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Monte Carlo calculations in the framework of lattice field theory provide non-

perturbative access to the equilibrium physics of quantum fields. When applied to

certain fermionic systems, or to the calculation of out-of-equilibrium physics, these

methods encounter the so-called sign problem, and computational resource require-

ments become impractically large. These difficulties prevent the calculation from

first principles of the equation of state of quantum chromodynamics, as well as the

computation of transport coefficients in quantum field theories, among other things.

This thesis details two methods for mitigating or avoiding the sign problem.

First, via the complexification of the field variables and the application of Cauchy’s

integral theorem, the difficulty of the sign problem can be changed. This requires

searching for a suitable contour of integration. Several methods of finding such a

contour are discussed, as well as the procedure for integrating on it. Two notable

examples are highlighted: in one case, a contour exists which entirely removes the

sign problem, and in another, there is provably no contour available to improve the



sign problem by more than a (parametrically) small amount.

As an alternative, physical simulations can be performed with the aid of a

quantum computer. The formal elements underlying a quantum computation —

that is, a Hilbert space, unitary operators acting on it, and Hermitian observables

to be measured — can be matched to those of a quantum field theory. In this way

an error-corrected quantum computer may be made to serve as a well controlled

laboratory. Precise algorithms for this task are presented, specifically in the context

of quantum chromodynamics.
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Chapter 1: Introduction

The majority of observed non-gravitational phenomena in laboratories and the

universe are believed to be described by the quantum field theory of the standard

model. The standard model can be crudely divided into two sectors, one governed

by the electroweak force and the other by the strong force. The electroweak force

posesses a small expansion parameter. As a result, the physics of electroweak phe-

nomena can be computed in perturbation theory. In the other sector, governed by

the strong force, there is no small expansion parameter available.

The physics of the strong force governs phenomena ranging from heavy ion

collisions to the structure of neutron stars. Furthermore, various extensions of the

standard model (of relevance, for instance, in the search for dark matter [1]) also

involve no small expansion parameter; indeed there is no a priori reason why we

should expand physics beyond the standard model to be perturbative. Computa-

tional methods capable of probing non-perturbative physics are therefore critical

not only for understanding the physics of the standard model, but also for designing

tests for beyond-standard-model physics.

The main nonperturbative tool for field theory is the lattice. Whereas a quan-

tum field theory, as usually understood, involves arbitrarily small distance scales and
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therefore arbitrarily high momenta (and with them, a host of technical complica-

tions), the lattice regularization removes momenta above a certain cutoff, reducing

the physics of field theory to the task of evaluating a finite-dimensional (albeit the

number of dimensions is large) integral. The lattice regularization, in addition to

being a central subject of the formal mathematical study of field theories [2], is

therefore a prime candidate for numerical study, the subject of this thesis.

The problems of lattice field theory are problems of evaluating high-dimensional

integrals. Monte Carlo simulations of lattice field theory provide the main tool by

which nonperturbative physics may be accessed in a practical way [3, 4]. In certain

regimes, known algorithms for simulating lattice field theory encounter severe com-

putation obstacles. The most prominent of these is the fermion sign problem: when

simulating field theories with a finite density of fermions, evaluating the integral

by usual methods requires resolving fine cancellations of large terms. This prevents

calculations, for example, of the equation of state of a neutron star. Another sign

problem occurs when applying lattice methods to determine transport coefficients

of quantum fluids, restricting the ability to compare the experimentally observed

behavior of heavy ion collisions to theoretical calculations.

This thesis concerns the task of performing nonperturbative computations in

regimes where Monte Carlo methods encounter a sign problem. One approach is to

re-structure the integral in such a way as to alleviate the sign problem. We will see

in Chapter 4 that the methods of complex analysis — in particular, an application

of a multidimensional generalization of Cauchy’s integral theorem — may be used

to construct such algorithms. The rapid progress being made on the construction of
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practical quantum computers [5,6] suggests another promising avenue of attack. As

a quantum computer is, in fact, a quantum-mechanical system, it is an ideal device

to simulate other quantum-mechanical systems [7,8]. This suggests the possibility of

using a quantum computer as a tool for simulating lattice quantum field theory [9].

This thesis is structured in three broad parts. Chapters 2 and 3 introduce

lattice field theory, the standard context in which nonperturbative quantum field

theory computations are performed, and describe the ways in which sign problems

obstruct calculations performed at finite fermion density or in real time. Chapter 4

describes several closely related methods for thwarting the sign problem on classical

computers, based on the complexification of the path integral. These methods

are applicable to a wide range of theories, but the Thirring model (in both 1 + 1

and 2 + 1 dimensions) is investigated in detail. Finally in Chapter 5, quantum

computing is introduced as a tool for the simulation of field theories, which entirely

circumvents the sign problem. The necessary algorithms for simulating QCD as a

lattice gauge theory are detailed, and the costs (in terms of quantum gates and

qubits) are estimated.
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Chapter 2: Two Views of Lattice Field Theory

In this chapter we describe lattice-regularized field theory from two perspec-

tives: first the Hamiltonian formulation, in which time is continuous and the field

theory is a regular quantum mechanical system, and second from a lattice action,

where space and time are both discretized, as is appropriate for a relativistic theory.

2.1 Hamiltonian Lattice Field Theory

We begin our overview of the Hamiltonian formulation of lattice field theory

with the example of a noninteracting real scalar field [10]. The Hamiltonian of a

noninteracting scalar field in the continuum may be written in momentum space as

H =
∑
k

1

2
Π2
k +

√
m2 + k2

2
Φ2
k, (2.1)

where (Φk,Πk) are the position and conjugate momentum coordinates of harmonic

oscillators indexed by momentum k.

This form makes clear the noninteracting structure of the theory. Each mo-

mentum mode can contain any non-negative number of particles, and in a mode

with momentum k, each particle contributes an energy of
√
m2 + k2, where m is the
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mass of the field. The possible momenta in a box of side length L are k = 2πn
L

where

n = 0, 1, 2, . . .. The same theory may also be rewritten in position space, yielding

the Hamiltonian

H =

∫
ddx

1

2
π(x)2 +

1

2
(∂iφ(x))(∂iφ(x)) +

m2

2
φ(x)2, (2.2)

where the spatial index is summed over i = 1, 2, 3.

This field theory is ‘free’ in the sense that the partition function factorizes

into a product of factors, each involving only one momentum mode. Introducing

an interaction directly in the continuum field theory is technically difficult. In

the example discussed here of a real scalar field, it is believed that no interacting

theory can be constructed in three spatial dimensions [11]. Moreover, the continuum

formulation, with an infinite number of degrees of freedom even in a finite-sized box,

isn’t amenable to numerical simulation.

For these reasons, we introduce the lattice regularization of the field theory. In

the case of scalar field theory, this regularization is obtained by placing a cutoff on

the momenta k included in the sum of (2.1). Equivalently, and more conveniently,

the integral in (2.2) is changed to a discrete sum over lattice sites, and the derivative

is changed to a finite difference. The resulting lattice hamiltonian is

H =
∑
x

[
1

2
π2
x +

m2

2
φ2
x

]
+
∑
〈xy〉

1

2
(φx − φy)2 , (2.3)

where the second sum denotes the sum over all pairs of neighboring lattice sites. It

5



is this object (and others like it) that will serve as the starting point for numerical

work. At this point, an interaction is introduced by adding a term proportional to

φ(x)4 to the Hamiltonian1.

The original field theory consisted of non-interacting harmonic oscillators, each

associated to a separate momentum mode. Before introducing an interaction, the

same decomposition could be done for the Hamiltonian (2.3), now with a finite

number of momentum modes. However, it will be useful to take an alternate view

of the system, where each position is associated to a harmonic oscillator. Even in the

absence of an interaction, these oscillators are coupled by the finite difference term.

When the interaction is introduced, the oscillators become anharmonic. Allowing

for an arbitrary potential V (φ), the final lattice hamiltonian is

H =
∑
x

[
1

2
π2
x + V (φx)

]
+
∑
〈xy〉

1

2
(φx − φy)2 . (2.4)

On a lattice with N sites, the Hilbert space is the tensor product of N copies

of that of the harmonic oscillator. The operators φx and πx act on the portion

of the Hilbert space associated to site x, and commute with φy and πy at any site

y 6= x. Moreover, these operators can be written in terms of the raising and lowering

operators associated to a site:

φx =

√
1

2m

(
a†x + ax

)
and πx = i

√
2m
(
a†x − ax

)
. (2.5)

1Any polynomial of even degree greater than 2 will do.
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2.1.1 Fermionic Theories

For a theory of lattice fermions, due to Pauli exclusion, at most one fermion

will be permitted per degree of freedom. (There may be multiple degrees of freedom

per lattice site; for example, a lattice site may be occupied by both a spin-up and

a spin-down fermion.) The Hilbert space of one degree of freedom, therefore, is

two-dimensional, and the Hilbert space of the full lattice is again the tensor product

of N copies of that local Hilbert space.

The two-dimensional fermionic Hilbert space associated to degree of freedom

i is acted on by creation and annihilation operators a†i and ai, respectively. These

operators obey the anticommutation relations

{ai, aj} = 0 and {a†i , ai} = δij. (2.6)

Most theories of physical interest have multiple fermionic degrees of freedom

per lattice site. Typically these degrees of freedom are related by some global

symmetry.

A typical theory of lattice fermions is given by the Hamiltonian

H = −t
∑
〈xy〉,s

(
a†xsays + a†ysaxs

)
− U

∑
x

a†x↓ax↓a
†
x↑ax↑, (2.7)

where each lattice site (indexed by x or y) contains a spin-up and spin-down degree

of freedom, and the first sum is taken over all pairs of neighboring lattice sites, and

7



s =↓, ↑. This Hamiltonian describes the nonrelativistic fermions of the Hubbard

model [12], a common target of numerical work [13].

Due to the nature of the dispersion relation of lattice fermions, the number

of low-energy modes of such a Hamiltonian will generically be larger than naive

counting would suggest [14]. Various methods for removing these modes exist [3,4];

alternatively, one may simply accept that the theory being simulated has more

particles than originally intended.

2.2 Lattice Actions

Quantum field theories can be described by a path integral; in this section we

derive the lattice path integral. We begin by considering the thermal properties of

a lattice field theory at temperature T ≡ 1/β, defined by the hermitian operator

ρ = e−βH , termed the density matrix. The thermal partition function is given by

Z = Tr ρ, and thermal expectation values are given by various derivatives of logZ.

To obtain the path integral, we expand the trace by summing over all possible

intermediate states:

Z = Tr
(
e−∆tH

)Nt
=

∑
Ψ1,Ψ2,···

〈Ψ1| e−∆tH |Ψ2〉 · · · 〈ΨN | e−∆tH |Ψ1〉 , (2.8)

where ∆tNt = β, and use has been made of the completeness relation I =
∑

Ψ |Ψ〉.

The operator e−∆tH is teremd the transfer matrix.

In the case of the bosonic theory defined by Hamiltonian (2.4), an appropriate

set of states is given by the simultaneous eigenstates of the field operators ψ(x),

8



denotes |ψ〉. The resulting resolution of the identity is

I =

∫
dV φ |φ〉 〈φ| . (2.9)

It is natural to take ∆t to be equal to 1, and after approximation by the Suzuki-

Trotter decomposition [15,16], the resulting lattice path integral is

Z =

∫
dβV φ exp

−∑
〈xy〉

(φx − φy)2

2
−
∑
x

V (φx)

 . (2.10)

The continuum limit of (2.10) is approached by tuning the potential V (φ) such

that correlation functions (e.g. 〈φ(x)φ(0)〉) decay slowly with |x|. As mentioned

previously, the process of taking a continuum limit will not be of much interest

here; however it must be noted that the continuum limit obtained in this way need

not be the same as that obtained by working with the Hamiltonian (2.4) directly.

In order for the two methods to be equivalent, we must first take ∆t → 0 in the

path integral (termed the Hamiltonian limit) and only then performing the tuning

of the potential.

There is always some ambiguity in constructing the path integral: for instance,

the Suzuki-Trotter decomposition is not unique, and there are many possible res-

olutions of the idenitty to be used. If we are interested in the Hamiltonian limit

of the lattice theory, then this is not an issue at all. In fact, in that limit, the

multiple lattice path integrals simply correspond to distinct classical algorithms for

computing thermodynamic quantities. Difficulties can potentially arise when taking

9



a continuum limit directly from the lattice theory, as there is generally no guarantee

that all of the possible lattice path integrals will yield the same continuum limit.

2.2.1 Fermionic Path Integral

The fermionic path integral is derived in the same way as (2.10) above, but

with a particular choice of completeness relation. Consider first a single fermionic

degree of freedom. Define the state |0〉 to be the eigenstate of a†a with eigenvalue

0 — this is the occupation number basis. We introduce the coherent state |ψ〉 and

its dual 〈ψ|, defined by

|ψ〉 ≡ e−ψa
† |0〉 and 〈ψ| ≡ 〈0| e−aψ†

, (2.11)

where ψ and ψ† are independent Grassmann variables (see Appendix A). With these

definitions, a new completeness relation is available:

I =

∫
dψ†dψ e−ψ

†ψ |ψ〉 〈ψ| . (2.12)

For a lattice with multiple fermionic degrees of freedom, we introduce a pair of

grassman variables ψi and ψ†i for each. The completeness relation for the full lattice

system is

I =

∫ ∏
i

(
dψ†idψi

)
e−

∑
i ψ

†
iψi |ψ1 · · ·ψN〉 〈ψ1 · · ·ψN | (2.13)

where the products and sums run over all N fermionic degrees of freedom i. At this

point the derivation of the path integral proceeds just as for a scalar field theory,
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U0

U1

U2

U3

Figure 2.1: The lattice associated to a gauge theory in two dimensions. Each link
is an independent (commuting) degree of freedom. The lower-leftmost plaquette is
given by Re TrU †3U2U1U

†
0 .

using the completeness relation of (2.13).

2.3 Gauge Theories

We now return to the Hamiltonian picture. Some Hamiltonians posess locally

conserved charges. Perhaps the simplest example is Z2 gauge theory introduced by

Wegner [17]. This theory (like other lattice gauge theories we will discuss) lives

on the lattice shown in Figure 2.1; to each link ` is associated a two-dimensional

Hilbert space acted on by local Pauli operators σx(`),σy(`),σz(`). The operators at

separate links are mutually commuting. The Hamiltonian of the theory is

H =
∑
`

σx(`) +
∑
P

σz(P1)σz(P2)σz(P3)σz(P4), (2.14)

11



where the first sum is taken over all links in the lattice, and the second is taken over

all ‘plaquettes’ consisting of four links arranged in a square.

For each site r of the lattice, this Hamiltonian commutes with the operator

G(r) =
∏
` at r

σx(r), (2.15)

where the product is taken over all links which have an endpoint at r. The action

of this operator is called a gauge transformation; in the Z basis, it has the effect of

flipping any link in contact with r and leaving all other links invariant.

The group of symmetries associated to gauge transformations, for this theory,

is (Z2)V , where V is the number of sites on the lattice.

A local conservation law is in some sense more restrictive than a global symme-

try. Consider a scattering experiment: we begin with a vacuum, introduce particles

‘at infinity’ (at the boundary of a large box), and then observe what particles are

measured at later times, again ‘at infinity’. This is typical of physical experiments,

in which the experimentalist can only act on the boundary of the laboratory. Such

experiments can introduce charged particles into the theory, and thus explore the

sectors of Hilbert space labelled by different global charges; however, locally con-

served charges cannot be introduced this way. Thus, only one sector of Hilbert space

can be considered physically relevant.

The ‘physical sector’ of Hilbert space is taken to be the space of vectors invari-

ant under gauge transformations; that is, the set of vectors that are simultaneous

eigenvectors of all G(r), with eigenvalue 1. The remainder of the full Hilbert space

12



is physically irrelevant. We consider it to exist only for convenience in writing down

the Hamiltonian (2.14).

2.3.1 General Gauge Groups

In general, a gauge theory can be defined for any group G chosen to be the

gauge group. Lattice gauge theories for continuous groups were initially formulated

from the path integral; here we begin with the Hamiltonian formulation [18] and

obtain the path integral as a consequence.

As with the Z2 gauge theory, we define the gauge theory for gauge group G

on a rectangular (or cubic) lattice, such as shown in Figure 2.1. To each link `is

associated a local Hilbert space H` = CG, the space of square-integrable complex-

valued functions on G. A large Hilbert space H = H⊗N` is constructed from the

tensor product of N copies of H`, where there are N total links on the lattice.

A local Hilbert space CG has a basis2 consisting of one state |U〉 for every

element U ∈ G. The basis is the eigenbasis of a G-valued operator Û defined by

Û |U〉 = U |U〉. On a lattice with many links, the generalization of this basis is one

state |U(`)〉 for every function U from the set of links to the gauge group G. This

set is a basis for H. To every link is associated an operator Û`, defined as Û above

acting on the Hilbert space of that link.

The Hilbert space of the physical theory is in fact a subspace of H. To con-

2Strictly speaking, for a continuous group G, this set of vectors is overcomplete and does not
lie in the Hilbert space, as they are not normalizable. Much as for ordinary quantum mechanics,
where eigenstates of the position operator are referred to as |x〉, we can disregard this issue without
affecting any of the results. It is most visible in the fact that the dimension of the Hilbert space
of a lattice is countably infinite, whereas the set of basis vectors we use is uncountably infinite.
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struct the physical Hilbert space, we need to consider the group of gauge symme-

tries. For any site x and V ∈ G, we define an operator φx(V ) on H which performs

a gauge transformation by V at x. The operator acts on each link independently.

