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Snow is a critical component in the global energy and hydrologic cycle. It is

important to know the mass of snow because it serves as the dominant source of

drinking water for more than one billion people worldwide. To accurately estimate

the depth of snow and mass of water within a snow pack across regional or continen-

tal scales is a challenge, especially in the presence of dense vegetations since direct

quantification of SWE is complicated by spatial and temporal variability. To over-

come some of the limitations encountered by traditional SWE retrieval algorithms or

radiative transfer-based snow emission models, this study explores the use of a well-

trained support vector machine to merge an advanced land surface model within a

variant of radiance emission (i.e., brightness temperature) assimilation experiments.

In general, modest improvements in snow depth, and SWE predictability were wit-

nessed as a result of the assimilation procedure over snow-covered terrain in North



America when compared against available snow products as well as ground-based

observations. These preliminary findings are encouraging and suggest the potential

for global-scale snow estimation via the proposed assimilation procedure.



ASSIMILATION OF PASSIVE MICROWAVE BRIGHTNESS
TEMPERATURES FOR SNOW WATER EQUIVALENT
ESTIMATION USING THE NASA CATCHMENT LAND

SURFACE MODEL AND MACHINE LEARNING ALGORITHMS
IN NORTH AMERICA

by

Yuan Xue

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Assistant Professor Barton A. Forman, Chair/Advisor
Professor Matthew C. Hansen, Dean’s Representative
Dr. Rolf H. Reichle
Professor Richard H. McCuen
Associate Professor Kaye L. Brubaker



c© Copyright by
Yuan Xue

2017



Foreword

Materials presented in Chapter 2, and Chapter 4 of this study have been

published as peer-reviewed journal articles. Materials presented in Chapter 3, and

Chapter 5 of this study are expected to be published as peer-reviewed articles in the

next few months. The dissertation presented here was carried out in its entirety by

Yuan Xue. Please see the list of publications below.

Xue, Y., and B. A. Forman (2015), Comparison of passive microwave brightness

temperature prediction sensitivities over snow-covered land in North America using

machine learning algorithms and the Advanced Microwave Scanning Radiometer,

Remote Sensing of Environment, 170, 153–165, doi:10.1016/j.rse.2015.09.009.

Xue, Y., and B. A. Forman (2016), Atmospheric and forest decoupling of passive

microwave brightness temperature observations over snow-covered terrain in North

America, IEEE Journal of Selected Topics in Applied Earth Observations and Re-

mote Sensing, doi:10.1109/JSTARS.2016.2614158.

Xue, Y., and B. A. Forman (accepted, 2017), Integration of satellite-based decou-

pled passive microwave brightness temperatures and an ensemble-based land data

assimilation framework in order to improve snow estimation in forested regions, 2017

IEEE International Geoscience and Remote Sensing Symposium.

Xue, Y., B. A. Forman, and R. H. Reichle (in preparation, 2017), Assimilation of

passive microwave brightness temperature observations into a land surface model

with support vector machines for snow characterization in Alaska, Water Resources

Research.

ii



Acknowledgments

Before coming to the United States, I did not imagine that I would have the

opportunity to earn a Ph.D. degree. Many of my friends were against my goal of

going abroad to study since I had been offered several generous offers to continue

studies in China. I even had self-doubt whether I could “survive” in the States.

Presently, I asked myself if I were to given another chance to make the decision

again by the end of my undergraduate study, would I switch to another route? My

answer is: absolutely not. Therefore, I know I owe my gratitude to all of the people

who have helped me and because of whom my graduate experience has been one

that I will cherish forever.

First and foremost, I would like to thank my advisor, Dr. Forman, for giving

me an invaluable opportunity to come to United States and work on interesting

projects. He greatly values students interests and ideas and he has always en-

couraged me to be an independent researcher. I learned a lot from Dr. Forman,

including American language (e.g., idioms, slang, and local phrases), American cul-

ture, research skills, social skills, teaching skills, coding skills, presenting skills, as

well as his dedication in educating next-generation engineers and scientists. As one

of Dr. Forman’s advisees, I have always been motivated and passionate towards my

research.

Further, I would like to express my deep gratitudes to Dr. McCuen, Dr.

Brubaker, Dr. Reichle, and Dr. Hansen for agreeing to serve on my dissertation

committee and for giving their valuable time to review the manuscript. Their in-

iii



sightful comments and suggestions on the dissertation proposal has greatly moti-

vated me to think more broadly about the project. They taught me how to think

critically and how to explain ideas clearly.

Moreover, I would like to thank Dr. Yilu Feng for giving me valuable job-

hunting suggestions. I would like to thank Saad B. Tarik for helping me adapt

to the new life in the United States. I would like to thank Dr. Jing Tao for

sharing her research experiences with me. I would like to thank Jing Wang, Lu

Liu, Elizabeth Megan Ryan, Gaohong Yin, Jawairia Ahmad, Jongmin Park, and

Dr. Yonghwan Kwon for reviewing my written materials and giving me suggestions

on each presentation day. I would also like to thank all of my friends in the 0147

office for cheerful discussions during their spare time.

Last but not least, I owe my thanks to my family - my mother and father who

have always stood by me and cared for me even when we are thousands of miles

from each other. I owe my thanks to my husband, Dr. Feng Shi, for supporting all

of the decisions that I made and tolerating my bad personality quirks.

Earning a doctoral degree is not (and should never be) the end of my dream-

pursing journey; instead, it is more like a bonus trophy. The education of life is like

a marathon, and I recognize that completing my Ph.D. is a relatively small part of

my career. In order to achieve my ultimate career goal, I believe that I will need to

build on the learning experiences of my education.

More to learn and more to follow soon ...

iv



Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1
1.1 Importance and challenge of snowpack characterization . . . . . . . . 1
1.2 Methodology review of snowpack characterization . . . . . . . . . . . 2
1.3 Motivations, goals and objectives . . . . . . . . . . . . . . . . . . . . 8
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Comparison of passive microwave brightness temperature prediction sensi-
tivities over snow-covered land using machine learning algorithms 11
2.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Machine learning and model formulation . . . . . . . . . . . . . . . . 12
2.3 Sensitivity analysis formulation . . . . . . . . . . . . . . . . . . . . . 15
2.4 Sensitivity analysis results . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Spatial variability of NSCs at single frequency . . . . . . . . . 18
2.4.1.1 NSCs in the regions with low forest cover and low

SWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1.2 NSCs in the regions with low forest cover and high

SWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1.3 NSCs in the regions with high forest cover and low

SWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1.4 NSCs in the regions with high forest cover and high

SWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1.5 Sensitivity to spectral difference . . . . . . . . . . . . 29

2.4.2 Temporal behavior of NSCs . . . . . . . . . . . . . . . . . . . 34
2.4.3 Trade-off between Tb prediction accuracy and SWE sensitivity 38
2.4.4 The four-input-state SVM model sensitivity . . . . . . . . . . 39

2.5 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 39

v



3 Assimilation of passive microwave brightness temperature observations into
a land surface model with support vector machines for snow characterization
in Alaska 43
3.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Models, data, and methods . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Land surface model and study area . . . . . . . . . . . . . . . 44
3.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2.1 Passive microwave brightness temperature observa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2.2 Independent in-situ observations . . . . . . . . . . . 46
3.2.3 Data assimilation (DA) scheme . . . . . . . . . . . . . . . . . 47

3.2.3.1 One-dimensional (1D) EnKF . . . . . . . . . . . . . 47
3.2.3.2 Machine-learning-algorithm-based observation oper-

ators . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3.3 Observation error, ensemble size, and ensemble per-

turbation . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Evaluation metrics and methods . . . . . . . . . . . . . . . . . 53

3.2.4.1 Comparisons against state-of-the-art snow products . 53
3.2.4.2 Comparisons against in-situ snow observations and

runoff observations . . . . . . . . . . . . . . . . . . . 54
3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Comparisons against state-of-the-art snow depth and SWE
products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Comparisons against ground-based observations . . . . . . . . 57
3.3.2.1 Ground-based discharge observations . . . . . . . . . 57
3.3.2.2 Ground-based snow observations . . . . . . . . . . . 58
3.3.2.3 Effects of representativeness errors . . . . . . . . . . 59
3.3.2.4 Effects of land cover on 1D-EnKF . . . . . . . . . . . 65
3.3.2.5 Innovation and filter sub-optimality assessment . . . 66

3.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 68

4 Atmospheric and forest decoupling of passive microwave brightness temper-
ature observations over snow-covered terrain in North America 72
4.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Methodology and Application . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Atmospheric decoupling from PMW Tb observations . . . . . 74
4.2.2 Forest decoupling using atmospherically-decoupled PMW Tb

observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Forest transmissivity mapping using a first-order, physically-based

radiative transfer model . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Forest decoupling model evaluation . . . . . . . . . . . . . . . 84

4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Results of atmospheric decoupling . . . . . . . . . . . . . . . . 86
4.4.2 Results of forest decoupling . . . . . . . . . . . . . . . . . . . 88

4.4.2.1 Forest transmissivity retrieval . . . . . . . . . . . . . 88

vi



4.4.2.2 Non-SWE related Tb components in the measured
PMW Tb . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2.3 Impacts of Tb Decoupling on a Parsimonious SWE
Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions and Implications . . . . . . . . . . . . . . . . . . . . . . 105

5 Integration of satellite-based decoupled passive microwave brightness tem-
peratures and an ensemble-based land data assimilation framework in order
to improve snow estimation in forested regions 109
5.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Land surface model and study area . . . . . . . . . . . . . . . 110
5.2.2 Observations and experiments setup . . . . . . . . . . . . . . . 112
5.2.3 The one-dimensional Ensemble Kalman filter . . . . . . . . . . 113
5.2.4 Evaluation metrics and methods . . . . . . . . . . . . . . . . . 116

5.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.1 Compare against state-of-the-art snow products . . . . . . . . 117
5.3.2 Compare against ground-based snow observations . . . . . . . 118

5.3.2.1 Effects of atmospheric decoupling . . . . . . . . . . . 118
5.3.2.2 Effects of atmospheric-and-forest decoupling . . . . . 121

5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusions and future work 128
6.1 Conclusions and original contributions . . . . . . . . . . . . . . . . . 128
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Minimization of representativeness errors during DA frame-
work evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.2 Robustness experiments of the DA framework at the code de-
velopment level . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.3 Robustness experiments of the DA framework on assimilating
other sources of satellite-based Tb observations . . . . . . . . 133

6.2.4 Robustness experiments of the DA framework on estimating
other hydrologic states or fluxes . . . . . . . . . . . . . . . . . 133

A ANN and SVM framework 134
A.1 ANN Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.2 SVM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Goodness-of-fit statistics 139

C Innovation, normalized innovation and filter sub-optimality 142

D Sensitivity analysis of decoupled Tb predictions to model parameters 144

E Scheme for distributing column-integrated SWE into the three-layer snow
model 147

vii



F Summary of changes made for integrating SVM into NASA assimilation mod-
ule 149

F.0.1 Source code development . . . . . . . . . . . . . . . . . . . . . 149
F.0.2 Assimilation options update . . . . . . . . . . . . . . . . . . . 152

Bibliography 153

viii



List of Tables

2.1 Model (ANN and SVM) inputs and outputs . . . . . . . . . . . . . . 14
2.2 Canopy cover (%) and SWE (m) for the selected locations under

different scenarios of various amounts of SWE (11 Jan 2004) and forest. 17

3.1 Model forcing perturbations used during ensembles generation. . . . . 52
3.2 Error structure in the model forcing perturbations. . . . . . . . . . . 53
3.3 Comparison against SNOTEL SWE observations, excluding moun-

tainous regions (sample size = 9). . . . . . . . . . . . . . . . . . . . . 61
3.4 Comparison against SNOTEL SWE observations (sample size = 15). 62
3.5 Comparison against SNOTEL snow depth observations (sample size

= 21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Comparison against GSOD snow depth observations (sample size =

14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Computed NICs during comparison against SNOTEL SWE, SNO-

TEL snow depth, and GSOD snow depth observations. . . . . . . . . 65
3.8 Domain-averaged statistics of the NI sequences in Alaska from 01 Sep

2002 to 01 Jul 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Forest transmissivity retrieval models with regression coefficients. . . 93
4.2 Comparisons of existing forest transmissivity retrieval models (selected). 94
4.3 Comparisons of forest contributions derived from the original, coupled

PMW Tb observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Statistical comparisons of estimated snow depth against GSOD ob-

servations in evergreen needle-leaved forest covered regions colocated
with taiga snow class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Open-loop (OL) and data assimilation experiment (DAO, DAA, DAA+F )
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Computed NICs obtained from both DAO and DAA+F during com-
parison against GSOD snow depth observations. . . . . . . . . . . . . 123

ix



List of Figures

2.1 Remapped forest cover distribution. . . . . . . . . . . . . . . . . . . . 19
2.2 An example of SWE distribution obtained from the NASA Catchment

model on 11 Jan 2004 in North America . . . . . . . . . . . . . . . . 20
2.3 ANN and SVM-based NSCs for seven model states at a location with

low forest cover and low SWE on 11 Jan 2004 for vertically polarized
Tb estimates at 18.7 GHz and 36.5 GHz. . . . . . . . . . . . . . . . . 22

2.4 ANN and SVM-based NSCs for seven model states at a location with
low forest cover and high SWE on 11 Jan 2004 for vertically polarized
Tb estimates at 18.7 GHz and 36.5 GHz. . . . . . . . . . . . . . . . . 25

2.5 ANN and SVM-based NSCs for seven model states at a location with
high forest cover and low SWE on 11 Jan 2004 for vertically polarized
Tb estimates at 18.7 GHz and 36.5 GHz. . . . . . . . . . . . . . . . . 28

2.6 ANN and SVM-based NSCs for seven model states at a location with
high forest cover and high SWE on 11 Jan 2004 for vertically polarized
Tb estimates at 18.7 GHz and 36.5 GHz. . . . . . . . . . . . . . . . . 30

2.7 Relative frequency of NSCs for SWE derived from both ANN- and
SVM-based Tb estimates. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 An example of NSC maps on 11 Jan 2004 with respect to SWE for
ANN-based and SVM-based estimates of spectral difference between
Tb at 18V and 36V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Time series investigation of NSCs with respect to SWE for 01 Septem-
ber 2003 to 01 June 2004 for a single location in Newfoundland, Canada. 35

2.10 Time series investigation of NSCs with respect to SWE for 01 Septem-
ber 2003 to 01 June 2004 for a single location in central Alaska. . . . 37

2.11 Relationship between SVM-based Tb prediction accuracy and SWE
sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Elevation product, land cover classification product, snow cover clas-
sification, and ground-based stations in Alaska. . . . . . . . . . . . . 45

3.2 Schematic of the multifrequency, multipolarization AMSR-E ∆Tb ob-
servations assimilation framework using a 1D-EnKF. . . . . . . . . . 51

3.3 Average snow depth and SWE estimates obtained from snow prod-
ucts, OL experiments, and DA experiments. . . . . . . . . . . . . . . 55

x



3.4 Comparison of SWE estimates and snow depth estimates obtained
from the (ensemble mean) of the OL experiment, the (ensemble mean)
of the DA experiment, AMSR-E SWE product, and CMC snow depth
product against in-situ SNOTEL SWE observations, SNOTEL snow
depth observations, and GSOD observations. . . . . . . . . . . . . . . 60

3.5 Box plots of computed relative elevation difference between SNOTEL
stations, GSOD stations, and colocated EASE Grids. . . . . . . . . . 63

3.6 Box plots of statistical metrics computed from 01 Sep 2002 to 01 Jul
2011 for model-derived estimates, and snow products during compar-
ison against in-situ observations. . . . . . . . . . . . . . . . . . . . . . 70

3.7 Average NICs computed for different land cover types in Alaska. . . . 71

4.1 Contributions to observed PMW Tb as seen by AMSR-E. . . . . . . . 73
4.2 An example of remapped BNU LAI in North America on 06 Mar 2003. 81
4.3 Remapped forest cover distribution, land cover classification, and

snow cover classification in North America. . . . . . . . . . . . . . . . 83
4.4 Atmospherically-decoupled satellite-based Tb estimates compared against

spatially-aggregated airborne Tb observations. . . . . . . . . . . . . . 89
4.5 Relationship between LAI and forest transmissivity across woody sa-

vanna regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Comparisons of saturated transmissivity estimates obtained from ex-

isting studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Histograms of area-averaged, non-SWE related Tb component in ev-

ergreen needle-leaved forest colocated with taiga snow cover on 06
Mar 2003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Histograms of area-averaged, non-SWE related ∆Tb contributions in
evergreen needle-leaved forest colocated with taiga snow cover on 06
Mar 2003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Experimental setup in SWE retrieval and snow depth retrieval as part
of forest decoupling evaluation. . . . . . . . . . . . . . . . . . . . . . 102

4.10 Statistical comparisons for SWE estimates compared against SNO-
TEL observations over evergreen needle-leaved forest covered regions
colocated with taiga snow cover. . . . . . . . . . . . . . . . . . . . . . 104

4.11 Relationship between LAI and forest transmissivity across evergreen
needle-leaved forest regions. . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 SWE estimates obtained from snow products, OL experiments, and
various DA experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Snow depth estimates obtained from snow products, OL experiments,
and various DA experiments. . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Times series of model-derived snow depth estimates, and colocated
ground-based GSOD observations in Quebec and Newfoundland, Canada
from 2002 to 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Histograms of computed bias and RMSE for model evaluation at two
locations in Quebec and Newfoundland, Canada. . . . . . . . . . . . . 123

xi



5.5 Histograms of computed NICs for model evaluation at two locations
in Quebec and Newfoundland, Canada. . . . . . . . . . . . . . . . . . 124

5.6 Histograms of average bias and RMSE for model evaluation in places
covered with relatively dense evergreen needle-leaved forest colocated
with taiga snow cover type across North America. . . . . . . . . . . . 125

5.7 Elevation products, forest density, lake fraction, snow class, ground-
based stations and land cover distribution in Quebec and Newfound-
land, Canada, and North America. . . . . . . . . . . . . . . . . . . . 127

E.1 Scheme for distributing column-integrated SWE into the three-layer
snow model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

F.1 Summary of key changes made to the original NASA LDAS in the
source code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

F.2 Summary of key changes made to the original assimilation options in
the namelist files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xii



List of Abbreviations

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System
ANN Artificial Neural Network
BNU Beijing Normal University
Catchment NASA Catchment land surface model
DA Data assimilation
EASE-Grid Equal Area Scalable Earth Grid
EC Environment Canada
EnKF Ensemble Kalman filter
ESA European Space Agency
GEOS-5 The Goddard Earth Observing System Model, Version 5
GES DISC Goddard Earth Sciences Data and Information Services Center
GRACE Gravity recovery and climate experiment
GSOD Global Summary of the Day
IPY International Polar Year
LAI Leaf area index
MERRA Modern-Era Retrospective analysis for Research and Applications
ML Machine learning
MODIS Moderate Resolution Imaging Spectroradiometer
MSE Mean squared error
NASA The National Aeronautics and Space Administration
NIC Normalized information contribution
NRCS Natural Resources Conservation Service
NSE Nash-Sutcliffe model efficiency coefficient
NSC Normalized Sensitivity Coefficient
NOAA National Oceanic and Atmospheric Administration
OL Open loop
PMW Passive mcirowave
RMSE root mean squared error
RTM Radiative transfer model
SCA Snow-covered area
SCF Snow-covered fraction
SLWC Snow liquid water content
SMMR Scanning Sensor Microwave Radiometer
SNOTEL SNOwpack TELemetry
SSMI Special Sensor Microwave Imager
SV Stem volume
SVM Support Vector Machine
SWE Snow water equivalent
Tb Brightness temperature
TGI Temperature gradient index
TPW Total precipitable water
TWS Terrestrial water storage
ubRMSE unbiased root mean squared error

xiii



Chapter 1: Introduction

1.1 Importance and challenge of snowpack characterization

Snow is a critical component in the global energy and hydrologic cycle due to

its control of mass and energy exchanges at the land surface [1–3]. For example, melt

water released from snow (and ice) contributes more than 70% of the total annual

freshwater supply in the western U.S [4]. On a global scale, freshwater from snow

and ice serves as the dominant drinking water resource for more than one billion

people [5]. Therefore, quantifying the amount of water within the snowpack across

regional scales is important in order to better manage and regulate this source of

freshwater.

The mass of snow, also known as the snow water equivalent (SWE), represents

the depth of water that would theoretically result in the instance a snowpack melted.

Direct quantification (i.e., in-situ measurements) of SWE is significantly complicated

by spatial and temporal variability in snow processes. Compared with point-scale

SWE (or snow depth) measurements that are often sparse in space or time, SWE

estimates derived from land surface models are more preferred due to their com-

plete coverage in space and time. However, model output are inherently uncertain

due to model structure errors, model parameterization errors, model forcing errors,

1



and initial condition errors [6–8]. As an alternative, space-borne instrumentations

provide an alternative capability to help fill observational gaps between ground-

based sensors to better estimate SWE at the global scale based on the relationship

between the measured electromagnetic response and the physical characteristics of

SWE. Unfortunately, the highly nonlinear nature of the relationship is non-trivial

to establish and numerous limitations exist that restrict the extensive application

of space-borne products.

1.2 Methodology review of snowpack characterization

There are typically four ways to estimate SWE from space-borne sensors. One

method is to merge relatively coarse, space-borne observations with in-situ mea-

surements of finer resolution via spatial interpolation [9]. However, this method is

adversely impacted by sparse spatial coverage of in-situ observations, particularly

in regions near the Arctic Circle [10], coupled with strong sub-grid scale snow vari-

ability in complex terrain [11]. The second technique — space-borne PMW SWE

retrieval – transforms (or retrieves) model states variables from the measured bright-

ness temperature (Tb, defined as the physical temperature of an object times its

emissivity) at specific frequencies by calibrating regression coefficients within the

algorithm [12–16]. These satellite-based SWE products are often affected by errors

arising from meteorological fields (e.g., data aggregation, disaggregation, extrap-

olation and interpolation [17]) used to force land surface models. They are also

affected by significant uncertainties associated with snow stratigraphy [18], snow
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grain size [19], depth hoar layer [20–23], ice crusts [24], lake fraction effects [25], and

snow morphology [14], especially in densely-vegetated regions [18,26] with relatively

deep snow [27]. The third method is to employ a machine learning (ML) technique to

estimate SWE, which has been conducted in a few studies [9,28–30]. These studies

focused on directly training an artificial neural network (ANN) using in-situ SWE

observations. However, reasonable performance was restricted to in-situ observation

locations with less applicability to regions between these locations [30].

In an effort to overcome many of the limitations highlighted above, the fourth

alternative involves merging measurements of remote sensing observations with es-

timates from physically-based models using data assimilation (DA). The goal of DA

(with particular relevance to SWE discussed here) is to yield a merged estimate that

is superior to either the observations or the model alone [31,32]. In order to obtain

an improved state of SWE or snow depth estimation capability, there is a variety

of observations and retrieval products could be assimilated. Two most widely-used

observations for use in the DA framework based on previous studies are (1) SWE

or snow depth, and (2) snow-covered area (SCA) or snow cover fraction (SCF). It is

worth noting that only real data assimilation related studies were summarized below

(i.e., synthetic studies were not included), and the “direct-insertion” approach is not

included as a typical DA method in the context since it does not take observation

uncertainty into account.

Previous studies explored the possibility of assimilating point-scale, in-situ

SWE measurements in the DA [33–35], which have shown to achieve encouraging

improvements in SWE estimation. Point-scale SWE assimilation typically requires
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an optimal interpolation framework prior to conducting DA in order to achieve a

spatially continuous observation background. As a result, relatively good results are

achieved in regions with a sufficiently-dense network of stations such as in Colorado.

In places with sparse ground-based observation networks [36], this point-scale as-

similation approach remains questionable since it is relatively difficult to accurately

interpolate the sparse observation across large regions of space.

In order to overcome the spatial sparsity in ground-based observations, satellite-

based SWE or snow depth retrieval products derived from PMW Tb observations

provide an alternative route towards merging a model with spatially-distributed ob-

servations. Relatively good snow depth estimates were achieved from bias-adjusted

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E)

based snow depth observation assimilation in Alaska [37] and Colorado [38]. In ad-

dition, Kumar et al. 2015 [39] found the SCA-constrained, AMSR-E based snow

depth observation assimilation is more effective (relative to the non-SCA constrained

approach [40]) at capturing snow depth variations, and subsequently translating

snow depth estimation improvements into streamflow forecasting. However, only

marginal improvements (sometimes degraded results) for regional SWE estimates

were achieved when assimilating satellite-based SWE observations obtained from ei-

ther Scanning Multichannel Microwave Radiometer (SMMR) [6] or AMSR-E [41,42].

In general, the relatively unsatisfactory performance of the DA system along with

the satellite-derived products might be attributed to the negative bias in the retrieval

product [42].

Besides SWE retrieval products, satellite-based SCF or SCA products derived
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from measured spectral reflectance of the snow cover were often used in the snow

assimilation study. A snow depletion curve is often used in this approach to relate

SCF/SCA with SWE or relate SCF/SCA with snow depth. For example, Andreadis

et al. 2006 [41] achieved slight improvements in DA-derived SWE estimation dur-

ing snow melt season over snow-covered regions with lower to middle elevations.

Followed by that, Su et al. 2008 [43] used a snow density based depletion curve

and found reasonably good results achieved after assimilating SCF over the North

America domain when compared against AMSR-E derived SWE measurements.

Using a different snow-depletion curve with a semi-empirical, and time-invariant

SWE threshold parameter, De Lannoy et al. 2012 [42] showed that SCF assimila-

tion improves the timing of the onset of the snow season but without a significant

improvement of SWE amounts. The marginal improvement in SWE via SCF assim-

ilation is most likely due to the fact that the assimilation of the SCF observations

could not add more information into the model when SCF = 1 (i.e., full snow cover).

Furthermore, Durand et al. 2008 and Girotto et al. 2014 [44,45] achieved encourag-

ing improvements by assimilating typical and hybrid satellite-based SCA products

based on an innovative SWE reconstruction approach applied over mountainous ter-

rain during the snow ablation season. Margulis et al. 2016 [46] recently developed

a continuous SWE reanalysis product from 1985 to 2015 by assimilating remotely

sensed SCA products in Sierra Nevada, which has shown to achieve significant im-

provements in peak SWE estimation when compared against ground-based SWE

measurements. In terms of snow depth estimation, studies conducted by [47, 48]

showed that the assimilation of satellite-based SCF product is relatively effective
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for snow depth estimation during snow accumulation season. In general, the assim-

ilation of satellite-based SCF/SCA products is often affected by cloudy conditions

and the uncertainty associated with the estimation of SWE or snow depth via the

snow depletion curve given the fractional snow cover or the binary snow map [42].

