Report. Technical report, University of California, Berkeley, CA 94720, 2007.

[21] Lowry M.R. The Abstraction/Implementation Model of Problem Reformulation. In IJCAI
87, Milan, Italy, August 1987.

[22] Lowry M. and Subramaniam M. Abstraction for analytic verification of concurrent software
systems, 1998.

[23] Magee J.L., and Kramer J. Concurrency: State Models and Java Programs. John Wiley and
Sons, New York, 1999.

[24] Magee J.L., and Kramer J. Concurrency: State Models and Java Programs (2nd Edition).
John Wiley and Sons, New York, 2006.

[25] Magee J.L. Kramer J., Uchitel S. Labeled Transition System Analyzer (LTSA) Home Page.
See:http://www.doc.ic.ac.uk/ jnm/book/ltsa/LTSA.html. 2004.

[26] Maxing Out: Container Ships. Economist, 382, March 3 2007.

[27] Minea M. Partial Order Reduction for Verification of Timed Systems. PhD thesis, Department
of Computer Science, Carnegie Mellon University, 1999.

[28] Moore M. The Bosporus: A Clogged Artery. The Washington Post, 16th November 2000.

[29] Nierstrasz O. and Tsichritzis D., editors. Object-Oriented Software Composition. Prentice-Hall,
1995.

[30] Olsen R. Design Patterns in Ruby. Pearson Education, Boston, MA 02116, 2008.

[31] Osterhout J.K. Scripting: Higher-Level Programming for the 21st century. IEEE Computer,
31(3):23–30, March 1998.

[32] Pagani M. Partial Orders and Verification of Real-Time Systems. In Jonnson B. and Parrow J.,
editor, Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 327–346, Uppsala,
Sweden, 1996.

105

[33] Panama Canal Web Site: http://www.pancanal.com/eng/index.html. Accessed July 2007.

[34] 2008. Panama Canal Locks, Wikipedia, See http://en.wikipedia.org/wiki/Panama Canal Locks,
Accessed September 2008.

[35] Reid R.L. Panama Plans to Expand Canal with Larger Locks. Civil Engineering, 77(1), Janary
2007.

[36] Sangiovanni-Vincentelli A. Automotive Electronics: Trends and Challenges. In Presented at
Convergence 2000, Detroit, MI, October 2000.

[37] Sangiovanni-Vincentelli A., McGeer P.C., Saldanha A. Verification of Electronic Systems : A
Tutorial. In Proceedings of the 33rd Desgin Automation Conference, Las Vegas, 1996.

[38] Sidorova N. Lecture Notes in Process Modeling. 2007. Department of Mathematics and
Computer Science, Eindhoven University, Netherlands.

[39] Sutter H. and Larus J. Software and the Concurrency Revolution. ACM Queue, 3(7):54–62,
1997.

[40] The Panama Canal’s Ultimate Upgrade. Popular Mechanics, 184:56–61, March 2007.

[41] Ting, C.J. and Schonfeld, P. Integrated Control For Series of Waterway Locks. ASCE Journal
of Waterway, Port, Coastal, and Ocean Engineering, 124(4):199–206, July/August 1998.

[42] Uchitel S. Incremental Elaboration of Scenario-Based Specifications and Behavior Models using
Implied Scenarios. PhD thesis, Imperial College, London, England, 2003.

[43] Uchitel S., Kramer J., and Magee J. Incremental Elaboration of Scenario-Based Specifica-
tions and Behavior using Implied Scenarios. ACM Transactions on Software Engineering and
Methodology, 13(1):37–85, January 2004.

[44] Zhu, l., Schonfeld. P., Kim. Y., Flood, I., and Ting, C.J.,. Queuing Network Analysis for
Waterways with Artificial Neural Networks. Artificial intelligence for Engineering Design,
Analysis and Manufacturing, B:365–275, 1998.

106

Appendix 1. Detailed Behavior for a Two-Stage Lockset Module

Here is the source code:

// ===

// Appendix1.lts: Behavior model for a two-stage lockset module.

// ---

//

// -- East- and west-bound traffic demand is modeled arrays of ships organized

// into a circular queue.

// -- The lock is modeled as a space that can be occupied by at most one ship.

// -- Linkage between east/west traffic direction and ascend/descend

// actions is established within the passageway control process.

// -- Gate and pump operations are all controled by the ascend and

// descend passage control processes.

//

// Here we assemble the full model without removal of actions from processes.

//

// Written by: Mark Austin and John Johnson May/August 2008

// ===

const NoShips = 1

range S = 1..NoShips // ship identities

// Simplify notation through sets of actions.

set PumpCommands = { pumpup, pumpdown }

set GateCommands = { opengate, closegate }

set ShipCommands = { acquire, enterlock1, enterlock2, depart }

set Ascendcommands = { ascend, resetlow }

set Descendcommands = { descend, resethigh }

// Setup constants that will used by the scheduler.

const East = 0

const West = 1

range TrafficDirection = East..West // traffic direction for next ship.

const Low = 0

const High = 1

range WaterLevel = Low..High // waterlevel in locks...

// ===

// Create model of east- and west-bound traffic demand.

// Note. Ships don’t care about internal details of the lock system.

// ===

SHIP = (request -> acquire -> depart -> SHIP).

||EASTBOUND_SHIPS = ([i:S]:(east:SHIP)).

||WESTBOUND_SHIPS = ([i:S]:(west:SHIP)).

// Create circular queue of east- and west-bound transit requests.

107

EASTBOUND_REQUESTS = QUEUE1 [1],

QUEUE1[i:S] = ([i].east.request -> QUEUE1 [i%NoShips + 1]).

WESTBOUND_REQUESTS = QUEUE2 [1],

QUEUE2[i:S] = ([i].west.request -> QUEUE2 [i%NoShips + 1]).

||EASTBOUND_TRAFFIC = (EASTBOUND_SHIPS || EASTBOUND_REQUESTS).

||WESTBOUND_TRAFFIC = (WESTBOUND_SHIPS || WESTBOUND_REQUESTS).

// Compose model of traffic demand

||TRAFFIC_DEMAND = (EASTBOUND_TRAFFIC || WESTBOUND_TRAFFIC).

// ===

// Simple models for gate and pump processes.

