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A principal component in the protein coats of certain post-golgi and endocytic
vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triske-
lion) that assembles into polyhedral baskets principally made up of pentagonal and
hexagonal faces. In vitro, this assembly depends on the pH, with baskets forming
more readily at low pH and less readily at high pH. We have developed procedures,
based on static and dynamic light scattering, to determine the radius of gyration, Rg,
and hydrodynamic radius, RH , of isolated triskelia under conditions where basket
assembly occurs. Calculations based on rigid molecular bead models of a triskelion
show that the measured values can be accounted for by bending of the legs and a
puckering at the vertex. We also show that the values of Rg and RH measured for
clathrin triskelia in solution are qualitatively consistent with the conformation of
an individual triskelion that is part of a ”D6 barrel” basket assembly measured by
cryo-EM tomography.

We extended this study by performing small angle neutron scattering (SANS)
experiments on isolated triskelia in solution under conditions where baskets do not
assemble. SANS experiments were consistent with previous static light scattering ex-
periments but showed a shoulder in the scattering function at intermediate q-values
just beyond the central diffraction peak (the Guinier regime). Theoretical calcula-
tions based on rigid bead models of a triskelion showed well-defined features in this
region different from the experiment. A flexible bead-spring model of a triskelion
and Brownian dynamics simulations were used to generate a time averaged scattering
function. This model adequately described the experimental data for flexibilities close
to previous estimates from the analysis of electron micrographs.
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1. INTRODUCTION

1.1 Foreword

Developing a better understanding of how cells operate requires advances in the

understanding of how basic cellular functions such as mitosis (cell division), exocytosis

(molecular secretion), and endocytosis (molecular internalization) are performed at

the molecular level[1]. Each of these processes is driven by the collective function of

many different cellular components having the form of cytosolic proteins, membrane

proteins, lipids and nucleic acids.

In different types of cells, many of these components have been identified. Their

roles in cellular functions can be discerned in many ways. One common way is by

“removing” a component from a cell to see how (or whether) a process is affected. If

a process is affected, then the missing component may be involved in that process in

some way. This can be done by producing a knockout mouse, making a mutation in

the genome, or more recently by RNA interference (RNAi). The static structure of

some components may be determined by X-ray crystallography or Nuclear Magnetic

Resonance Spectroscopy (NMR). The molecule must be crystallized for X-ray and
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have a low mass (< 40 kDa1) for solution NMR2. Cryo-EM tomography can be used

to reconstruct some larger macromolecular structures and assemblies. By identifying

and visualizing the basic building blocks of some parts of the cellular machinery, we

hope to get some idea of how each component performs its assigned function within

the cell.

Fig. 1.1: “The major features of eucaryotic cells. The drawing depicts a typical animal

cell, but almost all the same components are found in plants and fungi and in

single-celled eucaryotes such as yeasts and protozoa.” Figure and caption from

Molecular Biology of the Cell[4, Fig 1-31, p. 29]

1 1 kDa = 103 Dalton = 103 atomic mass units = 1/NA kilograms (where NA is Avagadro’s

Number)
2 Recently much larger structures (∼900 kDa) have been obtained using NMR but these structures

require a high degree of symmetry. See Ref. [2] and [3].
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In eucaryotic3 cells, membranes composed of lipid bilayers and integral mem-

brane proteins make up the outer plasma membrane and subdivide the cell into

different compartments or organelles. (See Fig. 1.1.) The endocytic pathway allows

cells to ingest macromolecules from outside of the cell. The secretory pathway allows

eucaryotic cells to regulate the delivery of molecules (such as newly synthesized pro-

teins) from the cell interior to the cell exterior. These processes are collectively called

intracellular “trafficking”.

The clathrin machinery (which is the system under study) is involved in both

the endocytic and secretory pathways. The protein, clathrin, is a heteropolymer

composed of a 192 kDa heavy chain and a variable, ca. 23-27 kDa, associated light

chain [5]. It occurs in nearly all eucaryotic cells. It is a component of the machinery

that the cell uses to move specific molecules across lipid bilayer membranes, in the

process generating a clathrin coated vesicle which is composed of a molecular lattice

surrounding an inner membrane shell.

Cells also use clathrin independent pathways for trafficking, including the use of

the proteins called coat protein complex I and II (COPI and COPII) in the secretory

pathway, and the protein caveolin in the endocytic pathway[1, ch. 14 p. 472]. These

other types of intracellular trafficking are known to have specific roles within the cell,

3 Eucaryotic cells are a large class of cells whose defining characteristics are that genetic informa-

tion is contained in a nucleus, and the cells are divided up internally into different compartments by

lipid bilayer membranes. Animal kingdoms belonging to the domain Eucaryota include Animalia,

Fungi, Plantae, and Protista. Prokaryotic cells are evolutionarily older and are not divided up in this

way. Prokaryota includes the domains of Bacteria and Archaea. In prokayotes genetic information

is spread throughout the cell.



4

as does clathrin. It is not currently understood why the cell requires more than one

pathway for trafficking or why they are different[6]. Fig. 1.2 shows the utilization of

these coat proteins in different aspects of the intracellular trafficking pathway.

Fig. 1.2: “Utilization of different protein coats in intracellular trafficking. Different coat

proteins select different cargo and shape the transport vesicles that mediate the

various steps in the secretory and endocytic pathways. Many differentiated cells

have additional pathways beside those shown in this figure, including for example,

a specialized recycling pathway for proteins of synaptic vesicles in the synapses of

neurons.” Figure and Caption from Molecular Biology of the Cell[4, Fig 13-5 p.

716]

All of the proteins listed above, clathrin, COPI, COPII and caveolin operate

by coating small (∼60nm) vesicles that carry cargo through the cell. Some specific

and important examples of clathrin function are LDL intake, insulin degradation and
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Fig. 1.3: “Fate of an LDL particle and its receptor after en-

docytosis. After an LDL particle binds to an LDL

receptor on the plasma membrane, the receptor-

ligand complex is internalized in a clathrin-coated

pit that pinches off to become a coated vesicle.

The clathrin coat then depolymerizes to triskelia,

resulting in an early endosome. This endosome

fuses with a sorting vesicle, known as a late en-

dosome, where the low pH (5) causes the LDL

particles to dissociate from the LDL receptors.

A receptor-rich region buds off to form a sepa-

rate vesicle that recycles the LDL receptors back

to the plasma membrane. A vesicle containing

an LDL particle may fuse with another late en-

dosome but ultimately fuses with a lysosome to

form a larger lysosome. There, the apo-B protein

of the LDL particle is degraded to amino acids

and the cholesterol esters are hydrolyzed to fatty

acids and cholesterol. Abundant imported choles-

terol inhibits synthesis by the cell of both choles-

terol and LDL receptor protein. The same path-

way is followed by other ligands, such as insulin

and other protein hormones, that are internalized

by receptor-mediated endocytosis and degraded in

the lysosome.” Figure and Caption from Molecu-

lar Cell Biology[7]
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synaptic vesicle formation in neurons4. More generally, clathrin-coated vesicles are

involved in the trafficking of proteins between specific organelles within the cell and

the recycling/recovery of constituents of the outer cell membrane. A schematic of

coated vesicle formation is shown in Fig. 1.3.

Three clathrin molecules join at a common hub to form a three-legged “triske-

lion”, which is the basic building block of the lattice. Each leg is approximately 30

Å thick[8] and 520 Å [9, 10] in length, and ends in a globular ”terminal domain” of

radius 50 Å[11, 8]. By convention, a leg is divided into a proximal segment adjoining

the central hub, a distal segment, and a linker region that connects with the terminal

domain. A clathrin heavy chain runs the entire length of the leg, with a light chain

attached near the common hub (see Fig. 2.1).

In vitro, the triskelia assemble into polyhedral “baskets” composed of pentag-

onal and hexagonal faces, mimicking the structures seen on the outside of endocytic

vesicles and the inner plasma membrane of a cell[13] (shown in Fig. 1.4). One can

dissociate baskets or uncoat vesicles by changing the properties of the solution in

which they are suspended (e.g., by changing pH and ionic strength) [14] or by adding

an uncoating protein (called Hsp70 ATPase [15]).

The structure assumed by a triskelion in a basket has been measured by cryo-

EM tomography[16]. (This structure is shown in Fig. 2.3.) The solution structure

of an isolated triskelion cannot easily be imaged directly, but must be inferred from

4 Synaptic vesicles carry neurotransmitter for rapid release into a synaptic junction by a firing

neuron.
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Fig. 1.4: Electron micrograph of inner plasma membrane of a cell. A deep etch electron

micrograph of the inner surface of the plasma membrane of a cell undergoing en-

docytosis. Clathrin coated pits and vesicles are clearly visible.[12, from J. Heuser]
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indirect, although noninvasive, measurements. Those measurements and the analysis

done to interpret them are the subject of this thesis.

Static light scattering (SLS) provides a measure of particle size and dynamic

light scattering (DLS) provides a measure of particle mobility (or diffusion). The first

aim of our study was to use these two techniques to determine information about

triskelion structure in solution. These measurements could then be compared with

expected values based on the structure of a triskelion within an assembled clathrin

basket, which has been determined by high resolution cryo-EM tomography[16]. This

was done to determine whether the puckered shape of the triskelion in the lattice

preexists before the assembly of the clathrin lattice, or whether assembly into the

lattice produces this triskelial shape.

The second aim of our study involves understanding of the flexibility of the

triskelion leg. This is of crucial importance to measurement of the solution structure

of the triskelion, the first aim. If the triskelion leg is inflexible, then each individual

triskelion must necessarily have a predetermined shape allowing it to self assemble

into a basket under appropriate conditions. If the triskelion leg is very flexible then

a unique triskelial structure does not exist before the assembly into the basket. In

this case the puckered structure for a clathrin triskelion would exist only because of

geometry imposed by the lattice of a clathrin basket. The experimental technique that

is used to investigate triskelial flexibility is small angle neutron scattering (SANS).

SANS was used in this study in order to extend static light scattering measure-

ments using a probe of smaller length scales (neutrons used had a wavelength of 5.5

Å vs. a wavelength of 5145Å for our SLS). It was not known a priori what we
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would find by SANS, but it was assumed that these measurements would support or

contradict our rigid bead models of clathrin which were used to fit light scattering

data of the previous study.

1.2 Outline of Thesis

Chapter 2 includes background information on the biological molecule un-

der study as well as a review of the basic physics underlying the experimental and

computational techniques that were used to interpret the results of my experiments.

Chapter 3 describes light scattering experiments that were performed on iso-

lated clathrin triskelia in solution along with analysis that was done to interpret the

results. Both Dynamic Light Scattering (DLS) and Static Light Scattering (SLS)

techniques were used to measure scattered laser light from purified protein in solu-

tion. One of the questions asked was: Does the clathrin triskelion have the same

shape when it is isolated in solution as it has when assembled into a clathrin basket

as measured by cryo-EM tomography? (The cryo-EM structure of a clathrin basket

as measured by Fotin et al.[16] is shown in Fig. 2.3.) The results of my experiments

were compared to different models of clathrin that were based on previous structural

studies.

Chapter 4 describes small angle neutron scattering (SANS) experiments that

were performed on isolated clathrin triskelia in solution, as well as analysis using rigid

models. Small angle neutron scattering experiments measured neutrons scattered

from purified clathrin triskelia in solution. One of the questions asked was: Can we
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gain additional information about clathrin’s structure in solution by doing SANS that

is not available through SLS and DLS? The results of the experiments were compared

to calculations using the Debye equation and different models of clathrin based on

previous structural studies (including those of Chapter 3).

Chapter 5 describes Brownian dynamics simulations which take into account

the flexibility of a clathrin triskelion molecule. The simulation is used to calculate

a time-averaged scattering function. The calculated scattering function is then com-

pared with SANS data from experiments described in Chapter 4. We find that this

analysis provides an estimate of the persistence length of the clathrin legs.

Chapter 6 summarizes our study and discusses future experiments.



2. BACKGROUND

2.1 Clathrin Structure and Function

Clathrin is an intriguing candidate for detailed molecular investigation. The

striking electron micrographs taken by John Heuser and Jim Harrison in 1983[12, 17]

(similar to that seen in Fig. 1.4) showed the polygonal coat of the inner membrane

of a cell where clathrin mediated endocytosis occurs. When clathrin triskelia were

isolated from coated vesicles, electron micrographs showed the three armed pinwheel

like structure of the triskelion shown in Fig. 2.1a.

Images and structures of the components of this complex macromolecule have

improved, but a simple understanding of how it works is elusive. For example, it is

not known whether clathrin causes the membrane to bend as was originally thought,

or whether it recruits proteins to the region that cause the membrane to bend as

some new evidence has shown[18, 19].

If the legs of a triskelion were to be characterized as a polymer, a good descrip-

tion might be that they were semi-flexible, i.e. bending on length scales compara-

ble to the length of a single leg. They have both definite structural attributes and

flexibility[9, 10]. This may or may not be a necessary property for the function they
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Fig. 2.1: a) “An electron micrograph showing a clathrin triskelion.”[5, Fig. 4a]

b) “A diagram of the lattice structure of a clathrin triskelion, measured by cryo-

EM tomography of a D6 basket assembled from Clathrin and AP2.” Figure and

Caption from Kirchhausen et al.[5, Fig. 4b]

perform, but the flexible nature of triskelia requires special approaches in order to

study their structure.

2.1.1 Clathrin is an Unstable Protein

A common way to produce a protein, if its amino acid sequence is known, is

to express it in bacteria or yeast1 cells. Clathrin cannot be produced in this fash-

ion because it will not fold properly without the presence of eucaryotic chaperone

proteins[20]. Also, for unknown reasons, purified clathrin triskelia “degrades” after

approximately two weeks. Storage at low temperature (−80◦ C) does not change this

process of degradation[21]. Therefore, fresh protein must be acquired and purified

1 These are two cell types that are easily produced and are viable and reproductive after this kind

of genetic modification.
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from bovine brain matter on a regular basis. Experiments generally must be com-

pleted within two weeks of purification, or the protein will lose its ability to function.

2.1.2 Previous Structural Measurements of Clathrin Triskelia

The subunits of supramolecular clathrin structures are descriptively called triske-

lia, since each clathrin triskelion is made up of three legs. Early images of clathrin

triskelia came from rotary shadowed electron micrographs of triskelia adsorbed onto

cleaved mica surfaces.[17] (See Fig. 2.1a)

Each “leg” of a clathrin triskelion is made up of two polypeptide chains. The

largest polypeptide chain, called the clathrin heavy chain or CHC, is 1675 amino acids

long and has a molecular weight of 192 KDa.[5, p. 707] The C-terminus of the CHC

is a trimerization domain, where the three legs join. A large part of the CHC has a

coiled coil zig-zag structure of α-helices[22], somewhat reminiscent of a spring. The

N-terminus is a seven blade β-propeller[11]. This is a binding domain for associated

proteins also involved in clathrin-mediated endocytosis. Pieces of both of these parts

of the CHC have been crystallized and the structures determined at high resolution

by X-ray diffraction (see Fig. 2.2).

Attached to the CHC near the trimerization domain is the clathrin light chain

(or CLC). This polypeptide has two forms, A and B. CLC A contains 243 amino

acids and has a molecular weight of 26.7 KDa. CLC B has 210 amino acids and a

molecular weight of 23.0 KDa2. These different types of CLC can attach onto a single

2 Molecular weights were calculated from the known protein sequences by the online tool and data-

base: Expasy ProtParamTool. (http://ca.expasy.org/tools/protparam.html) The protein sequences
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Fig. 2.2: Partial structures of the clathrin heavy chain. (a) Clathrin heavy chain proximal

leg (1210-1516) and (b) N-terminal domain and linker. From Wakeham et al.[8]
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Fig. 2.3: “A high resolution cryo-EM reconstruction of a clathrin basket. Image reconstruc-

tion of a clathrin D6 basket (only the heavy chains are shown) at 7.9Å resolution.”

Figure and Caption from Fotin et al.[16, Fig. 2]

triskelion in any combination AAA, AAB, ABB, or BBB. They share about 60%

sequence identity and are thought to regulate triskelion basket assembly and affect

CHC trimerization[23]. CLC A and CLC B are both believed to be unstructured

when not attached to the CHC.

The entire clathrin triskelion is a hetero hexamer of CHC, CLC A and CLC B.

It average molecular weight is ∼650 KDa. Each arm stretches out from its vertex

in what has been described as a “spider” or “pinwheel” like structure. The average

length of the arm is estimated to be ∼520 Å long. The average width is ∼30 Å[9].

used were: CHC: NP 776448 CLC A: NP 776447 CLC B: NP 776702

from Bos Taurus
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2.1.3 Clathrin Coated Vesicles and Clathrin Baskets

Vesicles isolated from different types of cells have characteristic sizes and asso-

ciated clathrin coats that can be related to specific polyhedra, made up of pentagonal

and hexagonal faces[13]. All polyhedral structures have a single triskelion at each

vertex.

When isolated in solution, under special conditions clathrin triskelia will self-

assemble to form empty, closed polyhedral structures called “cages” or “baskets”.

These have a morphology similar to that of the clathrin lattice surrounding coated

vesicles. The structures observed include tetrahedral and cubic[24] as well as dodec-

ahedral and icosahedral polyhedra. In the presence of an adaptor protein, AP2, a

structure called a D6 basket has been observed to occur. Recently, this assembly has

been studied by cryo-EM tomography at a resolution great enough to distinguish indi-

vidual clathrin triskelia within the structure[16]. (This structure is shown in Fig. 2.3)

This measurement suggests that, in a lattice, triskelia do not assume a conformation

that is flat and planar like the structure shown in electron micrographs, but rather

the structure has an extreme umbrella-like curvature exceeding the curvature of the

basket structure it forms. The shape of an individual triskelion when incorporated

into such a lattice structure is shown in Fig. 2.1b[16] and is highlighted in red in Fig.

