
TOOL SUPPORT FOR COLLABORATIVE SOFTWAREPROTOTYPINGElliot A. Shefrin yJames M. Purtilo zComputer Science DepartmentUniversity of Maryland, College Park, MD 20742December 1994ABSTRACT: Prototyping is a means by which requirements for software projects can be de�nedand re�ned before they are committed to �rm speci�cations for the �nished software product.By this process, costly and time-consuming errors in speci�cation can be avoided or minimized.Recon�guration is the concept of altering the program code, bindings between program mod-ules, or logical or physical distribution of software components while allowing the continuingexecution of the software being changed. Combining these two notions suggests the potential fora development environment where requirements can be quickly and dynamically evolved. Thispaper discusses recon�guration-based prototyping (RBP), that is, the simultaneous considerationof requirements, software behavior and user feedback within a running system in order to derivea clear speci�cation of an intended product. Tools enabling RBP can coordinate the e�orts ofdesigners, prototypers, users and subject matter specialists as they work towards concensus onan application's speci�cation by means of a prototype. The authors describe the scope of themodi�cations that can be e�ected by an integration of prototyping and recon�guration proto-cols, and they then demonstrate that the technology exists to create such an environment. Theyconclude by describing a software development environment based on RBP.KEYWORDS: Recon�guration, Prototyping, M Technologyy Elliot Shefrin's research has been supported by the Longitudinal Studies Branch, Gerontol-ogy Research Center, National Institute on Aging, National Institutes of Health, United StatesPublic Health Service. He can be contacted at mazel@cs.umd.edu, (410) 558-8144.z With oversight by the O�ce of Naval Research, James Purtilo's research has been supportedby ARPA in conjunction with the Common Prototyping Language project, contract numberN00014-90-C-0015. He can be contacted at purtilo@cs.umd.edu, (301) 405-2706.

1 INTRODUCTIONDuring the development of software systems, a prototyping phase is often employed to �ne tunevarious aspects of the system or to discover user requirements, preferences, or operational imper-atives [PFW94]. These aspects may include development of the user interface, testing of variousstructures for the database, or optimizing internal algorithms. From this viewpoint, prototypingcan be regarded as an information acquisition activity whose principal goal is to reinforce thecon�dence of the system developer and the user in the correctness of the system speci�cation.In [Pur91] the author describes the traditional approach to the tuning procedure as an iterativeprocess of program execution, halting, modi�cation, and restarting. Such a technique can betime-consuming and frustrating, especially when the system takes a while to reach a steady-stateor when each iteration of the tuning loop requires many steps.A pivotal point illustrated in [PFW94] is that a prototype need not implement the underlyingalgorithms of the system under development. Rather, all relevant data may be loaded from tablesand processing on that data may be simulated. Furthermore, not all aspects of a design requirea prototype. It is up to the designer to identify the elements of risk | the areas of uncertainty| that can be reduced by the implementation of a prototype. The ingenuity, then, of the systemdeveloper lies in deciding which aspects of the design need to be prototyped and what informationis to be extracted from the prototype. A further challenge is to involve the user to such a levelthat they feel they have a vested interest in producing the best product possible. Stated anotherway, it is the ends and not the means that concern the prototype developer. The observationthat platforms and scenarios can be contrived to elicit necessary information leads to the usefulconclusion that the tools and vehicles used to construct the prototype do not need to be thesame as those used to construct the �nished product. Indeed, since it can be built on a simpli�edtestbed, the prototype should be capable of cutting quickly to the core of the problem and can beempowered to use whatever technology is most e�cient and e�ective to obtain the informationthat is the end product of that particular prototype. This point obtains relevance because wewill contend that there is no need to justify the choice of a prototyping host technology or to beconcerned with the applicability of the technology used in the prototype to the design project atlarge.The traditional approach to prototyping can be compared to attempting to tune the engine ofan automobile by the following series of steps: 1

� start the car� observe the output on an engine analyzer� stop the engine� make an adjustment� restart the car to see how close we have come to the correct setting.This a�ords no ability to receive real-time feedback from the engine | the object under study.In contrast, the way it is done in practice is that the technician observes the output of the engineanalyzer while the motor is running in steady-state and he is making incremental adjustments. Inthis actual practice, the technician is recon�guring the operation of the engine while it continuesto run. Applied to software, we believe that the concept of recon�guration | dynamicallymodifying an executing piece of software | can be employed to advantage in order to make thetuning process more e�cient.The current state of understanding regarding recon�guration is summarized in [Pur91]. It isstated that the options for recon�guration are limited to those anticipated by the developer ofthe software. Fundamental problems arise because tools for recon�guration are weak and thesteady-state may be easily disturbed by those tools that do exist. However, in this paper, we willdescribe an approach to recon�guration that allows a great amount of
exibility. We will outlinethe framework that should be employed in order to attain this level of adaptability, and we willdemonstrate that it is, in fact, achievable. In the next section, we will illustrate our positionand motivation regarding the desirability of a synthesis of prototyping and recon�guration. Adiscussion of language issues relating to our work will comprise section 3. In section 4, wewill describe the elements which underlie the concept of recon�gurability and link them to theprototyping process. Then we will describe a methodology which enables a developer to avoidthe requirement of anticipating all possible points of modi�cation and demonstrate how easy itis to accomplish a high level of recon�gurability. Section 5 will describe the course of research bywhich we are validating our assertions. We will draw our conclusions in section 6.2