// ===

GATE = (opengate -> closegate -> GATE).

PUMP = (pumpup -> pumpdown -> PUMP).

||PUMPSYSTEM = (low:PUMP || high:PUMP).

||GATESYSTEM = (low:GATE || middle:GATE || high:GATE).

// ==

// Create east- and west-bound ship control processes

// ==

SHIPCONTROL = (request -> acquire -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]::east:SHIPCONTROL).

||WESTBOUND_SHIPCONTROL = ([i:S]::west:SHIPCONTROL).

// ==

// Lockset-Level Passage Control.

//

// -- Specify sequences of actions for ships ascending and/or

// descending through the lockset system.

// -- Associate ascend/descend operations with east- and

// west-bound traffic. Here we assume that east-bound traffic

// ascends the lockset. West-bound traffic decends the system.

//

// ==

// Sequence of actions for "ascend" operation ...

// Relabel lock operations to match east-bound traffic actions.

PASSAGECONTROL_ASCEND = (ascend -> ASCEND

| resetlow -> low.pumpdown -> high.pumpdown -> ASCEND),

ASCEND = (low.opengate -> enterlock1 -> low.closegate -> low.pumpup ->

middle.opengate -> enterlock2 -> middle.closegate -> high.pumpup ->

high.opengate -> exitlock2 -> high.closegate ->

depart -> PASSAGECONTROL_ASCEND).

||EASTBOUND_PASSAGECONTROL = ([i:S]::(east:PASSAGECONTROL_ASCEND))/{

108

forall [i:S] { ascend/[i].east.ascend },

forall [i:S] { resetlow/[i].east.resetlow }}.

// Sequence of actions for "descend" operation ...

// Relabel lock operations to match west-bound traffic actions.

PASSAGECONTROL_DESCEND = (descend -> DESCEND

| resethigh -> low.pumpup -> high.pumpup -> DESCEND),

DESCEND = (high.opengate -> enterlock1 -> high.closegate -> high.pumpdown ->

middle.opengate -> enterlock2 -> middle.closegate -> low.pumpdown ->

low.opengate -> exitlock2 -> low.closegate ->

depart -> PASSAGECONTROL_DESCEND).

||WESTBOUND_PASSAGECONTROL = ([i:S]::(west:PASSAGECONTROL_DESCEND))/{

forall [i:S] { descend/[i].west.descend },

forall [i:S] { resethigh/[i].west.resethigh }}.

// ===

// Lockset Scheduler that accounts for lock occupancy and number

// of east- and west-bound ships waiting to pass through the lock.

// ---

// Variables:

//

// we = number of east-bound ships waiting (0..NoShips).

// ww = number of west-bound ships waiting (0..NoShips).

// td = traffic direction for next ship (East or West).

// wl = water level (Low or High).

// ===

SCHEDULER = SCHEDULER[0][0][East][Low],

SCHEDULER[we:0..NoShips][ww:0..NoShips][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER[we+1][ww][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER[we][ww+1][td][wl]

// East-bound assignments to ascend the lock system.

| when (ww >= 1 && we >= 1 && td == East && wl == Low) [i:S].east.acquire ->

ascend -> [i].east.depart -> SCHEDULER[we-1][ww][West][High]

| when (ww == 0 && we >= 1 && td == East && wl == Low) [i:S].east.acquire ->

ascend -> [i].east.depart -> SCHEDULER[we-1][ww][East][High]

| when (ww >= 1 && we >= 1 && td == East && wl == High) [i:S].east.acquire ->

resetlow -> [i].east.depart -> SCHEDULER[we-1][ww][West][Low]

| when (ww == 0 && we >= 1 && td == East && wl == High) [i:S].east.acquire ->

resetlow -> [i].east.depart -> SCHEDULER[we-1][ww][East][Low]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we >= 1 && td == West && wl == High) [i:S].west.acquire ->

descend -> [i].west.depart -> SCHEDULER[we][ww-1][East][Low]

| when (ww >= 1 && we == 0 && td == West && wl == High) [i:S].west.acquire ->

descend -> [i].west.depart -> SCHEDULER[we][ww-1][West][Low]

109

| when (ww >= 1 && we >= 1 && td == West && wl == Low) [i:S].west.acquire ->

resethigh -> [i].west.depart -> SCHEDULER[we][ww-1][East][High]

| when (ww >= 1 && we == 0 && td == West && wl == Low) [i:S].west.acquire ->

resethigh -> [i].west.depart -> SCHEDULER[we][ww-1][West][High]).

// ==

// Compose models for lockset-level behavior...

// ==

// Compose lockset system process...

||LOCKSET_SYSTEM = (SCHEDULER ||

WESTBOUND_SHIPCONTROL || EASTBOUND_SHIPCONTROL ||

WESTBOUND_PASSAGECONTROL || EASTBOUND_PASSAGECONTROL ||

PUMPSYSTEM || GATESYSTEM).

// Compose model of lockset system behavior ...

||LOCKSET_BEHAVIOR = (LOCKSET_SYSTEM || TRAFFIC_DEMAND).

// ===

// Validate that a flood will not occur in the lower locks.

// ===

// Check pump operation for a stream of east-bound ships

property LOWER_PUMPS = ([j:1..NoShips].east.acquire ->

ascend -> [j].east.depart -> [j].east.acquire ->

resetlow -> [j].east.depart -> LOWER_PUMPS).

// Check pump operation for a stream of west-bound ships

property RAISE_PUMPS = ([j:1..NoShips].west.acquire ->

descend -> [j].west.depart -> [j].west.acquire ->

resethigh -> [j].west.depart -> RAISE_PUMPS).

||SYSTEM_FLOOD_CHECK1 = (LOCKSET_SYSTEM || LOWER_PUMPS).

||SYSTEM_FLOOD_CHECK2 = (LOCKSET_SYSTEM || RAISE_PUMPS).

// ===

// Validate that at most only one ship can occupy the lock

// ===

// Model lock as a space that can be occupied by at most one ship.

LOCK_OCCUPANCY = SPACES[1],

SPACES[i:0..1] = (when(i>0)

[j:1..NoShips].east.acquire -> SPACES[i-1]

| [j:1..NoShips].west.acquire -> SPACES[i-1]

| when(i<1)

[j:1..NoShips].east.depart -> SPACES[i+1]

| [j:1..NoShips].west.depart -> SPACES[i+1]).

||LOCK_OCCUPANCY_CHECK1 = (LOCKSET_SYSTEM || LOCK_OCCUPANCY).