2.3.
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2.2 Scattering from Dilute Macromolecules in Solution

In the following section, I will derive basic equations that will be used in later

chapters to extract information from experimental measurements from clathrin in

solution. The objective of this section is to review the basic equations governing the

scattering of light and neutrons from macromolecules in solution. Interpretations of

experimental results that will be presented later will be dependent on this theory.

2.2.1 Outline of Section

The first result derived, the Debye equation, describes the diffraction pattern of

waves scattered from a molecule in solution, when the target is large compared to the

wavelength of the incident radiation. In this derivation, the molecule is approximated

by an arrangement of identical point scatterers. The resulting diffraction pattern is

due to constructive and destructive interference of waves scattered from different

points within the molecule. The second result, the Guinier Approximation, is derived

from the Debye equation and is a simplification of the equation in the small-angle

limit or the limit of large but finite wavelength. The third result applies to a molecule

undergoing diffusion and relates the motion of the molecule to fluctuations in the

scattered light intensity and the temporal intensity autocorrelation function.

2.2.2 Origin of Scattered Intensity of Light from Macromolecules in Solution

Incident light sets up a vibration between the positively charged and negatively

charged elements of a molecule or dielectric particle, creating an oscillating dipole.
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Such a dipole is itself a source of electromagnetic radiation. The secondary radiation

has the same frequency as the incident radiation but is 180◦ degrees out of phase with

it (note the minus sign in Eq. 2.1). So the electric dipole moment, ~p, induced at a

position ~r0 by a traveling electromagnetic wave, ~E0, incident on a point particle of

polarizability α would be given by

~p = −4πε0α~E0e
i~k0·~r0 (2.1)

where the polarizability, α, has units of volume and ε0 is the electric permittivity of

free space. The electric field of the dipole radiation, ~ES, radiating along a direction

n̂ from such a dipole is given at a position ~r (far from the particle so ~r À ~r0) by[25]

~ES =
k2

0

4πε0

eik0n̂·(~r−~r0)

|~r − ~r0| (n̂× ~p)× n̂

using the approximation that k0n̂·(~r−~r0) ≈ k0r−k0n̂·~r0, Eq. 2.1, and by defining the

scattered wave vector as ~kS = k0n̂ and the scattering vector as ~q = ~k0−~kS = ~k0−k0n̂.

This expression can be approximated as

~ES ≈ −k2
0αei~k0·~r0

eik0r

r
eik0n̂·~r0(n̂× ~E0)× n̂

≈ −k2
0α

eik0r

r
ei~q·~r0(n̂× ~E0)× n̂. (2.2)

Moreover, |(n̂ × ~E0) × n̂| becomes | ~E0| sin(θ1), where θ1 is the angle between the

incident wave’s polarization (also the direction of the induced electric dipole) and the

scattering plane. The scattering plane is defined by the incident wave vector, ~k0, and

outgoing wave vector, ~kS = k0n̂. Since in our light scattering experiments the incident

laser light is vertically polarized, θ1 = 90◦. This assumes that the molecule under



19

study is an isotropic scatterer (the polarization, ~p, is aligned with and proportional

to incident electric field, ~E0 as in Eq. 2.1). The scattered intensity is thus given by

IS = | ~E∗
S · ~ES| = α2k4

0 sin2(θ1)

r2
I0. (2.3)

Eq. 2.3 was first derived by Lord Rayleigh in 1871 and describes light scattered from a

simple point dipole or scattering from a molecule whose dimension is small compared

to the wavelength of the incident radiation.

Since we do not scatter from particles in a vacuum but from particles in a

solvent, we are interested in the difference in polarizability of the particle with the

surrounding solvent. The polarizability relative to the medium, α, can be related

to the index of refraction by the equation 4πρ α = n2 − n2
0 where n is the index of

refraction of the particle, n0 is the index of refraction of the surrounding medium and

ρ is the number of scattering particles per unit volume[26].

2.2.3 Origin of Scattering of Neutrons from Macromolecules in Solution

Neutrons interact in a different manner than electromagnetic radiation. Instead

of inducing an electromagnetic dipole, neutrons interact with the spins of an atomic

nucleus through the short ranged strong nuclear force. Since the range of this force

is so short relative to the wavelength of neutrons we are working with (10−15 m vs.

10−10 m) the neutron-nucleus interaction can be approximated by a delta function

(Fermi’s pseudo-potential) which, for a single nucleus j centered at position ~rj with

scattering length bj, is given by

Vj(~r) =

(
2πh̄2

m

)
bjδ

3(~r − ~rj),
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where δ3(~r − ~rj) is a Dirac delta function centered at ~rj. Thus, for a collection of N

nucleons, the scattering potential would be

V (~r) =
N∑

j=1

Vj(~r) =

(
2πh̄2

m

)
N∑

j=1

bjδ
3(~r − ~rj).

The scattering length, bj, must be measured for each element and can be found on

the National Center for Neutron Research webpage3 for “thermal” neutrons (having

energies close to room temperature, corresponding to a wavelength greater than 1Å).

It was shown by Fermi that this pseudo-potential causes the same scattering as the

actual interaction but is weak enough to be used in the perturbation expansion of

Born (the Born Approximation)[27, 28].

Far from a scatterer positioned at the origin, a scattered plane wave can be

written in the form

ΨS(~r, t) = f(Ω)
eik0r

r
. (2.4)

For a weak potential V (~r) in the Born approximation, the scattering wave amplitude,

f(Ω), is given by[29]

f(Ω) = − m

2πh̄2

∫
ei(~k0−~kS)·~rV (~r)d~r

= − m

2πh̄2

∫
ei~q·~rV (~r)d~r

= −
N∑

j=1

bje
−i~q·~rj . (2.5)

For a single point dipole in light scattering

f(Ω) = αk2
0| ~E0| sin(θ1)e

i~q·~r0 (2.6)

3 http://www.ncnr.nist.gov/resources/sldcalc.html
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so, for many dipoles, a light scattering expression appears, in analogy to Eq. 2.5, as

f(Ω) =
N∑

j=1

αk2
0| ~E0| sin(θ1)e

i~q·~rj . (2.7)

The probability of an incident plane wave of wave vector ~k0 being scattered by

a weak potential V (~r) to become an outgoing plane wave with outgoing wavevector

~kS is given by

d2σ

dΩ
= |f(Ω)|2

=
N∑

i=1

N∑

j=1

bibje
i~q·(~ri−~rj)

=
N∑

i=1

N∑

j=1

bibje
i~q·~rij . (2.8)

Since V (r) is a real valued potential, b∗j = bj.

Neutrons have a very strong interaction with the protons in hydrogen atoms.

If water is used as a solvent, it produces a large background of scattered neutrons

and must be considered. There are two types of effects that must be considered in

the scattering of neutrons from particles in a solution. They are called coherent and

incoherent scattering. Coherent scattering arises from interference effects of a single

neutron scattered from all of the nuclei in a given molecule and is very dependent on

the scattering vector ~q (or scattering angle θ). Incoherent scattering can be thought of

as the collective scattering of many neutrons from a single nucleus and is independent

of the scattering angle θ. Incoherent scattering arises from fluctuations of scattering

lengths within a given nucleus.

Even for a scatterer made up of a single isotope, not all of the scattering lengths
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in Eq. 2.8 will be equal. This is because the scattering length of a nucleus depends on

its spin state, and most isotopes have several spin states[28]. If we write the scattering

length, bj, as the sum of an average scattering length, b̄, and a fluctuation scattering

length, δbj = bj − b̄, such that < bj >= b̄ and < δbj >= 0, then we can separate

Eq. 2.8 into two parts. (Here the angular brackets, < . >, denote a time or ensemble

average over all isotopic spin states.) We find

d2σ

dΩ
=

N∑

i=1

N∑

j=1

(b̄ + δbi)(b̄ + δbj)e
i~q·~rij

= b̄2
N∑

i=1

N∑

j=1

ei~q·~rij + b̄
N∑

i=1

N∑

j=1
½

½>
0

δbie
i~q·~rij + b̄

N∑

i=1

N∑

j=1
½

½>
0

δbje
i~q·~rij +

N∑

i=1

N∑

j=1

δbiδbje
i~q·~rij

= b̄2
N∑

i=1

N∑

j=1

ei~q·~rij +
N∑

i=1

δb2
i +

N∑

i=2

j<i∑

j=1
©©©©*

0
δbiδbje

i~q·~rij +
N∑

i=2

j<i∑

j=1
©©©©*

0
δbiδbje

−i~q·~rij

= b̄2
N∑

i=1

N∑

j=1

ei~q·~rij +
N∑

i=1

δb2
i (2.9)

The first term in Eq. 2.9 is called coherent scattering and the second term

is incoherent scattering. The middle two terms on the second line average to zero

because < δbj >= 0. The last two terms of the third line average to zero because

scattering length fluctuations (or isotopic spin states) of different atomic nuclei within

a molecule are uncorrelated.

In light scattering the polarizability, α, within a single molecule would take the

place of the scattering length, bj. Then, the second term in Eq. 2.9 would average

to zero since the polarizability within a molecule is much more uniform (as seen

by photons) than the neutron scattering length (as seen by neutrons). The reason

for this is that, while a single nucleus may have different spin states, all atoms and
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Tab. 2.1: Table of Neutron Scattering Length Density, Incoherent Scat-

tering Cross Section and Index of Refraction

Material ρ = b̄
V

4π(b̄2−b̄2)
V

n

×1010 [ cm−2]a [cm−1]b dimensionless

H2O -0.56 5.62 1.333c

D2O 6.3 0.14 1.329c

Typical Protein 3.1 – 1.58d

Deuterated Protein 8.5 – –

aFrom Cantor and Schimmel[30] and Glatter and Kratky[31]

bCalculated from NCNR webpage: http://www.ncnr.nist.gov/resources/sldcalc.html

cMeasured dFrom Hand et al.[32]

molecules of a homogeneous material have similar charge distributions and therefore

have similar polarizabilities.

In SANS, one utilizes a bulk scattering length density, ρ, which for a given

material, can be calculated by adding up the scattering lengths of the constituent

nucleons and dividing by the volume of the particle, ρ =
∑

j bj/V . Since our neutron

scattering experiments are also in solution, we are interested only in the difference

in scattering between the particle and solvent. The coherent scattered intensity is

proportional to the square of the relative scattering length density, (∆ρ)2 = (ρp−ρs)
2

where ρp is the average scattering length density of the particle and ρs is the average

scattering length density of the solvent.

At low concentrations of particles, the incoherent scattered intensity is depen-

dent mostly upon the scattering length density of the solvent. It is proportional to
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Fig. 2.4: “Diagram illustrating origin of phase difference in scattered waves. Coherent

waves scattered from different positions have different phases associated with them

arising from a difference in paths lengths traveled by the two scattered waves. Scat-

tering from two identical scatterers located at P1 and P2.” Figure and Captoion

from Physical Chemistry of Macromolecules[26, Fig. 3-1(a)]

the mean squared scattering length of the solvent minus the square of the mean,

(ρincoherent)
2 =

∑
j b2

j − (
∑

j bj)
2/V =

∑
j δb2

j/V . Scattering length densities and in-

dices of refraction for a few substances are shown in Table 2.1. This will be discussed

more in Chapter 4.
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2.2.4 Interference Between Waves Scattered from Different Positions Within a

Particle Produce a Diffraction Pattern

The interactions between light and neutrons with matter are very different, but

in both cases diffraction effects arise from interference between scattered coherent

waves emanating from different points within the scattering volume. The theory for

light scattering is very similar to that of neutrons with the exception of a few small

changes.

Consider the waves originating from two scattering centers separated by position

vector ~r. A ray diagram of this is illustrated in Fig. 2.4. While the scattering

amplitude is dependent on the type and strength of the interaction of the incident

wave with the scatterer, the phase difference between coherent waves scattered from

different positions in a scattering volume originates from the difference in path lengths

traveled by each wave. This phase difference between the scattered waves can be

expressed as

∆φ = k0AP2 − kSP1B =
(
~k0 − ~kS

)
· ~r = ~q · ~r (2.10)

where ~k0 is the incident wave vector and ~kS is the scattered wave vector. Here we

have defined the scattering vector ~q as ~k0 − ~kS. If the scattered wave is of the same

wavelength as the incident wave, then the magnitude of the scattering vector, q = |~q|,

can be written as 2k0 sin θ
2

where θ is the angle between the incident wave vector, ~k0,

and the outgoing wave vector, ~kS. If the incident wave is coherent and the scattered

waves are of similar amplitude, constructive interference will occur when ∆φ is an
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even multiple of π. Destructive interference will occur when ∆φ is an odd multiple

of π.

2.2.5 The Debye Equation

The scattering of radiation from a collection of scatterers of even very simple

geometric shape is difficult to evaluate exactly. However, in the case where a very

small fraction of the incident wave is scattered, one can use the first Born approxi-

mation to calculate the amplitude of the scattered wave with respect to the incident

wave, as was done for both neutrons and photons in the previous section. In this

approximation all scatterers see the same incident wave ( in amplitude ) and the

relative phase difference between the scattered waves is dependent only on the path

lengths as described above. This case was first studied by Debye[33], and was evalu-

ated for a few simple geometric shapes such as spheres and random coils[34, 35, 36].

Many other simple geometric shapes and models such as rods, freely jointed chains,

semi-flexible chains, and flexible star polymers have been investigated by others to

study synthetic polymers in solution[31]. The general case for a collection of spheres,

the Debye equation, will be derived in the following sections.

2.2.6 Scattering from Two Scatterers

Consider a monochromatic traveling plane wave as described by the expression

Ψei~k0·~r−iωt. If the wave is incident on two identical scatterers separated by a position

vector, ~r, (as shown in Fig. 2.4), the resulting scattered wave can be described by the

sum of the waves scattered from each scatterer. (For simplicity, the scattered ampli-
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tude will be assumed to be identical for each scatterer.) The scattering amplitude for

a single scatterer will hereafter be denoted by Ψ0.
4

ΨS = Ψ0e
−iωt+i~k0·~r + Ψ0e

−iωt+i~kS ·~r

= Ψ0e
−iωt+i~k0·~r(1 + ei(~kS−~k0)·~r)

= Ψ0e
−iωt+i~k0·~r(1 + ei~q·~r) (2.11)

The reduced probability density (or equivalently the reduced differential scat-

tering cross section) along a direction defined by ~q, will be given by the norm squared

of the scattered wave function, viz.,

P̃ (~q) =
ΨS(~q, t) ·Ψ∗

S(~q, t)

|Ψ0|2

= (1 + ei~q·~r) · (1 + e−i~q·~r)

= (2 + 2 cos (~q · ~r))

= 4 cos

(
~q · ~r
2

)2

(2.12)

2.2.7 Scattering from N Scatterers

The reduced scattering amplitude of a wave scattered by a molecule made up

of N identical scatterers located at positions {~ri} can be expressed as a sum over

scatterers, i, as

f̃(~k0, ~q, {~ri}) =
1

Ψ0

N∑

i=1

Ψi

= eiφ0

N∑

i=1

ei∆φi0

4 According to the previous section Ψ0 = −k2
0α|E0| sin(θ1) eik0R

R or −b eik0R

R . Where ~R is the

position of the detector with respect to the scatterer.
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= ei ~k0·~r0

N∑

i=1

ei~q·~ri0 (2.13)

where ~ri0 is the position vector of the ith scattering center within the molecule, relative

to some arbitrary origin within the molecule specified by ~r0 (say at the center of mass).

The reduced probability density is the norm squared of the scattering amplitude. It

is given by the double sum

P̃ (~q) = |f̃(~k0, ~q, {~ri})|2

= f(~k0, ~q, {~ri}) · f ∗(~k0, ~q, {ri})

=
N∑

i=1

N∑

j=1

(ei~q·~ri)(e−i~q·~rj)

=
N∑

i=1

N∑

j=1

ei~q·~rij (2.14)

where ~rij = ~ri − ~rj is defined as the relative distance between scatterers i and j.

If we define the particle distribution function ρ(~r) = 1
V

∑N
i=1 δ3(~r − ~ri) then we

can rewrite the sum in Eq. 2.13 in an integral form:

f(~k0, ~q, {~ri}) = ei~k0·~r0

N∑

i=1

ei~q·~ri0

= ei~k0·~r0

∫

V
d3r ρ(~r)ei~q·~r (2.15)

2.2.8 Solution Scattering: Averaging over Different Orientations

The molecules we are studying are suspended in solution rather than being lo-

cated in solid crystals with a fixed orientation. They are randomly oriented. We can

perform an angular average over all possible orientations of the molecule, thus remov-

ing any dependence of the scattered probability density P̃ on a specific direction of ~q

with respect to the frame of reference of the molecule. This reduces our equation for
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P̃ (~q) to a simplified form with a dependence only on the magnitude of the scattering

wave vector, q, (the angle between the incoming beam and the detector is implicit in

this magnitude) and the relative distances between all scatterers within the molecule:

P̃ (q) = < P̃ (~q) >Ω

=
N∑

i=1

N∑

j=1

∫ 1

4π
dΩei~q·~rij

=
N∑

i=1

N∑

j=1

sin(qrij)

qrij

. (2.16)

2.2.9 Scattering from a Sphere

For scatterers distributed uniformly in a sphere of finite radius a with constant

density 1
V

, we can integrate Eq. 2.15, vis.

f(~k0, ~q, ~r0) = ei~k0·~r0
1

V

∫ a

0
r2dr

∫
dΩei~q·~r

=
3(sin(qa)− qa cos(qa))

q3a3
ei~k0·~r0 . (2.17)

2.2.10 Scattering from N Spheres

Consequently if one integrates over N spheres of constant density 1
Vi

and radius

ai centered at positions {~ri}, then the scattering amplitude would be given by the

sum

f(~k0, ~q, ~r0) = ei~k0·~r0

NM∑

i=1

ei~q·~ri0

= ei~k0·~r0

N∑

i=1

ei~q·~ri0

M∑

j=1

ei~q·~rji

= ei~k0·~r0

N∑

i=1

ei~q·~ri0
1

Vi

∫ ai

0
r2dr

∫
dΩei~q·~r

= ei~k0·~r0

N∑

i=1

3(sin(qai)− qai cos(qai))

q3a3
i

ei~q·~ri0 . (2.18)



30

Thus, the scattered intensity from a collection of spherical scatterers can be described

by the equation

P̃ (~q) = (2.19)

∑N
i=1

∑N
j=1

(
3(sin(qai)−qai cos(qai))

q3a3
i

) (
3(sin(qaj)−qaj cos(qaj))

q3a3
j

)
ei~q·~rij .