Apart from the aforementioned two observation types (i.e., SWE and SCF)

that have been widely used in the DA towards SWE estimation, there were other

attempts of assimilating either different types of observations or multiple sets of

observations simultaneously. For example, Magnusson et al. 2014 [36] investigated

the employment of the flux (i.e., snowfall and melt rates) assimilation, and For-

man et al. 2012 [49] investigated the employment of assimilating the terrestrial

water storage (TWS) information obtained from gravity recovery and climate ex-

periment (GRACE) via inter-satellite range-rate measurements. DA-derived SWE

estimates reported from these two studies showed modest improvements when com-

pared against the state-of-the-art reanalysis products. In addition, De Lannoy et al.

2012 [42] investigated the use of joint assimilation of MODIS-based SCF and AMSR-

E based SWE observations, which has shown some promise to estimate snow water

storage within a relatively shallow snow pack. Zhang et al. 2016 [50] investigated

the use of joint assimilation of SCF and GRACE-derived TWS information, how-

ever, no significant improvements were achieved via the joint assimilation approach

relative to the SCF-only assimilation scenario.

It is widely acknowledged that satellite-based PMW Tb observations contain

snow mass information and operates during all-weather and nighttime conditions,

few studies showed promise in improving snow mass estimated via PMW Tb assim-
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ilation (a.k.a., radiance assimilation). In an assimilation context, the goal of direct

Tb observations (rather than SWE retrievals) assimilation is preferable in this study

as it avoids inconsistencies in the use of ancillary data (e.g., soil, vegetation) between

the assimilation system and the pre-processed geographical retrievals [51]. Pulliainen

et al. 2006 [52] first assimilated AMSR-E and Special Sensor Microwave/Imager

[SSM/I] observed spectral difference (∆Tb). The ∆Tb is expressed as:

∆Tb18−36 = Tb18V − Tb36V for AMSR-E

∆Tb19−37 = Tb19V − Tb37V for SSM/I

(1.1)

where Tb18V is the AMSR-E based Tb observations of 18.7 GHz at vertical po-

larization, Tb36V is the AMSR-E based Tb observations of 36.5 GHz at vertical

polarization, Tb19V is the SSM/I based Tb observations of 19.0 GHz at vertical

polarization, and Tb37V is the SSM/I based Tb observations of 37.0 GHz at verti-

cal polarization. The study showed that assimilation of either AMSR-E based or

SSM/I-based Tb observations could improve snow depth and SWE estimates for

northern Eurasia and Finland. Similarly encouraging results were reported in Du-

rand et al. 2009 [53] based on the assimilation of ground-based Tb observations at

18.7 GHz and 36.5 GHz at vertical polarization over a relatively small snow-covered

domain. In terms of continental-scale estimates, Kwon et al. 2016 [54] assimilated

AMSR-E Tb observations at 18.7 GHz and 36.5 GHz at vertical polarization in

North America from December 2002 to February 2003 and found modest improve-

ments in snow depth in areas with tundra-snow cover and bare soil cover during

comparison against available snow reanalysis products.
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1.3 Motivations, goals and objectives

In all three aforementioned radiance assimilation studies, physically-based

snow emission models were used as the model operator to invert PMW Tb mea-

surements into modeled SWE space. The application of a snow emission model is

often complicated by accurately characterizing snow grain size, depth hoar layer

development, and internal ice locations and thicknesses [52,53,55–57]. More impor-

tantly, most global land surface models lack the fidelity at regional and continental

scales to meet the needs of a snow emission model [58]. As an alternative to tra-

ditional snow emission models, previous studies [59–62] investigated the use of a

machine learning algorithm (either ANN or a support vector machine (SVM)) as

the observation operator for use within a radiance assimilation framework in order

to overcome many of the deficiencies with snow emission models. It was shown

that a machine learning algorithm performed well throughout the entire snow sea-

son and was able to capture much of the temporal and spatial variability in the

modeled Tb, and hence, such an algorithm was recommended for eventual use as

a observation operator within a proposed DA framework. The research presented

here is a first-ever attempt to merge PMW Tb satellite observations with an ad-

vanced land surface model using trained machine learning algorithms within a DA

framework. This exercise will help address the overarching science question: How

can the predictability of SWE and snow depth at regional and continental scales be

improved through the systematic integration of real PMW measurements collected

by satellite-based instrumentation and a machine-learning based algorithm into a
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land surface model?

1.4 Organization of the thesis

In Chapter 2, sensitivity analyses were conducted to evaluate the performance

of two different ML algorithms. In Chapter 3, a radiance assimilation framework was

analyzed for use in SWE and snow depth estimation, along with a well-trained ML-

algorithm-based measurement model operator selected from Chapter 2. In Chapter

4, a relatively simple two-step atmospheric-and-forest decoupling procedure was

developed for use in removing non-snow related signals from the observations prior

to ML training procedure. In Chapter 5, the assimilation of multi-frequency, multi-

polarization, satellite-based, decoupled radiance emissions derived from Chapter 4

was evaluated for use in SWE and snow depth estimation over forested regions.

Chapter 6 provides a summary of the major findings, and future directions for

research.

1.5 Implications

It is quoted from the 2015 Snow Experiment (SnowEx) White Paper that “The

key gap in past National Aeronautics and Space Administration (NASA) and Eu-

ropean Space Agency (ESA) snow mission proposals has been the retrieval of SWE

in densely forested regions”. The nature of the close-to-random spatial distribu-

tion of tree branches and the dynamics of forest cover evolution is one significant

limitation in the accuracy of SWE estimation relying on satellite-based microwave
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observations.

It is anticipated that regional SWE estimation could be improved within the

proposed radiance assimilation module such that water resources managers can make

better decisions with reliable SWE information in their water management prac-

tice and water supply forecasting activity, such as reservoir regulation, downstream

flooding prediction, and agricultural water management. In addition, it is antici-

pated that a more accurate characterization of the SWE information could be used

as an indicator of climate variability and change in order to help policy makers

better understand and protect freshwater resources.
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Chapter 2: Comparison of passive microwave brightness temperature

prediction sensitivities over snow-covered land using ma-

chine learning algorithms

2.1 Motivation and Objective

Previous studies showed that machine learning (ML) algorithms (e.g., artificial

neural network (ANN) and support vector machine (SVM)) reasonably reproduce

passive microwave brightness temperature observations over snow-covered land as

measured by the Advanced Microwave Scanning Radiometer (AMSR-E) and the

Special Sensor Microwave Imager (SSMI) [59, 60, 62]. It was concluded that both

the ANN and SVM could eventually be used as measurement operators to estimate

brightness temperatures (Tb) within a data assimilation (DA) framework for the

purpose of SWE estimation at regional and continental scales. However, there is

still a number of fundamental questions needed to be addressed prior to integrating

with DA. For example, do the ANN and SVM reproduce Tb for the right (i.e.,

physically-based) reasons? Further, what are the most significant input variables to

the ML models? Are the accurate Tb estimates over snow-covered land associated

with the snow-related variables (e.g., SWE)? If so, under which conditions (e.g.,
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with or without overlying vegetation) will the ML models be sensitive to SWE? Or

is the sensitivity of the ML model output due to non-snow-related state variables

(e.g., soil temperature and air temperature)? Is it necessary to reduce the model

input complexity by removing insensitive ones? Therefore, the goal of this chapter

is to explore the ANN- and SVM-derived Tb (trained on AMSR-E Tb observations)

sensitivities using a unified framework in an effort to answer the questions formulated

above. Section 2.2 through Section 2.4.2 have been published in Remote Sensing of

Environment, and Section 2.4.3 will be published in IEEE Xplore.

2.2 Machine learning and model formulation

Arthur Samuel (1959; [63]) first defined ML as a field of study that gives

computers the ability to learn without being explicitly programmed. An alternative

definition is the process of identifying a set of categories (sub-populations) where a

new observation belongs on the basis of a training set of data containing observations

whose category membership is known [64]. Based on properly constructed systems

with proper parameterizations, ML algorithms are capable of learning about the

regularities present in the training data such that constructing and generalizing

rules can be extended to the unknown data during the training phase.

A plethora of ML algorithms are available to choose from depending on what

type of question needs to be addressed. An ANN and a SVM framework are selected

in this study (with particular relevance to SWE) because (1) they are data-driven

models [65] used in cases where the underlying physical relationships between the
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electromagnetic response and SWE characteristics are not fully understood and

(2) they can be used to reproduce nonlinear processes via iterations without prior

knowledge about the relationship between the parameters (e.g., snow grain size and

SWE) [66].

Some differences between these two types of ML techniques are also evident.

For example, the existence of local minima [67] could prevent an ANN from finding

the unique global minimum solution to a constrained optimization problem, which

is not the case for a SVM, which possesses a more simple geometric interpretation

[68] characterized by convex optimization problems and thereby a unique global

optima will always be found. Additionally, if the size of the training examples is

not large enough, the SVM is expected to perform well based on a properly-selected

mechanism of model parameters since the number of support vectors in the decision

(feature) space is far less than the number of training points [69] whereas an ANN

is always in need of a relatively large number of training points.

Both ANN- and SVM-based techniques in this study utilize the same model

inputs derived from the National Aeronautics and Space Administration (NASA)

Catchment land surface model (Catchment; [70]) and output Tbs at three different

frequencies (10.65 GHz, 18.7 GHz, and 36.5 GHz) at both horizontal and vertical

polarization (see Table 2.1). Uncertainty and errors in Catchment-derived model

output, including SWE, were discussed in detail in [7]. SWE estimates from the

Catchment model in the MERRA-Land data product were found to be unbiased in

the global mean [7]. In addition, the brightness temperatures produced from the

ML algorithms are also unbiased [59,60]. Therefore, it is hypothesized that the first
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statistical moment related to the mode of estimated SWE in the Catchment model

is reasonably characterized.

Table 2.1: Model (ANN and SVM) inputs and outputs (reproduced from [59])

Inputs Symbol Unit

Top layer snow density ρsn1 kg/m3

Middle layer snow density ρsn2 kg/m3

Bottom layer snow density ρsn3 kg/m3

Snow liquid water content SLWC kg/m2

Snow water equivalent SWE m
Near-surface air temperature Tair K
Near-surface soil temperature Tp1 K

Skin temperature Tskin K
Top layer snow temperature Tsn1 K

Bottom layer snow temperature Tsn3 K
Temperature gradient index TGI -

Outputs Symbol Unit

Brightness temperature at 10.65 GHz, H-polarization 10H K
Brightness temperature at 10.65 GHz, V-polarization 10V K
Brightness temperature at 18.7 GHz, H-polarization 18H K
Brightness temperature at 18.7 GHz, V-polarization 18V K
Brightness temperature at 36.5 GHz, H-polarization 36H K
Brightness temperature at 36.5 GHz, V-polarization 36V K

Each ML technique is trained with the same nine-year (2002-2011) training

dataset of Tb observations from AMSR-E where forest and atmospheric effects were

not removed prior to ANN or SVM training in this study. All Catchment-based

inputs (i.e., the 11 model inputs listed in Table 2.1), AMSR-E training data, ANN-

based output, and SVM-based output (e.g., six different Tbs listed in Table 2.1)

are generated on the 25km × 25km Equal Area Scalable Earth (EASE) grid. A

jack-knifing training procedure was adopted such that an independent validation of

either ANN- or SVM-based model output was conducted. The results presented here
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employ previously trained ANN and SVM models based on the work discussed in

[59,60]. For brevity, only essential details related to both ANN and SVM frameworks

are outlined in the Appendix A for reference.

2.3 Sensitivity analysis formulation

Sensitivity analysis is an important tool for assessing the relative importance of

causative factors in a model. This study conducts a sensitivity analysis to investigate

the response of either an ANN- or a SVM-based Tb estimate with respect to small

perturbations in model inputs and whether or not such small perturbations result

in a physically-consistent response. Since the ANN and SVM have the same model

inputs and model outputs, the study conducted here is able to compare and contrast

the sensitivity of predicted Tb between the two different ML techniques. In order

to quantify the relative importance of each model input variable, the Normalized

Sensitivity Coefficients (NSCs; [71]) are computed as:

NSCi,j = (
∂Mj

∂pi
) · ( p

0
i

M0
j

)

≈ (
M i

i −M0
j

∆pi
) · ( p

0
i

M0
j

) (2.1)

where p0
i is the nominal input value; M0

j is the nominal output value; M i
j is the

perturbed output value; ∆pi is the amount of perturbation; i = 1, 2, · · · , n; j =

1, 2, · · · ,m; n is the number of inputs; and m is the number of outputs.

The study perturbs one input at a time in order to calculate the NSC for each

model input. It is worth noting that the perturbation cannot be too small, otherwise

model noise will be amplified, which leads to an improper estimate of the NSC. In
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addition, the perturbation cannot be too large, otherwise, the model will fall into

a nonlinear region where the marginal function evaluated at the given point is no

longer an accurate representation of the rate of change in the model output with

respect to the change in the input as expressed in Equation 2.1.

A generally-applied perturbation size of +/-5% is used in this study. A range

of perturbation sizes were tested ranging from -20% to +20% and a +/-5% pertur-

bation size was ultimately selected because model noise amplification was minimized

and the model response was, in general, linear with respect to the range of input

perturbations. The model outputs for both ANN- and SVM-based models are the

Tb estimates at both horizontal and vertical polarization at 10.65 GHz, 18.7 GHz

and 36.5 GHz (see Table 2.1). Only 7 of the 11 model inputs are discussed below.

The other 4 input variables were shown to be relatively insensitive based on numer-

ous NSC calculations from 2002 to 2011 using the ANN- and SVM-based models,

and therefore are excluded from the remainder of the sensitivity analysis. The re-

maining seven model inputs explored are: (1) top-layer snow density, (2) SWE,

(3) near-surface air temperature, (4) near-surface soil temperature, (5) top layer

snow temperature, (6) temperature gradient index (TGI), which is a snow grain

size metamorphism proxy generally for cold snow pack conditions [72], and (7) skin

temperature (a.k.a. radiative skin temperature of the terrestrial environment).

Vegetation is one of the biggest challenges in the accurate estimation of SWE-

related Tb [18,73]. Four different scenarios (see Table 2.2) are categorized for both

ANN- and SVM-based models with various amounts of forest cover and SWE for

a given day of interest in order to succinctly bound the competing effects of SWE
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and forest canopy on passive microwave (PMW) Tb estimates. The snow class

category for each location is obtained via the seasonal snow cover classification

system derived by [74]. The forest cover (%) and forest density (g/cm3) values are

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) [75].

The original tree cover product has a resolution of 500m × 500m. For purposes of

this study, the original product was re-mapped as forest cover fraction and forest

density onto the 25km EASE-Grid. Without considering the effects of changes in

biotic disturbances and other climatic aspects, this study assumes that the forest

cover fraction is relatively constant across the time period of investigation.

Table 2.2: Canopy cover (%) and SWE (m) for the selected locations under different
scenarios of various amounts of SWE (11 Jan 2004) and forest.

Scenario Latitude Longitude Forest cover Forest density SWE Snow
(degree) (degree) (%) (g/cm3) (m) class

Low Veg 50.49 -100.39 5.04 0.059 0.03 Taiga
+ Low SWE

Low Veg 58.35 -73.66 0 0 0.12 Tundra
+ High SWE

High Veg 55.09 -112.36 81.61 0.504 0.01 Alpine
+ Low SWE

High Veg 64.28 -146.17 95.44 0.517 0.13 Tundra
+ High SWE

In this study, locations in the study domain with percentages of forest cover

(i.e., trees with heights of at least 2 meters) greater than 50% are defined arbitrar-

ily as “high forest” areas, and those with forest cover less than 10% are defined

arbitrarily as “low forest” areas (see Figure 2.1). In addition, a SWE threshold of
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0.01 m is used as the lower limit in the investigation at which the location is con-

sidered snow-covered, which is a similar threshold applied in most SWE retrieval

algorithms. For the specified day of interest, locations with SWE magnitudes greater

than 0.10 m (∼0.35 m snow depth) but less than 0.28 m (∼0.98 m snow depth) are

categorized into the “high SWE” class since snow depths greater than 1 m usually

exceeds the upper limit of PMW capabilities (Josberger and Mognard, 2002). On

the other hand, locations with SWE values greater than the SWE threshold of 0.01

m (∼0.035 m snow depth) and less than 0.04 m (∼0.14 m snow depth) are defined

as “low SWE” areas (see Figure 2.2). The selection of threshold values for “low”

versus “high” SWE and “low” versus “high” forest cover are somewhat arbitrary.

However, the goal of the exercise is to simply explore values at the extreme ends of

the spectrum is order to bound the analysis.

2.4 Sensitivity analysis results

The sensitivity results of both ANN- and SVM-based Tb estimates with re-

spect to spatiotemporal variability in forested and non-forested regions are presented

in the following section.

2.4.1 Spatial variability of NSCs at single frequency

In general, representative locations selected (see Table 2.2) for this study were

chosen because: (1) there is no sea ice, and (2) there is no significant lake fraction

within the region (25 km × 25 km). Additionally, year 2004 is selected for display
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Figure 2.1: Remapped forest cover distribution from [75] is shown in
a) with the relative frequency distribution of forest cover shown in b).
“High forest” class is defined as greater than 50% forest fraction, whereas
“low forest” class is defined as less than 10%. Marker 1 is labeled as
a selected location containing low SWE and low vegetation coverage;
Marker 2 is labeled as a selected location containing low SWE and high
vegetation coverage; Marker 3 is labeled as a selected location containing
high SWE and low vegetation coverage; and Marker 4 is labeled as a
selected location containing high SWE and high vegetation coverage.

since the 2004-2005 snow season is fairly representative of conditions during the

9-year study period. Sensitivity results of vertically-polarized Tb estimates at 18.7

GHz and 36.5 GHz under four different scenarios are presented from Sections 2.4.1.1

to 2.4.1.4 in order to highlight the differences between the ANN-based and the SVM-

based estimates. Further, 18V and 36V are the focus of the discussions since these

channels are commonly used in SWE retrieval algorithms [14–16].
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Figure 2.2: An example of a) SWE distribution obtained from the NASA
Catchment model on 11 Jan 2004 and b) relative frequency of SWE dis-
tribution. “High SWE” class is defined as SWE values greater than 0.1m
but less than 0.28m, whereas “low SWE” class is defined as less than
0.04m but greater than 0.01m. Marker 1 is labeled as a selected location
containing low SWE and low vegetation coverage; Marker 2 is labeled
as a selected location containing low SWE and high vegetation cover-
age; Marker 3 is labeled as a selected location containing high SWE and
low vegetation coverage; and Marker 4 is labeled as a selected location
containing high SWE and high vegetation coverage.

2.4.1.1 NSCs in the regions with low forest cover and low SWE

The first test location (latitude 50.49◦ and longitude -100.39◦) for the low SWE

and low forest class is in the southwest corner of Manitoba, Canada (see location in

Figures 2.1a and 2.2a marked 1). Figure 2.3 displays the NSCs for seven different

model inputs computed for 11 Jan 2004. Some similarities in model performance

are evident in Figures 2.3a and 2.3b. For example, NSC values with respect to
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soil temperature for both ML methods are negative at the displayed polarizations

and frequencies, and the magnitude of the NSC with respect to soil temperature at

36V computed from the ANN-based model is roughly 5 times greater than that at

18V. This phenomenon is somewhat counterintuitive in the sense that given a slight

increase in the top-layer soil temperature, it is possible that recorded Tb (at certain

microwave frequencies) would also increase, which would result in a positive value

of the NSC. In addition, soil emission depth decreases as the microwave frequency

increases (assuming constant soil conditions) during the snow accumulation phase.

That is, the microwave signal at 36.5 GHz (with an emission depth of ∼0.8 cm) is

more strongly attenuated than that at 18.7 GHz (with an emission depth of∼1.4 cm)

especially in the presence of 5% vegetation cover coupled with ∼9.0 cm of overlying

snow pack [76]. It is interesting to note that the ANN-based NSC of top-layer

soil temperature at 36V is a large and negative number (see Figure 2.3b), which

dominates the sensitivity of the six remaining input variables and mostly dictates

the model behavior. It could be partly explained that given a slight increase in

top-layer soil temperature during the sensitivity analysis, the emissivity of frozen

soil decreases [77], which may lead to a sharp decrease in the Tb observations. This

behavior might be more evident near the snow-soil transitional surface, rather than

deep soil zones given the relatively short soil emission depth.

The ANN-based model is less sensitive to several snow-related states, such as

SWE, top layer snow density, TGI, and top layer snow temperature in the presence

of a shallow snow pack. However, the Tb estimates at both 18V and 36V based on

the SVM model are more sensitive (relative to the ANN) to perturbations in the
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snow states. Alternatively, the variation in the ANN-based Tb estimates is more

affected by perturbations in the air temperature and soil temperature compared to

the SVM-based model. In such a case, the SVM-based model likely possesses more

potential at capturing and reproducing snow-related features of PMW emission over

snow-covered land.
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Figure 2.3: ANN and SVM-based NSCs for seven model states at a
location with low forest cover and low SWE on 11 Jan 2004 for vertically
polarized Tb estimates at a) 18.7 GHz and b) 36.5 GHz.

2.4.1.2 NSCs in the regions with low forest cover and high SWE

The representative location (latitude 58.35◦ and longitude -73.66◦) of the high

SWE and low forest class is in the northern part of Quebec, Canada (see location in
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Figures 2.1a and 2.2a, marked 2). Since this area is not covered by forest, both ANN-

and SVM-based NSCs are similar in their respective sensitivity to skin temperature

and top layer snow temperature as witnessed in Figure 2.4. This can be explained

by the fact that skin temperature is a parameter to quantify the temperature of the

terrestrial surface closest to the satellite-based sensor (i.e., AMSR-E). In this area

with little forest cover, the skin temperature approximately equals the top-layer

snow temperature, and hence, the model responses of Tb with respect to changes

in skin temperature (or snow temperature) are effectively identical.

Some differences in model performance were also evident. The ANN-based

model is only sensitive to the top-layer soil temperature and exhibits limited sen-

sitivity to several snow-related states, such as SWE, top layer snow density, snow

temperature and TGI. Conversely, SWE, TGI, snow density and snow temperature

are relatively sensitive parameters in the SVM-based Tb estimates. The magnitude

of NSC for SWE at 36V (shorter wavelength) is larger than that at 18V (longer

wavelength). One possible explanation for this behavior is 36.5 GHz (relative to

18.7 GHz) is more sensitive to snow pack scattering, which is indirectly associated

with volumetric storage of snow water (i.e., SWE or snow depth) while the 18.7

GHz data is less affected by snow scattering processes [78,79]. The negative signs of

the NSC of SWE based on the SVM model at both 18V and 36V further reproduce

the theory that increasing SWE introduces an increased possibility of snow pack

scattering, and hence, a reduction in Tb.

It is interesting to note that the scenario with low forest cover and high SWE

possesses the highest NSC in terms of magnitude for SWE (of all four locations
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examined here) when using the SVM at both 18V and 36V, respectively (see Figures

2.4a and 2.4b). This is notable because this scenario most closely agrees with the

fundamental scattering theory that underpins most SWE retrieval algorithms. In

addition, forest effects in this example are relatively insignificant (or nonexistent) as

the emitted radiation from the underlying snow pack will not be strongly attenuated

by the relatively sparse overlying forest cover nor does the forest canopy significantly

add to the Tb as measured by the radiometer. It is also worth noting that SWE is

computed as the product of snow depth and snow density. Given a slight increase

in snow density (while holding snow depth constant during the sensitivity analysis),

SWE is expected to increase, which will trigger a decrease in Tb as discussed above.

Hence, this could possibly be used to explain the physical rationale behind the

negative sign of the NSC of snow density based on the SVM model at both 18V and

36V. In summary, compared with the ANN-based model at this study location, the

SVM-based Tb estimate has the potential to capture more SWE information (as

well as other snow-related variables) at both 18V and 36V based on the computed

NSCs.

It is further discovered that SVM sensitivity to SWE could be enhanced via

model reductions such that relatively insensitive input variables (e.g., air tempera-

ture) are selectively removed from the SVM formulation. That is, as more and more

variables, other than SWE, are eliminated, the SVM-based Tb estimates become

increasingly reliant on (or sensitive to) SWE information (see Section 2.4.3).
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Figure 2.4: ANN and SVM-based NSCs for seven model states at a
location with low forest cover and high SWE on 11 Jan 2004 for vertically
polarized Tb estimates at a) 18.7 GHz and b) 36.5 GHz.

2.4.1.3 NSCs in the regions with high forest cover and low SWE

This study location (latitude 55.09◦ and longitude -112.36◦) of the low SWE

and high forest class is in the middle of Alberta, Canada (see location in Figures 2.1a

and 2.2a, marked 3). The forest cover fraction is 82% and the model-derived SWE is

0.01 m on 11 Jan 2004 (see Table 2.2). The ANN-based Tb estimates are relatively

insensitive to snow-related states (see Figures 2.5a and 2.5b) except for the top-layer

snow temperature, which yields an NSC value of 0.13 at 18V and 0.08 at 36V. It is

more likely that the accurate Tb estimates derived from the ANN-based model at
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this location (and others) does not depend on the model input of SWE. That is, the

ANN-based estimation of Tb derives more information associated with the near-

surface soil temperature (Figures 2.3, 2.4, 2.5 and 2.6), air temperature (Figures

2.3 and 2.5), and skin temperature (Figure 2.5 and 2.6) rather than from the snow

pack information. On the other hand, even during conditions with high forest cover

and limited snow depth, the SVM-based model remains sensitive to snow-related

variables. That is, TGI, SWE, snow temperature, and snow density are consistently

the four most sensitive input variables during the SVM-based sensitivity analysis

at both 18V and 36V. The SVM-derived NSC with respect to SWE is negative at

36V, which agrees well with the scattering theory discussed previously. Conversely,

the SVM-derived NSC with respect to SWE is positive at 18V. This sign-change

behavior in the NSC for SWE between different microwave frequencies might be

explained by the fact that shallow snow (0.01 m of SWE in this particular location)

is effectively transparent to microwave radiation [80] especially at 18V that possesses

a higher emission depth. On the other hand, since the area is covered with 82% of

forests, the recorded microwave emission is likely to contain a measurable amount

of signal from dense forest contributions, which could explain the positive NSC with

respect to SWE as witnessed at 18V in Figure 2.5.