Links going out of site x transform in the right regular representation; links going

into site x transform in the adjoint of the left regular representation (other links do

not transform, or rather, transform in the trivial representation):

φx(V ) |Uxy〉 = |UV 〉 and φx(V ) |Uyx〉 =
∣∣V †U〉 . (2.16)

Here we have introduced the subscript notation xy to denote a link from y to x. A

general gauge transformation is obtained by specifying an element V at every site

of the lattice3. Under such a gauge transformation, the transformation law for the

Hilbert space is

φ(V ) |· · ·Uxy · · · 〉 =
∣∣· · · (V †xUxyVy) · · · 〉 . (2.17)

The physical Hilbert space HP is the subspace of H consisting only of states

invariant under gauge transformations. This can be defined constructively with the

aid of the gauge projection operator

P =

∫
dV φ(V ) (2.18)

which has the effect of integrating over all possible gauge transformations.

3Performing a ‘constant’ gauge transformation, where the group element V is the same at every
site, has no effect if g is in the center Z of G. Therefore, the full group of gauge symmetries is not
GV , but rather GV /Z.
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The lattice Hamiltonian for gauge group G is

H =
∑
`

∇2
` +

∑
P

Re TrUP . (2.19)

where, just as for the Z2 gauge theory, the first sum is over all links and the second

sum goes over all plaquettes P . The operator UP is defined as the product of

the U` operators for links going around the plaquette: for the plaquette shown in

Figure 2.1 we have UP = U0U
†
1U
†
2U3. (Under the trace, the choice of starting link

does not matter.)

For a continuous gauge group G, the operator ∇2
` is the Laplace-Beltrami

operator; i.e. the kinetic energy of the wavefunction on the curved surface G. This

is the generalization of the Laplacian for a curved manifold. For discrete gauge

groups, an appropriate generalization of this is obtained by noting that the Laplace-

Beltrami operator is diagonal in Fourier space, and is proportional to the identity

when restricted to any irreducible representation. It remains to pick one real number

for each irreducible representation of G, and any such choice will yield a gauge-

invariant Hamiltonian.

Viewing the lattice theory as a regular quantum mechanical system, the first

term is a kinetic term (momentum squared on a curved manifold), and the second is

a potential term, defining how the degrees of freedom are coupled. In the language

of field theory, and specifically by analogy with the U(1) gauge theory of electro-

magnetism, the first term is the electric term and the second the magnetic term, so

that the Hamiltonian can be re-written as H = 1
2
E2 + 1

2
B2.
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Each term in the lattice Hamiltonian (2.19) is individually gauge-invariant.

The kinetic term at link ` is invariant under any rotation of the group G, and

therefore under all gauge transformations. The plaquette term in the Hamiltonian

is invariant under gauge transformation because each closed path (termed a Wilson

loop) must go into and out of every link, and therefore the gauge transformation is

immediately undone.

The gauge theories of greatest physical interest are those with continuous

Lie groups. The gauge group of quantum chromodynamics is SU(3); that of the

standard model is U(1)×SU(2)×SU(3). Much of the focus of numerical simulation

work is on the calculation of quantities in the SU(3) gauge theory.

2.3.2 Path Integral

We now derive lattice path integral for a gauge theory (following [19,20]), and

discuss the matter of gauge fixing.

The construction of the transfer matrix T presented here, differs slightly from

the usual one [21–25] in that T is defined on the entire space H. The usual trans-

fer matrix is defined only on the physical Hilbert space, and may be obtained by

projection with P .

Fixing a timestep ∆t, the transfer matrix is an approximation to imaginary-

time evolution: T ≈ e−∆tH . We will work in the fiducial basis ofH of eigenstates |U〉

of the field operators. We construct the transfer matrix in this basis from separate
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kinetic TK and potential TV contributions via Suzuki-Trotter approximation [15,16]

T = T
1/2
V TKT

1/2
V (2.20)

where the potential evolution resembles the product of spatial plaquettes that ap-

pears in the Wilson action

〈Ũ12 . . . |TV |U12 . . .〉 = δŨ12···
U12··· exp

(
∆t

ag2

∑
x

Wµν(x)

)
. (2.21)

Here a is the spatial lattice spacing, not necessarily equal to ∆t. We have borrowed

from lattice field theory the Wilson plaquette

Wµν(x) = Re Tr[U †x,x+ν̂U
†
x+ν̂,x+µ̂+ν̂Ux+µ̂,x+µ̂+ν̂Ux,x+µ̂], (2.22)

and µ, ν are restricted to space-like directions. The kinetic evolution acts on each

link independently.

〈Ũ12 . . . |TK |U12 . . .〉 =
∏
〈ij〉

e
a

g2a0
Re Tr[Ũ†

ijUij] (2.23)

Note that [T, P ] = 0 due to the fact that TV and TK individually commute with P .

At this point a path integral may be obtained from the approximate partition

function TrT−β/∆t; however, this partition function includes contributions from non-

physical gauge-variant states. The correct partition function is projected onto the

ground state. There is some freedom in how we do this. The most straight-forward
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approach is to insert a single projection operator, writing Z = Tr e−βHP . This

yields the correct physics, but the resulting lattice path integral is awkward to work

with, because the coupling between the first and last time-slices will be different

than the coupling between any other pair. (A calculation performed with this path

integral is partly gauge-fixed to the A0 = 0 gauge.) It is instead conventional to

insert multiple projection operators, writing

Z = TrP T
β = Tr(PTP )β (2.24)

This is possible because the projection operator commutes with the transfer matrix

T , and in fact with TK and TV individually. Projecting the kinetic part of the

transfer matrix yields

〈Ũ12 . . . |PTKP |U12 . . .〉 =

∫
dV

∏
〈ij〉

e
a

g2a0
Re Tr[Ũ†

ijV
†
i UijVj]. (2.25)

The Vi are group elements that live at a single site in the Hamiltonian picture.

Visualizing a Euclidean lattice (with a separate time-like dimension), the Vi connect

a lattice site on one time-slice to the same site on the next time-slice. They constitute

a gauge-transformation performed in going from one time-slice to the next. This is

usually visualized in the form of timelike links connecting one spatial slice to the

next.
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The resulting partition function is

Z =

(∫
G

dU12 · · ·
)

exp

[
1

g2

∑
Re Tr

∏
Uij

]
. (2.26)

Here TrP denotes the trace over only the physical subspace HP , and the sum is

taken over both spatial and temporal plaquettes on a d+ 1 lattice.

It remains to show that, for vanishing temporal lattice spacing ∆t → 0, the

transfer matrix corresponds exactly to imaginary time under the gauge Hamiltonian.

This is done in detail by Creutz [25] for the gauge-fixed transfer matrix. The result

for the gauge-free transfer matrix used here is the same. The potential transfer

matrix TV is exactly e−∆tHV . The correspondence between HK and TK is not exact,

but indeed lim∆t→0 TK = e−∆tHK .
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Chapter 3: Computational Difficulties

The most straightforward method for studying the physics of a lattice Hamil-

tonian is to construct the Hamiltonian as an explicit matrix, and perform compu-

tatinal linear algebra on that matrix. For instance, the matrix may be diagonalized

to reveal the masses of particles and bound states. Such methods are in practice

useless for three-dimensional field theories: linear algebra algorithms scale polyno-

mially with the dimension of the vector space in question, and the Hilbert space of

a lattice theory is exponential in the volume of the lattice1.

The most widely-used nonperturbative tool for studying lattice QCD in prac-

tice is the Markov chain Monte Carlo (MCMC) method. Much of the time, this

algorithm scales polynomially with the volume of the system being studied, rather

than exponentially. At finite density of relativistic fermions, or when studying real-

time evolution, the MCMC method reverts to exponential scaling. In these cases,

we are left without a general nonperturbative method.

1Or, for theories with continuous degrees of freedom, the Hilbert space is infinite.
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3.1 Monte Carlo Methods

Monte Carlo methods for lattice field theory are based on the path integral

representation of the partition function. For concreteness, we consider here a scalar

field theory, but the same ideas generalize to gauge theories and theories of inter-

acting fermions (discussed in more detail in Section 3.2 below).

The lattice partition function for a theory of one real scalar field, as described

by the Hamiltonian (2.4), is

Z[J ] =

∫
dβV φ e−S[φ]e

∑
x Jxφx

where S[φ] =
∑
〈xy〉

(φx − φy)2

2
+
∑
x

m2

2
φ2 +

∑
x

λφ4
x. (3.1)

The functional S is referred to as the action. This expression is only an approxima-

tion (à la Suzuki-Trotter) to the true partition function of the Hamiltonian, which

is itself only an approximation to the continuum theory. After performing a calcu-

lation, one must extrapolate to the continuum and infinite volume limits to obtain

physically meaningful results. The process of extrapolation is largely independent

from the rest of the calculation, and we will ignore it for the remainder of this

chapter.

The partition function (3.1) couples the fields linearly to a spacetime-dependent

source field J . Expectation values are obtained by differentiating logZ with respect

to J . For an arbitrary observable O (typically some polynomial of the fields), the
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expectation value is given by

〈O〉 =

∫
dβV φ e−S[φ]O[φ]∫

dβV φ e−S[φ]
. (3.2)

When the action S[φ] is guaranteed to be real, the “Boltzmann factor” e−S

is non-negative, and this expectation value may be viewed as an expectation value

over the probability distribution proportional to e−S. It follows that, to calculate

arbitrary expectation values, one need only sample from the distribution given by

the Boltzmann factor.

3.1.1 Markov-Chain Monte Carlo Methods

A Markov chain is a discrete-time stochastic process in which the state at time

t+1 depends only on the state at time t. The chain is defined by a matrix Pij giving

the probability of transitioning to state i at step t + 1, given that the state was j

at step t. The matrix P should be thought of as a linear operation on the space of

probability distributions.

The long-time behavior of a Markov chain is determined by the eigenvector of

P with largest eigenvalue. Markov-Chain Monte Carlo (MCMC) algorithms sample

from a distribution by setting up a Markov chain with the target distribution as this

eigenvalue. For many distributions encountered in practice, including many lattice

field theories, the Markov chain mixes in time polynomial in the volume (and all

other physical parameters), making these methods viable for simulations.

The particular method most widely used in lattice field theory is the Metropolis
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algorithm [26].

3.2 Finite Fermion Density

When simulating a field theory with fermions, the fermions are typically inte-

grated out analytically before performing the numerical integral [3, 4]. An example

of this is a simulation of SU(3) gauge theory with fermions, i.e. QCD. The lattice

action is

S =
∑
P

Re TrP +
∑
i

mψ̄iψi +
1

2

∑
i,µ

[
ψ̄iUi,i+µ̂γ

µψi+µ̂ + h.c.
]

. (3.3)

Here the first sum is over all plaquettes, the second over all sites, and the third over

all sites and spacetime directions µ. Because this action is only quadratic in the

fermion fields, they can be integrated out analytically for any fixed configuration of

the gauge fields. This yields the lattice partition function

Z =

∫
dUe−S[U ] detD[U ] ≡

∫
dUe−Seff [U ] (3.4)

where SG is the pure-gauge piece of the original action, and D[U ] is the gauge-field-

dependent matrix that gave the quadratic part of the action.

Although this saves us from having to work directly with anticommuting num-

bers, it introduces a new complication: the determinant of D may not be a non-

negative real number, in which case e−S detD cannot be interpreted as a probability

distribution. This situation is termed a fermion sign problem. In the context of rel-
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ativistic field theories, detD is usually guaranteed to be positive and real at zero

density, but at finite density picks up a complex phase.

A standard approach at this point is to define the quenched Boltzmann factor

as the absolute value e−SG| detD| of the original Boltzmann factor. Expectation

values of the physical system can be rewritten as ratios of expectation values of the

quenched system:

〈O〉 =

〈
Oe−iImSeff

〉
Q

〈e−iImSeff 〉Q
(3.5)

where 〈·〉Q denotes a quenched expectation value.

The denominator of (3.5) is difficult to evaluate. Each sample will be a number

with magnitude 1; once averaged, these number must cancel out to yield a value of

considerably smaller magnitude. In fact, a simple argument shows that the denomi-

nator
〈
e−iImSeff

〉
Q

, termed the “average sign” 〈σ〉, is characteristically exponentially

small in the volume. The partition function of a field theory in a large volume

should be approximately equal to a product of two partition functions with half

the volume: the contribution of the boundary to the free energy is negligible in this

limit. The same statement is true of the quenched partition function ZQ =
∫
|e−Seff |.

The average sign is just the ratio of the physical partition function to the quenched

partition function, 〈σ〉 = Z/ZQ. It therefore follows that

〈σ〉 (V ) =
Z(V )

ZQ(V )
≈ Z(V/2)2

ZQ(V/2)2
= [〈σ〉 (V/2)]2 (3.6)

and therefore the average sign shrinks exponentially with the volume. It follows that
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an exponentially large number of samples are needed to even resolve the denominator

of (3.5) from 0. This exponential scaling is characteristic of methods that encounter

a fermion sign problem.

The fermion sign problem is a major obstacle to nonperturbative calculations

in several physical regimes. Prominent in nuclear physics is the problem of deter-

mining the low-temperature limit nuclear equation of state [27]. To a reasonable

approximation, the interior of a neutron star is at zero temperature, and so the en-

ergy density as a function of number density (or equivalently, pressure as a function

of energy density) of zero-temperature nuclear matter determines the mass-radius

curve of neutron stars. This function is beginning to be constrained through as-

tronomical observations [28], but remains largely out of the realm of first-principles

calculations.

It has been shown that the most general case of a fermion sign problem is NP-

hard [29]. Under standard assumptions of computational complexity, this implies

that classical (or even quantum) simulations of such systems cannot be achieved in

polynomial time [30]. It is important to bear in mind, however, that this result does

not exclude (even heuristically) the polynomial-time simulation of specific instances

of systems that suffer from a fermion sign problem. In particular, the system used to

prove the NP-hardness of the general case has an inhomogeneous Hamiltonian, and

indeed the proof relies heavily on that fact by encoding particular combinatorial

problems into the Hamiltonian. The Hamiltonians associated to field theory are

homogenous and have little information content.
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3.3 Real-Time Linear Response

So far we have discussed the difficulties encountered when trying to determine

the equilibrium properties of quantum matter. Out-of-equilibrium physics is also

difficult to access with nonperturbative techniques.

A general class of experiments we might perform involve preparing a thermal

state of some Hamiltonian H0, and then changing the Hamiltonian to some (possibly

time-dependent) H(t), and measuring an expectation value 〈O(T )〉 at some later

time. The Schwinger-Keldysh formalism [31] presents us with the possibility of

performing such calculations with lattice methods [32, 33]. The time-dependent

expectation value, at inverse temperature β, is given by

〈O(T )〉 =
Tr e−βH0eiHTOe−iHT
Tr e−βH0eiHT e−iHT

. (3.7)

Note that the denominator is just the partition function. This expression can be

transformed into a path integral in the same manner as the pure-imaginary time

partition function. The result, for scalar field theory, is a path integral in both

imaginary and real time, with lattice action

S =
∑
x,〈tt′〉

(φx,t − φx,t′)2

2a0

+
∑
〈xy〉,t

a0
(φx,t − φy,t)2

2
+
∑
x,t

a0

(
m2

2
φ2
x,t + λφ4

x,t

)
, (3.8)

where a0(t) depends on the time-slice being considered, being 1 for the first β slices

(corresonding to the thermodynamic part of the lattice), i for the next T slices
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(yielding forward time evolution), and −i for the rest (backward time evolution).

Here we have assumed that the lattice spacing is 1.

A less ambitious version of this task comes from considering the case where

H(t) is equal to H0, except for a small, delta-like term added at t = 0:

Hε(t) = H0 + εδ(t)H ′. (3.9)

The response of O at some later time, to leading order in ε, is termed linear response,

and is given by a time-separated correlator evaluated in equilibrium.

〈O(T )〉 = 〈O(0)〉+ ε 〈[H ′,O(t)]〉 (3.10)

Transport coefficients, such as bulk and shear viscosity, fall into the category of linear

response. The calculation of these time-separated correlators still suffers from a sign

problem, and will be our main focus.

An efficient algorithm for classically computing the real-time non-linear re-

sponse of a quantum system, with an arbitrary time-varying Hamiltonian, would

imply the ability to efficiently simulate a quantum computer with a classical com-

puter [34]. Thus, under common computational complexity assumptions, it is ex-

pected that no such algorithm exists. However, just as Troyer and Wiese’s result [29]

on the hardness of the inhomogeneous fermion sign problem does not forbid a so-

lution to the homogeneous problem, the hardness of nonlinear simulation with a

time-varying Hamiltonian does not seem to forbid the efficient computation of two-
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point correlators.

Unlike in the fermion case, however, more directly relevant results have been

recently developed. Two developments are worth highlighting here. First, under

stronger (but still widely believed) assumptions about computational complexity2,

the simulation of a sequence of commuting quantum gates is inaccessible by any

polynomial-time classical algorithm [35]. This problem corresponds to the physical

task of computing the nonlinear response of an arbitrary homogeneous state under a

time-constant, but spatially inhomogeneous, Hamiltonian. Separately, again under

standard assumptions, it was shown in [36] that the task of simulating quantum

scattering, beginning from an arbitrary initial state, is also inacessible by efficient

classical algorithms.