If we perform the angular averaging (as in Eq. 2.16) we get the resulting equa-

tion for a collection of spherical scatterers with fixed relative internal positions but

an overall random orientation:

P̃ (q) = (2.20)

∑N
i=1

∑N
j=1

(
3(sin(qai)−qai cos(qai))

q3a3
i

) (
3(sin(qaj)−qaj cos(qaj))

q3a3
j

)
sin (qrij)

qrij
.

This equation was first explored by Debye[33, 31] and is used later in this thesis

to calculate the expected scattering of neutrons from simple bead models of clathrin.

It assumes that the molecule is made up of scatterers having identical scattering

length density relative to the solvent.

2.2.11 The Guinier Approximation

Consider a rotationally averaged probablility density P (q) (Eq.2.16) for a mole-

cule with a limited extent, R, such that ri0 < R ∀i. If we look only at small q, where

qR ¿ 1 (That is, if we are only looking at small scattering angles or using a large

wavelength in comparison to R), we can expand the function sin(x) in a Taylor’s

expansion sin(x) =
∑∞

i=0
x2i+1

2i+1!
= x− x3

6
+ x5

120
−O(x7).
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By inserting this expression in Eq. 2.16, one gets

P̃ (q) =
N∑

i=1

N∑

j=1

sin(qrij)

qrij

=
N∑

i=1

N∑

j=1

1− (qrij)
2

6
−O(qrij)

4

≈ N2

(
1− (qRg)

2

3
+

(qRg)
4

18
−O(qRg)

6

)

≈ N2e−
1
3
(qRg)2 (2.21)

In this last step we have used the identity R2
g = 1

2N2

∑N
i=0

∑N
j=0 r2

ij. This approxima-

tion from small angle scattering was derived by Guinier[37] and will be used later to

determine the radius of gyration, Rg from static light scattering and neutron scatter-

ing experiments performed on clathrin.

The Guinier approximation[26, p. 305] is valid only when 1
20

< Rgq < 1
2
. The

upper limit on Rg arises because of the expansion of sin(Rgq) used to derive the

equation. The lower limit on Rg is due to the accuracy with which the scattered

light intensity can be measured, and therefore depends upon the sensitivity of the

experimental apparatus that is used. In order to give a 10% - 50% drop in scattered

intensity by variation of the detector angle, Rg

λ
must be greater than 1

20
− 1

10
. In my

static light scattering (SLS) experiments, the drop in intensity observed was 8% in

the q range that was used to determine the measured Rg. Prior to each experiment,

the instrument was calibrated to within 1% for all angles used in the measurement.5

5 The equation for the lower limit on particle size is Rg

λ > 1
4π

√
3 ln

(
I(θ=180)
I(θ=0)

)
.
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2.3 Dynamic Light Scattering

In the previous section we ignored the time dependence of the scattered wave

as well as any motion or dynamics of the molecule from which we were scattering.

Suppose that, instead of calculating an instantaneous probability density, which was

done implicitly, we included the time dependence of the scattered probability density

using time dependent scattering positions {ri(t)} instead of static ones. Our number

density would then become time dependent ρ(~r, t) = 1
V

∑N
i=1 δ3(~r−~ri(t)) and, following

Eq. 2.15 and now including a time dependent factor e−iω0t, the scattered wave would

be

Ψ(~k0, ~q, {ri(t)}, t) = Ψ0e
i~k0·~r0−iω0t

∫

V
d3rρ(~r, t)ei~q·~r. (2.22)

If we wanted to proceed further, then we would have to know how {ri(t)} evolves

in time. For simplicity, consider the case of N particles whose initial positions at

time, t = 0, are ~r0 and whose motion is determined by diffusion. In that case, the

average position of the particle would be ~r0 and the mean squared displacement,

< r2 >, would be 6Dt. We could then write the time dependent number density as

ρ(~r, t) = N

(
√

4πDt)
3 e−

(~r−~r0)2

4Dt . And the time dependent scattered wave from N particles

undergoing diffusive motion could be written as

Ψ(~k0, ~q, r0, t) = NΨ0e
i~k0·~r0−iω0t

∫

V
d3r

e−
r2

4Dt

(
√

4πDt)3
ei~q·~r

= NΨ0e
i~k0·~r0−iω0te−Dq2t. (2.23)

Using the above equation we can calculate the scattered intensity autocorrelation
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function

c(τ) = < P̃ (t)P̃ (t + τ) >

=
N4

|Ψ0|4
∫ ∞

0
dt Ψ∗(~k0, ~q, r0, t)Ψ(~k0, ~q, r0, t)

×Ψ∗(~k0, ~q, r0, t + τ)Ψ(~k0, ~q, r0, t + τ)

=
N4

4Dq2
e−2Dq2τ . (2.24)

This equation is the basis for dynamic light scattering as used later to determine the

diffusion coefficient of clathrin triskelia in solution.

2.4 Hydrodynamic Theory of Macromolecules

Hydrodynamic techniques play a major role in the characterization of macro-

molecules. Experimental hydrodynamics measurements include viscometric, sedimen-

tation and diffusion measurements. However, relating these measurements to desired

structural information requires a theoretical formalism enabling the calculation of

hydrodynamic properties from a model of the macromolecule under study.

In the case of flexible and semiflexible linear chains, theoretical work was initi-

ated by Kirkwood and Riseman[38]. Hydrodynamic formalisms for more complicated

rigid structures were available only for ellipsoids and cylinders. Early theoretical

work on the hydrodynamics of rigid particles with arbitrary shape began with the

work of Bloomfield et al.[39, 40]. In this work the theory of Oseen, Burgers, Kirk-

wood and Reisman[41, 42, 38] were used to calculate hydrodynamic properties of

proteins (hemocyanin, phycocyanin, and fibrinogen) and viruses (Tobacco mosaic

virus, T2 bacteriophage, and λ phage). Dynamic light scattering and sedimentation
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measurements on each example were carefully compared with theoretical estimates

from multi-subunit bead models with dimensions and geometry in accordance with

electron microscope images that had been taken by other researchers.

Advances to the work of Oseen were later made by Rotne and Prager[43] as well

as Yamakawa[44] in the form of a modified hydrodynamic interaction tensor. Later

with the aid of modern computers, Bloomfield and Garcia de la Torre improved upon

Kirkwood and Reisman’s approximation[45, 46, 47]. X-ray structures of proteins

as well as cryo-EM reconstructions of macromolecular assemblies have dramatically

improved the detail of structural models of some biological macromolecules. As an

example of how the field has progressed, fluorescence correlation spectroscopy has

recently been used to study tubulin rings, showing remarkable agreement with the

predicted hydrodynamic properties using an atomic model of a tubulin ring structure

that was determined by combining cryo-EM and X-ray diffraction measurements[48].

2.4.1 Inversion of the Hydrodynamic Equations (HYDRO)

In 1927, Oseen showed that the effect of a point source of friction on the flow

of a Newtonian fluid of viscosity, η, was to reduce the flow velocity, ~v0, at a position,

~r, by an amount, δ~v ≡ ~v − ~v0 where ~v0 is the velocity of flow in the absence of the

force and ~v is in the presence of the force. δ~v is determined by the product of a

hydrodynamic interaction tensor, T, with the applied force ~F ,

δ~v = −T · ~F = − 1

8πηr

(
I +

~rT~r

r2

)
· ~F . (2.25)

A particle moving with velocity ~v through a stationary fluid of viscosity, η,
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produces a force, ~F , proportional to ~v on the surrounding fluid in the direction of

motion, ~F = ζ~v where ζ is the coefficient of friction. Neighboring particles will

therefore reduce the flow velocity and the viscous force between the surrounding fluid

and nearby particles. This is the basic principle behind hydrodynamic modeling of

rigid biological macromolecules.

The viscous force on a particle can be approximated by taking into account the

effect of forces by neighboring particles on the flow velocity of the fluid using Oseen’s

tensor,

~F = ζ(~v −T · ~F ) (2.26)

from which one finds

Q · ~F = (I + ζT) · ~F = ζ~v (2.27)

where T is a sum over all neighboring particles. Setting the force on the right hand

side of the Eq. 2.26 to ~F ≈ ζ~v, we get an approximation generally referred to

as the Kirkwood-Riseman approximation[38]. If we solve the system of equations

by inverting the matrix Q = I + ζT for each element in the particle then we can

calculate the entire friction tensor of a fixed collection of particles. This is the principle

behind current work involving the description of the hydrodynamics of polymers and

biological macromolecules.

Zwanzig[49] showed that if Oseens’ hydrodynamic interaction tensor ( defined

in Eq. 2.25) is used to calculate the friction of a bead model of finite size, then

Q is not necessarily positive definite and can, in some cases, give negative friction

coefficients. Rotne and Prager[43] and Yamakawa[44] corrected this by including
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the effect of particle size in the hydrodynamic interaction tensor of Eq. 2.25. This

was done by using Stokes’ law for the coefficient of friction of a sphere of radius a,

ζ = 6πηa for overlapping and nonoverlapping spheres. The nonoverlapping case was

later generalized by Garcia de la Torre et al.[45] for spheres of different sizes

T(ai, aj, ~rij) =
1

8πηrij

[
I +

~rT
ij~rij

r2
ij

+
a2

i + a2
j

r2
ij

(
1

3
I− ~rT

ij~rij

r2
ij

)]
(2.28)

the overlapping case (r ≤ 2a) is

T(a, ~rij) =
1

6πηa

[(
1− 9

32

rij

a

)
I +

3

32

~rT
ij~rij

arij

]
(2.29)

The remaining case, calculations with overlapping spheres of different sizes, ai

and aj, use Eq. 2.29 with a bead radius ofa = 1
2
(a3

i + a3
j)

1
3 so that the volume of the

two beads of equal size is the same as the volume of bead i and j. See Carrasco et al.

for further discussion[50].

HYDRO6 is a program written by Garcia de la Torre et al.[51]. Using the theory

outlined above, HYDRO calculates the friction coefficient of rigid macromolecules of

arbitrary shape that are represented by bead models. I constructed an ad hoc bead

model for clathrin based on EM, cryo-EM, and crystal structure measurements of

clathrin arms. This model, as well as the results of HYDRO calculations performed

with it, are described in Chapter 3.

The above described treatment for the direct inversion of the hydrodynamic

equations represents a system of linear equations of 3 unknowns for each element in

the model. This is accomplished by formulating the equations into a 3N × 3N super

6 http://leonardo.fcu.um.es/macromol/
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matrix QN. This matrix is then inverted by Gauss-Seidel iteration[51]. The Gauss-

Seidel method is a fast iterative matrix inversion technique similar to the Gauss-

Jordan method. Computation time scales approximately as N3 and necessary storage

space grows as 9N2. This limits practical models to N ∼ 2000 elements on modern

computers in 2006(N ∼ 100 in 1981). This limitation is mainly due to the speed at

which a computer can invert a matrix of size (3N)×(3N), i.e. the rate of convergence

of the Gauss-Seidel algorithm[52, 53].

2.4.2 The Analogy between Electrostatics and Hydrodynamics (ZENO)

It is possible to calculate a rotationally averaged translational friction coefficient

for a rigid object using an alternative method proposed by Hubbard and Douglas[54].

If one performs an angular average of Oseen’s hydrodynamic interaction tensor, (Eq

2.25), it becomes a simple scalar.

< T >Ω =
1

4π

∫
dΩ T

=
1

4π

∫
dΩ

1

8πηr

(
I +

~rT~r

r2

)

=
1

8πηr

(
I +

1

3
I
)

=
1

6πηr
I (2.30)

With this angular averaged hydrodynamic interaction tensor, it can then be

shown that the Navier-Stokes equations reduce to an equivalent electrostatics problem

where the angular averaged translational friction coefficient of a particle can be related

to the capacitance, C, on its surface as if it were conducting[54].
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< f >Ω= 6πηC. (2.31)

The capacitance, C, is easier to calculate for complicated objects than is the

matrix inversion described in the section above, and has a less restrictive limit to

the number of particles used in the model. Also, this calculation requires only that

a surface be defined in some way and is not, in principle, reliant on bead modeling.

The capacitance calculation is done by a numerical path integration technique[55] in

the program ZENO7.

I used ZENO for calculations performed on high resolution triskelion models as

well as on complete clathrin baskets. In some cases as many as 7000 elements were

used. For models where HYDRO and ZENO could both be used, the rotationally

averaged, translational friction coefficients agreed in all cases tested to within 1%.

7 http://www.stevens.edu/zeno/



3. LIGHT SCATTERING FROM A CLATHRIN TRISKELION IN

SOLUTION

3.1 Introduction

Triskelia assemble at low pH to form baskets [14] or, at higher pH, in the presence of

clathrin assembly proteins (e.g. AP2, AP180, etc.)[56]. It is not currently known why

these conditions favor assembly. Possible mechanisms supporting assembly at low pH

include conformational changes in the tertiary structure of the triskelia, which might

relieve steric hindrances to basket assembly, and enhanced interactions between the

intertwined triskelia that form the basket struts. The role of AP’s may be to increase

mechanical linkages between the triskelia [56, 57, 58].

In this chapter I report light scattering measurements on clathrin in solution,

which include conditions where assembly occurs. By static light scattering (SLS)

I determine the radius of gyration (Rg), and by dynamic light scattering (DLS) I

determine the hydrodynamic radius (RH), of triskelia that have not polymerized into

baskets. Although one does not obtain atomic and molecular coordinates as one

might from a diffraction experiment or cryo-EM tomography, light scattering provides

weighted averages that are sensitive to different aspects of the spatial distribution of
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triskelion mass. In addition, the light scattering techniques are non-invasive and thus

allow one to assess the native state of clathrin in solution.

In this chapter I will compare the measured values of Rg and RH with corre-

sponding quantities calculated for a simplified model of a clathrin triskelion. The

model is designed, in particular, to show dependences on triskelial pucker and leg

bending. Where possible, I use leg segment dimensions based on X-ray and EM

structural data. Using the model, I infer that both Rg and RH are intimately linked

to the geometric attributes of the triskelia and that, taken together, they provide a

sensitive measure of the solution conformations of these complex objects. Analysis

of the measurements indicates that, over a large range of pH, individual triskelia are

puckered in solution.

Recently, 3D structures of ”D6 barrel” clathrin cages have been used to infer a

molecular model of a single clathrin triskelion [16]. The D6 barrel is a polyhedral as-

sembly of 36 clathrin triskelia and associated AP2 assembly complexes. Calculations

of Rg and RH based on this model agree fairly well with our light scattering measure-

ments on free clathrin triskelia, but indicate that a triskelion assumes a slightly more

compact structure when incorporated into the cages.

3.2 Experimental Methods

3.2.1 Clathrin Purification

Clathrin was purified from coated vesicles of bovine brain as previously described by

Morgan et al. [57]. Here I would like to thank and acknowledge K. Prasad and E. Lafer
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of the University of Texas Health Science Center in San Antonio, who performed all

of the protein purification of clathrin. Briefly, clathrin coated vesicles were separated

from homogenized bovine brain tissue by a two step density gradient centrifugation

in low concentrations of sucrose and D2O according to Nandi et al.[59]. The purified

coated vesicles are then dialyzed in disassociation buffer (10mM Tris-HCl, pH 8.5) for

15 h. This causes the clathrin to uncoat the vesicles. Once uncoated the vesicles are

then pelleted by centrifugation for 1 hr at 200,000 x g. The supernatant containing

clathrin and associated proteins is then dialyzed in 0.5 M Tris-HCl, pH 8.0, and gel

filtered on a Sephacryl S-300 column to separate clathrin, which elutes first, separate

from the smaller molecular weight associated proteins.[60] Once purified the protein

was stored in 0.5 M Tris HCl pH 7.0, 3mM DTT, at a protein concentration of 3 to

4 mg/mL at 4◦ C, and used within 2 weeks.

Every 24 hrs, prior to experiments, the protein was clarified1 at 400,000 x g

for 15 minutes to remove any protein that was no longer viable due to misfolding or

proteolysis. At the end of 2 weeks the amount of protein removed in this process was

close to half of the total protein at which point the sample was judged to be no longer

useful for experiments.

3.2.2 Sample Preparation

For light scattering, buffers were filtered three times through 0.22 µm cellulose acetate

filters (Corning) prior to use. Buffer was exchanged by overnight dialysis through a

1 Clarification simply means to sediment out particulates by centrifugation, taking only the top

of the solution and leaving behind a solid pellet.
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10,000 Da molecular weight cutoff membrane (Pierce) into 10mM Tris HCl pH 8.0,

3mM DTT. The protein was diluted to 0.34 mg/mL and clarified by centrifugation at

400,000 x g for 15 minutes in an Optima Max Ultracentrifuge (Beckman), using an

MLA130 rotor. After centrifugation, the entire supernatant was taken. The protein

concentration was found to remain constant to within 0.01 mg/ml.

