
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Hybrid Network Management

by J.S. Baras, M. Ball, R.K. Karne, D. Whitefield, etc.

CSHCN T.R. 96-11
(ISR T.R. 96-29)

1
American Institute of Aeronautics and Astronautics

HYBRID NETWORK MANAGEMENT

John S. Baras, Mike Ball, Ramesh K. Karne,
Steve Kelley, Kap D. Jang, Catherine Plaisant,

Nick Roussopoulos, Kostas Stathatos,
Andrew Vakhutinsky and Jaibharat Valluri

Center for Satellite & Hybrid
Communication Networks

Institute for Systems Research
University of Maryland

College Park, MD 20742
(301) 405-7901

David Whitefield

Hughes Network Systems
11717 Exploration Lane

Germantown, MD 20876
(301) 212-7909

 Abstract

We describe our collaborative efforts towards
the design and implementation of a next generation
integrated network management system for hybrid
networks (INMS/HN). We describe the overall software
architecture of the system at its current stage of
development. This network management system is
specifically designed to address issues relevant for
complex heterogeneous networks consisting of
seamlessly interoperable terrestrial and satellite
networks. Network management systems are a key
element for interoperability in such networks. We
describe the integration of configuration management
and performance management. The next step in this
integration is fault management. In particular we
describe the object model, issues of the Graphical User
Interface (GUI), browsing tools and performance data
graphical widget displays, management information
database (MIB) organization issues. Several components
of the system are being commercialized by Hughes
Network Systems.

 Introduction

Hybrid communication networks provide an
economically feasible and technologically efficient
means to implement the global information
infrastructure. The management of such heterogeneous
networks is a critical market differentiator for
telecommunications companies and a formidable
technical task. In this paper we describe the

“Copyright  1995 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.”

collaborative effort between the University of Maryland
and Hughes Network Systems, under the auspices of the
Center for Satellite and Hybrid Communication
Networks, to design and implement an integrated
network management system for such networks. This
paper is a continuation of [1] and provides a description
of our progress in the second year of this two-year joint
research and development effort. The major
accomplishments during the second year were: the
extension of the object oriented data model to hybrid
networks consisting of satellite networks and terrestrial
ATM networks; the extension of the system to hybrid
networks with as many as 300,000 nodes; the
improvement of the browsing graphical tools so that
mesh-connected graph networks (as opposed to tree
networks) can be efficiently queried; specially designed
graphical widgets for displaying performance data
continuously from the network management
information database (MIB); extensions of the GUI to
distributed operation including appropriate designs for
consistency and concurrency between the GUI display
and the network MIB; storage and organization issues
for performance data in the MIB; integration of
configuration management and performance
management.

A typical network for which the system
developed is intended is shown in Figure 1. In addition
to the heterogeneity stemming from the interconnection
of a terrestrial ATM network to a satellite LAN
network, the system must handle vendor and protocol
heterogeneity as well as operate in a distributed
interactive(with the operators) environment.

2
American Institute of Aeronautics and Astronautics

Figure 1. Illustrating a typical hybrid network under investigation

 System Architecture

The approach we are following in designing
and implementing the INMS/HN is as follows. We
first represent the network in a carefully designed Object
Oriented data model in an OODB, following the
principles of [2]. We develop advanced GUIs linked to
this OODB representation of the network including
efficient browsing tools which exploit hierarchies in the
data model. The OODB is linked to network simulation
for comparisons and “what-if” decision assistance. We
employ innovative dynamic query techniques which can
be invoked from the GUI.

We develop and implement performance objects in the
OODB and link them to sophisticated graphical widgets
in the GUI for performance monitoring and
management. We allow multi-resolution (temporal and
in dynamic range) performance data storage for economy
of storage and speedy recovery of relevant information.
We embed operational and management constraints in
the OODB and we embed multi-criteria optimization
tools and fast search algorithms in the OODB for fast
trade-off analysis and decision assistance. The resulting
architecture of the software system is shown in Figure
2.