2 MOTIVATIONWe believe that the broadening of the prototyping process to incorporate recon�guration tech-nology will result in a more e�cient discovery of the needed information. Furthermore, if theuser can be actively involved in the process, then the outcome is more likely to be acceptable;some of the mystery of problem resolution will have been mitigated and the user will have apersonal interest in the quality of the end product. The development cycle that we anticipateis illustrated in Figure 1. Starting from an initial design speci�cation, the developer identi�eszones of risk or uncertainty. These are the elements of the design that must be re�ned in orderfor the �nal product to have the greatest acceptability and utility to the user. Having identi�edthese areas, the designer must articulate alternatives along with a methodology for evaluatingthese alternatives. The goal is to arrive at a re�ned speci�cation and a decision as to whetherthe process is complete or needs another iteration.The methodology employed by the designer subsumes several critical components. The �rst isa suite of test data or a hypothetical problem to be solved using each alternative of the systemunder test. These problems must be formulated to provide the user the opportunity to makecontributions to the re�nement and evaluation of the alternatives; this is the critical stage wherethe user becomes a partner in the design process. A means must be speci�ed to quantify themerit of each outcome so that alternatives can be objectively compared. We shall use the termdiscriminant function to refer to this evaluation protocol that will allow the user and the developerto quantify di�erences in the identi�ed alternatives, assign a merit value to each, and recognizewhen the objective has been reached. And �nally, di�ering scenarios must be envisioned so thatthe design will, in fact, meet the speci�cations over the entire operational domain.A critical part of this prototyping method is the ability to interactively and dynamically re-con�gure the executing software in order to perform the test and evaluation. We are workingon a protocol that speci�es and implements prototyping in a development environment that in-corporates dynamic software recon�guration. Such a Recon�guration-Based Prototyping (RBP)model, as described in greater detail in section 5, is being constructed with design concepts andsoftware tools using su�ciently powerful and
exible languages, as discussed in section 3. RBPincludes the capability to modify parameters, algorithms, interfaces, and database structure,thereby enhancing the prototyping e�ort in a manner outlined in section 4.3

Figure 1: Prototyping Recon�guration Development Cycle4

3 BACKGROUNDThe concept of prototyping has been a part of engineering philosophy for many years, and itis only natural that it should have been incorporated into the design approach for softwaredevelopment. Dynamic recon�guration, on the other hand, is a topic more speci�c to softwaresystems and we �nd ourselves earlier in the evolution of this technology. The issue of languagechoice has been raised in the previous section, and there is much prior information about specialcapabilities of various languages. In the next part of this section, we look at some of these issuesand examine one existing technology that facilitates the work we are doing.3.1 LANGUAGE ISSUESWe can envision an environment for recon�guration-based prototyping. We can articulate thecapabilities that separately facilitate prototyping and recon�guration, combine them, and addany extra features suggested by the merging of the two protocols. For prototyping, we wouldlike to be able to quickly and easily convert ideas and algorithms into operational programs; thisimplies the use of some higher level computer language. We would like the ability to embedinstrumentation in the prototype and to observe the output of that instrumentation in an on-line mode. We would like a shared run-time environment where system state and data can beexamined to further understand the operation of the prototype. For recon�guration, we wouldlike the capability to monitor the currently operating con�guration and the state of potentialrecon�guration options. Dynamic module bindings would be necessary for interchanging modules.Though not a necessity, modi�able code would open a broad range of revision options. Here, too,a shared run-time environment would empower the designer to manipulate components on thesame platform that the recon�guration is proceeding on. For the combination, it would bedesirable to be able to alter the mapping of modules onto nodes, and to be able to radicallytransform the functionality of any component regardless of its level in the execution hierarchy.While there may be several tools that provide this desired environment, we maintain that it isonly necessary to identify one, since the language of the prototype need not be wedded to thelanguage of the ultimate implementation. With this in mind, we describe an existing technologywhich provides the facilities that we have identi�ed as empowering. M (formerly known asMUMPS) is a powerful ANSI, FIPS, and ISO standard third-generation programming language.Part of this standard is an assurance that implementations will be platform independent. Thus,5