Soluble triskelia were prepared for light scattering at different pH by adding

100 µL of 1M MES buffer to 0.9 mL of clarified protein solution. Samples were then

incubated one hour on ice and centrifuged at 400,000 x g for 15 minutes to remove any

assembled baskets. Only the top 80% of the supernatant was carefully taken[57]. The

preparation was confirmed, by dynamic light scattering, to consist of mono-disperse

clathrin triskelia. The clathrin concentration in these samples was determined by

absorbance measurements at a wavelength of 280 nm, using an absorption coefficient,

ε280 = 6.94×103 M−1cm−1(1.07g−1cm−1), as estimated from the amino acid sequence

from Bos Taurus and following the calculation given by Reference [61].

3.2.3 Light Scattering Instrument

We used a Brookhaven light scattering instrument (Brookhaven Instruments Corp.,

Holtsville, NY) for both static and dynamic light scattering measurements. An Argon-

ion laser (Lexel) beam, emitting at a wavelength of 514.5 nm, was directed onto the

sample. Depending on the sample concentration, the incident intensity was adjusted

to give a detectable scattered intensity of 100,000 counts per second at 90◦ scattering

angle and fixed detection pinhole (400 µm or 1 mm in diameter). The scattered light

was collected by a photomultiplier tube (EMI-PMT Model 9863) and processed by a
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Fig. 3.1: Picture and diagram of light scattering instrument used. The beam from an

argon ion laser was focused onto the sample through a steering lense assembly.

The detector was mounted to an adjustable goniometer which could be rotated to

the desired angle by a computer controlled motor. The detector signal was the

processed by a digital correlator. Pictures and diagrams are take from Brookhaven

Instruments Corp. c©website: http://www.bic.com/BI-200SMls.htm[62]
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BI-9000 AT data acquisition board (Brookhaven Instruments Corp.). For DLS, the

board calculates and generates the intensity-intensity time-correlation functions.

A 1 mL volume of sample, loaded in a 1 inch diameter cylindrical light scat-

tering cuvette, was placed in a decalin index-matching bath attached to a precision

goniometer (Brookhaven Instruments). The temperature of the bath was measured

before and after each measurement, using a digital thermometer (±0.1◦C).

3.2.4 Static Light Scattering

Scattered light intensity was measured every 2◦, from a scattering angle of θ = 50◦

to 150◦. Background scattering intensity from the cuvette and solvent was less than

1% of the detected signal in all experiments. In the Guinier regime (qRg << 1),

the angular dependence of the scattered intensity, I(q), is well approximated by a

Gaussian profile with a width related to the radius of gyration,

I(q) ≈ exp
(
−1

3
q2R2

g

)
(3.1)

where the scalar quantity q is the magnitude of the Bragg scattering wave vector [63],

viz.,

q =
4πn

λ
sin (θ/2) (3.2)

λ, θ and n being the wavelength, the scattering angle, and the refractive index of the

solution, respectively. The logarithm of the intensity profile was plotted against q2

and fitted by a straight line[26], using the method of least squares (unweighted). The

slope of the line is 1/3 R2
g. For any given sample, the measurements were repeated

four times and the fits yielded values for Rg reproducible within 3% (0.8 nm).
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3.2.5 Dynamic Light Scattering

Dynamic light scattering was performed at scattering angles of 90◦ and 150◦. Photon

counts collected over prescribed intervals were auto-correlated over a time range,

τ , to provide the autocorrelation function of the scattered light, c(τ). Data were

collected in the homodyne mode, from which the field correlation function, g(τ), was

determined by the following formula:

c(τ) = A
(
1 + B |g(τ)|2

)
(3.3)

where A and B are constants [63].

In the homodyne mode only the scattered light impinges on the detector. This

is in contrast to the heterodyne mode where a small portion of the incident beam is

mixed with the scattered light on the detector2. In homodyne mode the light intensity

autocorrelation function is proportional to the square of the field correlation function,

giving a relaxation timescale, τ ∝ 2Dq2, in accord with Eq. 2.24.

Using the cumulant method, I fitted the logarithm of the measured field corre-

lation function up to the 2nd cumulant by the equation [64]:

1

2
ln |g(τ)2| = ln |g(τ)| = −Dq2τ +

1

2
µq4τ 2 (3.4)

where q is given by Eq. 3.2, D is the average translational diffusion coefficient, and

µ is related to the width of the distribution of the diffusion coefficient. Both D and

2 The heterodyne mode is a technique by which the intensity autocorrelation function recorded

in an experiment is directly proportional to the field correlation function, g(τ), and decays with a

relaxation timescale, τ ∝ Dq2.
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µ are the fitting parameters. I then determined the mean hydrodynamic radius, RH,

from the Stokes-Einstein relation:

D = kBT/6πηRH (3.5)

where kB is Boltzmann’s constant, T the temperature, and η the solvent viscosity.

For a given sample, two correlation functions were collected at θ = 90◦ and two at θ

= 150◦ and fitted with the expression in Eq. 3.5, yielding values for RH reproducible

within 1% (0.2 nm). Here the buffer viscosity (for 0.1 M MES) was taken to be

1.05 times that of water, in accordance with measurements made with an Ostwald

viscometer at 20 ◦C (data not shown).

3.2.6 Hydrodynamic Modeling

Transport properties of clathrin triskelia were calculated using HYDRO [51] and

ZENO [55]. To employ these programs, triskelia of differing shapes were approxi-

mated by groups of connected spheres. Calculations primarily were performed with

the program HYDRO [53, 51], which uses a hydrodynamic interaction tensor and

Stokes’ solution for flow around a sphere to determine the frictional force on a rigid

bead model by an iterative matrix inversion of the hydrodynamic equations [53]. The

resultant frictional coefficient of the structure then is related to the hydrodynamic ra-

dius, RH. A recent experimental study of the hydrodynamic properties of nanoscopic

rings, formed from the cytoskeletal protein tubulin, showed extremely good quanti-

tative agreement between measurements and parameters computed by this method

[48]. ZENO uses a Monte Carlo, numerical path integral technique to estimate the
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translational diffusivity by making an analogy between isotropic angular averaged

hydrodynamics and electrostatics [54, 55]. Like HYDRO, it also uses an iterative

algorithm. It allows for more complex models than does HYDRO, the latter being

limited to 2000 beads. When I compared these programs, ZENO gave results for RH

within 1% of those determined by HYDRO, for all models tested.

3.3 Results

3.3.1 Light Scattering

Clathrin assembles into closed, basket-like structures at low pH and low salt

concentration [14]. The baskets can be removed by centrifugation, while unassembled

clathrin remains in the supernatant. Above a pH of 6.5, basket formation occurs

relatively slowly and is only weakly dependent on pH, whereas at pH 6.0 most of the

clathrin is quickly incorporated into closed polyhedra. After centrifuging the bas-

kets from these samples, DLS measurements made on the supernatants show highly

mono-disperse scatterers having an average value of rH = 16.9 nm for the appar-

ent hydrodynamic radius. The reduced second moment, µ/D2 had an average value

of 0.06 ± 0.03 and did not vary significantly with pH. Typical results from light

scattering measurements are shown in Fig. 3.2 and 3.3.

Fig. 3.2 shows typical SLS data for clathrin in solution, where the vertical lines

indicate the q range over which the data were fitted to a linear function to determine

the value of Rg (see Eq. 3.1). In Fig. 3.3 typical DLS data are shown as well as the

result of the quadratic fit (see Eq. 3.4) used to determine the value of RH (see Eq.
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Fig. 3.2: Plotting ln I(q) vs. q2 yields a slope of 1
3R2

g. Typical static light scattering data,

for clathrin in solution at pH 6.5. The open circles indicate static light scattering

data. The dotted line indicates a linear fit to the data from q2=0.25 to 0.80 x103

nm−2 ( θ = 60◦ to 120◦). [62]
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Fig. 3.3: Plotting ln g(τ) vs. q2τ gives a slope of −D. (top) Typical dynamic light scat-

tering data, for clathrin in solution at pH 6.5, taken at angles of 90◦ and 150◦.

Open squares indicate dynamic light scattering data taken at an angle of 150◦.

Solid triangles indicate light scattering data taken at an angle of 90◦. The solid

and dotted lines indicate quadratic (in τ) fits to the data (see Eq. 3.4)[62]. (bot-

tom) Residuals of quadratic fits to the dynamic light scattering data shown in %

deviation. Typical points on fitted curves lie within 1% of the experimental data.
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3.4 and 3.5). Fig. 3.4 shows results derived from light scattering measurements as

described above.

Fig. 3.4: Experimental RH and Rg vs. buffer pH. Radius of gyration (Rg) and hydro-

dynamic radius (RH) of free clathrin triskelia measured by static light scattering

(SLS) and dynamic light scattering (DLS). The abscissa indicates the pH of the

buffered solution. Both measurements appear to be independent of pH. The ar-

rows point to the values calculated by ZENO [54, 55] for the triskelial structure

noted for clathrin in an assembled basket[16]. Each data point was taken on a

different sample. Error bars represent standard deviations of four measurements

on the same sample. [62]

We measured a hydrodynamic radius, RH, and radius of gyration, Rg, for free

clathrin in solutions of different pH and found that, within experimental error, they

are almost independent of pH. As previously mentioned, clathrin baskets were re-
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moved by centrifugation prior to light scattering. Even so, at low pH clathrin con-

tinues to assemble, albeit at slower rates due to the reduced clathrin concentrations

resulting from the elimination of polymerized material. (The protein concentration

after centrifugation at pH 6.0 was 0.11±0.03 mg/ml). Thus, data were acquired as

soon as possible after the centrifugation step. Measurements took 2 to 10 minutes to

complete. Ignoring the data taken at pH 6.0, which were the most difficult points to

repeat because of the tendency of triskelia to self-assemble, one finds an average value

of Rg = 22.2 ± 1.8 nm and RH = 16.9 ± 0.3 nm, with no significant pH dependence.

Light scattering measurements of triskelia immersed in pH 7.0, 0.5 M Tris buffer yield

similar values (See Table 3.1 and 4.1).

The bold arrows in Fig. 3.4 indicate the values of RH and Rg calculated by

applying ZENO [54, 55] to the triskelial structure found in a D6 basket assembled

in the presence of AP2 assembly complexes (PDB code 1XI4[16]) mentioned in the

introduction. Interestingly, the RH and Rg derived from the solution measurements

are close to, but somewhat greater than, values calculated for the configuration of the

clathrin triskelion in the basket (see Table 3.1).

3.3.2 Calculations Using the Cryo-EM Structure of a Triskelion

The calculations of RH and Rg for the shape of a triskelion within a basket

were initially performed with the program HYDRO. A modified 2.1 nm resolution

structure for a clathrin triskelion in a D6 basket was generously provided by T.

Kirchhausen (triskelion.pdb[5]). These coordinates were determined by combining

partial structures determined by X-ray diffraction studies with cryo-EM tomography
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of a clathrin basket[65]. This structure was used to generate a rigid bead model

for a clathrin triskelion which the program HYDRO could then use to calculate an

approximate RH and Rg. The 192 coordinates of this structure located the centers of

contiguous beads, these centers being, on average, 0.76 ± 0.10 nm apart. the bead

diameter was chosen to equal the average leg thickness of 3.0 nm, determined from the

partial crystal structure for the α-solenoid clathrin proximal leg(PDB code 1B89[22]).

(See Fig. 2.2a.) In order to account for the β-propeller N-terminus, which was not

resolved by the cryo-EM tomography, this model was completed by the addition of

5.0 nm beads to the ends of the legs in accordance with the partial crystal structure

(PDB code 1BPO[11]), shown in Fig. 2.2b. The bead model described above for an

entire clathrin triskelion is shown in Fig. 3.10e.

The radius of gyration, Rg, was calculated with this model, but a 0.3 nm hy-

dration layer was added for the calculation of the hydrodynamic radius. (A single

molecule of water is approximately 0.3 nm.) The results of HYDRO calculations on

this structure are shown in the second and third rows of Table 3.1.

Recently, a higher resolution cryo-EM structure for clathrin in a D6 basket

became available[16]. In this structure, presented in the form of carbon alpha(Cα)

coordinates of each amino acid in the protein (PDB code 1XI4 [16]), the terminal

domains and part of the light chain peptides now resolved, at 1.25 nm resolution.

Similar to the method of Tirado Garcia et al.[66, 67], we approximated amino acids

by spheres of radius 0.36 nm. This radius was then increased by 0.3 nm to simulate

a hydration layer for calculation of RH. In this case the amino acids were each

approximated by a sphere of radius 0.66 nm. The resulting model contained 5100



53

Tab. 3.1: Experimental Values and Model Calculations of RH

and Rg of Clathrin Triskeliona[62]

RH ( nm ) Rg ( nm )

light-scattering measurementb 16.9± 0.3c 22.2± 1.8

HYDRO calculation using

a 21 Å resolution structure 14.8d 19.3d

with the hydration layer 15.3d

ZENO calculation using

a 12.5 Å resolution structure 15.4± 0.3 19.9± 0.06

with the hydration layer 15.8± 0.3

aThe RH and Rg of clathrin from light scattering is displayed in the

first row. Other rows show theoretical predictions based on clathrin

structures taken from cryo-EM measurements of D6 clathrin basket

assemblies.

bData taken on Clathrin in 0.1M MES buffer at pH values of 6.0-7.0.

cValues corrected for relative viscosity of buffer ηrelative = 1.05.

dHYDRO calculations do not have error estimates because it involves

a deterministic calculation.



54

spheres, which necessarily overlapped in order to represent the overall dimensions

of the triskelion (shown in Fig. 3.10 f’). HYDRO is limited to 2000 spheres and

thus could not be used to calculate RH in this case. Instead, ZENO [55] was used

to perform the hydrodynamic calculations. Results of these calculations are shown

in rows four and five of Table 3.1. Due to the complexity of this model convergence

is slow, and uncertainties (which are shown next to each calculated value) should be

noted.

3.3.3 Calculations Using a Segmented Bead Model

In order to estimate the sensitivity of Rg and RH to changes in clathrin pucker

and leg bending, I used a simpler model of a clathrin triskelion (see Fig. 3.5).

While our model differs from the protein structures described above, it still captures

essential features and uses recent estimates of the dimensions of the clathrin heavy

chain and terminal domain. Each leg was given a length of 52 nm, in correspondence

with measurements made from transmission electron microscopy (TEM) images of

clathrin [17, 9, 10]. In order to model the solution structures for comparison with

DLS data, a bead diameter of 3.0 nm, derived from the partial crystal structure for

the clathrin proximal leg (PDB code 1B89[22]), was augmented by an additional 0.6

nm to approximate the effect of a single layer of bound water needed when calculating

RH. Thus, sixteen beads (total diameter 3.6 nm) were used, with centers spaced 3.0

nm apart. In contrast, the calculations of Rg were performed for structures modeled

with 16 beads of 3.0 nm diameter, as the layer of bound water should be essentially

invisible in static light scattering measurements. One sphere of the same diameter
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Fig. 3.5: Diagram of simple model of a clathrin triskelion showing dimensions used in our

model. Arrows pointing towards a circle indicate the radius of the circle. Lengths

are in nanometers and angles are in degrees. The dotted lines indicate the added

hydration layer.
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was also placed at the hub where the legs join. A larger bead of diameter 5.0 nm

was added at the end of each leg to account for the terminal domain, in accord with

the aforementioned partial crystal structure (PDB code 1BPO[11]). Again, when

calculating RH, an additional 0.6 nm was added to this bead to account for bound

water.

Fig. 3.6: Bead models defining pucker angle , leg bend angle and swivel angles used in

modeling. (a)The leg bend angle, ϕ, and (b) pucker angle, ψ, were varied from

30◦ to 180◦ and 30◦ to 90◦, respectively. (c) The swivel angle, χ, was varied

parametrically with the pucker angle according to the equation χ = 3(ψ − 30)/2,

where ψ is measured from the vertical axis shown in (b).

Each leg included a bend halfway down its length and an out-of-plane pucker

measured with respect to a perpendicular line passing through the vertex, defined by

the angles ϕ and ψ respectively. A third angle, the “swivel angle”, was varied along

the axis of the central leg segment parametrically with the “pucker angle” according

to the equation χ = 3(ψ − 30)/2. As the “pucker angle” is varied from 90◦ to 30◦

the “swivel angle” varies from 90◦ to 0◦ degrees. This equation was selected so that

the model structure would change from planar (Fig. 3.6a), similar to that seen in

TEM micrographs of individual triskelia on carbon or mica surfaces (Fig. 2.1a), to
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puckered (Fig. 3.6b and c), similar to the cryo-EM structures of a triskelion in a

clathrin coat(Fig. 2.1b and 2.3) as the pucker angle was varied. Three fold symmetry

about the perpendicular was assumed.

By changing the angles ϕ, ψ and χ, I was able to obtain a quantitative esti-

mate of the sensitivity of Rg and RH to the conformation of the triskelion as the

model changed from planar to puckered. I found that the radius of gyration is much

more sensitively dependent on conformation than is the hydrodynamic radius. Both

quantities, however, vary considerably for the cases studied, and together provide a

distinctive measure of any change in solution conformation. In Fig. 3.7 and 3.8, I

show RH and Rg calculated by HYDRO for different values of bend angle, ϕ, and

pucker angle, ψ and compare them with values measured from experiment (repre-

sented by the shaded planes). Note that at ψ = 90◦ there is no pucker, i.e., the

molecule is completely planar, and when ϕ = 180◦ the legs are completely straight

(see Fig. 3.6).

There is considerable degeneracy, in that several pairs of [ϕ, ψ] are consistent

with the measured values. To show this, I combined the information from Fig. 3.7

and 3.8 to produce Fig. 3.9. The upper and lower dark lines (blue and red) indicate

the locus of [ϕ, ψ] values commensurate with the measured Rg and RH respectively.