User

User Interface

Tree
Browser

Tree
Map

Mesh
Network

Tool

Statistical
Simulation

Module

Simulation
Model

Interface

Performance
Module

Configuration
Module

Query
Interface

Query
Interface

Constraint
Module

Network
Management

Data

Network
Constraints

Data

Object
Oriented
Database

API

Figure 2. Architecture of the Integrated Network Management System

3
American Institute of Aeronautics and Astronautics

Managed Object

Software Network Element

Hardware Component Link

Port Physical LinkLogical Link

Terrestrial Link

Fiber Coax

Out_route

ATM_Link

Virtual Path

Vitual Circuit

PVC

In_routeSession

Node

RemoteDPC

DPC_LIMRDPC HDPC

RDPC_LIMHDPC_LIM

Host

Router

ATM_Node

Rules Events

Reactive Notifiable

Wiireless Link

Figure 3. The implemented object class hierarchy for the hybrid network data model

We have currently completed a prototype of
integrated configuration and performance management.
Our next milestone is the efficient integration of fault
management as well. The current implementation has
been tested with simulated data of a 300,000 node
hybrid network of the type shown in Figure 1.

 Extensions/Improvements of the MIB
 Design

Object Oriented Data Model

We have extended the data model to include
ATM networks. We also include frame relay X.25 over
ATM in the terrestrial portion of the hybrid network. A
hybrid network with an excess of 300,000 nodes and
links was created and stored in Object Store. The object
model hierarchy is depicted in Figure 3.

The various object classes implemented, and
their descriptions are provided below:

 Managed Object: This is an object which can be
managed by software with respect to Network
Management. It is the highest layer of hierarchy in the
Network Management System. There are no attributes
and functions defined for this object.

 Reactive: Reactive object is derived from the
Managed Object. In order to implement constraints
using the Sentinel method, we need to define this
object. Reactive objects are related to rule objects.
That is, each rule can subscribe to one or more rule
objects. Reactive objects provide a message passing
mechanism to rule objects through a notification
method.

 Network Element: Network element is a reactive
object. It has an individual identification, name, type to
distinguish from other objects. Network Element may
consist of nodes, links, groups and other elements of a
communication system.

 HW_COMP: Hardware component is a part of the
Network Element. There can be one or more
HW_COMP in a given example. HW_COMP is
associated with a given layer (between 1 and 7). A
hardware component is a piece of equipment that is
indivisible from a management perspective, i.e., a
component may only be managed as a whole and not in
terms of its parts.

 SW_MOD: Software module is a part of the Network
Element. There can be one or more SW_MOD in a
given Network Element. SW_MOD depends upon the

4
American Institute of Aeronautics and Astronautics

functionality that is required in the communication
network.

 Node: A node is a system that is a source, a sink, or a
relay/transformation point of information. Node is a
complex object that is composed of smaller units. The
smaller units can themselves be subnodes (or nodes),
hardware components, or software modules.

 ATM Node: This class inherits from the Node class.
This server is a model for a generic ATM switch. Every
ATM switch has a set of input and output ports, along
with an ATM translation table. The entries in the ATM
translation table are used to switch Virtual Circuits(VC)
or Virtual Paths(VP) depending on whether the
switching is done at the VP or VC level. This class can
be further specialized to model vendor specific ATM
switches.

 Router: This class inherits from the Node class. A
Router is a “network” layer device in the OSI 7 layer
model. Each router has a routing table and a set of
network interfaces. The routing table entries are used to
forward incoming packets to appropriate destinations.
Routers are available from various vendors. This class
can be further specialized to in order to model Routers
from specific vendors.

 Host: This class models generic Hosts. Workstations,
Xterminals, Mainframes, PC’s are Hosts found in any
of today’s LANs. These classes can be further derived
from the Host class. The attributes present in this class
would be number of applications, number of active
sessions etc.

 Link: Links are paths of communication between
network devices, i.e, the medium through which
communication takes place. Links may be physical or
logical. Physical links implement a direct
communication path between devices. Logical links are
communication paths between devices that are
composed of potentially several links across several
intermediate devices, i.e. virtual circuits or datagrams.

 Physical Link: This is a model for a generic
Physical Link. The medium could be wireless or wired.
It could be a point-to-point link or a multi-drop link.

 Terrestrial Link: This class models any generic
wired Terrestrial Link.

 Fiber: This class models any optical fiber link.

 Co-axial cable: This class models co-axial cable
links.

 Wireless Link: This class models all wireless links.
Wireless links could be terrestrial and in different
frequency ranges like cellular, PCS, microwave or
infrared or they could be satellite links. On the other
hand they could be indoor or outdoor. Different kinds of
links have different propagation characteristics that need
to be modeled based on the environment.

 Logical Link: This class is used to model generic
Logical Links. Logical links are typically made up of
one or many Physical Links. There is a is-implemented-
in-terms-off relationship between a Logical Links and
Physical Links. This is a many-to-many relationship
since each Logical Link could have several Physical
Links and each Physical Link could be part of several
Logical Links.