These barriers do not provide evidence that time-separated two-point functions

are inaccessible classically. The lattice Schwinger-Keldysh method discussed above

is not the only approach to computing these functions on the lattice. A common

approach, applied for example to the shear viscosity of lattice Yang-Mills [37] is to

compute the two-point function at Euclidean separation, and attempt to analytically

continue to timelike Minkowski separation. This approach ultimately suffers from

the fact that the analytic continuation is ill-posed, and some modeling assumptions

are needed.

2Specifically, the fact that the polynomial hierarchy does not collapse.
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3.4 Noisy Correlators

Particle masses may be measured in a lattice calculation by considering the

long-time behavior of a correlator separated in imaginary time. LetO be an operator

that, when applied to the vacuum state |Ω〉, has some overlap with the ground state

|P 〉 of a single particle whose mass we would like to know: 〈P |O|Ω〉 6= 0. The

Euclidean time-separated correlator has an exponential decay characterized by the

mass of the particle:

C(τ) = 〈Ω|eτHOe−τHO|Ω〉 =
∑
i

eτ(EΩ−Ei)|〈i|O|Ω〉|2 (3.11)

where the sum is taken over all eigenstates of the Hamiltonian, of which |P 〉 is one.

When |P 〉 is the lowest-lying eigenstate with nonvanishing overlap, the asymptotic

behavior of C(τ) reveals the mass.

The measurement of C(τ) on the lattice has some noise, characterized by

the variance 〈(O(τ)O(0))2〉 − 〈O(τ)O(0)〉2. The difficulty of obtaining an accurate

measurement of C(τ) is measured by the signal-to-noise ratio; that is, the ratio the

expectation value to the standard deviation of the estimator. An argument due to

Parisi and Lepage [38,39] shows that, for the proton, the signal-to-noise ratio falls off

exponentially with τ . The correlator that yields the proton mass is 〈q̄q̄q̄(τ)qqq(0)〉,

and asymptotically decays with e−τmp , where mp is the proton mass. The varianceis

given by 〈q̄q̄q̄(τ)qqq(τ)q̄q̄q̄(0)qqq(0)〉. The operator in that correlator at τ = 0 has

overlap with a three-pion state, and so the asymptotic behavior of the variance is
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e−3τmπ . The noise thus decays less quickly than the signal. As a result, the signal

C(τ) is exponentially difficult to measure at large separations τ .

This signal-to-noise problem is not as severe in practice as the sign problems

associated to finite fermion density and real-time correlators. In particular, it has

not prevented the accurate measurements of hadronic masses on the lattice [40].

Although it does not outright prevent these calculations, it does make them more

expensive. The Parisi-Lepage signal-to-noise problem can be reduced by complexifi-

cation [41] and, as we will see in Section 5.3.2, can be evaded entirely on a quantum

computer.

30



Chapter 4: Complexification

Motivated by the previous chapters, we would like to compute via Monte Carlo

sampling with reweighting, the expectation value of a function O(A), defined as

〈O〉 =

∫
DA e−S(A) O(A)∫
DA e−S(A)

, (4.1)

where S(A) denotes the action, O(A) comes from some Hermitian observable, and

the integral is taken over all Euclidean lattice field configurations. For the moment,

we will abstract the problem somewhat, allowing S and O to be arbitrary functions,

with the sole restriction that they be holomorphic1.

To evaluate the expectation value via reweighting more efficiently, we will

explore a method for alleviating the sign problem present in the denominator. A

sign problem is present whenever S fails to be real, and is characterized by the

average sign

〈σ〉 =

∫
DA e−S(A)∫
DA e−ReS(A)

≡ Z

ZQ
; (4.2)

smaller 〈σ〉 correspond to worse sign problems. Note that despite the notation 〈σ〉 is

not an expectaton value with respect to e−S. In fact, it is an expectation value with

1We will see in Section 4.2.1 that even for fermionic theories, functions O coming from arbitrary
correlators are in fact holomorphic.
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respect to the phase-quenched action ReS, and we have introduced the quenched

partition function ZQ, defined as the integral of the quenched Boltzmann factor

|e−S|.

In this chapter we will consider the integral over fields A as a contour integral

in the sense of complex analysis. As written, the integral is taken over RN ⊂ CN , but

we will deform this contour to a different N -manifold M⊂ CN , and integrate over

M instead. This procedure is motivated by two observations: first, that the action

and observables are holomorphic functions of A, and therefore the expectation value

〈O〉 will have no dependence on M; second, that the quenched partition function

is the integral of a non-holomorphic function, and therefore the average sign will

generically depend upon the choice of M.

This chapter proceeds as follows. After a one-dimensional motivating example,

the general procedure is rigorous described in the N -dimensional case, with a proof

of the theorem that prevents expectation values from depending on the choice of

manifold. Next we discuss two methods for selecting a manifold of integration, and

apply each to the previously-discussed Thirring model. Finally, we discuss one case

in which these methods completely remove the sign problem, and one case in which

these methods provably have no effect.

4.1 A One-Dimensional Example

Our motivating example is the sign problem that comes from considering an

action of one variable, S(x) = x2 + 2iαx. In this case, the partition function and
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Figure 4.1: The sign problem, and its removal, of a gaussian integral. On the left is
the Boltzmann factor e−S without any contour deformation performed (black) and
with the optimal contour (red). The original manifold of integration (black) and
the deformed contour (red) are on the right.

quenched partition function can both be evaluated exactly, and the average sign is

〈σ〉 (α) =

∫
e−x

2−2iαx∫
e−x2 = e−α

2

. (4.3)

As an aside, note that one can increase the ‘volume’ of the system by adding

more dimensions to the integral. The partition function of the volume-V system is

then ZV = ZV
1 , where Z1 is the partition function given by the single-dimensional

integral. The resulting sign problem is

〈σ〉 (α, V ) = 〈σ〉 (α, 1)V = e−α
2V , (4.4)

a simple demonstration of the general fact that sign problems scale exponentially in

the volume. (By contrast, the parameter α doesn’t correspond to any parameter in

a physical system, and so the scaling with α shouldn’t be taken seriously.)

This sign problem can be removed entirely by deforming the contour of inte-
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gration from the real plane to the line defined by Imx = −α. The situation is shown

in Figure 4.1: after the contour deformation, the partition function is written

Z =

∫ ∞
∞

dx e−(x+iα)2

=

∫ ∞−iα
∞−iα

dx e−x
2

=

∫ ∞
∞

dx e−x
2

(4.5)

which is of course a sign-problem free integral. The first step is merely a change-

of-variable; in the second step, Cauchy’s theorem must be invoked to show that the

two contour integrals are the same.

This motivates the broad strategy of ‘complexification’ for attacking sign prob-

lems. In general, the partition function Z (from which physical quantities are ob-

tained) is invariant under contour deformations, as it is an integral of the holo-

morphic function e−S(A). The quenched partition function ZQ, by contrast, is the

integral of the non-holomorphic e−ReS(A), so the value of ZQ, and therefore the aver-

age sign, are not invariant under contour deformations. Thus one may improve the

sign problem by deforming the contour of integration, without changing the observ-

ables measured. The precise requirements on the contour deformation are imposed

by Cauchy’s theorem, which we discuss next.

4.2 Cauchy’s Integral Theorem

Cauchy’s integral theorem is the tool that allows us to deform a contour in-

tegral without changing the value of the integral. A function f : C → C is termed
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holomorphic where it obeys the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
, (4.6)

where we have decomposed f(x + iy) = u(x, y) + iv(x, y) into its real and imagi-

nary parts. By introducing the holomorphic (Wirtinger [42]) and antiholomorphic

derivatives

∂ =
∂

∂z
≡ 1

2

(
∂

∂x
− i ∂

∂y

)
and ∂̄ =

∂

∂z̄
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
, (4.7)

the Cauchy-Riemann equations can be rewritten as ∂̄f = 0. Note that the holomor-

phic and antiholomorphic derivatives, just like the ordinary derivatives ∂x and ∂y,

are derivatives taken along orthogonal vectors.

Cauchy’s integral theorem states that for holomorphic functions, integrals

around closed contours vanish.

Theorem 1 (Cauchy’s Integral Theorem). For a closed region Ω ⊂ C and a function

f holomorphic on Ω, the integral of f around the boundary of Ω must vanish:

∮
∂Ω

f(z) dz = 0 (4.8)

Proof. By Stokes’ theorem,

∮
∂Ω

f(z) dz =

∫
Ω

d(f(z)dz) =

∫
Ω

df ∧ dz. (4.9)
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The differential of f is given by df = ∂fdz + ∂̄fdz̄. As the anti-holomorphic

derivative of f vanishes, the differential of f is simply df = ∂fdz. However, the

wedge product dz ∧ dz vanishes, and so must the integral.

The usual form of Cauchy’s theorem — the one just given — applies to func-

tions of one complex variable. The theorem has a natural generalization to functions

of many complex variables. A f : CN → C of N complex variables is termed holo-

morphic where it obeys the Cauchy-Riemann equations in each complex dimension

independently; that is, where

∂

∂z̄i
f(z1, . . . , zi, . . . , zN) = 0 (4.10)

for all i. A multidimensional generalization of Cauchy’s theorem states that the

integral around the boundary of any (N + 1)-real-dimensional region, in which f is

holomorphic, must vanish.

Theorem 2 (Multidimensional Cauchy’s Theorem). For a closed region Ω ⊂ CN of

real dimension N + 1, and a function f holomorphic on Ω, the integral of f around

the boundary of Ω vanishes:

∮
∂Ω

f(z)
N∧
i=1

dzi = 0 (4.11)

Proof. As before, Stokes’ theorem yields

∮
∂Ω

f(z) ∧
N∧
i=1

dzi =

∫
Ω

df ∧
N∧
i=1

dz. (4.12)
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Figure 4.2: The asymptotically safe regions for the Gaussian integral.

The differential df now has 2N terms, of which N vanish by the Cauchy-Riemann

equations ∂̄if = 0. Each of the remaining terms has the form ∂jfdzj for some j,

and therefore is annihilated when the wedge product is taken with
∧
i dzi.

A compication arises when deforming integration contours which extend to in-

finity. Application of Cauchy’s integral theorem alone does not allow the asymptotic

behavior of such a contour to be changed. However, in cases where the function be-

ing integrated decays rapidly2 at infinity, the contribution of the part of the contour

at infinity vanishes, and the asymptotic behavior can be changed without affect-

ing the result. Figure 4.2 shows the asymptotically safe regions for the Gaussian

model. The shaded regions mark the regions that decay exponentially at infinity,

and as long as a contour’s asymptotics remain in a shaded region, the integral will

be unchanged by any deformation.

Tracking the asymptotically safe regions and ensuring the manifold deforma-

tion never leaves them can be technically challenging. It is often possible to arrange

the physical model so that the domain of integration is compact3. This ensures

2An exponential decay is always sufficient.
3The standard formulation of lattice gauge theories accomplishes this.

37



that the original integration manifold does not go near any asymptotic region, and

any finite deformation will be permissible. This is the approach we will take when

applying the method to fermionic models.

4.2.1 Holomorphic Boltzmann Factors and Observables

The utility of a Cauchy’s-theorem-based procedure comes from the observation

that the integrands of interest are holomorphic functions of the integration variables.

Here we discuss two major cases in which the holomorphicity of the integrands is

not obvious: a theory of complex scalar fields, and a theory of fermions in which

the fermions have been integrated out.

4.2.1.1 Complex Scalar Fields

The (Euclidean) lagrangian of a complex scalar field is given by

L =
(
∂µφ

†) (∂µφ) + V (|φ|), (4.13)

and it is immediately obvious that the lagrangian is not, and therefore the lattice

action is not, a holomorphic function of the field variable φ. The resolution to this

dilemma comes upon writing out the full lattice path integral:

Z =

∫
CV

dφ exp

−∑
〈ij〉

|φi − φj|2
2

−
∑
i

V (φi)

 (4.14)
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Here we see that the domain of integration (for a theory with V sites) has V complex

dimensions, rather than V real dimensions. Expressing the complex scalar field at

site i as a sum φi = ui + ivi of two real scalar fields at the same site, we note that

both φ and φ† are in fact analytic functions of the new field variables u and v. The

partition function may now be written

Z =

∫
dV u dV v exp

−∑
〈ij〉

(ui − uj)2

2
−
∑
〈ij〉

(vi − vj)2

2
−
∑
i

V (u, v)

 , (4.15)

in which the integrand is manifestly a holomorphic function of u and v. The methods

of the previous sections may now be applied, and the contour integral deformed into

the space of imaginary u and v.

4.2.1.2 Fermionic Determinant and Correlators

Thus far we have been concerned with ensuring the lattice action is a holo-

morphic function. This guarantees that the integrand of the partition function

is holomorphic, and that the partition function is unchanged by the deformation.

Holomorphicity of the action, however, is in general neither necessary nor sufficient.

In fact it is required is that e−S[φ] and O[φ]e−S[φ] both be holomorphic. We will now

see that this does not imply that either S or O must themselves be holomorphic [43].

Consider a theory of fermions ψ, with interactions mediated by a gauge field

Aµ. After the fermions have been integrated out, the lattice partition function is

Z =

∫
ddVA e−Sgauge[A] detD[A], (4.16)
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where the lattice has d dimensions (making Aµ a d-vector), Sgauge gives the terms

in the lattice action involving only the gauge field, and D[A] is the fermion inverse

propagator in the presence of a fixed background field A.

A typical observable of interest is a meson propagator

〈
ψ̄iψ̄jψjψi

〉
=

1

Z

∫
Dφ e−S[φ]

[
D−1
ij D

−1
ji −D−1

ii D
−1
jj

]
, (4.17)

so we require this integrand to be holomorphic as well.

Note that the effective action on the gauge fields — i.e. the logarithm of the

integrand in the partition function — contains a term log detD. This term has

logarithmic singularities where detD = 0. Also at these points, D−1 is not well-

defined, so the meson propagator given above (along with many others) involves a

singular O[A].

Despite this, the integrands e−S[φ] and O[φ]e−S[φ] are always holomorphic (with

lattice regularized actions). The holomorphicity of e−S is easiest to understand. The

gauge action is of course holomorphic in the fields A, and for typical gauge-fermion

interactions each element D[A]ij of the fermion matrix is also a holomorphic function

of A. As the determinant is merely a polynomial of the elements of the matrix, it

follows that detD itself is holomorphic. This establishes that the partition function

(4.16) will remain unchanged under appropriate deformations.

We now discuss fermionic observables. In the case of a fermion propagator

〈ψ̄iψj〉, there is only a single D−1 in the integrand, and it is easy to see that the

singularity of this factor is cancelled by the zero of the fermion determinant coming
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from the action. To see that integrands involving fermionic observables are holo-

morphic in general, we write an expectation value in terms of the original, fermionic

path integral.

〈
ψ̄aψb

〉
=

1

Z

∫
DA e−Sgauge[A]

∫
Dψ̄ Dψ ψ̄aψbe−ψ̄iDij [A]ψj

With V sites, the fermionic exponential e−ψ̄Dψ may be expanded in 22V terms,

identified by what subset of the 2V Grassmann variables is included in each term.

The C-number part of each term is a product of finitely many components of D[A],

and therefore is a holomorphic function of the gauge field A. Multiplying by any

combination of ψ̄ψ and integrating over Dψ̄Dψ has the effect of selecting one of

these coefficients. Therefore, the integral over fermionic fields yields a holomorphic

function of A.

The story remains the same no matter how many fermionic fields are inserted

in the expectation value, as long as no Grassmanns are repeated. If a Grassmann is

repeated (if the expectation value 〈ψ̄iψi〉 is requested), then the expectation value

is simply zero.

4.3 Lefschetz Thimbles

At this point we have motivated the use of deformed contour integrals, and

shown that physical observables will remain unchanged, but we have no general

principles for selecting integration manifolds on which the average sign is likely to

be improved. The Lefschtz thimbles [44] provide an attractive choice of manifold
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for improving the sign problem [45,46]. Each thimble is an N -dimensional manifold

extending from a critical point zc of the action obeying ∂S|z=zc = 0. The thimble

extends from the critical point along the paths of steepest descent of the real part of

the action ReS. The thimble terminates either at infinite, or at a point where the

real part of the action diverges (zeros of the fermion determinant have this effect).

The union of all thimbles is not necessarily obtainable as a smooth deformation

of the real plane; however, some linear combination of the thimbles always is [44].

In other words, there is some linear combination of the thimbles that, when inte-

grated, gives a result equal to the integral along the real plane (for any holomorphic

integrand). Determining what linear combination is needed may be computation-

ally difficult, as indeed may be the task of enumerating all critical points of the

action. Section 4.4 below provides a closely related algorithm which circumvents

this problem.

The usefulness of the thimbles is related to the fact that ImS is constant on

each thimble. Note first that the path of steepest descent, defined by

dReA

dt
=

∂S

∂ReA
and

dImA

dt
=

∂S

∂ImA
, (4.18)

can also be written in the form Ȧ = ∂̄S. It follows that the change of S with flow

time is given by

dS

dt
=

dA

dt

∂S

∂A
=

∣∣∣∣∂S∂A
∣∣∣∣2 . (4.19)

As the change in the action is real, the imaginary part is constant along each path of

42



steepest descent, and therefore all over the thimble. The fact that ImS is constant

along a thimble means that, within one thimble and neglecting the Jacobian, there

can be no phase cancellations in the integral.