prototypes developed under one con�guration will be readily portable to other con�gurationsor platforms. Furthermore, since the language is in a continuing state of development, thestandards are revised periodically (typically every three or four years) to incorporate new featuresof interest to developers of state-of-the-art applications. By incorporating new developments, suchas M/WAPI (M/Windows Adaptable Programmer Interface) and OMI (Open M Interconnect),into the language standard, the M community is assured of continued consistency and portability.In using these interfaces and standards, the M programmer can write software modules whichcan function well in a mixed-language environment.From a prototyping standpoint, M has several areas of strength. A feature of the M Technologyis positive control over system resources and devices. Speci�c units are opened and then used,and the programmer is allowed to manipulate the parameters of these units. By interposing aninterface layer, many implementations can be made virtually device independent. This adds toportability as well as consistency between various environments.Various forms of parameter passing and accommodation of unde�ned values allow programmersto develop subprograms that are general, robust, and reusable in nature. Modern features ofde�nition of scope, including private and public variables, extend this ability. While this is not afeature unique to M, it does permit independent parallel development of various aspects of a largermodule by separate groups of programmers, once the interface, input, and output speci�cationshave been decided upon. However, M is not a recursive language; programs constructed in Mrely instead on iteration.Originally M was strictly an interpreted language. As such, there were no compile or link stepsin program development. Modern M implementations perform a compilation (ranging from to-kenization to more comprehensive compile), but most still revert to real-time linking. Syntaxchecking and compilation is often performed as a �nal step in the program editing process, priorto �ling the edited routine. This translates into a rapid development/trial/revision cycle that isideal for debugging segments of a large system. Furthermore, since M remains essentially inter-preted in nature, it is easy to step through routines, examine current values of variables, and settraps using the powerful debugging tools that have been provided by implementers.Furthermore, M does not require or allow declaration of type, size, or structure of variables.This applies both to local, memory-resident variables and to global disk-resident data structures.While this may pose an intimidating abundance of freedom for novice, inexperienced, or unskilled6

programmers, it can be a powerful ally for good software engineers. It can provide the capability toquickly and painlessly restructure a database as dictated by evolving development and debuggingduring the prototyping process. Once established, the �nished structure need only be formalizedin the documentation. With respect to instrumenting, visualizing, and monitoring the behaviorof the prototype, M has the potent property that all of its database globals can, with trivial ease,be made visible to other processes on the system, whether in the same or separate computers.This implies that prototype behavior and status can be observed, recorded, and displayed bynon-invasive independent procedures executing on platforms of the implementer's choosing. Insome cases, the prototype may be augmented to incorporate reporting of status; however, due tothe ease of variable de�nition, this can be quickly patched in or removed as the situation requires.The language has the
exibility to deal with novel and current paradigms, such as objects andthe relational model. Also, client-server and peer-to-peer networking and distribution of thedatabase are standard features of many of the implementations of the M Technology. Anotherinherent feature of the M Technology is the capability to spawn background, independent, parallelprocesses. These jobs can be synchronized and coordinated by use of the global database or bypipes easily established as devices connecting two processes. Coupled with the distributability ofthe database, this provides a powerful tool and ability to develop parallelism as part of the designof a prototype. In fact, jobs can be spawned on the same processor as the parent program, orthey can be started on a server which hosts the data on which the process operates. Therefore,by clever design of the distribution of the database and distribution of the computing load,signi�cant advantages can be had by parallelism, and this is completely under control of theprogram designer.From the recon�guration standpoint, there are two additional key properties of the M Technologythat empower the developer: indirection and the capability of executing variable code. Forexample, the following line of M code illustrates indirection.do @variablesubThis statement is a command to invoke the subroutine whose name is stored in the variablenamed variablesub as a text string. In other words, if the current value of variablesub is\output" when the above line of code is encountered, then the line is equivalent todo outputFurthermore, variablesub could be a variable in the local space of the executing module, itcould be inherited from a calling module, it could have been passed as a parameter, or, most7

signi�cantly, it could be a shared global element of the database.M also includes the ability to execute a variable as an M command. Again, we employ an example.set variablecommand="set x=v*b*a write x,y,z"xecute variablecommandhas precisely the same e�ect as ifset x=v*b*awrite x,y,zhad been hard coded into the routine. Analogous to the description of indirection, the executedvariable can be local or global, and the e�ect of executing the command is strictly a function ofthe value of variablecommand at the time it is actually encountered during execution.4 PROTOTYPING AND RECONFIGURATIONIn order to proceed on the combination of the prototyping approach with the recon�gurationcapability, we need to understand more fully the interactions and overlaps between the two con-cepts. The �rst part of this section explores this in greater depth. Building on this understanding,the second part of section 4 proposes guidelines to ensure that developed prototypes will be ableto take advantage of recon�guration.4.1 INTERRELATIONSHIPS BETWEEN THE TECHNOLOGIESIn [HP93] the authors discuss the need to manage three di�erent types of recon�guration module| implementations, system logical structure, and geometry. While their discussion is placed ina framework of language independence, we contend that many applications are implemented in alanguage of choice with very few pieces, if any, written in other languages. A particular exampleof this class of application is scienti�c computing. In prototyping for this type of software, thereexists the need to recon�gure while executing. This is because it may take a while for theprototype to either reach steady-state or to reach the place that is of immediate interest to thedesigner. Point by point, we will outline the interrelationship of recon�guration and prototyping.The need to modify the implementation of modules encompasses several di�erent activities. Itmay be necessary in order to replace a module which has been found to contain a bug. It8