 Virtual Circuit: Virtual circuits are constructs
defined in packet switched networks. ATM networks
also use this construct. In many ATM references they
appear under the name Virtual Channels but they
essentially represent the same construct. A Virtual
Circuit is a Logical Link defined between two ATM
Nodes or two user machines.

 Virtual Path: Virtual Paths are a construct defined in
ATM networks. An ATM Physical Link could contain
several Virtual Paths. Each Virtual Path contains
several Virtual Circuits or Virtual Channels. An
operator can define certain Virtual Path Connections
(VPC) between different ATM Nodes. These are
relatively static and are changed by the operator when
bandwidth allocations need to be modified in order to
provide the desired Quality of Service(QOS). Bandwidth
is allocated to Vitual Paths and VPCs by the operator
so that connections can be established with smaller
delay when a user issues a connection request. Certain
Virtual Paths are allocated for carrying signaling and
control information.

 PVC: A Permanent Virtual Circuit (PVC) is a
permanent connection defined between two user
machines or two ATM switches. It is a construct
defined by the operator of a network in order to facilitate
connection establishment.

 Performance Data Model and Storage

We have developed and implemented efficient
methods for storing and viewing performance
information from a large hybrid network. A network
simulation was designed and implemented in order to
populate the MIB with performance data and related
statistics. This simulation can set up Permanent
Virtual Circuits (PVC) and vary traffic over them. The
simulation periodically reports network traffic, error rate

5
American Institute of Aeronautics and Astronautics

and cell loss rate which are stored in “Performance
Objects” in Object Store.

The system supports two types of user queries:

• Queries on a single object: Typical queries
 would be
 - Utilization of a particular Link at some
 specified time.
 - Buffer capacity at a given Node.
 - Delay and Error rate over a specific link.
• Queries across objects: These queries are
 more complex and involve attributes of
 more than one object. Typical queries would
 be of the form
 - The aggregate delay over a specific
 Virtual Circuit.

Such queries would require computation based
on the attributes of different objects.

The operator may want to see the state of the
Network at some earlier instant in order to analyze the
nature of a fault that may have occurred in some part of
the Network. Hence it is critical to store, the state of
various Network elements at different instants, along
with the instant at which it was recorded for a sufficient
period of time. It would be neither practical nor
necessary to store all the information gathered over a
period of time at the same granularity. A reasonable
solution to this would be to reduce the precision of
information stored as the information gets older, i.e. for
the most recent information we could store every update
from the network, for slightly older information we
could store an average over 4 periods, for even older
information we could store an average over 20 periods
etc. At the same time we would like to satisfy the
following conditions for every query

 • Coherency: If this is satisfied then the
information reported together would have been
recorded in the network at approximately the
same instant. It is essential that this condition
be satisfied in order to report a coherent state of
the network because values reported together
should not have been recorded at two vastly
different instants.

 • Regency: In addition to the above condition we
would like to report information recorded as
close in time as possible to the one requested
by the user.

Sensors located in different parts of the
network would report data at different time instants.

This may cause an update to the central server every
couple of minutes. The server may not be fast enough
to store each update into the database. Hence instead of
updating the database each time an update comes in, it
would be better to store a few updates in memory and do
a block of updates to the database. In case of a crash the
values lost can always be retrieved by polling the
network elements. This would improve upon the
limitations of a centralized server by increasing the
throughput.

There are three different processes in our
implementation, one for each level of granularity. The
high precision process periodically takes values stored
in memory and updates the database. The processes at
the other two levels periodically take a block of values
stored at the previous level of precision, compress them
and store them at the next lower level.

We have implemented a performance model
that is suited for distributed implementation. Sensors
periodically report snapshots of different network
elements recorded at certain time instants. These
snapshots include all the performance parameters being
monitored for each network element. Since all the
performance parameters for each time instant are being
reported together it would be more efficient if we stored
them together rather than storing them in different
objects. Another point in favor of this kind of storage
is that in cases where the performance of a particular
network element is degrading, we might want to see all
the parameters for that network element recorded at
some time instant. In the case of such queries it would
be inefficient to search for these values across several
objects.

The three levels of precision are still
maintained. There are pointers from the network
elements to these objects. Each network element has
pointers to three sets of values corresponding to the
different levels of precision. Different sets contain
snapshots of the network element stored at different
levels of granularity.

This structure as mentioned before is suited for
distributed implementation since network elements
along with their performance parameters can be migrated
to other servers.