It is not the case, however, that Lefschetz thimbles completely remove the

sign problem. Lattice theories often have multiple thimbles contributing to the

integral [47], with different phases, creating a sign problem. Additionally, although

ImS is constant, the Jacobian (i.e. the curvature of the thimble) introduces its own

contribution to the phase [48].

4.4 Holomorphic Gradient Flow

A thimble may be defined as the union of all solutions A(t) to the holomorphic

gradient flow equation

dA

dt
=
∂S

∂Ā
(4.20)

that approach a certain critical point Ac in the early-time limit: limt→−∞A(t) = Ac.

This definition makes apparently the fact that any thimble is left invariant under

the action of the gradient flow. In fact, thimbles are not only fixed points of the

flow, but attractive fixed points: any nearby manifold will evolve to become closer

to the thimble, under the flow.

It follows that the holomorphic gradient flow can be used to construct an

algorithm for integrating along the thimbles [49]. Define a function ÃT (A) to be

the result of evolving the point A under (4.20) for time T . Under mild conditions

on the action (holomorphicity of e−S is sufficient), this is a continuous function
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of A and T , and therefore defines a contour of integration homotopic to the real

plane. Moreover, in the limit of large T , this integration contour approaches some

linear combination of the Lefschetz thimbles, and is therefore expected to have an

improved sign problem. The Monte Carlo integration is performed by sampling A

according to a modified action

Seff(A) = S[ÃT (A)]− log det J , (4.21)

where J is the Jacobian of Ã, i.e. the matrix of complex first derivatives.

Although the thimbles are only obtained in the long-time limit of the gradient

flow, any manifold created by flowing for a finite amount of time can be used as

an integration contour. In practice, it is found that flowing for a short amount of

time can dramatically improve the average sign at a relatively small computational

cost [50]. This choice of integration manifold, defined by flowing the real plane for

some fixed time T , is both useful in practice and provides a guide for the search for

other manifolds.

4.4.1 Algorithmic Costs

Methods based directly on the holomorphic flow have a substantial drawback:

the computation of det J is expensive. The evolution of the Jacobian induced by

(4.20) is given by

dJ

dt
= H̄J̄ , (4.22)
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where H, the Hessian, is the matrix of holomorphic second derivatives of the action.

The matrix multiplication is unavoidable when computing det J , and requires about

O(n3) steps in practice for an n×n matrix. The asymptotic time complexity of one

step of the flow, then, is approximately cubic in the volume of the lattice. Much

of the technical effort around flow is motivated by the desire to avoid this cost,

including by computing an approximation to the determinant and reweighting [51],

or modifying the Monte Carlo sampling to automatically include the Jacobian [33].

Although flow-based methods can improve a wide variety of sign problems

without much need for model-specific tweaks, the expense of the procedure restricts

the method to small lattices in practice. The parameterization of the integration

manifold by the real plane is also not particularly convenient: in the limit of long

flow times, an entire thimble is mapped to by a single point, creating large potential

barriers (in parameterization space) between different thimbles. Finally, we will

see in Section 4.8.1 that the Lefschetz thimbles, the “ultimate goal” of flow-based

methods, are not the best possible manifold, and that for large lattices it may

be possible to dramatically improve the sign problem with a different integration

contour. This motivates us to continue the search for other manifolds.

4.5 Machine Learning Manifolds

Instead of directly integrating on the flowed manifold ÃT (A), we can use ma-

chine learning methods to create a computationally efficient approximation, and

perform the integration on the approximated manifold instead [52].
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Figure 4.3: Figure from [52] depicting a feed-forward network, used to define a
manifold in the complexified field space.

4.5.1 Feed-Forward Networks

Feed-forward networks are a particular class of nonlinear functions f(~x) of

many variables which are particularly fast to compute. A feed forward network,

depicted in Figure 4.3, consists of several layers, each containing a set of nodes. The

initial layer (shown on the left) is the input layer, and to each node is associated

one input variable xi. Values are propagated through the network from left to

right. The values yj in the second layer are determined from the values of the first

layer by first performing some linear transformation on the xi (usually thought of

as a set of weights associated to the edges between the first and second layers),

and then performing a nonlinear transformation on each node in the second layer

separately. Letting w be the matrix of weights, bj be a linear bias associated to

node j of the second layer, and σ(·) be the nonlinear transformation, we have yj =

σ(bj +wjixi). This process is then repeated for every subsequent layer. The output
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f(~x) is extracted from the output node, or output nodes in the case of a vector-

valued function.

A feed-forward network f(~x) can be made to define a manifold by taking it

to yield the imaginary part of a point on the manifold when given the real part as

input:

Ã(A) = A+ if(A). (4.23)

Here, because A has many components, there may in general be many functions

f(A), which must be trained separately. The number of separate functions required

can be reduced by imposing translational invariance and other symmetries found

in the target action. This construction of a manifold is not completely general,

because it requires that there be only one point on the manifold with any given set

of real coordinates. Nevertheless, this suffices to describe any manifold obtained

by a sufficiently small amount of flow, and no example of a flowed manifold that

folds back on itself (that is, for which the imaginary coordinate isn’t a single-valued

function of the real coordinate) has been found in practice.

4.5.2 Training

In order to find a suitable function f(~x) for our manifold, a cost function must

be defined, which we will seek to minimize. We may use the holomorphic gradient

flow as a guide. After flowing some set of points from the real manifold, we obtain
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a training set of N points (x, y) located on the flowed manifold. The cost function

C(w, b) =
1

N
N∑
h=1

∣∣∣~fw,b(~x(h))− ~y(h)
∣∣∣ (4.24)

attempts to compute the imaginary part of each of these points by looking at the

real part, and takes the average error.

It remains only to perform the minimization of the cost function; this mini-

mization is usually done with some form of gradient descent algorithm. The space

of biases and weights is of quite large dimension, and the cost function has many

local minima, so some experimentation with different algorithms is advisable. An

extensive review of gradient descent algorithms is given in [53]; the Adaptive Mo-

ment Estimate algorithm [54] (dubbed Adam) was used in [52] for the purposes of

training the manifold.

4.6 Manifold Optimization

The manifold learning method used a cost function defined by taking the

distance between an ansatz manifold (e.g. a feed-forward network) and a set of

training data constructed using the holomorphic flow. We can, however, use a more

directly relevant cost function, constructed from the sign problem itself [55, 56].

An immediate obstacle is that, if we chose the cost function to be the average sign

evaluated on the manifoldM, we find that the task of evaluating the cost function on

a given manifold is as difficult as measuring any other observable on that manifold.

The average sign is a noisy observable, and it is difficult to measure precisely when
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there is a bad sign problem.

It turns out, though, that an inability to evaluate the cost function is no

obstacle to its optimization. We select as our cost function the log of the average

sign:

C(M) = − log〈σ〉M. (4.25)

Here we have written the cost function directly as a function of the manifold M,

and the average sign on that manifold is denotes 〈σ〉M. Where a family of manifolds

parameterized by some λ is used as an ansatz, this induces a cost function of the

space of λ.

This cost function is no easier to evaluate. However, the derivative with respect

to some manifold parameter λ is quite simple, as a result of the fact that the physical

partition function Z cannot depend on the choice of manifold.

∂

∂λ
C(Mλ) = − ∂

∂λ
logZQ(Mλ) (4.26)

We see that ∂λC is a derivative of the log of the quenched partition function. This

is an expectation value of the quenched system, which can be evaluated without

encountering a sign problem.At this point, we may again apply any minimization

method to optimize the cost function, just as was done for the manifold learning

procedure above.

This method has two substantial advantages over manifold learning. First,

it does not require the potentially expensive step of preparing a library of flowed
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points to use as training data. Second, while the manifold learning procedure can

at best be expected to perform (as measured by 〈σ〉) as well as the holomorphic

flow, manifold optimization makes no reference to the flow and can in principle find

manifolds with milder sign problems than any reached by flowing. We will see later

that this is in fact the case for the Thirring model, even with a relatively simple

ansatz.

4.6.1 Another View of the Flow

The flow was originally motivated by the observation that, in the limit of long

flow times, the manifold would approach the Lefschetz thimbles, which generally

have a substantially milder sign problem than the real plane. However, the flow has

been found in practice to greatly improve the sign problem even for quite small flow

times, without coming particularly close to the thimbles. This should be surprising:

why does the flow perform so well, away from the regime where it is a well-motivated

procedure?

The picture of manifold optimization above provides us with an answer. Take

as an ansatz the family of manifolds z̃(x) defined by interpolating from a fine mesh.

The real plane itself is in this ansatz: the value of y associated each x in the mesh

is yi(x) = 0. Taking this as our starting point, we perform gradient descent on the

cost function C[y] = − log〈σ〉. The gradient is

− ∂

∂y(x)
logZQ =

1

ZQ

∫
e−ReS ∂ReS

∂y(x)
. (4.27)
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We see that, starting from the real plane, the holomorphic gradient flow is in fact

moving (in manifold space) in the direction which most quickly improves the average

sign. Unfortunately, after the first infinitesimal step of flow has been performed,

there is no longer a simple expression for the behavior of the manifold optimizing

flow.

4.7 Application to the Thirring Model

The Thirring model [57] is a common target for methods designed to allevi-

ate or remove a fermionic sign problem. In 1 + 1 dimensions, it is defined in the

continuum by the Euclidean action

S =

∫
d2x

[
ψ̄α(/∂ + µγ0 +m)ψα +

g2

2NF

ψ̄αγµψ
αψ̄βγµψ

β

]
, (4.28)

where the flavor indices take values α, β = 1, . . . , NF , µ is the chemical potential,

and ψ is a two-component spinor.

The four-fermi interaction is removed by introducing an auxilliary field Aµ,

which we take to be periodic with period 2π. The resulting lattice action is

S =
NF

g2

∑
x,ν

(1− cosAν(x)) +
∑
x,y

ψ̄a(x)Dxy(A)ψa(y) (4.29)

where the spin index a is implicitly summed over a = 1, 2. For Kogut-Susskind
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staggered fermions [18], the matrix D is defined by

Dxy = mδxy +
1

2

2∑
ν=0

[
ην(x)eiAν(x)+µδν0δx+ν̂,y − η†ν(y)e−iAν(y)−µδν0δx,y+ν̂

]
. (4.30)

This is of course not the only discretization possible. Another, with Wilson fermions [58],

yields the fermion matrix

DW
xy = δxy − κ

∑
ν=0,1

[
(1− γν)eiAν(x)+µδν0δx+ν,y + (1 + γν)e

−iAν(x)−µδν0δx,y+ν

]
. (4.31)

Except where otherwise noted, statements in this chapter are applicable to both

discretizations. As usual, because the lattice action is quadratic in the fermion

fields, they can be integrated out of (4.29), yielding

S =
NF

g2

∑
x,ν

(1− cosAν(x))− NF

2
log detD(A). (4.32)

We will work in the case NF = 2.

The Thirring model has no sign problem at vanishing chemical potential. At

finite chemical potential there is, as usual, a sign problem exponentially bad in the

volume. The sign problem is made worse at larger couplings and larger chemical po-

tentials. The sign problem of the Thirring model has been extensively investigated

with flow-based methods, in both 0 + 1 dimensions [49, 50, 59] and 1 + 1 dimen-

sions [60]. Attempts have also been made to approximate the Thirring model by

integrating on a single thimble in isolation [61–63].
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4.7.1 Field Complexification

The path integral for the lattice Thirring model defined in this way is an

integral over the manifold SdV , that is, one copy of the unit circle for each variable

A, of which there are dV , where V is the volume and d the dimension of the lattice.

In order to apply the methods of complexification, we need to construct a space

with complex structure which includes SdV .

The complexification of S1 is a cylinder: the set of points (x, y) such that x ∈

[0, 2π) and y is an unbounded real number. Under the exponential map, the original

domain of Aν maps to the unit circle in the complex plane. The full complexified

space maps to the complex plane with one point removed, C\{0}. As the integration

space is just the product of many copies of S1, the complexification is the product

of many cylinders. Topologically the space is (S1 × R)
dV

.

The real plane, which we will refer to as M0, may be defomed to another

manifold M1 without changing the value of the path integral as long as the two

manifolds together form the boundary of a closed region in (S1×R)dV . A sufficient

condition is that there exists a homotopy betweenM0 andM1, that is, a continuous

family of functions gt :M0 → (S1×R)dV from the real plane to the complex plane,

such that g is continuous in both t and its argument, g0 is the identity function,

and the range of g1 is M1. This sort of construction is also convenient from a

computational point of view, as the function g1 already provides a parameterization

of the manifold to be integrated on.

For the purposes of the Thirring model, we can be even less general. Any
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manifold of the form

Ãν(x) = Aν(x) + if (x)
ν ( ~A) (4.33)

such that f
(x)
ν is a continuous function in its dV arguments, is homotopically con-

nected to the real plane. The homotopy is constructed by scaling the function f
(x)
ν

by t.

4.7.2 An Ansatz

This is the manifold ansatz we will consider [55]:

Ã0(x) = A0(x) + if(A0(x)) and Ãi(x) = Ai(x). (4.34)

This is an enormously constrained ansatz: we have left all dimensions other than

ν = 0 undeformed, and the deformation of the integral over A0(x) does not depend

on the value of A at any other link. Additionally, we have used the fact that

the action is translationally invariant to infer that the ansatz should be as well.

Nevertheless, the ansatz still has an infinite number of parameters. The requirement

that f be a continuous function suggests that we expand it in a fourier series:

f(z) = a0 + a1 cos(x) + a2 cos(2x) + · · ·+ b1 sin(x) + · · · . (4.35)

The action is symmetric under A0 → −A0, which suggests that the chosen manifold

ought to be as well, so we can set bi = 0. Finally, to have a finite number of manifold

parameters, we truncate the fourier series to the first 3 even terms, with coefficients
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a0, a1, and a2.

4.7.3 Phase Diagram

Now that a plausible ansatz is constructed, it can be optimized with the meth-

ods of Section 4.6. The manifold parameters depend on the model parameters, so

the optimization must be performed separately for every set of model parameters.

We simulate the 2 + 1-dimensional Thirring model [64] with bare lattice pa-

rameters g = 1.08 and m = 0.01. All results are quoted in lattice units; physical

quantities may be recovered by multiplication with the appropriate power of the

lattice spacing. This choice of g and m puts the lattice model in the strong coupling

regime: in a box of size 102, we measure a fermion mass mf = 0.46(1) and a boson

mass mb = 0.21(1).

We focus on the chiral condensate, defined by the expectation value
〈
ψ̄ψ
〉
. At

low temperatures and low chemical potentials, the chiral condensate has a non-zero

value, indicating the breaking of chiral symmetry. At either high temperature or

larger chemical potential, chiral symmetry is nearly (because m > 0) restored, and

the chiral condensate drops to near zero.

Figure 4.4 shows measurements of the chiral condensate on a 62 spatial lattice;

the size of the time dimension is temperature-dependent. At low temperatures, a

relatively sharp transition between the broken and unbroken phases is seen near µ ∼

0.4. The crossover broadens at higher temperatures, and moves to lower chemical

potentials.
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Figure 4.4: Figure from [64] of the chiral symmetry breaking phase transition of
the Thirring model. On the left, the condensate

〈
ψ̄ψ
〉
, as a function of chemical

potential µ on β × 62 lattices. On the right, the full T -µ plane for the same spatial
volume. The central band indicates the location of

〈
ψ̄ψ
〉
µ,T

= 0.5
〈
ψ̄ψ
〉

0
; the thinner

lines on either side indicate the width of the crossover

4.8 Optimal Manifolds

The general method of complexification may fail for two different reasons. For

any given model, the complexification method may fail because no manifold that

removes the sign problem exists, or it may fail because the manifold is just too

computationally expensive to integrate on (for instance, it may be difficult to find

in the first place!). In practice it is difficult to distinguish these two failure modes

unless we can prove no satisfactory manifold exists. In this section we consider

general questions about the “best possible” manifolds, that is, those that minimize

the quenched partition function, and look in particular at one case where a “perfect”

manifold can be found, and at another where we can prove none exists.
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Figure 4.5: Thimbles and an optimized manifold from the ansatz 4.35 for the heavy-
dense limit of the Thirring model, or equivalently the one-site Thirring model.

4.8.1 Lefschetz Thimbles Are Not Optimal

The lattice Thirring model (4.29) becomes trivial in the heavy-dense limit

of large chemical potential µ. Physically, the large chemical potential pushes the

Fermi momentum up to the lattice cutoff, so that every site of the lattice is filled by

a fermion. To see this effect algebraically, we can expand the fermion determinant

in powers of e−µ. The leading-order term is the one in which only time-like links are

included. The physical ‘saturation’ effect of the lattice manifests in the partition

function factorizing to leading order e−µ, so that each link is now independent and

uncoupled from all other links:

Z =

[∫
dA0 e

NF
g2

cosA0+µ+iA0

]βL [∫
dA1 e

NF
g2

cosA1

]βL
. (4.36)

With exponents appropriately modified, this factorization holds independent of the

number of spacetime dimensions. This observation provides a convenient post-hoc
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rationalization for the ansatz of Section 4.7: that ansatz defines the most general

manifold which maintains all the symmetries of the heavy-dense limit of the Thirring

model4.

