
ABSTRACT

Title of dissertation: ACTIVE ATTENTION FOR TARGET DETECTION
AND RECOGNITION IN ROBOT VISION
Wentao Luan, Doctor of Philosophy, 2017

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

In this thesis, we address problems in building an efficient and reliable target

detection and recognition system for robot applications, where the vision module is

only one component of the overall system executing the task. The different modules

interact with each other to achieve the goal. In this interaction, the role of vision is

not only to recognize but also to select what and where to process. In other words,

attention is an essential process for efficient task execution. We introduce attention

mechanisms into the recognition system that serve the overall system at different

levels of the integration and formulate four problems as below.

At the most basic level of integration, attention interacts with vision only. We

consider the problem of detecting a target in an input image using a trained binary

classifier of the target and formulate the target detection problem as a sampling

process. The goal is to localize the windows containing targets in the image, and at-

tention controls which part of the image to process next. We observe that detectors’

response scores of sampling windows fade gradually from the peak response window

in the detection area and approximate this scoring pattern with an exponential de-

cay function. Exploiting this property, we propose an active sampling procedure to

efficiently detect the target while avoiding an exhaustive and expensive search of all

the possible window locations.

With more knowledge about the target, we describe the target as template

graphs over segmented surfaces. Constraint functions are also defined to find the

node and edge’s matching between an input scene graph and target’s template graph.

We propose to introduce the recognition early into the traditional candidate proposal

process to achieve fast and reliable detection performance. The target detection

thence becomes finding subgraphs from the segmented input scene graph that match

the template graphs. In this problem, attention provides the order of constraints in

checking the graph matching, and a reasonable sequence can help filter out negatives

early, thus reducing computational time. We put forward a sub-optimal checking

order, and prove that it has bounded time cost compared to the optimal checking

sequence, which is not obtainable in polynomial time. Experiments on rigid and

non-rigid object detection validate our pipeline.

With more freedom in control, we allow the robot to actively choose another

viewpoint if the current view cannot deliver a reliable detection and recognition

result. We develop a practical viewpoint control system and apply it to two human-

robot interaction applications, where the detection task becomes more challenging

with the additional randomness from the human. Attention represents an active

process of deciding the location of the camera. Our viewpoint selection module not

only considers the viewing condition constraints for vision algorithms but also incor-

porates the low-level robot kinematics to guarantee the reachability of the desired

viewpoint. By selecting viewpoints fast using a linear time cost score function, the

system can deliver smooth user interaction experience. Additionally, we provide a

learning from human demonstration method to obtain the score function parameters

that better serves the task’s preference.

Finally, when recognition results from multiple sources under different envi-

ronmental factor are available, attention means how to fuse the observations to

get reliable output. We consider the problem of object recognition in 3D using an

ensemble of attribute-based classifiers. We propose two new concepts to improve

classification in practical situations, and show their implementation in an approach

implemented for recognition from point-cloud data. First, we study the impact of

the distance between the camera and the object and propose an approach to classi-

fier’s accuracy performance, which incorporates distance into the decision making.

Second, to avoid the difficulties arising from lack of representative training exam-

ples in learning the optimal threshold, we set in our attribute classifier two threshold

values to distinguish a positive, a negative and an uncertainty class, instead of just

one threshold value. We prove the theoretical correctness of this approach for an

active agent who can observe the object multiple times.

Active Attention for Target Detection and Recognition in Robot
Vision

by

Wentao Luan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Yiannis Aloimonos, Dean’s Representative
Professor Cornelia Fermüller
Professor Behtash Babadi
Professor Yu Chen

c© Copyright by
Wentao Luan

2017

Acknowledgments

I owe my gratitude to all the people who supervised, supported, encouraged

and inspired me during my Ph.D. life. I will cherish and keep in mind the achieve-

ments and lessons I learned in my graduate study.

First, I would like to express my sincere thanks to my advisor, Dr. John S.

Baras for giving me the great opportunity to explore an emerging and promising

research topic. His deep insight into a broad area and sharp sense of future calibrated

me on the right path of research. His rigorousness in problem formulation phrased

my research attitude and helped me search for solutions on a wide view. Also, his

enthusiasm and focus in handling challenges motivated me to move ahead in the

past four years and will continue guiding me in my future career.

I would also like to thank Dr. Cornelia Fermuller and Dr. Yiannis Aloimonos

for the selfless support, precious energy, and exquisite guidance in academic com-

munication and leading me to the professional level of research. Also thanks to Dr.

Yezhou Yang for advising my research.

I also would like express my appreciation to Dr. Behtash Babadi and Dr. Yu

Chen for serving on my thesis committee and for the influential discussions and

feedback.

Sincere gratitudes to Ren Mao, Xiangyang Liu, Xiangnan Weng, Peixin Gao,

Yuchen Zhou, and Yi Zhang who worked with me in fighting difficulties and with

whom I grew together. Also, I would like to thank Mrs. Kim Edwards for her

excellent administrative work.

ii

Last but not least, I want to express my deepest gratitude to my parents, Yi

Ding and other family members for the constant support and acknowledgment.

I would like to acknowledge the support offered by DARPA (through ARO)

grant W911NF1410384, by NSF grant CNS-1544787, and by US Air Force Office of

Scientific Research grant FA9550-10-1-0573.

iii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Target Detection in Robotics Vision 1
1.2 Main Contributions and Thesis Organization 3

1.2.1 Active Sampling Exploiting Detector Response Pattern 3
1.2.2 Fast Task-Specific Target Detection via Graph Based Con-

straints Representation and Checking 4
1.2.3 Active View Point Control for Reliable Target Detection in

Human-Robot Interaction . 5
1.2.4 Reliable Attribute-Based Object Recognition Using High Pre-

dictive Value Classifiers . 5

2 Active Sampling Exploiting Detector Response Pattern 7
2.1 Introduction . 7
2.2 Related Work . 9
2.3 Problem Definitions . 12
2.4 Active Sampling with Response Pattern 13

2.4.1 Detector’s Response Pattern 13
2.4.2 Formulation . 15
2.4.3 Reward Distribution Evaluation 18
2.4.4 Active Sampling Action Policy 21

2.5 Experiments . 21
2.5.1 Dataset and Settings . 24
2.5.2 Experimental Results . 25

2.6 Conclusions And Future Directions 29

3 Fast Task-Specific Target Detection via Graph Based Constraints Represen-
tation and Checking 31
3.1 abstract . 31
3.2 abstract . 32

3.2.1 Introduction . 32
3.3 Related Work . 34

iv

3.4 Our Approach . 36
3.5 Problem Formulation . 37
3.6 Constraints Order Searching Policy 39
3.7 Experiments . 46

3.7.1 Experimental Setup . 46
3.7.2 Segmentation . 47
3.7.3 Handle Drawer Detection . 47
3.7.4 Hand Pointing with Arm Detection 49
3.7.5 Optimization of the constraints checking order 51

3.8 A live HRI application . 52
3.8.1 Surrounding objects recognition 53
3.8.2 Obtaining the object that the hand is pointing at and its location 54
3.8.3 Robot feedback interface . 55
3.8.4 Interaction flow finite state machine 56

3.9 Future Work . 56

4 Active View Point Control for Reliable Target Detection in Human-Robot
Interaction 58
4.1 Introduction . 58
4.2 Related Work . 61
4.3 System Overview . 63
4.4 View Point Control Module . 64

4.4.1 Joint Discontinuity . 65
4.4.2 Centeredness of Target . 66
4.4.3 Occlusions . 67
4.4.4 View Direction . 68
4.4.5 Precomputation . 69

4.5 User Passes an Object to the Robot 71
4.5.1 Detection of the Object in Hand 72
4.5.2 Robot Action Policy . 73
4.5.3 View Point Control Component 75

4.6 Human Sends Command via Pointing 75
4.6.1 Arm and Hand Detection . 76
4.6.2 Visual Command Sending Example 76
4.6.3 View Point Control component 77

4.7 Learning Score Function’s Weights 78
4.7.1 Learning Effect . 80
4.7.2 An Example of View Point Learning 81
4.7.3 Results on Our Human Robot Interaction Applications 82

4.8 Conclusion and Future Work . 83

5 Reliable Attribute-Based Object Recognition Using High Predictive Value
Classifiers 84
5.1 Summary . 84
5.2 Introduction . 85

v

5.3 Related Work . 89
5.4 Assumptions and Formulation . 91

5.4.1 Inference . 92
5.4.2 System Requirement for the Predictive Value 95
5.4.3 Asymptotic Correctness of the MAP Estimation 97

5.5 Experiments . 100
5.5.1 Experimental Settings . 100
5.5.2 Experimental Results . 103

5.6 Summary . 108

6 Conclusions 110

Bibliography 112

vi

List of Figures

2.1 Windows of different sizes with the same center point. Base size is
64 × 128 and scale factor between two scale levels is 1.05. From left
to right, the scale levels are 1, 5, 9 and 13. 12

2.2 Illustration of response pattern. (a) Input image. (b) Heatmap of
human detector’s response score. (c) Positive classification region
(red area in (b)) in 3D. 14

2.3 System procedure example. (a) Input image. (b) Estimation error
heat map of all windows with same scale. (c) The center points of
observed windows. (d) Output the positive classified windows. 17

2.4 System block diagram . 18
2.5 The heat map of predicted score with our two settings of parameters.

Each point corresponds to a window in the same size with the selected
observed window. 25

2.6 The qualitative result of sampling the same number of windows. Top
row: MS-PW. Bottom row: Our method. Left column: The center
points of the windows selected by each method (both red and green
dots). Right column: The center points of positive classified windows
sampled (green dots). 27

2.7 Average precision rate of two methods with same window budget . . 28
2.8 DET curve of MSPW, SW and our method 29

3.1 Detection pipeline. (a) Input image; (b) Scene graph after segmen-
tation; (c) Remaining scene graph nodes with more than 1 active
match with the template graph after constraints checking; (d) Detec-
tion output after matching template graphs. 36

3.2 Robot and camera setup . 47
3.3 Illustration of template graphs . 48
3.4 (a) Illustration of a convex box. Three failure cases: (b) top surface

segments the bottom one; (c) not enough shared boundary; (d) two
surfaces form a corner (faces towards) 49

3.5 Visualization of the fingertip and its pointing location. 53

vii

3.6 An illustration of the state machine for human-robot interaction.
State 1: initial state; state 2,3: state for object pointing confirma-
tion; state 4: object virtual moving state; state 5:ending state after
parsing the command successfully. 54

3.7 Sending a command: <heat the mug> via HRI system. The top
row shows the human operation and the bottom row shows the cor-
responding status of the interaction process. (a) Initial stage with
objects detected in the scene; (b)(c) select target object by pointing
and then object confirmation; (d) drag the selected object to another
functional place, i.e. microwave, virtually; (e) the system receives the
command. 55

4.1 Image of our robotic system settings and a visualization of joints and
frames. A ReFlex hand is attached as right arm’s end effector for
grasping tasks.(a) We mount a depth camera onto the left arm that
we can actively change the viewpoint. (b) S0-W2 denotes the seven
joints of Baxter robot’s left arm. In occlusion prediction, we mainly
use the frames on the right arm to deduct viewing ray and body part
overlap. 60

4.2 Illustration of static view system and active view system. The blue
region in (b) is the viewpoint control module serving robot tasks. . . 63

4.3 Illustration of occlusion detection. Robot parts are represented as
cylinders and viewing rays from camera to the object are checked
whether intersecting with robot parts. 67

4.4 Illustration of a triangle projected to different planes. 69
4.5 The float chart of precomputation pipeline. 70
4.6 An illustration of the in-hand object detection pipeline for a user

passing object to robot task. White boxes are the modules in detec-
tion algorithms. Blue boxes are the active viewpoint control modules
we proposed. Point cloud processing results are exemplified at the
lower row. 71

4.7 The state machine of robot interpreting human’s intention and robot’s
action policy under each state. 73

4.8 An illustration of the triangle used to determine the view direction
of the passing object application. 75

4.9 (a) (b) An illustration of an arm and pointing hand detection result.
(a)Input point cloud. (b)Detected arm and hand. (c)The triangle
selected to determine the view direction for the arm ad hand detection. 76

4.10 The state machine of selecting a target object. 77
4.11 An example of human teaching viewpoint selection in object passing

application. Top row: Viewing image from the camera; bottom row:
corresponding robot pose. (a)The viewing image when a user hands
a bottle to the robot; (b) The selected viewpoint by the initial set of
score function parameters;(c) The view after human demonstrates a
better view; (d) The newly selected viewpoint with learned parameters 78

viii

4.12 The distance between the selected viewpoints and human’s demon-
stration under each learning iteration. 81

5.1 Illustration of common conditional probability density functions of
the positive and negative class. Top: ground truth distribution of
the two classes; bottom: a possible distribution represented by the
training data. Blue line: positive class; red line: negative class.
dashed line: (estimated) Bayes threshold; solid line: high PPV or
NPV threshold. 87

5.2 The relationship of Objects (O), attributes (Fi), environmental vari-
ables (Ek) and observations (Zk

i) in our model. 88
5.3 Illustration of preprocessing pipeline. Left: input; Middle: point

cloud after passthrough filter; Right: segmented candidate and re-
moved table surface. 101

5.4 Illustration of our fine shape matching. Model point clouds (green
balls) captured nearby input point cloud (purple) are retrieved first.
Then we find the minimum matching distance of features between
the scene and model. 101

5.5 The objects we use in the task and their IDs 103
5.6 Estimated distribution of bottle shape classifier’s response score un-

der 4 recognition distance intervals. 104
5.7 Error rate using single threshold (blue) and two high predicative value

thresholds (red) classification. The green line depicts the error intro-
duced when the two thresholds method has to randomly select for
cases when more than one object is estimated as possible candidate. . 106

5.8 Three systems’ recognition accuracy in different working distance in-
terval. 107

ix

Chapter 1: Introduction

1.1 Target Detection in Robotics Vision

With the increasing demand for automation from both industrial manufac-

turing and daily life, the robot has become a hot topic that would contribute to

a significant part of the production and the service market in future. In contrast

to traditional robot applications, where a pre-programmed robot blindly performs

routine tasks, nowadays people are expecting more intelligent robotic services that

can be customized and can handle complicated environment interferences reliably.

Efficient target detection and reliable object recognition are among the essen-

tial tasks that make robots adaptive in the working scene and general in dealing

with task specifics. During the job execution, the vision module usually answers

fundamental questions like, where the target is, what is the status of the target. So

an accurate result is vital for the successful completion of the tasks. Moreover, the

time and computational efficiency is also an issue to be considered since it is directly

related to the quality of the robotic service.

Object detection and recognition is an important task that has attracted a

lot of attention in the computer vision community. Researchers have put forward

various methods on the vision pipeline, such as feature abstraction, classification

1

and multiple sources fusion, to increase the detection and recognition performance.

However, the characteristics of robot tasks pose different requirements com-

pared to the tasks of conventional computer vision. First, the detection or recogni-

tion results have to be more accurate, because a reliable execution pipeline cannot

be built on a random correct vision input. An accuracy competition on a dataset

would not help solve a robot’s vision demand. Furthermore, for many tasks like

human-robot interaction, a fast response from the vision module is required for the

benefits of user experience. Also, limited resources in computation, power, and

communication put additional constraints on the vision algorithms.

Fortunately, in robotics, engineers have extra degrees of freedom to deal with

the challenging vision requirement. One important advantage is, at the task level,

robots could have good knowledge of the target. For example, when to heat an

object, a robot would know it should look for a microwave, so it can prepare before

the task happens. Additionally, since robotics is a complete system consisting of

vision, control, etc. the control module can be introduced to enhance the vision

if necessary. e.g. the robot can change its observing viewpoint if not satisfactory

with the current results. Besides, the number of observations can also become a

controlled parameter while in conventional Computer Vision methods, algorithms

have to give an answer based on the static images.

2

1.2 Main Contributions and Thesis Organization

In this dissertation, we aim to achieve efficient target detection and object

recognition for robotics tasks. Specifically, we provide solutions to four situations:

(1) For single image processing, how to detect the target efficiently when only a

detector(binary classifier) is available; (2) Still take a single image as input, but

can learn the target before, how to locate the target efficiently using the knowledge

about the object; (3) On the control level, what is the next viewpoint if the current

observing quality would not satisfy the task; (4) For the attribute-based classifier

with multi-sources input, how to fuse the results when the number of observations

can be controlled and inpput information may be unreliable.

Each chapter of this thesis answers one question above. In general, our solution

can be interpreted as introducing attention mechanism into different levels of target

detection pipeline. i.e. Focusing fast and on the right thing is the key to the

efficiency and reliability of target detection and recognition. The main contributions

and thesis organizations are summarized below.

1.2.1 Active Sampling Exploiting Detector Response Pattern

In chapter two, we treat the detection process as a sampling problem when

only a binary classifier of the target is available. Efficient target detection becomes

how to find the window(bounding box) containing the target with a small number of

trials. We observe that the classifier’s response score would follow a “half-ellipsoid”

shape in the detection area. Thus an exponential decay function is used to model this

3

response pattern in the positive area. Exploiting this property, we propose an active

sampling approach which estimates the probability of windows containing the target

based on responses of observed windows and then chooses the next window according

to posterior sampling. Experiments on the human detection dataset show that our

method achieves higher detection rate with the same sampling windows number,

and also requires fewer windows under comparable performance when compared

with the sliding windows and multi-scale particle window method.

1.2.2 Fast Task-Specific Target Detection via Graph Based Con-

straints Representation and Checking

Chapter three deals with the case where interaction and learning with the

target object are allowed before the detection. How to depict an object and utilize

the knowledge becomes another practical problem in robot vision.

We describe the target as a set of template graphs over the segmented target

object surfaces and define constraints for matching template graphs to input images.

To speed up the graph matching, we prove that a greedy strategy of organizing con-

straint filters has a bounded performance concerning the optimal checking sequence.

We implement and apply our framework to two different scenarios: the detection of

drawers with handles and the detection of hands and the arms. The experimental

results show the feasibility and benefits of introducing target descriptions early into

the segmentation and object candidate proposal procedure for robotic applications.

And the time reduction performance of our constraint filtering strategy is validated.

4

1.2.3 Active View Point Control for Reliable Target Detection in

Human-Robot Interaction

In chapter four, we tackle the next viewpoint selection problem for object

detection when the camera is mounted on the robot’s arm. Specifically, we focus on

the scenarios of human-robot interaction which requires highly of system’s timely

response, and human’s randomness would increase the detection difficulty.

We propose a practical active viewpoint control strategy considering factors of

the joint discontinuity of moving to a new position, target object’s viewing centered-

ness, occlusion and viewing angle. By using a linear score function and precompute

time costly intermediate parameters, the viewpoint control module can make the

next view decision in time. To guarantee the selected viewpoint better serve the

task, we adopt coactive learning method to learn score function’s weights. We build

two human-robot interaction applications and apply our viewpoint control module,

demonstrating the usability of our proposed system.