110

// ===

// Validate progress of ships

// ===

progress EASTPASS = { [S].east.depart }

progress WESTPASS = { [S].west.depart }

// ===

// End!

111

Appendix 2. Simplified Two-Stage Lockset Module

Here is an abbreviated source code listing:

// ===

// Appendix2.lts: Abstract behavior model for a two-stage lockset module.

//

// Written by: Mark Austin and John Johnson September 2008

// ===

const NoShips = 1

range S = 1..NoShips // ship identities

// Simplify notation through sets of actions.

set PumpCommands = { pumpup, pumpdown }

set GateCommands = { opengate, closegate }

set ShipCommands = { acquire, enterlock1, enterlock2, depart }

set Ascendcommands = { ascend, resetlow }

set Descendcommands = { descend, resethigh }

// Setup constants that will used by the scheduler.

const East = 0

const West = 1

range TrafficDirection = East..West // traffic direction for next ship.

const Low = 0

const High = 1

range WaterLevel = Low..High // waterlevel in locks...

// ===

// Create model of east- and west-bound traffic demand.

// Note: Ships don’t care about internal details of the lock system.

// ===

.... Same code as in Appendix 1....

// Create circular queue of east- and west-bound transit requests.

.... Same code as in Appendix 1....

// Compose model of traffic demand

||TRAFFIC_DEMAND = (EASTBOUND_TRAFFIC || WESTBOUND_TRAFFIC).

// ==

// Passageway Control System

// --

//

// Part 1. Simple models for gate and pump processes.

// ==

112

.... Same code as in Appendix 1....

// ==

// Part 2. Lockset-Level Passage Control.

// ==

// Sequence of actions for "ascend" operation ...

// Relabel lock operations to match east-bound traffic actions.

PASSAGECONTROL_ASCEND = (ascend -> ASCEND

| resetlow -> low.pumpdown -> high.pumpdown -> ASCEND),

.... Same code as in Appendix 1....

||EASTBOUND_PASSAGECONTROL = ([i:S]::(east:PASSAGECONTROL_ASCEND))/{

forall [i:S] { ascend/[i].east.ascend },

forall [i:S] { resetlow/[i].east.resetlow }}.

// Sequence of actions for "descend" operation ...

// Relabel lock operations to match west-bound traffic actions.

PASSAGECONTROL_DESCEND = (descend -> DESCEND

| resethigh -> low.pumpup -> high.pumpup -> DESCEND),

.... Same code as in Appendix 1....

||WESTBOUND_PASSAGECONTROL = ([i:S]::(west:PASSAGECONTROL_DESCEND))/{

forall [i:S] { descend/[i].west.descend },

forall [i:S] { resethigh/[i].west.resethigh }}.

// ==

// Lockset Control System

// --

//

// Part 1. Create east- and west-bound ship control processes

// ==

SHIPCONTROL = (request -> acquire -> depart -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]::east:SHIPCONTROL).

||WESTBOUND_SHIPCONTROL = ([i:S]::west:SHIPCONTROL).

// ===

// Part 2. Scheduler for east- and west-bound ships.

// ===

SCHEDULER = SCHEDULER[0][0][East][Low],

SCHEDULER[we:0..NoShips][ww:0..NoShips][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER[we+1][ww][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER[we][ww+1][td][wl]

113

// East-bound assignments to ascend the lock system.

| when (ww >= 0 && we >= 1 && td == East && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER[we-1][ww][East][High]

| when (ww >= 0 && we >= 1 && td == East && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER[we-1][ww][East][High]

// East-bound departures from the lock system.

| when (ww >= 1 && td == East && wl == High)

[S].east.depart -> SCHEDULER[we][ww][West][High]

| when (ww == 0 && td == East && wl == High)

[S].east.depart -> SCHEDULER[we][ww][East][High]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we >= 0 && td == West && wl == High)

[S].west.acquire -> descend -> SCHEDULER[we][ww][West][Low]

| when (ww >= 1 && we >= 0 && td == West && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER[we][ww][West][Low]

// West-bound departures from the lock system.

| when (we >= 1 && td == West && wl == Low)

[S].west.depart -> SCHEDULER[we][ww-1][East][Low]

| when (we == 0 && td == West && wl == Low)

[S].west.depart -> SCHEDULER[we][ww-1][West][Low]).

// ===

// Compose and abstract views of the lockset system

// ===

minimal ||LOCKSET_CONTROL = (SCHEDULER ||

WESTBOUND_SHIPCONTROL ||

EASTBOUND_SHIPCONTROL).

minimal ||PASSAGEWAY_SYSTEM = (WESTBOUND_PASSAGECONTROL ||

EASTBOUND_PASSAGECONTROL) @ {

resethigh, resetlow, ascend, descend,

[S].east.depart, [S].west.depart }.

// Lockset system that interacts with the traffic demand model...

minimal ||LOCKSET_SYSTEM1 = (LOCKSET_CONTROL).

// Lockset system that omits details of the pump and gate operations

minimal ||LOCKSET_SYSTEM2 = (LOCKSET_CONTROL || PASSAGEWAY_SYSTEM).

// ===

// Viewpoint 1. Composition of Behavior for Ship Movement.

// ===

minimal ||LOCKSET_BEHAVIOR1 = (LOCKSET_SYSTEM1 || TRAFFIC_DEMAND) @ {

[S].{east,west}.request,

114

[S].{east,west}.acquire,

[S].{east,west}.depart }.

minimal ||LOCKSET_BEHAVIOR2 = (LOCKSET_SYSTEM2 || TRAFFIC_DEMAND) @ {

[S].{east,west}.request,

[S].{east,west}.acquire,

[S].{east,west}.depart }.

// ===

// Viewpoint 2: Verification of Safety Against Flooding

// ===

property LOWER_PUMPS = ([j:1..NoShips].east.acquire ->

ascend -> [j].east.depart -> [j].east.acquire ->

resetlow -> [j].east.depart -> LOWER_PUMPS).