It is difficult to discern exactly why the near-surface air temperature, skin

temperature and the top-layer snow temperature have equal sensitivity in predicting

vertically-polarized Tb at both 18.7 GHz and 36.5 GHz in the ANN-based model. In

the absence of vegetation, the skin temperature is expected to possess the same sen-

sitivity as the top-layer snow temperature because in the snow-covered land without
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vegetation, the skin temperature and the upper-layer snow temperature are essen-

tially identical. However, this particular location is largely covered by forest, hence,

the skin temperature and snow temperature often differ significantly from one an-

other. The disagreement with the fundamental physics may come from: (1) model

forcing error (e.g., precipitation rate), (2) measurement error associated with the

MODIS forest cover product, or (3) learning inability of the ANN in regions with

high forest cover and relatively little snow in the sense that it predicts the right

answer for the wrong reasons. This learning inability may arise from the ANNs

learning algorithm in terms of converging to the local minima [67] instead of the

global minimum value of its objective function of mean squared errors.

2.4.1.4 NSCs in the regions with high forest cover and high SWE

The representative location (latitude 64.28◦ and longitude -146.17◦) of the high

SWE and high forest class is in the middle of Alaska, U.S. (see location in Figures

2.1a and 2.2a, marked 4). Since this area is covered by thick forest, ANN- and

SVM-based NSCs are different in terms of the sensitivity to skin temperature and

top layer snow temperature as witnessed in Figure 2.6. The results shown in Figures

2.6a and 2.6b also demonstrate that SWE is a relatively sensitive model parameter

in the SVM-based Tb estimates at 36V, which may suggest some potential in future

work for enhancing SWE estimation in densely-forested regions via Tb assimilation.

Conversely, snow-related variables (e.g., TGI, SWE and snow density) are relatively

insensitive parameters in the ANN-based Tb estimates at both 18V and 36V.
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Figure 2.5: ANN and SVM-based NSCs for seven model states at a
location with high forest cover and low SWE on 11 Jan 2004 for vertically
polarized Tb estimates at a) 18.7 GHz and b) 36.5 GHz.

It is interesting to note that the NSCs of air temperature computed in Sec-

tions 2.4.1.3 and 2.4.1.4 during the SVM-based sensitivity analysis are both negative,

which is somewhat counterintuitive to basic theory. It may be due to the presence

of atmospheric water vapor, or surface wind effects, both of which could lead to a

decrease in measured Tb. Additionally, the sign-change behavior of the NSC with

respect to air temperature might also be explained by the fact that an increase in

the air temperature would possibly introduce ice crusts formation (or snow consoli-

dation), which may lead to a lower Tb at both 18V and 36V [24,79].

Since SWE is the primary motivation for this study, NSC relative frequency
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plots of SWE for a single day help further demonstrate the sensitivity differences to

SWE between the ANN- and the SVM-based Tb estimates. The results in Figure

2.7 highlight the differences between the two methods by comparing the relative

frequency of NSC values on 11 Jan 2004 across the entire North America (NA)

domain. The relative frequency is computed as the ratio of the number of binned

occurrences to the total number of computed NSCs. The overall pattern of the his-

togram suggests that compared with SVM-based NSC of SWE values, Tb estimates

derived from the ANN model are much less sensitive to the input of SWE with more

than 80% of the NSC values close to zero. The SVM, on the other hand, suggests

greater sensitivity to SWE across much more of the NA domain during most of the

snow season (similar results were found on other examined dates).

2.4.1.5 Sensitivity to spectral difference

All of the discussions above regard the relative change in the estimation of a

single vertically (or horizontally) polarized Tb frequency, either at 10.65 GHz, 18.7

GHz or at 36.5 GHz, with respect to the relative change in SWE (or other model

states). Recall that in most snow retrieval products, SWE (or snow depth) is pro-

portional to the spectral difference between particular PMW frequencies depending

on sensor characteristics. For example, Chang et al. (1987) [12] presented the first

snow depth-Tb relationship for a uniform snowfield with a fixed snow density of

300 kg/m3 and a mean radius of 0.3 mm, which was expressed as a function of the

spectral difference of Tb between 18H and 37H. After that, Chang et al. (1996) [15]
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Figure 2.6: ANN and SVM-based NSCs for seven model states at a loca-
tion with high forest cover and high SWE on 11 Jan 2004 for vertically
polarized Tb estimates at a) 18.7 GHz and b) 36.5 GHz. The ANN-
derived NSC for top-layer soil temperature at 36V is equal to 0.86 and
was truncated in order to enhance visual clarity.

improved SWE estimation in forested regions with a revised form of the algorithm

using the spectral difference of Tb between 19V and 37V. The general theory postu-

lates that an increase in SWE causes an increase in scattering and more so at shorter

wavelengths. Therefore, the spectral difference (e.g., ∆Tb = Tb18V - Tb36V ) should

increase as SWE increases due to the enhanced scattering effects on the emitted

microwave radiation. In order to examine the predictive skill of spectral differences

via different ML algorithms, the NSC of SWE to the spectral difference of Tb was
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Figure 2.7: Relative frequency of NSCs for SWE derived from both ANN-
and SVM-based Tb estimates. Subplots show a) 10H, b) 10V, c) 18H,
d) 18V, e) 36H, and f) 36V.

investigated as:

NSC(SWE,∆Tb) = {∆∆(Tbf1 − Tbf2)

∆SWE
} · { SWE0

∆(Tb0
f1 − Tb0

f2)
} (2.2)

where NSC(SWE,∆Tb) (dimensionless) is the normalized rate of change in the spectral

difference of Tb (∆Tb) with respect to changes in SWE; ∆∆(Tbf1 − Tbf2) (K) is

the difference of the spectral difference of ML-derived Tb estimates model inputs

between PMW frequencies of f1 and f2 (f1 < f2); ∆SWE (m) is the change in

SWE magnitude; SWE0 (m) is the nominal value of SWE before introducing a

perturbation; and ∆(Tb0
f1−Tb0

f2) (K) is the spectral difference of the nominal value
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(before perturbation) of ML-derived Tb estimates between PMW frequencies of f1

and f2.

A perturbation size of +/-5% is used here, during which the model response

of spectral difference of Tb, in general, falls into the linear region for the model

inputs across NA. For brevity, only the results of the NSC distributions for SWE

of spectral difference between Tb at 18V and 36V are shown in Figure 2.8. Both

ANN- and SVM-based models are sensitive to SWE to some extent at some locations

on 11 Jan 2004 during the snow accumulation phase. However, as discussed from

Sections 2.4.1.1 to 2.4.1.4, SWE plays a more dominant role in most of the regions

in the NA domain for the SVM-based Tb estimate (relative to the ANN-based Tb

estimate). Therefore, the strong response between the model input of SWE and the

ML-derived spectral difference of Tb estimate suggests that the SVM may be more

appropriate for use as a model operator within a DA framework in order to enhance

SWE estimation at regional or continental scales.

The positive sign of the SVM-based NSC of SWE at a spectral difference

between 18V and 36V agrees well with most snow retrieval algorithms. However,

more than 40% of the spectral difference NSCs of SWE across the entire NA domain

have negative values, which occurred more frequently in regions north of the boreal

forest compared with other areas in the domain. These negative NSC values may

be largely due to the highly non-linear response [81, 82] of the snow pack contrary

to the (quasi-) linear spectral difference reflected in many SWE retrieval algorithms

(e.g., [12,14]). In addition, most of the current SWE retrieval algorithms are based

on specific assumptions that the snow pack contains a fixed density or a fixed snow
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Figure 2.8: An example of NSC maps on 11 Jan 2004 with respect to
SWE for a) ANN-based and b) SVM-based estimates of spectral differ-
ence between Tb at 18V and 36V.

grain size, which is often not the case [74]. Another possible explanation for the

sign-change in the spectral difference NSCs may be due to the formation of wind-slab

coupled with the existence of internal ice crusts and depth-hoar layers. In addition,

sensitivity analysis were performed for the SVM model with four input states (see

Section 2.4.3), similar NSCs distribution pattern were witnessed with 35% of the

spectral difference NSCs of SWE across the entire NA domain have negative values.

Suffice it to say that the exact reasons for the sign-change in the spectral difference

NSCs in portions of the study domain are not entirely understood. However, it is
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clear that the SVM-based spectral difference estimates are much more sensitive to

SWE than are the ANN-based estimates and that the SVM-based estimates suggest

a non-linear relationship to SWE that is routinely found in PMW-based snow remote

sensing studies [26].

2.4.2 Temporal behavior of NSCs

In order to better examine the model behavior, additional locations (beyond

what was examined previously) of low forest and high forest cases in the year 2004

were selected for investigation of temporal variability in the NSCs. It is worth

noting that SWE is selected here for investigation since SWE estimation is the main

motivation for this study.

A representative location of the low forest class (latitude 54.65◦ and longitude

-61.77◦) in Newfoundland and Labrador, Canada, was selected because there is no

lake or sea ice cover in the region. The area is covered with 6.62% of forest and

a maximum SWE value of 0.29 m. During the snow accumulation phase from late

October to late April, less than 20 days out of 180 days (four months) have non-

zero NSCs with respect to SWE based on the ANN. Further, SWE sensitivity in

the ANN is small with respect to the soil temperature sensitivity. Meanwhile, the

SVM-based model Tb estimates are much more sensitive to SWE. It is also worth

noting that when the daily SWE values change abruptly (indicated by the slope

of the green lines in Figure 2.9 that results from a recent snowstorm, the NSC for

the SVM model has a strong response (i.e., abrupt jump or drop in the NSCs) with
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respect to the daily-change in SWE. However, when there is no change in SWE, such

as the time period from 06 Feb 2004 to 16 Feb 2004, the NSC for both the ANN

and SVM at all frequencies and polarizations remains close to zero. This suggests

the ML algorithms are most sensitive under dynamic snow pack conditions during

the snow accumulation phase.
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Figure 2.9: Time series investigation of NSCs with respect to SWE for 01
September 2003 to 01 June 2004 for a single location in Newfoundland,
Canada where the forest cover is 6.62%. Subplots show a) 10H, b) 10V,
c) 18H, d) 18V, e) 36H, and f) 36V.

During the snow ablation phase from the end of April to May, the SVM-

based Tb estimates at all frequency and polarization combinations are relatively

sensitive to changes in SWE. However, for the ANN-based Tb estimates, there is
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little variability with respect to SWE that can be seen in Figure 2.9 when the snow

pack is wet. Similar insensitivity is witnessed by the ANN with respect to other

snow-related variables. For example, on the day of 05 May 2004, when the modeled

snow liquid water content (SLWC) is at its maximum, NSCs with respect to SLWC

for the ANN-based Tb estimate at 18V and 36V are both zero.

Another representative location of the high forest class (latitude 64.28◦ and

longitude -146.17◦) in the middle of Alaska, U.S., was selected because there is no

lake ice cover in the region. The area is covered with 95.44% of forest and the

maximum SWE is 0.19 m (see Figure 2.10). It is notable that the ANN-based SWE

sensitivity is much smaller relative to the soil temperature. Alternatively, in this

example, the SVM-based Tb estimates at all frequencies are sensitive to SWE during

both snow accumulation and ablation phases. The ANN-based model, on the other

hand, is much less sensitive to SWE during the snow accumulation phase. Less

than 20 days out of 155 days examined here have non-zero NSCs for SWE using the

ANN. Further, the magnitudes of NSCs are smaller compared with those in the low

forest case. This is because the overlying forest tends to attenuate the snow-related

signal from the underlying snow pack.

Similar behavior seen in the low forest case can also be seen in the high forest

case shown in Figure 2.10. The NSCs with respect to SWE are generally higher

and changing more rapidly during the snow ablation phase than those during the

accumulation phase for both ML techniques. This is likely attributed to the effects of

wet snow at this location where the presence of moisture within the snow pack causes

the snow pack to behave as a strong emitter rather than a scatterer [83], and hence,
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Figure 2.10: Time series investigation of NSCs with respect to SWE for
01 September 2003 to 01 June 2004 for a single location in central Alaska
where the forest cover is 95.44%. Subplots show a) 10H, b) 10V, c) 18H,
d) 18V, e) 36H, and f) 36V.

large changes in the AMSR-E Tb observations are commonly seen. Additionally,

shorter wavelengths (i.e., 36V) are more responsive to snow-related variables than

longer wavelengths (i.e., 18V) [78, 79] as revealed by higher computed NSC values,

which suggest greater sensitivity due to increased scattering at shorter wavelengths.

The effect on different PMW frequencies, however, does not fully reflect on the model

sensitivity of SLWC during the snow ablation phase since SLWC is not computed

as a function of snow pack layers, but rather as a column-integrated quantity.
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2.4.3 Trade-off between Tb prediction accuracy and SWE sensitivity

An overparameterized (or underparameterized) SVM is likely to yield a sub-

optimal measurement model, and hence, negatively impact the assimilation results.

Therefore, a suite of SVM model input vectors were tested based on both SWE

sensitivity (see [92] for details) and Tb prediction accuracy (see [60] for details).

An example depiction of the relationship between SVM-based Tb predictions at

36.5 GHz with horizontal polarization across the entire Quebec and Newfoundland,

Canada from 01 Jan 2004 to 14 Jan 2004 is shown in Figure 2.11. Similar perfor-

mance is witnessed across other locations, frequency combinations, polarizations,

and instances in time (results not shown). The “Goldilocks” region is defined as

where the SVM has a relatively high prediction accuracy without sacrificing model

sensitivity to SWE.

A total of 10 different Catchment-derived state variables, including SWE, snow

liquid water content, top-layer soil temperature, skin temperature (a.k.a. radiative

skin temperature of the terrestrial environment), bottom-layer snow density, mid-

layer snow density, bottom-layer snow temperature, top-layer snow density, near-

surface air temperature, and top-layer snow temperature were added one-at-a-time

in accordance with increasing complexity based on the results of an earlier sensitivity

analysis [61]. SWE sensitivity at model complexity q (q = 1, 2, · · · , 10) is defined as

the ratio between the NSC of SWE and the NSC of SWE when the model complexity

is q = 1. The validation accuracy level at model complexity q is then defined as the

ratio between the mean-squared error (MSE) achieved when q = 10 and the MSE
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achieved when model complexity is q. The shaded region in Figure 2.11 is loosely

defined as the “Goldilocks” region. Therefore, the SVM using Catchment-derived

1) SWE, 2) snow liquid water content, 3) top layer soil temperature, and 4) skin

temperature were ultimately selected for use in this study.
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Figure 2.11: Relationship between SVM-based Tb prediction accuracy
and SWE sensitivity.

2.4.4 The four-input-state SVM model sensitivity

2.5 Discussions and Conclusions

The sensitivity analysis of Tb estimates for both ANN and SVM models are

performed with respect to different models inputs. Based on the computed NSCs,

the key findings are summarized as follows:
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(1) Common features among ML-based models: SWE sensitivities for both of

the ML techniques are greatest in non-forested or sparsely-forested regions (i.e., less

than 10% forest cover fraction) with relatively high amounts of snow.

(2) Unique feature of the ANN-based model: in highly vegetated areas, the

sensitivity of the ANN-based model is more dominated by vegetative canopy, sur-

face and soil temperature and less so with snow-related variables. This could be

attributed to forest cover attenuation of the emission of radiation from the snow

pack prior to reaching the PMW sensor [18,73].

(3) Unique feature of the SVM-based model: in areas of dense vegetation and

relatively low SWE, the SVM-based model shows significantly greater sensitivity to

snow-related variables compared with those from the ANN-based model.

(4) ML-based model sensitivity with respect to different model inputs: com-

pared to the vertically polarized Tb at 10.65 GHz and 18.7 GHz for the SVM-based

estimates, Tb at 36.5 GHz tends to have a higher sensitivity with respect to small

perturbations in the model input of SWE and top-layer snow temperature. This

is partially explained by the fact that higher PMW frequencies possess a smaller

emission depth. Hence, the 36.5 GHz channel captures more temporal variability

related to the surface of the snow pack. In addition, microwave emission at 36.5

GHz is more responsive to snow pack scattering, which is indirectly associated with

SWE estimates while the 18.7 GHz Tb data is less affected by snow scattering

processes [78, 79]. It can be further concluded that the SVM-based model is more

sensitive to snow-related variables, for example, SWE, TGI, and upper-layer snow

temperature during both snow accumulation and ablation phases. Conversely, in
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the ANN-based model, Tb estimates are relatively insensitive to TGI and snow

density. Additionally, the ANNs sensitivity to SWE is more dependent on a specific

location or a specific period of time. Alternatively, the ANN is more sensitive to the

near-surface soil temperature across a range of locations and time periods. Hence,

the SWE information is often overwhelmed by soil temperature information during

ANN-based Tb estimation.

(5) “Goldilocks region” of the SVM-based model: the four-input-state SVM

with Catchment-derived SWE, SLWC, top-layer soil temperature and skin temper-

ature was selected for use within the proposed DA framework.

In order to explain the relatively low sensitivity to snow temperature and rel-

atively high sensitivity to soil temperature in the ANN-based model, Forman and

Reichle (2014) [60] discussed the step-function like behavior of the ANN-derived

time series of Tb estimates at 18.7 GHz and 36.5 GHz. The top-layer snow tem-

perature will vary more frequently in time than other soil-related properties since

the overlying snow has more opportunities to interact with air and hence undergo

more rapid changes in temperatures compared to the more insulated soil tempera-

ture. Therefore, it is postulated that the ANN-based model may have difficulty in

capturing the high-frequency fluctuations (i.e., day-to-day variations) in the model

inputs (e.g., top-layer snow temperature). One of the possible explanations for the

insensitivity of the ANN-based model with respect to snow-related states may re-

sult from its learning algorithm and the fact that the solution is not guaranteed

to converge to the global optimum during training. On the contrary, as discussed

in Section 2.2, formulations of SVM-based models are convex and a unique global
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optimum will be found.

In order to further explain the relatively high sensitivity to SWE in the SVM-

based model compared with those in the ANN-based model, it is hypothesized here

that the model response is strongly correlated with model structure and parame-

terization in the ML-based techniques. For instance, the selection of the number of

hidden layer and hidden neurons in the ANN [9,84] and the regulation of the penalty

parameter and the adjustable parameter in the kernel function in the SVM [85] are

critical to defining ML-based model performance. Therefore, a different ML-based

model configuration might lead to different model responses towards the model in-

put state of SWE perturbation. In this study, the formulation of the SVM (i.e.,

selection of model parameters) is demonstrated to be more favorable at capturing

SWE variability under different scenarios in ML-based Tb estimates. In conclusion,

compared with the ANN, the SVM (with four-input-state) more properly repro-

duces the observed Tbs for the right reasons, is much more responsive to changes

in snow pack conditions, and hence would presumably serve as a more effective

measurement model operator at regional- and continental-scales for forested and

non-forested areas as part of a Tb data assimilation framework aimed at enhancing

SWE estimation.

42



Chapter 3: Assimilation of passive microwave brightness tempera-

ture observations into a land surface model with support

vector machines for snow characterization in Alaska

3.1 Motivation and Objective

The relatively high sensitivity between the prior snow water equivalent (SWE)

and the support vector machine (SVM)-based brightness temperature (Tb) predic-

tions investigated in Chapter 2 suggests that SVM could serve as a computationally

efficient measurement model operator for continental-scale snow data assimilation.

Therefore, this chapter is intended to address the overarching science question: How

can the predictability of SWE and snow depth at regional scales be enhanced through

the systematic integration of passive microwave (PMW) measurements collected by

satellite-based instrumentation and a machine-learning based algorithm into a land

surface model?
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3.2 Models, data, and methods

3.2.1 Land surface model and study area

The forward (prognostic) land surface model used in this study is the Catch-

ment land surface model (Catchment) [70,86,87] forced by meteorological fields from

the Modern Era Retrospective Analysis for Research Application (MERRA) [88]

product developed at the Global Modeling and Assimilation Office at the NASA

Goddard Space Flight Center. Catchment includes a three-layer snow regime [87] to

model snow melt and re-freezing processes, including snow pack consolidation and

metamorphosis. These attributes create a unique capability for Catchment in the

assimilation of PMW Tb observations for the eventual goal of improving snow water

storage estimation.

Catchment was run at a time increment of 450 seconds from 01 August 2002 to

30 June 2011 on the 25-km Equal Area Scalable Earth (EASE) grid. The temporal

domain encompasses the full AMSR-E record. The study domain as illustrated in

Figure 2.1 encompasses all of Alaska westward of 140◦ W. This region was selected

because the domain includes a diversity of: 1) snow cover classes, 2) elevation ranges

3) land cover classes, and 4) a number of ground-based stations in terms of both

snow observation and river discharge observation stations. Blue dots in Figure 3.1d)

represent the 40 locations in Alaska with at least one set of in-situ snow observations

covering a period of two or more years (see Section 3.2.2.2 for details).
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a) b)

c)c) d)

Figure 3.1: a) Global Land One-km Base Elevation Project (GLOBE)
(aggregating onto the 25km EASE Grid), b) MODIS MCD12C1 land
cover classification product, c) snow cover classification from Sturm et
al., 1995 [74], and d) available ground-based stations.

3.2.2 Observations

3.2.2.1 Passive microwave brightness temperature observations

AMSR-E PMW Tb observations used here are on the 25-km EASE grid, which

is coincident with the Catchment model grid. Only observations from the nighttime

overpass (approximately 01:00 to 01:30 local time) were used in order to minimize

wet snow effects. Daily AMSR-E observations at 10.65 GHz, 18.7 GHz, and 36.5 GHz
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at both horizontal and vertical polarization were used. Three additional AMSR-E

channels at 6.9 GHz, 23.8 GHz, and 89.0 GHz were not used in the experiment. Tb

observations at 6.9 GHz were excluded because it has a much larger effective field-of-

view (74 km × 43 km) relative to the re-gridded 25 km × 25 km EASE Grid pixel.

Furthermore, Tb observations at 89.0 GHz and 23.8 GHz are contaminated with

atmospheric-related Tb signals due to atmospheric attenuation and emission effects

[28,89], and hence they were excluded. It is also worth noting that Tb observations

at 18.7 GHz and 36.5 GHz are also affected by the overlying atmosphere [90, 91].

A relatively simple atmospheric decoupling procedure could be used here [92] to

remove atmospheric-related Tb signals for both channels. However, no atmospheric

decoupling is conducted here as to maintain a tractable project scope and to focus

on more first-order effects (e.g., volume scattering by the snow pack). The use of

an atmospheric decoupling procedure within a DA framework could be investigated

in a follow-on study. (see Chapters 4 and 5).

3.2.2.2 Independent in-situ observations

Evaluations of model skill (with and without DA) were determined, in part,

by comparisons against in-situ observations of SWE and snow depth. The Nat-

ural Resources Conservation Service (NRCS) National Water and Climate Cen-

ter, installs, operates and maintains an extensive SNOwpack TELemetry (SNO-

TEL) network in Alaska. SNOTEL stations measure SWE (via snow pillows) and

snow depth (via acoustic depth sensors) in daily increments. SNOTEL data used
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here were obtained from https://www.wcc.nrcs.usda.gov/snow/. Further, indepen-

dent, in-situ snow depth observations were obtained from the U.S. National Cli-

matic Data Center Global Summary of the Day (GSOD) network operated by Na-

tional Oceanic and Atmospheric Administration (NOAA). GSOD data used here

were obtained from https://data.noaa.gov/dataset/global-surface-summary-of-the-

day-gsod. Prior to the evaluation procedure, quality control of the ground-based

SWE and snow depth observations was first conducted based on the criteria re-

ported in [93] in order to eliminate erroneous data.

In addition, model-derived discharge estimates (with and without DA) were

compared against available, daily-averaged, in-situ river discharge observations.

These observations were obtained from the Alaska Geospatial Data Committee

within the United States Geological Survey (USGS) via http://waterdata.usgs.gov/nwis/.

Discharge observations were recorded as stage height and then converted to volu-

metric flow according to a well-calibrated stage-discharge relation. The runoff ob-

servations are used, in part, to test the hypothesis that improved SWE estimates

(especially near peak accumulation) will yield improvements in model-derived runoff

(in terms of both volume and timing) during the snow ablation season.

3.2.3 Data assimilation (DA) scheme

3.2.3.1 One-dimensional (1D) EnKF

This study employed a one-dimensional (1D) ensemble Kalman filter (EnKF)

framework [94, 95] with new enhancements to better estimate snow-related states.
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A key feature of the 1D-EnKF is that computational units were processed indepen-

dently from one another, which is the same as assuming zero spatial error corre-

lations between states from different units. The updated (or posterior) state (i.e.,

SWE), written as a scalar, xi+t , was estimated via linear update within a single

computational unit as:

xi+t = xi−t + Kt[(yt + vi)−Φt(x
i−
t )] (3.1)

where i represents a single replicate from the multi-replicate ensemble at time t ; xi−t

is the prior estimate of the state obtained from Catchment; Φt(·) is the observation

model operator (i.e., a nonlinear SVM model); yt is the observation vector; vi is

the temporally-uncorrelated observation error; and Kt represents the Kalman gain,

which is used to weigh the uncertainties between the observation, the observation

operator estimate, and the prior model estimate. Each term in the Equation 3.1

above is discussed in detail in the following sections.

Updating a model state such as SWE using information that is not SWE –

Tb, per se – but rather contains information about SWE requires significant and

reliable cross-covariances in the errors of both Tb and SWE. The underlying error

correlation structure between the observation operator estimate of Tb and the prior

land surface model estimate of SWE was explored in a sensitivity analysis [61], which

demonstrated the potential to integrate predictions from a well-trained SVM model

into a land surface model using a Bayesian merging process.

The Kalman gain matrix, Kt, shown in Equation 3.1 houses the error struc-

ture information between the observation operator estimates and the prior (forward
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model) states, which can be written as:

Kt = Cxy,t (Cyy,t + Cvv)
−1 , (3.2)

where Cxy,t is the error cross-covariance between the prior SWE estimates and the

SVM-based (predicted) observations, Cyy,t is the error covariance of the SVM-based

(predicted) observations, and Cvv is the observation error covariance.

Catchment was run in both open-loop (OL) mode (i.e., without assimilation)

and with PMW radiance assimilation enabled. Catchment was initialized in July

2002 when snow cover is at a seasonal minimum and allowed to spin-up until 01

September 2002 when radiance assimilation was turned on. SWE was updated using

the information content in the multi-frequency, multi-polarization PMW radiance

emissions using Equation 3.1. Other snow-related states, including snow depth and

snow heat content, were subsequently updated within Catchment during redistribu-

tion in order to ensure physical consistency and adhere to the fundamental laws of

snow pack thermodynamics [49].