1.2.4 Reliable Attribute-Based Object Recognition Using High Pre-

dictive Value Classifiers

Chapter five attends to the problem of component classifiers’ observation fu-

sion in attribute based 3D object recognition. Because an active agent can observe

multiple times in the testing time, we propose to use two thresholds, one aiming

for high-precision prediction for the positive class and the other for high negative

5

predictive value prediction for the negative class. Thus each attribute classifier will

output three possible values: positive, negative and uncertain. We also incorporate

environment factor into the decision making considering its influence to each com-

ponent classifier. A reliable working region is defined indicating a fair separation of

the distributions of positive and negative classes. We prove our fusion framework’s

asymptotic correctness under certain assumptions on the attribute classifier and

randomness of the input data. Experiments are also done to valid our theorems.

6

Chapter 2: Active Sampling Exploiting Detector Response Pattern

2.1 Introduction

With the emerging social demand of robotics automation in both industry

and daily life, robotics and computer vision systems have become an important

and popular research area. Efficient object detection and recognition are among

the most fundamental robot’s tasks, on which many subsequent actions such as

assembly, fetching, obstacle avoidance rely. Here, the task of object detection can

be understood as segmenting the target out from the input image or video and the

result can be in the form of a window (i.e. bounding box) or a contour enclosing

the target.

The cardinality of search space could be extremely large considering windows

of different locations and sizes. Therefore an exhaustive search would be very ex-

pensive. Many works in computer vision try to reduce the search space utilizing

additional features. For example, segmentation techniques [1, 2] use information

such as color, edges and texture similarity to cluster image pixels into super-pixels

to avoid a brute-force searching.

In our work, we focus on a typical situation where only a trained detector

(binary classifier) is available and we desire to detect the target efficiently from the

7

given input image. The general pipeline of detection includes three steps: window

selection, feature abstraction and classification, where the provided detector imple-

ments the last two stages. The window selection scheme will determine the detection

system’s efficiency and quality.

A traditional manner is to slide a window of various sizes over the input image,

from left to right, top to bottom and feed image patches to a binary target detector

indicating whether the target exists. However, this sliding window method would

run the detector a lot of times considering the potentially large number of image

windows and it gets even worse when the feature abstraction and classification are

complicated. The scanning step size can be increased to speed up but the accuracy

will be traded off because the target may be skipped or the windows may not be

aligned with the target very well.

To improve this static scanning scheme, one practical way is to regard window

selection as a sampling problem, which is to treat the provided vision detector as a

black box and sample windows based on the detector’s response characteristics. For

example, assuming the detector’s response score on adjacent windows are similar,

multi-stage particle window method (MS-PW) [3] samples windows in stages and

follows a “coarse-to-fine” principle.

With the same insight of using the detector’s property but going deeper, in

this work we propose an active sampling method considering response pattern for

efficient target detection. The main contributions of this paper are: 1) We observe

that the detector’s response pattern of sampling windows in the image follows a

“half-ellipsoid” shape in the detection area (i.e. positive classification area). Then

8

an exponential decay function is used to model the response pattern in the positive

area. 2) We propose an active sampling approach by exploiting such pattern, which

estimates the probability of windows containing the target based on responses of ob-

served windows and then chooses the next window according to posterior sampling.

3) The proposed method is implemented in the application of human detection and

experimental results show that our method achieves higher detection rate with the

same sampling windows budget and also requires fewer windows with comparable

performance when compared with the sliding windows and MS-PW method.

2.2 Related Work

Efficient target detection has gained much attention and there are many di-

rections of the trial to cut the detection time while maintaining good detection

performance. In general, the attempts in speeding up classification procedure tend

to find an early rejection strategy on negative samples, while the work on candidate

generation procedures can be summarized as reducing the search space using differ-

ent sources of information. Also, there is not a clear boundary between classification

and candidate proposal. Therefore, these methods can be combined.

An attentional cascade is a classical approach to boost average classifica-

tion speed, in which the fundamental idea is that background and irrelevant im-

age patches usually occupy the largest portion of all window space and they can

be rejected early in the designed cascade classification pipeline. This mechanism

achieves good results in applications such as face detection [4] and car detection [5].

9

Applying a similar idea to reduce the cost of the recognition pipeline, a deformable

part model [6] firstly runs a root filter over a downsampled image to filter negative

windows out. Andrea et al. [7] run an object detector with a linear kernel before

using more discriminative but also more time-consuming non-linear kernel ones.

On the other hand, reducing the search space is an approach aiming to reduce

the total times of running a target detector, instead of cutting the classification

time for each time. Image segmentation is a classical method exploiting low-level

information. A common process is to over-segment the image into small boxes, or

superpixels, then use graph algorithms, such as minimal spanning tree and graph

cut minimization, to build meaningful candidate regions [1, 8, 9]. Selective search

[2] generates candidates by hierarchically grouping small regions in a bottom-up

manner. Multiscale combinatorial grouping [9] segments image at different scales

hierarchically and generate object candidates by grouping and ranking. Making use

of the close contour property of daily objects, the torque operator [10] can provide

a reliable source of object candidates and even in high clutter environments [11].

Similar with image segmentation, though more bio-inspired, saliency can be

another scheme to speed up detection by imitating human recognition behavior,

which always focuses objects standing out of their neighbors pre-attentively. Koch

and Ullman [12] firstly put forward a computational attention architecture consisting

of the Winner-Take-All network to determine the most salient region, and one of its

most well-known derivatives is the Neuromorphic Vision Toolkit [13] proposed by

Itti, which is a bottom-up computational attention framework based on the center-

surround mechanism of color, intensity and orientations.

10

Another approach to reduce searching workload is to take advantage of con-

text information. It has attracted more attention recently when incorporated with

a sequential decision strategy to optimize the observation path. Gonzalez-Garcia et

al. [14] adopts context knowledge (a spatial distribution of target) into the windows

selection procedure achieving the same detection accuracy with the original region

feature convolutional neural network pipeline [15], while using a reduced number of

sampling windows. In the indoor environment Nagaraja et al. [16] studies struc-

ture information such as objects’ relative positions to choose the next candidate to

observe for target detection. Mnih et al. [17] presents a recurrent neural network

framework that can decide the next observation region and recognize a target with

the same state configuration.

The last category mentioned is window sampling, which our work falls into. It

seeks to learn the distribution of the target via sampling the input image. One ad-

vantage is avoiding the preprocessing such as edge detection, context analysis, which

makes its application general. Multi-stage particle window (MS-PW) [3] samples

images iteratively and updates the distribution of the target by a mixture of Gaus-

sians. Pang et al. [18] advances MS-PW by classifying observed regions as rejection,

ambiguity and acceptance regions based on classifier’s response scores. Compared

to those attempts, our work applies a distinct way in learning the target distribution

which focuses on the detector’s response pattern on the positive classification area.

11

2.3 Problem Definitions

Given a sensor image I as input, the goal is to find out sampling windows

within the image that contain target objects. We describe the center point of sam-

pling window wi as pixel coordinate (xi, yi). As we fix the ratio between length and

width of the sampling window according to the property of target detectors, the

size of window wi could be represented as an integer scale level (si = 1, 2, . . .) given

base size and scale factor. Examples are shown in Fig. 2.1. Therefore, the complete

set of possible sampling windows is defined as W = {wi|wi = (xi, yi, si)}.

Figure 2.1: Windows of different sizes with the same center point. Base size is
64 × 128 and scale factor between two scale levels is 1.05. From left to right, the
scale levels are 1, 5, 9 and 13.

After selecting the sampling window wi for the current iteration, the target

detector, a binary classifier, takes the corresponding patch from the image I as

input and returns a detection score f(wi) as output, where f(·) depends on the

classification algorithms in the detector. The range of such response scores may

be different in different detection applications. For instance, the human detection

system [19] uses the histogram of oriented gradients (HOG) feature and the SVM

12

classifier, while the detector’s response score is a real value which mostly falls into

(−10, 10). Score higher than a specified threshold indicates a detection of a target.

While in the case of face detection using Haar-like features and the cascade AdaBoost

classifier [4], the detector’s response score can be defined as f(wi) = lwi/L where

lwi is the largest index of stage returning positive results for input window patch

wi and L is the total number of stages in the cascade classifier. Then, the range of

such response is [0, 1].

To efficiently detect the target, we aim to sample as small number of win-

dows as possible to reduce the usage of the target detector while maintaining good

detection performance, especially when the feature abstraction and classification

processes are time-consuming.

Here we set our goal as maximizing the number of windows containing the

target sampled when the total number of windows allowed to sampled is limited.

Next we are going to discuss the property of detector’s response score and

formulate a sequential sampling problem solved using this property.

2.4 Active Sampling with Response Pattern

2.4.1 Detector’s Response Pattern

One of the key ideas of our work is to make use of detector’s response property

to evaluate the possibility of an unobserved window containing the target.

To start with, let us look at detector’s response pattern with an example in

Fig. 2.2, where (a) is an input image and (b) is the heat map for the response score

13

of human detector [19]. Each point in the heat map represents the center point

of a sampling window and all sampling windows are of the same size. Fig. 2.2(c)

explains the pattern of regions that can return positive classification results in 3D.

From the figure, we can observe:

• “Continuity” of Detector’s Response Score The response score of the

detector on two nearby windows (same size and close center points) will not

change too significantly.

• Half-ellipsoid Pattern of Detection Area The red region in the heat map

is the detection area that returns positive results if detection threshold is set as

0. By looking at it in 3D, we recognize the overall shape of the detection area

is like a half-ellipsoid, which tells that the detector’s response score decays

gradually with the increment of a window’s distance to the peak response

window in the detection area.

(a) (b) (c)

Figure 2.2: Illustration of response pattern. (a) Input image. (b) Heatmap of human
detector’s response score. (c) Positive classification region (red area in (b)) in 3D.

Although different detectors (binary classifiers) may have diverse ranges of

14

response score, many of them may still have similar response patterns when the

target is not occluded severely. Also, this reaction pattern could be observed in

some other target applications though we are focusing on visual object detectors

here, thereby the sampling strategy exploiting such pattern can also be applied.

Next, we approximate the response decay using an exponential function and utilize

this pattern to estimate the probability of an unobserved window containing the

target given observed results. Therefore, we can sample windows more efficiently.

2.4.2 Formulation

In general, we formulate this process of window sampling for target detection

as a Markov Decision Process (MDP).

At iteration t, the fully-observable state consists of all sampled windows and

their corresponding detector’s response scores st = {(wi, f(wi)), wi ∈ Wt
e}, where

Wt
e represents the set of all sampled windows at iteration t. Action at+1, which is

the window to observe at time t+ 1, is selected among all the unexplored windows

W/Wt
e. A binary reward is defined such that the reward is 1 for sampling a window

that can return highest local response score in positive classification regions (i.e.

h(w) = 1 defined in equation (2.2)) and 0 otherwise.

Our goal of efficient target detection is to minimize the number of total sam-

pling windows while still achieving a certain number of windows containing the tar-

get. This could also be considered as maximizing the number of sampled windows

that provide a local peak (highest) response in detection area given a constraint on

15

the total number of windows to be checked.

Formally, our objective function is:

maximize |{w ∈Wt
e|h(w) = 1}|

subject to t ≤M.

(2.1)

where M is the bound on total iterations and also is the total number of windows to

be sampled since only one window would be sampled in each iteration, | · | denotes

the cardinality of the set and the function h(·) is an indicator of whether a window

has a local maximum response in the detection area:

h(w) ,

1 If f(w′) ≤ f(w) and f(w) > τ

for ∀w′, d(w′, w) < δ

0 o.w

(2.2)

In (2.2), τ is a threshold related to the detector that is used to determine positive

results. d(·) measures the distance between two windows and δ > 0 is a threshold

to determine local neighbors.

Since it is difficult to estimate directly the detector’s response score of a se-

lected window patch in each iteration based on observed windows and their scores,

i.e., the transition probabilities are unknown, traditional MDP solutions cannot be

adopted here. However, through sampling interaction between the input image and

the detector’s response, it is achievable to learn the distribution of the defined binary

reward among unexplored windows. Accordingly, we could maximize our objective

16

Figure 2.3: System procedure example. (a) Input image. (b) Estimation error heat
map of all windows with same scale. (c) The center points of observed windows.
(d) Output the positive classified windows.

rewards according to that estimated distribution.

The overall procedure is demonstrated with an example in Fig. 2.3. Given

an input image Fig. 2.3(a), we calculate an estimation error (Fig. 2.3(b)) of each

window having local peak response in the detection area based on all the sampled

windows (Fig. 2.3(c)) and their corresponding detector’s response score st. Then

the next window to be tested is chosen according to the posterior sampling on the

distribution of the binary reward derived from the estimation error obtained above.

There is a loop between (b) and (c) because with the newly sampled window and its

detector’s response added, the reward distribution is reevaluated, and a new window

will be selected to be sampled until it achieves the limited total number. Finally,

outputs are the positive classified windows (Fig. 2.3(d)).

In the following sections, we detail on how to evaluate the distribution of the

binary reward and how to choose the next action given current observations.

17

Figure 2.4: System block diagram

2.4.3 Reward Distribution Evaluation

In this section we will elaborate our reward distribution evaluation method.

Based on the definition of the binary reward above, the probability of getting a re-

ward 1 is the same as the probability of the selected window returning locally highest

response score in the detection area given current observations, i.e. P (h(w) = 1|st).

The procedures to calculate the probability P (h(w) = 1|st) at window w are as

follows. 1) We predict the detector’s response score f̂(w′) of windows w′ that locally

surround window w, assuming window w was the peak window in the detection

area. This step applies the response pattern that the detector’s score exponentially

decayed with the increment of distance between a surrounding window w′ and the

peak response window w. 2) After we observe the response score f(w′) for each

iteration, we compare it with the predicted one and obtain the prediction error. 3)

The prediction errors of all surrounding windows of window w are entered in an

energy function, and we evaluate the probability of window w being the local peak

window in the detection area.

18

Formally, given current observation st, the probability of a window w being

the peak window in the detection area is evaluated as:

P (h(w) = 1|st) =
1

Z
exp(−

t∑
i=1

E(wi, f(wi)|w, θ∗)) (2.3)

where Z is the normalization factor and the energy function E(·) is defined regarding

the error between the observed and predicted detector’s response score. The error

function is defined as:

E(wi, f(wi)|w, θ) =

||f(wi)− f̂(wi|w, θ)||2 if wi ∈ R(w)

0 o.w

(2.4)

Here f̂(·|w) is the predicted detector’s response function assuming w was the peak

response window, and R(w) denotes the influence (cutoff) area for window w.

According to the detector’s response pattern observed above, the predicted

detector’s response could be written as:

f̂(w′|w, θ) = C exp(−(w′ − w)TΣ−1(w′ − w)) (2.5)

and θ = (C,Σ−1) are parameters determining the peak response score and the

decaying speed of scores surrounding the peak window.

Given a range for parameter θ, we need to estimate a value best fitting the

current observation st. The estimation is done by minimizing the prediction error

19

of all observed window patches:

θ∗ = arg min
{θ:C>τ}

t∑
i=1

E(wi, f(wi)|w, θ) (2.6)

Finally the predicted detector’s score is determined as f̂(w′|w, θ∗) and the

energy function will compare the truly observed response score f(wi) with the pre-

dicted score f̂(wi|w, θ∗) to update the probability of window w being the peak

window in the detection area.

Even though we determine the maximum likelihood (minimum prediction er-

ror) parameter θ∗ for all the unexplored windows, the update process can be fast if we

restrict to a finite set of values for θ and use the kernel trick. A kernel function based

on the observed windows can be defined: q(w|wi, f(wi), θ) , E(wi, f(wi)|w, θ). The

function’s value under different θ and f(wi) can be pre-computed, where we can dis-

cretize f(wi) by binning if it takes a continuous value. As a result, the probability

can be simply estimated through kernel functions:

− logP (h(w) = 1|st) ∝ min
θ

t∑
i=1

q(w|wi, f(wi), θ)

= min
θ

∑
wi∈R(w)

q(w|wi, f(wi), θ)

(2.7)

When a new observation (wt, f(wt)) is made, only the probability of windows

within the influence area of wt: w ∈ R(wt) needs to be updated.

20

2.4.4 Active Sampling Action Policy

Given the reward distribution estimated based on the current observed state,

we select an unexplored window to be sampled at the next iteration. In order to bet-

ter balance exploration and exploitation during iterations, Posterior Sampling [20]

is employed here as our action policy. The key idea of posterior sampling is to

instantiate beliefs based on the posterior distribution given current observations in

each iteration, then choose an action that can maximize the expected reward.

As the binary reward is gained only when the sampling window w is a peak

response window in the detection area and the reward posterior distribution is es-

timated as described in the previous section, our action policy to select the next

sampling window simply becomes:

P (At+1 = w|st) ∝ P (h(w) = 1|st) (2.8)

where At+1 denotes the action variable for iteration t+ 1.

Algorithm 1 shows the overall active sampling algorithm.

2.5 Experiments

In this section, we evaluate our sampling method with Multi-Stage Particle

Windows sampling (MS-PW) [3] to demonstrate that our proposed method obtains

better efficiency while maintaining good detection performance through exploiting

the detector’s response pattern.

21

Algorithm 1: Active Sampling with Response Pattern

Parameters:
Total number of windows to be sampled: M ;
Parameters set for prediction functions {f̂i}: {θi};
Influence region function R(·);
Detection threshold τ .

Input:
Image to be detected: I;
Target detector returning response f(w) with input w.

Output:
Set of sampled windows with postive results: Wp.

1: Pre-compute / load kernel functions {qi(·)} for all {θi}
2: Initialize the prediction error w.r.t each kernel function and minimum

prediction error for all the window: {Ei(w) = 0}, E∗(w) = 0
3: Initialize the probability of each window being locally peak window in

detection area: p(w) = P (h(w) = 1|s0) = 1
Z

exp(−E(w)) = 1
Z

4: Set: Wp = ∅
5: for t = 1 to M do
6: Sample a window wt proportionally to p(w)
7: Observe detector’s response f(wt)
8: for ∀w ∈ R(wt) do
9: for each kernel function qi do

10: Ei(w) = Ei(w) + q(w|wt, f(wt), θi)
11: end for
12: Update E(w): E(w) = min

i∈{1,...,M}
Ei(w)

13: Update p(w): p(w) = 1
Z

exp(E(w))
14: end for
15: if f(wt) > τ then
16: Wp = Wp ∪ {wt}
17: end if
18: end for

22

MS-PW is chosen as a comparison method because both methods detect tar-

gets only by sampling and using the detector’s response without adopting other

pre-processing techniques such as segmentation [2, 9].