// Check pump operation for a stream of west-bound ships

property RAISE_PUMPS = ([j:1..NoShips].west.acquire ->

descend -> [j].west.depart -> [j].west.acquire ->

resethigh -> [j].west.depart -> RAISE_PUMPS).

||SYSTEM_FLOOD_CHECK1 = (LOCKSET_SYSTEM2 || LOWER_PUMPS).

||SYSTEM_FLOOD_CHECK2 = (LOCKSET_SYSTEM2 || RAISE_PUMPS).

// ===

// Viewpoint 3: Verification of Passageway Occupancy

// ===

LOCK_OCCUPANCY = SPACES[1],

SPACES[i:0..1] = (when(i>0)

[j:1..NoShips].east.acquire -> SPACES[i-1]

| [j:1..NoShips].west.acquire -> SPACES[i-1]

| when(i<1)

[j:1..NoShips].east.depart -> SPACES[i+1]

| [j:1..NoShips].west.depart -> SPACES[i+1]).

||LOCK_OCCUPANCY_CHECK1 = (LOCKSET_SYSTEM1 || LOCK_OCCUPANCY).

// ===

// Viewpoint 4: Check for Ship Progress

// ===

progress EASTPASS = { [S].east.depart }

progress WESTPASS = { [S].west.depart }

// ===

// End!

115

Appendix 3. Full Canal Design

Here is the source code:

// ===

// Appendix3.lts: Model full canal as a sequence of locksets.

// ---

//

// From a "full canal" viewpoint:

//

// -- East- and west-bound traffic demand is modeled arrays of ships organized

// into a circular queue.

// -- We assume that ships pass through locksets on the pacific and atlantic

// sides of the canal. Ascend/descend operations are as follows:

//

// East-bound ships: pac.ascend -> mid.ascend -> atl.descend

// West-bound ships: atl.ascend -> mid.descend -> pac.descend

//

// -- Lockset models are abstracted to only include request, access and depart

// actions. All actions internal to the lockset are removed from consideration.

// -- Lockset and traffic demand models are developed separately.

//

// Written by: Mark Austin and John Johnson August-September 2008

// ===

const NoShips = 1

range S = 1..NoShips // ship identities

// Simplify notation through sets of actions.

set PumpCommands = { pumpup, pumpdown }

set GateCommands = { opengate, closegate }

set ShipCommands = { acquire, enterlock1, enterlock2, depart }

set Ascendcommands = { ascend, resetlow }

set Descendcommands = { descend, resethigh }

// Setup constants that will used by the schedulers.

const Empty = 0

const Occupied = 1

range ChamberUsage = Empty..Occupied // chamber usage

const East = 0

const West = 1

range TrafficDirection = East..West // traffic direction for next ship.

const Low = 0

const High = 1

range WaterLevel = Low..High // waterlevel in locks...

// ==

// Create east- and west-bound ship control processes

// ==

116

SHIPCONTROL = (request -> acquire -> depart -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]:(east:SHIPCONTROL)).

||WESTBOUND_SHIPCONTROL = ([i:S]:(west:SHIPCONTROL)).

// ===

// Lockset schedulers for east- and west-bound traffic.

// ---

// Variables:

//

// we = number of east-bound ships waiting (0..NoShips).

// ww = number of west-bound ships waiting (0..NoShips).

// td = traffic direction for next ship (East or West).

// wl = water level (Low or High).

// ===

// Version 1: East-bound ships ascend through lockset (i.e., pacific/middle locksets).

SCHEDULER_EBA = SCHEDULER_EBA[0][0][Empty][East][Low],

SCHEDULER_EBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_EBA[we+1][ww][cu][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_EBA[we][ww+1][cu][td][wl]

// East-bound assignments to ascend the lock system.

| when (ww == 0 && we >= 1 && cu == Empty && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww == 0 && we >= 1 && cu == Empty && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High]

// East-bound departures from the lock system.

| when (ww >= 1 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][West][High]

| when (ww == 0 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][East][High]

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we == 0 && cu == Empty && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we == 0 && cu == Empty && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == Low)

117

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low]

// West-bound departures from the lock system.

| when (we >= 1 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][East][Low]

| when (we == 0 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][West][Low]

).

// Version 2: West-bound ships ascend through lockset (i.e., atlantic lockset).

SCHEDULER_WBA = SCHEDULER_WBA[0][0][Empty][West][Low],

SCHEDULER_WBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_WBA[we+1][ww][cu][td][wl]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_WBA[we][ww+1][cu][td][wl]

// West-bound assignments ascend the lock system.

| when (ww >= 1 && we == 0 && cu == Empty && wl == Low)

[S].west.acquire -> ascend -> SCHEDULER_WBA[we][ww-1][Occupied][West][High]

| when (ww >= 1 && we == 0 && cu == Empty && wl == High)

[S].west.acquire -> resetlow -> SCHEDULER_WBA[we][ww-1][Occupied][West][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == Low)

[S].west.acquire -> ascend -> SCHEDULER_WBA[we][ww-1][Occupied][West][High]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == High)

[S].west.acquire -> resetlow -> SCHEDULER_WBA[we][ww-1][Occupied][West][High]

// West-bound departures from the lock system.

| when (we == 0 && cu == Occupied && wl == High && td == West)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][West][High]

| when (we >= 1 && cu == Occupied && wl == High && td == West)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][East][High]

// East-bound assignments descend the lock system.

| when (ww == 0 && we >= 1 && cu == Empty && wl == High)

[S].east.acquire -> descend -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low]

| when (ww == 0 && we >= 1 && cu == Empty && wl == Low)

[S].east.acquire -> resethigh -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == High)

[S].east.acquire -> descend -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == Low)

[S].east.acquire -> resethigh -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low]

// East-bound departures from the lock system.

| when (ww >= 1 && cu == Occupied && wl == Low && td == East)

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][West][Low]

| when (ww == 0 && cu == Occupied && wl == Low && td == East)

118

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][East][Low]

).

// ===

// Compose and minimize lockset system models. Focus only on ship actions ..