may be driven by the desire to install a module implementing a more e�cient algorithm, or adi�erent (slightly or otherwise) functionality. There may be a reason to adjust some parametersembedded in the program. Speci�cally in the case of prototyping, there may be the need tomodify the instrumentation, so that di�erent or additional aspects of program function are madeaccessible to observers. Relating back to the example, recon�guration might be applied to thetask of substituting di�erent display or interface algorithms, to discern which best conveys theinformation that is appropriate to the objective.In a single-thread application, where, traditionally, the entire process is one load module, it isdi�cult to make modi�cations while the application is executing and still maintain the ongoingexecution state. Concepts of encode and decode are introduced in [HP93] to capture and thenreinstall run-time state when a module is to be recon�gured. However, use of these constructsrequire the designer to correctly anticipate places in the algorithm where recon�guration willbe desired. Furthermore, special provision must be made to recognize when the program hasreached a recon�gurable state so that recon�guration can be invoked. These considerations areimportant in the prototyping process, as they are in any recon�guration, so that the steady-statewhich has been reached is not disturbed.The discussion regarding logical structure or topology of the application can be approached in thesame manner as changes in implementation. It may be that the attention of the prototyping e�orthas been turned to performance considerations of how the task is subdivided among subroutinesor parallel processes. Observing the response of the system to such a topological recon�gurationcould be very useful in the development process.As for geometry, there are several reasons why the distribution of the processing might be alteredduring execution, in addition to load balancing, fault tolerance, or resource availability. It may bedesired to execute a module closer to the data on which it operates, to measure the performanceimprovement. It may be useful to direct the operation of a module toward a di�erent localdatabase operating on another machine.In summary, there exists quite a bit of overlap between the availability of a strong dynamicrecon�guration tool and the e�cient pursuit of the prototyping process.As discussed in the introductory section of this paper, we do not need to justify our choice of aprototyping host technology or to concern ourselves with the applicability of the technology used9

RECONFIG(ODEV) ;EAS;03:46 AM 18 Jan 1994;demonstrate M's reconfiguration capability;set up routines to call initiallyset ^SUBNAME="^NOHIST",^STATDISP="^DISPLAY1";initialize the number of targets to trackset ^NUMTARGET=5;now just loop forever until termination flag setfor quit:$data(^RECONQUIT) do @(^SUBNAME)kill ^RECONQUIT quitFigure 2: Routine RECONFIGin the prototype to the design project at large. The prototype subject to recon�guration is avehicle for re�ning the requirements of a project. It is not necessarily a means by which programcode is developed for the �nished product. Since we can and have described a set of problems thesolutions to which are enhanced by combining recon�guration and prototyping, we can proceedin whatever milieu provides the capability to perform such a combination.4.2 ESTABLISHING RECONFIGURABILITYIn order to initiate recon�guration, a process must come to a recon�gurable state [HP93]. Accord-ing to [KM90], such a state exists when a process �nishes any communication and has producedall output necessary to allow other processes to conclude their tasks and also reach a recon-�gurable state. We believe that this requirement is too restrictive, and that a process can berecon�gured at any time, provided that, with respect to the con�guration that it replaces:� it supplies at least the same functionality to modules above it in the execution hierarchy,and� it can operate in the same environment.In order to achieve this degree of
exibility, a program designer should adhere to several basic10

rules:� use modular design to as great a degree as possible,� try to return to a programming depth of one as often as possible,� ensure that required information is persistent, and� utilize parameters drawn from the global database wherever there is the slightest chancethe parameter might be \tweaked" in any tuning process.Since the name of a subroutine can be parameterized, using the indirection operation, any branchto a subroutine can be a recon�guration point. Therefore, the �rst requirement, using modulardesign, enables a change of con�guration to occur at whatever frequency subprograms are called.If the designer, observing the operation of the prototype, decides to make an implementation ortopological change, he could accomplish this by simply replacing the name of the existing routinein the database with the name of the new routine. Then, the next time this call is made, controlis transferred to the new module.This means that recon�guration can occur at any programming depth. However, following thesecond rule and returning to the outermost level of program depth implies that the entire mod-ule can be swapped during a recon�guration, while execution continues with the steady-stateenvironment intact. In this way, recon�gurations as dramatic as a complete metamorphosis ofsoftware direction, scope, and purpose can be e�ected.If the design of the process considers the need to have persistent values, then these values canbe set at an outer programming level and will be an inherited part of the operating environmentof any subordinate scope, unless explicitly rede�ned. This ensures that when a recon�gurationis initiated, the successor con�guration will inherit the same environment as its predecessor andwill be able to maintain a steady-state operation. If the environment is not preserved, then arecon�guration will have to, indeed, take place only when the system is quiescent so that theappropriate environment can be created from the top down.The fourth design criterion is stated to empower the prototype designer to make incremental ad-justments to the running software, just as an auto mechanic makes small corrections to a runningcar engine while observing the e�ect of those adjustments on the instrumentation attached to11