It also samples windows in iterations and the number of windows sampled

in each iteration decreases as the iteration goes on. From the observation that

windows located nearby should have similar classification score, it estimates the

distribution of positive classification windows based on the observed windows score

using Gaussian kernel density estimation. Windows in the next iteration to sample

are chosen according to the updated positive window distribution and distribution

is updated again with new observations coming.

The flow of MS-PW is shown in Algorithm 2.

Algorithm 2: Multi-Stage Particle Windows Sampling

Input: :
The number of stages S;
The number of windows to sample in each stage Ni , i = 1, ..., S;
Total number of windows N to sample
Detection threshold τ ;

Output: :
A set Wp of all the positive classification windows sampled.

1: Set: Wp = ∅
2: Initialize the proposal distribution g0(w) for all the windows: g0(w) = 1

N

3: for t = 1 to S do

4: Sample a Nt window from gt−1(w): Wt = {w1, ..., wNt}.
5: Transform the response score to positive if classifier’s score can be negative.

Then normalize classifier’s response score: fN(wi) = f(wi)∑Nt
j=1 f(wj)

6: Update proposal distribution :
gt(w) = (1− α)gt(w) + α

∑Nt
j=1 fN(wj)G(wj,Σt) p

7: Update Wp = Wp ∪ {wi|wi ∈ Wt&f(wi) > τ}
8: end for

We test the algorithms’ performance via several evaluation metrics including

23

detection rate, window usage efficiency, the average precision rate given the same

budget and overall system detection performance using different sampling window

budget.

2.5.1 Dataset and Settings

We assess our sampling method on the INRIA person dataset [19]. The train-

ing set contains 1208 cropped person patches for positive examples and 1218 non-

person images where negative example patches can be sampled from. In the testing

set, there are 453 images of scenery and buildings without people and 288 images

containing one or more persons. Most people in testing images are standing, but

they appear in different orientations and various backgrounds such as shops, statues

and pillars. In this work we are addressing a detection problem, so that full images

in the testing dataset are used to evaluate our algorithm’s performance. A SVM

classifier trained with HOG features is employed as the human detector, which takes

input images of 64× 128 pixels.

In all experiments, we set our influential region R(w) as a cube of size 21×31×5

pixels (width, height, scale) centered at observed window w. According to the

observed detector’s response pattern, we restrict the prediction function f̂(·) to

the set of parameters {θ1, θ2}: (C1,Σ
−1
1) = (1.2, diag(10, 20, 5)) and (C2,Σ

−1
2) =

(2.2, diag(25, 35, 5)). Fig. 2.5 illustrates our prediction function using parameters

θ1, θ2.

The ratio between width and height of each window is fixed as 1
2

according

24

Figure 2.5: The heat map of predicted score with our two settings of parameters.
Each point corresponds to a window in the same size with the selected observed
window.

to the detector’s input requirements. And the scaling factor for the window size of

two adjacent levels is set as 1.05. Meanwhile, the total number of possible sampling

windows varies with different sizes of input images. We denote Nsw as the total

number of sliding windows when we scan images both vertically and horizontally

with a stride of 8. Then we limit the total number of windows to be sampled in

experiments proportional to Nsw.

2.5.2 Experimental Results

The first experiment compares the detection rate under the same false positive

rate per image (FPPI = 1) between MS-PW and our method. Here the false pos-

itive rate is measured per image instead of per window because we allow multiple

targets detected in one picture, even though the latter one is the standard metric

for traditional classification problems. The outcome is shown in Table 2.1 top, from

where we can notice that with the same budget number of windows to be sampled,

25

our method has higher detection rate and hits more windows with positive results

than MS-PW.

of win. Method
Detection
Rate

of
Positive
Win-
dows

FPPI = 1

1/7Nsw
MS-PW 0.624 10.4

Our 0.716 18.3

1/6Nsw
MS-PW 0.650 11.4

Our 0.718 23.7

1/5Nsw
MS-PW 0.652 12.0

Our 0.721 31.0

1/4Nsw
MS-PW 0.667 14.1

Our 0.725 42.3

1/3Nsw
MS-PW 0.691 17.5

Our 0.726 57.6

1/2Nsw
MS-PW 0.708 24.0

Our 0.728 75.2

τ = 0

1/7Nsw
MS-PW 0.587 7.0

Our 0.677 15.4

1/6Nsw
MS-PW 0.596 8.1

Our 0.681 20.6

1/5Nsw
MS-PW 0.604 9.1

Our 0.688 28.0

1/4Nsw
MS-PW 0.652 11.8

Our 0.713 38.6

1/3Nsw
MS-PW 0.684 15.6

Our 0.714 53.5

1/2Nsw
MS-PW 0.708 23.7

Our 0.719 72.5

Table 2.1: Detection performance with same sampling window budget. Top: Clas-
sification threshold customized to FPPI = 1.
Bottom: Classification threshold τ = 0

The second experiment contrasts sampling efficiency between methods, i.e.,

the number of sampled windows with positive detection results per image using the

same number of total sampling windows. The detector (binary classifier)’s threshold

is identical (τ = 0) for fair comparison. The consequence is displayed in Table 2.1

26

(a) (b)

(c) (d)

Figure 2.6: The qualitative result of sampling the same number of windows. Top
row: MS-PW. Bottom row: Our method. Left column: The center points of the
windows selected by each method (both red and green dots). Right column: The
center points of positive classified windows sampled (green dots).

bottom. It is evident that our method can discover more positive windows and

achieve higher detection rate than MS-PW.

An intuitive explanation of these results would come from the qualitative com-

parison in Fig. 2.6, where our method exhibits better performance in locating win-

dows containing targets when sampling the same number of windows and classifying

with the same threshold.

Meanwhile, Fig. 2.7 demonstrates the average precision rate of system’s perfor-

mance in retrieving targets from images under different sampling budget. Although

the average precision of MS-PW method increases along with the sampling bud-

27

1/7Nsw 1/6Nsw 1/5Nsw 1/4Nsw 1/3Nsw 1/2Nsw

MS−PW
Our

Number of Windows Sampled

A
v
e
ra

g
e
 P

re
c
is

io
n

0
.0

0
.2

0
.4

0
.6

0
.8

0.684

0.611

0.688

0.616

0.69

0.626

0.692

0.632

0.693
0.681

0.698
0.688

Figure 2.7: Average precision rate of two methods with same window budget

get, our method remains favorable because of better performance for all budgets.

More interestingly, our method could hold a relatively high average precision rate

when the budget number is small. This suggests our approach properly exploits the

detector’s response pattern and facilitates sample efficiency.

In the last experiment, we examine system’s detection performance using De-

tection Error Tradeoff (DET) curves, which represent how missing rate (1 - detection

rate) changes with the false positive rate per image (FPPI). Performance using slid-

ing window method with Nsw budget windows (scanning step = 8) is also shown

as a baseline. Results in Fig. 2.8 reveal similar DET curves when we set windows

budgets for our method and MS-PW as 1/7Nsw and 1/3Nsw. The results mean that

to achieve the same detection performance with the sliding windows method, our

method only uses 1/7 of the total windows which outperforms MS-PW that needs

1/3.

28

10 -3 10 -2 10 -1 10 0 10 1

FPPI(False Positives Per Image)

0.2

0.3

0.4

0.5

0.6

0.7

M
is

si
n

g
 R

a
te

Our

MSPW

SW

Figure 2.8: DET curve of MSPW, SW and our method

2.6 Conclusions And Future Directions

In this work, we present a method of active sampling with response pattern

to detect targets efficiently in a visual image. The proposed method exploits the

detector’s response pattern to avoid an expensive, exhaustive searching for targets.

An exponential decay function is used to model the pattern of detection score in

the positive classification region. By comparing the predicted response score and

the observed one, we estimate the probability of an unobserved window containing

targets and having locally maximum response. Based on that, posterior sampling

is applied to decide the next window to observe. Experimental results on human

detection show that our approach can achieve higher detection rate than the MS-

PW method using the same total windows budget, and also requires less number of

windows to achieve similar detection performance compared to the sliding window

and MS-PW methods.

29

In the future, we will consider integrating this sampling method with other

search space reduction algorithms such as segmentation or saliency-based image

processing techniques to achieve better target detection performance. Also, we may

investigate other action policy strategies such as information-directed sampling [21],

so that we can further incorporate the potential information gain of sampling each

window into our reward evaluation to improve the balance between exploitation and

exploration during detection iterations.

30

Chapter 3: Fast Task-Specific Target Detection via Graph Based

Constraints Representation and Checking

3.1 abstract

In this work, we present a fast target detection framework for real-world

robotics applications. Considering that an intelligent agent attends to a task-specific

object target during execution, our goal is to detect the object efficiently. We

propose the concept of early recognition, which influences the candidate proposal

process to achieve fast and reliable detection performance. To check the target con-

straints efficiently, we put forward a novel policy to generate a sub-optimal checking

order, and prove that it has bounded time cost compared to the optimal checking

sequence, which is not achievable in polynomial time. Experiments on two different

scenarios: 1) rigid object and 2) non-rigid body part detection validate our pipeline.

To show that our method is widely applicable, we further present a human-robot

interaction system based on our non-rigid body part detection.

31

3.2 abstract

3.2.1 Introduction

When robotics researchers address applications that require visual perception

to allow for interaction with the environment, they usually adopt Computer Vision

techniques. However, the state-of-the-art Computer Vision pipelines are not well

suited for autonomous robotics. Take as an example the object recognition pipeline.

Most recent approaches rely on a general object candidate proposal procedure to

generate regions (both RGB or RGB-D), which likely contain objects. After this

object proposal stage, pre-trained classifiers, such as pre-trained Convolutional Neu-

ral Nets (CNN), evaluate each candidate’s region and determine whether the region

contains one of the target objects [15,22].

The above pipelines are considered effective and efficient for Multimedia ap-

plications, such as image tagging and retrieval. However, they are not directly ap-

plicable for Robotics applications. The reason is that during the execution of a task

or a particular phase of the task, the robot needs to localize only the task-specific

object in a fast and reliable fashion. For example, while programming a humanoid

robot to open a microwave, only the microwave’s exact pose and handle location are

critical for successful execution, while other objects that happen to be in the scene

can either be ignored or simply represented as generic geometric objects, such as

boxes or cylinders, for collision check.

Thus, the general object recognition pipeline based on object candidate pro-

32

posals becomes redundant, due to two reasons: 1) before executing a task, the robot

is aware of what object to focus on from task description; 2) the traditional object

recognition pipeline, which considers the general situation without specific task, will

hurt the system’s overall detection performance.

Here, we present a novel strategy to tackle the object recognition problem in

a robotic manipulation setting. We propose to consider the constraints from the

target object already during the candidate proposal process in order to speed up

the task-specific object detection during robotic execution. However, the main tech-

nical difficulty of the new pipeline is due to the vast amount of various constraints

for real world objects. Let’s consider the underlying distribution of the total real

world target objects, each detection constraint shall contribute differently to target

localization. In this work, we formulate the problem as a filtering problem and by

achieving a sub-optimal order of constraints to check, our system is able to reject

the negative instances early and thus significantly reduce the amount of time for

target detection.

We summarize our contribution as follows:

1. We demonstrate the feasibility and benefits of introducing target descrip-

tions early into the segmentation and object candidate proposal procedure

for robotic applications.

2. The process of checking a target’s constraints is formulated as a shared filter

problem, and we prove that a greedy strategy of organizing constraint filters

has a bounded performance with regard to the optimal checking sequence.

33

The optimized order can be interpreted intuitively as a task-specific attention

mechanism under the current working conditions.

3. We implement and apply the presented framework to two different real world

scenarios: the detection of drawers with handles and the detection of hands and

the arms. The experimental results show that: 1) the optimized constraints

checking order is time-efficient; 2) our detection framework is general enough

to deal with both rigid objects and deformable objects.

3.3 Related Work

Object detection and recognition is a problem widely studied within the Com-

puter Vision and Robotics communities. Various object detection pipelines have

been proposed for different contexts and different applications.

Object candidate proposal followed by classification has become a dominant

procedure for object detection. First, proto-objects or possible object areas are

generated either by segmentation [23, 24] or searching [2, 10] using low-level visual

cues. High-level knowledge such as context [14,25,26] and bio-inspired attention [13]

can be added to help reduce the number of candidates and make the search more

efficient. After pruning the search space, features [19] and attributes [27] can be

extracted and classified by one or multiple statistical models [28]. Recently, deep

neural network based approaches [15, 29] became popular due to their performance

and their way of handling features and classification simultaneously. However, a

general candidate proposal approach is not suited well to deliver a target-specific task

34

for a robot. The traditional detection pipeline would be computationally redundant,

given the potentially large number of object candidates.

Another class of methods widely adopted in robotics applications employs

keypoints [30] and model matching [31]. Especially when depth is available, 3D

descriptors [32, 33] can encode the shape, and they perform well when considering

them in conjunction with color [34]. However, though dealing with specific object

instances, these methods spend a significant amount of resources on finding the

key points. Also, by storing the complete 3D model and comprehensive views, the

detection process is redundant and difficult to generalize.

Here, we propose the concept of early recognition, which influences the can-

didate proposal process to achieve a fast and reliable target detection performance.

In our framework, the target object is described as a graph, and visual cues like

attributes are treated as the constraints to be followed by the graph elements. In

image processing, graph related models like Markov Random Fields have been used

to recognize or segment the target [35]. Previous approach, however, focus on the

recognition accuracy and thereby require a full list of attributes. In our framework,

we present a novel way to speed up the detection process by optimizing the order

of the visual constraints to check. Similar to algorithms in data mining [36, 37], we

adopt a greedy algorithm in ordering the visual constraints. Moreover, we provide

a theoretical foundation for our approach by proving its submodular property [38].

35

3.4 Our Approach

We illustrate the system’s workflow in Figure 3.1. Given an input RGB-D

image I (Fig. 3.1(a)), the system first generates a scene graph G = {V,E} by

segmenting I into surfaces V (Fig. 3.1(b)). At first, E contains all the possible

connections, and G is a fully-connected graph. We then represent the knowledge

about the target object as a set of template graphs GT, with constraint functions

associated with each vertex and edge. During the main detection procedure, our

system checks sequentially the constraints provided by the description of the target

object GT to remove negative matches between the scene and the template graph

(Fig. 3.1(c)). In the end, the system returns the subgraphs satisfying all the target

constraints, which provides the target object candidates (Fig. 3.1(d)).

Figure 3.1: Detection pipeline. (a) Input image; (b) Scene graph after segmen-
tation; (c) Remaining scene graph nodes with more than 1 active match with the
template graph after constraints checking; (d) Detection output after matching tem-
plate graphs.

Since our system considers the constraints from the target object early in the

process, the procedure of finding candidate proposals becomes target-specific, and

36

the recognition phase becomes a part of the constraints checking. Here, the task of

efficient target detection can be formulated as ”how to find the target (a subgraph

that matches the template graph) from the segmented input image (scene graph)

efficiently.”

3.5 Problem Formulation

The first stage of our pipeline segments input image I and generates a scene

graph G = {V,E} accordingly. Here, V is the set of segmented surfaces, and E

represents the relationship between surfaces.

As mentioned before, we describe the target object as a set of template graphs

GT along with a set of constraint functions. GT = {Gl|l = 1, 2, ..., N} and Gl =

{Vl, F Vl , El, F
El}, where Vl denotes the nodes (surfaces) in l-th template graph,

F Vl = ∪v∈Vl{F v} represents the set of vertex constraints F v for each node v ∈ Vl.

The result of matching each constraint F with vertex v is a random variable Fv

with values of {false, true}. Here, value true means a constraint is satisfied. If F

is evaluated to be false, the matching to the template vertex v will be rejected.

In our case, one constraint can be used to match with different vertices from the

template graphs, i.e. it is possible to have F ∈ F v1 and the same F ∈ F v2, where

v1 6= v2.

El is the set of edges in i-th template graph. FEl = ∪e∈El{F e} are the edge

constraints for all of them. It is worth noting that the nodes in different template

graphs have the same index if both their nodes and edges constraints are identical

37

VT = ∪lVl and ET = ∪lEl denote all the node and edge labels in the template graph.

F = {∪v∈VTF v)} ∪ {∪e∈ETF e} represent all the constraints associated with nodes

and edges.

Given a scene graph of an input image, G = {V,E}, we want to find all the

subgraphs of G which match with one of the templates in GT efficiently:

minimize cavg(I)

subject to I ∈ Permutation(1, 2, ..., |F|),
(3.1)

where I denotes one of the constraint checking sequence. cavg(I) denotes the ex-

pected cost of checking the constraints following the order of I. Here the cost

originates from the temporal ordering, because the goal of our system is to detect

the target object as fast as possible.

A naive approach of searching template graphs in G is to check all the con-

straints F in random order. The downside of such an approach is obvious. It neglects

the cost for checking the constraints.

On the other hand, searching for the optimal order is computationally expen-

sive because of the potentially exponential number of possible graph matches. The

computation complexity to exhaustively test each of the constraint checking orders

is non-polynomial. Thus, a computationally affordable strategy for determining

the constraints checking sequence is desirable for efficient target search. In the fol-

lowing sections, we will introduce our take. Our system’s output is a sub-optimal

constraint checking order. The experimental results show that our approach is able

to significantly reduce the time for target detection for robotic applications.

38

3.6 Constraints Order Searching Policy

In this section, we first clarify the constraints’ checking procedure, then put

forward our constraints order searching algorithm. Finally, we prove that the check-

ing order determined by our policy holds theoretical performance guarantee under

a set of assumptions.

For the sake of clarity, we introduce A(s|F′) to be the set of possible template

graph node labels that a scene node s matches, after checking the set of constraints

in F′ ⊆ F. Intuitively, s could match with template graph node v if all the node and

edge constraints in F′ associated with node v are satisfied.

We present in Algorithm 3 the procedure of matching a scene graph with tem-

plate graphs. In a nutshell, the algorithm checks all the template graph constraints

in F for each vertex or edge in the scene graph G. After filtering out the negative

matches between the scene and template graph, our system returns all the subgraphs

from the scene graph whose corresponding matched nodes and edges form one of

the template graphs.

In our use case application, one legitimate assumption is that the number of

possible matches for each scene vertex, after checking all the constraints in F, is lim-

ited. Thus, returning the remaining subgraphs (Algorithm 3 line 16) is expected to

take a reasonable amount of time. Traditional searching algorithms such as depth-

first search and breath-first search are also expected to deliver decent performance.

Here, we treat the constraints associated with the graph edges like the node con-

straints, Thus a matching is determined by whether the scene vertices pass through

39

Algorithm 3: The Procedure of Matching the Scene’s Subgraphs to Template
Graphs

Parameters:
A set of template graphs GT;
An ordered list of constraints to check: I

Input:
Scene graph G.

Output:
A set of subgraphs of G matching to one of the template graphs.