// ===

minimal ||PACIFIC_LOCKSET_SYSTEM = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL ||

pac:EASTBOUND_SHIPCONTROL) @ {

pac.[S].{east,west}.request,

pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

minimal ||MIDDLE_LOCKSET_SYSTEM = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL ||

mid:EASTBOUND_SHIPCONTROL) @ {

mid.[S].{east,west}.request,

mid.[S].{east,west}.acquire,

mid.[S].{east,west}.depart }.

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart }.

// ===

// Create system-level model of east- and west-bound traffic demand.

// ===

// Create circular queue of east- and west-bound transit requests.

EASTBOUND_REQUESTS = QUEUE1 [1],

QUEUE1[i:S] = ([i].east.request -> QUEUE1 [i%NoShips + 1]).

WESTBOUND_REQUESTS = QUEUE2 [1],

QUEUE2[i:S] = ([i].west.request -> QUEUE2 [i%NoShips + 1]).

// Create circular queue of east-bound ship traffic

EASTBOUND_CANAL_SHIPS = (pac.[i:S].east.request ->

pac.[i].east.acquire ->

pac.[i].east.depart ->

mid.[i].east.request ->

mid.[i].east.acquire ->

mid.[i].east.depart ->

atl.[i].east.request ->

atl.[i].east.acquire ->

atl.[i].east.depart -> EASTBOUND_CANAL_SHIPS).

||EASTBOUND_CANAL_REQUESTS = (pac:EASTBOUND_REQUESTS ||

mid:EASTBOUND_REQUESTS ||

atl:EASTBOUND_REQUESTS).

119

||EASTBOUND_CANAL_TRAFFIC = (EASTBOUND_CANAL_SHIPS ||

EASTBOUND_CANAL_REQUESTS).

// Create circular queue of west-bound traffic

WESTBOUND_CANAL_SHIPS = (atl.[i:S].west.request ->

atl.[i].west.acquire ->

atl.[i].west.depart ->

mid.[i].west.request ->

mid.[i].west.acquire ->

mid.[i].west.depart ->

pac.[i].west.request ->

pac.[i].west.acquire ->

pac.[i].west.depart -> WESTBOUND_CANAL_SHIPS).

||WESTBOUND_CANAL_REQUESTS = (atl:WESTBOUND_REQUESTS ||

mid:WESTBOUND_REQUESTS ||

pac:WESTBOUND_REQUESTS).

||WESTBOUND_CANAL_TRAFFIC = (WESTBOUND_CANAL_SHIPS ||

WESTBOUND_CANAL_REQUESTS).

// Compose models of canal traffic demand and lockset actions.

minimal ||CANAL_TRAFFIC_DEMAND = (WESTBOUND_CANAL_TRAFFIC || EASTBOUND_CANAL_TRAFFIC).

minimal ||LOCKSET_SYSTEM = (PACIFIC_LOCKSET_SYSTEM ||

MIDDLE_LOCKSET_SYSTEM ||

ATLANTIC_LOCKSET_SYSTEM).

// ===

// Complete model of canal behavior

// ===

minimal ||CANAL_BEHAVIOR = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM).

// ===

// Canal behavior. Viewpoint 1: Focus on actions at pacific lockset.

// ===

minimal ||CANAL_VIEWPOINT1 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

pac.[S].{east,west}.request,

pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

// ==

// Canal behavior. Viewpoint 2: Focus on actions at atlantic lockset.

// ==

minimal ||CANAL_VIEWPOINT2 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart }.

// ==

// Canal behavior. Viewpoint 3: Focus on west-bound traffic alone.

120

// ==

minimal ||CANAL_VIEWPOINT3 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

{pac,mid,atl}.[S].west.request,

{pac,mid,atl}.[S].west.depart }.

// ==

// Canal behavior. Viewpoint 4: Focus on east-bound traffic alone.

// ==

minimal ||CANAL_VIEWPOINT4 = (CANAL_TRAFFIC_DEMAND || LOCKSET_SYSTEM) @ {

{pac,mid,atl}.[S].east.request,

{pac,mid,atl}.[S].east.depart }.

// ===

// End!

121

Appendix 4. Provision for Emergencies and Maintenance

Provision for emergencies and maintenance requires addition of a CANAL MONITOR
process and minor extensions to the scheduler processes. The abbreviated source code is as follows:

// ===

// Appendix4.lts: In this example we had a system-level canal monitor process for

// handling of emergency and maintenance operations.

//

// This requires:

//

// 1. Extensions to the lockset-level schedulers.

// 2. Addition of a CONTROL_MONITOR process for system-wide handling of

// maintenance and emergency events.

//

// Written by: Mark Austin and John Johnson October 2008

// ===

const NoShips = 1

range S = 1..NoShips // ship identities

// Simplify notation through sets of actions.

set PumpCommands = { pumpup, pumpdown }

set GateCommands = { opengate, closegate }

set ShipCommands = { acquire, enterlock1, enterlock2, depart }

set Ascendcommands = { ascend, resetlow }

set Descendcommands = { descend, resethigh }

// Setup constants that will used by the schedulers.

const Free = 0

const ForceEast = 1

const ForceWest = 2

range ForcedDir = Free..ForceWest

const East = 0

const West = 1

range TrafficDirection = East..West // traffic direction for next ship.

const Low = 0

const High = 1

range WaterLevel = Low..High // waterlevel in locks...

const BiDirectional = 0

const Ascend = 1

const Descend = 2

const Halted = 3

range LockOperation = BiDirectional..Halted // mode of transit operation.

const Empty = 0

const Occupied = 1

range ChamberUsage = Empty..Occupied // chamber usage

// ==

// Create east- and west-bound ship control processes

122

// ==

SHIPCONTROL = (request -> acquire -> depart -> SHIPCONTROL).

||EASTBOUND_SHIPCONTROL = ([i:S]:(east:SHIPCONTROL)).

||WESTBOUND_SHIPCONTROL = ([i:S]:(west:SHIPCONTROL)).

// ===

// Lockset schedulers for east- and west-bound traffic.

// ---

// Variables:

//

// we = number of east-bound ships waiting (0..NoShips).

// ww = number of west-bound ships waiting (0..NoShips).

// td = traffic direction for next ship (East or West).

// cu = chamber usage (Empty, Occupied).

// wl = water level (Low or High).

// fd = forced traffic direction (Free, ForcedEast, ForcedWest).

// ===

// Version 1: East-bound ships ascend through lockset (i.e., pacific/middle locksets).