The upper and lower shaded regions in Fig. 3.9 indicate [ ϕ, ψ ] pairs yielding values

of RH and Rg, lying within one standard deviation of the respective measured mean

values. One can see there is a very narrow band of model conformations (indicated

by the overlapping crosshatched region) that are consistent with both the radius

of gyration and hydrodynamic radius measured by both static and dynamic light
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Fig. 3.7: Surface plots of modeled Rg compared with experimental value. Values of Rg

calculated for our model are shown in the thin black curves. The shaded surface is

a flat plane drawn parallel to the plane defined by the ϕ, ψ axes (relating to the

leg-bend and pucker angles in our model). It shows the average, experimentally-

measured, value Rg = 22.2 nm. Hence, the dark line indicates the locus of [ϕ, ψ]

values commensurate with the measured Rg.[62]
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Fig. 3.8: Surface plots of modeled RH compared with experimental value. Values of RH

calculated for our model are shown in the thin black curves. Similar to what

is shown in Fig. 3.7, the shaded surface is a flat plane drawn at the average

experimentally-measured value RH = 16.9 nm. The dark line indicates the locus

of [ϕ,ψ] values commensurate with the measured RH[62]
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Fig. 3.9: Combination of Fig. 3.7 and 3.8. Values of [ϕ, ψ] for which calculations based

on the segmented bead model match the values for both Rg (lower line) and RH

(upper line) determined from light scattering measurements. The upper and lower

dark lines (blue and red) are the respective dark lines of Figures 3.7 and 3.8

indicating the locus of [ϕ,ψ] values commensurate with the measured Rg and RH.

The upper and lower bands indicate those values of [ϕ, ψ] lying within one standard

deviation of the measured mean values of Rg and RH. The region of overlapping

bands indicates the range of angles that are compatible with the experimental data

from both SLS and DLS. Letters (a-d) indicate models in accord with experimental

data, (e) indicates the corresponding [ϕ, ψ] for a triskelion in a D6 basket (These

models are shown in Figure 3.10) ; extreme triskelion shapes corresponding to the

[ϕ, ψ] at the four corners of the graph also are shown. [62]
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scattering of free clathrin triskelia in solution. Some compatible structures are shown

in Fig. 3.10(a-d). I also indicate the conformations that correspond to the [ ϕ, ψ ]

values at the corners of the graph. The letter ”e” locates the [ ϕ, ψ ] pair that was

found to be most similar to structures shown in Fig. 3.10e’ and 3.10f’.

3.4 Summary and Discussion

Previous TEM investigations indicated a characteristic, pinwheel-like shape for

isolated clathrin triskelia absorbed to mica surfaces, the triskelia having a preferred

orientation that depends on the buffer in which they are suspended [17, 14]. Based

on these studies, quantitative analysis of images of differing handedness [17] led to

the inference that free triskelia are puckered, with their hubs raised above the plane

defined, by the ends of each of the legs. In those studies, to ensure that they did not

associate, the triskelia were suspended in buffers of pH 8.0 when affixed to the mica

substrates. I have expanded this work by using dynamic and static light scattering

to investigate the conformations of individual clathrin triskelia when free in solution,

also extending the investigation to a lower range of pH (pH 6.0 - 6.5). The experi-

mental shape descriptors are the radius of gyration, Rg, and hydrodynamic radius,

RH. By using light scattering, possible structural perturbations of the triskelia due

to interactions with EM grids are eliminated.

This study yields three main conclusions. First, I have confirmed that clathrin

legs are bent and puckered in solution. To obtain this result, I used HYDRO to cal-

culate Rg and RH for particular test structures and systematically varied parameters
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Fig. 3.10: Models that fit experimental measurement using SLS and DLS(a-d) and mod-

els based on cryo-EM measurements(e-f). (a-d)indicate the models specified

by the corresponding [ϕ, ψ], and (e-f) show models of a clathrin triskelion de-

rived from 2.1 nm and 1.25 nm resolution cryo-EM tomography of D6 barrels,

respectively[65, 16].
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to see which conformations are consistent with the measured data. Yoshimura et al.

[68], in a more limited study, investigated triskelia in slightly alkaline solutions (pH

8.0), but modeled them by two dissimilar planar objects when fitting either Rg or

RH. Using this approach, Yoshimura et al. concluded that the solution structures

of triskelia in low ionic strength TRIS and TEA buffers (pH 8.0) are not discernibly

different, even though triskelia in such samples demonstrate a different handedness

when placed onto mica surfaces. In this study I use identical nonplanar models when

calculating Rg and RH to determine the solution conformations of the triskelia.

Second, there is a difference between the solution and basket associated confor-

mations. Cryo-EM of small D6 barrels yields coordinates of a puckered triskelion[65].

Quantitative predictions of Rg and RH calculated for these shapes differ from val-

ues measured for triskelia in solution. However, the structures are relatively close,

indicating that the insertion of a triskelion into such an assembly does not require

that it undergo a major conformational change. In this regard I note that baskets

of differing sizes are found even when they are reconstituted in vitro from purified

clathrin alone [14, 69, 13], and that slight differences in leg conformation are observed

when one compares triskelia localized to different positions in baskets reconstituted in

the presence of AP2[65]. Moreover, the baskets are limited in size (few exceeding ca.

120 nm in diameter), suggesting that, beyond a certain point, a conformation-linked

unfavorable energy term may overwhelm favorable interaction energy gained due to

the association of the clathrin legs[70, 58]. That these might be mechanical in nature

is suggested by the fact that large reconstituted clathrin structures are observed only
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when the triskelia lack distal segments, in which case leg bending is suppressed and

large, essentially flat, structures are observed[71].

Finally, significant conformational changes in clathrin triskelia are not observed

across the pH range known to make the difference between clathrin cage assembly

and disassembly. It has been observed that, within experimental error, Rg and RH

do not change as the pH is lowered from 7.0, where basket formation is inhibited,

through the ”assembly transition” ( occurring at pH 6.5 → 6.3), to a value (pH

6.0) where essentially all triskelia are rapidly incorporated into baskets. One might

have expected conformational changes to occur as conditions were varied from those

that disfavor basket assembly to those which induce polymerization. However, as

previously mentioned, basket formation is affected by attractive interactions between

clathrin legs that are resisted by leg bends and other triskelion shape changes. Thus,

our failure to find significant conformational change is important, as it suggests that

lowering the pH may affect the mechanical properties of the triskelia (e.g., the rigidity)

or enhance inter-leg interactions that favor basket formation (e.g., by changing the

ionization state of histidine groups[72]).

The light scattering methods employed in this study are not sufficiently sensitive

to demonstrate very small (sub nanometer) changes in the solution structure of the

triskelia. Other methods could provide information about triskelia in solution. How-

ever, several that immediately come to mind are not yet developed to the point where

they can be usefully employed to study molecules of such size. NMR spectroscopy, for

example, currently is limited to proteins whose molecular weight does not exceed ca.

40-50 kDa, whereas triskelia have a molecular weight that is an order of magnitude
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greater (> 600,000 Da). Similarly, cryo-EM is problematic due to the irregular shapes

of the triskelia and the slenderness of their legs. Analytical ultracentrifugation in ef-

fect provides the same information as does DLS (the Svedberg coefficient, S, which

is obtained by fitting sedimentation data to the Lamb equation[30], can be directly

related to RH) but, by itself, does not yield enough information to discriminate be-

tween various model conformations. Measurements of Rg (which is more sensitive to

triskelial shape than is RH) are needed if one wishes to narrow the range of possible

structures and thereby eliminate uncertainty about triskelial shape. By using DLS,

one is able to determine RH on the same sample as that used for the measurement of

Rg.

In summary, this study utilizes DLS and SLS techniques, in a consistent way,

to study the solution structures of clathrin triskelia. It is concluded that a triskelion

has an intrinsic pucker, that the solution structure differs from that of a triskelion in

a D6 basket, and that large conformational changes do not occur as the pH is lowered

below the assembly transition.

The wavelength of light is just short enough to determine information about

the triskelion structure. In the next chapter I will describe small angle neutrons

scattering (SANS) experiments that were performed in isolated clathrin triskelia in

solution. These measurements will be similar to SLS but will extent to higher q

probing the triskelion on shorter length scales than light.



4. SMALL ANGLE NEUTRON SCATTERING FROM CLATHRIN

IN SOLUTION

4.1 Introduction

In addition to visible light scattering techniques that probe the diffusion coeffi-

cient and radius of gyration of a molecule, we can use other methods to noninvasively

measure physiochemical properties of clathrin that are related to its structure in so-

lution. In this chapter I describe small angle neutron scattering (SANS) experiments

performed on clathrin triskelia. The scattered intensity measured by static light scat-

tering, described in Chapter 3, gave the radius of gyration when fitted by a Gaussian

model function: I(q) ≈ e−
1
3
(Rgq)2 . SANS allowed us to measure the continuation

of the scattering function beyond the Gaussian Guinier regime. Since the neutron

wavelength is much smaller than that of light (5.5Å for SANS as opposed to 5145

Å for SLS), it was hoped that measuring the scattering function at higher resolution

might give us more information about the protein structure than the Rg, which is the

second moment of the particle distribution function, ρ(~r) defined in Section 2.2.7.

In early diffraction studies, Debye and others, using Eq. 2.16, evaluated the

scattering function in a few simple cases for molecules of different shapes which were

suspended in solution[36, 34, 35]. They found, for example:
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1. A uniform and spherical scattering density of radius a, (See Eq. 2.17.):

P (q) =
9(sin(qa)− qa cos(qa))2

q6a6
; (4.1)

2. A non-uniform spherical scattering density with a Gaussian radial mass distri-

bution function of width Rg, ρ(r) = e
− r2

2R2
g , corresponding to a random coil (or

Gaussian chain):

P (q) =
2

R4
gq

4

(
e−R2

gq2 − (1−R2
gq

2)
)

; (4.2)

3. An infinitely thin rigid rod of length L:

P (q) =
2

qL

∫ qL

0
dx

sinx

x
− 1

(qL/2)2
sin(qL/2)2. (4.3)

Cases 1 and 3 are useful for some particles that have well-defined spherical and

rod-like shapes, such as some viruses. Case 2 is useful for very flexible objects of any

type (most studied are different types of linear, star and branched polymers) where

dynamics and fluctuations are on very fast timescales compared with measurement

or diffusion times.

Others have calculated the effect of flexibility for a semi-flexible linear chain[73]

and found a transition from q−2 behavior of the scattering function for a random coil

(case 2) to the q−1 of a rigid rod (case 3). The transition occurs at a value of q that

is related to the persistence length (a measure of flexibility) of the linear chain. This

connects the limiting cases between case 3 and case 2 with increasing flexibility.

For a number of reasons, the clathrin triskelion is distinct from many other

macromolecules and proteins that have been studied by neutron diffraction. The

first reason is that the clathrin triskelion is a very large macromolecular complex
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containing about 92,000 atoms. Another is that the clathrin triskelion has a three

armed pinwheel-like tertiary structure, as mentioned earlier. Because of the triske-

lion’s large size and strange shape, it may be expected that the previous models,

originally investigated by Debye and others and frequently used to interpret experi-

mental measurements on smaller molecules of a simpler geometry, may not fit. It was

thought that a more appropriate model may be required based on other structural

measurements performed with other techniques on triskelia in various environments.

The angular dependence of the scattered intensity from a randomly oriented

molecule of arbitrary shape, approximated as a collection of N identical scatterers,

can be calculated using the Debye equation (See Section 2.2.5),

P (q) =
N∑

i=1

N∑

j=1

fi(q)fj(q)
sin(qrij)

qrij

(4.4)

where f(q) is the scattering amplitude of a single scatterer. For a sphere of radius a,

f(q) is given by Eq. 2.17, f(q) = 3(sin(qa)− qa cos(qa))/(qa)3 and Eq. 4.4 becomes

Eq. 2.20 of Section 2.2.

Neutron diffraction has been used to verify protein structures obtained by other

techniques. For example, one can compare structures measured by X-ray diffraction

from crystallized samples or electron microscopy with that of neutron scattering from

protein in solution where the molecule is in a more natural environment[74, 75].

4.2 Experimental Methods

Small angle neutron scattering (SANS) measurements were performed on puri-

fied clathrin triskelia in solution in order to extend the SLS measurements, discussed
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in Chapter 3, into a region of higher q-values, corresponding to shorter length scales.

Measurements were made on samples of purified clathrin in disassociation buffer, 0.5

M Tris (2-amino-2-hydroxymethyl-1,3-propanediol) pH 7.0, in H2O and in basket as-

sembly buffer, 0.1 M MES (2-(4-morpholino)ethanesulphonic acid), at low and high

pH (6.0 and 7.0) in H2O. This experiment was done in order to determine if the scat-

tering function from purified clathrin triskelia in solution was dependent on buffer

type or pH. In order to reduce incoherent scattering, SANS measurements were made

on clathrin in D2O buffers, making it possible to take measurements at even higher

q-values than in an H2O solvent.

4.2.1 Sample Preparation

Clathrin protein was purified from coated vesicles of bovine brain as discussed

in Chapter 3.

Clathrin samples in D2O were dialyzed into D2O buffers at a pD∗ value of 7.0

for the sample measured in disassociation buffer, and at pD∗ values of 6.0 and 7.4 in

basket assembly buffers. It should be noted here that pD∗ values reported were all

measured by a glass electrode pH meter and so read at a value of 0.4 units below the

actual pD(= − log10 |[D+]|):

pD = pD∗ + 0.4 units.

On the day of the SANS experiment, all samples were centrifuged for 15 min

at 83,000 rpm using a Beckman MLA130 rotor (corresponding to an acceleration of

∼ 400, 000 g). The concentration after centrifugation was between 2.6 and 3.1 g/L.
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Samples were then diluted into the buffer used for dialysis to a protein concentration

of between 1.5 and 2.4 g/L. This was done so that the volume would be ∼ 300 µL,

filling up the entire cuvette.

For low and high pH MES samples, purified clathrin samples at a concentration

of 3.2 g/L in 0.5 M Tris buffer at pH 7.0 + 3 mM DTT were dialyzed overnight, at

a temperature of 4◦C in 10,000 molecular weight dialysis cassettes (Pierce Bio), into

30 mL of 0.01 M Tris buffer at pH/pD∗ 8.0 + 3 mM DTT in H2O/D2O. Immediately

prior to the experiment, 1/10 volume of 1M MES buffer was added to a clathrin

sample. For samples in D2O, 1/10 volume of 1M MES in D2O was added to the

clathrin sample. Each sample was then loaded into a 1 mm thick quartz cuvette.

For the clathrin sample in 0.5 M Tris D2O buffer, a purified clathrin sample

at a concentration of 3.2 g/L in 0.5 M Tris buffer of H2O at pH 7.0 + 3 mM DTT

was dialyzed overnight, at a temperature of 4◦C in 10,000 molecular weight dialysis

cassettes (Pierce Bio), into 30 mL of 0.5 M Trizma in D2O. The sample was then

loaded into a 1 mm thick quartz cuvette.

0.5 M Tris D2O buffers were made by the addition of Trizma (Tris-HCl c© Sigma-

Aldrich) to 99.9% D2O. This dissolved to a pH of 5.6 and allowed us to add NaOH

dissolved in D2O to get to pD∗ 7. The final buffer contained ∼ 97% D2O due to the

inadvertent addition of 3 mL of H2O and 750 µL of 0.5 M DTT in H2O to 120 mL

of D2O buffer (experimental error).

Concentrations were measured by UV absorbance at a wavelength of 280 nm as

described in Chapter 3.
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4.2.2 Light Scattering

All SLS and DLS measurements of clathrin in solution were made as described

in Chapter 3.

4.2.3 Neutron Scattering

Experiments were performed on the NCNR NG-3 30 meter Small Angle Neutron

Scattering Instrument. A diagram of the instrument is shown in Fig. 4.1. The

wavelength of neutrons used was 5.5 ± 0.4Å (0.8Å FWHM) at sample to detector

distances of both 13.16 and 5.00 meters. q-values ranged from ≈ 0.003 to 0.04 Å
−1

and

0.01 to 0.1 Å
−1

, respectively. Multiple data files were recorded for acquisition times

between 15 minutes to 1 hour and were later added together. Total data acquisition

times for each sample were between 3 and 5 hours per sample. Protein concentrations

were between 1.5 and 2.4 g/L. Neutron transmission was 83-86% in D2O and ∼ 52%

in H2O. Typical raw data are shown in Fig. 4.2 for a detector distance of 13.2 m and

in Fig. 4.3 for a detector distance of 5m. Circular averages were done in order to

improve data statistics. Background scattering was measured for empty cuvettes (for

1 hour) and buffers in both H2O (4 hours) and D2O (2 hours).

4.3 Results

4.3.1 Testing D2O as a Solvent for Clathrin

Due to the absence of hydrogen in the sample, higher signal to background can

be achieved during a neutron scattering experiment when D2O ( 2H2O ) is used as a
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Fig. 4.1: (top)Diagram of SANS NG3 instrument used: “Cold neutrons from the source

pass through a multi-disk mechanical velocity selector with variable speed and

pitch, enabling both the mean wavelength and wave-length resolution to be varied.

The monochromatic beam is collimated by circular pinhole irises in a 15 m long

evacuated pre-sample flight path. The source iris can be preceded by up to eight 1.5

m guide sections that can be shifted in or out of the beam. The beam divergence

and flux on the sample can thus be varied by changing the effective source-to-

sample distance from 4 m to 16 m in 1.5 m increments. The Instrument is designed

to cover a wide q-range, from 0.0015 to nearly 0.6 Å−1.” Figure and caption

taken from http://www.ncnr.nist.gov/instruments/ng3sans/index.html. (bottom)

A schematic diagram of the physically relevant details of the SANS instrument.
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Fig. 4.2: Raw SANS data of clathrin triskelia in D2O at a detector distance of 13 meters. A

1 hour exposure of clathrin triskelia susspended in 0.5 M Tris pH 7.0 D2O buffer.