This trivial limit also allows us to study how the Lefschetz thimbles compare

to a “best-possible” manifold [48]. Because the partition function factorizes, the

average sign does as well:

〈σ〉 =

(
Z1

Z1,Q

)βL
(4.37)

where Z1 and Z1,Q denote the partition function and quenched partition function,

respectively, of the one-site model. This allows us to accurately compute the average

sign at large volumes, where a direct calculation of 〈σ〉 would be impractical. The

thimbles and the ansatz of that model are shown in Figure 4.5.

Numerical evidence indicates that the ansatz (with all Fourier coefficients

maintained) achieves an average phase of exactly 1, regardless of coupling. The

average phase on the thimbles, meanwhile, is less than 1 for any nonvanishing cou-

pling. In the case of g = 1.08, the average phase obtained on the thimbles is 0.985

for the one-link model, and therefore (0.985)βL for the full lattice.

This heavy-dense limit of the Thirring model is one of the few physically-

inspired models in which both the Lefschetz thimbles and a provably optimal man-

ifold can be understood. In this case, a manifold that completely solves the sign

problem does exist, and the thimbles do not.

The fact that the sign problem of this model can be solved exactly may be

4Strictly speaking, we have also imposed that ImA0 be a single-valued function of ReA0.
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very special — in fact, in the next section, we will see a (less physical) model in

which no manifold can solve the sign problem. However, the fact that the Lefschetz

thimbles are non-optimal is probably less special. Looking at Figure 4.5, note that

the thimbles contain a sharp ‘cusp’, where the contour folds back along itself. At

stronger couplings, the cusp becomes sharper, and the thimbles come closer to each

other. The action on one side of the cusp does not differ much from the action on the

other, but the sign of the integration element dz flips. Therefore, the contributions

to the integral from the two sides of the cusp almost exactly cancel. The ansatz

manifold cuts off the cusp, removing the considerable residual sign problem in this

region.

4.8.2 A Complexification-Immune Sign Problem

Not every sign problem can be removed with complexification. A simple ex-

ample serves to prove the point:

Z(ε) =

∫ 2π

0

dθ (ε+ cos θ) . (4.38)

This partition function should be thought of as a ‘lattice’ with a single degree of

freedom θ on a single site, and an action of Sε(θ) = − log (ε+ cos θ). We are

interested in the regime of small ε, where we will be able to establish upper bounds

on the best possible average phase 〈σ〉.

We begin by taking ε = 0, where the partition function vanishes. Here there

are two thimbles, constituting the two halves of the real line, and the antisymmetry

59



of the Boltzmann factor under θ → θ + π causes them to exactly cancel. The

partition function will vanish no matter what manifold is chosen. The quenched

partition function depends strongly on the manifold, but can be rigorously bounded

from below. For any x ∈ [0, 2π), the chosen manifold must have a point θ with

Re θ = x. Because cos θ is minimized, for any fixed Re θ, by Im θ = 0, the minimum

possible value of |e−S(x)| is achieved at θ = x. Therefore we can do no better in

minimizing ZQ than to integrate over the real line, resulting in the bound ZQ ≥ 4.

Because the partition function itself vanishes, the average sign will always be zero.

This is a pathological example.

The pathology is lifted by introducing ε. At small ε > 0, the thimbles remain

on the real line, but the cancellation is no longer exact, and the partition function

no longer vanishes, but is instead given by Z = 2πε+O(ε2). The average sign, then,

is forced to be of order ε as well:

〈σ〉 ≤ ε
π

2
+O(ε2). (4.39)

We conclude that, at small but nonvanishing ε, there is no manifold that can improve

the sign problem beyond what is achieved on the real line. Moreover, even with only

one degree of freedom, the sign problem on the real line can be made arbitrarily

bad.

A key feature of this example is the presence of multiple cancelling thimbles.

As mentioned earlier, the other way in which the Lefschetz thimbles fail to com-

pletely remove the sign problem is via the residual phase introduced by the Jacobian.
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Whether this residual phase can always be counteracted by deforming away from

the thimbles (at in the heavy-dense limit of the Thirring model) remains an open

question.
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Chapter 5: Quantum Simulations

In this chapter we discuss the use of a quantum computer in studying the time-

evolution of physical quantum systems. Sections 5.1 and 5.2 provide introductions

to quantum computing and quantum simulations, respectively; however, a cursory

overview of quantum computers suffices to show that they are a powerful tool for

studying quantum systems.

After abstracting away implementation details1, a quantum computer consists

of a set of qubits, and the ability to apply arbitrary unitary operations on pairs of

qubits. The state of a single qubit is described by a two-dimensional Hilbert space

H2 = span{|0〉 , |1〉}. In a computer with N qubits, the full Hilbert space is given

by the tensor product of N copies of the single-qubit Hilbert space, HQC = H⊗N1 .

This Hilbert space describes the set of possible states of the quantum computer; in

addition, there is a set of unitary operations (termed ‘gates’) on this Hilbert space,

which may be performed in any order in order to manipulate the qubits.

We are interested in simulating some physical system, described by a Hilbert

space H, and a time-evolution operator U(t) = e−iHt. Here it becomes clear how

a quantum computer might be useful. Two Hilbert spaces of equal dimension are

1Crucially, this also requires abstracting away the fact that, as of this writing, no quantum
computer exists at the scale necessary to perform any field theory simulation discussed in this
chapter.
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necessarily isomorphic, so it is possible to establish a mapping between the physical

Hilbert space H and (some linear subspace of) the quantum computer’s HQC . If,

after this mapping is established, the time-evolution operator U(t) can be efficiently

implemented in terms of the available quantum gates, then it will be possible to

simulate time-evolution of the physical system with the quantum computer. In

Section 5.2 we will see that, as shown in [65], this is true for a large class of physically

relevant systems.

5.1 Digital Quantum Computers

In this section we give an expedited overview of quantum computation, tailored

to those aspects which will be important in designing quantum simulations.

5.1.1 A Single Qubit

For physical intuition, one may think of a single qubit as being implemented

by a quantum spin-1/2 system, although any two-state system will suffice and many

are used in practice. The state of a single qubit is a vector in the Hilbert space

H1 = span{|0〉 , |1〉} ≈ C2. There are two types of manipulations we perform on a

qubit: quantum gates acting on 1 or 2 qubits, which correspond to unitary 2× 2 or

4×4 matrices, and measurements, which yield classical information while collapsing

the state of the qubit.

The set of unitary operators on C2 is denoted U(2). An overall phase on a

quantum state cannot be measured and is treated as physically irrelevant. For this
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reason, the set of physically distinct quantum operations on one qubit is actually

U(2)/U(1) ≈ SU(2)/Z2.

Implementing the uncountable set of operations directly is often inconvenient,

particularly when constructing an error-correct quantum commputer. Instead, one

implements a small discrete subset of these operations (fundamental gates), such

that any unitary operator can be arbitrarily well approximated by a sequence of

fundamental gates. A common set of fundamental gates are

H =
1√
2

1 1

1 −1

 and T =

eiπ/8 0

0 e−iπ/8

 , (5.1)

and as shown by Solovay and Kitaev, any operation in U(2)/U(1) can be approxi-

mated to within ε with O(1/ε) gates chosen from this set [66–68].

The gate T , often referred to as the π
8
-gate, is the exponential of the Pauli

matrix σz. Often T † is included in the set of fundamental gates, but it can of

course be obtained as T † = T 3 (note that this equality is true in U(2)/U(1), and

not in U(2)). The Hadamard gate H, which is its own inverse, corresponds to a

change-of-basis between the x and z bases: HσzH = σx.

In addition to gates, we may also perform measurements. For our purposes,

we will consider all measurements to be performed in the z-basis of |0〉 and |1〉. If a

qubit is in state α |0〉+ β |1〉, measurement changes the state to |0〉 (resp. |1〉) with

probability |α|2 (resp. |β|2), and yields the classical bit 0 (resp. 1).
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H RZ(θ) X RZ(θ) X H

H • X • X H

Figure 5.1: A two-qubit circuit, implementing time-evolution under the Hamiltonian
H = σx ⊗ σx.

5.1.2 Coupling Many Qubits

A quantum computer with only one qubit is of no use — after all, it can be effi-

ciently simulated by a classical computer by multiplying SU(2) matrices. Quantum

computers become interesting when we add the ability to operate on multiple qubits

simultaneously. The resulting operations, with N qubits, are unitaries on the Hilbert

space H⊗N1 , modulo an irrelevant overall phase. This is the group U(2N)/U(1).

It is sufficient to add to our set of primitive gates only a single extra gate2,

which couples two qubits [70]. A common choice is the controlled-not gate, defined

by

CX =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (5.2)

This gate may be thought of as acting on a ‘control’ and a ‘target’ qubit: the target

qubit is flipped when the control qubit is 1. The matrix above is written in the basis

{|00〉 , |01〉 , |10〉 , |11〉}, so that the first (“high-order”) qubit is the control.

A quantum circuit is a composition of primitive gates. A simple example is

shown in Figure 5.1, in which a change of basis is achieved by Hadamard gates,

2In fact, universal quantum computation can be achieved with almost any multi-qubit gate [69].
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followed by a phase rotation of the |11〉 state, followed by a NOT gate on each qubit

and another phase rotation. The result is equivalent to time-evolution under a

Hamiltonian H = σx ⊗ σx.

5.1.3 Some Simple Algorithms

A small number of quantum algorithms will be directly relevant to the task of

creating a simulation, and are introduced here.

The first algorithm to discuss is really a meta-algorithm — that is, a pro-

cedure for producing a quantum algorithm: any reversible classical circuit may be

re-interpreted as a quantum circuit. If a reversible quantum circuit starts with some

bitstring x and yields x+ f(x) (that is, the concatenation of x and f(x)), then the

corresponding quantum circuit yields the transformation |x〉 |0〉 → |x〉 |f(x)〉. (As

|x〉 and |f(x)〉 are both computational basis states, this is a unitary transformation.)

As any classical circuit can be easily transformed to be reversible [71], this

implies that any classical algorithm yields a quantum algorithm. This procedure re-

quires polynomially many (in the memory size of the original, non-reversible classical

circuit) ancillary qubits.

5.1.3.1 Controlled Nots

The controlled-not operation is usually considered to be a primitive gate, im-

plemented directly by the quantum computing hardware. It is usually convenient,

however, to make use of many-controlled nots, such as the Toffoli gate (here called
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• • • • T •

• = • • T X T † X

X H X T † X T X T † X T H

Figure 5.2: Implementation of the Toffoli gate from 1- and 2-qubit gates.

CCX) defined by

UCCX |110〉 = |111〉 and UCCX |111〉 = |110〉 , (5.3)

and acting as the identity on all other basis states. These can be implemented from

the single-controlled not CX and general one-qubit gates. Furthermore, arbitrarily-

controlled nots CnX may be efficiently constructed (with poly(n) gates) by intro-

ducing ancillary qubits. In fact this can be improved to remove the need for an-

cilla [72, 73], but these constructions will not be discussed here.

A common construction [70] of the twice-controlled not gate is shown in Fig-

ure 5.2. This is in fact the construction that minimizes the number of CX gates

required [74]. From this building block, n-controlled not gates may be constructed

with the introduction of n−2 ancillary qubits, as demonstrated in Figure 5.3. Intu-

itively, each Toffoli may be thought of as adding two bits (base 2), and storing the

result in the target bit. Eventually, the sum of all bits is accumulated.

5.1.3.2 Circuits From Circuits

Given a quantum circuit implementing a unitary U , certain related unitaries

can be easily obtained by modification of the quantum circuit. For concreteness, we

67



|0〉 X • X |0〉

|0〉 X • X |0〉
• •
• •

• •
• •

X

Figure 5.3: Construction of a 4-controlled not gate from the Toffoli gate, with the
aid of ancilla. The ancillary qubits are on the top; the target is the bottom qubit.

will assume that the circuit is implemented from the Hadamard gate, the π
8

gate, and

the controlled-not. This constraint can be substantially relaxed without materially

changing the methods discussed in this section.

Our first task, given a circuit implementing U , is to obtain a circuit imple-

menting the inverse U †. Note first that, for every gate in our gateset, the inverse

gate is already known: the Hadamard and CX gates are their own inverses, and

T † = T 3. This allows us to construct an inverse circuit simply by inverting each

gate and reversing the order of application.

U † =

[
K∏
i=1

Vi

]†
=

1∏
i=K

V †i (5.4)

Our second task, again given a quantum circuit implementing U , is to imple-

ment the controlled-U operation UC defined by

UC (|0〉 ⊗ |Ψ〉) = |0〉 ⊗ |Ψ〉 and UC (|1〉 ⊗ |Ψ〉) = |0〉 ⊗ U |Ψ〉 (5.5)

General constructions of controlled circuits are given in [73]; for our purposes, we
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• • • S

H
=

H S† X H T X T H S X

• • •
T

=
S† RZ(π

8
) RZ(π

8
) X

Figure 5.4: Construction of the controlled Hadamard (top) and controlled π/8 (bot-
tom) gates, from the primitive gateset of H, RZ(θ), and CX. For brevity, an
additional gate is defined as S = T 2, and we have used X = HT 4H.

will specialize to the case where the available gates are H, T , T †, and CX. The

technique stems from the observation that if U = V V ′ can be decomposed as a

product of (potentially simpler) unitaries, then the controlled unitary is given by

the product UC = VCV
′
C of the controlled versions of the simpler unitaries. By

assumption we have U expressed as a product of the fundamental gates, and so we

need only construct controlled versions of those four gates.

The Toffoli gate CCX has been constructed above. Constructions of the

controlled Hadamard and controlled π
8

gates are shown in Figure 5.4.

5.1.3.3 Quantum Fourier Transform

The Fourier transform, suitably generalized to nonabelian groups is a change-

of-basis operation between the regular representation of a group and the Fourier

basis. This operation is unitary, and therefore can be implemented by quantum

circuits. An efficient (polylogarithmic in the size of the group) implementation for

arbitrary groups is not known; nevertheless, circuits are known for large classes of

groups [75], including abelian groups [76].
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The quantum Fourier transform is central to major quantum algorithms, most

notably Shor’s factoring algorithm [77] and Grover’s search algorithm [78]. For

quantum simulations, the relevance of the quantum Fourier transform comes from

the fact that it diagonalizes the quantum-mechanical kinetic term ∇2 of the Hamil-

tonian. We will see that the asymptotic scaling of the quantum Fourier transform

with group size is not very relevant to the efficiency of lattice simulations.

5.2 Quantum Simulations in General

5.2.1 Mapping Hilbert Spaces

As discussed at the beginning of this chapter, the first step to setting up a

simulation of a physical system on a quantum computer is to establish a mapping

between the Hilbert space of the physical system and that of the quantum computer.

The Hilbert space of the quantum computer is necessarily finite-dimensional, having

2Q dimensions for a quantum computer with Q qubits; therefore, we are constrained

to consider a physical system with a similarly finite Hilbert space. In particular, we

will be working at finite volume and lattice spacing.

Any two Hilbert spaces of equal finite dimension are isomorphic. However, it

is helpful to have the mapping between the states of the quantum computer and the

physical states be a natural one. In particular, in simulating a field theory, it is often

helpful to preserve the notion of locality. Many lattice field theories have a Hilbert

space which is naturally expressed as a tensor product of many local Hilbert spaces,

each associated to some lattice site (or link, for gauge theories). By grouping qubits,
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and allowing each group to correspond to a single site, we can write the state space

of the quantum computer similarly as a tensor product of simpler, local Hilbert

spaces.

The nature of the mapping of local Hilbert spaces depends strongly on the

system being simulated. The simplest case is when the local Hilbert space is two-

dimensional, therefore mapping cleanly to a single qubit. This is true for a spin

chain or the Z2 gauge theory, and we will use these systems as illustrative examples

below.

5.2.2 Suzuki-Trotter Decomposition

The basic gates discussed above can be viewed as time-evolution under simple

Hamiltonians affecting one or two qubits at a time. The one-qubit gates, applied to

site i, yield evolution under ~n · ~σi, while the two qubit gates applied to sites i and

j yield evolution under σµi ⊗ σνj for any µ, ν ∈ {x, y, z}. A general Hamiltonian of

interest, however, is not so simple. The Heisenberg spin chain, for example, has the

Hamiltonian

H = −Jx
∑
〈ij〉

σxi ⊗ σxj − Jy
∑
〈ij〉

σyi ⊗ σyj − Jz
∑
〈ij〉

σzi ⊗ σzj . (5.6)

Note that because the terms of the Hamiltonian do not commute, the unitary time-

evolution operator does not factorize. More complicated systems of physical interest

will also have Hamiltonians which can be expressed as sums of few-qubit Hermitian

operators which fail to mutually commute.
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The Suzuki-Trotter decomposition [15,16] provides an approximate factoriza-

tion of the time-evolution operator in the case where the terms of the Hamiltonian

do not commute. With two terms in the Hamiltonian H = A+B, we have

e−iδ(A+B) ≈ e−iδAe−iδB +O(δ2). (5.7)

If the decomposition is such that A and B have well-understood diagonal bases, the

operators e−iAt and e−iBt are readily implemented, and therefore we have an easy

implementation of approximate time-evolution, becoming exact in the limit δ → 0.

In general, this procedure can be generalized to any sparse efficiently com-

putable sparse Hamiltonian [65]. In the case of field theories, the Hamiltonian can

typically be split into two terms, one diagonal in field space and the other diagonal

in conjugate momentum space; thus the general theorem is not needed.