SCHEDULER_EBA = SCHEDULER_EBA[0][0][Empty][0][Low][Free],

SCHEDULER_EBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel][fd:ForcedDir] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_EBA[we+1][ww][cu][td][wl][fd]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_EBA[we][ww+1][cu][td][wl][fd]

// East-bound assignments to ascend the lock system.

| when (ww == 0 && we >= 1 && cu == Empty && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High][fd]

| when (ww == 0 && we >= 1 && cu == Empty && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == Low)

[S].east.acquire -> ascend -> SCHEDULER_EBA[we-1][ww][Occupied][East][High][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == High)

[S].east.acquire -> resetlow -> SCHEDULER_EBA[we-1][ww][Occupied][East][High][fd]

// East-bound departures from the lock system.

| when (ww >= 1 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][West][High][fd]

| when (ww == 0 && cu == Occupied && td == East && wl == High)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][East][High][fd]

// Traffic forced in East and West directions

| when (ww >= 1 && cu == Occupied && td == East && wl == High && fd == ForceEast)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][East][High][fd]

| when (ww == 0 && cu == Occupied && td == East && wl == High && fd == ForceWest)

[S].east.depart -> SCHEDULER_EBA[we][ww][Empty][West][High][fd]

123

// West-bound assignments to descend the lock system.

| when (ww >= 1 && we == 0 && cu == Empty && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low][fd]

| when (ww >= 1 && we == 0 && cu == Empty && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == High)

[S].west.acquire -> descend -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == Low)

[S].west.acquire -> resethigh -> SCHEDULER_EBA[we][ww-1][Occupied][West][Low][fd]

// West-bound departures from the lock system.

| when (we >= 1 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][East][Low][fd]

| when (we == 0 && cu == Occupied && td == West && wl == Low)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][West][Low][fd]

// Traffic forced in East and West directions

| when (we >= 1 && cu == Occupied && td == West && wl == Low && fd == ForceWest)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][West][Low][fd]

| when (we == 0 && cu == Occupied && td == West && wl == Low && fd == ForceEast)

[S].west.depart -> SCHEDULER_EBA[we][ww][Empty][East][Low][fd]

// Initiate single directional traffic

| when (cu == Empty && fd == Free)

forceWest -> SCHEDULER_EBA[we][ww][cu][West][wl][ForceWest]

| when (cu == Empty && fd == Free)

forceEast -> SCHEDULER_EBA[we][ww][cu][East][wl][ForceEast]

| when (cu == Empty)

freeflow -> SCHEDULER_EBA[we][ww][cu][td][wl][Free]

// Emergency and Maintenance Functions

| emergency -> emergency_resolved -> restart -> SCHEDULER_EBA[we][ww][cu][td][wl][fd]

| when (cu == Empty)

maintenance_req -> maintenance_complete -> restart ->

SCHEDULER_EBA[we][ww][Empty][td][wl][fd]

).

// Version 2: West-bound ships ascend through lockset (i.e., atlantic lockset).

SCHEDULER_WBA = SCHEDULER_WBA[0][0][Empty][West][Low][Free],

SCHEDULER_WBA[we:0..NoShips][ww:0..NoShips]

[cu:ChamberUsage][td:TrafficDirection][wl:WaterLevel][fd:ForcedDir] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= NoShips) [S].east.request -> SCHEDULER_WBA[we+1][ww][cu][td][wl][fd]

| when (ww <= NoShips) [S].west.request -> SCHEDULER_WBA[we][ww+1][cu][td][wl][fd]

// West-bound assignments ascend the lock system.

124

| when (ww >= 1 && we == 0 && cu == Empty && wl == Low)

[S].west.acquire -> ascend -> SCHEDULER_WBA[we][ww-1][Occupied][West][High][fd]

| when (ww >= 1 && we == 0 && cu == Empty && wl == High)

[S].west.acquire -> resetlow -> SCHEDULER_WBA[we][ww-1][Occupied][West][High][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == Low)

[S].west.acquire -> ascend -> SCHEDULER_WBA[we][ww-1][Occupied][West][High][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == West && wl == High)

[S].west.acquire -> resetlow -> SCHEDULER_WBA[we][ww-1][Occupied][West][High][fd]

// West-bound departures from the lock system.

| when (we == 0 && cu == Occupied && wl == High && td == West)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][West][High][fd]

| when (we >= 1 && cu == Occupied && wl == High && td == West)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][East][High][fd]

// Traffic forced in East and West directions

| when (we >= 1 && cu == Occupied && wl == High && td == West && fd == ForceWest)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][West][High][fd]

| when (we == 0 && cu == Occupied && wl == High && td == West && fd == ForceEast)

[S].west.depart -> SCHEDULER_WBA[we][ww][Empty][East][High][fd]

// East-bound assignments descend the lock system.

| when (ww == 0 && we >= 1 && cu == Empty && wl == High)

[S].east.acquire -> descend -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low][fd]

| when (ww == 0 && we >= 1 && cu == Empty && wl == Low)

[S].east.acquire -> resethigh -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == High)

[S].east.acquire -> descend -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low][fd]

| when (ww >= 1 && we >= 1 && cu == Empty && td == East && wl == Low)

[S].east.acquire -> resethigh -> SCHEDULER_WBA[we-1][ww][Occupied][East][Low][fd]

// East-bound departures from the lock system.

| when (ww >= 1 && cu == Occupied && wl == Low && td == East)

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][West][Low][fd]

| when (ww == 0 && cu == Occupied && wl == Low && td == East)

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][East][Low][fd]

// Traffic forced in East and West directions

| when (ww >= 1 && cu == Occupied && wl == Low && td == East && fd == ForceEast)

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][East][Low][fd]

| when (ww == 0 && cu == Occupied && wl == Low && td == East && fd == ForceWest)

[S].east.depart -> SCHEDULER_WBA[we][ww][Empty][West][Low][fd]

// Initiate single directional traffic

| when (cu == Empty && fd == Free)

forceWest -> SCHEDULER_WBA[we][ww][cu][West][wl][ForceWest]

| when (cu == Empty && fd == Free)

forceEast -> SCHEDULER_WBA[we][ww][cu][East][wl][ForceEast]

125

| when (cu == Empty)

freeflow -> SCHEDULER_WBA[we][ww][cu][td][wl][Free]

// Emergency and Maintenance Functions

| emergency -> emergency_resolved -> restart -> SCHEDULER_WBA[we][ww][cu][td][wl][fd]

| when (cu == Empty)

maintenance_req -> maintenance_complete -> restart ->

SCHEDULER_WBA[we][ww][Empty][td][wl][fd]

).