3.2.3.2 Machine-learning-algorithm-based observation operators

The expression, “Φt(x
i−
t )”, in Equation A.1 is also known as the “observation

operator estimate” or “observation forecast” when using the observation (model)

operator of Φt(·). Previous studies [59,60,62,96] have shown that machine learning

algorithms (ANN or SVM) can serve as an alternative to radiative transfer models

for use as the observation operator during snow-related radiance estimation. This

approach can be applied across regional- and continental-scales using either the
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SSM/I, AMSR-E, or Advanced Microwave Scanning Radiometer 2 (AMSR2) Tb

observation records. Due to the relatively high sensitivity to SWE in the SVM-

based Tb predictions [61], the SVM is adopted here as the observation operator.

The four most sensitive model input states derived from Catchment (i.e., snow

liquid water content, SWE, top-layer soil temperature and skin temperature) were

defined as the inputs during SVM training and prediction procedures [61]. The

SVM-based observation operators outlined in [60] handle a near-infinite number of

different combinations and permutations of input states. However, only four are

selected here in order to maintain a tractable scope (see Chapter 2).

The first-order theory in passive remote sensing of snow, in general, pre-

dicts preferential scattering at higher frequency for either vertically- or horizontally-

polarized PMW radiation [12,28]. In other words, the deeper the snow, the greater

the relative volume scattering between the two different frequencies. It is shown that

the spectral difference between 10.65 GHz and 36.5 GHz (∆Tb10−36 = Tb10 − Tb36)

at either horizontal or vertical polarization could be used to determine snow depth

and SWE in the context of medium to deep snow pack. Analogously, ∆Tb18−36(=

Tb18 − Tb36) could be used to determine snow depth and SWE in the context of

shallow to medium snow pack [4, 89]. A series of synthetic experiments conducted

in a separate study [97] also demonstrated that simultaneously assimilating multi-

ple (synthetic) ∆Tb observations yielded the best SWE estimate. Therefore, it is

assumed here that a combination of four multi-frequency, multi-polarization spec-

tral differences from AMSR-E could serve as the most informative means of relat-

ing PMW radiance information from AMSR-E to snow information as represented
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by the Catchment model. A simplified flowchart of the multi-frequency and multi-

polarization AMSR-E ∆Tb assimilation scheme using a 1D-EnKF is shown in Figure

3.2.
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Figure 3.2: Schematic of the multifrequency and multipolarization
AMSR-E ∆Tb observations assimilation framework using a 1D-EnKF.

3.2.3.3 Observation error, ensemble size, and ensemble perturbation

In order to reduce the potential for filter divergence [68], a temporally-uncorrelated

Gaussian-distributed observation error with zero mean was included in the EnKF

algorithm as shown in the Equation 3.1. The added observation error is described

mathematically as:

vi ∼ N (0, σ2) (3.3)

where vi is the observation error of the ith replicate (i = 1, 2, ... N, where N is

the ensemble size) drawn from the normal distribution with a mean of zero and
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a standard deviation of σ. In this study, σ = 2 K was assumed for ∆Tb obser-

vations of ∆Tb10H−36H , ∆Tb18H−36H , ∆Tb10V−36V , and ∆Tb18V−36V , respectively.

The selection of the observation error standard deviation is partially based on the

AMSR-E sensor performance characteristics stated as the observation precision is 1

K at one standard deviation [98]. Based on fundamental variance properties while

assuming Tb observations at different frequencies are independent of each other,

dσ∆Tbe = d
√

12K2 + 12K2e ≈ 2K was first selected for each ∆Tb observations,

where d·e represents the ceiling of the argument.

The ensemble size, N, is another important consideration in ensemble-based

filters [99]. A range of ensemble size were tested ranging from 16 to 64. An ensemble

size of N = 32 was used based on the convergence of the mean SWE estimates

across all ensembles for both OL and DA experiments. Ensemble sizes greater than

32 showed no significant change in the ensemble spread (i.e., standard deviation of

the ensemble), hence it was determined that 32 replicates was reasonably adequate.

In addition, the perturbation settings shown in Table 3.1 and Table 3.2 for model

forcings follow the guidelines outlined in previous studies [49,100–102].

Table 3.1: Model forcing perturbations used during ensembles generation.

Perturbation Unit Type 1 Standard deviation

Precipitation - M 0.5
Shortwave radiation - M 0.3
Longwave radiation W m−2 A 20

1M = multiplicative perturbation; A = additive perturbation
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3.2.4 Evaluation metrics and methods

3.2.4.1 Comparisons against state-of-the-art snow products

Three different publicly-available, satellite-based snow products were used for

comparison against OL- and DA-derived snow estimates. In addition, ground-based

in-situ observations were also used for comparison. The first satellite-based snow

product is the European Space Agency (ESA) Global Snow Monitoring for Climate

Research (GlobSnow) snow water equivalent (SWE) (version 2.0) [10, 52], which

is based on a Bayesian spatial assimilation approach with spatial resolution of 25

km and a daily temporal resolution. GlobSnow SWE estimates were generated by

combining a semi-empirical snow emission model [103] with space-borne PMW Tb

observations from the Scanning Multichannel Microwave Radiometer, the Special

Sensor Microwave/Imager, and the Special Sensor Microwave Imager/Sounder at

both 18.7 GHz and 36.5 GHz in conjunction with ground-based observations ob-

tained from adjacent weather stations. It is worth noting here that ESA does not

provide SWE estimates in mountainous region with complex topography in order

to avoid spurious or erroneous observations and estimates [10].

Table 3.2: Error structure in the model forcing perturbations.

tcorr
2 Cross correlations

Precipitation Shortwave radiation Longwave radiation

Precipitation 3 days - -0.8 0.5
Shortwave radiation 3 days -0.8 - -0.5
Longwave radiation 3 days 0.5 -0.5 -
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The second satellite-based snow product – Canadian Meteorological Centre

(CMC) Daily Snow Depth product [104, 105] – was produced based on optimal

interpolation at a spatial resolution of 24 km and a temporal resolution of one

day. The CMC product was generated by combining snow depth estimates from

the Canadian forecast model with ground-based snow depth observations, including

surface synoptic observations, meteorological aviation reports, and special aviation

reports from the World Meteorological Organization information system.

The third satellite-based snow product – daily AMSR-E/Aqua L3 Global SWE

product (version 2) [106] – was produced based on the observed AMSR-E spectral

difference in accordance with [12,107]. Additional enhancements were conducted to

address forest cover effects on SWE estimation using ancillary forest fraction and

snow density estimates [14].

3.2.4.2 Comparisons against in-situ snow observations and runoff ob-

servations

The relatively simple evaluation method utilized in this study was to compare

satellite-derived SWE estimates with its nearest ground-based observations for both

GSOD and SNOTEL stations within a radius of 0.25◦. Using the closest, indepen-

dent, ground-based observations as the “best” available information, a number of

evaluation metrics were computed including bias, root mean squared error (RMSE),

and normalized information contribution (NIC) (see Appendix B for details). In

general, bias reflects the systematic error in estimates when compared against ob-

2tcorr = first-order autoregressive temporal correlation
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servations whereas RMSE reflects both systematic and random errors. The standard

interpretation of computed NICs is if NIC > 0, then DA-derived estimates are su-

perior to OL-derived results whereas if NIC < 0, the DA-derived estimates are

degraded relative to the OL-derived results. For NIC = 0, DA does not add any

additional skill to the OL [40,108].

Snow 

Depth

SWE

Snow Products Catchment model derived

a) b) c)

d) e) f ) g)

Figure 3.3: Average snow depth estimates obtained from a) CMC prod-
uct, b) OL experiments, and c) DA experiments on 16 March 2003.
Average SWE estimates obtained from d) ESA GlobSnow product, e)
AMSR-E SWE product, f) OL experiments, and g) DA experiments on
16 March 2003. Grey regions in d) indicates the presence of the Glob-
Snow mountain mask.
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3.3 Results and Discussions

3.3.1 Comparisons against state-of-the-art snow depth and SWE prod-

ucts

Figure 3.3 shows SWE and snow depth estimates on 16 March 2003. These

results were compiled from the various snow products along with OL-derived and

DA-derived estimates. Recall that GlobSnow does not provide estimates over moun-

tainous regions, and therefore, a mountain mask is indicated by the grey-colored

region in Figure 3.3 [10]. The date of 16 March 2003 is selected as an approxi-

mation for peak accumulation. For this date, the snow is neither too shallow nor

too wet while at the same time the snow products were reported to achieve decent

performance in other domains in the previous studies. For example, [109] concluded

that GlobSnow peak SWE accumulation agrees well with AMSR-E SWE product in

Kevo, Finland. [110] concluded that CMC agrees well with snow course observations

in Canada during March. However, it is still found that a significant mismatch exists

between GlobSnow and AMSR-E SWE products in Alaska as illustrated in Figure

3.3. Alternatively, CMC, GlobSnow, OL, and DA estimates share a similar distribu-

tion pattern. Although circumstantial, it is encouraging to see that when compared

with OL estimates, DA-derived estimates tend to move towards better agreement

with both CMC and GlobSnow for snow depth and SWE estimates, respectively.
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3.3.2 Comparisons against ground-based observations

3.3.2.1 Ground-based discharge observations

Model-derived runoff estimates are compared against daily, in-situ discharge

observations recorded at USGS gauge stations in Alaska from 2002 to 2011. In

order to quantitatively measure how much information has been added to the model

predictability as a result of assimilation, NICs, including NICRMSE and NICNSE,

were computed during comparison against USGS discharge observations. It was

found that approximately 40% (11 out of 28) of the basins degraded daily runoff

estimation skill in DA relative to OL. Three out of 28 basins have zero NICs, and

14 out of 28 basins have positive NICs. The degradation of the DA in daily runoff

predictability is indicated by either negative NICRMSE or negative NICNSE. The

degraded behavior of the DA across some of the basins might be due to, but not

limited to the lack of river routing routines within the Catchment model.

In order to minimize the effects of river routing, model-derived cumulative

runoff estimates are compared against cumulative in-situ discharge observations

recorded at USGS gauge stations in Alaska from 2002 to 2011. It was found that ap-

proximately 21% (six out of 28) of the basins degraded cumulative runoff estimation

skill in DA relative to OL. Six out of 28 basins have negative NICs, and three out

of 28 basins have positive NICs. Again, the degradation of the DA in cumulative

runoff predictability is indicated by either negative NICRMSE or negative NICNSE.

Among these six basins, two of them are with drainage areas below 235 km2, which
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are relatively small compared with the horizontal resolution of 25 km × 25 km for

the model grid, and therefore, sub-grid scale variability in the modeled runoff might

play a critical role in this case. In addition, one of the six basins has only four

months (i.e., from 01 March 2011 to 01 July 2011) of in-situ discharge observations,

which might not be sufficient to compare against. There might be other reasons to

explain the degraded behavior of the DA across some basins, including (1) obser-

vation errors related to empirical stage-discharge relationship, or (2) the presence

of ice jams, which are not accounted for in the model. Also, (3) dams, irrigation

(small), or other management activities might affect in-situ observations. These

issues are important, but are well beyond the scope of this current study. Despite

the uncertainty in the discharge observations and relatively significant sub-grid scale

variability in the modeled runoff across small basins, in general, relatively improved

model behavior were achieved in the DA-derived cumulative runoff estimates relative

to OL.

3.3.2.2 Ground-based snow observations

The AMSR-E SWE product, CMC snow depth product, GlobSnow SWE prod-

uct, and model-derived SWE and snow depth estimates obtained from both OL and

DA experiments are compared against ground-based, in-situ snow depth and SWE

observations in Alaska from 2002 to 2011. It is worth noting here that the CMC

snow depth product is not used to compare against GSOD observations since GSOD

observations were directly integrated as part of the CMC reanalysis product gen-
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eration, which violates the assumption of independence between the estimates and

observations used during evaluation.

3.3.2.3 Effects of representativeness errors

The performance of Catchment is influenced, in part, by the representativeness

of the ground-based station used during the model evaluation. Representativeness

errors include the elevation difference between the ground-based station and the

relatively large-scale model grid. In other words, it is relatively difficult to justify

that each in-situ, ground-based SWE (or snow depth) measurement (with spatial

resolution O(1) m2) is spatially-representative of the colocated, large-scale satellite

observations (with spatial resolution O(100) km2). An example location is shown

in Figure 3.4 in order to demonstrate the effect of representativeness errors. Both

OL and DA-derived snow depth estimates have a bias ≈ 1 m and RMSE ≈ 1 m

when compared against the closest GSOD observations (i.e., the distance between

GSOD station and the EASE-Grid center is 0.02 degree). The relatively large bias

and RMSE are, in large part, explained by the elevation difference between the

ground-based station and the corresponding model pixel. The average elevation for

the model pixel is 961.5 m whereas the elevation for the in-situ GSOD station is

167.6 m. Therefore, it is obvious that the closest ground-based GSOD station is

not always representative of the snow conditions across the colocated model pixel.

On the other hand, given similar elevation conditions between the SNOTEL station

and the colocated model pixel (with an absolute relative elevation difference <
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10%), both DA-derived SWE and snow depth estimates were superior to either the

OL estimates, AMSR-E SWE retrievals, or CMC estimates in terms of lower bias

and lower RMSE. Again, GlobSnow is not available at this location due to ESA’s

application of a mountain mask.
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Figure 3.4: Example time series of a) SWE estimates, and b) c) snow
depth estimates for (61.74◦ N, 148.89◦ W) from 01 Sep 2005 to 01 Jul
2011. Both OL and DA ensemble means were used to compare against
AMSR-E SWE product, CMC snow depth product, in-situ SNOTEL
SWE observations, in-situ SNOTEL snow depth observations, and in-
situ GSOD observations. No estimates prior to 01 Sep 2005 were shown
because ground-based observations were not available.

To minimize the effect of representativeness errors during model evaluation,

pixels (five out of 40) that were significantly affected by elevation discrepancies

(namely, when the absolute relative elevation difference > 150%) were removed from
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Table 3.3: Comparison against SNOTEL SWE observations, excluding mountainous
regions (sample size = 9).

Experiment Average bias [m] Average RMSE [m]

OL -0.016 0.044
DA -0.014 0.043

AMSR-E -0.010 0.048
ESA GlobSnow -0.015 0.049

comparison. The box plots of computed relative elevation difference between ground-

based stations and colocated model pixel are shown in Figure 3.5 after applying the

elevation discrepancy threshold. The threshold of 150% is somewhat conservative

and arbitrary, and was determined based on visualization of the elevation difference

distribution across all available stations. Box plots shown in Figure 3.6 demonstrate

the comparison results based on two statistical metrics used during evaluations

(Tableted statistics were shown in Tables 3.3, 3.4, 3.5, and 3.6). GlobSnow was

not available to compare against at high altitudes, and therefore, box plots with

shaded-gray background were statistical metrics computed for stations (nine out of

35 stations) where GlobSnow has SWE estimates. It is worth mentioning that DA

estimates were better than OL estimates, AMSR-E SWE retrieval, and GlobSnow

in terms of a lower averaged RMSE (∼0.06 m) and a close-to-zero averaged bias

(∼0.008 m). It is also noticeable that there is a relatively significant negative bias

in the AMSR-E SWE product. The underestimation of the AMSR-E SWE retrieval

could be attributed to snow grain size evolution, wet snow cover presence, sub-grid

scale lakes, or signal saturation effects [26].

In general, DA outperformed OL in terms of reducing both systematic and
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Table 3.4: Comparison against SNOTEL SWE observations (sample size = 15).

Experiment Average bias [m] Average RMSE [m]

OL 0.031 0.088
DA 0.008 0.065

AMSR-E -0.027 0.070
ESA GlobSnow N/A N/A

Table 3.5: Comparison against SNOTEL snow depth observations (sample size =
21).

Experiment Average bias [m] Average RMSE [m]

OL 0.064 0.248
DA -0.034 0.207

CMC 0.023 0.277

Table 3.6: Comparison against GSOD snow depth observations (sample size = 14).

Experiment Average bias [m] Average RMSE [m]

OL 0.008 0.261
DA -0.020 0.230
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n = 23
n = 14 

Figure 3.5: Box plots of computed relative elevation difference between
SNOTEL stations (n = 23), GSOD stations (n =14), and colocated
model pixels, where the variable n is the number of ground-based stations
used for evaluation. The boxes show the median (marked as solid line
in the box) along with the 25th and 75th percentiles whiles the whiskers
show the 5th and 95th percentiles.

random errors in the modeled snow states. During the comparison against SNOTEL

SWE observations (see Table 3.4), the bias was reduced by ∼73% and RMSE was

reduced by ∼26% from the OL to DA. During the comparison against SNOTEL

snow depth observations (see Table 3.5), the bias was reduced by ∼50% and RMSE

was reduced by ∼17% from the OL to DA. During the comparison against GSOD

snow depth observations, the bias was increased by ∼22%, but RMSE was still

reduced by ∼12% from the OL to DA (see Table 3.6). The latter shows DA slightly

overestimates the depth, but still managed to reduce the random error.

In order to quantitatively measure how much information has been added to

the model predictability as a result of assimilation, NICs, including NICRMSE and

NICNSE, were computed during comparison against SNOTEL SWE observations,

SNOTEL snow depth observations, and GSOD snow depth observations (see Table
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3.7). Due to the relatively high variability of NICs in the SNOTEL comparisons,

Student’s t-test suggests the computed mean NICs are not statistically different from

zero at the significance level of 5%. The relatively high variability of NICs might

be attributed to representativeness errors, noise in the assimilated Tb observations,

or limitations in the SVM-based observation model operator. Figure 3.5 highlights

the relatively wide variability (i.e., from -150% to +50%) in the computed relative

elevation difference between SNOTEL stations and colocated model pixels, which

helps illustrate variability arising from representative errors.

Unlike SNOTEL stations, ground-based GSOD stations have much less vari-

ability in the computed elevation differences, which is more likely to yield smaller

variations in the computed NICs. During comparison against in-situ GSOD observa-

tions, the Student’s t-test suggests rejecting the null hypothesis. The null hypothesis

used in the Student’s t-test (one tail) states the computed mean NIC metric is not

statistically different from zero at a significance level of 5%. That is, DA reduces

random errors in the snow depth estimates (in a statistically significant sense) as

well as improves peak snow accumulation estimates relative to the OL. More work is

required in the future to better minimize representativeness errors. However, even

with a simple, conservative threshold applied here, it is clear that systematic im-

provement are made across the Alaska domain in terms of SWE and snow depth

estimation.
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Table 3.7: Computed NICs during comparison against SNOTEL SWE, SNOTEL
snow depth, and GSOD snow depth observations. σNICRMSE

is the standard devi-
ation of the NICRMSE whereas σNICNSE

is the standard deviation of the NICNSE.
The null hypothesis used in the Student’s t-test (one tailed) states the computed
mean NIC metric is not statistically different from zero at a significance level of 5%.
P-value indicates how likely the null hypothesis is true.

In-situ Mean NICRMSE Mean NICNSE Student’s t-test p-value
observations ± σNICRMSE

± σNICNSE
(one tailed) @ 5%

SNOTEL SWE 0.06 ± 0.27 0.04 ± 0.49 accept the null hypothesis 0.21
SNOTEL snow depth -0.02 ± 0.32 -0.15 ± 0.72 accept the null hypothesis 0.38

GSOD snow depth 0.09 ± 0.12 0.15 ± 0.22 reject the null hypothesis 0.007

3.3.2.4 Effects of land cover on 1D-EnKF

Evergreen needle leaved forest, woody savanna, and open shrub are the three

land cover types used by Catchment in Alaska. Pixels covered with the same land

cover type were categorized. Average NICs, including NICRMSE and NICNSE, were

computed across each category as shown in Figure 3.7. Due to the limited sample

size used during evaluation within each land cover category, none of the NIC values in

Figure 3.7 are statistically significant based on the Student’s t-test at a significance

level of 5%. However, the sign-change behavior of the computed average NICs

between different land cover categories is worth mentioning here, especially during

comparison against SNOTEL SWE observations. In general, the NICs computed

over the evergreen needle leaved forest pixels are the lowest as compared to woody

savanna and open shrub types. In other words, DA added the least amount of

information (or even degraded the model) relative to OL experiments in the forested

regions for both SWE and snow depth estimation.
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It is widely acknowledged that overlying vegetation tends to attenuate PMW

radiation emitted from the underlying snow pack while simultaneously adding its

own contribution to the signal as measured by the radiometer [111]. Therefore, it is

hypothesized here that overlying forest cover is a significant factor that can impede

DA performance. Removing the forest-related Tb signal from the observations prior

to SVM training could be effective at decoupling non-SWE related Tb signals from

the original AMSR-E Tb observations. A systematic forest decoupling procedure [92]

could be beneficial in the extraction of information from the Tb observations that

is most relevant to SWE estimation [112]. However, no forest decoupling procedure

was conducted here as to maintain a tractable project scope. The use of a forest

decoupling procedure within a DA framework will be investigated in Chapter 5.

3.3.2.5 Innovation and filter sub-optimality assessment

Kalman filter theory assumes unbiased observations and unbiased observation

operator estimates, and thus, unbiased innovations [99]. Innovations, (a.k.a., resid-

uals) are defined as the difference between observations and observation operator

estimates. In an ensemble context, previous studies [49, 101, 113] investigated the

normalized innovation (NI) sequence (see Appendix C) in order to assess filter per-

formance. The NI sequence is a useful tool in assessing whether or not the error

parameters listed in Tables 3.1 and 3.2 have been appropriately selected assuming

the Catchment model and the observation model operator is linear and all errors (in-

cluding both model and observation errors) are Gaussian [114]. The 1D-EnKF used
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here employs a non-linear forward model with non-Gaussian model errors, hence, it

is known a priori that the filter is sub-optimal in a minimized variance sense. How-

ever, the investigation of the normalized innovation sequence can still provide useful

information as to the filter performance given the filter is sub-optimal [49,101,113].

It is worthwhile pointing out that multiple observations were assimilated at

a given time and location in the DA experiment (in the form of multi-frequency,

multi-polarization ∆Tb observations). In order to assess filter sub-optimality given

multiple observations, it is essential to compute the NI sequence separately for each

observation channel using the diagonal elements of the observation error covariance

and the observation operator estimate error covariance (see Appendix C for proof)

[114]. If the NI sequence for each observation appears as white noise, then the filter is

presumably extracting the most information from the available observations. Using

NI to denote the temporal average of the NI sequence, it is found that the spatially-

averaged NI are close to zero for each frequency and polarization combination as

shown in Table 3.8. Further, the spatially-averaged σNI are generally greater than

one. The relatively high σNI might be partially explained by the underestimation

of observation error and/or observation operator estimate error. It might also be

explained by the violation of (1) Gaussianity, and/or (2) linearity as required by the

Kalman filter theory [99,115]. Further analysis is required to better investigate the

effect of observation error on the 1D-EnKF.
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Table 3.8: Domain-averaged statistics of the NI sequences in Alaska from 01 Sep
2002 to 01 Jul 2011. NI represents the temporal mean whereas σNI represents the
temporal standard deviation. Each column represents a different spectral difference,
∆Tb, dependent on frequency and polarization combination.

∆Tb channel 10H - 36H 10V - 36V 18H - 36H 18V - 36V

NI [-] -0.06 -0.02 -0.08 -0.05
σNI [-] 2.69 2.60 1.90 1.81

3.4 Conclusions and future work

This study explored the use of a SVM-based observation operator within a

PMW radiance assimilation system in order to better characterize snow mass across

regional and continental-scales. Results showed that DA-derived SWE and snow

depth were consistently improved (relative to OL) after assimilating multi-frequency,

multi-polarization ∆Tb observations collected by AMSR-E. On average, the sys-

tematic and random errors in SWE estimates were reduced by ∼73%, and ∼26%,

respectively. The systematic and random errors in snow depth estimates were re-

duced by ∼14%, and ∼15%, respectively. It is also encouraging to see that the

relatively good snow estimates obtained from DA (relative to OL) also translates

into cumulative runoff estimates when compared against in-situ USGS discharge

observations.

A comparison against state-of-the-art snow retrievals showed that DA-derived

estimates (relative to OL) tend to agree better with CMC and ESA GlobSnow

products for snow depth and SWE estimates, respectively. AMSR-E snow retrieval,

on the other hand, significantly underestimates SWE across Alaska. In general, the

68



improvements seen in the goodness-of-fit statistics as a result of the DA procedure

are beneficial.

In addition, the study explored two important factors that impact DA perfor-

mance. One factor is representativeness error between the ground-based, point-scale

in-situ observations and the satellite-scale (∼100 km2) estimates. The disparities

in horizontal support (resolution) are further exacerbated by differences in vertical

elevation, which introduces precipitation bias. Given that representativeness errors

exist, the positive NIC values computed using the GSOD observations suggest that

DA reduces random errors in the snow depth as well as improves peak snow esti-

mates relative to the OL. The other factor that might negatively affect the DA is the

overlying vegetation cover. In general, the NICs computed over the evergreen needle

leaved forest pixels are the lowest as compared to woody savanna and open shrub

types. It is suggested that AMSR-E Tb observations (especially those collected over

dense forest) should have the atmospheric and forest components decoupled from

the snow-related portion of the Tb signal prior to assimilation [92].