We have also investigated methods for finding
the appropriate precision levels, as well as for efficient
storage of time series data (such as those from the
network sensors) and their related statistics.

6
American Institute of Aeronautics and Astronautics

contains

performance_of
Network Element

id
name
type

Isnamed
HasID
Getname
GetID
Print

Delay

min
max
avg

Utilization

min
max
avg

Error rate

min
max
avg

time
Utilization
error rate
delay

High precision

Medium precision

time_range

time_range

Low precision

Delay

min
max
avg

Utilization

min
max
avg

Error rate

min
max
avg

performance_of

performance_of

contains

contains

contains

contains

contains

Figure 4. Integrated performance data model

 Improvements in GUI Design

Efficient Browser for Mesh Connected Graph
Networks

In our previous work [1] we designed and
implemented efficient browsers and visualizations of the
OODB representing the network, by exploiting the tree
structure of the network. In the present extension to
hybrid networks which include ATM terrestrial
networks, we have to deal with fully mesh connected
graph topologies, not just tree topologies. Therefore,
there are no unique or obvious hierarchies to drive the
browser, like the Tree Map and Tree Browser of [1].
Instead we designed the Mesh Network Browser which
explores the various partial orders the operator can create
by using subnetworks of the network. This browser
can then be used to invoke dynamic queries in the
underlying OODB representation of the network, for
selectively viewing desired parts of the hybrid network.
The display/visualization of the network obtained using
the Mesh Network Browser is shown in Figure 5.

We have adopted the Sgraph structure to
display large hybrid network configuration stored in an
OODB. The configuration data in the database consists

of network nodes, links, and connectivity information
between nodes. However it does not include x,y
coordinates to efficiently display a three dimensional
network onto the two dimensional computer screen.
The Mesh Network Browse constructs an Sgraph
structure corresponding to the network objects
displayed. Each network object has an assigned icon, of
scaleable size. Then by the layout algorithm employed,
it traverses the Sgraph structure to assign x,y
coordinates for each network node (object) without
allowing nodes to overlap and eliminating unnecessary
edge-crossings at the same time. Based on the Sgraph
data structure, several layout algorithms are currently
available; we have used the Springer Embedder
algorithm which emphasizes display of symmetry and
isomorphic components.

Nevertheless, a major problem we have
addressed is generated from the fact that the area of a
computer screen cannot visibly represent large networks
including thousands of nodes. We designed our Mesh
Network Browser so as to allow the operator to select
the subnetworks and components of each subnetwork
and even network nodes that he/she wants to query for
network information. Our method provides an
important innovation and it is a significant departure
from current commercial practice, where this browsing

7
American Institute of Aeronautics and Astronautics

Figure 5. Illustrating the Mesh Network Browser display

is typically done using zooming of subnetworks or
nodes. We allow for network component selection and
display across a subnetwork or node hierarchy. Our
browser allows selection capabilities based on a network
element menu, based on subnetworks and also based on
filtering of network elements using specific assignable
attributes. This is implemented by using the option
menu to allow the user to select specific attributes of
nodes and by using a Range widget to specify the range
of the attribute. For instance, Figure 5, only displays
workstations within a certain range of the load attribute.
Our browser and display also categorizes network
components into several groups. It allows the user to
quickly navigate a network group for status and
concentrate only on group components which are of
interest. Components in the layout are represented as
an icon, a colored dot, or are completely hidden by user
definition or filtering.

Our browser is directly connected to the OODB
representing the network and retrieves data (or objects)
using dynamic queries. In this way, it represents an
efficient way to capture and display network component
status dynamically, for continuous network monitoring
and management.

Wheel Widget Performance Data Display

One of the critical requirements for the
INMS/HN is to design and implement efficient displays
of continuous monitoring of performance data in an
integrated fashion; i.e. simultaneous visualization of
several attributes or performance metrics. We have
designed and implemented one such graphical
display/visualization: the “Wheel Widget.”

The Wheel Widget displays four numeric
values that fall within their upper and lower bounds.
The widget allows the user to change those values
interactively using a grab & drag mechanism. The
widget is also useful and intuitive to use if it is operated
with four Range widgets as controllers of its interface.
Figure 6 shows how a Wheel Widget can be used with
four Range widgets in an application. The widget
allows the user to change its data, ranges, colors, size,
etc. at run time.

Terminology
 spoke : a ball shape object which

corresponds to a data having
multiple attributes.

 ring: circles which have different
radius. The ring data of a
spoke would be represented
by a relative distance from
the center of the Wheel.

 rim : logical scale along the ring.
The rim data of a spoke
would be represented by an
angle between vertical axis
and the spoke.

 grab & drag : press and hold on mouse
button and move the
mouse.

 click: press and release a mouse
button on.