1: Initialize the observation set Fob = ∅,
Every node can match to any template graph node at the beginning:
A(s|Fob) = VT ∀s ∈ V ,

2: for i = 1, 2, ..., |I| do
3: Denote R(FIi) = {v ∈ VT |FIi ∈ F v}
4: for all vr ∈ R(FIi) do
5: for all s ∈ G do
6: if vr ∈ A(s|Fob) then
7: Check constraint FIi on vertex s if FIi is a node constraints. Or check

on s’s edges if it is an edge constraint.
8: if false then
9: Update A(s|Fob) = A(s|Fob)/ {vr}

10: end if
11: end if
12: end for
13: end for
14: Fob = Fob ∪ {FIi}
15: end for
16: Return all the subgraphs matching one of the template graphs.

40

the filter (or satisfy the constraints) of the template node.

It is not hard to notice that in Algorithm 3, the checking order of constraints

(line 2 - 15 in Algorithm 3) influences the overall processing time, though it does

not alter each node’s final matching output A(s|F). Intuitively, if a constraint can

exclude a large portion of scene vertices from matching template graph vertices

using low temporal cost, then the computational cost of the following constraints

checking (with higher computational cost) is expected to be reduced significantly.

In other words, the order of the constraints to check matters.

To formulate the ordering problem, let us denote ci as the cost of checking

constraint Fi on a scene vertex, and P (FIi |I) as the probability that constraint FIi

needs to be checked following the checking order of I. Intuitively, we aim to minimize

the expected cost of checking a scene node s following constraints checking order I:

minimize

|F|∑
t=1

cIiP (FIi |I)

subject to I ∈ Permutation(1, 2, ..., |F|)

(3.2)

The optimization formulation can also be interpreted as a dual problem: given

a cost budget, minimize the possible matches between the vertices of the scene and

the template graph. Here we assume that the cost of checking each constraint is

static and independent from other constraints.

First consider a special case, where there is only one vertex in the template

graph. Without loss of generality, let us denote VT = {v}, and F = F v.

41

Lemma 3.6.1. Define a greedy constraint checking order IG:

IG(k) =argmax (3.3)
P (Fi=false)

ci
if k = 1,

P (Fi=false|FIG1
=true,...,FIGk−1

=true)

ci
o.w.

(3.4)

If the conditional filtering effect of each constraint in F v is non-increasing, i.e. if

index set A1 ⊆ A2 and ∀j 6∈ A2, P (Fj = false|Fi = true, i ∈ A2) ≤ P (Fj =

false|Fi = true, i ∈ A1), then the expected cost of checking if a scene graph vertex

matches with v following the checking order of IG is the minimum among all the

static sequences.

Proof. If a scene node can match to a template node v, then all the constraints

in F are satisfied. Thereby all possible permutations have the same checking cost:∑
i∈F ci, because the algorithm checks each scene vertex with all the constraints. So

we want to find a sequence to minimize the expected cost of rejecting matching a

scene node to v.

Define an objective function g : 2|F| × |2||F| → R+ as

g(A,O(A)) =

1 if ∃i ∈ A,Fi = false,

0 o.w,

(3.5)

where O(A) is the constraints checking result of constraints indexed by A. We

assume that at least one of the constraints in F returns false because we are dealing

with a non-matching case. Here, since we are considering a special case of a single

42

node in the template graph, our goal is to minimize the expected cost of constraints

checking when g reaches value 1. We have:

(1) g is strong adaptive non-decreasing: ∀A ⊆ F and for all possible cor-

responding observations O(A), g(A,O(A)) ≤ g(A ∪ {j}, O(A) ∪ {Fj = o}) ∀o ∈

{true, false},∀j 6∈ A. It means that the objective function value does not decrease

with more observations coming in.

(2) g is adaptive submodular: ∀A1, A2, s.t. A1 ⊆ A2, O(A1) ⊆ O(A2), ∀j 6∈ A2,

E[g(A2 ∪ {j})|O(A2)]− g(A2|O(A2)) ≤

E[g(A1 ∪ {j})|O(A1)]− g(A1|O(A1))

(3.6)

Intuitively, this means that the marginal gain of the objective function g is non-

increasing.

Here is our proof. If one of the constraints in A2 returns false, the left-hand

side of Eq. (3.6) is 0 since the matching has been rejected, while the right side of the

inequality can be 0 or 1. When none of the elements in A2 returns false, based on

the assumption in the lemma, that the conditional filtering effect is non-increasing,

(3.6) still holds.

(3) g is self-certifying: we know immediately once g reaches value 1 based on

the current observations. Because we are dealing with the case that a scene node

will be rejected, our observation space does not contain non-zero possibility events

of passing all the constraints checking. So, based on Proposition 9 in [38], function

g is a self-certifying instance.

Based on Theorem 11 in [38], when g reaches 1, the average cost of greedy

43

sequence IG is smaller than (1 + ln(Q
η

)) times optimal time cost. However, in our

case, we have value Q = 1, and η = 1, so the cost of IG is equal to the optimal.

A theorem of adaptive strategy is adopted to prove Lemma 1 for our static

sequence, because we are dealing with a special case of single label matching (Q = 1).

If the adaptive strategy continues, it implies that all the observed constraints return

true. Under such a scenario, both static and adaptive sequences are the same.

Theorem 3.6.2. Assume the constraint’s conditional filtering effect for the same

template vertex is non-increasing (as defined in Lemma 3.6.1) and constraints be-

longing to different template vertices are independent. i.e. for i 6= j, if 6 ∃v ∈ VT ,

s.t. Fi ∈ F vandFj ∈ F v, then Fi |= Fj. Then the cost of a greedy constraint check-

ing order will be upper bounded by µ times optimal cost, where µ is the maximum

number of template vertices that have the same constraint.

The proof is similar to the proof of Theorem 3.4 in [36]. The idea is that for

any single template vertex, the expected cost of the optimal sequence should be at

least as large as the one returned by a greedy policy, as proved in Lemma 3.6.1.

Since one constraint can appear at most µ times for different template vertices, the

cost of the greedy strategy can be at most µ times that of the optimal strategy.

Furthermore, under an arbitrary distribution of constraint responses, the cost

of greedy sequence checking is still bounded.

Theorem 3.6.3. For any distributions of constraints in F, the average time cost

of checking constraints with the greedy sequence method is bounded by 4µ times

44

optimal average cost. µ is the maximum number of template vertices sharing the

same constraint.

Proof. Similar to the proof of Theorem 3.6.2, we start with the expected cost of a

single template vertex case, then extend it to the general case.

Based on Theorem 2.3 in [37], the average cost of checking constraints following

the greedy policy is at most 4 times the optimal cost.

Thereby, when multiple template graph vertices exist and at most µ nodes

share the same constraint in F, the greedy sequence checking order is at most 4µ

times the optimal expected cost.

Our constraints’ order determination policy is listed in Algorithm 4. The

Algorithm 4 has a time complexity of O(n2) where n is the cardinality of F.

Algorithm 4: Determine the Constraints Checking Order

Input:
The set of constraints: F.
The cost of checking constraint F ∈ F for one node c(F)
The distribution of constraints checking results

Output:
The sequence of the constraints to check: I ∈ Permutation(1, ..., |F|).

1: Initialize observed set of constraints: Fob = ∅,
ordered list I = empty queue.

2: while F is not empty do
3: for all F ∈ F do
4: Compute h(F) , P (F = false|∀F ′ ∈ F, F ′ = true)/c(F)
5: end for
6: Select F ∗ ∈ argmax(h(F)).
7: Fob = Fob ∪ {F ∗}.
8: I enqueue F ∗.
9: Remove F ∗ from set F.
10: end while

45

3.7 Experiments

We apply our target detection framework to two different real-world robotic

tasks to validate its generality and effectiveness. The first scenario is to detect a

drawer with a handle as shown in Fig 3.1. Its shape is a cuboid with a handle on

the front surface. The second case is to detect a human hand in a pointing gesture.

Hand localization is of great interest in the field of Human-Robot Interaction (HRI).

In our scenario, we consider the hand together with the arm a single target object.

This makes the task difficult, because the hand and the arm together no longer form

a rigid object. Experimental results show that our framework can still work as long

as the target object can be represented as a template graph.

In the phase of determining the constraint checking order, we use nF
N

to ap-

proximate h(F) in Algorithm 4, where N denotes the running times of constraint

F , and nF are the rejected matches between scene and template nodes.

3.7.1 Experimental Setup

As shown in Figure 3.2 (a), we mount an ASUS Xtion PRO camera to the left

wrist of a Baxter humanoid robot. Our system maintains and provides transforms

between the Baxter base frame and other joints. Since the camera’s pose is fixed

to the wrist, we calibrate the camera’s coordinate to the “left gripper base” frame.

By propagating the tf (transform) tree, the system projects the point cloud data

from the ASUS camera into the robot base frame, which enforces the z-axis to point

upwards and x-axis to face forwards (Figure 3.2 (b)).

46

(a) System outlook (b) Illustration of coordinate system

Figure 3.2: Robot and camera setup

3.7.2 Segmentation

An input RGB-D image from the ASUS camera is over-segmented into sur-

faces to generate a scene graph. In our implementation, we apply the plane-fitting

algorithm from [23], which uses depth-adaptive normal calculations and plane fit-

ting taking into account the noise from the depth measurements. Since the adaptive

operations are based on the assumption that the z-axis value is the depth value, we

calculate the surface normal and fit a plane in the camera’s original frame (“cam-

era link”) before transforming the measurements to Baxter’s base frame.

3.7.3 Handle Drawer Detection

As shown in Figure 3.1, a handle drawer has the shape of a box with a hori-

zontal handle on one of its surfaces. Depending on the viewpoint, two (top, front)

or three (top, front, and side) surfaces of the box are visible. In our implementation,

while maintaining a high success rate, we model the template graph of the drawer as

47

(a) Handle box (b) Hand with arm

Figure 3.3: Illustration of template graphs

two nodes. Figure 3.3 (a) shows the template graph. The constraints of the handle

drawer template graph are listed in table 3.1.

Template component Constraints
Node 1 Size(node1), Orientation(node1)
Node 2 Size(node2), Orientation(node2), Has handle

Edge (1, 2) Pairwise vertical, Convex box

Table 3.1: Constraints for handle box detection

We check the size constraint by comparing the first two principal components

of the surfaces with target-specific thresholds. For example, because node 1 of

the handle box is a rectangular surface, we restrict the first principal component

(length) to be within (0.3, 0.7) meters and the second dimension (width) to be in

the range (0.25, 0.6). For the orientation constraint we check whether a surface’s

normal (third principal component) is along a particular direction. Here, node 1 in

the handle drawer graph is upward while node 2’s direction aligns with the horizontal

plane. The checking of the surface’s handle constraint is done in two steps. First,

we extract points within a 3D bounding box in front of the surface patch. Then we

48

validate if there is a connected component on that surface that has the shape of a

handle, i.e. satisfying the size constraint of a handle.

For the two edge constraints, the pairwise vertical constraint returns true if the

two surfaces are adjacent to each other, and their orientations are perpendicular to

each other. The convex box constraint checking is done by checking if two surfaces

not spanning the same plane form a convex shape, which means the two surfaces

shall not segment each other, and the shape they form must form a convex box

instead of a concave corner, as illustrated in Figure 3.4.

Figure 3.4: (a) Illustration of a convex box. Three failure cases: (b) top surface
segments the bottom one; (c) not enough shared boundary; (d) two surfaces form a
corner (faces towards)

3.7.4 Hand Pointing with Arm Detection

As second scenario we consider hand detection. Here we show an application

of detecting the hand together with part of the part of arm visible in the scene.

Figures 3.3 (b) and 3.7 show the experimental setup. Note that the target object is

no longer rigid in this situation because the angle between the finger and the wrist

is flexible during pointing.

49

As shown in Figure 3.3 (b), we use one node to denote the arm in the template

graph and the other for the hand. The constraints for checking template graphs are

listed in Table 3.2.

Template component Constraints
Node 1 Size(node1), Location(node1)
Node 2 Location(node2), size(node2), Hand shape

Edge (1, 2) Hand arm relationship

Table 3.2: Constraints for pointing hand detection.

The size constraint is handled in the same way as the handle drawer detection

except that the size thresholds need to be set for surfaces that belong to the hand

and the arm. The location constraint returns true if the centroid of a scene surface

is in a given cuboid area. Since we have already transformed the point cloud to

the Baxter’s base frame, which aligns well with human perception, it is not hard

for people to manually annotate a 3d range of possible locations of the target. For

example, because we do not expect to see the arm or the hand on the ground or

flying high around the ceiling in this scenario, we can set the location threshold on

the z-axis to reject surfaces heights that are too large or too small. The hand shape

constraint checks if the contour of a surface patch has the shape of a pointing hand.

The hand-arm relationship is encoded as edge relationship between the hand

and the arm. We check if there is a hand node close to the arm node and enforce

the constraint that the the hand is along the direction of the arm.

50

3.7.5 Optimization of the constraints checking order

As discussed in Section 3.6, the order of checking the constraints influences

the time for target detection, and we proved that the greedy constraint ordering

algorithm (algorithm 4) has a bounded computational cost w.r.t the optimal com-

putational cost.

To show the efficiency of the presented algorithm, we compare the average

computational time for constraint checking (line 2-15 in algorithm 3) of four different

checking order policies: random checking order, best order among sampling 300

sequences, the greedy order proposed, and the optimal order.

Random ordering does not need any training data and it represents the most

naive policy. The time cost of random order is the mean of the running time of

300 random checking sequences. Order determined by sampling is the one with the

minimum running time among 300 random checking sequences on the training data.

The optimal order is obtained by exhaustively trying all possible sequences and then

selecting the sequence with minimal cost as the optimal one. The handle drawer

has 7! = 5040 possible sequences and the hand detection has 6! = 720. Note that

an exhaustive search for the optimal sequences is not feasible because the number

of permutations grows exponentially when the number of constraints increases.

For both handle box and hand detection, we collected 50 point clouds each for

training and testing. Also, another 100 background point clouds were collected to

serve as negative samples with half used in training and half in testing. The result

is shown in table 3.3.

51

time (ms) Random Sampling Algorithm 4 Optimal
Handle box 382.6 28.0 24.6 19.3

Pointing hand 43.2 8.1 8.8 8.1

Table 3.3: Running time of four constraint checking order on testing data.

The machine used in the experiments has an Intel i7-6700 CPU of 3.4GHZ

and the memory is 16 GB. We did not use GPU or parallel computing.

From the result, we can see that a random ordering without any optimization

would take the longest time to execute. Our proposed greedy algorithm is close

to the optimal order. When the total number of possible sequences is not large,

a sampling method would perform better than our method as is shown by the

case of the pointing hand. But when the possible number of sequences is large so

that sampling cannot cover a reasonable portion, our algorithm works better as is

shown for the case of the handle box. Also note that to determine a checking order,

algorithm 4 is much faster than the sampling method because algorithm 4 only needs

49 and 36 sequence checking runs while sampling needs 300 in our experiment.

3.8 A live HRI application

In this section we describe an application of human-robot interaction that is

built on the pointing hand detection discussed in section 3.7.

Our system allows humans to interact with real world objects through pointing

gesture, and it then generates a command for the robot accordingly. For instance,

let us suppose that a user intends to heat an object using the microwave or put an

object into the refrigerator. As shown in Figure 3.7, using our system, a user can

52

select the target object using a pointing gesture. After the selection is confirmed,

the target object can be virtually dragged to its target location through human

guidance.

After applying the constraint checking order optimization, our hand detec-

tion works faster (than a naive approach) thence our system provides a smoother

interaction user experience. To complete the whole scenario, we introduce other

components of the interaction system aside from hand detection in the following

sections. We provide a video showing the interaction process in the supplementary

material.

Figure 3.5: Visualization of the fingertip and its pointing location.

3.8.1 Surrounding objects recognition

Large surrounding objects, such as a fridge, a table and the shelf holding

the microwave can be detected at the beginning of the process and are kept in a

stored world model since they will be static for a long time. The table top objects

can be detected and recognized online by a tabletop point cloud reconstruction,

53

segmentation [24] and recognition. The recognition outputs are stored in the same

world model describing the real world configurations. It is worth mentioning that

our pipeline is applicable for both the tabletop objects and detection of other objects.

For example, the microwave in Figure 3.7 is detected using the same pipeline.

3.8.2 Obtaining the object that the hand is pointing at and its loca-

tion

We use a straight line to represent the pointing direction after detecting the

pointing hand and arm. The direction of the line is the detected arm’s direction,

which is calculated by taking the eigenvector corresponding to the first principal

component of the point cloud belonging to the arm. The fingertip are at the starting

point of the straight line. We detect the fingertips by searching the 3D points on the

hand that are furthest along the pointing direction. Figure 3.5 shows a visualization

of fingertip point.

Figure 3.6: An illustration of the state machine for human-robot interaction. State
1: initial state; state 2,3: state for object pointing confirmation; state 4: object
virtual moving state; state 5:ending state after parsing the command successfully.

During the object selection phase, we simply treat the object closest to the

54

Figure 3.7: Sending a command: <heat the mug> via HRI system. The top row
shows the human operation and the bottom row shows the corresponding status of
the interaction process. (a) Initial stage with objects detected in the scene; (b)(c)
select target object by pointing and then object confirmation; (d) drag the selected
object to another functional place, i.e. microwave, virtually; (e) the system receives
the command.

pointing line as the target object of the user. Also a threshold is used to limit the

distance between the object and the pointing ray.

After an object is confirmed, the user can start moving it around by pointing

to other locations in our virtual environment. At this time, we treat the intersection

point between the pointing ray and a plane spanning table top as the target location

(Figure 3.5). Thence, the selected object’s position can be updated as the new

location.

3.8.3 Robot feedback interface

A proper way to display the current configuration of the world model and the

status of pointing is necessary for a smooth and accurate interaction between human

55

and robot.

In our system, we directly show the current status of the system through the

Baxter robot’s screen. Specifically, we visualize the virtual world using the PCL

visualizer [39].

3.8.4 Interaction flow finite state machine

The underlying logic flow is implemented as a finite state machine as shown

in Figure 3.6.

At the beginning, the system is in state 1 waiting for the human’s command

(Figure 3.7 (a)). The system will advance to the object selection state 2 once a

pointing to the object happens for more than 1 second and the selected object will

turn red (Figure 3.7 (b)). After two more seconds of consistent pointing, the object

is confirmed to be chosen and the system reaches state 4 (3.7 (d)). Then the object

can be virtually moved around. Finally, when the object reaches a certain area of

the target location for more than 1 second, the system gets a command that it was

successful and enters the final state 5 (Figure 3.7(e)).

3.9 Future Work

As shown by experiments and an HRI application, our framework is able to

detect target objects in robotic applications in a reliable and effective way. In

future work, we plan to improve the learning pipeline by generating template graphs

automatically. Additionally, with the number of types of constraints increasing, how

56

to select a reasonable subset is another problem that deserves further investigation.