the car. If a parameter is picked out of the global database each time it is used, then replacingone value with another in that global database will have a near term impact on the operation ofthe process. It is interesting to note that, if the program is made modular enough, it may not benecessary to anticipate every adjustment point. In the case where an adjustable value is desiredwhere none was provided for, the designer can revise the routine containing the parameter to beadjusted, either making it global or changing its hard-coded value, and then can swap the revisedprogram in at the next iteration, as described above.Following these rules, a prototype designer is empowered to make changes ranging from thecomplete metamorphosis of a target tracking system into a banking system (though one wondershow the initial requirements statement could be so general as to have such a thorough changebe meaningful) to the simple �ne-tuning of a computational algorithm. The more far-reachingthe recon�guration, the more likely that di�erent data structures, topologies, and interfaces willbe part of the change. A comprehensive level of change would be very spectacular and woulddramatically illustrate the power of recon�guration, and this degree of change is as easily enactedas a minor modi�cation.This raises the issue, then, of what kinds of change would be found useful. Recalling that ourapproach to prototyping is as a tool to resolve high risk areas in the speci�cation of a softwareproduct, it appears that the changes would be on the line of \variations on a theme," ratherthan sensational changes in basic goals and purposes. However, within the scope of the risk to beminimized, any degree of change that would be desirable to the resolution would be supportedby RBP. The impact would be as dramatic as appropriate to answering the questions at hand.All of the above are best illustrated by an example. While we could choose to give a case inwhich an avionics system is changed into a mortuary accounting system, it is more realistic andillustrative to relate an initial example of target tracking to the M Technology. Let us presumethat the designer has identi�ed the information displayed to the user as an element of risk,an aspect which should be prototyped. Initially, he has speci�ed as alternatives the option ofdisplaying either current target information only, or current and historical target information.The objective that he has de�ned for the user is to be able to ascertain when a target becomesa threat. Let us further presume that several utility functions are available:� STATUS(target-number,time) which returns a delimited string describing all known sim-ulated information about the requested target as of the requested time, including location12

NOHIST ;EAS;03:44 AM 18 Jan 1994;;demonstrate M's reconfiguration capability;display status on number of targets in ^NUMTARGET;at the current time only;then hang for # seconds in ^PAUSE;fix the current time, in secondsset NOW=$piece($horolog,",",2)for TARGET=1:1:^NUMTARGET do.set STATUSSTRING=$$^STATUS(TARGET,NOW).do @(^STATDISP);get pause time, use one second as default (if not;defined)hang $get(^PAUSE,1) quitFigure 3: Subroutine NOHISTcoordinates, symbol, time of observation, etc.,� X(status-string) and Y(status-string) which return, respectively, the X and Y coor-dinate for the target described by the status string, and� LINE(x1,y1,x2,y2) which draws a line on the display from the point with coordinates(x1,y1) to the point (x2,y2).The plan is, by varying the number of targets, the information displayed, the update frequency,and the history/no history options, to arrive at an improved design speci�cation.Figure 2 shows a top-level program which repeatedly calls one subroutine. Upon initiation, theoutput device descriptor is passed to the program RECONFIG. This value becomes part of the localenvironment, which is available in all subordinate scopes. Also, the program initially sets up tocall the subroutine NOHIST, by storing that subroutine name in the global variable ^SUBNAME. Inthe M notation, a carat (^) in front of a routine name indicates that it is external to the currentroutine, and a carat in front of a variable name means that variable is part of the external, globaldatabase. Then, the routine establishes the initial display routine to be used by storing its nameDISPLAY1 into the global variable ^STATDISP, and the number of targets to initially display. Next,13

the routine begins repeatedly calling the subroutine named in the global variable ^SUBNAME, untila
ag, also part of the external database, is set directing it to shut down. When this shutdownoccurs, the
ag is removed from the database, and the routine exits.Within this subroutine, there are several points of recon�gurability, which will allow the designerto interact with the user to solve the problem. First, the number of targets can be changed, forexample to 8, by executing the statementset ^NUMTARGET=8Also, as stated, the names of the two subroutines to invoke are variable, and can therefore bechanged to substitute any desired functionality.The subroutine initially invoked is named NOHIST and is shown in Figure 3. This routine inheritsits local variables from the calling routine, so ODEV is assigned whatever value it acquired inRECONFIG, and this value will, in turn, be available to any routines NOHIST calls. The �rstexecutable statement establishes the current time by retrieving part of the system clock (availablein the $horolog special variable). The routine enters a loop which will be repeated for targetsnumbered 1 through the value found in the global variable ^NUMTARGET. During each iteration,the simulated status is retrieved and displayed. Finally, the subroutine pauses (hangs) for thenumber of seconds that are stored in the global database variable ^PAUSE, before returning tothe calling routine.The �nal piece of the example is the subroutine called HIST and shown in Figure 4. Its operationis similar to NOHIST. However, in this routine, two statuses are retrieved, the interval betweenwhich is parameterized in ^INTERVAL. For each, the coordinates are extracted and retained whilethe status is displayed. Then, a line is drawn from prior to current status.This example provides us with several ways to demonstrate dynamic con�guration. After themain routine is invoked, it quickly reaches steady-state. Because it is speci�cally written to bemodular, at the top level it only calls one subroutine. The point at which this subroutine is called,inside a loop structure, becomes a recon�gurable state. This is because the prototype designercan substitute the second alternative he has prede�ned by executing the command, from his testplatformset ^SUBNAME="^HIST"and the recon�guration is accomplished on the next iteration. Furthermore, while the prototypeis calling DISPLAY1 to paint the status on the screen, the designer can be writing, testing and14