 Range widget: A user defined motif
 widget which displays a

 range of numeric values
 that falls within upper and
 lower bounds.

8
American Institute of Aeronautics and Astronautics

In Figure 6, each spoke in the widget
represents network performance/monitoring data which
has multiple attributes. It might be characterized by four
attributes related to the corresponding data. This Wheel
widget is used to display large numbers of point to
point connections from a single source along with
several attributes about each connection at the same
time. Each spoke represents the following attributes:

1. Utilization which is represented by a
distance from the center of the wheel
to the center of a spoke.

2. Virtual Path Identifier which is
represented by an angle from the
vertical axis clockwise.

3. Capacity which is represented by the
size of a spoke.

4. Throughput which is represented by
the color of a spoke. The widget
provides a spectrum of colors used to
represent a range of colors.

The Wheel Widget provides direct data-filtering
capabilities on attributes which are related to the ring
(distance from the center to spokes) and rim (angle
between vertical axis and spokes). To change the
maximum (minimum) of the ring attributes, grab &
drag the left (middle) mouse button on one of the rings.
To change the maximum (minimum) of the rim
attributes, grab & drag the left (middle) mouse button
on one of the tick marks along with the outmost ring
clockwise or cournterclockwise. These two capabilities
also can be achieved by other widgets such as the Range
widgets indirectly. Size and color attributes of the
spoke can be used for data-filtering by other widgets
indirectly. The Wheel widget provides the exact values
of four attributes of the corresponding data if the left
mouse button is clicked on a spoke.

The Wheel widget can continuously display
network monitoring information and can therefore be
incorporated in feedback schemes for automated network
management.

Distributed Concurrent Display Of Network
Data

Network management systems must be able to
operate in a distributed environment. This requirement

creates several problems related to the consistency,
concurrency and performance of the GUI and its link to
the OODB under distributed conditions. We describe
here a summary of our results and their
implementations for network management. For the full
details we refer to [3].

One of the main concerns of application
developers is that users are very sensitive to the
response time of the system. Lengthy response times
are usually detrimental to productivity, increasing user
error rates and decreasing satisfaction. Also, users tend
to establish expectations of the time required to
complete a given task based on past experiments.
Unexpected delays usually trouble or frustrate the users.
Therefore, high variability in the response time of the
user interface should be prevented. So, building a GUI
that displays large amounts of information stored and
managed by a DBMS can be very challenging. Many
potential performance problems exist since the response
to a user action may require extensive data processing, a
number of network of message exchanges as well as
several data retrievals from secondary storage.

Client data caching appears as the best
approach to deal with the performance problems of the
user interface. Database objects cached in the client's
main memory can be directly used for user interface
manipulations. This can reduce secondary storage
accesses and client-server communication overhead.
However, data caching as has been implemented in
current systems does not completely address the user
interface requirements.

A non-trivial problem for the graphical user
interfaces of database applications is presenting a
consistent and up-to-date view of the database. This
problem is more evident and more difficult in a multi-
user environment (as network management) where
different users may view and possibly update the same
database objects. Obviously, some sort of display
synchronization mechanism is required which preserves
the consistency of the user interfaces, under the
performance requirements mentioned above. Generally,
the straightforward approach of periodically refreshing
the user interfaces is not considered acceptable since it
may cause excessive overhead.

9
American Institute of Aeronautics and Astronautics

Figure 6: The Wheel Widget visualizing network monitoring data

From the database perspective, the display
consistency problem is not much different than the
client cache coherency problem. GUIs retain graphical
representations of database objects much like caches
keep copies of these objects. Therefore, the consistency
requirements imposed upon the database system by user
interfaces are similar to those of client caches.

Displaying some database objects can be
considered a kind of long transaction, a display
transaction, which spans the lifetime of the display.
However, traditional transaction semantics cannot be
used to preserve GUI consistency since they are much
too restrictive.

We propose that, for each interactive
application, a proper external display schema should be
defined over the existing database schema. Such display
schemes are composed of display classes (DCs) that
encapsulate the desired user interface functionality and
form inheritance and/or containment hierarchies that

better meet GUI requirements (e.g. for screen layout
computation, for screen navigation etc.) both in terms
of implementation effort and runtime efficiency.