In the application scenario outlined we make a first step to teaching the robot

via pointing to the target area. Using this approach of teaching the robot with bare

hands, trajectory learning and adaptation [40] could become more friendly.

57

Chapter 4: Active View Point Control for Reliable Target Detection

in Human-Robot Interaction

Object detection is a fundamental task for robots, and it becomes more chal-

lenging during the human-robot interaction when additional randomness from the

user comes in. In this chapter, we put forward a practical viewpoint control system

for object detection during the human-robot interaction. We not only consider the

viewing condition constraints for vision algorithms but also incorporate the low-

level robot kinematics to guarantee the reachability of the desired viewpoint. By

selecting viewpoints fast using a linear time cost score function, our system can de-

liver smooth user interaction experience. Finally, we provide a learning from human

demonstration method to obtain the score function weights that better serves task’s

preference.

4.1 Introduction

Human-robot interaction is a critical component involved in many robotics

tasks such as robot assistance, visual learning, and command sending. A visual

system that can robustly recognize the objects during the process will make the

interaction more reliable and is vital to task’s success. For example, to reliably

58

detect and recognize user’s hand is essential to a gesture command system. Also if

a user wants to pass an object to a robot, both the object and the hand need to be

clearly seen to make sure the robot can catch it.

However, to reliably recognize the objects of interests is not a simple task.

For example, an out-of-view problem may occur due to camera’s limited view angle,

human’s movement and random positions. Also, the target object may get occluded

during the process, especially the movement of the robot may introduce occlusions

that the first viewpoint and scene settings do not have. Regarding the computer

vision algorithms, a too far or twisted view may increase the sensing noise or violate

the algorithms’ preference, thence damage the algorithm’s performance.

Many robotics vision methods [41, 42] have used active viewpoints control to

handle the possible unsatisfactory view conditions in reliable object detection or

recognition. But few of them consider the constraints from the low-level robot

kinematics and the majority just pre-select a small amount of reachable end effector

positions. Moreover, their viewpoint planning and execution process may take long,

which would provide a poor user experience during the human-robot interaction

process.

In this work, we propose a fast active viewpoint control strategy to solve

the issues of limited view angle, occlusion, and view direction requirements. The

general idea is to use a score function to select the view that fits the current object

recognition task. The four scoring factors are the joint discontinuity of moving to

a new viewpoint, target object’s viewing centeredness, occlusion and viewing angle.

To guarantee the view evaluation function have a fast response, we precompute and

59

store the important intermediate parameters such as extrinsic transformations and

joint values from inverse kinematics.

Because different tasks may have their preference of view control strategy,

and to collect training data with a human in the loop would be expensive, which

increases the difficulties of obtaining appropriate parameters. We propose to learn

system parameters from human’s demonstration. The learning process is modeled as

coactive learning. Assuming human’s feedback viewpoint would better fit the task,

our viewpoint module follows human’s direction to update its weights. Experiments

on our two human-robot interaction applications demonstrate the effectiveness.

(a) Robot system setting (b) A visualization of robot joints
and frames

Figure 4.1: Image of our robotic system settings and a visualization of joints and
frames. A ReFlex hand is attached as right arm’s end effector for grasping tasks.(a)
We mount a depth camera onto the left arm that we can actively change the view-
point. (b) S0-W2 denotes the seven joints of Baxter robot’s left arm. In occlusion
prediction, we mainly use the frames on the right arm to deduct viewing ray and
body part overlap.

We summarize our contribution as follows:

1. We put forward an efficient and practical viewpoint planning procedure for

object detection during the human-robot interaction process. Our method

considers the low-level kinematics constraints for the feasibility and reachabil-

60

ity of the viewpoints besides the traditional vision constraints.

2. To make the selected view point better serve the task, we use coactive learning

method to learn score function’s weights, where training samples are expensive,

and quantifying the view qualities is hard from the perspective of the whole

task.

3. We implement two human-robot interaction applications and apply our view-

point control module to them, demonstrating the usability of our proposed

system.

4.2 Related Work

Target detection and recognition are fundamental tasks in computer vision.

For the efficiency and accuracy, researchers have been working on different levels

of the computer vision pipeline such as feature abstraction [10, 39, 43], context ex-

ploitation [17,25] and multi-source fusion [27,44].

Different with traditional computer vision, robotics vision has the potential

to control the in-hand or on arm camera to a viewpoint actively that better serves

the task [45, 46]. Atanasov [41] formulates the active object detection problem in

a Bayesian framework and a non-myopically plan the viewpoint to minimize the

sensor movement and error recognition probability. But it does not consider the

kinematics constraints in moving between positions. [42] uses SIFT [43] matching

and 3D shape alignment as detection techniques. The next viewpoint is chosen

as a place maximizing the potential number of SIFT points detected, which is a

61

non-probabilistic approach. For tasks other than object detection, [47] considers a

problem of surface reconstruction and chooses next best viewpoint by maximizing

the information gain defined in terms of spatial resolution increment. With the

allowance of changing scene settings, [48] uses a humanoid robot to grasp the object

during the recognition process thereby avoiding the problems of occlusion and scene

modeling. [49] surveyed approaches in next view planning.

However, few works have been done on active viewpoint control for the tasks

of Human-Robot interaction [50], where human’s random behavior would make the

detection problem more challenging. [51] learns human user model with eight preset

cameras. [52] develops collaborative Fetch-and-Deliver tasks via single static range

sensor. But none of them deal with interaction with active cameras. In this work,

we propose a fast active response viewpoint selection module for two human-robot

interaction processes.

To learn viewpoint selection parameters under a rare training data situation,

we present to use coactive learning method to learn from human’s demonstra-

tion [53]. This learning model has been widely used in trajectory learning [40, 54],

search recommendation [55], machine translation [56] etc. Our experiments demon-

strate the effectiveness of coactive learning applied in viewpoint preference learning

scenario.

62

4.3 System Overview

As illustrated in Figure 4.2, a robot system usually consists of multiple mod-

ules. Take grasping objects as an example, I/O module can receive commands from

the user and vision is responsible for answering where the cup is and how it looks

like. Then control module decides how to move the arm, and a logic module can

organize high-level action execution order and prepare a failure plan.

(a) Static view system (b) Active view system

Figure 4.2: Illustration of static view system and active view system. The blue
region in (b) is the viewpoint control module serving robot tasks.

Our work focuses on the controlling robot’s visual condition actively for reliable

target detection in the human-robot interaction situations, where a predefined set

of camera positions would not work due to the random behavior of users.

In the following sections, we will first introduce our viewpoint control policy.

Then show two applications of our viewpoint control module in passing an object

to robot and gesture command sending tasks. Finally, we demonstrate how to learn

the parameters in our viewpoint score function using coactive learning model.

63

4.4 View Point Control Module

We first detail on our active view point control pipeline.

As illustrated in Fig 4.2(b), vision algorithm’s detection result will be fed to a

view point selection module. This module will select a viewpoint based on current

target’s location and scene settings. If a new viewpoint is decided, the camera sensor

will move to it.

When choosing the next view point to go, we use a score function to evaluate

each viewpoint and mainly consider four types of constraints: joint discontinuity of

moving to a new location, target’s position in that viewpoint, occlusion conditions

and viewing directions.

Formally speaking, we directly define viewpoints in the joint space with 7

degree of freedom as shown in Figure 4.1: v ∈ V ⊂ R7. V is a predefined candidate

set of viewpoint joint values. Using forward kinematics and coordinate transform,

we can obtain the position of the camera p ∈ R3 and orientation o ∈ R4 (expressed

using quaternion) under the robot base frame. s(·) is the score function of each

viewpoint evaluation factor, ranging in [0, 1]. x is the current interaction scene

setting, including the position of robot’s arm and user’s function part (e.g. hand).

λ is a positive weight describing each components’ contribution to the score function.

Our next view point selection policy is to select a viewpoint with the minimum score:

vnext ∈ argmin
v∈V

score(v, x)

score(v, x) , λJDsJD(v, x) + λCT sCT (v, x) + λSOsSO(v, x) + λV DsV D(v, x)

(4.1)

64

Next, we are going to explain each evaluation factor.

4.4.1 Joint Discontinuity

To move the camera to the desired position in 3D space, we need to first

convert the target effector’s position to the robot joint space, then control each

motor of the corresponding joint to the target joint value. Figure 4.1 (b) illustrates

the seven joints belonging to the Baxter robot’s left arm. Due to the constraints of

joint values, not every point in the 3D space is reachable. Also, two adjacent points

in 3D space may have a considerable distance joint space. So the Euclidean distance

of end effector’s between the source and destination is not a good approximation of

the movement execution time.

Given Jcurr ∈ R7 as the current joint values and Jv ∈ R7 as another view

point’s joint values, we define the joint discontinuity as:

sJD(v, x) = 1− exp(− 1

C
(Jv − Jcurr)TKJD(Jv − Jcurr))

where KJD is a symmetric matrix defining joints distance. In the simple case, K can

be an identity matrix and the score function sJD(·) purely measures the Euclidean

distance between two set of joint values. C is a positive constant. Jv is the same as

v since we already represents view point in the joint space.

65

4.4.2 Centeredness of Target

Central of target constraint is to make sure the target object is in the view of

the arm camera.

When checking the location of a target object in the new viewpoint, we assume

the robot camera has moved to v, calculate the extrinsic transform from robot’s base

frame to camera’s frame then project the result to 2D image using camera’s intrinsic

parameters, which is known before.

Given a point pb = (xb, yb, zb)
T in the base frame and target view point v, we

can transform p’s coordinate to the camera’s frame by:

pc = R ∗ pb + T

where R and T is the rotation matrix and translation vector of the base frame from

the camera frame.

Using pinhole camera model, we can get pc’s projection to 2D image coordinate

(u,w) as:
u

w

1

 =

fx 0 cx

0 fy cy

0 0 1

xc
zc

yc
zc

1

where fx and fy are the focal lengths in pixel units and c = (cu, cw) is a principal

point at the image center.

66

We then define the centeredness score as:

sCT (v, x) = 1− exp(− 1

|P|
Σp∈P(puw − c)TKCT (puw − c))

where puw = (pu, pw) is the image coordinate of point p after projecting to camera

at view point v and P is the sampled set of points belonging to the target. KCT is

a distance’s correlation matrix.

4.4.3 Occlusions

Even though there may be no occlusion when the target is first detected, but

view point may get obstructed after the movement of the human or robot. Here we

mainly consider the occlusion source from the robot because 1) we assume the user

is cooperative and does not want to hide the functioning object to the camera in

deliberate; 2) a comparatively free space for both human and robot interaction is

assumed provided. Otherwise, human and robot’s movement would be difficult.

Figure 4.3: Illustration of occlusion detection. Robot parts are represented as cylin-
ders and viewing rays from camera to the object are checked whether intersecting
with robot parts.

67

In the occlusion detection, we represent robot parts (upper, lower arm, wrist,

and fingers) as cylinders and check if any of them intersect with viewing segments

starting from the camera ending at the object. The positions and orientations of

the robot parts are from robot maintained joints’ transform tree. A visualization

of these transform links is shown in Figure 4.1(a) . We measure and store the size

(height and radius) of each cylinder before.

Note that the occlusion from scene object can also be handled using similar

ways if we know the scene object shape model and poses.

So the score function of occlusion for view v is defined as:

sSO(v, x) =
1

|X|
Σx∈X(1−

∏
p∈P

(1− overlap(v, x, p)))

where P is the set of robot parts. Function overlap(·) will return 1 of the segment

from viewpoint v to the sampled point x intersects with part p, which is represented

as a cylinder in our case.

4.4.4 View Direction

View direction constraint is to make sure the target in a new viewpoint can

be clearly seen. Thereby abstracting and analyzing the feature on that viewpoint

can be more reliable.

For example, in Figure 4.4, suppose the triangle ∆ in the air is the target

object. Plane a and b are two view planes that are perpendicular to their viewing

axis. After projection, two projected triangles ∆a and ∆b are of different size and

68

Figure 4.4: Illustration of a triangle projected to different planes.

we prefer the result on plane b since it is larger and could provide more features for

the subsequent image processing.

For the convenience of implementation, we choose a triangle that lies inside

the target object and projects it to each viewpoint v. The projecting process is the

same as subsection 4.4.2. The view direction score is counted as 1 minus the ratio

of projected triangle area and the largest possible projected triangle area.

sV D(v, x) = 1− area(∆v)

max area

max area is the area of the projected triangle whose view axis is perpendicular to

the plane of 3D triangle and the distance between view point and triangle plane is

the shortest (30cm in our implementation).

4.4.5 Precomputation

To reduce the online computation time for the viewpoint selection and guar-

antee an accurate control of the robot, we precompute a mapping that links the

joint values of camera arm with effector’s position and orientation.

69

The pipeline is shown in Figure 4.5.

Figure 4.5: The float chart of precomputation pipeline.

For each target camera’s pose q, that is composed of position and orientation,

we first use inverse kinematics(IK) to get the camera arm’s joint value j. Due to the

randomness of inverse kinematics algorithm, a reachable end effector pose may not

have a joint space solution. We try 10 times here before we drop off that camera’s

position.

However, inverse kinematics can only return a proximate result. Using q to

analyze viewpoint property may bring incorrect result because the arm is not moving

there. So we feed the joint values from IK to forward kinematics to get the camera’s

pose q′. And q′ is the exact pose that camera will go. Finally, the mapping between

q′ and j is stored and used to represent a view point.

In the next sections, we are going to introduce two human-robot interaction

applications that use the active vision module discussed above.

70

Figure 4.6: An illustration of the in-hand object detection pipeline for a user passing
object to robot task. White boxes are the modules in detection algorithms. Blue
boxes are the active viewpoint control modules we proposed. Point cloud processing
results are exemplified at the lower row.

4.5 User Passes an Object to the Robot

The first application is for human giving an object to a robot. Because of the

unpredicted position of user’s hand and potential occlusion during the process of

robot approaching, we need to control the viewpoints to make sure human’s hand

is always in view and can be detected.

Before we introduce the viewpoint control component, we first have an ex-

planation of our visual detection system and robot grasping policy. Note that the

vision algorithm will take input from a static camera (as shown in Figure 4.2(b))

before integrating our active viewpoint control component.

71

4.5.1 Detection of the Object in Hand

The in-hand object detection process is illustrated in Figure 4.6. We assume

the user is cooperative and does not want to hide the object from the robot. In the

running time, our detection algorithm is looking for the object that is above the

table and closest to the robot.

Given a collected point cloud, box filtering module will first extract the points

above the table because we assume the user will hold the object above the table and

in the front of the robot.

Because the points belonging to both the robot and the object may appear in

the table above area, we have to remove the robot owned points in the next step.

The general procedure is to first obtain the pose of the selected joint frames in the

right arm (as shown in Figure 4.1(a)) by looking up robot maintained transform

system. Then find the points nearby these joints and extract all the points that in

the same connected component as robot’s points. However, due to the noise and

viewing issue, there would be some points belonging to the robot but untracked. So

we create a voxel grid of 8 cm3 and filter our points lying in the same voxel with

robot points.

Before locating the nearest point’s connected component to the robot, we need

to filter out the sensor noise, which appears randomly in the image but of small size.

So we find all the connected components of points and treat the components of the

size less than 500 as sensor noise and throw them.

In the last step, we extract the point that is closest to the robot as our attention

72

point, and we believe this is a point of in-hand object or hand. Then segment a box

area around the attention point and treat the largest connect component inside this

box as points of the target.

4.5.2 Robot Action Policy

After getting the location of the target, the robot will try to approach and

grasp the object.

However, due to the random and hesitant behavior of human being, the robot

will interpret the user’s intention via a state machine based on target’s location

history. Also depending on the human intention state, the robot will have four types

of actions. Figure 4.7 shows the state machine of human purpose interpretation and

corresponding robot actions.

Figure 4.7: The state machine of robot interpreting human’s intention and robot’s
action policy under each state.

In general, human’s intention state is categorized into four states, 0 denotes

no human presence, 1 and 2 are the intermediate states where the user is interacting

73

but not determined. State 3 means hand’s position now is stable and ready for

grasping. Once a hand is detected, the state machine will advance to state 1. A

steady holding of the object for more than 1 second will move human’s state into

the next one. Once there is a significant movement in the process, the state machine

will fall back to state 1. An absence of human interaction for more than 3 seconds

to make the machine reset to state 0. Other actions will keep the state unchanged.

Four types of reaction can be chosen on the robot’s side based on human’s

intention state as shown in Figure 4.7.

1. Reset action means the robot retreat its grasping (right) arm and open its

gripper.

2. When the target is far away from the right hand, the robot will first move to

a position before the target. Because this is a movement of long distance, the

trajectory will first be planned before execution.

3. When the grasping hand is not far away from the target, we will use set joints

method to control the arm directly. The target joint values are computed from

inverse kinematics.

4. Finally, when the robot decides to grasp., its grasping hand will go to the target

location, then closes the fingers. In our implementation, we use a ReFlex hand

and wrap grasp the target. There is one more active viewpoint control and

vision process to check if the gripper misses the object before the robot closes

its gripper. Because the process is similar to the whole passing process, we do

not repeat them here.

74

4.5.3 View Point Control Component

Because user’s hand may move out of the view point of the camera or get

occluded, we apply our active viewpoint control module (blue boxes in Figure 4.6)

here to actively change the view position of the camera to keep the target on track.

Figure 4.8: An illustration of the triangle used to determine the view direction of
the passing object application.

The input to the view point control component is the setting of the interaction

scene (x in equation 4.1) that provides necessary information for calculating view

score function.

Target segmentation results shown in Figure 4.6 is given to the view point

selection module for centeredness and occlusion score. Also occlusion score needs

robot’s joint information illustrated in Figure 4.1(b). For view direction evaluation,

we select a triangle residing in the 3D bounding box of the target (see Figure 4.8)

and calculate its projection w.r.t different camera views. Because joint’s value have

been precomputed and stored, sJD(·) can be evaluated without any other input.

4.6 Human Sends Command via Pointing

In this section, we show another application in visual command sending, where

the user stands in front of the robot and send commands to the robot by a sequence

75

of pointing actions. Due to the random initial positions of the hand and potential

movements, the hand may go out of the view or the view direction become too

narrow the detection algorithm to work.

4.6.1 Arm and Hand Detection

Arm and hand are detected via Luan’s graph matching framework in [57].

The general idea is to represent the target as a template graph and, the detection

procedure becomes mining a subgraph from the input scene graph that matches the

template graph.

An arm and hand detection result is visualized in Figure 4.9 (a), (b).

Figure 4.9: (a) (b) An illustration of an arm and pointing hand detection result.
(a)Input point cloud. (b)Detected arm and hand. (c)The triangle selected to deter-
mine the view direction for the arm ad hand detection.