HIST ;EAS;04:01 AM 18 Jan 1994;;demonstrate M's reconfiguration capability;display status on number of targets in ^NUMTARGET;at the current time as well as a prior interval;and connect the two with a line;then hang for # seconds in ^PAUSE;fix the current time, in secondsset NOW=$piece($horolog,",",2);and the prior time interval is a dynamic parameterset THEN=NOW-^INTERVALfor TARGET=1:1:^NUMTARGET do.set STATUSSTRING=$$^STATUS(TARGET,NOW).set X1=$$^X(STATUSSTRING),Y1=$$^Y(STATUSSTRING).do @(^STATDISP).set STATUSSTRING=$$^STATUS(TARGET,THEN).set X2=$$^X(STATUSSTRING),Y2=$$^Y(STATUSSTRING).do @(^STATDISP).do ^LINE(X1,Y1,X2,Y2);get pause time, use one second as default (if not;defined)hang $get(^PAUSE,1) quitFigure 4: Subroutine HIST
15

debugging DISPLAY2. When he is satis�ed that the new display subroutine is correct, he canexecute the command, from his test platformset ^STATDISP="^DISPLAY2"and this new routine will be invoked at the next call. Finally, the designer can dynamicallyalter the time interval encompassed by the two status points in HIST by varying the number ofseconds in the global ^INTERVAL. Similarly, he can tune the time between updates by dynamicallychanging the value of the variable that directs the pause time.set ^PAUSE=3This will increase the hang time to three seconds at the next iteration of whichever subroutineis in the execution path. Also note that the routine will run forever unless the tester issues thecommandset ^RECONQUIT=""which, by creating and de�ning the global variable ^RECONQUIT, directs the main routine toterminate. This, of course, is also a form of recon�guration.In this example, the only entity that is not recon�gurable is the main routine RECONFIG. Belowthat level, any amount of change is possible, simply by recon�guring the pointer to which sub-routine is called. For example, we are not limited to sending bells to a device or to only one levelof depth. The routine pointed to by ^SUBNAME could perform a variety of functions or call othersubroutines which, themselves could be variably invoked.Now that the methodology has been crudely demonstrated, we would like to o�er another verysimpli�ed example, again clearly demonstrating the interaction between this recon�guration ca-pability and prototyping. Departing from our previous example of user interface design, we willdraw upon a scienti�c computing scenario. Assume that we are developing a long-running math-ematical analysis program. After it reaches steady-state, we observe that the results are notconverging as fast as we would like. If written according to this protocol, we could set di�erentvalues for some of the computation parameters and observe the e�ect on the speed of convergence.Furthermore, suppose that we, as observers of the instrumentation built into the prototype �ndthat we would like to watch the values taken on by a particular variable that was not initiallyanticipated. We could edit a renamed copy of the routine, and insert a command such asset ^NEWOBSERVATION=VARIABLEOFINTERESTWhen the revised copy was completed and �led, we would modify the global software switch thatwould trigger its invocation in place of the old copy. This would provide us with a new view into16

the operation of the routine, allowing us to display the most recent value of the variable we havespeci�ed. To do this, we would issue the commandwrite ^NEWOBSERVATIONand the current value would be presented to us.These examples have been presented using the features and the syntax of the M Technology. Ina prototyping e�ort that is based on RBP and M, it would be necessary to have a member of thedevelopment team with a basic understanding of the M Technology. This requirement is furtherdiscussed in section 5.1.1.5 UNDERTAKING THE RBP PROJECTWe are implementing the RBP prototyping process in an environment that employs recon�gura-tion technology rather than the start/stop/change/restart technique. This includes investigationinto the several aspects of the RBP protocol as described in section 2. This work will increaseunderstanding of the applicability of the various prototyping and recon�guration techniques, andthe synergism and interplay between them. We intend to incorporate the results of our researchinto a draft guide to the use of RBP.5.1 RESEARCH PLANFrom a spectrum of research questions and issues, we have selected the area that we believehas the broadest implications. The resolution of RBP implementation and applicability issuesconstitutes the bulk of our work. In the �rst major step, we are building the recon�guration-basedprototyping environment, so that its viability and features can be demonstrated and experimentedwith. Details of this implementation are described in section 5.1.1.As the second principal part of our work, we will use this model to develop an understanding ofthe applicability of RBP and cost overhead created by its use. As discussed previously, there areseveral distinct types of and motivations for prototyping, and di�erent facets to recon�guration.We will explore a variety of situations to be able to evaluate to what extent di�erent combinationsare enhanced by the RBP protocol. A more speci�c discussion of this undertaking is presentedin section 5.1.2. 17