5.2.3 Aside: Disordered Potentials

Here we describe the simulation [79] of a particular quantum-mechanical sys-

tem: the Anderson tight-binding model [80] of a single particle living on V lattice

sites. This is a model of a particle in a random potential. The Hamiltonian is

H = −
∑
<ij>

(
c†icj + c†jci

)
+W

∑
i

uic
†
ici. (5.8)

Here the ui are random variables, taken to be independently and identically dis-

tributed on the interval [0, 1]. The first sum is taken over all pairs of neighboring
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sites, and the parameter W gives the strength of the disorder.

Depending on W and the dimension of the lattice, this model may exhibit

Anderson localization. When W = 0, this is a model of a free particle in a box.

A wavefunction that begins concentrated at one site, spreads out throughout the

lattice over time. For sufficiently strong disorder, however, an initially concentrated

wavefunction will remain concentated at all later times [80–82]. This localization ef-

fect is not due to any potential well trapping, but rather interference effects between

the different paths a particle could take to propagate.

In one or two dimensions, any amount of disorder yields Anderson localization.

In three dimensions, Anderson localization only sets in above the critical disorder

of Wc ≈ 16.5 [83], with a second-order transition at that point.

5.2.3.1 Simulation

The Hilbert space of this model is of dimension V . At large volumes, where

the second-order phase transition is most visible, it becomes numerically difficult to

simulate: naive algorithms run in time at least O(V 2). When performing a simula-

tion on a quantum computer, we expect to require only O(log V ) qubits to represent

the Hilbert space and similarly O(log V ) operations per time step, indicating that

far larger volumes can be obtained at relatively little cost.

We first discuss the simulation of a particle in a one-dimensional random po-

tential [79]. Each of the V sites is labelled by an integer 0 . . . V − 1, and the state

|i〉 is the position eigenstate of an electron located at site i. This will be the com-
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putational basis. The mapping of the computation basis of the quantum computer

is achieved by representing the integer i in binary; thus the physical state |6〉 is

mapped to the state |110〉 on the computer.

The time-evolution is simulated according to the Suzuki-Trotter decomposi-

tion, splitting the Hamiltonian into three pieces H = HK,e +HK,o +HV , where:

HK,e =
∑

i=0,2,...

(
c†icj + c†jci

)
(5.9)

HK,o =
∑

i=1,3,...

(
c†icj + c†jci

)
(5.10)

HV = W
∑
i

uic
†
ici. (5.11)

Spliting the kinetic term into even and odd links in this fashion allows it to be

simulated without a change of basis to momentum-space, and allows the algorithm

to generalize to the case where the disorder in the potential lives on the links instead

of the sites. When simulating in d dimensions, this Trotterization scheme requires

2d+ 1 steps.

The even links couple states that differ only in the last qubit

HK,e = |0〉 〈1|+ |2〉 〈3|+ · · ·+ h.c. = I⊗(V−1) ⊗ σx, (5.12)

and e−iHK,e∆t is therefore obtained by a rotation about the X axis of the least-

significant qubit. The evolution of the odd links can be put into a similar form by

first shifting the whole lattice by 1. This is a change of basis that maps HK,o to

74



HK,e. The shift corresponds to the addition of 1 modulo V , for which a classical

circuit (and therefore quantum circuit) is readily constructed.

The evolution under the disordered potential is, on its face, more difficult. This

evolution requires the phase of the state to be changed by the same random number

each time the electron finds itself as a particular site. In a classical simulation, this

effect is accomplished by generating a list of V random numbers at the beginning

of the computation. This step already exponentially exceeds our O(log V ) budget.

To avoid this, we note that the ui are typically not truly random variables, but

instead are defined to be the output of a pseudo-random number generator (PRNG)

with a seed chosen in advance. A PRNG is a circuit sufficiently complicated that the

ui look random to any practical statistical test. Given a PRNG f(i) returning a Q-

bit number, we may take ui = 2−Qf(i). Critically, there exist seekable PRNGs, from

which the ith element f(i) can be obtained in fixed time for any i. Two appropriate

constructions of PRNGs are discuseed below.

Given a classical circuit for a suitable PRNG, we can construct a quantum

circuit Uf defined by Uf |i〉 |0〉 = |i〉 |f(i)〉. The evolution under HV is then imple-

mented by applying Uf to compute the PRNG, and a diagonal phase rotation by

the value specified in the anciliary register.

The resulting circuits corresponding to kinetic and potential evolution are

shown in Figure 5.5.

Whether a system is localized or not can be detected by placing a particle

on the lattice (at the origin, say), allowing it to diffuse for a long time, and then

observing how close to the origin it remains on average. In the non-localized phase,
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Figure 5.5: Quantum circuits for the simulation of the Anderson model. The time-
evolution is trotterized: on top is the kinetic piece, and on bottom is the evolution
under a random Hamiltonian. For brevity, RX(θ) and RZ(θ) denote eiθσx and eiθσz ,
respectively. The construction of a pseudo-random permutation operator P is dis-
cussed in the text.

the particle will diffuse out to infinity; in the localized phase, it will remain within

some finite distance. When simulating the Anderson transition at finite volume on

a periodic lattice, the degree of localization of a wavefunction can be measured by

D =
L

π
√

2

√
1−

〈
cos

2πx̂

L

〉
, (5.13)

which, in the large volume limit, yields the average distance. This serves as an

order parameter for the Anderson transition. On a three-dimensional lattice, this

order parameter as a function of disorder W is seen in Figure 5.6, with the expected

transition being visible even at such small volumes, near W ∼ 15.

5.2.3.2 A Pseudo-Random Number Generator

We now discuss the construction of a suitable (seekable) pseudo-random num-

ber generator. A particularly straightforward construction of a seekable PRNG uses
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a cryptographic hash function like SHA256 [84]. A sequence of K PRNGs indexed by

seeds k are constructed via fk(i) = SHA256(i∗K+k). This construction is validated

and known to perform well in practice [85]. Unfortunately, near-term quantum com-

puters do not have enough qubits available to compute modern cryptographic hash

functions, which operate on fixed-size registers of hundreds of bits.

An alternative approach is to construct the function f(i) from a random re-

versible classical circuit (which therefore implements a random permutation matrix).

A random permutation matrix P defines a seekable PRNG via P |i〉 = |f(i)〉.

Although the reversibility of the operation implies weak correlations between the

different values of f(i), these correlations are unmeasurable in the large volume limit

and can be neglected.

We construct a random circuit by appending a fixed-length sequence of not

Toffoli gates, acting on random argumnts. With the aid of Q−3 ancillary qbits, any

permutation matrix can be obtained in this way [71]. In the limit of a large number

of gates, this samples uniformly from the distribution of permutation matrices.

This construction of a PRNG was validated against the dieharder [86, 87]

battery of statistical tests in [79]. For circuits acting on 30 bits, a sequence of 600

random gates was sufficient to consistently pass all statistical tests in the battery,

and the number of gates required was found to scale polynomially with the number

of bits (and therefore polylogarithmically with the volume).

This construction is further validated in Figure 5.6, where it is shown that the

same physical results are obtained in a simulation using this construction as in a

simulation using a conventional (sequential) PRNG.
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Figure 5.6: Figure from [79], showing average distance as defined by (5.13), as a
function of the disorder parameter W , for a 163 lattice, in the limit of long time
evolution. The blue triangles show results obtained with a conventional PRNG,
and the red squares give results obtained with the circuit-based PRNG described in
Section 5.2.3.2. The dashed line shows the delocalized limit for D.

5.2.3.3 Demonstration

The method described above has the nice property that even very small num-

bers of qubits can be used in a sensible simulation, albeit on a small lattice. The

field theory simulations we will look at later don’t have this property, as represent-

ing even one link can require many qubits (11, in the main example). Furthermore,

because the size of the lattice is exponential in the number of qubits (in contrast to

the scaling for simulating a field theory), even near-term quantum computers can

simulate lattice sizes at which localization can be seen.

Figure 5.7 demonstrates the algorithm on two physical quantum processors,

one provided by IBM (programmed with qiskit [88]) and the other by Rigetti

(programmed with quil [89]). The simulation is done on two qubits, and therefore

involves four lattice sites. There is no sensible notion of a random potential on four
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Figure 5.7: Figure from [79], showing average distance as measured by (5.13), as a
function of evolution time for a 4-site lattice with disorder parameter W = 5 and
Trotterization step size ∆t = 0.2.

sites; we fix the potential to be V (0, 1, 2, 3) = 0, 1, 3, 2, which is computed with

a single CX gate. On each processor, for each point, we perform 300 quantum

measurements to estimate D(t).

5.3 Simulating a Field Theory

Now we turn to the problem of simulating a field theory on a quantum com-

pute. For concreteness, let us focus on the Heisenberg spin chain, with Hamiltonian

H = −J
∑
〈ij〉

σz(i)σz(j)− µ
∑
i

σx(i) (5.14)

where the first sum runs over all pairs of adjacent sites on a one-dimensional lattice, J

is the ferromagnetic coupling, and µ is a magnetic field. Because the local degrees of

freedom posess a two-dimensional Hilbert space, this model is particularly amenable

to qubit-based quantum simulation. Nevertheless, the features of the simulation
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of this model are essentially the same as those of other field theories; moreover,

many models can be rewritten (at least approximately) as spin chains, such as σ

models [90]. The generalizations to scalar φ4 field theory and fermionic fields are

discussed in Sections 5.3.3 and 5.3.4, respectively.

The first step of preparing a quantum simulation is mapping the physical

Hilbert space to that of the quantum computer. For the spin chain, the mapping is

trivial: each site of the spin chain corresponds to a single qubit.

The next step is to select a Suzuki-Trotter decomposition of the Hamiltonian.

A natural choice for (5.14) is

e−iH ≈
(
ei(∆t)µ

∑
σxei(∆t)J

∑
σxσx

)t/∆t
. (5.15)

A more general Heisenberg Hamiltonian is possible, with arbitrary couplings and

magnetic fields along all three axes:

H = −
∑
〈ij〉

[Jxσx(i)σx(j) + Jyσy(i)σy(j) + Jzσz(i)σz(j)]− µ ·
∑
i

σ(i). (5.16)

In this case a natural Trotterization has three factors, diagonal in the x, y, and

z-bases individually.

Because the mapping between the physical Hilbert space and that of the quan-

tum processor is so clean, the resulting time-evolution circuits are particularly sim-

ple. Evolution for a single Trotterization step is shown in Figure 5.8. Note that the

order in which the coupling terms are applied is irrelevant, as they all commute.
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Figure 5.8: Quantum circuit for a single Trotter step of time-evolution for the
Heisenberg spin chain with Hamiltonian (5.14), on four lattice sites.

This completes the implementation of time-evolution on the quantum com-

puter. Two important steps remain: the preparation of a physically relevant initial

state, and measurement at the end of some time evolution. Typically the initial

state of greatest interest is the ground state of the Hamiltonian, or the lowest-lying

state constrained to have some quantum numbers. Preparation of such states is a

major area of study, and some strategies are discussed in detail in Sections 5.5.2

and 5.6.

Assuming that the ground state |Ω〉 has been prepared, there are a wide selec-

tion of physically interesting observables readily accessible. By allowing the mag-

netic field to be time-dependent (and even space-dependent, at no cost to circuit

complexity), the response of the system to time-varying magnetic fields can be mea-

sured.

5.3.1 Linear Response, Two Ways

A frequently relevant subset of these observables are those obtained by consid-

ering the limit of a weak perturbation. In the case of a delta-function perturbation
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described by the Hamiltonian

Hε(t) = H0 + εδ(t)H ′, (5.17)

the expectation value of an operator O at time T after the perturbation hits is given,

to leading order, by

〈O(t)〉 = 〈O(0)〉+ ε 〈[H ′,O(t)]〉+O(ε2). (5.18)

Thus we see that linear response is governed by time-dependent correlation functions

evaluated in the original Hamiltonian.

This discussion can be re-cast as a method for evaluating time-dependent cor-

relation functions. Evolution under a time-dependent Hamiltonian is easily achieved

on a quantum computer. We can evaluate, therefore, the expectation value 〈O(t)〉

under no perturbation and under a small perturbation, and finite-differencing yields

an approximation to the expectation value 〈[H ′,O(t)]〉.

An alternative procedure [91], not limited to the commuator of Hermitian

operators, is available with the use of an ancillary qubit. To begin with, we describe a

procedure for measuring the expectation value of an arbitrary unitary operator [92].

Let U be a unitary operator, for which we would like to measure the expectation

value 〈Ψ|U |Ψ〉 in some state |Ψ〉. Define UC to be the controlled-U unitary acting

on the combination of the original system with the one ancillary qubit. Thus UC is
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defined as

UC |Ψ〉 |0〉 = |Ψ〉 |0〉 and UC |Ψ〉 |1〉 = (U |Ψ〉) |1〉 . (5.19)

A circuit implementing this unitary can be obtained using the technique described

in Section 5.1.3.2. We now begin by applying a hadamard gate to the ancillary

qubit, then apply UC , and finally measure the controlled qubit. Depending on the

basis chosen to measure the controlled qubit, obtain either the real or imaginary

part of the desired expectation value.

An obvious application is to the Heisenberg spin chain. The time-separated

correlator σx(t)σx(0) = eiHtσxe
−iHtσx is unitary, and therefore can be measured

directly. However, the method is slightly more general: the ability to measure an

arbitrary unitary allows us also to measure any operator which can be decomposed

as a sum of unitaries.

5.3.2 Measuring Masses

Measuring energies on a quantum computer may be accomplished via the

algorithm of quantum phase estimation [93] (QPE). Given a unitary operator U

(implemented via quantum circuits) and a prepared eigenstate |Ψ〉, QPE is a pro-

cedure for estimating the phase θ of the eigenvalue eiθ of the prepared state. When

the unitary operator is time-evolution, this phase is of course the energy of the state.

The simplest form of quantum phase estimation proceeds by introducing an ancil-

lary qubit in the state |0〉+ |1〉, and performing controlled evolution under U . After

this evolution, the state of the system is (|0〉 + eiθ|1〉)|Ψ〉, and θ may be estimated
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modulo pi via repeated measurements in the Z-basis. With a little more sophistica-

tion, the binary representation of θ can be determined with a single measurement,

to precision 1/ε, with log(1/ε) ancilla.

We would like to measure the mass of a hadron — that is, the difference in

energies between the vacuum and the lowest-lying state with quantum numbers of

that hadron.Assume we have the ability to prepare both the ground state of the

lattice theory and the ground state of the sector with quantum numbers of some

hadron. The most straightforward procedure to obtain the mass of that hadron is to

first prepare the ground state |Ω〉, and then measure via QPE the energy EΩ of this

state. On a lattice of the same parameters, we may prepare the ground state |P 〉 of

the hadron, and similarly measure the energy EP of that state. The mass is then

given by EP −EΩ. This method is simple, but suffers from a significant flaw, related

to the fact that EΩ and EP are not sensible physical quantities. The vacuum energy

is divergent in both the continuum and infinite-volume limits. Therefore, as these

limits are approached, both energies must be measured with increasing precision to

resolve the cancellation, before any information about the mass is obtained. This is

another signal-to-noise problem.

This signal-to-noise problem can be done away with by preparing two lattices

at once on the same quantum processor. These lattices are uncoupled, and we

prepare in the first the ground state and in the second the hadron state, so that the

quantum processor is in the state |Ω〉 ⊗ |P 〉. We now consider the unitary operator

U(t) = e−iHt⊗ eiHt. The prepared state is an eigenstate of this operator; moreover,

the divergent part of the energes cancel. Thus, QPE applied to U directly yields
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the hadron mass, with no need to resolve fine cancellations.

5.3.3 Scalar Fields

Lattice scalar field theory was examined as a target for quantum simulation

in [9]. For a lattice scalar field theory described by the Hamiltonian (2.4), each lattice

site is associated to an anharmonic oscillator, and the oscillators are coupled by the

term (φx − φy)
2. This system presents a new difficulty for quantum simulations,

which is in fact characteristic of most bosonic field thoeries: the local Hilbert space

is of infinite dimension, and there is therefore no isomorphic Hilbert space that can

be created with a finite number of qubits.

The only solution is to truncate the physical Hilbert space. To maintain the

locality of the theory, it is convenient to truncate the local Hilbert spaces inde-

pendently, so that the full Hilbert space remains a tensor product, but now of

finite-dimensional systems.

A reasonable truncation for this system becomes apparent once the Hamilto-

nian is rewritten in terms of creation and annihilation operators:

H =
∑
〈xy〉

(
a†xay + h.c.

)
+
∑
x

[
a†xax + λ

(
a†x + ax

)4
]

. (5.20)

Truncating each local Hilbert space to the lowest K eigenstates of the harmonic os-

cillator Hamiltonian a†a, the number of qubits required for the full simulation scales

with V logK. When performing computations, there are now three extrapolations

that must be performed: removing the truncation (K → ∞), removing the lattice
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cutoff (a→ 0), and the infinite volume limit (V →∞), in that order.

5.3.4 Fermions

Fermionic lattice theories are limited to a finite Hilbert space by the Pauli

exclusion principle. Each fermionic degree of freedom (there may be many per

lattice site, due to spin, flavor, and internal symmetries) is associated to a two-

dimensional Hilbert space, preparing a convenient mapping between the physical

space and that of the processor.