4.6.2 Visual Command Sending Example

A state machine is also used here to interpret the visual command sent by

user’s sequence of pointing actions. [57] provides an example of ”heating object”

command. Here we show another case of just selecting the target. This would be

useful in solving the ambiguities in object references.

76

Figure 4.10: The state machine of selecting a target object.

In the beginning, the system is in state 0. Once we detect an object pointed

by the user, the state goes to 1. If the user keeps pointing to the same object and

holds for more than a second, the state machine advances to the next state. Once

reaching state 3, the target object is confirmed chosen. If the user chooses another

object while in state 1 and 2, the machine will go to state 1 and update the pointing

object.If no pointing object detected for more than 10 seconds, the system falls back

to the initial state 0.

4.6.3 View Point Control component

For the same reasons with passing object application, we apply active view

control component here to keep user’s hand in view and detection reliable.

Segmented user’s hand and arm (Figure 4.10 (b)) are the input for calculating

centeredness score and occlusion. The triangle for view direction checking is shown

in Figure 4.10 (c), where the one point is the finger tip and the other two points are

from the mid arm.

77

Figure 4.11: An example of human teaching viewpoint selection in object passing
application. Top row: Viewing image from the camera; bottom row: corresponding
robot pose. (a)The viewing image when a user hands a bottle to the robot; (b) The
selected viewpoint by the initial set of score function parameters;(c) The view after
human demonstrates a better view; (d) The newly selected viewpoint with learned
parameters

4.7 Learning Score Function’s Weights

Because the viewpoint quality is evaluated by a score function that considers

viewing factors such as occlusion, view condition and movement time, the set of

function coefficients can represent the viewing element preference by controlling the

contribution ratio of each factor. How to find a good set of score function parameters

becomes a practical problem influencing the success and the smoothness of the task

execution. To manually try a set of score function weights is one way of dealing

with robot task preferences. But it could require a large number of trials due to the

blindness of tuning. In this section, we put forward a method that learns function

weights from human expert’s teaching.

The idea is to model human’s teaching as a coactive learning process, where

78

there is a human user and a learning system both aiming to provide a good result

[53]. Take our linear score function as an example, coactive learning model assumes

an existence of optimal weights for the task that the active viewpoint module is

serving. Here optimal weights means a set of function coefficients that best serves

the robot task. Due to the difference between the unknown optimal coefficients and

the real ones, the active view module may choose a viewpoint that does not fit the

task. Then, a human user would provide a better viewpoint to the robot, and the

viewpoint component will update its score function parameters based on human’s

teaching. To guarantee a better view point will be provided, here we assume the

human teacher has a good knowledge of the task and can always guide the robot to

a better viewpoint.

To reduce the cost of data collecting, we learn our score function weights from

target’s trajectory segments instead of the whole task procedure. For example, in

the pointing command case, a new viewpoint needs to be determined when the user

changes the mind and point to another place. We will pause the interaction process

if the viewpoint from our active module is not satisfactory and demonstrate it a

better viewpoint. Also for passing object application, we focus on the situation

when hand moves and new viewpoint needs to be selected.

Coactive Learning needs the learning system and the user provides feedback

in the same solution space. However, in our case, the human expert would teach a

viewpoint in the continuous space while the viewpoint control module has discretized

the viewpoints space for computation efficiency. So to make sure coactive learning

framework work, we take two actions. First, we densely sample the joint space that

79

corresponds to the desired camera (end effector)’s pose area to reduce the effect of

discretion. We will reject learning if the feedback’s camera’s pose is not among the

designed camera’s pose area to make sure there are enough viewpoint candidates

around human’s feedback.

Define the view score function parameter vector Λ = (λJD, λCT , λSO, λV D)T ,

score vectors S(v, x) = (sJD(v, x), sCT (v, x), sSO(v, x), sV D(v, x))T . The final view

score learning function is shown in Algorithm 5.

Algorithm 5: Learning view score function parameters

1: Initialize Λ1,
2: for i = 1 to T do
3: Observe the scene setting xt,
4: Choose view point vt ∈ argmax

v∈V
ΛT
t S(v, xt) and move to vt,

5: Obtain expert’s feedback v̂t
6: if feedback camera pose is in the valid pose area then
7: Update Λt+1 = Λt + S(vt, xt)− S(v̂t, xt),
8: end if
9: end for

4.7.1 Learning Effect

To demonstrate learning result from human’s feedback, we let user teach the

active viewpoint component once and feed the user-guided camera pose to algo-

rithm 5 9 times, which is equal with human teaches robot with the camera arm

pose 9 times. Figure 4.12 illustrates the distance between the viewpoint the active

viewpoint module chooses and user’s feedback under different coefficients learning

iterations.

80

Figure 4.12: The distance between the selected viewpoints and human’s demonstra-
tion under each learning iteration.

The distance between viewpoints is defined on the camera’s pose:

dist(v1, v2) , ||pv1 − pv2 ||+ (1− cos θv1,v2)

where the first term represents the Euclidean distance between the position of two

viewpoints and second term measures the difference of two viewing angles.

As we can see from Figure 4.12, the distance to the human’s feedback viewpoint

is decreasing, which demonstrates the learning effect of Algorithm 5 after a repetitive

teaching of the same view from a human expert.

4.7.2 An Example of View Point Learning

Here we use the task of the human passing object to a robot as an exam-

ple to visually showing the effect of viewpoint preference learning from human’s

demonstration.

In Figure 4.11, top row is the image seen from the current viewpoint and

bottom row is the corresponding robot joints visualization. In the top row, (a) is

81

the first camera image the robot when a user hands a bottle. Based on the initial set

of score function coefficients, active view module chooses a viewpoint and moves to

it, where (b) shows the image under this viewpoint and arm’s position. (c) Realizing

the current viewpoint control module is not giving enough preference to the target

centeredness factor, a human expert moves the camera to a better viewpoint that

serves the task. (d) After learning human’s demonstration, the view point control

module updates its weights and choose a new view point, which prefers centeredness

factor more than the initial setting.

4.7.3 Results on Our Human Robot Interaction Applications

To demonstrate the result of parameter learning in the two applications we

build in this work, we append a video for them.

In the passing object application, because a user sometimes changes her/his

position and thereby may move out of the view of the camera. We prefer teaching

the system for better keeping target in view.

For the case of sending a command via pointing, we assume the user would

stand in a small area and move the arm to point to the intended object. So tar-

get object (hand in this case) is not easy to lose track and we prefer few camera

movement in order to finish the command sending process quickly.

82

4.8 Conclusion and Future Work

In this work, we propose and implement a viewpoint control module for the

human-robot interaction application. A linear time cost score function is employed

to respond in time which is an essential requirement for the HRI visual modules.

Additionally, we introduce coactive learning to help learn a good view selection

strategy from human demonstration. It is necessary because training data is expen-

sive when a human is in the loop, and the viewpoint’s task level influence is hard to

quantize while experts usually have a reasonable sense to provide a better result.

In future, we will apply this module to more human-robot interaction tasks

in visual learning. Also, a motion prediction model can be introduced to handle a

more dynamic human agent.

83

Chapter 5: Reliable Attribute-Based Object Recognition Using High

Predictive Value Classifiers

5.1 Summary

We consider the problem of object recognition in 3D using an ensemble of

attribute-based classifiers. We propose two new concepts to improve classification

in practical situations, and show their implementation in an approach implemented

for recognition from point-cloud data. First, the viewing conditions can have a

strong influence on classification performance. We study the impact of the distance

between the camera and the object and propose an approach to fuse multiple at-

tribute classifiers, which incorporates distance into the decision making. Second,

lack of representative training samples often makes it difficult to learn the optimal

threshold value for best positive and negative detection rate. We address this issue,

by setting in our attribute classifiers instead of just one threshold value, two thresh-

old values to distinguish a positive, a negative and an uncertainty class, and we

prove the theoretical correctness of this approach. Empirical studies demonstrate

the effectiveness and feasibility of the proposed concepts.

84

5.2 Introduction

Reliable object recognition from 3D data is a fundamental task for active

agents and a prerequisite for many cognitive robotic applications, such as assistive

robotics or smart manufacturing. The viewing conditions, such as the distance of

the sensor to the object, the illumination, and the viewing angle, have a strong

influence on the accuracy of estimating simple as well as complex features, and thus

on the accuracy of the classifiers. A common approach to tackle the problem of ro-

bust recognition is to employ attribute based classifiers, and combine the individual

attribute estimates by fusing their information [34], [28], [58].

This work introduces two concepts to robustify the recognition by address-

ing common issues in the processing of 3D data, namely the problem of classifier

dependence on viewing conditions, and the problem of insufficient training data.

We first study the influence of distance between the camera and the object

on the performance of attribute classifiers. Unlike 2D image processing techniques,

which usually scale the image to address the impact of distance, depth based object

recognition procedures using input from 3D cameras tend to be affected by noise

that depends on the distance, and this effect cannot easily be overcome [59].

We propose an approach that addresses effects of distance on object recog-

nition. It considers the response of individual attribute classifiers’ depending on

distance, and incorporates it into the decision making. Though, the main factor

studied here is distance, our mathematical approach is general, and can be applied

to handle other factors affected by viewing conditions, such as lighting, viewing

85

angle, motion blur etc.

To implement the attribute classifiers, usually the standard threshold method

is used to determine the boundary between positive and negative examples. Using

this threshold the existence of binary attributes is determined, which in turn controls

the overall attribute space. However, there may not be enough training samples

to accurately represent the underlying distributions, which makes it more difficult

to learn one good classification threshold that minimizes the number of incorrect

predictions (or maximizes the number of correct predictions).

Here we present an alternative approach which applies two thresholds with

one aiming for a positive predictive value (PPV), giving high precision for positive

classes, and the other aiming for a negative predictive value (NPV), giving high

precision for negative classes. Each classifier can then have three types of out-

put: “positive” when above the high PPV threshold, “negative” when below the

high NPV threshold and “uncertain” when falling into the interval between the two

thresholds. Recognition decisions, when fusing the classifiers, are then made based

on the positive and negative results. More observations thereby are needed for draw-

ing a conclusion, but we consider this trade-off affordable, since we assume that our

active agent can control the number of observations. Note that in sequential prob-

ability ratio test or similar works [60], two thresholds approach is also employed for

a high confident result.

The underlying intuition here is that it should be easier to obtain the high

PPV and NPV thresholds than the classical Bayes threshold (minimizing the clas-

sification error), when the number of training samples is too small to represent well

86

Figure 5.1: Illustration of common conditional probability density functions of the
positive and negative class. Top: ground truth distribution of the two classes;
bottom: a possible distribution represented by the training data. Blue line: positive
class; red line: negative class. dashed line: (estimated) Bayes threshold; solid line:
high PPV or NPV threshold.

the underlying distribution. Fig. 5.1 illustrates the intuition. The top figure shows

the ground truth distributions (of the classification score) from the positive and

negative class. The lower figure depicts the estimated distributions from training

samples, which are biased due to an insufficient amount of data. Furthermore, as

our experiment revealed, even the ground truth distribution could be dependent on

viewing conditions, which makes it more challenging to learn a single optimal thresh-

old. In such a case, the system may end up with an inaccurate Bayes threshold.

However, it is still possible to select a high PPV (NPV) threshold by setting these

thresholds (at a safe distance) away from the negative (positive) distribution. Also

a certain detection rate can exist if there is enough non-overlapping area between

the two distributions.

For each basic (attribute) classifier, we can also define a reliable working region

indicating a fair separation of the distributions of positive and negative classes.

Hence our approach can actively select “safe” samples and discard “unsafe” ones

87

Figure 5.2: The relationship of Objects (O), attributes (Fi), environmental variables
(Ek) and observations (Zk

i) in our model.

in unreliable regions. We prove the asymptotic correctness of this approach in

section 5.4.3.

Integrating both concepts, our complete approach to 3D object recognition

works as follows: Offline we learn attribute classifiers, which are distance dependent.

In practice, we discretize the space into n distance intervals, and for each interval

we learn classifiers with two thresholds. Also, we decide for each attribute classifier

a reliable range of distance intervals. During the online process our active system

takes RGBD images as it moves around the space. For each input image, it first

decides the distance interval in order to use the classifiers tuned to that interval.

Classifier measurements from multiple images are then combined via maximum a

posteriori probability (MAP) estimation.

Our work has three main contributions: 1) We put forward a practical frame-

work for fusing component classifiers’ results by taking into account the distance, to

accomplish reliable object recognition. 2) We prove our fusion framework’s asymp-

totic correctness under certain assumptions on the attribute classifier and sufficient

88

randomness of the input data. 3) The benefits of introducing simple attributes,

which are more robust to viewing conditions, but less discriminative, are demon-

strated in the experiment.

5.3 Related Work

Creating practical object recognition systems that can work reliably under

different viewing conditions, including varying distance, viewing angle, illumination

and occlusions, is still a challenging problem in Computer Vision. Current single

source based recognition methods have robustness to some extent: features like

SIFT [43] or the multifractal spectrum vector (MFS) [61] in practice are invariant to

a certain degree to deformations of the scene and viewpoint changes; geometric-based

matching algorithms like BOR3D [62] and LINEMOD [31] can recognize objects

under large changes in illumination, where color based algorithms tend to fail. But

in real complicated working environments, these systems have difficulties to achieve

robust performance.

One way to deal with variations to viewing conditions is to incorporate different

sources of information (or cues) into the recognition process. However, how to fuse

the information from multiple sources, is still an open problem.

Early fusion methods have tried to build more descriptive features by com-

bining features from sources like texture, color and depth before classification. For

example, Asako et al. builds voxelized shape and color histogram descriptors [34]

and classifies objects using SVM, while in [63] information from color, depth, SIFT

89

and shape distributions is described by histograms and recognized using K-Nearest

Neighbors between scene and model features. Gould et al. [64] builds object-specific

classifiers combining raw data, environment factor and abstracts features from dif-

ferent 2d and 3d sensors and classify the input using a trained logistic regression

model.

Besides early fusion, late fusion also has gained much attention and achieves

good results. Lutz at al. [58] proposes a probabilistic fusion approach to com-

bine a 3D model matcher, color histograms and feature based detection algorithm

MOPED [65], where a quality factor, representing each method’s discriminative ca-

pability, is integrated in the final classification score. With classification score, meta

information [66] can also be added to create a new feature and thereby be further

classified.

Ziang et al. [28] blends classification scores from SIFT, shape, and color mod-

els with meta features providing information about each model’s fitness from the

input scene, which results in high precision and recall on the Challenge and Willow

datasets. Considering influences due to viewing conditions, Ahmed [67] applies an

AND/OR graph representation of different features and updates a Bayes conditional

probability table based on measurements of the environment, such as intensity, dis-

tance and occlusions. However, these methods may suffer from inaccurate estimation

of the conditional probabilities involved, because of insufficient training data.

In our work, we propose a framework for object recognition using multiple

attribute classifiers, which considers both, effects due to viewing conditions and

effects due to biased training data that systems face in practice. We implement

90

our approach for an active agent that takes advantage of multiple inputs at various

distances.

5.4 Assumptions and Formulation

Before going into the details and introducing the notation, let us summa-

rize this section. Section 5.4.1 defines the data fusion of the different classification

results through MAP estimation. Section 5.4.2 proves that MAP estimation will

classify correctly under certain requirements and assumptions. The requirements

are restrictions on the values of the PPV and NPV. The assumptions are that our

attribute classifiers perform correctly in the following sense: A ground truth positive

value should be classified as positive or uncertain and a ground truth negative value

should be classified as negative or uncertain. Finally section 5.4.3 proves asymptotic

correctness of MAP estimation. The estimation will converge, even if the classifiers

don’t perform correctly, under stronger requirements on the values of the PPV and

NPV.

Let the objects in the database be described by the set O = {oj} (j =

1, 2, ..., |O|). Each object oj ∈ O is represented by a attribute vector F j = [f1j, f2j, ..., fMj]
T ,

where M is the number of attributes. For the i-th attribute Fi, there is a corre-

sponding component classifier to identify it. Denote its observation as Zk
i , where i is

the index for the classifier and k is the observation number. Here we consider binary

attributes fij ∈ Range(Fi) = {0, 1}, ∀i ∈ {1, 2, ...,M}, and there are three possible

values for the observation : Zk
i = {0, 1, u} k ∈ 1, 2, , , , K, where u represents uncer-

91

tainty for the case that the classification score falls in the interval between the high

PPV and NPV threshold.

The model also encodes effects due to viewing conditions (or environmental

factors). In this work, we study the effect of distance, which has a significant impact

on many depth-based recognition algorithms. Thus, E is the distance between the

object and the camera. However, in future work, other environmental factors can

also be encoded as additional components of the environment variable to make

the framework more general. Fig. 5.2 illustrates the relationship between objects,

attributes, environmental factors and observations in a graphical model.

In our notation EK = {E1, E2, ..., EK} represents the environmental variable

at each observation, and ZKi = {Z1
i , Z

2
i , ..., Z

K
i } is the set of observation results

from i-th classifier. Here we assume that an observation of an attribute Zk
i only

depends on the ground truth attribute variable Fi and the environmental variable

Ek. Because we assume that each object oj can be represented by an M -dimension

attribute vector F j, we have

P (F |O = oj) =

1 if F = F j,

0 o.w.

(5.1)

5.4.1 Inference

With K observation results ZK = {ZK1 , ...,ZKM} and corresponding environ-

mental conditions EK , we want to obtain the posterior probability of the target

object being object oj ∈ O. i.e. P (O = oj|ZK ,EK). Based on our graphical model

92

we have:

P (O = oj|ZK ,EK) =
P (O = oj,ZK ,EK)

P (ZK ,EK)

=
P (O = oj)P (ZK |F = F j,EK)P (EK)

P (ZK ,EK)

=
P (EK)P (O = oj)

P (ZK ,EK)

K∏
k=1

M∏
i=1

P (Zk
i |Fi = fij, E

k)

= λP (O = oj)
K∏
k=1

M∏
i=1

P (Fi = fij|Zk
i , E

k)

P (Fi = fij)

(5.2)

where λ , P (EK)
∏K
k=1

∏M
i=1 P (Zki ,E

k)

P (ZK ,EK)
∏K
k=1

∏M
i=1 P (Ek)

. Because

P (Fi = fij) =
∑
O

P (Fi = fij, O) =
∑
t

P (O = ot)P (Fi = fij|O = ot)

=
∑

{t|fit=fij}

P (O = ot) (From (5.1))

(5.3)

Finally, we have

P (O = oj|ZK ,EK) = λP (O = oj)
K∏
k=1

M∏
i=1

P (Fi = fij|Zk
i , E

k)∑
{t|fit=fij} P (O = ot)

(5.4)

The recognition A then is derived using MAP estimation as:

A , argmax
oj

P (O = oj|ZK ,EK) (5.5)

In our framework, we use the high positive and negative predictive value ob-

servations (Z = 0, 1) to determine the posterior probability.