Therefore, the study here shows the use of the SVM-based observation operator

within a PMW radiance assimilation framework did show some promise in regional

snow mass characterization. These preliminary findings are encouraging and suggest

the potential for global-scale snow estimation as well as for further improvement via

integrating with an atmospheric-and-forest decoupling procedure [92] to enhance

snow estimation in forested regions.
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Figure 3.6: Box plots of statistical metrics computed from 01 Sep 2002
to 01 Jul 2011 for model-derived estimates (i.e, OL and DA ensemble
means) and snow retrievals (i.e., ESA GlobSnow, CMC, and AMSR-
E SWE) comparisons against in-situ observations. The top row is the
computed bias whereas the bottom row is the computed RMSE. Each
column corresponds to in-situ data sources, including SNOTEL SWE ob-
servations, SNOTEL snow depth observations, and GSOD snow depth
observations as labeled. The boxes show the mean (marked as “o”s)
along with the 25th and 75th percentiles whiles the whiskers show the
5th and 95th percentiles. The outliers are marked as “+”s. Box plots
with gray-shaded background are statistical metrics excluding moun-
tainous terrain because GlobSnow does not provide SWE estimates in
mountainous regions.
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Figure 3.7: Average NICs computed for different land cover types in
Alaska. The top row is NICRMSE and the bottom row is NICNSE. Each
column correspond to in-situ data sources, including SNOTEL SWE
observations, SNOTEL snow depth observations, and GSOD snow depth
observations.
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Chapter 4: Atmospheric and forest decoupling of passive microwave

brightness temperature observations over snow-covered

terrain in North America

4.1 Motivation and Objective

This chapter is intended to address two significant sources of uncertainty

prevalent in snow water equivalent (SWE) retrievals derived from the Advanced

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) passive mi-

crowave (PMW) brightness temperature (Tb) observations at 18.7 GHz and 36.5

GHz. That is, the overlying atmosphere (i.e., atmosphere in between satellite-based

sensor and the snow surface) attenuates surface emission while emitting its own radi-

ation towards the satellite-based radiometer [90,116,117]. In the context of overlying

vegetation, it is commonly acknowledged that vegetation attenuates PMW radiation

emitted from the underlying snow pack and simultaneously adds on its own contri-

bution to the signal as measured by the radiometer [76, 111, 118–120] (see Figure

4.1 and Equation 4.7 for details). In addition, previous studies reported that vege-

tation is known to damp the variability in the snow-related Tb signal that we wish

to leverage [121], which further complicates the process of decoupling forest-related
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information from the Tb observations. It is hypothesized here that vegetation mois-

ture content effectively damps the variability in the diurnal temperature variation of

the skin (vegetation canopy) temperature, and hence, leads to a decrease in the mea-

sured Tb signal variability, which further impacts the variability of the snow-related

information embedded within the measured Tb signal. Therefore, it is important to

decouple atmospheric and overlying forest effects from the original AMSR-E PMW

Tb observations. The research presented here has been published in IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing.
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Figure 4.1: Contributions to observed PMW Tb as seen by AMSR-
E. Marker 1© is direct emission from snow-soil interface in forest-free
regions; marker 2© is direct emission from snow-soil interface under the
forest canopy; marker 3© is downwelling forest emission reflected upward
by the snow surface; marker 4© is direct forest emission; marker 5© is
upwelling atmospheric constituent of the brightness temperature; and
the marker 6© is downward atmospheric emission reflected back to the
satellite, which is assumed negligible.
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4.2 Methodology and Application

4.2.1 Atmospheric decoupling from PMW Tb observations

Atmospheric influence on measured PMW Tb is most notable when the ob-

servations are at high microwave frequencies (i.e., greater than 10 GHz) [122]. The

observed Tb at frequency f , Tbobs,f , with units of K as viewed from a satellite can

be described as [73]:

Tbobs,f = Tb↑atm,f + Tbsurf,f · tatm,f (4.1)

where the subscript f stands for frequency, Tb↑atm,f with units of K is the upwelling

atmospheric brightness temperature, tatm,f is the atmospheric transmissivity (unit-

less), and Tbsurf ,f with units of K is the brightness temperature due to surface

radiation emission given by [122]:

Tbsurf,f = (1− ef ) · Tb↓atm,f + ef · Tb′surf,f (4.2)

where ef is the surface emissivity (unitless), Tb↓atm,f with units of K is the down-

welling atmospheric brightness temperature, and Tb ′surf ,f with units of K is the

brightness temperature term due to the effective surface emission. Given the rela-

tively high microwave emissivity of snow-covered land (e.g., typically 0.78-0.91 for

dry winter snow pack and 0.98 for wet snow at frequencies between 10 GHz and

40 GHz [123]), the downward Tb↓atm,f component that is reflected back toward the

satellite and then travels through the atmosphere was assumed negligible due to the

relatively low (i.e., less than 0.05) reflectivity of the snow surface [73,82].
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The transmission coefficient, tatm,f , was obtained from the optical thickness,

τf , as [122]:

tatm,f = exp
(
− τf

cos θ

)
(4.3)

where θ is the incidence viewing angle toward nadir of the radiometer (i.e., 55◦ for

the AMSR-E observations). Estimation of τf using semi-empirical equations as a

function of the total precipitable water (TPW) [122,124] was computed as:

τf = a1,f + b1,f · TPW (4.4)

where hourly TPW estimates (with units of kg/m2) were obtained from the NASA

MERRA product [88] available through the NASA Goddard Earth Sciences Data

and Information Services Center (GES DISC). a1 ,f (unitless) and b1 ,f (with units

of mm−1) are empirical regression coefficients [73, 122, 125]. Hence, the upwelling

atmospheric Tb, Tb↑atm,f , was computed in accordance with [122] as:

Tb↑atm,f = (Ta − (c1,f + d1,f · TPW )) · (1− tatm,f ) (4.5)

where Ta is the near-surface air temperature (approximately 2 meters above the

ground surface) with units of K derived from MERRA whereas c1 ,f with units of

K and d1 ,f with units of K · m2· kg−1 are empirical regression coefficients [122].

Thus, the atmospherically-decoupled Tb, Tbdecouple−noatm,f with units of K can be

estimated via:

Tbdecouple−noatm,f ≈
Tbobs,f − Tb↑atm,f

tatm,f
. (4.6)

PMW emission from snow-covered land can be measured using satellite-based or

airborne radiometers. Due to the relatively short distance between the airborne ra-

diometer and the snow-covered surface (less than 4 km compared to the 80-100 km
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atmospheric thickness between the snow surface and the satellite-based radiometer),

airborne observations are not significantly influenced by the atmosphere relative to

the satellite-based observations. Therefore, it is assumed that airborne PMW Tb

observations can be used as the “best available information” to assess atmospheric

effects on coincident AMSR-E observations (in space and time) at 10.65 GHz, 18.7

GHz and 36.5 GHz at both vertical and horizontal polarizations. The evaluation

of the proposed atmospheric decoupling procedure was conducted via comparison

to the multi-band polarimetric airborne Tb measurements collected by Environ-

ment Canada (EC) [126] and the International Polar Year (IPY) Canadian Field

Project Campaign [127, 128] that were subsequently aggregated up in space to the

corresponding EASE grid cell via arithmetic averaging.

Only the decoupled 18.7 GHz and 36.5 GHz Tb observations are shown in

the Results Section 4.4 since these two frequencies are most relevant for moderate

SWE and snow depth estimation. Quality control of the airborne Tb observations

was first conducted in order to eliminate individual observations collected during

large deviations from the intended viewing angles of the radiometer associated with

deviations in intended aircraft pitch, roll, and yaw.

4.2.2 Forest decoupling using atmospherically-decoupled PMW Tb

observations

The atmospherically-decoupled Tb, Tbdecouple−noatm,f , is a mixture of signals

received from both forested and snow-covered areas (see Figure 4.1) and can be

76



decomposed as:

Tbdecouple−noatm,f = (1− F )Tbsnow,f︸ ︷︷ ︸
(1)

+ · · ·

F tforest,f Tbsnow,f︸ ︷︷ ︸
(2)

+ · · ·

F tforest,f (1− ωforest)(1− tforest,f ) (1− esnow,f )Tforest︸ ︷︷ ︸
(3)

+ · · ·

F (1− ωforest) eforest,f Tforest︸ ︷︷ ︸
(4)

(4.7)

where F is the forest fraction obtained from the MODIS forest product (MOD44B)

[75,129]; Tforest with units of K is the canopy (skin) temperature obtained from the

NASA Catchment land surface model (Catchment; [70]); tforest ,f is the forest trans-

missivity and is unitless; eforest ,f is the forest emissivity that can also be written as

(1 - tforest ,f ) and is unitless; esnow ,f is the snow emissivity and is unitless; ωforest is

the forest single scattering albedo and is unitless. Due to the relatively small mag-

nitude of the single scattering albedo in the domain of interest (i.e., woody savanna

and evergreen needle leaved forest covered regions) [130,131], it is assumed negligi-

ble in this study for all four frequency and polarization combinations [73]. esnow ,f

was computed as the ratio between the Tb of the snow (Tbsnow ,f ) and the physical

temperature of the snow pack (Tsnow) where Tsnow was obtained from Catchment.

Except for Tbsnow ,f , only one unknown parameter in Equation 4.7 exists, namely,

forest transmissivity. The forest transmissivity mapping procedure is discussed in

more detail below.
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4.3 Forest transmissivity mapping using a first-order, physically-based

radiative transfer model

Three different forest transmissivity retrieval models [73,132,133] were tested

using different biophysical vegetation parameters. The three different parameters

(and products) include: a) the MODIS global leaf area index (LAI) and fraction

of photosynthetically active radiation Collection 5 product (MCD15A2), b) a re-

processed global LAI product derived from MODIS observations and produced at

Beijing Normal University (BNU) [134], and c) a stem volume (SV) retrieval prod-

uct [135]. Initial testing suggest the first-order transmissivity model employing the

BNU LAI product as applied in Equation 4.7 was most appropriate (further discus-

sions provided below).

The first-order radiative transfer model used during forest transmissivity esti-

mation was computed as [73,111,133]:

tforest,f =

√√√√Tbobs,f − Tforest
Tb′obs,f − Tforest

(4.8)

where Tb ′obs,f is the spatially-averaged, original (i.e., coupled) Tb observations at

non-vegetated, snow-covered pixels (i.e., LAI=0) whereas Tbobs,f is the Tb observa-

tion at vegetated pixels (i.e., LAI 6= 0) adjacent to the geometric center of the non-

vegetated snow-covered pixels (see Figure 4.2 for an example). The original Tb ob-

servations, instead of atmospherically decoupled Tb estimates, were used here such

that the forest transmissivity retrieval is independent of the atmospheric-related Tb

decoupling procedure. Furthermore, calculations using atmospherically-decoupled
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Tb values as applied in Equation 4.8 suggested the LAI-transmissivity relation-

ship was not significantly impacted since the magnitude of the atmospherically-

contributed Tb is relatively small compared to the original Tb observations (i.e.,

two orders of magnitude smaller than the original Tb observations). The BNU LAI

(with an increment of 0.1 m2 leaf m−2 ground) conducted an additional analysis

beyond the original MODIS LAI product produced at NASA for the period of 2001

through 2013 with an 8-day time step and a 1-km resolution on a sinusoidal grid.

LAI “tiles” were subsequently re-gridded using Delaunay triangulation onto the 25

km × 25 km EASE-Grid for each 8-day period. The re-gridding practice was neces-

sary in order to align all relevant information sources, including forest cover fraction,

snow cover class, land cover type, Catchment-based model outputs, MERRA-derived

TPW, and Tb observations on a coincident grid. The study also compared three

different interpolation methods (i.e., nearest neighbor, natural neighbor and linear

interpolation). It was found that the LAI difference between any two of these three

interpolation methods was bounded between -0.1 and 0.1 within the study domain.

Therefore, it is believed that the re-gridding process introduced less uncertainty rel-

ative to that associated with parameter error or model structure error introduced

in the LAI retrieval procedure (see Appendix D for details).

A SWE threshold of 10 mm is used as the lower limit in the investigation at

which a pixel is considered snow-covered, which is consistent with the lower thresh-

old used in previous studies [59–61] as well as in accordance with other published

recommendations [136]. Ideally, only pixels covered with the same type of snow

(according to the seasonal snow cover classification system proposed by [74]) and
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with exactly the same amount of modeled SWE should be selected in both vegetated

and non-vegetated regions. This practice was deemed effective in the process of de-

correlating snow Tb information content from the mixed PMW Tb observations in

the vegetated regions such that forest-related Tb contributions could be extracted

as a function of the LAI variation only. However, it is important to note that SWE

values were obtained from the Catchment land surface model output and are inher-

ently uncertain due to model structure and parameterization errors [7]. Therefore,

the criteria for selecting pixels with similar amounts of SWE was defined as the dif-

ference between the maximum and the minimum SWE values between a given set

of pixels and should not exceed 0.04 m. The value of 0.04 m was selected based on

the SWE estimation uncertainty analysis shown in [7] that considered both model

bias and root mean squared error. A range of SWE estimation difference thresholds

was also tested that ranged from 0.01 m to 0.05 m. A threshold of 0.04 m was

ultimately selected because it yielded a sufficient sample size as well as reasonable

representation of PMW Tb magnitudes across non-vegetated, snow-covered land.

Since LAI is a valuable source of information due to its ability in distinguish-

ing between vegetated and non-vegetated land, the accuracy of the regional daily

LAI mapping (with a particular interest over snow-covered land) might adversely

impact the forest-related portion of the Tb decoupling procedure. Recent studies

demonstrated that MODIS-based LAI values are discontinuous and inconsistent in

space and time due to the presence of clouds and seasonal snow cover [137, 138].

Therefore, this study employed an alternative LAI product produced at BNU [134]

during the forest decoupling process to help mitigate the presence of clouds and/or
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snow cover. Further, the study refers to the method of searching for adjacent pixels

matching the criteria as a “spatial localization” approach. Localization is defined

here as a procedure that employs a cutoff distance that excludes the pixels beyond

a certain threshold distance (defined a priori by the user) from the center of the

target. In this study, the localization length is set to seven degrees to ensure that

the resulting sample size is large enough while also increasing the likelihood that

samples are effectively grouped by similar climatology (see Figure 4.2).

 

 

b)

 115  W  110  W  105  W  100  W

 50  N

 55  N

 60  N

Vegetated

Non−vegetated

Figure 4.2: An example of remapped BNU LAI in North America on 06
Mar 2003 is shown in Figure 4.2a). The geometric center of the non-
vegetated (i.e., LAI=0) taiga snow covered land is marked as a black
dot. The localization bounds are marked as red lines where the distance
between each bound and the geometric center was set to seven degrees.
Evergreen needle-leaved forest covered pixels colocated with taiga snow
cover are marked as yellow squares in Figure 4.2b) whereas non-vegetated
land colocated with taiga snow covered pixels are marked as blue squares.

Four assumptions were required before calculating Equation 4.8 en route to

estimating forest transmissivity as a function of microwave frequency and polariza-

tion. First, the study only focuses on dry snow conditions, which allows for a strong

radiometric contrast between vegetated and non-vegetated areas over snow-covered
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terrain [133]. Therefore, only locations with non-zero snow depth (as estimated by

Catchment) during early December to late March and zero snow liquid water con-

tent as estimated by the Catchment model (i.e., negligible liquid water coats the

individual snow grains [122]) are defined here as “dry snow” pixels. In addition, it is

necessary to assume a relatively stable and nearly uniform temperature profile above

the snow surface over a distance of meters in order to avoid a significant amount

of heat transfer between the overlying canopy, the overlying air, and the underlying

snow pack. Therefore, only pixels with Catchment-derived skin temperature (Tforest)

and physical snow temperature (Tsnow) within +/- 2 K of one another as estimated

by the Catchment model. The +/- 2 K was selected to approximate the uncertainty

of Catchment-derived estimates across different landscape elements within the satel-

lite field-of-view [139]. Further, it is believed that Equation 4.8 should be employed

as a function of snow class and land cover type across snow-covered portions of the

North America domain. This is because: (1) land cover type has a strong influence

on the brightness temperature of dry snow-covered terrain [111, 140], and (2) snow

class has been shown to impact SWE estimation accuracy [78]. Additional assump-

tions include that changes in biotic disturbances (e.g., large-scale deforestation),

land cover classification, and snow cover classification (see Figure 4.3) are relatively

constant across the time period of investigation. It is acknowledged that the emis-

sive properties of the soil beneath the snow pack will also influence the brightness

temperature observations. However, previous study [27] showed that the use of the

spectral difference algorithm is assumed to minimize many of the errors in the SWE

and snow depth retrieval (see Section 4.3.1 for details) such as the dielectric constant

82



of the soil and the surface roughness.

c)

b)

a)

Figure 4.3: Remapped forest cover distribution from [75] is shown in Fig-
ure 4.3a), remapped MODIS MCD12C1 land cover classification product
in North America is shown in Figure 4.3b), and remapped snow cover
classification from [74] is shown in Figure 4.3c).
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4.3.1 Forest decoupling model evaluation

Since upward and downward radiometer observations below and above the

canopy, respectively, are not available, the evaluation of the forest decoupling is

made here indirectly via comparisons with ground-based SWE and snow depth

measurements as well as against satellite-based SWE and snow depth retrievals.

A relatively simple snow depth-Tb relationship for a dry, uniform snowfield in the

absence of overlying vegetation can be expressed as [12]:

SD = 1.59× (Tb18,H − Tb36,H) (4.9)

where SD is the snow depth in centimeters (cm); Tb18,H denotes the Tb with units

of K at 18.7 GHz and horizontal polarization; and Tb36,H is the Tb with units of

K at 36.5 GHz and horizontal polarization. The study shown in [141] improved the

snow retrieval and applied it in forested regions in order to compute snow depth as:

SD = 1.59× (Tb18,H − Tb36,H)

1− ff
(4.10)

where SD is the snow depth in centimeters (cm), ff is the dimensionless forest cover

fraction, and the calibrated coefficient value of 1.59 has units of cm/K.

During SWE retrieval using a spectral difference of Tb (∆Tb), the following

three empirical equations could be used. If the snow is homogenous with a mean

snow grain radius of 0.3 mm and a snow density of 300 kg m−3, the SWE-Tb

relationship can be expressed as:

SWE = 4.8× (Tb18,H − Tb36,H) (4.11)
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where SWE is the snow water equivalent in millimeters (mm) and the calibrated

coefficient value of 4.8 has units of mm K−1 [12]. Without the assumptions of

snow grain size and density, a more generalized equation was proposed by [142] for

estimating SWE that could be written as:

SWE = a+ b · (Tb18,H − Tb36,H) (4.12)

where SWE is the snow water equivalent in millimeters (mm) and the coefficients

a and b are -25 mm and 4.8 mm/K, respectively [15]. In forested areas, Equation

4.12 can be re-written as [15]:

SWE = a+ b · (Tb18,H − Tb36,H)(1− ff) (4.13)

where SWE is the snow water equivalent in millimeters (mm) and ff is the dimen-

sionless forest cover fraction.

In addition to snow mass retrieval equations computed as a function of ∆Tb

(i.e., ∆Tb = Tb18H/18V − Tb36H/36V ), comparisons were also conducted during for-

est decoupling validation activities against available in-situ SWE measurements such

as the Natural Resources Conservation Service (NRCS) National Water and Climate

Center SNOwpack TELemetry (SNOTEL) network (http://www.wcc.nrcs.usda.gov/snow/)

as well as the U.S. National Climatic Data Center Global Summary of the Day

(GSOD) network operated by National Oceanic and Atmospheric Administration

(NOAA) (https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod).

As stated previously, since Tb observations above and below the canopy are not

available for use, the resulting impact on the snow depth retrieval or SWE retrieval
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is used here as a proxy to assess the efficacy of the proposed forest decoupling pro-

cedure. It should also be noted that the computed improvements to goodness-of-fit

statistics (e.g., root mean squared error (RMSE), bias, and unbiased RMSE; see

Appendix B for details) are complicated by additional uncertainty due to a spatial

scale mismatch between the satellite-based estimates (with spatial resolution O(100)

km2) and ground-based observations (with spatial resolution O(1) m2) where O(·)

represents order-of-magnitude. In other words, it is relatively difficult to justify

that each in-situ, ground-based SWE (or snow depth) measurement is spatially-

representative of the colocated, large-scale satellite observations. However, in the

absence of spatially-dense observational networks, these comparison results are use-

ful since they can serve as a proxy demonstrating the effectiveness of the proposed

forest decoupling technique.

4.4 Results and Discussions

4.4.1 Results of atmospheric decoupling

Tb observations shown as whisker-and-box plots in Figures 4.4a), b), c), d

and e) were obtained from the EC airborne survey on 13 Mar 2006, 26 Feb 2008,

03 Apr 2008, 08 Apr 2008, and 10 Apr 2008, respectively. Observations in Figures

4.4f), g), and h) were obtained from the IPY helicopter flights on 21 Feb 2008.

The original (i.e., coupled) AMSR-E Tb measurements and the decoupled Tb (i.e.,

after atmospheric decoupling) are marked on each of the plots in Figure 4.4. It is

noticeable that after conducting the atmospheric decoupling procedure, compared
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with the original AMSR-E measurements, the decoupled Tb values are closer to

the median of the aggregated EC and IPY Tb observations. In general, the atmo-

spherically contributed component of Tb ranges from 1 K to 3 K depending on the

frequency and TPW content at the time of AMSR-E overpass. However, relatively

large adjustments were witnessed for AMSR-E Tb observations at shorter wave-

lengths (e.g., 36.5 GHz) since they are less transparent to the overlying air due to

the relatively low transmission factor (see Equations 4.3 and 4.4 for details). Even

though the improvements are small, they systematically improve the Tb estimates

relative to the independent airborne Tb observations and suggest viability in the

proposed approach.

It is also interesting to note that the amplitudes of atmospherically contributed

Tb information content obtained from [131] are 21.3 K at 18.7 GHz and 29.2 K at

36.5 GHz, respectively, which is approximately 10 to 20 times greater than those

derived from the radiative transfer model presented in this study. It is also worth

noting that the time period of interest in this study is vastly different from that

investigated in [131]. That is, the temporal domain selected in this study is from

late December to early March whereas results concluded in [131] were analyzed in

the summer season, namely from July to October in Quebec, Canada. Therefore,

a larger amount of TPW in the summer might result in higher magnitudes of up-

welling atmospherically-contributed Tb components. In addition, it is postulated

that influences in the empirical coefficients used in Equations 4.4 and 4.5 might be

responsible for the large differences between these two studies in terms of deriving

atmospherically-contributed Tb as a function of TPW. On the other hand, a study
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conducted on the Tibetan Plateau [91] found that the average atmosphere-related

Tb contribution at 18.7 GHz and 36.5 GHz was approximately 0.3 K, and 0.5 K,

respectively. Compared with Qiu et al. [91], the atmosphere decoupling results de-

rived from this current study are much smaller at both AMSR-E frequencies. This

is mostly likely due to the relatively thin and dry air in the cloud-free winter days on

the Tibetan Plateau where the water vapor concentration is low. When compared

with the AMSR-E decoupling results from [90] that used a different radiative trans-

fer model [143] and was applied during winter season using parameters derived from

available rawinsonde observations collected in the U.S., this current study yields

relatively similar magnitudes of Tb components related to atmospheric emissions,

i.e., O(1) K depending on the relevant frequency of interest. Therefore, it is believed

that the atmospheric decoupling procedure in this study is effective for use during

removing atmospheric-related Tb signals at both 18 GHz and 36 GHz.

4.4.2 Results of forest decoupling

4.4.2.1 Forest transmissivity retrieval

Forest transmissivity retrieval was conducted as function of snow class, land

cover type, microwave frequency, and polarization across snow-covered land in North

America. Among all 16 land cover types (see Figure 4.3), evergreen needle leaf,

mixed forest, and woody savanna are the three dominant categories that are most

likely to be colocated with appreciable snow cover. Mixed forest is defined as a tran-

sitional zone and often consists of mosaicked forest communities [144]. The intrinsic
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Figure 4.4: Atmospherically-decoupled satellite-based Tb estimates com-
pared against spatially-aggregated airborne Tb observations. AMSR-E
measurements are marked as dots and atmospherically-decoupled Tbs
are marked as ‘x’s. The boxes show the median (marked as the black line
in the box) along with the 25th and 75th percentiles while the whiskers
show the 5th and 95th percentiles.
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nature of the mixed forest category makes it difficult to retrieve transmissivity based

on structural similarities [145] and is well beyond the scope of this current study.

Unlike the mixed forest class, woody savanna and evergreen needle-leaved forest clas-

sifications are not typically associated with forest-transitional zones [144]. Woody

savanna is defined as the land cover dominated by herbaceous systems and is mostly

found north of 60◦ latitude and is often colocated with snow cover classes of taiga

and tundra according to [74]. Further, evergreen needle-leaved forest dominates over

other forest types in snow-covered terrestrial environments across North America,

and is closely colocated with seasonal snow cover classes of taiga, maritime, prairie,

and alpine snow [74].

Figures 4.5 and 4.11 show a consistent relationship between LAI and forest

transmissivity where forest transmissivity decreases as LAI increases across woody

savanna and evergreen needle-leaved forest regions. When the remotely-sensed value

of LAI is numerically zero (i.e., negligible vegetation present), forest transmissivity

is unity. As LAI increases, transmissivity asymptotically approaches a lower thresh-

old. This lower threshold is also known as the “saturated transmissivity”, which

represents the transmissivity value for a very dense forest covered pixel [133]. The

“very dense” forest cover in this study is defined as pixels with winter LAI values

greater than 2 m2 leaf m−2 ground or SV values greater than 250 m3 ha−1. The

relationship between transmissivity and LAI could be modeled as an exponential

function [132,133] taking the form as:

tforest,f = a+ (1− a) ∗ exp(−b ∗ LAI) (4.14)
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where a and b are unitless regression coefficients. Transmissivity values greater than

1.0 as calculated from Equation 4.8 arise due to inherent uncertainty in the Catch-

ment model outputs (i.e., skin temperature and SWE estimates) in conjunction with

observation error in the MODIS-derived LAI observations.

The exponential function derived in this study requires a minimum of 25 sam-

ples and can often exceed more than 100 samples. However, it is still difficult to

ensure that these samples are equally distributed within each LAI bin. That is, LAI

values are relatively low and stable during the winter season (due to low growth

rates) in evergreen needle-leaved forest and woody savanna regions. A lack of sam-

ples with relatively high values of LAI (marked as grey squares in Figures 4.5 and

4.11) may yield a less robust estimate of transmissivity. Therefore, the exponential

relationship developed in this study as applied in the evergreen needle-leaved forest

regions is not intended for use when LAI is beyond 1.5. When computing the trans-

missivity in woody savanna regions, the study suggests using winter LAI less than

0.8 during the regression analysis.