A difficulty arises, however, when attempting to map the operators used to

define the physical Hamiltonian, to operators defined on the qubits of the quantum

computer. The fundamental operators of a fermionic theory are the raising and

lowering operators a† and a, defined to anticommute:

{ai, aj} = 0 and {a†i , aj} = δij. (5.21)

The natural raising and lowering operators defined on qubits, given by σ±(i) =

σx(i) ± iσy(i), commute at different qubits. Anticommuting operators must be

constructed on the quantum computer in order to map the physical Hamiltonian

over to the qubits.

A suitable appropriate mapping of operators is provided by the Jordan-Wigner

transormation [92,94], in which ai maps to

[
i−1⊗
k=1

σz

]
⊗ σ− ⊗ I. (5.22)
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Two such operators are readily seen to anticommute, and so a fermionic Hamiltonian

can be rewritten in terms of them.

The Jordan-Wigner transformation does violence to locality3. The string of

σz operators imposes an extra cost, typically polynomial in the volume (V 2/3 for

a three-dimensional lattice). The transformation can be improved to alleviate or

remove this asymptotic cost. The first such improvement was due to Bravyi and

Kitaev, and reduced this to a logarithm of the volume of the lattice [95]. More

recent improvements result in a constant overhead [96,97], removing all asymptotic

penalty.

5.4 Simulating a Gauge Theory

The simplest gauge theory to simulate is the Z2 gauge theory of Section 2.3,

with Hamiltonian (2.14). This is only a small modification from the spin system

considered above. Each degree of freedom is now associated to a link on the lattice,

instead of a site, and the coupling term diagonal in the Z basis couples four degrees

of freedom (one plaquette) rather than just two.

The procedure for simulating time-evolution of such a theory is consequentially

simple. Figure 5.9 shows a single step of time evolution of a one-plaquette model.

This major new feature of this procedure is the use of an ancillary qubit to compute

the value of the plaquette. The qubit begins in state |0〉, and each of the four links

in the plaquette are combined via controlled not operations (corresponding to the

3With the exception of one-dimensional lattices without periodic boundary conditions, where
an Jordan-Wigner transformation can be constructed such that local fermion bilinears map to local
spin operators.
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Figure 5.9: Quantum circuit for a single Trotter step of the time-evolution of Z2

gauge theory with one plaquette.

Z2 group operation) until the ancillary qubit contains the value of the plaquette.

Generalizing to an arbitrary gauge group G, we introduce the concept of a

G-register [20]: a collection of qubits whose Hilbert space is mapped to CG. For

continuous gauge groups, where the space CG is infinite-dimensional, this is neces-

sarily some approximation, however we will ignore this difficulty for the time being.

The Hilbert space of a G-register is spanned by states |g〉, which we will take to be

the computational basis. On this space a set of primitive operations are needed:

• An inversion gate, which takes a G-register and transforms, in the computa-

tional basis, by taking the inverse of the group element. The gate is defined

by U−1 |U〉 = |U−1〉. This gate is self-adjoint.

• A multiplication gate, which acts on two G-registers and transforms the sec-

ond. This gate is defined by U× |g〉 |h〉 = |g〉 |gh〉.

• A trace gate, which gives each computational basis state a phase propor-

tional to the trace of the stored group element. This gate is defined by

UTr(θ) |U〉 = eiθRe TrU |U〉. Note that the definition of this gate depends on

the representation, and indeed, some lattice Hamiltonians may involve traces
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taken in multiple representations.

• The (nonabelian) Fourier transform UF , which transforms a G-register into

Fourier space (a Ĝ-register). It is defined by

UF
∑
U∈G

f(U) |U〉 =
∑
ρ∈Ĝ

f̂(ρ)ij |ρ, i, j〉 (5.23)

where the second sum is taken over all representations ρ ofG, and f̂ denotes the

Fourier transform of f . This gate is the operation described in Section 5.1.3.3,

and diagonalizes the kinetic part of the Hamiltonian.

• The Laplace-Beltrami gate ULB, which acts on a Ĝ-register and gives each

state a diagonal phase, which is a function of the representation alone (not

the indices i, j).

A few note about the generality of these operations are in order. First, although

the multiplication gate U× is defined here to perform left multiplication, a gate for

right multiplication is obtained from the combination of U× and U−1 via the identity

U×,R(1, 2) = U−1(1)U−1(2)U×(2, 1)U−1(2)U×(1, 2).

From these operations we can construct time-evolution for a pure gauge theory.

In the presence of matter fields, a few additional ones will be needed, discussed in

Section 5.4.3 below.
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Figure 5.10: Circuits implementing the time-evolution of a pure-gauge lattice field
theory. The first circuit implements the quantum-mechanical kinetic erm, and
the second the quantum-mechanical potential term associated to a single plaquette
Re TrU †13U

†
34U24U12. Note that in these circuits, the primitive object is a G-register,

denoted with a doubled line.

5.4.1 Time Evolution

Time-evolution of the pure gauge theory for a general group G is performed,

as usual, with a Trotter-Suzuki decomposition. The kinetic piece of the evolution is

diagonalized by the Fourier transform. The potential piece of the evolution requires,

as for the Z2 gauge theory, the accumulation of a plaquette in a single G-register.

This is accomplished by picking one link in the plaquette and repeatedly multiplying

with all other links in the plaquette.

The resulting circuits for the propagation of a single-plaquette, nonabelian

gauge theory are shown in Figure 5.10.

5.4.2 Gauge Invariance

The time-evolution circuits presented above can only be said to represent a

gauge theory when the initial state lies in the physical subspace; i.e., is gauge-

invariant. It is critical, therefore, that we are able to prepare gauge-invariant states
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in general.

Two gauge-invariant states are particularly easy to prepare: the strong-coupling

ground state and the weak-coupling ground state. In the strong-coupling limit, the

kinetic term of the Hamiltonian dominates. This term does not couple links, and

the resulting ground state is a product state, particularly easy to prepare:

|Ωstrong〉 =
⊗
L

(∑
U∈G

|U〉
)

. (5.24)

Here each link is in an equal superposition of all group elements. The state described

here is already gauge-invariant, so no further symmetrization is needed.

In the weak-coupling limit, each plaquette is forced to be the identity in the

ground state4. Naively, then, the ground state is the product state where each

link is set to |I〉; however, this state is not gauge-invariant. We can prepare a

gauge-symmetric version of this state with the aid of one ancillary G-register per

lattice site. These registers represent a gauge transformation, and we will denote

them V . Begin by initializing each link to |I〉, and each ancillary register to an equal

superposition of all group elements. We may now perform the gauge transformation:

the link Uji from site i to site j is multiplied on the right by V †i and on the left by

Vj. This yields the state

∑
V

∣∣∣(V2V
†

1 ) · · ·
〉
|V1V2 · · · 〉 . (5.25)

4Assuming that such a configuration is permitted by boundary conditions — otherwise, we
would have a frustrated system, and no general efficient algorithm for preparing the ground state.
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At this point, the physical link registers are engtangled with the (unphysical) gauge

registers. The entanglement is removed by again repeatedly applying U×, but now

with the link registers as the control and the gauge registers as the target. A

privileged site i is selected (the choice will not affect the final state), and for each

other site j, a particular path from j to i is selected. After one multiplication for

each link in this path, the ancillary register associated to site j is transformed to

the state |Vi〉. Repeating for all ancilla, we obtain the state

∑
V

|(V2V
†

1 ) · · · 〉|ViVi · · · 〉. (5.26)

That this state is in fact a product state may be seen by noting that a global gauge

transformation by V †i leaves the physical registers invariant, while rotating each

ancilla into |I〉. The disentangled ancilla may now be discarded, and the resulting

state is the gauge-projected P |I〉.

This suffices to show that the gauge-invariant sector is efficiently accessible.

Further discussion of state preparation, in particular the preparation of physical

ground states and thermal states, is in Sections 5.5.2 and 5.6 below.

5.4.3 Adding Fermions

The most interesting gauge theories have matter fields coupled to the gauge

degrees of freedom. We will consider here the case of fermionic matter fields, as in

QCD. In order to introduce matter fields, one must first pick a representation of the
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group G under which the matter fields are to transform5. For matrix groups (e.g.

SU(N)), it is most common to select the fundamental representation.

Labeling the dimension of the selected representation by N , and ignoring for

simplicity spin and flavor, we will have N independent fermionic degrees of freedom

at each lattice site, creating a local Hilbert space of dimension 2N . Denote the

creation and annihilation operators a†i and ai, where i ∈ 1 . . . N is the ‘color’ index

of the chosen representation ρ. These operators transform into each other under the

action of the group G:

U †aiU =
∑
j

ρ(U)ijaj. (5.27)

Gauge transformations, and the projection operator P , now affect the fermionic

modes as well.

Crucially, the V N fermionic degrees of freedom can be created via the Jordan-

Wigner transformation (or any other method) before making reference to the fact

that they transform into each other under various symmetries. In other words, the

presence of gauge-invariance does not complicate the task of creating anticommuting

operators from the fundamental commuting operators of a quantum computer.

5.4.4 Demonstration: D4 Gauge Theory

The methods of the previous sections can be demonstrated on a classically

simulated quantum computer, with a small finite gauge group. The smallest two

nonabelian groups are D3 and D4, defined as the group of isometries of the triangle

5The gauge fields themselves have no choice but to transform in the adjoint representation.
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Figure 5.11: The lattice geometry of the D4 gauge theory simulated here. Dashed
lines indicate repeated links due to the periodic boundary conditions.

and the square, respectively. Because D3 has 6 elements and D4 has 8, they each

require three qubits per link to simulate, and therefore we may as well simulate D4.

The first order of business is to construct a G-register; that is, to chose a

particular isomorphism between the space of complex-valued functions on D4, and

the Hilbert space of three qubits. The group D4 can be defined as the subgroup of

U(2) generated by the matrices

i 0

0 −i

 and

0 1

1 0

 . (5.28)

The state |abc〉 is defined to correspond to the matrix


0 1

1 0



a 
i 0

0 −i




2b+c

. (5.29)

We next construct the inversion, multiplication, trace, and Fourier transform cir-

cuits. The inversion and multiplication circuits are classical circuits, easily con-

structed. As the only element of D4 with a nonvanishing trace in this representation

is is the identity, the trace circuit is a three-qubit-controlled phase gate. The cir-
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Figure 5.12: Figure from [20]: simulation of the two-plaquette D4 gauge theory.
The expectation value of one plaquette as a function of time. The exact result is
shown in black, with sampled data shown in red (blue) for a Trotterization time-tep
of ∆t = 0.2 (∆t = 0.5).

cuits for these three operations and the Fourier transform are given in the appendix

of [20].

Each link requires three qubits, so a classical simulation can simulate a lattice

containing four links without much trouble. (Substantially larger lattices — up to

∼ 30 qubits — could be obtained with more sophisticated algorithms and reasonable

computer time; however, this is pointless for the purposes of demonstration.) A

two-plaquette geometry based on a four links is shown in Figure 5.11. On this

geometry, we initialize the gauge-invariant ground state in the weak-coupling limit,

and measure the expectation value of a plaquette as a function of time. The result

is shown in Figure 5.12.
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5.5 Simulations of QCD

We now apply the general method of [20] to the simulation of QCD with a

quantum computer. The largest difficulty encountered is the one mentioned previ-

ously: the dimension of the Hilbert space of SU(3) gauge theory, even on a finite

lattice, is infinite, and therefore any quantum system consisting of qubits must be

only an approximation. A particular subgroup of SU(3), the Valentiner group, is

shown to provide an adequate approximation, and from there we can discuss how

to prepare interesting states and extract partonic physics.

5.5.1 The Valentiner Group

The Valentiner group [98] V , also referred to as S̃(1080) [99], is a finite sub-

group of SU(3) with 1080 elements. It is not the largest finite subgroup: Zn, for

instance, is a subgroup for any n, due to the presence of U(1) < SU(3). It is,

however, the largest exceptional subgroup, that is, the largest subgroup that does

not fall into one of a small number of infinite families.

The Valentiner group is particularly suitable as an approximation to SU(3)

because it tiles the surface of SU(3) evenly. In particular, the Voronoi diagram of

V ⊂ SU(3) has two special properties:

• Each region is isomorphic to every other region. This follows from the fact

that V , being a subgroup of SU(3), is also a symmetry group of the Voronoi

diagram itself.
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Figure 5.13: Figure from [100] of the average energy per plaquette vs β0 for SU(3),
V with β1 = 0, and V with β1 = −0.6.

• Each face — the boundary between two regions — is isomorphic to every

other face, and in fact every face is the same distance from the center of the

neighboring regions.

The group V thus serves as a good approximation to SU(3) in much the same sense

as a dodecahedron might serve as an approximation to the sphere6.

The degree to which V is a good approximation for SU(3) is a matter for

empirical study, first investigated in [101]. Critically, this question can be addressed

by performing classical Monte Carlo calculations (in imaginary time), without the

need for a quantum processor [100]. We will work with the lattice action

S = −
∑
P

(
β0

3
Re TrP + β1Re TrP 2

)
, (5.30)

where the partition function is defined over all gauge configurations with links taking

values in V , rather than the SU(3). With β1 = 0, this is the standard Wilson action.

This lattice theory is compared to the Wilson gauge theory of SU(3) in Fig-

6In fact the platonic solids correspond directly to the nice approximations of SU(2).
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ure 5.13, using the average energy per plaquette as a probe. The two are qualitatively

different. The SU(3) theory posesses a crossover from strong coupling (at small β0)

to weak coupling around β0 ∼ 5. For the β0 = 0 version of the Valentiner gauge

theory, a first-order transition is encountered before this crossover. Smaller average

energy is a proxy for a closer approach to continuum physics; failing to reach the

so-called scaling regime indicates that the Valentiner theory is far from the SU(3)

continuum theory.

The breakdown of the Valentiner gauge theory as we approach the continuum

limit can be understood by noting that, in SU(3) gauge theory, the fluctuations

of the gauge fields about the identity become smaller as β0 is increased. In the

theory of S(1080), there is limit past which the fluctuations cannot get any smaller;

there are no group elements arbitrarily close to the identity. Beyond a critical value

β0 ∼ 4, the fields become fixed.

The situation can be improved by noting that for the SU(3) theory, the same

continuum limit is expected to be reached as β0 →∞ regardless of the value of β1.

We see in Figure 5.13 that, increasing β0 along this trajectory, lower values of the

average energy are achieved, suggesting a closer approach to the continuum physics

of SU(3).

So far this is just a heuristic argument that the gauge theory of V can approx-

imate the SU(3) theory, if an appropriate trajectory in (β0, β1) is selected. We can

make this more rigorous by performing, on each theory separately, a measurement

at multiple points along the continuum trajectory. Then, we extrapolate (again in

each theory separately) to the continuum, and compare. Note that we perform a
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Figure 5.14: Continuum extrapolations of Tc
√
t0 for SU(3) and S(1080) gauge the-

ories. The S(1080) result is shown in blue, with the extrapolated value marked by
the solid shape; the SU(3) extrapolated results are also indicated by solid shapes.

continuum extrapolation on the V theory despite the fact that, due to the first-order

transition, we know that the V theory cannot reach the continuum at all. The pro-

cess of extrapolation, however, cannot see the (nonanalytic) first-order transition,

and ends up extrapolating to the continuum SU(3) result.

Both the SU(3) and S(1080) gauge theories posess a phase transition in the

temperature (that is, the temporal extent of the Euclidean lattice). The chosen

measurement is the dimensionless ratio Tc
√
t0, where Tc is the temperature of this

phase transition, and t0 is a scale set by the Wilson flow [102]. Figure 5.14 shows

the continuum extrapolation of Tc
√
t0 for the Valentiner theory with a trajectory

defined by

β1 = −0.1267β0 + 0.253 (5.31)

against the measurements of [103, 104]. The Valentiner group serves as a good

approximation to the SU(3) theory for this low-energy observable.

The task of comparing other low-energy observables, particularly spectroscopy,

is not complete as this is written. It must be remembered that the use of V as an
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approximation to SU(3) carries a serious drawback: because V is the largest ‘nice’

subgroup, this is not a systematically improvable approximation. The only hope for

improvement is to add more terms to the action, and seek a trajectory that provides

a better approximation to continuum physics.

5.5.2 State Preparation

The easiest states to prepare on a quantum computer are the eigenstates of

field operators. The infinite-temperature thermal state is also readily accessible.

Unfortunately, these states are not of much physical interest. We would like to

prepare the ground state of our Hamiltonian, perhaps restricted to some sector. For

example, the ground state of the baryon-number-1 sector of QCD contains a single

proton.

A large body of literature exists with many proposed methods for this task;

see [9,34,105–107] for a very incomplete sample. Quantum computers have not yet

been constructed that are large enough to investigate the practical performance of

these methods, and formal analysis of most preparation methods is not available.

One exception is adiabatic state preparation [9, 34, 107]. This method is backed by

the adiabatic theorem [108], allowing us to make crude estimates of the costs of this

method as applied to physical theories. Here we will discuss in detail the cost of

preparing the ground state of the baryon-number-1 sector, i.e. the proton. This does

not imply that adiabatic state preparation is the most efficient or most practical

method, merely that it is the only one for which a priori analysis is currently
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possible.

The adiabatic theorem [108] constrains the behavior of a quantum system

with a time-dependent Hamiltonian. Let H(t) be our Hamiltonian, and let Ω be

an eigenstate of H(0), prepared at time t = 0. When the time-dependence of the

Hamiltonian is mild compared to the size ∆ of the gap ∆(t) between |Ω〉 and the

nearest eigenstate (when Ḣ/∆(t)2 � 1 for all t), the adiabatic theorem states that

the system will never transition to a different eigenstate7. In particular, if |Ω(0)〉 is

the ground state of H(0), then Ω(t) will be the ground state of H(t) for all t.