The color scale is in counts/second. The bottom and left axes in the image are

pixel numbers. The top and right axes are in units of Å−1. The sample to detector

distance was 13.16 meters. The graph on the right shows a circular average of

the image on the left in absolute units (1/cm). The protein concentrations was

measured to be 1.45 mg/mL by UV absorbance.
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Fig. 4.3: Raw SANS data of clathrin baskets in D2O at a detector distance of 5 meters. A 1

hour exposure of clathrin baskets in 0.1 M MES pH 6.0 D2O buffer. (Compare to

Fig. 4.2) The sample to detector distance was 5 meters. The protein concentration

was measured to be 2.28 mg/mL by UV absorbance.

solvent. This is because D2O has a smaller incoherent scattering cross section than

H2O for neutron scattering. (See Table 2.1) The result is that a lower background

scattering is achieved in the angular intensity profile. This can be readily seen by the

higher transmission efficiency in the D2O samples, which was ∼83-86% in D2O and

∼ 52% in H2O.

D2O has many of the same properties as H2O, but it has been found to affect

some biological macromolecules[76, 74] and therefore should be tested as a solvent in

each particular case. It was necessary to check that clathrin remains folded properly

and maintains its functionality when D2O is used as a solvent. For this reason light

scattering experiments were performed on clathrin triskelia dissolved in D2O buffers.

For comparison, neutron scattering was performed on protein samples in H2O

as well. In those samples our sensitivity was limited to q values for which the neutron
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scattering intensity due to the presence of protein was on the order of or larger than

the incoherent scattering due to the solvent. In practice, this limited us to q values

below 0.025 Å−1 as can be seen by the magnitude of the error bars on the experimental

SANS data shown in Fig. 4.6.

Clathrin Maintains Its Structure in D2O

To test the stability of clathrin in D2O, both static and dynamic light scatter-

ing measurements were performed. In light scattering, different solvents can affect

measurements through changes in relative index of refraction between the solvent and

solute, which will affect q dependence as well as the intensity of the scattered light.

Another is a change in viscosity, which will affect the diffusion of the particles and

affect the DLS measurement. The index of refraction for D2O, shown in Table 2.1,

is very close to that of H2O. The viscosity was found to increase by 22% in D2O, by

dynamic light scattering from polystyrene spheres of radius ∼ 60nm, consistent with

values found in literature[77, 78]. Light scattering measurements of clathrin triskelia

in both solvents were comparable once a correction was made in the DLS measure-

ment for a difference in viscosity between the two solvents. Viscosity-corrected results

of the light scattering measurements made on clathrin in both H2O and D2O buffers

are shown in Table 4.1.

Clathrin Assembles Baskets in D2O

In H2O (and in 0.1 M MES buffer), clathrin triskelia will rapidly assemble below

a pH of 6.5[14]. In order to test whether clathrin will function in a D2O solvent,
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Tab. 4.1: Experimental Values of RH and Rg of Clathrin in 0.5 M Tris in both H2O and

D2O solvents.[79]

RH ( nm ) Rg ( nm )

H2O 15.7± 0.1b 22.0± 0.5

D2O 15.6± 0.2b 19.5± 0.9

aMeasurements were made by light scattering experiments.

bValues corrected for relative viscosity of

D2O (ηD2O = 1.22) [77, 78] and buffer, (η0.5MTris = 1.18).

clathrin basket assembly in 0.1 M MES buffers made with both H2O and D2O was

monitored by light scattering, at pH and pD∗ values between 6.0 and 7.2. The extent

of basket assembly was monitored dynamically by DLS and by a final pelleting assay

in a Beckman ultracentrifuge[80] 24 hours after the initial addition of MES buffer

(the initiation of basket assembly).

In order to capture the time dependence of the hydrodynamic radius of clathrin

by DLS during assembly, it was necessary to reduce the correlation time from 2

minutes to 5 seconds. If the acquisition time was larger than this, the hydrodynamic

radius was overestimated during periods of rapid basket assembly. This caused larger

errors in estimation of the hydrodynamic radius, but allowed a rough characterization

of size and fraction of polymerization. Both hydrodynamic radius and absolute inten-

sity were monitored. The combination of the scattered light intensity along with the

intensity correlation function showed definitively that clathrin triskelia maintained
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Tab. 4.2: Fraction of Clathrin in Pellet after 24 hours

in H2O and D2O.[79]a

pH/pD∗ H2O D2O

7.0/7.2 (0) (0)

6.5 (0) 0.20

6.2 0.53 0.65

6.0 0.60 0.89

a Measurements of protein concentration were made by

UV absorbance at a wavelength of 280 nm. The

absorption coefficient of ε280 was estimated to be 1.07

g−1 cm−1 from the amino acid sequence[61].

both structure and function in D2O. Scattered intensity and hydrodynamic radius vs.

polymerization time are shown in Fig. 4.4.

After 24 hours each sample was centrifuged at 10,000 g for 15 minutes to es-

timate the fraction of protein assembled into clathrin baskets. Polymerized fraction

vs. pH is shown in Table 4.2 and Fig. 4.5[80].

Clathrin baskets assembled faster in D2O buffer than in H2O buffer for a given

measured pD∗ value and pH. Clathrin could also assemble at higher pH values in

D2O than in H2O buffers (e.g. pH/D∗ 6.5). This is even more surprising, given the

fact that the glass electrode meter measures a lower pD∗ value than the actual pD,

as mentioned in Section 4.2( e.g. pD∗=6.5 → pD=6.9). This promotion of basket

assembly by D2O is still not fully understood and is a topic of active research.
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Fig. 4.4: Light scattering measurements show clathrin assembles faster in D2O buffer than

H2O buffer at pH and pD∗ values of 6.0 and 6.2. (as measured by meter). Baskets

do not assemble in D2O or H2O at pH or pD∗ values of 6.5 and 7.2. For comparison,

clathrin basket assembly is shown in H2O at a pH value of 6.0 and 6.2. All

experiments were conducted at room temperature.[79]
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Fig. 4.5: Fraction of clathrin pelleted after 24 hours vs. pH/pD∗ in H2O/D2O (from Table

4.2).[80]

4.3.2 Neutron Scattering and Rigid Models

SANS data were compared with theoretical curves based on rigid bead models

of clathrin triskelia identical to those used to fit experimental light scattering data

from Chapter 3. Calculations of the scattering function, P (q), were made using Eq.

4.4 for bead models based on the 21 Å and 12.5 Å resolution cryo-EM structures of a

clathrin triskelion when assembled into a D6 basket with AP2[65, 16]. As in Chapter

3, for the highest resolution model (PDB Code 1XI4[16]), a bead of radius 3.6 Å was

used to represent each amino acid residue resolved in the structure. Each bead is

centered at the coordinates of the Cα atom of the corresponding amino acid.[67, 66]

A lower resolution model used consisted of 52 beads. This model was used

to estimate the affect of changes in conformation of the triskelion (see Fig. 3.6) on

the calculated theoretical scattering function. The 16 beads in the leg of the low
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resolution models have a radius of 15 Å, corresponding to about 12 kDa of protein

or approximately 110 amino acid residues. The terminal domains are modeled as

slightly larger beads, having a radius of 25 Å each. (See Fig. 3.5.) A visualization

of the models as well as results of the calculations can be seen in Fig. 4.6 and 4.7,

along with SANS data taken on clathrin triskelia in 0.5 M Tris at pH 7.0 in H2O.

Two characteristic features are observed after applying Eq. 4.4 to these rigid

bead models. They are a minimum and secondary maximum at q values just outside

of the central Guinier regime. This dip occurs because of destructive interference

of the scattered wave from scatterers in different legs of the triskelion. It does not

occur, for example, in calculations done on a single leg (Shown in Fig. 4.8), and

seems to be sensitively dependent upon the relative distance and positions between

the legs and the out of plane pucker of the triskelion. (See Fig. 4.9) This feature

seems to decrease in prominence as the molecular model is flattened parametrically.

A noteworthy observation from the SANS data in Fig. 4.6 and 4.7 is that this dip,

calculated for the puckered triskelial models, does not exist as prominently in the

experimental data. It occurs only as a shoulder or plateau just outside the low q,

“Guinier regime.” This leads us to speculate on the reasons for the discrepancy

between experiment and our models.

Another interesting feature of the experimental SANS data is the power law de-

cay of the scattered intensity noted for large values of the magnitude of the scattering

vector q. It falls off somewhere between the 1/q behavior of a rigid rod model and

the 1/q2 behavior of a random coil (∼ q−1.23 in D2O). This can be seen in Fig. 4.6

where the solid black lines indicate the slopes.
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Fig. 4.6: SLS and SANS data and calculated scattering function of a cryo-EM model. SLS

and SANS data of clathrin in 0.5 M Tris in H2O. A constant background of H2O

buffer was subtracted of ∼ 1 cm−1. The SLS data (in counts per second) was

scaled to the SANS data. The dotted line shows a scattering function calculated

using Eq.4.4 for cryo-EM structure of clathrin in a D6 basket. The model is shown

in the upper left-hand corner. The inset shows the graph in a linear plot. The

calculated scattering function, which is normalized to 1, was multiplied by a factor

of 0.63 cm−1 in order to get best agreement with both SLS and SANS data. The

solid black lines indicate the power laws 1/q2 and 1/q as indicated corresponding to

the large q scaling of a flexible Gaussian chain model and a rigid rod respectively.
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Fig. 4.7: SLS and SANS data and calculated scattering function of rigid bead models

of clathrin. (Consult Fig. 4.6.) The dotted line shows a scattering function

calculated using Eq. 4.4 for 4 models of a clathrin triskelion made up of 52 beads

and shown above in (a)-(d). These are the models that fit the DLS and SLS

measurements from Chapter 3. The inset shows the graph in a linear plot. The

calculated scattering function which is normalized to 1 was multiplied by a factor

of 0.66 cm−1 in order to get best agreement with both SLS and SANS data.
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Fig. 4.8: The calculated scattering function of triskelion leg (upper curve) and a complete

triskelion with three tegs (lower curve). The model used was the a high resolution

cryo-EM structure of a triskelion in a D6 basket. The model is shown in Fig. 3.10f

and Fig. 4.6.[16]
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Fig. 4.9: Surface plot variation of scattering function with pucker angle. A surface plot

showing changes in the calculated scattering function for a 52 bead triskelion model

as the pucker angle, ψ, is varied from 90◦ to 30◦ and swivel angle, χ , is varied

parametrically with the pucker angle according the the equation χ = 3(ψ− 30)/2.

The leg bend angle is fixed at φ = 120◦.
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4.3.3 Flexible Models

For a completely flexible model of a linear chain polymer, the scattering function

is given by Eq. 4.3. A flexible model of a triskelion as a fully flexible molecule of three

connected linear chains takes into account interference between scatterers in different

chains as well as the same chain. The scattering function still falls of asymptotically

as q−2 at large q and is described by the following equation (from Teraoka[81]):

P3(q) =
6

R4
gq

4

(
e−

1
3
R2

gq2

(e−
1
3
R2

gq2 − 1) +
1

3
R2

gq
2
)

(4.5)

This flexible model for a clathrin triskelion does not fit SANS data at large values of

q. This can be seen in fits to SANS data from clathrin suspended in H2O buffer, Fig.

4.10 (0.5 M Tris pH 7) and more clearly in fits to SANS data from clathrin suspended

in D2O buffer, Fig. 4.11 (0.5 M Tris pH 7) where data could be taken at distances of

13 meters and 5 meters, measuring the scattering function out to q = 0.1Å−1

4.3.4 Smearing Caused by a Wavelength Distribution

In the NG3-SANS instrument, neutrons from the cold source pass through a

multidisk mechanical velocity selector with variable speed and pitch, enabling both

the mean wavelength and wavelength resolution to be varied since the neutrons wave-

length is determined by its velocity by the de Broglie relation: λ = h
mv

. In our

experiments the mean wavelength of neutrons was 5.5 Å and the full width at half

maximum was 0.8 Å.

In the calculation of model scattering functions already presented, it is assumed

that the incident and scattered wave vectors of interfering plane waves, ~k0 and ~ks, have
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Fig. 4.10: SLS and SANS data in H2O buffer and fit to flexible three-armed star polymer

model. (Compare to Fig. 4.6.) The solid line shows a fit to a calculated scat-

tering function for a fully-flexible three-armed star polymer (Eq. 4.5). Note the

deviation of the model function at high values of q.
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Fig. 4.11: SLS and SANS data of clathrin in D2O buffer and flexible three-armed star

polymer model. SLS and SANS data of clathrin was taken in 0.5 M Tris D2O

buffer. A constant background from D2O buffer was subtracted of ∼ 0.1 cm−1.

The SLS data (in counts per second) were scaled to the SANS data. The solid

line shows a fit to a calculated scattering function for a fully-flexible three-armed

star polymer (Eq. 4.5). Note the deviation of the model function at high values

of q.
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a fixed magnitude. If instead the incident beam has a wavelength dispersion, then

the magnitude of the scattering vector (q = 2|~k0| sin θ
2

= 4π
λ

sin θ
2
) will be described

by a Gaussian distribution function,

ρ(q) =
1√

2πσ2
q

e
− (q−q0)2

2σ2
q ,

where q0 is the average wavevector and σq is width, and the actual scattering function

will be averaged over the diffraction pattern from many wavelengths according to the

following equation[31]:

Pρ(q|q0, σq) =
∫ ∞

0
ρ(q′)P (q′)dq′ =

1√
2πσ2

q

∫ ∞

0
P (q′)e

− (q−q0)2

2σ2
q dq′. (4.6)

This transformation was applied to the triskelion model function1 for q0 = 5.5

Å and σq = 0.8 Å . The results may be seen in Fig. 4.12. One can see from

this calculation that smearing due to wavelength dispersion is insufficient to explain

disagreement between experiment and theory, in the case of rigid bead models shown

in Fig. 4.6 and 4.7.

4.4 Summary and Discussion

The SANS experiments described in this chapter are consistent with all of the

findings of the light scattering experiments of Chapter 3. We can rule out a rigid pla-

nar structure for the triskelion because it is not consistent with light scattering. The

radius of gyration of such a structure is too large and does not fit SANS measurements

1 Here I would like to thank and acknowledge S. Krueger, who kindly performed this calculation

for me and produced this graph.
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Fig. 4.12: SANS data and smeared scattering function of a cryo-EM model. SANS data

of clathrin in 0.5 M Tris in H2O. A constant background of H2O buffer was

subtracted of ∼ 1 cm−1. The red line shows a scattering function calculated

using Eq. 2.20 for the cryo-EM structure of Clathrin in a D6 basket. The blue

line shows the scattering function smeared using Eq. 4.6. The model and SANS

data were normalized to 1.
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at small values of q, even though the model calculations might fit at intermediate and

large q. Neither will a fully flexible Gaussian chain model adequately describe SANS

measurements at large q.

The most consistent models presented in this chapter are the rigid puckered

bead models (both from the cryo-EM model and the 52 bead models) which fit both

DLS and SLS measurements. These models are also in good agreement with SANS

measurements, except for the discrepancy at intermediate values of q. Inconsistencies

between the rigid puckered models and SANS measurements may be due to flexibility

of the triskelion, since we have ruled out other possibilities such as smearing of the

data from dispersion in neutron wavelengths (see Fig. 4.12) and polydispersity by

DLS measurements. Analysis of SANS data with a model triskelion in which flexibility

of the legs is taken into account will be discussed in the next chapter.

Secondary findings from this study involve the effect of a D2O solvent on clathrin

basket assembly in MES buffer. By DLS and a pelleting assay, it was observed that

D2O promoted basket assembly in two ways. It increased the rate of assembly at a

measured pD∗ equivalent to the pH in an H2O solvent (see Fig. 4.4), and increased

the total amount of protein assembled after a period of 24 hours (see Table 4.2[80]).

SANS measurements of clathrin baskets at pH 6.0 in D2O solvent seemed to

agree well with calculations based on the D6 basket cryo-EM structure. SANS mea-

surements of baskets formed in H2O at the same pH appeared larger (data not shown)

and did not fit the D6 basket structure. This is a subject of current study.

The fit of the rigid D6 basket model to SANS measurements of clathrin baskets

in D2O is qualitatively similar to that seen in our study of single triskelia (see Fig.
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4.13). This indicates that the D6 basket structure may be a good descriptor of clathrin

baskets assembled in D2O and that clathrin baskets, too, may be flexible. This also

is a subject of continued research.

Fig. 4.13: SANS data from clathrin basket assembled in 0.1 M MES D2O buffer at pH 6.0

and calculated scattering function based on cryo-EM model. (Shown in inset[65].)

The calculated scattering function which is normalized to 1 was multiplied by a

factor of 40cm−1 in order to get best agreement with SANS data. A residual

incoherent background of 0.05 cm−1 was added to the calculated scattering

function. A representation of the bead model used for the calculation is shown

in the inset.



5. BROWNIAN DYNAMICS SIMULATIONS OF A BEAD-SPRING

MODEL CLATHRIN TRISKELION

5.1 Introduction

In order to investigate the possible effects of thermal motions of triskelial legs on

the shape of the scattering function, we constructed a discrete bead-spring model of a

complete triskelion. We approximated intra-molecular forces on each subunit by linear

springs. A similar bead-spring model was originally proposed by Harris and Hearst[82]

to approximate semi-flexible linear polymers and later studied by Marques et al.[73].

In their model bonds between molecular subunits have identical spring constants

and bond angles are preserved by springs between next-nearest neighbors having a

different spring constant. Unlike the worm-like chain model of Kratky and Porod[31],

which uses a fixed bond length, the Harris and Hearst model allows for bond length

fluctuations determined by the strength of the springs and the temperature of the

reservoir. In our model, equilibrium bond lengths are determined from a structural

model and bond length fluctuations are suppressed by the use of stiff springs. This

will be discussed more thoroughly in Section 5.3. The details of our model serve to

preserve bond lengths (through nearest neighbor springs) and bond angles (through

next-nearest neighbor springs) while allowing flexibility of the triskelion legs. Bead
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size and equilibrium configurations were chosen according to the models described

in Chapter 3, which were based on structural and light scattering measurements of

clathrin triskelia (see Fig. 3.5). The models consistent with the measured RH and

Rg are shown in Fig. 3.10 a-d.