It is encouraging to witness a similar exponential relationship in both woody

savanna and evergreen needle-leaved regions when colocated with different types of

snow. It is also important to note that regions with different snow cover classifica-

tions and forest cover types should have different regression coefficients (i.e., a and

b) as applied in Equation 4.14. Regression coefficients at either 18.7 GHz or 36.5

GHz at horizontal and vertical polarization were determined based on the mean

values of a’s and b’s derived from all selected fitted exponential functions across

the time period of investigation in both evergreen needle-leaved forest and woody
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Figure 4.5: Relationship between LAI and forest transmissivity across
woody savanna regions covered with tundra snow on 26 Feb 2003 (Figure
4.5a through Figure 4.5d) and regions covered with taiga snow on 10
Feb 2003 (Figure 4.5e through Figure 4.5h) , respectively. Each column
represents different transmissivity estimates at different frequencies and
polarizations. The ‘x’ marker is the mean transmissivity computed at
each corresponding LAI bin while upper and lower grey bars indicate one
standard deviation from the mean, respectively. The solid black line is
the fitted exponential curve obtained from Equation 4.14 with regression
coefficients a and b, n is the total sample size, and R is the correlation
coefficient (see Appendix B for details). Forest transmissivity computed
at undersampled LAI bins (i.e., with sample size less than 3) are marked
as solid squares.

savanna regions (see Table 4.1). It is interesting to point out that the decay rate,

b, is generally lower in the evergreen needle-leaved forest regions relative to those

obtained from woody savanna areas colocated with taiga snow. That is, the rate

of change in transmissivity with respect to LAI in woody savanna covered areas

is generally higher than those obtained from evergreen needle-leaved forest covered

regions during the winter. This phenomenon might be explained by the difference in

volume scattering effects arising from forest structure and forest density differences.
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Table 4.1: Forest transmissivity retrieval models with regression coefficients applied
in Equation 4.14 for: top) evergreen needle-leaved forest covered regions colocated
with taiga snow, and bottom) woody savanna regions colocated with taiga snow.

Snow and Microwave Model parameter Model parameter
forest types channel a b

Taiga snow +

18H 0.89 1.94
18V 0.88 2.63
36H 0.82 1.42

evergreen needle leaved forest 36V 0.85 1.74

Taiga snow +

18H 0.65 2.75
18V 0.59 2.92
36H 0.61 2.05

+ woody savanna 36V 0.64 2.02

Volume scattering by canopies and leaves is relatively dominant for shorter wave-

lengths (i.e., 18.7 GHz and 36.5 GHz used here) as compared with L-band (∼1-2

GHz) in the microwave spectrum [146]. Discontinuous media (i.e., forest cover in

the context) consisting of discrete elements (i.e., twigs, branches, leaves, and stems)

will absorb, emit, or scatter radiation. Forest density and forest cover fraction are

generally higher in evergreen needle-leaved areas (relative to woody savanna regions)

based on the NASA forest product (i.e., MOD44B) [75]. A large number of small

needle-shaped leaves are likely to behave as numerous small scatterers, and hence,

these discontinuous media (i.e., evergreen needle-leaved forest) now behave like con-

tinuous media and the internal scattering becomes minimal as compared to more

dominant radiation absorption processes [146]. Therefore, given the same magni-

tude of LAI, forest transmissivity computed in evergreen needle-leaved regions is

generally higher than those in the woody savanna regions.

Prior to calculating decoupled snow Tbs using retrieved forest transmissivity in
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Table 4.2: Comparisons of existing forest transmissivity retrieval models (selected).

Reference Measurement Structural Model
type 1 parameter formulation

Kruopis et al. (1999) G SV t = a + (1-a) * exp(-b * SV)

Parde et al. (2005) G SV t = a + (1-a) * exp(-b * SV)

Langlois et al. (2011) A, G SV t = a + (1-a) * exp(-b * SV)

Roy et al. (2012) A, G SV t = a + (1-a) * exp(-b * SV)

Roy et al. (2014) S MODIS LAI t = a + (1-a) * exp(-b * LAI)

Vander Jagt et al. (2015) A, S MODIS LAI t = a * exp(b * LAI)
+ c * exp(d * LAI)

This study S BNU LAI t = a + (1-a) * exp(-b * LAI)

Section 4.4.2.2, it is important to first demonstrate the differences in transmissivity

values retrieved from this study relative to other studies that used forest structural-

related parameters. Since the majority of the existing transmissivity retrieval studies

were conducted in areas covered with black spruce, which is a type of evergreen

needle-leaved forest, coefficients shown in Table 4.1 are used for comparison.

The comparison of saturated transmissivity values (i.e., transmissivity for a

very dense forest; see Figure 4.6) obtained from each model can not provide definitive

proof of the rationality of coefficients for each retrieval approach since each model

was evaluated based on different measurements colocated across a range of spatial

scales (see Table 4.2). In a quantitative fashion, the study of Vander Jagt et al.

(2015) [147] might underestimate forest transmissivity to some extent because the

variance of air temperature was completely removed from the variance embedded

in the Tb measurements. Furthermore, as discussed in Roy et al. (2014) [132], the

1A=Airborne, G=Ground-based, S=Space-based
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transmissivity results from Kruopis et al. (1999) [133] might be underestimated at

low LAI values. Therefore, transmissivity values presented in this study are generally

higher than those presented in Vander Jagt et al. (2015) [147] and Kruopis et al.

(1999) [133]. Such differences will only be reconciled once more coherent ground-

based measurements below and above the canopy are available for scrutiny.
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Figure 4.6: Comparisons of saturated transmissivity estimates obtained
from existing studies (see Table 4.2). Results presented in Vander Jagt
et al. (2015) [147] include two transmissivity values, namely, 0.70 for
airborne-derived transmissivity and 0.58 for space-borne-derived trans-
missivity at 36V.

4.4.2.2 Non-SWE related Tb components in the measured PMW Tb

Regression coefficients used to estimate forest transmissivity across different

land cover types and different snow types applied in Equation 4.8 should, if possible,

consider all of the permutations between the two different sets of classes. Due

to the dominance of evergreen needle-leaved forest in North America, this section
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focused on the contributions of non-SWE related Tb components of the measured

Tb arising from the atmosphere or from the vegetation with particular focus on

evergreen needle-leaved forested areas, which during the snow season are typically

colocated with taiga snow cover class. The sensitivity analysis of both model input

states and model parameters are briefly discussed in the Appendix D.

Histograms are shown in Figure 4.7 in order to visualize the average amplitude

of forest-decoupled Tb estimates at 18.7 GHz and 36.5 GHz using either horizontal

or vertical polarization as a function of LAI. The vegetation-contributed compo-

nent of Tb is defined as vegetation emission effects minus attenuation effects, and

hence, it could be further written as “Tbdecouple−noatm,f − Tbsnow,f” (following the

same nomenclature used in Equation 4.1). The magnitude of the vegetation-related

component of measured Tb generally increases as LAI increases due to the increas-

ing significance of vegetation emission relative to vegetation scattering. In addition,

analysis across all available measurement dates suggests that the influence of vege-

tation is more pronounced at higher frequency and at horizontal polarization. The

higher values of Tb contributions at horizontal polarization from vegetation could

be partly explained by the dominant orientation of branches and coniferous nee-

dles in the evergreen needle-leaved forested regions as discussed in [133]. On the

other hand, higher Tb contributions from vegetation at higher frequency could be

explained by the fact that underlying surface (i.e., snow underlying the forest cover)

has less influence on observed Tb at higher frequency due to a shorter PMW emission

depth [111]. Further, histograms in Figure 4.7 help convey the average amplitude of

forest-decoupled Tb estimates at 18.7 GHz or 36.5 GHz using either horizontal or
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vertical polarization as a function of TPW. In accordance with conclusions drawn

from Section 4.4.1, results here suggest that relatively large Tb impacts arising from

the overlying atmosphere are present in Tb observations at 36.5 GHz at both hor-

izontal and vertical polarizations. The atmospheric impacts on the measured Tb

at 18.7 GHz are much less relative to 36.5 GHz, which is intuitive given greater

transmissivity at a longer wavelength (i.e., lower frequency).
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Figure 4.7: Histograms of area-averaged, non-SWE related Tb compo-
nent in evergreen needle-leaved forest colocated with taiga snow cover on
06 Mar 2003. Atmospherically-contributed Tb information and forest-
contributed Tb at 18H and 18V are shown in Figure 4.7a) and 4.7b),
respectively. Forest contributed Tb at 36H and 36V are shown in Fig-
ure 4.7c) and 4.7d), respectively. Dashed lines indicate the mean total
precipitable water content for the region of interest.
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4.4.2.3 Impacts of Tb Decoupling on a Parsimonious SWE Retrieval

Equations shown in Section 4.3.1 suggest that shallow to moderate SWE (or

snow depth) is proportional to computed ∆Tb. To help illustrate this behavior,

Figure 4.8 shows histograms of the average impacts to ∆Tb due to the effects of

forest emission and attenuation. In general, atmospheric adjustment (decoupling) of

∆Tb increases as TPW increases. This argument holds true when TPW is relatively

small as witnessed in both Figures 4.7 and 4.8 when the average TPW is less than 1.2

mm. However, when TPW exceeds a threshold, the overlying atmosphere behaves

more like a “scatterer” of PMW radiation rather than an “emitter” as suggested by

Equation 4.5, and hence, the atmospheric-related contribution to ∆Tb decreases at

relatively high TPW. This phenomenon is more pronounced at relatively high LAI

values (i.e., LAI greater than 1.5) where an increase in TPW yields a decrease in the

atmospheric component of Tb and ∆Tb as shown in Figures 4.7 and 4.8, respectively.

In addition, it can also be seen that the forest impacts on ∆Tb increases with

increasing LAI. The increase in the ∆Tb at either horizontal or vertical polarization

suggests that removal of vegetation information from the measured Tb would yield

more SWE than by simply using the original AMSR-E Tb measurements directly.

Previous studies also provide us with some measure of vegetation (or non-SWE

related) contributions to total Tb signals as measured with a PMW radiometer (see

Table 4.3). It is clear from this study that the overall vegetation contribution (de-

fined as emission effects minus attenuation) is generally less than values presented

in other studies. This could be due, in part, to differences in measurement scales
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used during evaluation, differences in forest transmissivity values, and differences

in vegetation parameters (a.k.a., types or classes). When considering differences

in measurement scales, study results concluded from Li and Kelly (2014) [148] are

most comparable to this current study. Since no atmospheric decoupling procedure

was applied in Li and Kelly (2014) [148], these results could overestimate the max-

imum amplitude of the Tb signal arising from the overlying vegetation only. With

that said, it is encouraging to see that the vegetation-contributed Tb components

computed from this study, in general, are lower than the values reported in [148]

except for vertically-polarized Tb at 36.5 GHz. However, without ground-based

measurements obtained from both above and below the canopy, it is difficult to tell

exactly which model is indeed the most accurate measure of vegetation information

given the mixed signal as measured by a spaceborne radiometer.

As stated previously, the evaluation of the forest decoupling procedure could

also be made indirectly using snow depth and SWE information given the absence of

both upward and downward radiometer observations below and above the canopy.

Comparisons of SWE were first made between ground-based SWE measurements

and SWE estimates (computed as a function of ∆Tb) in evergreen needle-leaved

forest regions colocated with taiga snow cover. Six different sets of SWE estimates

(denoted as Exp.i to Exp.vi) were computed as a function of ∆Tb using coupled

AMSR-E Tb observations or decoupled Tb estimates as applied in Equations 4.11,

4.12 and 4.13 (see Figure 4.9a).
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Figure 4.8: Histograms of area-averaged, non-SWE related ∆Tb con-
tributions in evergreen needle-leaved forest colocated with taiga snow
cover on 06 Mar 2003. Average impacts of ∆Tb at horizontal polariza-
tion (∆TbH = Tb18H − Tb36H) due to the forest decoupling procedure
are shown as grey bars in Figure 4.8a). Average impacts of ∆TbH due
to atmospheric decoupling procedure are shown as black bars in Figure
4.8a). Figure 4.8b) is the same as Figure 4.8a) except for ∆Tb at vertical
polarization (∆TbV = Tb18V −Tb36V ). Dashed lines show the mean total
precipitable water content for the region of interest.
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Table 4.3: Comparisons of forest contributions derived from the original, coupled PMW Tb observations.

Reference Measurement Study Methodology Vegetation
type 1 domain Contribution to Tb

Langlois et al. A, G Quebec, Microwave 27.4 K @ 18H (on average)
(2011) Canada transmissivity 11.7 K @ 18V (on average)

retrieval based on SV 24.2 K @ 36H (on average)
14.2 K @ 36V (on average)

Roy et al. A, G Quebec, Microwave 125.1 K @ 18H
(2012) Canada transmissivity 125.1 K @ 18V

retrieval based on SV 138.8 K @ 36H
138.8 K @ 36V

Li and Kelly S Northern Optical forest transmissivity 2 [-3.05 K, 26.95 K] @ 18H
(2015) Hemisphere retrieval based on forest [-1.57 K, 8.00 K]@ 18V

fraction as applied in [-2.90 K, 31.07 K] @ 36H
PMW Tb regression [-1.43 K, 13.42 K] @ 36V

This study S North Microwave transmissivity [0 K, 9 K] @ 18H
America retrieval based on LAI as [0 K, 7 K]@ 18V

a function of snow [0 K, 21 K] @ 36H
snow cover type and forest type [0 K, 16 K] @ 36V 3

1A=Airborne, G=Ground-based, S=Space-based
2wavelength ranges from 400 nm to 2500 nm
3“[ ]” stands for a closed interval. Data reported here were obtained from taiga snow class colocated with evergreen needle leaved forest regions
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Use Original (Coupled) AMSR-E Tb to derive SWE estimates?

Eq. (4.11) Eq. (4.11) Eq. (4.12) Eq. (4.12) Eq. (4.13) Eq. (4.13)

Yes No Yes No Yes No

Exp. i Exp. ii Exp. iii Exp. iv Exp. v Exp. vi

Use Original (Coupled) AMSR-E Tb to derive snow depth estimates?

Eq. (4.9) Eq. (4.9) Eq. (4.10) Eq. (4.10)

Yes No Yes No

Exp. vii Exp. viii Exp. ix Exp. x

a)

b)

Figure 4.9: Experimental setup in a) SWE retrieval and b) snow depth
retrieval as part of forest decoupling evaluation using Equations 4.9
through 4.13 (see Section 4.3.1). Retrievals computed with the origi-
nal (coupled) AMSR-E Tb observations are denoted as “Yes” whereas
results computed with the decoupled snow Tb estimates are denoted as
“No”. Different experiments are denoted as Exp.i to Exp.vi for the SWE
retrieval results evaluation whereas Exp.vii to Exp.x are used to denote
experiments conducted for the snow depth retrieval evaluation.

Using the closest (to the center of the EASE-Grid pixel) in-situ SNOTEL SWE

measurements obtained from snow pillows as the “truth”, goodness-of-fit statistics,

including bias, RMSE, and unbiased RMSE were plotted in Figure 4.10, which

were computed on 06 Mar 2003, 05 Mar 2004, 06 Mar 2005, 06 Mar 2006, and

06 Mar 2006, respectively. Early March is selected for each year as an example

because the overlying snow pack, in general, is neither too wet nor too thin during
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this time of the year for the domain used in this study. The SWE retrievals are

generally more accurate during dry snow conditions (pre-ablation) with moderate

snow depth relative to those during wet or thin snow conditions. It is encouraging

to see that statistical metrics improve when implementing the two-step decoupling

procedures no matter which of the three selected snow depth retrieval models is

used. It is further worth noting that the use of the decoupled snow Tbs in the

production of the SWE estimates using Equation 4.11 achieves a ∼55% reduction

in bias, a ∼45% reduction in RMSE, and a ∼20% reduction in ubRMSE relative to

that when using the original, coupled Tb observations. Even though relatively high

ubRMSE were witnessed across all retrieval algorithms, they systematically improve

the SWE estimates relative to the independent SNOTEL SWE observations and

suggest viability in the proposed approach.

Similar to SWE estimate comparisons using decoupled and coupled Tb obser-

vations, respectively, comparisons of snow depth were conducted using ground-based

snow depth measurements and snow depth estimates across evergreen needle-leaved

forest region colocated with taiga snow cover during the month of March for the

years 2004 to 2009. Four different sets of snow depth estimates (denoted as Exp.vii

to Exp.x) were computed as a function of ∆Tb using coupled AMSR-E Tb obser-

vations or decoupled Tb estimates as applied in Equations 4.9 and 4.10 (see Figure

4.10b).

In a similar manner as conducted previously with SNOTEL SWE observa-

tions, the in-situ GSOD snow depth measurements were used as the “truth”. The

resulting goodness-of-fitness statistics (i.e., bias, RMSE, and ubRMSE) are shown
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Figure 4.10: Statistical comparisons for a) bias, b) RMSE, and c)
ubRMSE for SWE estimates compared against SNOTEL observations
on 06 March 2003, 05 March 2004, 06 March 2005, 06 March 2006
and 06 Mar 2009 over evergreen needle-leaved forest covered regions
(0<LAI<1.5) colocated with taiga snow cover. Labels along the x-axis
indicate which experiment in Figure 4.10 was used in the SWE compar-
isons and the experiment setup as described in Section 4.3.1.

in Table 4.4. It is interesting to note that snow depth retrieval using Equation 4.10

often yields relatively large positive biases when compared with in-situ observations.

The statistics for snow depth degrade when using decoupled Tbs relative to snow

depth estimates using the original, coupled Tb information. Positive biases could be

related to uncertainty in the forest fraction product or uncertainty in the calibration

coefficients (a.k.a., model structure error) used in Equation 4.9 that are dependent

on snow cover class, forest cover type, snow grain size, snow density, and other snow

microphysical parameters. The estimation uncertainty related to the retrieval model
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parameterization tends to increase as forest density increases [141]. In addition, it

is encouraging to see that statistical metrics improve with the two-step decoupling

procedure when applied to Equation 4.9. The use of the decoupled snow Tbs to

estimate snow depth yields more accurate estimates and achieves a ∼60% reduction

in bias, a ∼12% reduction in RMSE, and a ∼5% reduction in ubRMSE relative

to estimates based on the original, coupled Tb observations. However, it should

be clearly stated that high values of RMSE and ubRMSE values suggest random

errors in the snow depth retrievals exist in appreciable quantities (with or without

application of the decoupling procedures) and should be further investigated in a

follow-up study.

4.5 Conclusions and Implications

A complete and accurate estimation of the relationship between snow mass

and the passive microwave electromagnetic response of that snow mass remains

elusive, especially in densely-forested areas. The nature of the close-to-random

spatial distribution of tree branches and the dynamics of forest cover evolution is

one significant limitation in the accuracy of SWE retrievals relying on satellite or

airborne-based passive microwave observations. In order to isolate the non-SWE

related Tb information content associated with atmospheric and vegetative effects,

it is worthwhile adopting a two-step decoupling procedure before using PMW Tb

observations in SWE retrievals or SWE-centric Tb assimilation studies.

The first decoupling procedure removes atmospheric-related Tb information
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Table 4.4: Statistical comparisons of estimated snow depth against GSOD observa-
tions in evergreen needle-leaved forest covered regions (0<LAI<1.5) colocated with
taiga snow class. Snow depth retrieval models with the best statistical metrics (i.e.,
lowest absolute values of bias, RMSE, and ubRMSE) are bolded.

Date Retrieval Bias RMSE ubRMSE Use Exp. Average
and method [m] [m] [m] original number forest
year (coupled) cover

AMSR-E Tb? fraction

05 Mar Eq. 4.9 -0.04 0.12 0.11 Yes Exp.vii 75.52%
Mar Eq. 4.9 0.02 0.10 0.10 No Exp.viii
2004 Eq. 4.10 9.43 25.21 23.38 Yes Exp.ix

Eq. 4.10 12.88 35.38 32.95 No Exp.x

06 Eq. 4.9 -0.21 0.28 0.19 Yes Exp.vii 74.87%
Mar Eq. 4.9 -0.18 0.26 0.18 No Exp.viii
2005 Eq. 4.10 1.37 3.11 2.79 Yes Exp.ix

Eq. 4.10 1.61 3.72 3.35 No Exp.x

14 Eq. 4.9 -0.05 0.28 0.19 Yes Exp.vii 76.02%
Mar Eq. 4.9 0.01 0.26 0.18 No Exp.viii
2006 Eq. 4.10 5.40 3.11 2.79 Yes Exp.ix

Eq. 4.10 7.33 3.72 3.35 No Exp.x

06 Eq. 4.9 -0.12 0.19 0.18 Yes Exp.vii 70.61%
Mar Eq. 4.9 -0.07 0.18 0.18 No Exp.viii
2007 Eq. 4.10 5.62 15.78 14.83 Yes Exp.ix

Eq. 4.10 7.15 22.24 21.00 No Exp.x

05 Eq. 4.9 -0.04 0.20 0.20 Yes Exp.vii 76.05%
Mar Eq. 4.9 0.01 0.19 0.19 No Exp.viii
2008 Eq. 4.10 8.23 23.85 22.39 Yes Exp.ix

Eq. 4.10 10.14 30.04 28.27 No Exp.x

06 Eq. 4.9 -0.14 0.33 0.30 Yes Exp.vii 77.96%
Mar Eq. 4.9 -0.09 0.30 0.29 No Exp.viii
2009 Eq. 4.10 8.28 22.00 20.38 Yes Exp.ix

Eq. 4.10 10.63 28.65 26.61 No Exp.x
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based on empirical functions and a dynamic estimate of TPW content as esti-

mated by NASA’s MERRA product. The results demonstrate that atmospherically-

contributed Tb ranges from 1 K to 3 K and depends on the frequency, polarization,

and the meteorologic conditions at the time of AMSR-E overpass. The second decou-

pling procedure to remove the vegetation-related signal employs a MODIS-derived

LAI product to first compute forest transmissivity prior to computing radiance emis-

sion directly from the underlying snow. The fitted exponential functions are shown

to be effective during forest decoupling for evergreen needle-leaved forest and woody

savanna regions, but remain uncertain in other forest types due to undersampled

LAI information colocated with snow cover. In an analogous fashion as for the at-

mospheric component, removal of the forest-related Tb information content from

the original observations caused ∆Tb to increase, which helps ameliorate some of

the negative bias typically found in SWE retrievals in densely-forested areas [18,26].

Comparisons were made indirectly between snow depth and SWE retrieval algo-

rithms as well as independent ground-based observations from the GSOD and the

SNOTEL networks, respectively. When using the decoupled PMW Tb estimates

(relative to using the original AMSR-E Tb observations), snow depth bias is re-

duced by 60% and SWE bias is reduced by 55%. However, computed RMSE and

ubRMSE values suggest random errors in the snow depth retrievals (with or with-

out application of the decoupling procedures) is significant and remains an issue for

further study.

It is anticipated that regional SWE estimation could be eventually improved

with the help of the proposed two-step decoupling procedure across thinly- to
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heavily-vegetated regions within a Tb data assimilation framework. It is further

believed that accurate SWE information could be used by water resources managers

in the future towards making better decisions in their water management practice

and water supply forecasting activities such as reservoir regulation, downstream

flood prediction, agricultural water management, and climate variability studies.
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Figure 4.11: Same as Figure 4.5 but for evergreen needle-leaved forest.
Figures 4.11a) through 4.11d) represent taiga snow regions on 06 Mar
2003. Figures 4.11e) through 4.11h) represent maritime snow regions
on 01 Jan 2006. Figures 4.11i) through 4.11l) represent prairie snow
conditions on 10 Feb 2003. Figures 4.11m) through 4.11p) represent
alpine snow conditions on 17 Jan 2005.
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Chapter 5: Integration of satellite-based decoupled passive microwave

brightness temperatures and an ensemble-based land data

assimilation framework in order to improve snow estima-

tion in forested regions

5.1 Motivation and Objective

Chapter 3 demonstrated that the assimilation of original spectral difference

of brightness temperature (Tb) observations (∆Tb) is advantageous at characteriz-

ing regional snow water equivalent (SWE) and snow depth information along with

a well-trained support vector machine (SVM). However, relatively small improve-

ments (sometimes degraded performance) of the data assimilation (DA) system was

witnessed at places covered with significant amount of forest over snow-covered land

in Alaska. It is therefore postulated in Chapter 3 that the non-SWE related com-

ponents of the measured Tb observations should be removed prior to SVM training

and predicting procedure. In addition, previous study [149] showed that modeling

atmospheric and forest related emissions are helpful towards snow depth estima-

tion from December 2002 to February 2003 in North America within a radiance

assimilation framework while using a physically-based radiative transfer model as
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the model operator. Therefore, this chapter is intended to address the question:

“Can spatially-distributed SWE and snow depth estimates be enhanced through

the integration of a SVM in conjunction with atmospheric-and-forest decoupled Tb

observations into a land surface model? The research presented here will be pub-

lished in IEEE International Geoscience and Remote Sensing Symposium.

5.2 Methodology

5.2.1 Land surface model and study area

The NASA Goddard Earth Observing System Model, Version 5 (GEOS-5)

Catchment Land Surface Model (Catchment) [70] was used as the forward model.

Meteorological fields from the Modern-Era Retrospective analysis for Research and

Applications (MERRA) product were used to define the meteorological boundary

conditions. Relevant snow states derived from Catchment include three-layer snow

depth, SWE, snow density, snow temperature, and snow liquid water content. Pre-

vious studies showed that both SWE and snow depth estimates via Catchment were

relatively unbiased (i.e., bias of snow depth ≈ -1 cm; bias of SWE ≈ -1.2 cm) and

contain reasonable amount of random errors and uncertainty (i.e., root mean squared

error (RMSE) of snow depth ≈ 20 cm; RMSE of SWE ≈ 9.5 cm) [7]. In addition, a

comparison of daily-averaged, near-surface soil temperature (in the presence of snow

cover) suggests Catchment output was unbiased relative to ground-based observa-

tions from the Snow Telemetry (SNOTEL) network located in the western continen-

tal United States and Alaska. The unbiasedness property of each Catchment-derived
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estimate is critical in the machine-learning-based model formulation introduced in

the Section 5.2.3, especially with regards to SWE since SWE is the focus of the

∆Tb assimilation framework.

Catchment was run at a time increment of 450 seconds from 01 August 2002 to

30 June 2011 on the 25-km Equal Area Scalable Earth (EASE) grid in Quebec and

Newfoundland, Canada, and several pixels (with colocated ground-based stations)

in North America covered with evergreen needle-leaved forest cover and taiga snow

cover (see Figure 5.7). The employment of the two elevation products is intended to

minimize the effect of elevation discrepancy between the ground-based stations and

the colocated grids (see Section 5.3.2.1 for details). In addition, the domain of Que-

bec and Newfoundland, Canada is selected because: 1) there is a variety of vegetated

and non-vegetated land colocated with seasonal snow, and 2) the region receives the

second largest maxima in snow accumulation (after the western cordillera) across

North America [150]. Quantification of SWE is of vital importance to this region,

and it is estimated that 1 mm of SWE in the headwaters in Quebec is equivalent to

$1M hydro-electric power production [150].

The uncertainty of the input forcings to the Catchment forward model was

modeled by perturbing precipitation, incoming solar (shortwave) radiation, and

incoming longwave radiation within the ensemble-based assimilation system (see

Section 5.2.3 for details) in order to adequately represent model errors. The pertur-

bation parameters were the same as used in Chapter 3, which were shown consistent

with other published recommendations [49,101,108,151].
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Table 5.1: Open-loop (OL) and data assimilation experiment (DAO, DAA, DAA+F )
configurations.