We also take into account the influence of environmental factors. That is,

93

only observations from a reliable working region are adopted in the probability

calculation. When the environmental factor is distance, the reliable working region

is defined as a range of depth values where our attribute classifier works reasonably

well. We treat a range of distance values as a reliable working region for a classifier,

if the detection rate in it is larger than a certain threshold, and the PPV meets the

system requirement.

This requirement for the component classifiers is achievable if the positive con-

ditional probability density function of the classification score has a non-overlapping

area with the negative one. Then we can tune the classifier’s PPV threshold towards

the positive direction (towards left in Fig. 5.1) to achieve a high precision with a

guarantee of minimum detection rate.

We will prove in the next section that our framework can yield a correct result

asymptotically if the precisions are high enough in the recall lower bound existence

working environment and input are sampled randomly.

Formally speaking, our P (Fi = fij|Zk
i , E

k) is defined as:

P (Fi = 1|Zk
i , E

k) =

p+i if ek ∈ Ri & zki = 1,

1− p−i if ek ∈ Ri & zki = 0,∑
t|fit=fij P (O = ot) o.w.

(5.6)

where Ri is the set of environmental values for which the i-th classifier can achieve

a PPV p+i with a detection rate lower bound. As before, k denotes the k-th ob-

servation. If the above condition is not met, either the recognition is done in an

94

unreliable region or the answer is uncertain. Now equation (5.4) can be rewritten

as:

P (O = oj|ZK ,EK) = λP (O = oj)
K∏
k=1

∏
i∈Ik

P (Fi = fij|Zk
i , E

k)∑
{t|fit=fij} P (O = ot)

(5.7)

where Ik = Ik+∪ Ik− is the index set of recognized attributes at the k-th observation

with Ik+ = {i|ek ∈ Ri & zki = 1} and Ik− = {i|ek ∈ Ri & zki = 0}.

Intuitively, it means that we only use a component classifier’s recognition

result when 1) it works in its reliable range; 2) the result satisfies high PPV or NPV

thresholds. In Section 5.4.2, we will introduce the predictive value requirements for

the component classifiers.

5.4.2 System Requirement for the Predictive Value

Here we put forward a predictive value requirement for each component clas-

sifier to have correct MAP estimations assuming there do not exist false positive or

false negative from observations.

To simplify our notations, we define the prior probability of object πj , P (O =

oj), j = (1, 2, ..., No) and the prior probability of attribute Fi being positive as

wi ,
∑
{t|fit=1}

πt, (i = 1, 2, ...,M). For each attribute, the following ratios are

calculated: r+i , max(1,
max{t|fit=0} πt

min{t|fit=1} πt
), r−i , max(1,

max{t|fit=1} πt

min{t|fit=0} πt
). I+Fj and I−Fj are

the index sets of positive and negative attributes in F j, and the reliably recognized

attributes’ indexes at the k-th observation are denoted as I = {I1, I2, ..., IK} (Ik as

defined in section 5.4.1). We next state the conditions for correct MAP estimation.

95

Theorem 5.4.1. If the currently recognized attributes
⋃
k Ik can uniquely identify

object oj, i.e.
⋃
k Ik+ ⊆ IF+

j
,
⋃
k Ik− ⊆ IF−j , ∀t 6= j,

⋃
k Ik+ * IF+

t
or
⋃
k Ik− * IF−t ,

and if ∀i ∈ {1, 2, ...,M} the classifiers’ predictive values satisfy p+i ≥
r+i wi

1+(r+i −1)wi
and

p−i ≥
r−i (1−wi)

wi+r
−
i (1−wi)

, then the MAP estimation result A = {oj}.

This requirement means that if 1) the attributes can differentiate an object

from others, and 2) the component classifiers’ predictive values satisfy the require-

ment, then for the correct observation input, the system is guaranteed to have a

correct recognition result.

Proof. Based on (5.7) and the definition above, the posterior probability of oj is,

P (O = oj|ZK ,EK) = λπj

K∏
k=1

(∏
i∈Ik+

p+i
wi

∏
i∈Ik−

p−i
1− wi

)
(5.8)

Because the current observed attributes
⋃
k Ik can uniquely identify oj, we will

have ∀og ∈ O/{oj}, ∃Ig ⊆
⋃
k Ik and Ig 6= ∅, s.t. ∀i ∈ Ig, fgi = 0 if i ∈ Ik+ or fgi = 1

if i ∈ Ik−. Thus, ∀og ∈ O/{oj},

P (O = og|ZK ,EK) = λπg

K∏
k=1

(∏
i∈Ik+/Ig

p+i
wi

∏
i∈Ik+

⋂
Ig

1− p+i
1− wi∏

i∈Ik−/Ig

p−i
1− wi

∏
i∈Ik−

⋂
Ig

1− p−i
wi

) (5.9)

Since for each classifier, p+i ≥
r+i wi

1+(r+i −1)wi
and r+i = max(1,

max{t|fit=0} πt

min{t|fit=1} πt
), we

have πj
p+i
wi
≥ πg

1−p+i
1−wj and

p+i
wi
≥ 1 ≥ 1−p+i

1−wi . For similar reasons, we have πj
p−i

1−wi ≥

πg
1−p−i
wj

and
p−i

1−wi ≥ 1 ≥ 1−p−i
wi

. Also since Ig 6= ∅, we can have (5.8) > (5.9), an thus

96

the conclusion is reached.

From the proof, we can extend the result to a more general case: if the currently

recognized attributes cannot uniquely determine an object, i.e. there exists a non-

empty set O′ = {oj|oj ∈ O, IF+
j
⊇
⋃
k Ik+ & IF−j ⊇

⋃
k Ik−}, the final recognition

result A = argmax
oj∈O′

πj. Furthermore, if an equal prior probability is assumed, then

A = O′.

Theorem 5.4.1 proves the system’s correctness under correct observations. For

the general case, section 5.4.3 is going to prove that MAP estimation asymptotically

converges to the actual result under certain assumptions.

5.4.3 Asymptotic Correctness of the MAP Estimation

Now we are going to prove that the MAP estimation will converge to the

correct result when 1) the attribute classifiers’ PPV and NPV are high enough in

their reliable working region, where a lower bound of detection rate exists, and 2)

the inputs are sampled randomly.

Denote di as the detection rate and qi as the false-positive rate of i-th attribute

classifier when applying the high PPV threshold in its reliable working region. Sim-

ilarly, for the high NPV threshold, si denotes the true negative rate and vi denotes

the false negative rate.

Theorem 5.4.2. We assume that the inputs are sampled sufficient randomly such

that each attribute classifier gets the same chance to work in its reliable region where

a lower bound exists for its detection rate, 0 < A < di ≤ 1 and all the objects have

97

different positive attributes, i.e. ∀i, j, i 6= j s.t. IF+
i
* IF+

j
. If the component clas-

sifiers’ predictive values p+i and p−i are high enough, MAP estimation will converge

to the correct result asymptotically with an increasing number of observations.

Proof. Consider the worst case, where only two candidates O = {o1, o2} exist. With-

out loss of generality, assume o1 has positive attributes IF+
1

= {1, 2, ...,M1} and o2

has all the remaining positive attribute IF+
2

= {M1+1,M1+2, ...,M}, where M1 ≥ 1.

Also assume o1 is the ground truth object. In this case all the false-positive and

false-negative recognition of attributes will drive the estimation result toward o2.

Based on (5.7), the posterior probability distributions of o1 and o2 can be

written as:

P (O = o1|ZK ,EK) = λπ1

M1∏
i=1

(
p+i
wi

)n
+
i (

1− p−i
wi

)n
−
i

M∏
i=M1+1

(
1− p+i
1− wi

)n
+
i (

p−i
1− wi

)n
−
i

(5.10)

P (O = o2|ZK ,EK) = λπ2

M1∏
i=1

(
1− p+i
1− wi

)n
+
i (

p−i
1− wi

)n
−
i

M∏
i=M1+1

(
p+i
wi

)n
+
i (

1− p−i
wi

)n
−
i

(5.11)

where n+
i and n−i are the number of positive and negative recognition results of

the i-th attribute. Denote n as the number of times the i-th classifier works in its

reliable region Ei. Based on the centrum limit theorem, we have P (n+
i > ndi

α
) = 1

and P (n−i < nαvi) = 1 for i = 1, 2, ...,M1 when n goes to infinity and α can be any

positive constant larger than 1.

For the same reason, we have P (n+
i < nαqi) = 1 for i = M1 + 1, ...,M when

n goes to infinity. We use the same n here because of the assumption of the same

likelihood of reliable working regions for each classifier. Actually it does not matter

98

if there is a constant positive factor on n, which means each classifier’s reliably

working chance is proportional.

Dividing (5.10) by (5.11), we obtain:

P (O = o1|ZK ,EK)

P (O = o2|ZK ,EK)
=
π1
π2

∏M1

i=1(
p+i /wi

(1−p+i)/(1−wi)
)n

+
i (

(1−p−i)/(wi)

p−i /(1−wi)
)n
−
i∏M

i=M1+1(
p+i /wi

(1−p+i)/(1−wi))
n+
i (

(1−p−i)/wi

p−i /(1−wi)
)n
−
i

≥ π1
π2

∏M1

i=1(
p+i /wi

(1−p+i)/(1−wi)
)n

di
α (

(1−p−i)/(wi)

p−i /(1−wi)
)nαvi∏M

i=M1+1(
p+i /wi

(1−p+i)/(1−wi))
nαqi

(p+i , p−i larger than the threshold in theorem 5.4.1)

= c1

(
c2

∏M1

i=1(
p+i

1−p+i
)
d1
α (

1−p−i
p−i

)αvi∏M
i=M1+1(

p+i
1−p+i

)αqi

)n
≥ c1

(
c2

∏M1

i=1(
p+i

1−p+i
)
A
α (

1−p−i
p−i

)
α

1−p−
i

wi∏M
i=M1+1(

p+i
1−p+i

)
α

(1−p+
i

)

1−wi

)n

(for the upper bound of qi and vi see (5.13) (5.14))

(5.12)

Because lim
p→1

p
1−p = ∞ and lim

p→1
(p
1−p)1−p = 1, the division will be larger than 1 when

the predictive value of each classifier is high enough, which means the MAP will

yield o1 asymptotically.

The proof of upper bound of qi and vi:

qi = P (Zi = 1|Fi = 0) =
P (Zi = 1)(1− p+i)

1− wi
≤ 1− p+i

1− wi
(5.13)

vi = P (Zi = 0|Fi = 1) =
P (Zi = 0)(1− p−i)

wi
≤ 1− p−i

wi
(5.14)

Beyond providing theoretical background, in the next section we perform ex-

99

periments on a real object recognition task to first demonstrate the influence of the

environment, and then to validate our framework’s performance.

5.5 Experiments

In this section, we demonstrate our framework on the task of recognizing

objects on a table top. We build a pipeline to collect our own data. The reason for

collecting our own data is that currently available RGBD datasets [68], [69] focus

on other aspect, usually pose or multiview recognition, and they do not provide a

sufficient amount of samples under varying observation distance.

Three experiments are conducted to show 1) the necessity of incorporating

environmental factors (the recognition distance in our case) for object recognition;

2) the performance of the high predictive value threshold classifier in comparison

to the single threshold one; and 3) the benefits of incorporating less discriminative

attributes for extending the working range of classifiers.

5.5.1 Experimental Settings

The preprocessing pipeline is illustrated in Fig. 5.3. After a point cloud is

grabbed from a 3D camera such as Kinect or Xtion PRO LIVE, we first apply a

passthrough filter to remove points that are too close or too far away from the

camera. Then the table surface is located by matching the point could to a 3D

plane model using random sample consensus (RANSAC), and only points above the

table are kept. Finally, on the remaining points, Euclidean clustering is employed

100

Figure 5.3: Illustration of preprocessing pipeline. Left: input; Middle: point cloud
after passthrough filter; Right: segmented candidate and removed table surface.

Figure 5.4: Illustration of our fine shape matching. Model point clouds (green
balls) captured nearby input point cloud (purple) are retrieved first. Then we find
the minimum matching distance of features between the scene and model.

to generate object candidates, among which segmented point clouds with smaller

than 600 points are discarded.

For the segmented point clouds, three categories of classifiers are applied,

which are tuned to attributes of fine shape, coarse shape and color.

Fine shape is recognized by the Viewpoint Feature Histogram (VFH) descrip-

tor, which encodes a point cloud into a 308 dimensional vector. Radu [33] provides

a pipeline of computing VFH features and retrieving the minimum feature distance

matching between the scene object and the database model objects by fast ap-

proximate K-Nearest Neighbors, implemented in the Fast Library for Approximate

Nearest Neighbors (FLANN) [70]. However, this approach tends to generate false

101

positives when matching different point clouds with very different distances to the

camera. Considering this phenomenon, we adapt the original recognition pipeline

to a two step matching. We first pick up model point clouds in our database which

have similar distance to the given input point cloud to be compared. Among the

nearby template point clouds, we use the minimum VFH feature matching distance

as the classification score. Both steps use FLANN to accelerate neighbor retrieval

while the former step employs the Euclidean distance and the latter one uses the

Chi-Square distance.

We also use coarse shape as another type of attribute, which is less selective

than the fine shape attribute. Our experiments later on demonstrate its advantage

of having a larger working region, thence it can help to increase the system’s recog-

nition accuracy over a broader range of distance. Two coarse shapes, cylinders and

planar surfaces, are recognized by fitting a cylindrical and a plane model, whose co-

efficients are estimated by RANSAC. The percentage of outlying points is counted

as the classification score for the shape. Thus, a lower score indicates better coarse

attribute fitting in our experiment.

The last type of attribute we implement in our system is color in order to

augment the system’s recognition capability. To control the influence of illumination,

all samples are collected under one stable lighting condition. The color histogram

is calculated on point clouds after Euclidean clustering, where few background or

irrelevant pixels are involved. Hue and saturation channel of color are discretized

into 30 bins (5× 6), which works well for differentiating the major colors.

As shown in Fig. 5.5, there are 9 candidate objects in our dataset. To recognize

102

Figure 5.5: The objects we use in the task and their IDs

Object
ID

plane
surface

cylin-
der

gable
top

carton
shape

box
shape

wide
mouth
bottle
shape

cup
shape

bottle
shape

red
color

blue
color

yellow
color

1 X - X - - - - - X -
2 X - X - - - - X - -
3 X - X - - - - - - X
4 X - - X - - - X - -
5 - X - - X - - - - -
6 - X - - - X - - X -
7 - X - - - - X - - X
8 - X - - - - X X - -
9 - X - - - - X - X -

Table 5.1: Object IDs and their list of attributes

them, we use 5 fine shape attributes: shape of cup, bottle, gable top carton, wide

mouse bottle and box; 2 coarse shape attributes: cylinder and plane surface; 3 major

colors: red, blue and yellow. Each object’s attribute is listed in Table 5.1. We set

the recognition distance as the only changing factor in the following experiments

and also fix the object’s pose.

5.5.2 Experimental Results

EXPERIMENT ONE: The first experiment is designed to validate our

claim that the classifiers’ response score distribution are indeed distance variant.

Therefore, it is necessary to integrate distance in a robust recognition system.

103

Response score

0 50 100 150 200

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Recognition distance from 60 to 80cm

positive class

negative class

(a)

Response score

0 50 100 150 200

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Recognition distance from 80 to 100cm

positive class

negative class

(b)

Response score

0 50 100 150 200

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Recognition distance from 100 to 120cm

positive class

negative class

(c)

Response score

0 50 100 150 200

P
ro

b
a

b
il
it
y
 d

e
n

s
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Recognition distance from 120 to 140cm

positive class

negative class

(d)

Figure 5.6: Estimated distribution of bottle shape classifier’s response score under
4 recognition distance intervals.

Taking the fine shape classifier recognizing bottle shape as an example, we

divide the recognition distance from 60 cm to 140 cm into 4 equally separated

intervals and collect positive samples (object id 7, 8, 9) and negative samples from

the rest of the 9 objects in each distance interval. The number of positive samples in

each interval is 120 with 40 objects from each positive instance while the number of

negative samples is 210 with 35 from each instance. The distribution of the bottle

classifier’s response score is approximated by Gaussian kernel density estimation

with a standard deviation of 3, and plotted in Fig. 5.6.

We observe that the output score distribution depends on the recognition

104

distance interval. Therefore, relying on one single classification threshold across

all the distance intervals would introduce additional error. More importantly, we

observe that with a larger distance, the overlapping area between the positive and

negative distribution becomes wider, which makes classification more difficult.

EXPERIMENT TWO: Experiment one demonstrated the difficulty of learn-

ing a distance-variant ground truth distribution and corresponding classification

thresholds. Therefore, we propose to use two high predicative value thresholds

when multiple inputs are available. The second experiment is designed to validate

this idea by comparing the classification accuracy of an estimator that 1) uses two

high predicative value thresholds, to an estimator that uses 2) one optimal Bayes

threshold, which minimizes the classification error on the training data.

To have a fair comparison, we set our task as recognizing 5 objects (id 1, 4, 5, 6, 9

) with 5 fine shape attributes such that each object contains one positive attribute

that uniquely identifies it. Both training and testing point clouds are collected at a

distance of 100 cm to 120 cm from the camera. To learn the classification threshold,

we sample 26 point clouds for each object and uniformly select 20 from them for

the training. The testing data for each object consists of 22 point clouds that we

can randomly choose from to simulate the scenario of an active observer moving

around to gather multiple perception inputs. Here we want to mention a special

case. When our framework is uncertain based on the current input, it randomly

select one of possible objects with equal probability. The classification accuracy

between using a single threshold and using two high predicative value thresholds

are shown in Fig. 5.7 respectively.

105

Number of observation

0 2 4 6 8 10 12 14 16

E
rr

o
r

ra
te

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Single optimal threshold

Two high predictive value thresholds

Two thresholds w.o. certain decision

Figure 5.7: Error rate using single threshold (blue) and two high predicative value
thresholds (red) classification. The green line depicts the error introduced when the
two thresholds method has to randomly select for cases when more than one object
is estimated as possible candidate.

We can see that both methods’ error rates decrease when the number of obser-

vations increases. The approach using two thresholds has lower error rate than the

one using a single threshold. The green line shows the error introduced by random

selection, when our framework cannot make a sole decision. This error makes up the

major part of the total framework error and it approaches zeros with the number of

observations increasing. It is worth mentioning that under theoretical conditions,

the classical Bayes single threshold should still be the best in minimizing the classi-

fication error. Our method provides an alternative for cases when the training data

does not represent very well the underlying distribution in real world scenarios.