The definition of a DC depends on the database
class(es) it represents as well as the user interface
context. It should include only attributes and methods
that are necessary for the display and manipulation of
the corresponding user interface elements. These
attributes may be a subset of the database class(es)
attributes as well as additional GUI specific attributes
(e.g. screen coordinates).

The graphical elements that compose the
image displayed by a GUI must be instances of display
classes, i.e. display objects (DOs). Display objects are
created by copying and/or computing the necessary
information from database objects. During their
lifetime, they are explicitly associated and kept
consistent with those database objects. This association
turns the collection of display objects into an active

10
American Institute of Aeronautics and Astronautics

(updatable) view of the database as opposed to a passive
snapshot. We also propose the introduction of display
cache as an additional level in the memory hierarchy on
top of the client’s database cache.

Since, the display cache replicates data that
may already exist in another part of the same physical
memory space, it may appear as an unnecessary
overhead. However, it has two major performance
advantages over traditional caching [3].

Detection-based protocols, which allow stale
copies of data to reside in the client’s cache, are not
suitable for display objects. Moreover, within the
display’s lifetime there are no transaction boundaries,
thus there are no clear points when data consistency
should be validated. The user interface, therefore, needs
to be somehow notified on relevant data updates so that
any necessary action can be taken (i.e. redraw the
updated part of the display). This makes avoidance-
based protocols more appropriate since, under such a
scheme, data validation is initiated by the server
whenever necessary.

However, these protocols are mostly designed
to enforce strict transaction correction. For the relaxed
correctness requirements of display transactions we
propose a non-restrictive form of shared locks, called
display locks. These are non-restrictive in the sense that
display locked database objects can be updated, provided
that at any time all lock holders get notified about the
updates committed to the database.

The display locking protocol is quite simple
and can be easily integrated with a strict avoidance-based
protocol. A client requests display locks for all database
objects that are associated with display objects. The

database lock manager on the server is expected to grant
those locks, since display locks are compatible with all
types of locks. When a transaction wants to update
some data, it does so after obtaining an exclusive lock
for that data. When the update is committed to the
database, the lock manager releases the exclusive locks
and notifies all clients that hold display locks on the
updated data. The notified clients refresh the associated
display objects (and therefore the display) by reading the
new data from the database. We call this protocol post-
commit notify protocol.

We have demonstrated these ideas in a
multiple user, limited functionality version of a
network configuration management application. This
application employs two different visualization
techniques, the Tree-Map and the PDQ Tree-browser, to
display complex hardware hierarchies [1]. ObjectStore, a
commercial object-oriented database system, was used to
store the network database.

The implementation included three major
tasks:

1. Extend the database server with display
 locking capabilities,
2. Enhance the client applications structural
 design to incorporate the display locking
 mechanism, and
3. Design the user interface in terms of
 defining appropriate display classes for the
 the tree-map and PDQ tree-browser

The overall system architecture is presented in
Figure 7. For more details on the implementation for
network management we refer to [3].

Display Lock

Manager

Database
Server

Database
Access
Module

DL Client

Application

User Interface

TCP/IP

Display Display

TCP/IP

Agent

Enhanced Server

Database
Access
Module

DL Client

Application

User Interface

TCP/IP

Display Display

Figure 7. Implementation Architecture

11
American Institute of Aeronautics and Astronautics

 Conclusions

We presented the design and implementation of
an integrated network management system which
incorporates several advanced technologies predicated by
current and future hybrid network management
requirements. The next step in our efforts is the
integration of Fault Management to the INMS/HN.
The prototype implementation has given ample
evidence of the advantages offered by our techniques and
implementation methods. As a result several of these
innovations are being commercialized to HNS
commercial products.

 Acknowledgments

This work was supported by the Center for
Satellite and Hybrid Communication Networks, under
NASA contract NAGW-2777, Hughes Network
Systems and the State of Maryland under a cooperative
Industry-University contract from the Maryland
Industrial Partnerships Program (MIPS).

 References

Baras, John S., et al., January 1995, “Next Generation
Network Management Technology”, in AIP
Conference Proceedings 325, Conference on NASA
Centers for Commercial Development of Space,
Albuquerque, NM, pp. 75-82.

Haritsa, J.R., et al, December 1993, “MANDATE:
Managing Networks Using Database Technology”,
IEEE Journal on Selected Areas in Communications,
pp. 1360-1372.

Stathatos, K., S. Kelley, N. Roussopoulos and J.S.
Baras, “Consistency and Performance of Concurrent
Interactive Database Applications”, Institute for
Systems Research Technical Report TR 95-79.