Case ID Description

OL Without assimilation
DAO Assimilating original (i.e., coupled) AMSR-E ∆Tb observations
DAA Assimilating atmospherically-decoupled AMSR-E ∆Tb observations

DAA+F Assimilating atmospheric-and-forest-decoupled AMSR-E ∆Tb observations

5.2.2 Observations and experiments setup

Passive microwave (PMW) Tb observations at three different frequencies —

10.65, 18.7, and 36.5 GHz — at both horizontal and vertical polarization were used

for assimilation. These Tb observations were acquired by the Advanced Microwave

Scanning Radiometer (AMSR-E) and subsequently gridded to a 25-km EASE grid

from 01 June 2002 to 01 July 2011. Only measurements from the nighttime (ap-

proximately 01:00 to 01:30 hour local time) overpass were used in order to minimize

wet snow effects.

Similar to the joint-assimilation framework of spectral difference (∆Tb) com-

binations described in Chapter 3, a set of experiments were conducted to assess the

model performance in both SWE and snow depth estimation (see Table 5.1). The

OL experiment, and the DAO experiment setup has been discussed in Chapter 3.

In DAA and DAA+F experiments, four ∆Tb combinations were used, which could
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be expressed as:

∆Tb′10H−36H = Tb10H − Tb′36H

∆Tb′10V−36V = Tb10V − Tb′36V

∆Tb′18H−36H = Tb′18H − Tb′36H

∆Tb′18V−36V = Tb′18V − Tb′36V

(5.1)

where Tb10H is the AMSR-E based Tb observations of 10.65 GHz at horizon-

tal polarization, Tb′36H is the decoupled Tb (either atmospherically-decoupled or

atmospheric-plus-forest decoupled) observations of 36.5 GHz at horizontal polariza-

tion, Tb10V is the AMSR-E based Tb observations of 10.65 GHz at vertical polar-

ization, Tb′36V is the decoupled (either atmospherically-decoupled or atmospheric-

plus-forest decoupled) Tb observations of 36.5 GHz at vertical polarization, Tb′18H is

the decoupled (either atmospherically-decoupled or atmospheric-plus-forest decou-

pled) Tb observations of 18.7 GHz at horizontal polarization, Tb′18V is the decoupled

(either atmospherically-decoupled or atmospheric-plus-forest decoupled) Tb obser-

vations of 18.7 GHz at vertical polarization.

5.2.3 The one-dimensional Ensemble Kalman filter

The measurement model used in this study is a SVM-based model. That is, the

SVM-based model was employed to estimate original, and decoupled satellite-based

PMW ∆Tb observations at multiple frequency / polarization combinations given

land surface and near-surface state variable information from Catchment. Four in-

put states were ultimately selected during the SVM training procedure based on
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the sensitivity analysis described in Chapter 2, namely, SWE, top-layer snow tem-

perature, top-layer soil temperature and snow liquid water content. Each SVM for

each 25-km EASE grid was trained for a 2-week (fortnight) period. A temporal

overlap of 2 weeks was included at the beginning and at the end of each training

period to address the strong seasonality in snow processes [60]. Different DA ex-

periments have different training output. That is, in DAO experiments, training

outputs are original (i.e, coupled) ∆Tb observations. In DAA experiments, training

outputs are atmospherically-decoupled ∆Tb predictions. In DAA+F experiments,

training outputs are atmospheric-and-forest decoupled ∆Tb predictions. That is,

in DAA+F experiments, forest transmissivity models as applied to pixels covered

with either evergreen needle-leaved forest or woody savanna colocated with taiga

snow cover type were employed to remove forest-related components on top of the

atmospherically-decoupled observations.

An ensemble size of 32 was used here based on the convergence of both OL-

derived and DA-derived SWE ensemble mean, and the ensemble spread. In both

DAA and DAA+F experiments, the prior model state is updated using the observa-

tions available for the day of interest for a single computational unit at which point

the linear update equation is applied as:

xi+t = xi−t + Kt[(yt + vi)−Φt(x
i−
t )] (5.2)

where i represents a single replicate from the ensemble at time t , xi−t is the prior

estimate of the state obtained from Catchment, Kt is the Kalman gain matrix, yt

is the decoupled ∆Tb measurement vector, and Φt(·) is the predicted measurement

114



model (i.e., trained SVM) that non-linearly maps the model states into decoupled

radiance measurement space. Random perturbations, vi, representing frequency /

polarization-independent, and time-invariant measurement errors are added to the

measurement vector [68]. The measurement error is approximated as a Gaussian-

distributed variable with a mean of zero and a standard deviation of σ. σ = 2 K is

selected for DAO experiment across all four ∆Tb channels based on the discussions

in Chapter 3. σ = 3 K is selected for both DAA and DAA+F experiments across all

four ∆Tb channels in order to account for additional uncertainty introduced to the

decoupled ∆Tb observation due to the use of ancillary information related to total

precipitable water, forest cover fraction, and/or LAI products.

The transfer of information from the radiance observations into the updated

state vector is achieved through the Kalman gain (with the subscript t omitted for

clarity), K, which is effectively a weighted average between the uncertainty of the

prior (model) state variables and the decoupled observations such that

K = Cxy (Cyy + Cvv)
−1 , (5.3)

where Cxy is the error cross-covariance between the prior states and the predicted

measurements, Cyy is the error covariance of the predicted measurements, and Cvv

is the measurement error covariance.

There are cases when no update within a DA framework (i.e., model-only

results) would take place, for example in non-land grids (i.e., contain water bodies

or land ice). Non-land grids are excluded in order to minimize the effects of PMW Tb

emissions from water bodies or land ice. The masking procedure is common in many
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satellite-based SWE retrieval product [16]. Further, land grids affected by relatively

significant radio-frequency interference (RFI) at 10.65 GHz are also included from

update [152]. When the occurrence of negative ∆Tb computed between 6.9 GHz

and 10.65 GHz (i.e., less than -10 K) is greater than 20% of the entire times series,

the grid is excluded from having update.

5.2.4 Evaluation metrics and methods

Both OL and DA-derived results were compared against (1) available snow

products, and (2) in-situ snow observations. The three available snow products are

the European Space Agency (ESA) Global Snow Monitoring for Climate Research

(GlobSnow) SWE version 2.0 product [10,52], the Canadian Meteorological Centre

(CMC) Daily Snow Depth product [104, 105], and the AMSR-E/Aqua L3 Global

SWE version 2 product [106]. The ground-based snow observations are obtained

from the U.S. National Climatic Data Center Global Summary of the Day (GSOD)

product. It is also worth noting that CMC snow depth product is not used to

compare against GSOD observations since GSOD observations were “assimilated”

as part of the CMC reanalysis product, which tends to violate the independence

between the estimates and observations used during evaluation. In addition, ground-

based runoff observations (e.g., Global Runoff Data Base) are not available in the

region of interest here.

Statistical metrics including bias, root mean squared error (RMSE), and nor-

malized information contribution (NIC) (see Appendix B for details) were computed
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to evaluate model-derived estimates against the closest ground-based, in-situ sta-

tions.

5.3 Results and discussions

5.3.1 Compare against state-of-the-art snow products

Figure 5.1 shows the SWE estimates obtained from GlobSnow, AMSR-E SWE

products, OL experiments, and various DA experiments on four example days in the

water year 2002. Similarly, Figure 5.2 shows the snow depth estimates obtained from

CMC snow depth product, OL experiments and various DA experiments on the same

days as shown in Figure 5.1. The four example dates of 19 Oct 2002, 16 Dec 2002,

13 March 2003, and 12 Apr 2003 highlight a typical snow pack accumulation and

ablation process. It is found there is a significant pattern mismatch between dif-

ferent snow products, especially during early snow accumulation phase. This might

be due to the highly variable snow conditions in Quebec, Canada complicated by

dense forest cover and significant lake effects. In general, AMSR-E SWE products

overestimate SWE for several pixels in northern Quebec on 16 Dec 2002, but under-

estimate SWE across the entire snow season. In places covered with relatively thin

forest and small amount of lakes (i.e., between 50 ◦N to 55 ◦N and 55 ◦W to 60 ◦W),

it is encouraging to see that all three DA experiments tend to yield estimates moving

towards GlobSnow SWE estimates (relative to OL-derived SWE) on 16 Dec 2002.

In addition, all three DA experiments tend to yield estimates moving towards CMC

snow depth estimates (relative to OL-derived snow depth) on 13 Mar 2003. How-
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ever, there are no ground-based GSOD stations within this area to further compare

against.

5.3.2 Compare against ground-based snow observations

5.3.2.1 Effects of atmospheric decoupling

To minimize the effect of representativeness errors in model evaluation, pixels

(16 out of 32) significantly affected by the elevation discrepancies were removed from

comparison. The absolute relative elevation difference, ∆H, is computed as:

∆H =
|Hin−situ −Hgrid|

Hin−situ
(5.4)

where | · | denotes the absolute value of the expression, Hin−situ is the elevation of

the in-situ station, and Hgrid is the elevation of the colocated grid obtained from

either Catchment model or the aggregated Global Land One-km Base Elevation

Project (GLOBE). For each grid, both elevation products were used in the ∆H

computation. If the computed ∆H derived from any of the two products is greater

than 150% , the pixel is determined to be affected by relatively significant elevation

discrepancies, and hence, were removed from the model evaluation procedure. In

addition, six pixels with GSOD stations having less-than-two-year of observations

were removed from comparison. Eight pixels significantly affected by water bodies

were removed from the goodness-of-fit statistics computation. Therefore, only two

GSOD stations shown in Figure 5.7e) were available to compare against.

The time series of model-derived snow depth estimates, and GSOD observa-

tions for the grid #1, and grid #2 (see Figure 5.7e)) were shown in Figure 5.3a),

118



19 Oct 2002

GlobSnow

AMSR-E 

SWE

OL

DA
O

DA
A

DA
A+F

16 Dec 2002 13 Mar 2003 12 Apr 2003

Figure 5.1: SWE estimates obtained from a) top row: ESA GlobSnow
product, b) second row: AMSR-E SWE product, c) third row: OL exper-
iments, d) fourth row: DAO experiments, e) fifth row: DAA experiments,
and f) sixth row: DAA+F experiments. Each column represents SWE
estimates obtained at 19 Oct 2002 (left column), 16 Dec 2002 (second
column), 13 Mar 2003 (third column), and 12 Apr 2003 (fourth column),
respectively.
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19 Oct 2002

CMC

OL

DA
O
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16 Dec 2002 13 Mar 2003 12 Apr 2003

Figure 5.2: Snow depth estimates obtained from a) top row: CMC prod-
uct, b) second row: OL experiments, c) third row: DAO experiments,
d) fourth row: DAA experiments, and e) fifth row: DAA+F experiments.
Each column represents snow depth estimates obtained at 19 Oct 2002
(left column), 16 Dec 2002 (second column), 13 Mar 2003 (third column),
and 12 Apr 2003 (fourth column), respectively.
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and b), respectively. At grid #1, bias was reduced by ∼30% (from 0.23 m to 0.16

m), and the RMSE was reduced by ∼24% (0.26 m to 0.19 m) from OL to DAO ex-

periment. After including the atmospheric-decoupling procedure in the assimilated

∆Tb, bias was reduced by ∼41%, and the RMSE was reduced by ∼36% from OL

to DAA experiment. At grid #2, bias was slightly degraded from OL to DAO ex-

periment. The computed RMSE remained unchanged from OL to DAO experiment.

The computed bias remained unchanged from OL to DAA experiment. However,

RMSE was reduced by ∼8% from OL to DAA experiment. The relatively good

performance of the DAA experiment was also witnessed in the NIC computations

as shown in Figure 5.5 for the two locations. Positive NICs computed from DAA

experiment suggests that including the atmospheric decoupling procedure prior to

implementing DA might be advantageous at removing part of the non-snow related

signals from the observations.

5.3.2.2 Effects of atmospheric-and-forest decoupling

In order to analyze the DA performance coupled with the forest transmissivity

model as applied for evergreen needle-leaved forest colocated with taiga snow cover,

eight grids (see Figure 5.7g)) having forest cover fraction greater than 85% in North

America with colocated GSOD stations were selected in the comparison from 2002

to 2011. The use of ancillary forest cover fraction product here is to increase the

possibility that ground-based stations could roughly represent the vegetation con-

dition in the colocated EASE Grids, and hence, minimizing the representativeness
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Figure 5.3: Times series of model-derived (including OL experiment,
DAO experiment, and DAA experiment) snow depth estimates, and colo-
cated ground-based GSOD observations in Quebec and Newfoundland,
Canada from 2002 to 2011. Figure 5.3a) is for grid #1 in Figure 5.7e)
at (53.69◦N, 73.67◦W), and Figure 5.3b) is for grid #2 in Figure 5.7e)
at (48.71◦N, 72.62◦W).

errors arising from sub-grid scale variability with respect to vegetation conditions.

Similar to Section 5.3.2.1, both GLOBE elevation product and Catchment elevation

were employed to screen out pixels with relatively significant elevation discrepancies

(i.e., ∆H > 150%) prior to the evaluation procedure.

The histograms of computed average bias and RMSE were shown in Figure

5.6. DAO-derived snow depth estimates slightly degraded OL-derived estimates in

both bias, and RMSE statistics computation. On the other hand, DAA+F -derived

estimates decreased the RMSE by ∼5% relative to OL-derived estimates. The com-

puted bias remained unchanged from OL to DAA+F experiment. The relatively good

performance of the DAA+F experiment was also witnessed in the NIC computations
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Figure 5.4: Histograms of computed bias and RMSE for model evalu-
ation (including OL, DAO, and DAA experiments) at two locations in
Quebec and Newfoundland, Canada. Grid #1 is at (53.69◦N, 73.67◦W),
and grid #2 is at (48.71◦N, 72.62◦W).

as shown in Table 5.2. For both DAO and DAA+F experiments, student’s t tests sug-

gest rejecting the null hypothesis at the significance level of 5%. Therefore, positive

NICs computed from the DAA+F experiment suggest that including an atmospheric-

and-forest decoupling procedure is helpful at decorrelating non-SWE related signals

from the observations, and further adding information to the OL-derived estimates.

Table 5.2: Computed NICs obtained from both DAO and DAA+F during comparison
against GSOD snow depth observations. The null hypothesis used in the student’s
t-test (one tail) is the computed mean NIC metric is not statistically different from
zero at a significance level of 5%. In addition, σNICRMSE

is the standard deviation
of the NICRMSE; similarly, σNICNSE

is the standard deviation of the NICNSE.

Experiment Mean NICRMSE Mean NICNSE Student’s t-test
± σNICRMSE

± σNICNSE
(one tail)

DAO -0.11 ± 0.16 -0.25 ± 0.37 reject the null hypothesis
DAA+F 0.06 ± 0.08 0.11 ± 0.14 reject the null hypothesis
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Figure 5.5: Histograms of computed NICRMSE and NICNSE for model
evaluation (including DAO, and DAA experiments) at two locations in
Quebec and Newfoundland, Canada. Grid #1 is at (53.69◦N, 73.67◦W),
and grid #2 is at (48.71◦N, 72.62◦W).

5.4 Conclusions and future work

A SVM with four-input-state was constructed for the purpose of multifre-

quency, multipolarization AMSR-E ∆Tb estimation within a radiance assimilation

framework. In order to systematically address the challenge of estimating snow mass

across forested regions, an atmospheric-and-forest decoupling procedure was used

here prior to SVM training and prediction activity.

Model-derived results from various experiments (i.e., with and without assim-

ilation) in Quebec and Newfoundland, Canada were presented to compare against

closest in-situ GSOD snow depth observations from 2002 to 2011. Compared with

OL-derived snow depth estimates at two grids in the domain, DAA experiment re-

duced the RMSE by ∼36%, and ∼8%, respectively. In addition, model-derived

SWE and snow depth estimates from various experiments were compared against
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Figure 5.6: Histograms of average bias and RMSE for model evaluation
in places covered with relatively dense evergreen needle-leaved forest
colocated with taiga snow cover type across North America. The eight
grids used in model evaluation are shown in Figure 5.7g).

available snow products. All DA experiments tend to yield estimates moving to-

wards ESA GlobSnow SWE product (relative to OL-derived SWE) and CMC snow

depth product (relative to OL-derived snow depth) in Quebec and Newfoundland,

Canada. However, there is a significant pattern mismatch between different snow

products and model-derived estimates, especially during early snow accumulation

phase, which might be attributed to the highly variable snow conditions in the

domain complicated by dense forest cover and significant lake effects.

In order to further analyze the model performance coupled with the forest

transmissivity model as applied for regions covered with evergreen needle-leaved

forest colocated with taiga snow cover, eight grids having forest cover fraction greater

than 85% in North America with colocated GSOD stations were selected in the

comparison. DAA+F -derived estimates decreased the RMSE by ∼5% relative to OL-

derived estimates. Further, positive NICs computed from DAA+F experiment also
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showed that including an atmospheric-and-forest decoupling procedure is helpful at

decorrelating non-SWE related signals from the observations, and further adding

information to the OL-derived estimates.

The positive NICs witnessed at both DAA and DAA+F experiments via assim-

ilating either atmospherically-decoupled ∆Tbs or atmospheric-and-forest-decoupled

∆Tbs suggest that removing non-snow related radiance emissions prior to SVM

training and prediction activities might be helpful at enhancing snow characteriza-

tion. However, the lack of ground-based snow depth and SWE observations lim-

its the study to draw a safe conclusion on the future application of the proposed

DA system. Future work are required to demonstrate the proposed assimilation

system’s skill in estimating SWE and snow depth using a synthetic study (a.k.a.,

twin-experiment) across heavily vegetated regions.
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Figure 5.7: a) Catchment elevation, b) elevation map obtained from
Global Land One-km Base Elevation Project (GLOBE) (aggregating
onto the 25-km EASE-Grid), c) Catchment lake fraction distribution, d)
snow cover type [74], e) two Global Summary Of the Day (GSOD) sta-
tions used in model evaluation in Quebec, Canada (see Section 5.3.2.1),
f) forest density distribution from [75], and g) eight GSOD stations used
in model evaluation at places covered with relatively dense evergreen
needle-leaved forest colocated with taiga snow (see Section 5.3.2.2).
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Chapter 6: Conclusions and future work

6.1 Conclusions and original contributions

The four chapters described above amount to a feasibility assessment of a

machine-learning-algorithm based radiance assimilation framework for snowpack

characterization. The science question addressed in this thesis is: Can the pre-

dictability of snow water equivalent (SWE) and snow depth at regional and conti-

nental scales be improved through the systematic integration of passive microwave

(PMW) measurements collected by satellite-based instrumentation and a machine-

learning based algorithm into a land surface model?

In Chapter 2, normalized sensitivity coefficients are computed to diagnose ma-

chine learning algorithm performance as a function of time and space. The results

showed that when using the artificial neural network (ANN), approximately 20%

of locations across North America are relatively sensitive to SWE. However, more

than 65% of locations in the support vector machine (SVM) based Tb estimates are

sensitive relative to perturbations in SWE at all frequency and polarization combi-

nations. Further, the SVM-based results suggest the algorithm is sensitive in both

shallow and deep SWE conditions, SWE with and without overlying forest canopy,

and during both the snow accumulation and snow ablation seasons. Therefore, these
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findings suggest that compared with the ANN, the SVM could potentially serve as

a more efficient and effective measurement model operator within a radiance assim-

ilation framework for the purpose of improving SWE estimates across regional- and

continental-scales.

In Chapter 3, an advanced land surface model is merged with PMW brightness

temperature (Tb) observations from the Advanced Microwave Scanning Radiometer

- Earth Observing System (AMSR-E) using a well-trained SVM within a data assim-

ilation framework. The one-dimensional Ensemble Kalman filter (EnKF) framework

uses a SVM-based model as the observation operator. The impact of simultaneously

assimilating multiple observations at different frequency and polarization combina-

tions is explored. The performance of the radiance assimilation framework is then

evaluated via comparisons to state-of-the-art SWE and snow depth products as well

as available ground-based observations across Alaska for the years 2002 to 2011. In

general, improvements in goodness-of-fit statistics on snow depth, and SWE esti-

mates are achieved as a result of the assimilation procedure. The systematic errors

and random errors in snow estimates were reduced by ∼40%, and ∼18% (on aver-

age) after implementing radiance assimilation. In addition, representativeness errors

and overlying vegetation are identified as the two most important factors that neg-

atively impact model performance. The representativeness error might be partially

minimized by eliminating stations with significant elevation discrepancies whereas

an atmospheric-forest-decoupling procedure could eventually be applied to minimize

uncertainties associated with vegetation attenuation in an effort to enhance snow

characterization over forested regions.
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In Chapter 4, two significant sources of uncertainty prevalent in SWE retrievals

derived from AMSR-E PMW Tb observations at 18.7 GHz and 36.5 GHz are ad-

dressed. Namely, atmospheric and overlying forest effects are decoupled from the

original AMSR-E PMW Tb observations using relatively simple, first-order radia-

tive transfer models. Comparisons against independent Tb measurements collected

during airborne PMW Tb surveys highlight the effectiveness of the proposed AMSR-

E atmospheric decoupling procedure. The atmospheric contribution to Tb ranges

from 1 K to 3 K depending on the frequency and polarization measured as well as

meteorologic conditions at the time of AMSR-E overpass. It is further shown that

forest decoupling should be conducted as a function of both land cover type and

snow cover class. The exponential decay relationship between the forest structure

parameter, namely, MODIS-derived leaf area index (LAI) and forest transmissivity,

is fitted across snow-covered terrain in North America. The fitted exponential func-

tion can be utilized during forest decoupling activities for evergreen needle-leaved

forest and woody savanna regions, but remains uncertain in other forest types due to

a sparsity of snow-covered areas. By removing forest-related Tb contributions from

the original AMSR-E observations, the results suggest that Tb spectral difference

between 18.7 GHz and 36.5 GHz, in general, increases across thinly-vegetated to

heavily-vegetated regions, which might be beneficial when applied to the proposed

one dimensional EnKF framework in the context of radiance assimilation.

In Chapter 5, an atmospheric-and-forest decoupling procedure was tested for

use within the proposed assimilation system. Model-derived SWE and snow depth

estimates from various data assimilation (DA) experiments were compared against
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available snow products. It is shown that all DA experiments tend to yield estimates

moving towards ESA GlobSnow SWE product (relative to OL-derived SWE), and

CMC snow depth product (relative to OL-derived snow depth). In addition, model-

derived results from various experiments (i.e., with and without assimilation, with

and without atmospheric decoupling procedure) were presented to compare against

in-situ snow depth observations in Quebec and Newfoundland, Canada, from 2002

to 2011. Compared with open-loop (OL) derived snow depth estimates at two grids,

the DAA experiment (with atmospheric decoupling procedure) reduced the random

errors by ∼36%, and ∼8%, respectively. Further, model-derived results from various

experiments (i.e., with and without assimilation, with and without atmospheric-

and-forest decoupling procedure) were presented to compare against in-situ snow

depth observations in North America at places covered with relatively dense ev-

ergreen needle-leaved forest cover colocated with taiga snow cover from 2002 to

2011. Compared with open-loop (OL) derived snow depth estimates at eight grids,

the DAA+F experiment (with atmospheric-and-forest decoupling procedure) reduced

the random errors by ∼5% (on average). In general, the positive normalized infor-

mation contribution (NIC) metrics witnessed at DA experiments via assimilating

either atmospherically-decoupled ∆Tbs or atmospheric-and-forest-decoupled ∆Tbs

suggest that removing non-snow related radiance emissions prior to SVM training

and prediction activities is helpful at enhancing snow characterization.

In summary, this study supports the conclusion that a well-trained SVM can

potentially be used as the observation model operator within a radiance assimilation

framework to characterize snow mass across regional scales.
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6.2 Future work

6.2.1 Minimization of representativeness errors during DA frame-

work evaluation

The study used the absolute relative elevation difference of 150% to remove

the station-grid comparison pairs having significantly different elevation conditions.

Further investigations are required to test out the effect of using the absolute ele-

vation difference of 500m to maintain station representativeness. In other words, a

better scheme of minimizing representativeness errors during DA framework evalu-

ation procedure is needed.

6.2.2 Robustness experiments of the DA framework at the code de-

velopment level

A set of codes for point-scale and regional-scale SVM integration has been

developed to read trained SVMs into the Fortran-based Catchment model in order to

generate Tb output systematically (see Appendix E and F). Further investigations

are required to promote coding efficiency in terms of predicting Tb across North

America and further entire globe.
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6.2.3 Robustness experiments of the DA framework on assimilating

other sources of satellite-based Tb observations

It is anticipated that the proposed DA framework could be extended to include

observations from other satellite-based sensors (e.g., the Special Sensor Microwave

Imager (SSM/I) and the Advanced Microwave Scanning Radiometer 2 (AMSR2)).

If the DA framework is robust enough, it would offer great potential to extend

the SWE predictability back in time 1987 when SSM/I data collection first began;

also, it would provide opportunity to continue assimilating PMW Tb observations

obtained from AMSR2 en route to estimate snow-related states across the globe

since AMSR-E stopped working in October 2011.

6.2.4 Robustness experiments of the DA framework on estimating

other hydrologic states or fluxes

It is hypothesized that improvements in SWE magnitude and timing will result

in improvements to other hydrologic state variables and fluxes generated through the

hydrologic response. Further analysis could be extended to investigate the impact of

soil moisture estimation based on the proposed DA system. It is anticipated that the

terrestrial water storage estimates could also be improved as a result of implementing

the DA system, which could be evaluated via comparing against the information

derived from gravity recovery and climate experiment (GRACE) measurements.
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Appendix A: ANN and SVM framework

A.1 ANN Framework

An ANN is a mathematical model inspired by biological neural networks. An

ANN consists of a series of layers: (1) an input layer of neurons used for receiving

information outside the network, (2) one or more hidden layer(s) acting as a bridge

to connect the input layer with the output layer with input and output signals re-

maining within the network, and (3) an output layer to send the data out of the

network. The ANN proposed for this study is a feed-forward perceptron network

with one hidden layer of 10 hidden nodes [59] and supervised learning using back-

propagation [153, 154]. A series of tests varying the number of neurons as part of

one or more hidden layers were conducted, and hence the formulated ANN-based

network is deemed sufficient in size without unnecessary complexity [59].