EXPERIMENT THREE: The third experiment demonstrates the benefits

of using less discriminative attributes for extending the system’s working range. To

recognize the 9 objects

106

Distance interval (cm)

60-80 80-100 100-120 120-140 140-160

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

Fine shape, color

Coarse shape, color

Fine, coarse shape, color

Figure 5.8: Three systems’ recognition accuracy in different working distance inter-
val.

in Fig. 5.5, we build three recognition systems utilizing attributes of fine shape

with color, coarse shape with color, and all of the three attributes, respectively. Con-

sidering the influence of the recognition distance on the response score distribution,

the complete distance from 60 cm to 160 cm is split into 5 equal intervals. We

then learn the classification thresholds and predictive values accordingly. Both, the

training and the testing data, consist of around 100 samples from each object across

recognition distances from 60 cm to 160 cm. We learn the PPV and NPV by directly

counting the training data w.r.t. the thresholds and select thresholds satisfying a

predictive value larger than 0.96. The minimum detection rate for the reliable work-

ing distance interval is 0.3. This means if 1) an attribute classifier cannot find a

threshold with PPV larger than 0.96, and 2) detection rate larger than 0.3 in a

certain distance interval, the output of this attribute classifier in this interval will

not be adopted for decision making. In the testing phase, we constrain the multiple

107

input point clouds collected from the same distance interval for a fair comparison of

the system’s performance in each working region. Around 120 point clouds for each

object are collected to sample from. Similar as in the second experiment, random

selection is applied when multiple objects are found as possible candidates.

Fig. 5.8 displays the systems’ recognition accuracy after observing three times

in each distance interval. As expected, the classification performance starts to de-

crease when working at a larger distance between the camera and the objects. In

the distance region from 120 cm to 160 cm, the system using a fine shape attribute

(blue) even performs worse than the system using the less selective coarse attributes

(green), which validates that the coarse shape based classifier has a larger working

region, though its simple working mechanism restricts its capability in differentiating

compared to fine grain attribute based classifier. Finally, due to the complemen-

tary properties, the system accuracy (yellow) using all attributes achieves the best

performance at each working region.

5.6 Summary

In this work we put forward a practical multiple attributes based object recog-

nition framework incorporating recognition distance into the decision making. Con-

sidering the difficulties of finding a single best classification threshold and the avail-

ability of multiple inputs in testing time, we propose to learn a high PPV and a

high NPV threshold and discard the uncertainties during decision making. The

framework’s correctness was proven and a fundamental experiment was conducted

108

to demonstrate our approach’s feasibility and benefits. Additionally, the advan-

tage of less selective attributes compared to the sophisticated ones are shown since

their relatively simple mechanism could lead to high reliability when the system is

working at larger distances.

For future work, we plan to experiment on a variety of environmental factors

such as lighting condition, blur and occlusions. Additionally more attribute classi-

fiers could also be incorporated to beef up the system’s overall recognition capacity.

109

Chapter 6: Conclusions

In this dissertation, we propose methods on various levels of object detection

pipeline to achieve efficient target detection and reliable object recognition for robot

tasks.

For single input image and when only a binary target classifier is available,

we propose a method to active sample to detect the targets efficiently. The method

exploits the classifier’s response score pattern to avoid an expensive, exhaustive

searching for targets. A decay function is used to model the pattern of classifier

response score in the positive classification region. We estimate the probability

of an unobserved window containing targets by comparing the predicted response

score and the observed one. Posterior sampling is applied to decide the next window

to observe. Experimental results on human detection show that our approach can

achieve higher detection rate than the MS-PW and sliding window method using

the same total windows budget.

If an offline learning and interaction of target object are allowed before the

detection, we describe the target with a set of template graphs over segmented sur-

faces and present the concept of early recognition, which combines the candidate

proposal and classification process to achieve fast and reliable detection performance.

110

A greedy policy is also put forward to generate a sub-optimal target detection con-

straints checking order. We prove it has bounded time cost compared to the optimal

checking sequence. Experiments on one rigid object and one non-rigid body part

detection validate our pipeline. To show that our framework’s application, we fur-

ther present a human-robot interaction system based on our non-rigid body part

detection.

When robot’s camera arm can be controlled, we propose and implement a

viewpoint control module for target detection in the human-robot interaction ap-

plication. A linear time complexity score function is employed to respond in time

which is an essential requirement for the human-robot interaction vision modules.

Additionally, we introduce coactive learning to help learn a good view selection

strategy from human demonstration. It is very useful because training data is ex-

pensive when a human is in the loop, and the viewpoint’s task level influence is hard

to quantize while experts usually have a reasonable sense to provide a better result.

Finally, we put forward a framework for attribute-based object recognition. It

incorporates environment factor into the decision making. Due to the difficulties of

finding a single best classification threshold and the availability of multiple inputs at

the testing time, we propose to learn two thresholds for the two classes and discard

the uncertain observations during decision making. The framework’s correctness was

proven, and an experiment was conducted to demonstrate our approach’s feasibility

and benefits. Moreover, we demonstrated the benefits of less selective attributes

(compared to the sophisticated ones) because their simple mechanism can lead to

high reliability when the system is working in different regions.

111

Bibliography

[1] Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches
to image segmentation, 2012.

[2] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders.
Selective search for object recognition. International Journal of Computer Vi-
sion, 104(2):154–171, 2013.

[3] G. Gualdi, A. Prati, and R. Cucchiara. Multistage particle windows for fast and
accurate object detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(8):1589–1604, Aug 2012.

[4] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1,
pages I–511–I–518 vol.1, 2001.

[5] Pablo Negri, Xavier Clady, Shehzad Muhammad Hanif, and Lionel Prevost. A
cascade of boosted generative and discriminative classifiers for vehicle detection.
EURASIP J. Adv. Sig. Proc., 2008.

[6] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, Sept 2010.

[7] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for
object detection. In Proceedings of the International Conference on Computer
Vision (ICCV), 2009.

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image
segmentation. Int. J. Comput. Vision, 59(2):167–181, September 2004.

[9] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale
combinatorial grouping. In Computer Vision and Pattern Recognition, 2014.

112

[10] M. Nishigaki, C. Fermuller, and D. DeMenthon. The image torque operator:
A new tool for mid-level vision. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 502–509, June 2012.

[11] C.L. Teo, A. Myers, C. Fermuller, and Y. Aloimonos. Embedding high-level
information into low level vision: Efficient object search in clutter. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 126–
132, May 2013.

[12] Christof Koch and Shimon Ullman. Shifts in selective visual attention: Towards
the underlying neural circuitry. In LuciaM. Vaina, editor, Matters of Intelli-
gence, volume 188 of Synthese Library, pages 115–141. Springer Netherlands,
1987.

[13] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 20(11):1254–1259, Nov 1998.

[14] Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active
search strategy for efficient object detection. CoRR, abs/1412.3709, 2014.

[15] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[16] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Searching for ob-
jects using structure in indoor scenes. In British Machine Vision Conference
(BMVC), 2015.

[17] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Re-
current models of visual attention. In Proceedings of the 27th International
Conference on Neural Information Processing Systems, NIPS’14, pages 2204–
2212, Cambridge, MA, USA, 2014. MIT Press.

[18] Yanwei Pang, Jiale Cao, and Xuelong Li. Learning sampling functions for
efficient object detection. CoRR, abs/1508.05581, 2015.

[19] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors,
International Conference on Computer Vision & Pattern Recognition, volume 2,
pages 886–893, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-
38334, June 2005.

[20] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sam-
pling. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24,
pages 2249–2257. Curran Associates, Inc., 2011.

113

[21] Daniel Russo and Benjamin Van Roy. Learning to optimize via information
directed sampling. CoRR, abs/1403.5556, 2014.

[22] Dinesh Jayaraman and Kristen Grauman. Look-ahead before you leap:
end-to-end active recognition by forecasting the effect of motion. CoRR,
abs/1605.00164, 2016.

[23] A. Richtsfeld, T. Mrwald, J. Prankl, M. Zillich, and M. Vincze. Segmentation
of unknown objects in indoor environments. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4791–4796, Oct 2012.

[24] Aleksandrs Ecins, Cornelia Fermüller, and Yiannis Aloimonos. Cluttered scene
segmentation using the symmetry constraint. In ICRA, 2016.

[25] W. Luan, R. Mao, and J. S. Baras. Active sampling exploiting detector response
pattern for efficient target detection. In 2016 19th International Conference on
Information Fusion (FUSION), pages 1916–1922, July 2016.

[26] Xiaodong Yu, C. Fermller, Ching Lik Teo, Yezhou Yang, and Y. Aloimonos.
Active scene recognition with vision and language. In 2011 International Con-
ference on Computer Vision, pages 810–817, Nov 2011.

[27] Wentao Luan, Yezhou Yang, Cornelia Fermüller, and John S. Baras. Reli-
able Attribute-Based Object Recognition Using High Predictive Value Classifiers,
pages 801–815. Springer International Publishing, Cham, 2016.

[28] Ziang Xie, Arjun Singh, Justin Uang, Karthik S. Narayan, and Pieter Abbeel.
Multimodal blending for high-accuracy instance recognition. In Proceedings of
the 26th IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.

[29] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning discriminative feature rep-
resentations online for robust visual tracking. IEEE Transactions on Image
Processing, 25(4):1834–1848, April 2016.

[30] Aitor Aldoma, Federico Tombari, Luigi Di Stefano, and Markus Vincze. A
global hypotheses verification method for 3d object recognition. In Proceed-
ings of the 12th European Conference on Computer Vision - Volume Part III,
ECCV’12, pages 511–524, Berlin, Heidelberg, 2012. Springer-Verlag.

[31] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary R.
Bradski, Kurt Konolige, and Nassir Navab. Model based training, detection
and pose estimation of texture-less 3d objects in heavily cluttered scenes. In
Computer Vision - ACCV 2012 - 11th Asian Conference on Computer Vision,
Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I, pages
548–562, 2012.

114

[32] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for
3d registration. In Robotics and Automation, 2009. ICRA ’09. IEEE Interna-
tional Conference on, pages 3212–3217, May 2009.

[33] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3d
recognition and pose using the viewpoint feature histogram. In Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, 10/2010 2010.

[34] Asako Kanezaki, Zoltan-Csaba Marton, Dejan Pangercic, Tatsuya Harada, Ya-
suo Kuniyoshi, and Michael Beetz. Voxelized Shape and Color Histograms for
RGB-D. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Workshop on Active Semantic Perception and Object Search in
the Real World, San Francisco, CA, USA, September, 25–30 2011.

[35] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Mining and-or graphs for
graph matching and object discovery. In The IEEE International Conference
on Computer Vision (ICCV), December 2015.

[36] Kamesh Munagala, Utkarsh Srivastava, and Jennifer Widom. Optimization of
continuous queries with shared expensive filters. In Proceedings of the Twenty-
sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’07, pages 215–224, New York, NY, USA, 2007. ACM.

[37] Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute
costs. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, pages 356–365, New York, NY, USA, 2005. ACM.

[38] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach
to active learning and stochastic optimization. CoRR, abs/1003.3967, 2010.

[39] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).
In IEEE International Conference on Robotics and Automation (ICRA), Shang-
hai, China, May 9-13 2011.

[40] R. Mao, Y. Yang, C. Fermüller, Y. Aloimonos, and J. S. Baras. Learning
hand movements from markerless demonstrations for humanoid tasks. In 2014
IEEE-RAS International Conference on Humanoid Robots, pages 938–943, Nov
2014.

[41] N. Atanasov, B. Sankaran, J. Le Ny, T. Koletschka, G. J. Pappas, and K. Dani-
ilidis. Hypothesis testing framework for active object detection. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 4216–
4222, May 2013.

[42] K. Wu, R. Ranasinghe, and G. Dissanayake. Active recognition and pose esti-
mation of household objects in clutter. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 4230–4237, May 2015.

115

[43] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60:91–110, 2004.

[44] X. Liu and J. S. Baras. Trust-aware crowdsourcing with domain knowledge. In
2015 54th IEEE Conference on Decision and Control (CDC), pages 2913–2918,
Dec 2015.

[45] John Aloimonos, Isaac Weiss, and Amit Bandyopadhyay. Active vision. Inter-
national Journal of Computer Vision, 1(4):333–356, 1988.

[46] Sven J Dickinson, Henrik I Christensen, John K Tsotsos, and Gran Olofsson.
Active object recognition integrating attention and viewpoint control. Com-
puter Vision and Image Understanding, 67(3):239 – 260, 1997.

[47] Richard Pito. A solution to the next best view problem for automated sur-
face acquisition. IEEE Trans. Pattern Anal. Mach. Intell., 21(10):1016–1030,
October 1999.

[48] B. Browatzki, V. Tikhanoff, G. Metta, H.H. Bulthoff, and C. Wallraven. Active
object recognition on a humanoid robot. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 2021–2028, May 2012.

[49] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. Ac-
tive recognition through next view planning: a survey. Pattern Recognition,
37(3):429 – 446, 2004.

[50] Michael A. Goodrich and Alan C. Schultz. Humanrobot interaction: A survey.
Foundations and Trends in HumanComputer Interaction, 1(3):203–275, 2008.

[51] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient
model learning from joint-action demonstrations for human-robot collaborative
tasks. In Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’15, pages 189–196, New York, NY, USA,
2015. ACM.

[52] Vaibhav V. Unhelkar, Ho Chit Siu, and Julie A. Shah. Comparative perfor-
mance of human and mobile robotic assistants in collaborative fetch-and-deliver
tasks. In Proceedings of the 2014 ACM/IEEE International Conference on
Human-robot Interaction, HRI ’14, pages 82–89, New York, NY, USA, 2014.
ACM.

[53] Pannagadatta K. Shivaswamy and Thorsten Joachims. Online structured pre-
diction via coactive learning. CoRR, abs/1205.4213, 2012.

[54] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning
trajectory preferences for manipulators via iterative improvement. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 575–583. Curran
Associates, Inc., 2013.

116

[55] Karthik Raman, Pannaga Shivaswamy, and Thorsten Joachims. Online learning
to diversify from implicit feedback. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’12,
pages 705–713, New York, NY, USA, 2012. ACM.

[56] Artem Sokolov, Stefan Riezler, and Shay B. Cohen. Coactive learning for in-
teractive machine translation. In MLIS@ICML, 2015.

[57] Wentao Luan, Yezhou Yang, Cornelia Fermuller, and John S. Baras. Fast
task-specific target detection via graph based constraints representation and
checking. 2015.

[58] M. Lutz, D. Stampfer, and C. Schlegel. Probabilistic object recognition and
pose estimation by fusing multiple algorithms. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 4244–4249, May 2013.

[59] Yasir Salih, Aamir Saeed Malik, Nicolas Walter, Désiré Sidibé, Naufal Saad,
and Fabrice Meriaudeau. Noise robustness analysis of point cloud descriptors.
In 15th International Conference on Advanced Concepts for Intelligent Vision
Systems - Volume 8192, ACIVS 2013, pages 68–79, New York, NY, USA, 2013.
Springer-Verlag New York, Inc.

[60] Tianfu Wu and Song-Chun Zhu. Learning near-optimal cost-sensitive decision
policy for object detection. In PAMI, 2014 (to appear).

[61] Yong Xu, Hui Ji, and C. Fermuller. A projective invariant for textures. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 2, pages 1932–1939, 2006.

[62] M. Bertsche, T. Fromm, and W. Ertel. Bor3d: A use-case-oriented software
framework for 3-d object recognition. In Technologies for Practical Robot Appli-
cations (TePRA), 2012 IEEE International Conference on, pages 67–72, April
2012.

[63] M. Attamimi, A. Mizutani, T. Nakamura, Takayuki Nagai, K. Funakoshi, and
M. Nakano. Real-time 3d visual sensor for robust object recognition. In Intel-
ligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 4560–4565, Oct 2010.

[64] Paul Baumstarck Stephen Gould and Morgan Quigley. Integrating visual and
range data for robotic object detection, 2008.

[65] Alvaro Collet Romea, Manuel Martinez Torres, and Siddhartha Srinivasa. The
moped framework: Object recognition and pose estimation for manipulation.
International Journal of Robotics Research, 30(10):1284 – 1306, September
2011.

117

[66] T. Fromm, B. Staehle, and W. Ertel. Robust multi-algorithm object recognition
using machine learning methods. In Multisensor Fusion and Integration for
Intelligent Systems (MFI), 2012 IEEE Conference on, pages 490–497, Sept
2012.

[67] A.M. Naguib and Sukhan Lee. Adaptive bayesian recognition with multiple
evidences. In Multimedia Computing and Systems (ICMCS), 2014 International
Conference on, pages 337–344, April 2014.

[68] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d
object dataset. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1817–1824, May 2011.

[69] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-
scale 3d database of object instances. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 509–516, May 2014.

[70] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high
dimensional data. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 36, 2014.

118

	List of Figures
	Introduction
	Target Detection in Robotics Vision
	Main Contributions and Thesis Organization
	Active Sampling Exploiting Detector Response Pattern
	Fast Task-Specific Target Detection via Graph Based Constraints Representation and Checking
	Active View Point Control for Reliable Target Detection in Human-Robot Interaction
	Reliable Attribute-Based Object Recognition Using High Predictive Value Classifiers

	Active Sampling Exploiting Detector Response Pattern
	Introduction
	Related Work
	Problem Definitions
	Active Sampling with Response Pattern
	Detector's Response Pattern
	Formulation
	Reward Distribution Evaluation
	Active Sampling Action Policy

	Experiments
	Dataset and Settings
	Experimental Results

	Conclusions And Future Directions

	Fast Task-Specific Target Detection via Graph Based Constraints Representation and Checking
	abstract
	abstract
	Introduction

	Related Work
	Our Approach
	Problem Formulation
	Constraints Order Searching Policy
	Experiments
	Experimental Setup
	Segmentation
	Handle Drawer Detection
	Hand Pointing with Arm Detection
	Optimization of the constraints checking order

	A live HRI application
	Surrounding objects recognition
	Obtaining the object that the hand is pointing at and its location
	Robot feedback interface
	Interaction flow finite state machine

	Future Work

	 Active View Point Control for Reliable Target Detection in Human-Robot Interaction
	Introduction
	Related Work
	System Overview
	View Point Control Module
	Joint Discontinuity
	Centeredness of Target
	Occlusions
	View Direction
	Precomputation

	User Passes an Object to the Robot
	Detection of the Object in Hand
	Robot Action Policy
	View Point Control Component

	Human Sends Command via Pointing
	Arm and Hand Detection
	Visual Command Sending Example
	View Point Control component

	Learning Score Function's Weights
	Learning Effect
	An Example of View Point Learning
	Results on Our Human Robot Interaction Applications

	Conclusion and Future Work

	Reliable Attribute-Based Object Recognition Using High Predictive Value Classifiers
	Summary
	Introduction
	Related Work
	Assumptions and Formulation
	Inference
	System Requirement for the Predictive Value
	Asymptotic Correctness of the MAP Estimation

	Experiments
	Experimental Settings
	Experimental Results

	Summary

	Conclusions
	Bibliography