// ===

// Canal Monitor Process interacts with locksets and controls traffic only when

// there is an emergency or maintenance underway.

//

// Activities..

//

// 1. Most of the time the Canal Monitor is just waiting (monitoring)

// 2. Notes an emergency has occur in the atl. and issues shutdown

// 3. Restart occurs when the emergency has been cleared (not right away)

// 4. Issues command for maintenance

//

// Variables

//

// oa = operational mode for Atlantic lockset.

// om = operational mode for Middle lockset.

// op = operational mode for Pacific lockset.

//

// Activities are repeated for each lockset monitor...

// ===

CANAL_MONITOR = CANAL_MONITOR[0][0][0],

CANAL_MONITOR [oa:LockOperation][om:LockOperation][op:LockOperation] = (

// Waiting for a maintenance or emergency event

{atl,mid,pac}.[S].{east,west}.acquire -> wait-> CANAL_MONITOR [oa][om][op]

// Emergency/maintenance event in Atlantic lockset

| when (oa == BiDirectional)

{ atl.emergency, atl.maintenance_req } ->

mid.forceWest -> pac.forceWest -> CANAL_MONITOR [Halted][Descend][Descend]

| when (oa == Halted)

atl.restart -> mid.freeflow -> pac.freeflow -> CANAL_MONITOR [0][0][0]

// Emergency/maintenance event in Middle lockset

| when (om == BiDirectional)

{ mid.emergency, mid.maintenance_req } ->

pac.forceWest -> atl.forceEast -> CANAL_MONITOR [Descend][Halted][Descend]

| when (om == Halted)

mid.restart -> pac.freeflow -> atl.freeflow -> CANAL_MONITOR [0][0][0]

// Emergency/maintenance event in Pacific lockset

126

| when (op == BiDirectional)

{ pac.emergency, pac.maintenance_req } ->

mid.forceEast -> atl.forceEast -> CANAL_MONITOR [Descend][Ascend][Halted]

| when (op == Halted)

pac.restart -> mid.freeflow -> atl.freeflow -> CANAL_MONITOR [0][0][0]

// Ensure that traffic can never be in only one direction through the lock...

| pac.forceEast -> pac.freeflow -> CANAL_MONITOR [oa][om][op]

| atl.forceWest -> atl.freeflow -> CANAL_MONITOR [oa][om][op]

).

// ==

// Control policy for canal monitor forced flow of traffic direction.

// ==

CANAL_MONITOR_TRAFFIC_CONTROL = (

forceEast -> freeflow -> CANAL_MONITOR_TRAFFIC_CONTROL

| forceWest -> freeflow -> CANAL_MONITOR_TRAFFIC_CONTROL).

// ===

// Create system-level model of east- and west-bound traffic demand.

// ===

// Create circular queue of east- and west-bound transit requests.

EASTBOUND_REQUESTS = QUEUE1 [1],

QUEUE1[i:S] = ([i].east.request -> QUEUE1 [i%NoShips + 1]).

WESTBOUND_REQUESTS = QUEUE2 [1],

QUEUE2[i:S] = ([i].west.request -> QUEUE2 [i%NoShips + 1]).

// Create circular queue of east-bound ship traffic

EASTBOUND_CANAL_SHIPS = (pac.[S].east.request ->

pac.[S].east.acquire ->

pac.[S].east.depart ->

mid.[S].east.request ->

mid.[S].east.acquire ->

mid.[S].east.depart ->

atl.[S].east.request ->

atl.[S].east.acquire ->

atl.[S].east.depart -> EASTBOUND_CANAL_SHIPS).

||EASTBOUND_CANAL_REQUESTS = (pac:EASTBOUND_REQUESTS).

||EASTBOUND_CANAL_TRAFFIC = (EASTBOUND_CANAL_SHIPS ||

EASTBOUND_CANAL_REQUESTS).

// Create circular queue of west-bound traffic

WESTBOUND_CANAL_SHIPS = (atl.[S].west.request ->

atl.[S].west.acquire ->

atl.[S].west.depart ->

mid.[S].west.request ->

mid.[S].west.acquire ->

127

mid.[S].west.depart ->

pac.[S].west.request ->

pac.[S].west.acquire ->

pac.[S].west.depart -> WESTBOUND_CANAL_SHIPS).

||WESTBOUND_CANAL_REQUESTS = (atl:WESTBOUND_REQUESTS).

||WESTBOUND_CANAL_TRAFFIC = (WESTBOUND_CANAL_SHIPS ||

WESTBOUND_CANAL_REQUESTS).

// ===

// Compose models of canal traffic demand and lockset actions.

// ===

||CANAL_TRAFFIC_DEMAND = (WESTBOUND_CANAL_TRAFFIC ||

EASTBOUND_CANAL_TRAFFIC).

// ===

// Compose full model of canal behavior

// ===

minimal ||PACIFIC_LOCKSET_SYSTEM = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL ||

pac:EASTBOUND_SHIPCONTROL) @{

pac.[S].{east,west}.request,

pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart,

pac.forceWest,

pac.forceEast,

pac.freeflow,

pac.maintenance_req,

pac.restart,

pac.emergency}.

minimal ||MIDDLE_LOCKSET_SYSTEM = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL ||

mid:EASTBOUND_SHIPCONTROL) @ {

mid.[S].{east,west}.request,

mid.[S].{east,west}.acquire,

mid.[S].{east,west}.depart,

mid.forceWest,

mid.forceEast,

mid.freeflow,

mid.maintenance_req,

mid.restart,

mid.emergency}.

minimal ||ATLANTIC_LOCKSET_SYSTEM = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart,

atl.forceWest,

atl.forceEast,

atl.freeflow,

128

atl.maintenance_req,

atl.restart,

atl.emergency}.

minimal ||LOCKSET_SYSTEM = (PACIFIC_LOCKSET_SYSTEM ||

MIDDLE_LOCKSET_SYSTEM ||

ATLANTIC_LOCKSET_SYSTEM).

minimal ||CANAL_MONITOR_SYSTEM = (CANAL_MONITOR ||

pac:CANAL_MONITOR_TRAFFIC_CONTROL ||

mid:CANAL_MONITOR_TRAFFIC_CONTROL ||

atl:CANAL_MONITOR_TRAFFIC_CONTROL).

minimal ||FULL_CANAL_SYSTEM = (LOCKSET_SYSTEM || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_BEHAVIOR = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM).