Figure 5: Implementation Concept18

5.1.1 DESIGN RBP PLATFORM The successful design and implementation of the RBP plat-form, as described in this section, will con�rm the �rst part of our hypothesis: we will substantiatethe feasibility of the RBP concept. The applicability of the M development environment will bea�rmed.The model will be implemented in the M Technology on a host system, as illustrated in Figure5. M has been chosen as the development medium because of the empowering features of thelanguage that have been discussed in section 3.1. Although we recognize that M is not thelanguage of choice in the academic community, we have presented that the prototyping e�ortitself can be independent of the language of the overall project, and M o�ers an environmentwhich is conducive to both the development, exercise, and demonstration of the RBP protocol.There are four major components to the design. These may be envisioned as separate windowsbeing driven by the host. Each of these parts is attached to the host by a hard communicationslink, with the processing being performed internally to the host. However, a virtual controlhierarchy is in place by which RBP proceeds.The governing process, shown as \development" (1.) in the �gure, is the window at which thedesigner works. This individual would be the developer cited in [FD89] and [MC83]. His taskis to interact with the user to tailor the software under test to best address the problem to besolved or risk to be reduced. As described in section 2, his goal in employing the RBP method-ology is to reduce lag time between proposal and presentation of alternative ideas. From this\development" position, the designer can achieve any extent of recon�guration that is consistentwith the objective of re�ning a requirements speci�cation to reduce risk. Of course, as statedbefore, more dramatic recon�gurations are always possible, but are moot if they are not orientedtoward solving the problem at hand. From this logical position, the designer has the capabilityto � interact with the host system at the executive level,� initiate the execution of the prototype,� write, test, and debug new modules (while the prototype is continuing to execute) prior toreleasing them for insertion into the prototype,� control the \control" (2.) window by causing alternatives and recon�gurable parameters tobe shown as options, 19

� optionally, exercise direct control over the \user" (3.) window by bypassing the \control"and directly manipulating the environment, and� control the \instrumentation" (4.) by means of either the display code or global vari-ables built into the prototype, or by dynamically revising the module that is tasked withmanipulating the instrumentation window.It is this member of the prototyping team that must have a working knowledge of the fundamentalsof the underlying software. In the case of our examples, it would be this individual who knewhow to use the resources of the M Technology.The control panel process, shown as \control" (2.) in the �gure, is the window at which pro-totype alternatives are shown as selectable options. This position may be considered a liaisonfunction, much as the architect in [MC83]. This member of the development team would have theresponsibility for timing the institution of changes and of manipulating the detailed parametersthat would be provided as options. Working at this window, a designer may� select from prototype alternatives in the form of di�erent modules, routines, or versionsthat can be recon�gured into the executing model,� establish values for global parameters which will have an impact on the performance of theprototype,� terminate the prototyping session, and� exercise control over the \user" (3.) window by invoking the con�guration that has beenselected.The participant who is performing the test of the prototype by attempting to reach the establishedgoal operates at the \user" (3.) window. We have previously discussed the perceived value ofhaving the end users involved in the evolution of speci�cations for a product, a factor oftenoverlooked in practice [LSZ93]. By including this station as an integral component of the RBPprotocol, we are ensuring that user input will be considered. The duties of this individual are to� interact with the prototype presented to him, attempting to solve an experimental problemor reach an articulated goal, 20

� evaluate available alternatives as they are invoked from the \control" (2.) window, and� indicate improvements that the designer, working at the \development" (1.) window, candynamically incorporate into the prototype.The fourth part of this prototyping paradigm is the \instrumentation" (4.) window. When weconsider a prototype from the engineering perspective, it seems natural that the capability existto extract performance information from the executing program, whether it is considered anexperiment, as in [CPP94] and [PLC91], or a model. Observing the output at this window, thedesigner is able to� observe and analyze data extracted from the executing prototype, including operationalparameters, performance indicators, and whatever other instrumentation is incorporated into the prototype, and� track the progress of the prototype.5.1.2 TEST AND EVALUATE RBP PLATFORM The second part of our hypothesis concernsthe
exibility of the model and the ways in which RBP can bene�t the computer software de-velopment process. Consideration of this issue is the area in which our work has the potentialto make a contribution to the body of knowledge in computer science. Our goal in this part ofour project is to provide new insights into prototyping and recon�guration that can be used asreference material for further experimentation with the RBP approach.Central to our contention that prototyping can be more e�ectively undertaken using our modelis the presentation of a case-in-point. We will draw an example from the Baltimore LongitudinalStudy of Aging (BLSA), which is an ongoing research project of the National Institute on Agingof the NIH. Initiated in 1958, this study of human aging has generated a huge database and anaccompanying library of research and administrative software. Within the scope of this computersystem, we will demonstrate the solution of a design problem using our RBP approach.The choice of a particular existing problem on which to demonstrate RBP will not, however, allowus to generalize about the places and situations where RBP methods may be brought to bear.There are several schools of thought on the motivation for prototyping and di�erent approachesto each [LSZ93]. For example, prototyping may be for risk reduction [PLC91] or interface design21