We simulated dynamics of the triskelion model in a thermal bath by integrating

a Langevin equation[83] of the form

mi
d2~xi

dt2
= ~Fi(t) + ~Fi(t), (5.1)

where mi is the mass of a subunit i, ~xi is the subunit position, ~Fi(t) is the total

intramolecular force on a subunit i at time t and ~Fi(t) is the random thermal force

on the subunit from the surrounding fluid.

5.2 Methods

5.2.1 Constructing a Bead-Spring Model of a Triskelion

The mass of each subunit, mi = 4π
3

ρa3
i , was calculated using the density of

ρ =1.38 g/mL (0.831 Da/Å3) consistent with experimental measurements of other

proteins[84]. The radius of a subunit from the model was ai = 15 Å for legs and

25 Å for terminal domains. The mass of each subunit of the legs was approximately

12 kDa and the mass of each terminal domain was 54 kDa. This approximated the

known molecular weight of a clathrin triskelion (Mw ∼ 651 kDa) to within 13%.

The intramolecular force on each subunit, ~Fi(t) was approximated by springs

of strength k between two neighboring subunits and springs of strength αk between

two next-nearest neighboring subunits. Each bead in the leg of a triskelion had, on
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Fig. 5.1: A sketch of the bead-spring model of a clathrin triskelion used in the Brownian

dynamics simulation. a) Connectivity of the vertex and legs of the triskelion

model. Jagged lines represent springs between neighboring subunits and dotted

lines indicate springs between non-neighboring subunits. b) Torsional motion of

the legs is partially prohibited by the addition of a single spring of strength k

between each termial domain. This is shown schematically in (c). c) Connections

between terminal domains in the triskelion model. These springs prevent the

rotation of the legs about the vertex as indicated by figure above. Some axial

rotation is still unconstrained about the axis defined by the triskelion vertex and

the end of the leg (shown by arrow). Figure (a) is based on a scheme introduced

in Marques et al.[73]
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average, four springs connected to it. Each terminal subunit, where there is only one

next-nearest neighbor, had two. The vertex where there were three nearest neighbors

and three next nearest neighbors was connected to other subunits by six springs. This

constrained the angles between each leg at the vertex. A schematic illustration of the

connections used between subunits is shown in Fig. 5.1.

In order to constrain the legs of the triskelion from twisting, each of the ter-

minal subunits was connected by a spring of strength k (identical to the strength of

springs between neighboring subinits in the legs). The legs, however, were left free

to swivel about the axis defined by the vertex and terminal domain of the leg (see

Fig. 5.1). This swiveling could manifest itself in a long timescale oscillation in any

shape dependent quantities calculated from the simulation. This motion could be

constrained by the further addition of springs in the model, but this was not done in

the calculations that are shown here.

The springs constrain the motion of each subunit to fluctuate about an equi-

librium structure. ~Fi(t) is a function of the coordinates of neighboring subunits and

for typical subunits can be written explicitly as

~Fi(t) = αk(~xi−2(t)− ~xi(t)− ~xi−2(0) + ~xi(0))

+k(~xi−1(t)− ~xi(t)− ~xi−1(0) + ~xi(0))

+k(~xi+1(t)− ~xi(t)− ~xi+1(0) + ~xi(0))

+αk(~xi+2(t)− ~xi(t)− ~xi+2(0) + ~xi(0)) (5.2)

The initial position of each subunit, ~xi(0), was chosen from the models shown in

Fig. 3.10. These are four rigid bead models that have the same hydrodynamic radius,
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rH , and radius of gyration, rg, as those measured by light scattering experiments

performed on clathrin triskelia in solution (see Chapter 3).

5.2.2 Estimating Model Parameters from Experimental Measurements of Clathrin

Triskelia

The leg length distribution[9] and the persistence length[10] of the legs of real

clathrin triskelia have been estimated from the analysis of variations in electron mi-

crographs of clathrin triskelia flattened on a mica surface. These estimates for the

elasticity of a triskelion leg will be used to choose the model parameters, k and α, of

our bead-spring model of a triskelion.

The Stretching Elasticity Estimated From a Distribution of Leg Lengths

The variability in triskelion leg lengths observed in electron micrographs can

give us an estimate of the longitudinal elasticity of a triskelion leg. In the study

of Kocsis et al.[9], 357 randomly chosen triskelion legs were digitized and digitally

straightened. The resulting data showed a Gaussian distribution of leg lengths (see

Fig. 5.2). The leg lengths, L, in the micrographs analyzed varied from 350 − 620 Å

with a mean of < L >= 516 Å and a standard deviation of σL = 43 Å.

In a continuous elastic medium, the force required to stretch an elastic material

of cross sectional area, A, is related to the strain ∆L
L

by the Young’s modulus, E of

the material[85],

F = −EA
∆L

L
(5.3)
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Fig. 5.2: Experimental variability in lengths of digitally straightened triskelion legs. (Top)

Reconstructed images of digitally straightened triskelion legs. (Bottom) Histogram

of leg lengths from 357 triskelion legs. The leg lengths in the micrographs analyzed

varied from 350− 620 Å with a mean of < L >= 516 Å and a standard deviation

of σL =
√

< (∆L)2 > = 43 Å. Figures 2 and 3 from Kocsis et al.[9]
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and the work, W, required to extend it is given by

W =
∫ ∆L

0

EA

L
xdx =

1

2

EA

L
(∆L)2.

In equilibrium, the average energy stored in a fluctuating leg can be related to the

temperature by the equipartion theorem:

< W >=
1

2

EA

L
< (∆L)2 >=

1

2
kBT.

This analysis gives us an estimate for the quantity EA
L

from the leg length distribution

measured by Kocsis et al.,

EA

L
=

kBT

< (∆L)2 >
∼ 240 DaÅ2/ps2

(43 Å)2
∼ 0.13 Da/ps2. (5.4)

In a discrete system of masses connected by springs with equilibrium separation, b,

and strength, k, the force related to an extension, δx, is given by

F = −kδx = −kb
δx

b

. By analogy to Eq. 5.3, we can see that the quantity kb is the discrete analog to

the continuous quantity EA. This allows us to estimate a value for k if the entire leg

were made up of a single spring of equilibrium length b = L.

k =
EA

L
∼ 0.13 Da/ps2. (5.5)

Since each leg in our model consists of 18 subunits (including the vertex and

terminal domain) and since each molecular subunit is connected to two springs on

average, one to its neighbor of strength, k, and one to its next nearest neighbor of

strength, αk, this network of springs results in a nontrivial relationship between the
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model parameters k and α and the stretching elasticity of our bead-spring model. This

relationship can be investigated by the analysis of the Brownian dynamics simulation

and will be discussed more in Section 5.3.

The Bending Rigidity of a Triskelion Leg Estimated from an Experimental

Distribution of Leg Shapes

Fig. 5.3: “Diagram of an elastic filament defining the tangent vector in two dimensions. As

the arc length increases, the tangent angles, θ(s) and θ(0) become uncorrelated.”

Figure and caption from Howard, 2001[85, Fig. 6.8].

Fluctuations in the shape of a linear filament can be characterized by a quantity

called the persistence length, Lp. The persistence length is a measure of the flexibil-

ity of a filament and can be determined experimentally from the spatial correlation

function of the tangent vector, θ̂(s) , along the filament where s is the arc-length mea-

sured along the filament(θ̂ and s are shown schematically in Fig. 5.3). The spatial

correlation function of the cosine between two tangent vectors, θ̂(0) and θ̂(s), at a dis-
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tance s from each other along the filament decays exponentially in three dimensions

according to

< θ̂(s) · θ̂(0) >= e−s/Lp (5.6)

where < · > denotes a time or ensemble average. Some examples of fluctuating

filaments of varying flexibilities, rigid (Lp À L), semiflexible (Lp ∼ L), and flexible

(Lp ¿ L), are shown in Fig. 5.4.

Fig. 5.4: “Two snapshots of slender rods of length L bent by thermal forces. The more

flexible the rod (the smaller the persistence length), the greater the curvature.”

Figure and caption from Howard, 2001[85, Fig. 6.7]

In a continuous elastic medium of Young’s modulus, E, and cross sectional sec-

ond moment, I =
∫

r2dA, the persistence length of an elastic filament can be related

to the flexural rigidity, EI, through the equipartition theorem. In two dimensions, the

energy stored in the deformation of an elastic filament of length, L and the tangent
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angle θ(s) =
√

2
L

∑∞
n=0 an cos

(
nπx
L

)
is given by

U =
1

2
EI

∞∑

n=1

(
nπ

L

)2

(an − a0
n)2

where a0
n is the Fourier mode an in the absence of forces[86, 10, 85].

In equilibrium the average energy stored in a Fourier mode, n, is 1
2
kBT :

< U >=
1

2
EI

(
nπ

L

)2 〈
(an − a0

n)2
〉

=
1

2
kBT.

The flexural rigidity can be related to persistence length, Lp, of a linear filament

by

Lp =
EI

kBT
.

The shape fluctuations in electron micrographs of triskelion legs can give us an

estimate of the bending rigidity of a triskelion leg. In the study of Jin and Nossal[10],

72 digitized electron micrographs of triskelion legs were analyzed to determine the

bending rigidity of a triskelion leg. Some examples of these micrographs and digital

triskelia are shown in Fig. 5.5.

Using this analysis, Jin and Nossal estimated the flexural rigidity of a triskelion

leg to be EI = 350 kBT Å using the first 5 Fourier modes. The analysis gives triskelion

legs a persistence length of 350Å or ξ
<L>

= 350Å
516Å

∼ 2
3

where < L > is the average

length of a triskelial leg. The persistence length, along with the estimate of stretching

flexibility,
√

(∆L)2 ∼ 43Å or

√
(∆L)2

<L>
∼ 43Å

516Å
∼ 0.08, can be directly compared with

calculations from the simulation of our bead-spring model of a triskelion to choose

appropriate values of the model parameters k and α.

Similar to the stretching elasticity, our bead-spring model, has a complex rela-

tionship of the model parameters k and α to the persistence length. This dependence
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Fig. 5.5: “Experimental variability in shapes of triskelia on mica . (Top) Electron micro-

graphs of triskelia on a mica surface. (Bottom) selected triskelion images, con-

structed from corresponding digitized coordinates.” The persistence length was

estimated by normal mode analysis to be Lp ∼ 350 Å. Figure and Caption from

Jin et al.[10]
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will be investigated by analysis of results from the Brownian dynamics simulation

and discussed more in Section 5.3.

5.2.3 Taking into Account the Solvent

The force on an intra-molecular subunit due to the solvent, Fi(t), in Eq. 5.1

may be split into a slowly varying frictional force proportional to the velocity of the

subunit, ζi
d~xi

dt
, and a rapidly varying force, F ′

i (t), that averages to zero

mi
d2~xi

dt2
= ~Fi(t)− ζi

d~xi

dt
+ ~F ′

i (t);
〈
~F ′

i (t)
〉

= 0, (5.7)

where ζi is the friction constant of a single subunit i. The friction constant on mole-

cular subunits was approximated by Stokes’ law ζi = 6πηai where η is the viscosity

of the surrounding fluid (ηWater = 0.01Pas = 602 Da

Å ps
) and ai is the radius of the

spherical subunit[87].

5.2.4 Integrating the Equations of Motion

New coordinates for each subunit of our molecule are determined by a simple

Eulerian integration of Eq. 5.7 in the diffusive limit, where ζ
m

∆t À 1 and the inertial

term, mi
d2~xi

dt2
, is small and can be ignored during integration[88, 89]. Explicitly, each

subunit position was evolved according to the algorithm

xn+1 = xn +
∆t

ζ
F ({xn}) + Xn (5.8)
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where xn+1 is the new subunit position, xn is the old subunit position, F ({xn}) is

the total intramolecular force on a subunit at time step n, ∆t is the time step and

Xn is a random displacement simulating thermal collisions with solvent molecules.

5.2.5 Approximating the Temperature

For the random variable Xn in Eq. 5.8, a uniform random distribution, ρ(Xn),

was used[88, 90]. The variance in Xn determines the temperature of the solvent in the

simulation. Explicitly, Xn is chosen from a uniform distrubution between ±√6Di∆t,

where Di = kBT
ζi

is the diffusion coefficient of the subunit i in the absence of other

subunits. This gives the second moment of Xn a value of 2Di∆t, shown below.

< X2
n >=

∫ a
−a ρ(Xn)X2

ndXn∫ a
−a ρ(Xn)dXn

=
1

3
a2 = 2

kBT

ζi

∆t = 2Di∆t

where,

ρ(Xn) = 1, |Xn| < a

= 0, otherwise.

We ignored hydrodynamic interactions between subunits in order to facilitate

the simulation. Incorporating hydrodynamic interactions between molecular subunits

in the dynamical simulation would have the affect of reducing the friction coefficient

on each subunit by hydrodynamic shielding from other parts of the molecule. There-

fore any diffusion coefficient calculated from the mean squared displacement of the

molecule in the simulation would be too large. Structural dependent quantities cal-

culated from the simulation might also be affected.
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We are interested in fluctuations in the shape of the triskelion molecule. Since

we are underestimating the frictional coefficients of the subunits, we should consider

that the conformational fluctuations calculated from these simulations may be overly

dampened. Since the simulations are performed in the Brownian dynamics limit, the

friction coefficient scales out of the equation and may only effect the time scales of

conformational fluctuations and not the overall magnitude of fluctuation. The most

significant affect of hydrodynamic interactions may be the coupling and consequent

correlation of the subunit positions that occur because of this term. The effect of

hydrodynamic interactions on Brownian dynamics and other stochastic simulations

is discussed thoroughly by McCammon et al.[91] and Pastor et al.[89, 87].

Choosing a Timestep ( Estimating Numerical Error )

The numerical integration of Eq. 5.7 has an error associated with it that is

dependent upon the time step ∆t used in Eq. 5.8. We can evaluate this error for

the simple case of a particle in a harmonic potential of strength k and a thermal

reservoir at temperature T[87]. The mean squared displacement < x2 > is given by

kBT
k

. Squaring Eq. 5.8 and taking the time average, denoted by 〈·〉 we get

< x2
n+1 > =

〈(
xn − k∆t

ζ
xn + Xn

)2〉

=

(
1− k∆t

ζ

)2 〈
x2

n

〉
+

(
1− k∆t

ζ

)
〈xnXn〉+

〈
X2

n

〉
.

We now assume that < x2
n+1 >=< x2

n > and 〈xnXn〉 = 0,

0 = −2k∆t

ζ

(
1− k∆t

2ζ

) 〈
x2

n

〉
+

2kBT

ζ
∆t,

〈
x2

n

〉
=

kBT

k

1

1− ε
; ε =

k∆t

2ζ
. (5.9)
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The time step, ∆t, was chosen such that the numerical error, ε, in 〈x2
n〉 of the

strongest spring used in the simulation, k, was 5%, or explicitly that ∆t = 1
10

ζ
k
.

Checking the Bead-Spring Model

In order to be certain that the forces were implemented correctly, the intramole-

cular force, F ({xn}) was checked for energy conservation using the Verlet algorithm.

This is a well known molecular dynamics algorithm used to integrate the dynamics of

Hamiltonian systems[92, 87]. The Verlet algorithm has no dissipative or friction term

and is not connected to a thermal bath. Explicitly, the new positions determined by

the Verlet algorithm are calculated from previous ones according to

xn+1 = 2xn − xn−1 +
∆t

m
F ({xn})

Subunits were initialized with a random velocity chosen from a uniform distri-

bution between ±
√

3kBT
mi

, our approximation of a Boltzman distribution. The energy

as a function of time is shown is Fig. 5.6. While the total energy fluctuates about

an average value, determined by initial velocities of each subunit, the average total

energy remains constant over both short (ns) and long timescales (µs).

The Computation of Time Averages from Dynamic Simulations

In order to determine how long to run the simulation for computation of a

meaningful time average of dynamic quantities in the simulation, the timescales re-

lated to internal modes of oscillation of the bead-spring model can be estimated and

any time average should be computed using a simulation that is run for intervals that

are longer than this timescale.
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Fig. 5.6: Energy conservation of a molecular dynamics simulation of a triskelion. This figure

shows average total energy, kinetic energy and potential energy per subunit per

kBT vs. simulation time for a triskelion model using the molecular dynamics

Verlet algorithm. The initial velocities of subunits were chosen randomly from the

interval {−
√

3kBT
mi

, +
√

3kBT
mi

}. Subunits were started in thier equilibrium positions,

so the total initial potential energy is zero. In this example the model parameters

were k = 100 Da/ps2 and α = 10. The timestep was 0.705 ps. Snapshots were

taken at 2.1 ns intervals.
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Since we are interested in computing a time averaged scattering function, we

will concentrate on fluctuations in the radius of gyration which is loosely related to

the width of the central peak in the scattering function. The radius of gyration can

be defined as the second moment of the mass distribution in a molecule. If ρ(~r) is the

mass (or scattering) distribution of a molecule, rg can be calculated for a bead-spring

model according to the equation

rg =
∫

V
d~r|~r|2ρ(~r)

If the molecule is modeled as a discrete set of spherical subunits where ~ri is a subunit

position with respect to the center of mass, ai is the subunit radius, and vi = 4π
3

a3
i is

a subunit volume, rg can be calculated according to the simple sum

rg =
1

N

∑N
i=1 vi|~xi|2∑N

i=1 vi

The time dependent radius of gyration, rg(t) = rg({~xi(t), ai}) of the bead-spring

triskelion model can be considered a dynamic variable and is a function of the bead

coordinates and radii. The temporal autocorrelation function of the instantaneous

radius of gyration can tell us something about the timescales with which the model

conformation, and therefore the scattering function, is fluctuating.