// ===

// Canal behavior. Viewpoint 1: Focus on actions at pacific lockset.

// ===

minimal ||PACIFIC_LOCKSET_SYSTEM1 = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL ||

pac:EASTBOUND_SHIPCONTROL) @{

pac.[S].{east,west}.request,

pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

minimal ||MIDDLE_LOCKSET_SYSTEM1 = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL ||

mid:EASTBOUND_SHIPCONTROL) @ {

mid.[S].{east,west}.request,

mid.[S].{east,west}.acquire,

mid.[S].{east,west}.depart }.

minimal ||ATLANTIC_LOCKSET_SYSTEM1 = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.[S].{east,west}.request,

atl.[S].{east,west}.acquire,

atl.[S].{east,west}.depart }.

minimal ||LOCKSET_SYSTEM1 = (PACIFIC_LOCKSET_SYSTEM1 ||

MIDDLE_LOCKSET_SYSTEM1 ||

ATLANTIC_LOCKSET_SYSTEM1).

minimal ||FULL_CANAL_SYSTEM1 = (LOCKSET_SYSTEM1 || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_VIEWPOINT1 = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM1) @ {

pac.[S].{east,west}.request,

pac.[S].{east,west}.acquire,

pac.[S].{east,west}.depart }.

// ===

// Canal behavior. Viewpoint 2: Focus on emergency/maintenance events.

// ===

129

minimal ||PACIFIC_LOCKSET_SYSTEM2 = (pac:SCHEDULER_EBA ||

pac:WESTBOUND_SHIPCONTROL ||

pac:EASTBOUND_SHIPCONTROL) @{

pac.forceWest, pac.forceEast, pac.freeflow,

pac.maintenance_req, pac.restart, pac.emergency}.

minimal ||MIDDLE_LOCKSET_SYSTEM2 = (mid:SCHEDULER_EBA ||

mid:WESTBOUND_SHIPCONTROL ||

mid:EASTBOUND_SHIPCONTROL) @ {

mid.forceWest, mid.forceEast, mid.freeflow,

mid.maintenance_req, mid.restart, mid.emergency}.

minimal ||ATLANTIC_LOCKSET_SYSTEM2 = (atl:SCHEDULER_WBA ||

atl:WESTBOUND_SHIPCONTROL ||

atl:EASTBOUND_SHIPCONTROL) @ {

atl.forceWest, atl.forceEast, atl.freeflow,

atl.maintenance_req, atl.restart, atl.emergency}.

minimal ||LOCKSET_SYSTEM2 = (PACIFIC_LOCKSET_SYSTEM2 ||

MIDDLE_LOCKSET_SYSTEM2 ||

ATLANTIC_LOCKSET_SYSTEM2).

minimal ||FULL_CANAL_SYSTEM2 = (LOCKSET_SYSTEM2 || CANAL_MONITOR_SYSTEM).

minimal ||FULL_CANAL_VIEWPOINT2 = (CANAL_TRAFFIC_DEMAND || FULL_CANAL_SYSTEM2) @ {

{pac,mid,atl}.forceWest,

{pac,mid,atl}.forceEast,

{pac,mid,atl}.freeflow,

{pac,mid,atl}.maintenance_req,

{pac,mid,atl}.restart,

{pac,mid,atl}.emergency}.

// ===

// End!

Optional Passageway Controller Processes. Given that emergency and maintenance events
are assumed to originate at the lockset, then it makes sense that these events will be first registered
by the passageway controller processes. Further, the timing of these events will be completely
random. These criteria can be inserted into the passageway controller process as follows:

// Sequence of actions for "ascend" operation ...

EMERGENCY = (emergency -> shutdown -> restart -> EMERGENCY).

PASSAGECONTROL_ASCEND = (ascend -> ASCEND

| resetlow -> low.pumpdown -> CHECK_1

| emergency -> restart -> PASSAGECONTROL_ASCEND),

130

CHECK_1 = (high.pumpdown -> ASCEND

| emergency -> restart -> high.pumpdown -> ASCEND),

ASCEND = (low.opengate -> enterlock1 -> CHECK_2),

CHECK_2 = (low.closegate -> STAGE_1

| emergency -> restart -> low.closegate -> STAGE_1),

STAGE_1 = (low.pumpup -> STAGE_1B

| emergency -> restart ->

low.pumpup -> STAGE_1B),

STAGE_1B = (middle.opengate -> enterlock2 -> STAGE_2

| emergency -> restart ->

middle.opengate -> enterlock2 -> STAGE_2),

STAGE_2 = (middle.closegate -> STAGE_2B

| emergency -> restart ->

middle.closegate -> STAGE_2B),

STAGE_2B = (high.pumpup -> STAGE_3

| emergency -> restart ->

high.pumpup -> STAGE_3),

STAGE_3 = (high.opengate -> exitlock2 -> STAGE_3B

| emergency -> restart ->

high.opengate -> exitlock2 -> STAGE_3B),

STAGE_3B = (high.closegate -> depart -> PASSAGECONTROL_ASCEND

| emergency -> restart ->

high.closegate -> depart -> PASSAGECONTROL_ASCEND).

The passageway controller will operate the ship movements as a shared resource through:

||PASSAGECONTROL_EBA = ([i:S]::(east:PASSAGECONTROL_ASCEND || east:EMERGENCY))/{

forall [i:S] { ascend/[i].east.ascend },

forall [i:S] { resetlow/[i].east.resetlow },

forall [i:S] { emergency/[i].east.emergency},

forall [i:S] { shutdown/[i].east.shutdown },

forall [i:S] { restart/[i].east.restart }}.

PASSAGECONTROL DESCEND can be extended in a similar way.

131