[MC83]; it may be rapid or evolutionary [WK92]. Similarly, recon�guration technology includesthe aspects of topologic, geometric, and implementational change [HP93]. An understanding ofthe interactions of these factors will be a�orded by observation of our RBP model, as it pertainsto both our BLSA example and other situations. We may �nd, in the exercise of our RBPmodel, that certain recon�guration options combine di�erently with prototyping methodologies,and that these combinations are more or less e�ective depending on the goal of the prototypinge�ort. Of particular value to the �eld of computer science would be a classi�cation that could beemployed as reference material for these areas of design. Our objective is to assemble and deliversuch a reference.We are going to do this by testing con�gurations and using what we learn to populate a table ofresults. We will assemble a series of practical software development scenarios and examine themto determine what types of prototyping method and goal are called for; we will decide whichfacets of recon�guration are applicable. Then we will use our model to simulate each situationand extract information about performance under these conditions. We expect that we will beable to construct a three dimensional grid that will serve as a guide to the appropriateness of ourRBP protocol.� The axes of this grid will be prototyping method, prototyping goal, and recon�gurationoptions.� As noted above, the values along the prototyping method axis will include rapid and evo-lutionary; the values along the prototyping goal axis will include risk reduction, interfacedesign, algorithm re�nement, and e�ciency optimization; and the values along the recon-�guration axis will include topology, geometry, and implementation.� The cells of the grid will provide an indication of how much advantage might be gained byusing the RBP protocol in this situation.� Further cell content will give an indication of the circumstances under which an applicationmight locate in this cell.We believe that this taxonomy will provide an insight and guide to the utilization of prototyping,recon�guration, and RBP. Once a draft of this guide is assembled, we can apply it to the BLSAexamples. In so doing, we will be able to re�ne the information so that other investigators canexperiment independently with RBP. 22

6 CONCLUSIONSWe have brie
y discussed and illustrated the bene�ts that can be had by bringing dynamicrecon�guration technologies to bear on the task of prototyping. We have seen that there areareas relating to �ne tuning of algorithms as well as coarse tuning of methodologies that can befacilitated if a software developer has the power to modify executing software in place.We have described a methodology which will allow a designer to include the user in the re�nementof design speci�cations, in a manner to reduce the uncertainties of the �nal design. We have madethe proposition that we can de�ne the technology necessary to implement these protocols.In support of this thesis, we have introduced the M Technology as a powerful platform whichprovides the capabilities to make real time modi�cations to software without, in most cases, theneed to stop and restart. Rather than losing the steady-state, it is preserved and execution canproceed unimpeded.Finally, we have described a con�guration in which the RBP method is being implemented,tested, and evaluated. The outcome of this research will be a taxonomy that will serve as a guideto the further use and re�nement of recon�guration-based prototyping.REFERENCES[CPP94] Chen Chen, Adam Porter, and James Purtilo, Tool Support for Tailored Software Pro-totyping, Proceedings of Symposium on Assessment of Quality Software DevelopmentTools, pp.171-181, June 1994.[FD89] Daniel A. Fern and Scott W. Donaldson, Tri-Cycle: A Prototype Methodology forAdvanced Software Development, Proceedings of the Hawaii International Conferenceon System Sciences, vol. 22:2, pp. 377-386, January 1989.[HP93] Christine Hofmeister and James Purtilo, A Framework for Dynamic Recon�gurationof Distributed Programs, Computer Science Technical Report Series, CS-TR-3119, De-partment of Computer Science, University of Maryland, August 1993.[KM90] Je� Kramer and Je� Magee, The Evolving Philosophers Problem: Dynamic ChangeManagement, IEEE Transactions on Software Engineering, vol. 16, no. 11, pp. 1293-1306, 1990. 23

[LSZ93] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Zullighoven, Prototyping inIndustrial Software Projects Bridging the Gap Between Theory and Practice, Proceed-ings of the 15th International Conference on Software Engineering, pp. 221-229, May1993.[MC83] R. E. A. Mason and T. T. Carey, Prototyping Interactive Information Systems, Com-munications of the ACM, vol. 26, no. 5, pp. 347-354, 1983.[PLC91] James Purtilo, Aaron Larson, and Je� Clark, A Methodology for Prototyping-In-The-Large, Proceedings of the 13th International Conference on Software Engineering, pp.2-12, May 1991.[PFW94] James Purtilo, Charles Falkenberg, Elizabeth White, William Andersen, and TessOllove, An Exercise with Prototyping Technology, 1994.[Pur91] James Purtilo, Dynamic software recon�guration supports scienti�c problem-solvingactivities, Invited paper, Proceedings of IFIP Conference on Programming Environ-ments and High-Level Scienti�c Problem Solving, September 1991. Also appears inIFIP Transactions, ed.Ga�ney and Houstis, North Holland, pp.245-254, 1992.[WK92] David P. Wood and Kyo C. Kang, A Classi�cation and Bibliography of SoftwarePrototyping, Technical Report CMU/SEI-92-TR-13, Software Engineering Institute,Carnegie Mellon University, April 1992.

24