Adiabatic state preparation exploits the adiabatic theorem by beginning with

a well-understood Hamiltonian H(0), and slowly deforming along some trajectory to

the desired Hamiltonian H(T ). As long as the evolution is performed slowly enough,

the ground state is prepared with high probability. The computational cost of this

method is dominated by the smallest gap along the trajectory: we must spend time

proportional to ∆−2 in preparing the state.

It is useful to note that, although phrased as a method for finding the ground

state of a Hamiltonian, the adiabatic state preparation method allows access to

ground states of restricted sectors of the Hamiltonian as well. As an example, as long

as all Hamiltonians along the adiabatic trajectory are translation-invariant, the total

momentum will commute with each time-evolution operator e−iHt. If the initially-

prepared state has some non-vanishing momentum, then the adiabatically prepared

state will preserve that momentum. The same holds for any conserved quantum

7This notion is well-defined as long as ∆ > 0, which is of course necessary for the theorem to
make any statement at all.
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numbers, as long as the conservation law holds at each point on the trajectory.

We now consider the application of adiabatic state preparation [109] to the pro-

ton state |P 〉. We chose the adiabatic trajectory to begin with the zero-coupling the-

ory, and the coupling is slowly increased until the desired lattice spacing is reached.

The ground state of the baryon-number-1 sector of the free theory is thre zero-

momentum fermions in a box, with the gauge fields in a Gaussian configuration (for

the SU(3) theory) or pegged to the identity (for the Valentiner gauge theory); these

states are easily prepared. At the end of the trajectory, in the physical regime, the

gap is equal to the pion mass mπ and is relatively large. The other end is more

problematic. At vanishing coupling, the ‘proton’ fills the lattice, and the lowest-

lying excited states are the back-to-back low-momentum states of any two fermions.

(Massless glue excitations, which do not exist at all in the Valentiner theory, can be

removed with appropriate boundary conditions). The gap in this regime is propor-

tional to L−1, implying that L2 time steps are needed. Each evolution step requires

O(V ) operations, so the effort required to prepare the proton is O(L5).

5.5.3 Hadronic Tensor

The hadronic tensor characterizes the response of a hadron to a perturbative

probe. In the context of an electromagnetic probe, it is defined by

W µν(q) = Re

∫
d3xeiqx 〈P |T {Jµ(x)Jν(0)} |P 〉 , (5.32)
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where Jµ = ψ̄γµψ is the current associated to electromagnetic charge. As an exam-

ple of the use of this object, the inclusive cross section of an electron scattering off

of a hadron is given at leading order by [110]

d2σ

dxdy
=
α2y

Q4
LµνW

µν (5.33)

where the leptonic tensor Lµν , calculable in QED perturbation theory, is:

2(kµk
′
ν + kνk

′
µ − gµνk · k′). (5.34)

In both equations above, Q2 = −q2, x = Q2/2P · q, y = P · q/P · k, and k′ = k − q.

Note that the hadronic tensor itself captures the nonperturbative physics of the

proton; the perturbative expension in the QED coupling appears only because the

interaction between the proton and electron is treated perturbatively.

The hadronic tensor (and its various limits, particularly the parton distribu-

tion function discussed below) has been the target of extensive Euclidean lattice

calculations [111–127]. Ultimately, all approaches suffer from difficulties stemming

from the need to pass from a calculation performed in imaginary time to a quan-

tity defined in real Minkowski time. However, the fact that the hadronic tensor

is defined in Minkowski time makes it particularly amenable to computation with

a quantum computer [109]. Indeed, the method of Section 5.3.1 may be directly
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applied to compute the Hadronic tensor, using the perturbed Hamiltonian

Hx(t) = H0 + εxJ
µ(x) (5.35)

and measuring the observable Jµ(x) after some time evolution.

5.5.3.1 Parton Distribution Function

The response of a hadron to a probe with large momentum transfer is charac-

terized by an apparently simpler object, the parton distribution function (PDF):

f(x) =

∫
dy; eixP

+y 〈P | ψ̄(y)γ+Wψ(0) |P 〉 (5.36)

where u+ = 1√
2
(u0 + u1) denotes the lightcone component of a vector u, and W is

a lightlike Wilson line between the origin and y. The PDF can be extracted from

the Hadronic tensor, but one may consider calculating it directly. A procedure for

directly computing the PDF is given in [109]. Here we will only discuss why this is

a bad idea.

Momentarily ignoring gauge fields, note that one of the tools of Section 5.3.1 is

inapplicable to the correlation function in the integrand. Because ψ is not Hermitian,

the desired correlation function cannot be expressed in terms of linear response.

We must instead decompose the operator ψ̄(y)γ+ψ(0) as a linear combination of

unitaries, each to be measured individually. This is a minor inconvenience and a

major inelegance, but not fatal.
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For a gauge theory, the situation is dire. The operator ψ(0) is not gauge-

invariant in isolation. The lightlike Wilson like involves operators at many points

in space and many points in time. The resulting algorithm would require one order

of finite differencing for every lattice link included in the Wilson line. This is not a

practical routine even in the absence of statistical noise from the quantum computer.

The hadronic tensor is protected from these issues precisely because it is a correlator

of physical operators — operators which can be coupled to external sources in the

Hamiltonian.

5.6 Avoiding State Preparation

In terms of number of quantum gates required (that is, the algorithmic time

complexity), the study of QCD with a quantum computer is dominated by the

process of preparing a suitable ground state. It may be practical, particularly for

near-term quantum computers, to avoid doing so by coupling a classical Euclidean

lattice calculation to a quantum computer [106,128].

We will consider a physical system that begins in the thermal state ρ = e−βH0 of

an initial Hamiltonian H0, and evolves for some time t under a different Hamiltonian

H, at which points we measure an observable O. Note that this is not limited to

linear response. The expectation value desired is given by

〈O(t)〉 =

∑
i,j ρjiO(t)ij∑

i ρii
=

(∑
i,j ρjiO(t)ij∑

i,j ρij

)( ∑
i ρii∑
i,j ρij

)−1

≡ 〈O(t)〉ρ
〈δij〉ρ

(5.37)

where ρij and O(t)ij denote matrix elements of the density matrix and time-evolved
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operator, respectively. It is important that the basis states be cheap to prepare

on the quantum processor. Eigenstates of field operators are a good choice. The

notation 〈·〉ρ denotes expectation values sampled from the distribution ρij.

The normalization 〈δij〉ρ can be disregarded if we restrict ourselves to looking

at ratios of expectation values. (It also happens that it can be efficiently computed;

see the appendix of [128].) The distribution ρij may be efficiently sampled by the

standard methods of Euclidean lattice field theory, with one important difference.

Ordinarily, we are evaluating 〈O〉 for some observable O which is diagonal in the

fiducial basis used for the lattice calculation. This means that we can disregard all

off-diagonal elements of the density matrix and sample only along the diagonal; this

is how the periodic boundary conditions of the Euclidean lattice come into being.

The operator O(t), however, does not vanish off the diagonal, and so we must sample

the full density matrix.

By treating the operator O(t) as an indivisible entity, we have avoided in-

troducing the sign problem associated with the lattice Schwinger-Keldysh method.

However, the classical computer has no way of accessing the matrix elements of O(t).

Fortunately, this is precisely the task for which a quantum computer is best suited.

We have assumed that the basis states |Ψi〉 are easily prepared on the quantum

processor; this implies that we can also prepare the states

|+ij〉 =
1√
2

(|Ψi〉+ |Ψj〉) and |−ij〉 =
1√
2

(|Ψi〉 − |Ψj〉) (5.38)

with the aid of an ancillary qubit. The expectation value of O(t) in each of these
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states is readily measured, and the desired matrix element is given by

1

2
[O(t)ij +O(t)ji] = O(t)++ −O(t)−−. (5.39)

Because ρ is Hermitian, this is the only linear combination needed.

This method encounters a signal-to-noise problem, which may be alleviated as

detailed in [128]. Whether these techniques are sufficient to make this method practi-

cal is a matter for further empirical study, which awaits the creation of intermediate-

scale quantum computers on which they can be tested.
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Appendix A: Grassmann Numbers

Grassmann numbers are anticommuting objects: two Grassmann numbers η1

and η2 obey η1η2 = η2η1. The square of a Grassmann number vanishes: η2
1 = 0.

The Grassmann algebra on N Grassmann numbers is constructed by considering

complex linear combinations of Grassmann numbers. An object in the Grassmann

algebra of N Grassmann numbers has 2N complex coefficients, one for each possible

combination of Grassmann numbers. Addition is performed as it would be for a

vector in C2N , and the multiplication rule is fixed by the fact that it distributes

over addition, the anticommutativity of Grassmann numbers, and the fact that

Grassmann numbers commute with complex numbers.

A.1 Integration

The Berezin integral [129] is defined by the rule

∫
dη(a+ ηb) = b, (A.1)

where a and b are elements of the Grassmann algebra that do not contain η it-

self. Note that this integral is only a formal manipulation — there is no sense in
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which it can be approximated by a limit of finite sums, as in Riemann integration.

Integrations over Grassmann numbers, like the numbers themselves, anticommute.

The only form of the Berezin integral that will be relevant for physical appli-

cations discussed here is when all Grassmann variables are integrated over together.

This is a linear map from the Grassmann algebra to the complex numbers, defined

by taking the coefficient of the term containing all N Grassmann numbers

A.2 Coherent States

The fermionic path integral is derived through the use of coherent states,

defined as

|ψ〉 = eψ
†c† |0〉 and 〈ψ| = 〈0| ecψ, (A.2)

where c (c†) is the annihilation (creation) operator acting on a fermionic mode, and

the state |0〉 is the state in which that mode is unoccupied. This coherent state can

be used to construct the idenitty operator on the Hilbert space of the theory:

I =

∫
dψ†dψeψ

†ψ |ψ〉 〈ψ| . (A.3)

The derivation of the fermionic path integral proceeds, at this point, in the usual

way, with the insertion of many copies of this identity operator into the expression

Tr e−βH for the partition function.

Note that this so-called “coherent state” |ψ〉 does not sit in the Hilbert space C2

of the theory at all: it is not equal to any complex linear combination of |0〉 and |1〉.
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Formally, we have allowed coefficients to be Grassmann-valued, thus extending the

Hilbert space to a larger module. Crucially, the expression (A.3) is only the identity

operator when acting on the original Hilbert space; it annihilates all objects in the

module not part of that original space.
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[49] Andrei Alexandru, Gökçe Basar, and Paulo Bedaque. Monte Carlo algorithm
for simulating fermions on Lefschetz thimbles. Phys. Rev. D, 93(1):014504,
2016.

[50] Andrei Alexandru, Gokce Basar, Paulo F. Bedaque, Gregory W. Ridgway,
and Neill C. Warrington. Sign problem and Monte Carlo calculations beyond
Lefschetz thimbles. JHEP, 05:053, 2016.

[51] Andrei Alexandru, Gokce Basar, Paulo F. Bedaque, Gregory W. Ridgway,
and Neill C. Warrington. Fast estimator of Jacobians in the Monte Carlo
integration on Lefschetz thimbles. Phys. Rev. D, 93(9):094514, 2016.

[52] Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, and Scott Lawrence.
Deep Learning Beyond Lefschetz Thimbles. Phys. Rev., D96(9):094505, 2017.

[53] S. Ruder. An overview of gradient descent optimization algorithms. ArXiv
e-prints, September 2016.

114



[54] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
ArXiv e-prints, December 2014.

[55] Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, and Scott Lawrence.
Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds. Phys.
Rev., D97(9):094510, 2018.

[56] Yuto Mori, Kouji Kashiwa, and Akira Ohnishi. Application of a neural network
to the sign problem via the path optimization method. Progress of Theoretical
and Experimental Physics, 2018(2):023B04, 2018.

[57] Walter E Thirring. A soluble relativistic field theory. Annals of Physics,
3(1):91–112, 1958.

[58] Kenneth G. Wilson. Confinement of Quarks. pages 45–59, 2 1974.

[59] Andrei Alexandru, Gokce Basar, Paulo F. Bedaque, and Neill C. Warrington.
Tempered transitions between thimbles. Phys. Rev. D, 96(3):034513, 2017.

[60] Andrei Alexandru, Gokce Basar, Paulo F. Bedaque, Gregory W. Ridgway, and
Neill C. Warrington. Monte Carlo calculations of the finite density Thirring
model. Phys. Rev. D, 95(1):014502, 2017.

[61] Hirotsugu Fujii, Syo Kamata, and Yoshio Kikukawa. Monte Carlo study of
Lefschetz thimble structure in one-dimensional Thirring model at finite den-
sity. JHEP, 12:125, 2015. [Erratum: JHEP 09, 172 (2016)].

[62] Hirotsugu Fujii, Syo Kamata, and Yoshio Kikukawa. Lefschetz thimble struc-
ture in one-dimensional lattice Thirring model at finite density. JHEP, 11:078,
2015. [Erratum: JHEP 02, 036 (2016)].

[63] Francesco Di Renzo, Simran Singh, and Kevin Zambello. One-thimble regu-
larisation of lattice field theories: is it only a dream? In 37th International
Symposium on Lattice Field Theory, 2019.

[64] Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, Scott Lawrence, and
Neill C. Warrington. Fermions at Finite Density in 2+1 Dimensions with
Sign-Optimized Manifolds. Phys. Rev. Lett., 121(19):191602, 2018.

[65] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078,
1996.

[66] A. Yu Kitaev. Quantum computations: algorithms and error correction. Rus-
sian Mathematical Surveys, 52(6):1191–1249, Dec 1997.

[67] R Solovay. Lie groups and quantum circuits. preprint, 1999.

[68] Christopher M. Dawson and Michael A. Nielsen. The solovay-kitaev algorithm,
2005.

115



[69] David Elieser Deutsch, Adriano Barenco, and Artur Ekert. Universality in
quantum computation. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 449(1937):669–677, 1995.

[70] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum
information.

[71] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium
on Automata, Languages and Programming, pages 632–644, Berlin, Heidel-
berg, 1980. Springer-Verlag.

[72] Mehdi Saeedi and Massoud Pedram. Linear-depth quantum circuits for n-
qubit toffoli gates with no ancilla. Physical Review A, 87(6):062318, 2013.

[73] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical review A,
52(5):3457, 1995.

[74] Vivek V Shende and Igor L Markov. On the cnot-cost of toffoli gates. arXiv
preprint arXiv:0803.2316, 2008.

[75] Markus Püschel, Martin Rötteler, and Thomas Beth. Fast quantum fourier
transforms for a class of non-abelian groups. In International Symposium
on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pages
148–159. Springer, 1999.

[76] Don Coppersmith. An approximate fourier transform useful in quantum fac-
toring. arXiv preprint quant-ph/0201067, 2002.

[77] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[78] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[79] Andrei Alexandru, Paulo F. Bedaque, and Scott Lawrence. Quantum Algo-
rithms For Disordered Physics. 2019.

[80] P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Phys.
Rev., 109:1492–1505, 1958.

[81] Elihu Abrahams. 50 Years of Anderson Localization. WORLD SCIENTIFIC,
2010.

[82] Ferdinand Evers and Alexander D. Mirlin. Anderson transitions. Rev. Mod.
Phys., 80:1355–1417, Oct 2008.

116



[83] Tobias Brandes and Stefan Kettemann. Anderson localization and its ram-
ifications: Disorder, phase coherence, and electron correlations, volume 630.
Springer Science & Business Media, 2003.

[84] U.S. Department of Commerce and National Institute of Standards and Tech-
nology. Secure Hash Standard - SHS: Federal Information Processing Stan-
dards Publication 180-4. CreateSpace Independent Publishing Platform, USA,
2012.

[85] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel
random numbers: as easy as 1, 2, 3. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
page 16. ACM, 2011.

[86] George Marsaglia. The marsaglia random number cdrom including the diehard
battery of tests of randomness. http://www.stat.fsu.edu/pub/diehard/, 2008.

[87] Robert G Brown. https://webhome.phy.duke.edu/˜rgb/
General/dieharder.php, 2017.

[88] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano
Bello, Yael Ben-Haim, D Bucher, FJ Cabrera-Hernández, J Carballo-Franquis,
A Chen, CF Chen, et al. Qiskit: An open-source framework for quantum com-
puting. Accessed on: Mar, 16, 2019.

[89] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum
instruction set architecture. arXiv preprint arXiv:1608.03355, 2016.

[90] Andrei Alexandru, Paulo F. Bedaque, Henry Lamm, and Scott Lawrence. σ
Models on Quantum Computers. Phys. Rev. Lett., 123(9):090501, 2019.

[91] J. S. Pedernales, R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano.
Efficient quantum algorithm for computing n-time correlation functions. Phys.
Rev. Lett., 113:020505, Jul 2014.

[92] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms
for fermionic simulations. Phys. Rev., A64:022319, 2001.

[93] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quan-
tum algorithms revisited. Proceedings of the Royal Society of London. Se-
ries A: Mathematical, Physical and Engineering Sciences, 454(1969):339–354,
1998.

[94] Pascual Jordan and Eugene P. Wigner. About the Pauli exclusion principle.
Z. Phys., 47:631–651, 1928.

[95] Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computation.
Annals of Physics, 298(1):210–226, 2002.

117
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