In the Brownian dynamics simulation, rg if found to fluctuate about an average

value (<rg>−rg0)

rg0
= 5% − 18% below the value of the rg for the rigid model, rg0 and

approaches the value, rg0 as the spring strength is increased (in the rigid model limit).

The RMS fluctuation in the rg is on the order of 10 Å and is a weak function of

spring strengths, k, and αk. The time averaged quantities < rg > and σrg for a few

different spring strengths are shown in Fig. 5.8.
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The temporal autocorrelation function of rg, denoted δrg = rg(t)− < rg > was

calculated by the following equation,

< δrg(τ)δrg(0) >

< δr2
g >

=
1
T

∫ T
0 δrg(t + τ)δrg(t)dt

1
T

∫ T
0 δrg(t)2dt

∼ e−τ/τc

and had an initial, rapid exponential decay in delay time, τc, between 5 and 13µs, for

different spring strengths, k. A few correlation functions are shown in Fig. 5.7 along

with their exponential fits.

Fig. 5.7: The temporal autocorrelation function of rg decays with a timescale on the order

of 10 µs. The correlation time showed some sensitivity to the spring strength,

k, of the triskelion model but did not seem to be sensitively dependent on the

model parameter α. Brownian Dynamics Simulations were run for a duration of

∼ 700 µs. 500 snapshots were taken at 1.4 µs intervals.
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Fig. 5.8: Variation of average radius of gyration, < rg > and standard deviation σrg =
√

< (δrg)2 > with spring strength, k. (Top) variation in the time average of the

rg with spring constant, k. The symbols show time averages from simulation for

two different values of bond angle spring strength parameter, α. The dotted line

shows the rg of the rigid model, rg0 = 235Å, for the model calculated. (Rigid

model is shown in Fig. 3.10a.) The time average, < rg >, approaches this value as

the spring strength, k is increased. (Bottom) the standard deviation of rg, denoted

σrg vs. the spring strength, k. The standard deviation, σrg , should approach 0 in

the rigid model limit, but may have a fixed value due to swivel motion of the legs

as previously discussed in Section 5.2 (shown schematically by the arrow in Fig.

5.1 c).
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5.3 Results

The Brownian dynamics simulation was run for several different values of k

and α at a temperature of 20 ◦C for a total duration of 700 µs. Computation time

varied with time step which in turn was dependent upon the strongest spring in the

simulation (αk) and the desired degree of accuracy (ε = αk∆t
2ζ

= 5%). 500 snapshots

of the configuration of each molecule were recorded durring the simulation.

For a given set of spring strengths, k and αk, the leg extension flexibility of the

bead-spring model was determined by the explicit calculation of temporal fluctuations

in leg lengths during the simulation. Triskelial leg length fluctuations were dependent

on the spring constants used, but were less than 1% of the total leg length for the

parameter range that was simulated.

The persistence length of the triskelion legs, Lp, was also found to be dependent

on the spring constants used in the simulation. This parameter was determined by

calculation of the spatial correlation function of the directional tangent vector cosine

according to Eq. 5.6. The tangent vector cosine was calculated, as a function of

arc-length s, with respect to a tangent vector defined between the vertex and the

first subunit of each individual triskelion leg. Examples of the calculated spatial

correlation functions for four different sets of spring constants are shown in Fig. 5.9 on

a semi-logarithmic plot. One can clearly see the straight line in these semi-logarithmic

plots indicating exponential decay in the correlation function. By the difference in

the slopes of the data one can also see the dependence of the persistence length on

the spring constant, k, and its independence of the parameter α for the two values
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studied. Once calculated, the correlation functions were fit to an exponential curve

with the decay length (the inverse slope of the straight line) giving a measure of the

persistence length, Lp. The persistence length varied between 200 and 1000 Å for the

range of model parameters studied. This can be compared with the experimentally

estimated value of Lp = 350 Åwhich was discussed in Section 5.2.2 and determined

by the analysis if electron micrographs (see Fig. 5.5).

Fig. 5.9: The time average of directional correlation of tangent vectors,

< cos(∆θ) >=< ∆~x(0)·∆~x(s)
|∆~x(0)||∆~x(s)| >, between subunits in a Brownian dynamics

simulation of a bead-spring model of a clathrin triskelion shows decay with

position, s. This decay defines a persistence length, Lp, of the simulated triskelion

leg. Symbols show time averages from the simulations. The dotted lines show

exponential fits to simulations for α = 10. ∆θ is the angle between tangent

vectors, ∆~x, at position at leg position the vertex, 0, and at position, s.
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In Fig. 5.10 the calculated persistence length of the simulation is plotted as a

function of spring strength, k, for two different values of the model parameter α. The

persistence length has an inverse square root dependence on the spring strength, k, as

shown by the dotted line fit. The experimentally estimated value of the persistence

length is shown by the dark black line drawn at a value of 350 Å. This corresponds to

a Brownian dynamics simulation with a spring constant of k ≈ 200 Da ps−2, which

has not been performed to date. The persistence length seems to be independent of

α for the two values simulated.

Snapshots from the simulation were used to calculate a series of instantaneous

scattering functions using Eq. 2.20. For each simulation, these functions were calcu-

lated and then averaged over time to produce an average scattering function which can

then be compared with experimental measurements. Four average calculated scatter-

ing functions with different triskelion flexibilities can be seen in Fig. 5.11 along with

SLS and SANS data taken on clathrin triskelia in 0.5M Tris at pH 7.0 in H2O.

The time averaged scattering function agrees with experimental SANS data from

isolated clathrin triskelia in solution for high, low and intermediate q-values where

the rigid model was insufficient (see Fig. 4.6 and 4.7). This shows that, while rigid

modeling was sufficient to explain average properties such as translational diffusion

coefficients and the radius of gyration (see Chapter 3), more information is included

in the complete scattering function. Extra information is contained in the SANS data,

and the measurements allow us to say something about the molecular flexibility and

dynamics of isolated triskelia.

As the rigidity of the bead-spring model is decreased, the dip and subsequent
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Fig. 5.10: The persistence length, Lp, depends upon the spring strength, k in a Brownian

dynamics simulation of a bead-spring model performed at room temperature.

Symbols show persistence lengths derived from the simulations. The dotted line

shows a fit to the symbols for α = 10. The inset shows Lp vs. frequency of

oscillation of a spring for a typical leg subunit of mass, 12 kDa. Lp is a linear

function of the frequency of oscillation, ω.
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peak in the scattering function at intermediate q-values is smoothed out. The dip and

peak in the time averaged scattering function becomes lower in amplitude eventually

becoming only a shoulder-like feature. It should be noted that this shoulder occurs

at the same value of q in which a shoulder is seen in the experimental data. If

the flexibility of the model is increased even more, then the feature at intermediate

values of q disappears. This very flexible model does not qualitatively agree with

either the experimental SLS and SANS data. In Fig. 5.12, the same four time-

averaged scattering functions with different model flexibilities are shown along with

SLS and SANS data taken on clathrin triskelia in 0.5M Tris at pH 7.0 in D2O.

(A different experiment than shown in Fig. 5.11) This experiment gives a higher

contrast between solute and solvent, allowing measurement of the scattering function

to higher q-values at a detector distance of 5 meters as well as 13 meters. In this

figure agreement between SANS data and the flexible model can be seen over the

entire q-range measured which extends over two and a half orders of magnitude.

5.4 Summary and Discussion

By SANS, we have confirmed previous estimates of triskelion structure in so-

lution as well as estimates of triskelion leg flexibility. We have shown that isolated

clathrin triskelia have a puckered structure on average but undergo large fluctuations

about this average puckered shape. The measured SANS scattering function suggests

that clathrin triskelia have a considerable amount of flexibility when free in solution.

The flexibility of triskelion legs may be important in describing clathrin assem-
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Fig. 5.11: SLS and SANS data and calculated scattering function of flexible bead-spring

models of a clathrin triskelion. SLS and SANS data of clathrin in 0.5 M Tris in

H2O. A constant background of H2O buffer was subtracted of ∼ 1 cm−1. The

SLS data (in counts per second) were scaled to the SANS data. The line show

time-averaged scattering functions calculated using Eq. 2.19, for four models of

a clathrin triskelion made up of 52 beads. These are the models that fit the DLS

and SLS measurements from Chapter 3. The time averages were calculated based

on the Brownian dynamics simulation described in Section 5. The simulations

were performed in water
(

η = 602 Da

Åps

)
at a temperature of 20 ◦C. The mass

density used was 0.831 Da

Å
3 . The spring constants used were k = 50, 100 and

200 Da/ps2. The factor α was 10. The time averaged scattering function which

is normalized to 1 was multiplied by a factor of 0.8 cm−1 in order to get best

agreement with both SLS and SANS data. A residual background of 0.015 cm−1

was also added to the calculated scattering functions.
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Fig. 5.12: SLS and SANS data of clathrin in D2O and calculated scattering function of

flexible bead models of clathrin. SLS and SANS data of clathrin in 0.5 M Tris

in D2O. A constant background of ∼ 0.1 cm−1, ascribed to the D2O buffer, was

subtracted. The SLS data (in counts per second) was scaled to the SANS data.

Similar to Fig. 5.11, the lines show time averaged scattering functions calculated

using Eq. 2.19 for four models of a clathrin triskelion made up of 52 beads. The

data shown were taken as described in Chapter 4.
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bly in many respects. It could be that triskelial flexibility is stabilized once positioned

in a clathrin lattice. This would explain why structures can be determined by cryo-

EM tomography and single particle analysis when these techniques are used to study

a complete clathrin lattice but are not able to be rendered for isolated triskelia. If

this were the case it would imply an entropic loss during clathrin lattice assembly,

which may be important in basket size determination and basket stability.



6. SUMMARY, DISCUSSION, AND FUTURE WORK

6.1 Summary

Early studies by Kirchhausen et al. involved the analysis of TEM micrographs of

clathrin triskelia deposited on mica surfaces. The triskelia tended to show a definite

clockwise or counterclockwise bend in the three legs that depended on the buffer

that was used for deposition[17]. It was argued that the different buffers modified

the interactions between triskelion molecules an the mica surface, thus differentially

depositing the triskelia “right side up” or “upside down.” This was also confirmed by

the measurement of average distances between terminal domains in the micrographs.

The distance between terminal domains was larger for the “upside down” triskelia

than for “right side up” triskelia. This was the first evidence that clathrin triskelia

had an intrinsic, three dimensional pucker in solution. A schematic illustration from

this study is shown in Figure 6.1.

Later TEM studies by Kocsis et al.[9] used digitization and particle averaging

of triskelia deposited on mica to determine a leg length distribution as well as the

average dimensions of different leg segments and an average two dimensional projec-

tion of the shape of single triskelia. Later analysis of these micrographs by Jin and

Nossal[10] indicated that triskelion legs were flexible with a persistence length of 350
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Fig. 6.1: “Schematic representation of the adsorption of clathrin to mica. Puckered clathrin

triskelia are shown approaching a mica surface from their concave(top) or convex

sides(middle). The bottom diagram provides top and side views of a triskelion,

showing the consequence of adsorption to mica. The dotted line illustrates the

outcome of the internal collapse that would result from a three-point landing.

This collapse would probably include a ”screwing” motion that would increase the

observed bends of the proximal/distal hinges.” (Figure and Caption adapted from

Reference [17])
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Å, approximately 2
3

the length of the leg. This was done by fitting normal mode

amplitudes (or spatial Fourier coefficients) to the equipartition theorem as described

in Section 5.2.2

The combination of light scattering and SANS experiments described in this

dissertation is consistent with previous work. They confirm both the interpretations

and the conclusions of previous measurements. In the analysis of the shapes of triske-

lia adsorbed to carbon films or mica surfaces, details about triskelial structure and

flexibility when they are in solution are inferred. However, since light scattering and

neutron scattering measurements are performed while the triskelia are free in solution,

they are direct, noninvasive, and nonperturbative.

The earliest analytical models of macromolecules required either complete flex-

ibility, in the case of Gaussian chain polymeric models, or complete rigidity, in the

case of the spherical, rod like, or ellipsoidal models. Models for semiflexible chains

have been investigated such as the Kratky and Porod chain[31] and the early Harris

and Hearst models[82]. These models have been compared with polymers and other

linear molecules using light scattering, neutron scattering, and other experimental

techniques. More recently, the dynamical properties of molecules of more complex

shape than a linear chain have been investigated combining structural information and

bead-spring models by normal mode analysis and molecular dynamics simulations. In

this study, we have examined a unique macromolecule that simultaneously exhibits

a complicated average structure but has flexibility about that structure. Clathrin

triskelia have not one single conformation but have many different conformations in

solution. Light scattering measurements described in this dissertation show that the
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clathrin triskelion has a puckered structure. SANS measurements demonstrate that

dynamics are present in solution. This may indicate that both play a role in the

assembly and disassembly of the clathrin coat during function in eukaryotic cells.

6.2 Discussion

There is a growing understanding of proteins that do not have a single confor-

mation but can (must) assume many different shapes. It is clear that, in order to

understand the relationship between a protein structure and its function, as we are

trying to do for the clathrin triskelion, the unconstrained degrees of freedom (flexibil-

ity and hinges, etc.) must be determined as well. These may be even more important

than the constrained degrees of freedom that relate to a low energy static structure

consistent with the folded ground state of a known polypeptide sequence (the protein

folding problem). Some examples may be seen in recent work describing the mechan-

ics of the ribosome[93], the molecular motor kinesin[94], and ATP synthase[95].

Analysis techniques, such as the one used here, that can extract information

about protein conformational dynamics from established measurement techniques

such as small angle scattering (light, neutron or X-ray), TEM particle averaging,

and cryo-EM single particle analysis, may complement newer, single molecule tech-

niques used in AFM pulling experiments, optical trapping experiments, and forrester

resonance energy tranfer(FRET). In some cases macroscopic scattering techniques

may be easier to apply to the system under consideration. They may also be be less
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invasive than AFM or optical tweezers, and do not require fluorescent labeling as in

the case of FRET.

6.3 Future Work

We have constructed a dynamic structural model for a single clathrin triskelion

to explain experimental SANS data taken from single triskelia. (See Figure 5.11) This

was done because the rigid models did not fit our experimental data at intermediate

values of q. Similar techniques could be used to fit SANS data from clathrin baskets

assembled at low pH. Both the data and model are shown in Figure 4.13. Utilization

of a dynamic model could give us an estimate for the flexibility of the clathrin cage,

which has been estimated but not measured[10]. The stiffness of a clathrin coated

vesicle (different from the bare, reconstituted cage) has been recently measured by

AFM to be 20 times stiffer than the estimate for a basket[96]. It would be interesting

to directly determine the flexibility of the clathrin basket for comparison with this

measurement.

Considerable progress has been made in the last decade in understanding the

mechanisms of assembly/disassembly of the clathrin lattice. Cryo-EM tomography

has played a central role in this research. It has been used to visualize position and

arrangement of subunits, adaptors, and chaperone proteins within the lattice (see

Figure 6.2). In the presence of adaptor protein AP2, clathrin triskelia will assem-

ble into cages of 6-2-2 symmetry. In 1999, this structure was resolved by Musacchio

et al.[65] using cryo-EM tomography at a high enough resolution to distinguish in-
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dividual heavy chains within the clathrin lattice. This structure, when combined

with X-ray structures of crystallized clathrin fragments, produced a high resolution

model of the triskelion lattice. As resolution has improved, cryo-EM tomography has

confirmed the positions of the light chains along the heavy chain (Figure 6.2a) and de-

termined the effect of the chaperone Hsp70 and cochaperone auxilin on cage structure

and regions of localization within the coat (shown in Figure 6.2 c,d[16, 97, 98]). These

structures illustrate the role of each subunit in the clathrin machinery, shedding light

on the mechanisms of clathrin recruitment and disassembly during endocytosis and

answering questions that cannot be addressed easily by the use of X-ray diffraction

or other techniques.

Fig. 6.2: Positions of protein components in the clathrin lattice. A) “An 8-Å reconstruction

of a clathrin basket with the light chains highlighted in yellow[16]. B) An 8-Å re-

construction of a clathrin basket with individual clathrin heavy chains highlighted

in red, green, and yellow.” (A and B Figure and Caption from Reference[16]) C)

“A 12-Å reconstruction of a clathrin basket formed in the presence of a 39-kDa

fragment of auxilin (purple).” (Figure and Caption from Reference[97]) D) “A

23-Åreconstruction of a clathrin basket prepared in the presence of Hsc70 (blue).”

(Figure and Caption from Reference[98])
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Recently it was shown by Heymann et al.[98] that an uncoating protein, Hsp70,

localizes to the polyhedral surface of an assembled clathrin basket. This protein is

colored in purple in the electron density map from cryo-EM tomography shown in

Figure 6.2 d. When triskelial dynamics and thermal fluctuations, which we have

shown to be considerable, are taken into account, one can see that a slight modi-

fication of the equilibrium shape of a triskelion within a cage assembly (Figure 6.2

b) due to the presence of Hsp70 (or an auxilin-Hsp70 complex) might be sufficient

to thermodynamically destabilize the basket, as is seen in vitro[15]. In a simulation,

this mechanism for cage destabilization could be tested by shortening the equilibrium

distances of springs between terminal domains of triskelia, thus altering the natural

pucker of each triskelion within the lattice.

It has been noted that in the presence of the Hsp70 chaperone makes the 6-2-2

basket more rounded in shape, while the presence of the auxilin co-chaperone causes

the structure to have a more barrel-like shape in 3D cryo-EM reconstructions. These

structural changes could easily be confirmed by further SANS experiments.
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