In a constructed ANN, each layer contains multiple processing units (i.e., neu-

rons) connecting with those in the adjacent layers and an independent weight is

attached to each link. The input to each neuron in the next layer is the sum of all

its incoming connection weights multiplied by their connecting input neural activa-

tion value [30, 155]. In general, it is assumed that each processing unit provides an

additive contribution to the connected output neuron, which may take on the form
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as:

xj =
Ni∑
i=1

wjiIi (A.1)

where xj is a single value (a.k.a., “net input” [156]) calculated by combining all the

connected input units for the jth propagated (output) unit; Ni is the total number

of inputs; wji is the interconnection wight between the ith input neuron and the

jth propagated neuron; and Ii is the ith model input. An example application of

interconnection weights between the input, hidden, and output layers is shown in

[59].

Model input space may have different units as well as a wide range of magni-

tudes; hence, except for each neuron in the output layer, most neurons in the ANN

are required to transform their net inputs using a scalar-to-scalar function prior to

training, which is called the activation function [156]. The activation function, , em-

ployed in this study between the model input layer and hidden layer is the tangent

(non-linear) sigmoid function, which can be expressed as:

f(x) =
2

1 + exp(−2x)
− 1, (A.2)

whereas the activation function used between the hidden layer and the output layer

is a positive, linear transfer function. The transfer functions described here were

selected based on a series of validation tests using different activation functions [59],

and in general, outperformed the other activation functions tested during initial

development.

During training, the mean squared error for a single output neuron can be
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computed using the following equation:

MSE =
1

2

p∑
i=1

‖Λi −Ωi‖2 (A.3)

where Λi is the ith ANN-based estimates of Tb (K), Ωi is the ith value of the AMSR-

E training target Tb (K), p is the total number of evaluated time steps, and ‖ · ‖

represents the Euclidean norm operator between the estimated (ANN-derived) Tb

and the measured (AMSR-E collected) Tb. The back-propagation learning cycle

during each ANN training routine for each location is utilized in order to find the

MSE minima such that a set of best weights (i.e., vector w in Equation A.1) will be

found at the same time.

A.2 SVM Framework

Both training and testing datasets should be scaled before training the SVM,

which is a crucial step in this ML technique [85]. In this study, there are a total

of 11 geophysical variables and each of them is measured in a different scale with a

different unit and has a different range of possible values. It is often beneficial to scale

all features to a common range [157] such that attributes in greater numeric ranges

will not dominate those in smaller ranges [85]. In order to define the scaling range

(i.e., the upper limit, and the lower limit of the scaling interval), eight different sets

of scaling intervals were tested. Ultimately, the SVM utilized in this paper defines

the scaling interval as one with a lower bound of one and an upper bound of two.

Based on the principle of structured risk minimization, the decision function
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of the SVM method can be written as:

f(x) =
p∑
i=1

wiΦi(x) + δ

= wTΦ(x) + δ (A.4)

where p is the total number of evaluated time steps, w =[w1, · · · , wp] represents a

vector of weights, Φ(x) is a nonlinear function that maps the original model input

space into a higher-dimension feature space, and δ is a bias coefficient. The goal

of SVM learning is to determine a best set of parameters in order to minimize the

error between the estimation, f(x), and the training targets, z, collected from the

AMSR-E in this context. This SVM-related optimization (minimization) problem

can then be solved by the introduction of Lagrangian multipliers, αi and α∗i , (where

i = 1, 2, · · · , m) in a dual form [67,158], which is written as:

min
αi,α∗

i

1
2

∑m
i,j=1(αi − α∗i )(αi − α∗i )[Φ(xi)

TΦ(xj)]

+ε
∑m
i=1(αi + α∗i ) +

∑m
i=1 zi(αi − α∗i )

s.t.
∑m
i=1(αi − α∗i ) = 0,

αi, α
∗
i ∈ [0, C], i = 1, 2, · · · ,m

(A.5)

where ε (ε > 0) is defined as an error tolerance parameter, m is the total number of

training targets (in time) for a given location, and C (C ¿ 0) is a regularized constant

(a.k.a., penalty parameter) that determines the trade-off between the training risk

and the model uniformity [159]. The training points with nonzero Lagrange mul-

tipliers are defined as the so-called “support vectors”, which comprise the decision

space and determine the model function. The inner (dot) product in Equation A.5

between Φ(xi) and Φ(xj) is defined as the “kernel function”, which satisfies Mercers
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condition and can be expressed as:

K(xi,xj) = Φ(xi)
TΦ(xj). (A.6)

The computation of Φ(xi)
TΦ(xj) in the feature space is often too complex to

perform directly, especially in high-dimensional and nonlinear problems. In order to

avoid employing the mapping function Φ(x) directly in Equation A.5, it is necessary

to further define the kernel function form as:

K(xi,xj) = Φ(xi)
TΦ(xj)

= exp(−γ‖xi − xj‖2). (A.7)

The kernel function in Equation A.7 is an example of a Gaussian radial basis

function kernel, where ‖·‖ represents the Euclidean norm between Φ(xi) and Φ(xj),

and γ (γ > 0) is an adjustable parameter to control the width of the Gaussian

distribution. In other words, using the kernel in the model input space is equivalent

to performing the mapping in feature space and then applying the dot product in

that space. Therefore, the decision function in Equation A.4 can be rewritten as:

f(x) =
n∑
i=1

(αi, α
∗
i )K(x,xi) + δ (A.8)

where n is the number of support vectors. An example figure of the SVM architecture

is shown in [60].
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Appendix B: Goodness-of-fit statistics

Goodness-of-fit statistics used in this dissertation include bias, root mean

squared error (RMSE), unbiased root mean squared error (ubRMSE), and corre-

lation coefficient (R). The bias was computed as [160]:

bias = ȳest − ȳobs

=
1

n

n∑
i=1

yest,i −
1

n

n∑
i=1

yobs,i (B.1)

where y is the state variable, n is the sample size, yest is the state variable estimation,

ȳest is the average estimate of state variables, yobs is the state variable observations

obtained from ground-based instrumentations, and ȳobs is the average value of ob-

servations. Therefore, bias reflects the systematic error in estimates when compared

against observations.

Similarly, the RMSE was computed as [160]:

RMSE =

√√√√ 1

n

n∑
i=1

(yest,i − yobs,i)2. (B.2)

In general, the RMSE reflects both systematic and random errors in the deviation

of state variable estimates from the observations. Following the same nomenclature
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described above, ubRMSE was computed as [161]:

ubRMSE =
√
RMSE2 − bias2

=
√
RMSE2 − (ȳest − ȳobs)2

=

√√√√ 1

n

n∑
i=1

(yest,i − yobs,i)2 − (ȳest − ȳobs)2. (B.3)

In general, ubRMSE represents the RMSE of the anomalies in yest.

Finally, the correlation coefficient, R, was computed as [160]:

R =

∑n
i=1(xi − x̄)(zi − z̄)√∑n

i=1(xi − x̄)2
√∑n

i=1(zi − z̄)2
(B.4)

where x and z are state variables of interest, n is the sample size, x̄ is the mean

value of the set of variable x, and z̄ is the mean value of the set of variable z. R

varies from -1 to +1, which reflects the strength and direction of the relationship

between x and z. A negative R represents a relationship between x and z such

that an increase in x yields a decrease in z. In the Chapter 4, forest transmissivity

decreased as LAI increased, which yielded a negative R over the entire temporal and

spatial domain of investigation.

Besides bias, RMSE, ubRMSE, and R, the normalized information contribu-

tion (NIC) was computed to quantify the improvement or degradation due to DA

for the comparison against open-loop (OL) derived estimates [40]. The NIC for the

RMSE, NICRMSE, was expressed as [40]:

NICRMSE =
RMSEOL −RMSEDA

RMSEOL
(B.5)

where the RMSEOL is the OL-based RMSE, and RMSEDA is the data assimila-

tion (DA) derived RMSE. Similarly, the NIC for the Nash-Sutcliffe model efficiency
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coefficient (NSE), NICNSE, was computed as [40]:

NICNSE =
NSEDA −NSEOL

1−NSEOL
(B.6)

where the NSEOL is the OL-based NSE, and NSEDA is the DA-derived NSE. The

NSE in the Equation B.6 was computed as:

NSE = 1−
∑Nt
j=1(yobs,j − yest,j)2∑Nt

j=1(yobs,j − 1
Nt

∑Nt
j=1 yobs,j)

2
. (B.7)
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Appendix C: Innovation, normalized innovation and filter sub-optimality

For a given location, the innovation vector at time t, dt, could be written as:

dt =< (yt + v) > − < Φt(x
−
t ) > (C.1)

where < · > represent the ensemble mean operator, yt is the observation vector,

v is the observation error vector, Φt(x
−
t ) is the predicted observations obtained

from SVM as a function of the prior estimate of state x−t , and dt is the innovation

vector, which is a [4 × 1] vector in the context of spectral difference as a function

of frequency and polarization. The covariance matrix, cov(dt, dt−k), of dt and dt−k

are the [4 × 4] matrix, which could be further written as:

cov(dt,dt−k) = E([dt − E(dt)][dt−k − E(dt−k)]
T ). (C.2)

where E[·] is the expected value operator, [·]T is the vector transpose.

Assuming the EnKF is optimal with all assumptions satisfied in a typical

EnKF, Equation C.2 should have the following features [114]:

E[dtd
T
t−k] =


0, if k 6= 0

ΦtP
−
t ΦT

t + Rt, if k = 0

(C.3)

where Rt is the observation error covariance matrix, and ΦtP
−
t ΦT

t is the error

covariance of the observation operator estimates. It is worthy noting again that
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Kalman filter theory assumes linear (or linearized) observation model operator (i.e.,

Φ in the Equation C.1 and C.3), which does not hold in this study with SVM to

be non-linear. Given all assumptions in a typical EnKF is satisfied, the innovation

sequence should have the properties of zero-mean, and temporally-uncorrelated for

each observation channel. In addition, the innovation covariance should equal to

the sum of the observation operator estimate error covariance and observation error

covariance.

Define the sum of the observation operator estimate error covariance and ob-

servation error covariance as St, and the normalized innovation as

NIt =
dt

diag(
√

St)
, (C.4)

where diag(·) represents only taking the diagonal elements of the matrix. Equation

C.3 could now be written as:

E[NItNITt−k] =


0, if k 6= 0

1, if k = 0

(C.5)

Therefore, Equation C.5 indicates that an optimal filter should yield a NI sequence

with zero-mean, unit variance, and zero autocorrelation for each observation channel.
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Appendix D: Sensitivity analysis of decoupled Tb predictions to model

parameters

Sensitivity analysis is an important tool for assessing the relative importance

of causative factors in a model [61,160]. In this appendix, a sensitivity analysis was

used to investigate the response of decoupled, multi-frequency, multi-polarization

Tb (see Equation 4.7 for details) with respect to small perturbations in both model

input and model parameters. In order to quantify the relative importance of each

tested model input variable and model parameter, Normalized Sensitivity Coeffi-

cients (NSCs [unitless]; [71]) were computed as:

NSCi,j = (
∂Mj

∂pi
) · ( p

0
i

M0
j

)

≈ (
Mj −M0

j

∆pi
) · ( p

0
i

M0
j

) (D.1)

where M0
j is the nominal model output; Mj is the perturbed model output; pi is the

perturbed input; and p0
i is the nominal model input.

Model input variables in the NSC calculations include (1) TPW content ob-

tained from MERRA, (2) MERRA-derived near-surface air temperature, (3) MODIS-

derived LAI, (4) MODIS-derived forest cover fraction, and (5) Catchment-derived

skin temperature. It is found that NSCs at 36H are generally larger than those at
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18H, 18V and 36V. The greater sensitivity at 36H is consistent with the physical

rationale shown in Figures 4.7 and 4.6 and discussed in Section 4.4.2.3. In addition,

it is suggested that decoupled snow Tb results are more sensitive to small pertur-

bations in air temperature and skin temperature, relative to TPW, LAI and forest

cover fraction given the same magnitude of perturbation in the input.

Using NSCs at 36H as an example to further highlight sensitivities in the

proposed decoupling procedure, it could be roughly estimated that a 5% increase in

TPW, which corresponds to a ∼0.5 kg m−2 in TPW increase (on average) tends to

decrease computed snow Tb by ∼0.05 K. Meanwhile, when the air temperature or

the skin temperature increases by 1 K, snow Tb at 36H tends to decrease by ∼0.1

K. If LAI (with units of m2 leaf m−2 ground) increases by 0.1, snow Tb will decrease

by ∼0.4 K with respect to the mean. Further, if forest cover (unitless) increase by

10%, snow Tb at 36H tends to decrease by 0.8 K.

Previous studies found that the BNU LAI product has an approximated un-

certainty of 0.66 [134], and MODIS forest cover fraction product has an uncertainty

of ∼10% [75], which was obtained based on ground-based validation dataset from

the United States and Brazil. In addition, the MERRA-derived temperature has

an uncertainty of ∼2-3 K [162] when compared against satellite-based temperature

retrievals. Even though LAI is not the most sensitive parameter in the model ac-

cording to the computed NSC value, the relatively significant uncertainty in the LAI

product itself is likely to introduce the largest component of error (relative to other

model input parameters) in the computed snow Tb values. Therefore, as mentioned

in the Section 4.3, the accuracy of the regional daily LAI mapping could adversely
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impact the forest-related portion of the Tb decoupling procedure.

Similar to the NSC computation used in the model input variable sensitivity

assessment, model parameter sensitivity was also analyzed. Model parameters tested

are those shown in Equations 4.4, 4.5 and 4.14 that are ultimately applied in the

two-step decoupling procedure. Similar to the findings mentioned above, NSCs at

36.5 GHz are generally larger than those at 18.7 GHz due to the shorter emission

(snow) depth at higher frequencies, which agrees well with the fundamental physics.

Further, among all six parameters, model output shows the strongest sensitivity

to the perturbation in parameters as applied in Equation 4.14 during the LAI-

forest transmissivity regression. As stated previously, the accuracy of the regression

coefficient parameters largely depends on the accuracy of the forest transmissivity

retrieval based on the first-order, physically-based radiative transfer model shown in

Equation 4.8. It is worth noting that a successful application of Equation 4.8 relies

on an accurate estimation of skin temperature, snow temperature, Tb observations

in both clear-cut and forested pixels, and winter LAI values used to distinguish

clear-cut from vegetated snow-covered land.
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Appendix E: Scheme for distributing column-integrated SWE into

the three-layer snow model

During EnKF update (see Section 3.2.3.1), column-integrated SWE is the state

of variable. Therefore, it is necessary to re-distribute the column-integrated SWE

(and other snow-related information) into three layers after assimilation update

procedure but prior to launching Catchment forward model. Figure E.1 shows the

scheme for distributing column-integrated SWE into three layers. It also shows how

to adjust other snow-related states (i.e., snow depth (SD) and snow specific heat

content (HTSN)) information based on the updated SWE information in each snow

layer. It is important to note that current study did not use the subroutine relayer2

because it is found to fail to re-distribute SWE at the case when the middle-layer of a

snow pack does not have SWE but both bottom-layer and top-layer do. In addition,

an appropriate definition of the maximum layer thickness profile (i.e., DZMAX) in the

subroutine relayer2 still requires further investigation.
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Double check snow temperature, ice content, snow speci!c heat content, and snow density for each layer
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Note: 

(1) SWE are in the unit of [mm], whereas

      SD are in the unit of [m];

(2) Subscript “+” stands for posterior estimate;

(3) Subscript “-” stands for prior estimate;

(4) Subscript “L1/L2/L3” stands for di"erent snow layer 

      (layer 1/layer2/layer3)

(5) The constant “150” used in Boxes 1-4 is the fresh snow

       density

(6) The constant “-2” used in Boxes 1-4 is a rough estimate

      of fresh snow temperature

(7) The symbol “Cp” is the heat capacity of ice, where 

     Cp = 2065.22 in Catchment

(8) The constant “0.013mm” used in Box 5 is the minimum

     SWE required to avoid instant melt

     (9) Irrealistic conditions include:

Box 1

Box 2

Box 3

Box 4

Box 5

SD
L1

+  > 0 and

SD
L2

+     = 0 or SD
L3

+     = 0
 

Distribute top snow into bottom two layers

SWE’
L2

+ = 0.05 * SWE
L1

SWE’
L3

+ = 0.05 * SWE
L1

SD’
L1

+ = 0.9 * SD
L1

SD’
L2

+ = 0.05 * SD
L1

SD’
L3

+ = 0.05 * SD
L1

HTSN’
L1

+ = 0.9 * HTSN
L1

HTSN’
L2

+ = 0.05* HTSN
L1

HTSN’
L3

+ = 0.05 * HTSN
L1

SWE’
L1

+ = 0.9 * SWE
L1

Yes

No

 

SD
L1

+  > 0

and any one of the bottom two layers

have SD = 0

Yes

Top layer remains;

Evenly distribute snow in the bottom

two layers 

HTSN > 0

snow density > 800 kg/m^3

ice content > 1

snow temperature < -100 celcius

SWE = Snow water equivalent

SD  = Snow depth

HTSN = Snow speci!c heat content

Symbol explanations:

Figure E.1: Scheme for distributing column-integrated SWE into the three-layer snow model.
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Appendix F: Summary of changes made for integrating SVM into

NASA assimilation module

A series of changes were made in the original NASA land data assimilation

system (LDAS) in order to integrate SVM-based Tb predictions. These changes

include: (1) source code development, and (2) assimilation options update.

F.0.1 Source code development

Figure F.1 summarizes all changes made to the source code in the original

LDAS. It is important to note that current SVM-LDAS system is not optimal.

Since each pixel in the domain is associated with a unique fortnightly SVM pa-

rameter .txt file, SVM-LDAS needs to read these parameter files for each pixel.

The practice of storing numerous .txt formatted files is not optimal. In addi-

tion, too many read-write executions has significantly restricted SVM-LDAS from

running efficiently. However, a couple of attempts have been made in order to

find a better way to accommodate SVM prediction routines in the LDAS, unfor-

tunately, none of them works as expected so far. These attempts include: (1)

store SVM parameters into hdf formatted files; (2) store SVM parameters into

netcdf formatted files; (3) read SVM parameters of .mat formatted files directly
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in the Fortran environment; and (4) initiate Matlab c© Engine in the Fortran en-

vironment to read SVM parameters in .mat formatted files. Both hdf format-

ted files and netcdf formatted files are not good at dealing with sparse matri-

ces (http://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf.html)

whereas support vectors within each SVM are only available in sparse matrices.

Therefore, future investigations are required to better accommodate SVM parame-

ters and make them more reading friendly in the Fortran environment.
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Model Tag:

reichle-LDASsa_m3-15_2

GEOSsurface_GridComp GEOSlana_GridComp

Shared/StieglitzSnow.F90

make MINSWE, WEMIN, 
cpw public variables

zz_svmTb (svm C library)

mwSVM_routines.F90 
(Fortran wrapper to 
assemble Catchment 

model variables, call
svm C library, and 

execute Tb prediction)

clsm_ensupd_upd_routines.F90

 
1. Use mwRTM when max_freq <= 9 GHz

otherwise (> 9 GHz), use mwSVM;

2.     When using mwSVM, 

         RTMid = 0: single Tb channel observation

         RTMid = 1: 10 GHz- 36 GHz

         RTMid = 2: 18 GHz - 36 GHz;

3.     De!ne ind_Tbspecies2TbuniqFreqPolRTMid,

         Tb_freq_pol_RTMid to accomodate di"erent 

         input options of radiance assimilation;

4.     Call catch2mwSVM_vars 

        (i.e., a module inside mwSVM_routines.F90)

        to assemble Catchment model variables into

        .txt !les;

5.     Call  output_svmTb

        (i.e., a module inside mwSVM_routines.F90)

        to predict Tb based on trained svm parameter 

        .txt !le and svm input .txt !le

6.     Remove the precip_threshold de!ned for

         mwSVM;

7.     Call enkf_increments

         (i.e., a module inside enkf_general.F90)

         to obtain analysis increments;

8.     Update column-integrated SWE based on  the

         SWE analysis increments;

9.     Redistribute SWE into three layers 

        ( see Appendix E for details)

10.   Redistribute snow depth and snow speci!c 

         heat content into three layers

         (see Appendix E for details) 

RED: variables de!ned in the original LDAS framework

BLUE: folders/modules de!ned in the original LDAS framework

PURPLE: folders/modules that Yuan Xue added to the original 

                 LDAS framework

clsm_ensupd_enkf_routines.F90Update WESN, HTSN, SNDZ
for each layer

clsm_ensupd_glob_param.F90

Change N_obs_species_nml
to accommodate extra 

fields for observations

clsm_ensupd_read_obs.F90

1. read_obs_AMSR_E_dTb_hdf

    to read AMSR-E dTb observations

    in hdf format

2. read_obs_AMSR_E_Tb

    to read AMSR-E Tb in binary format

Figure F.1: Summary of key changes made to the original NASA LDAS in the source code.
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F.0.2 Assimilation options update

Except for specifying perturbation settings in the LDASsa_YX_inputs_ensprop.nml

namelist file and specifying domain latitude and longitude in the LDASsa_YX_inputs_driver.nml

namelist file, two other files are required to be edited. A summary of changes made

to these two namelist files were graphed in the Figure F.2.

LDASsa_YX_SVM_Tb_inputs.nml

Namelist !les
Namelist of SVM training options

needed for Tb/delta Tb predictions,

including number of inputs, 

training target, training period,

scaling option, forest decoupling option,

atmospheric decoupling option.

LDASsa_YX_inputs_ensupd.nml

1.  Update type = 10

     add an extra case for 1D-EnKF AMSR-E

     Tb, dTb, or decoupled dTb assimilation;

2.  Add IDs 35 through 48 to accomodate

      AMSR-E Tb, dTb, or decoupled dTb 

      observations. That is, 

           ID 35: AMSR_E_Tb_10H_D

           ID 36: AMSR_E_Tb_10V_D

      ID 37: AMSR_E_Tb_18H_D

      ID 38: AMSR_E_Tb_18V_D

      ID 39: AMSR_E_Tb_36H_D

      ID 40: AMSR_E_Tb_36V_D

    ID 41: AMSR_E_Tb_10H_36H_D

           ID 42: AMSR_E_Tb_10V_36V_D

           ID 43: AMSR_E_Tb_18H_36H_D

           ID 44: AMSR_E_Tb_18V_36V_D

           ID 45: Decoup_Tb_10H_36H_D

           ID 46: Decoup_Tb_10V_36V_D

           ID 47: Decoup_Tb_18H_36H_D

           ID 48: Decoup_Tb_18V_36V_D

 

RED: variables de!ned in the 

original LDAS framework;

PURPLE: variables/!les that

Yuan Xue added to the 

original LDAS framework. 

Figure F.2: Summary of key changes made to the original assimilation
options in the namelist files.
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[17] G. Blöschl and M. Sivapalan. Scale issues in hydrological modelling: A review.

Hydrological Processes, 9(3-4):251–290, April 1995.

[18] C. Derksen, A. Walker, and B. Goodison. Evaluation of passive microwave

snow water equivalent retrievals across the boreal forest/tundra transition of

western Canada. Remote Sensing of Environment, 96(3-4):315–327, 2005.

155



[19] R.L. Armstrong, A.T Chang, A. Rango, and E. Josberger. Snow depths and

grain-size relationships with relevance for passive microwave studies. Annals

of Glaciology, 17:171–176, 1993.

[20] L. Brucker, a. Royer, G. Picard, a. Langlois, and M. Fily. Hourly simula-

tions of the microwave brightness temperature of seasonal snow in Quebec,

Canada, using a coupled snow evolution–emission model. Remote Sensing of

Environment, 115(8):1966–1977, August 2011.

[21] Dorothy K. Hall. Influence of depth hoar on microwave emission from snow in

northern Alaska. Cold Regions Science and Technology, 13(3):225–231, 1987.

[22] D. K. Hall, A.T.C. Chang, and J. L. Foster. Detection of the depth-hoar layer

in the snow-pack of the Arctic Coastal Plain of Alaska, USA, using satellite

data. Journal of Glaciology, 32(110):87–94, 1986.

[23] James L. Foster, Chaojiao Sun, Jeffrey P. Walker, Richard Kelly, Alfred

Chang, Jiarui Dong, and Hugh Powell. Quantifying the uncertainty in passive

microwave snow water equivalent observations. Remote Sensing of Environ-

ment, 94(2):187–203, January 2005.

[24] Andrew Rees, Juha Lemmetyinen, Chris Derksen, Jouni Pulliainen, and

Michael English. Observed and modelled effects of ice lens formation on pas-

sive microwave brightness temperatures over snow covered tundra. Remote

Sensing of Environment, 114(1):116–126, 2010.

156



[25] C. Derksen, P. Toose, A. Rees, L. Wang, M. English, A. Walker, and

M. Sturm. Development of a tundra-specific snow water equivalent retrieval al-

gorithm for satellite passive microwave data. Remote Sensing of Environment,

114(8):1699–1709, 2010.

[26] Marco Tedesco and Parag S. Narvekar. Assessment of the NASA AMSR-E

SWE product. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 3(1):141–159, 2010.

[27] Debbie Clifford. Global estimates of snow water equivalent from passive mi-

crowave instruments: history, challenges and future developments. Interna-

tional Journal of Remote Sensing, 31(14):3707–3726, August 2010.

[28] A T C Chang and L Tsang. A neural network approach to inversion of snow

water equivalent from passive microwave measurements. Nordic Hydrology,

23(3):173–181, 1992.

[29] Daniel T Davis, Zhengxiao Chen, Leung Tsang, Jenq Neng Hawang, and

Alfred T C Chang. Retrieval of snow parameters by iterative inversion of

a neural network. IEEE Transactions on Geoscience and Remote Sensing,

31(4):842–857, 1993.

[30] M Tedesco, J Pulliainen, M Takala, M Hallikainen, and P Pampaloni. Artificial

neural network-based techniques for the retrieval of SWE and snow depth from

SSM / I data. Remote Sensing of Environment, 90:76–85, 2004.

157



[31] Dennis McLaughlin. An integrated approach to hydrologic data assimilation:

Interpolation, smoothing, and filtering. Advances in Water Resources, 25(8-

12):1275–1286, 2002.

[32] B. A. Forman and S. A. Margulis. Assimilation of multiresolution radiation

products into a downwelling surface radiation model: 2. Posterior ensemble

implementation. J. Geophys. Res., 115(D22116):doi:10.1029/2010JD013950,

2010.

[33] Hsin-Cheng Huang and Noel Cressie. Spatio-temporal prediction of snow water

equivalent using the Kalman filter. Computational Statistics & Data Analysis,

22(2):159–175, 1996.

[34] Andrew G. Slater and Martyn P. Clark. Snow Data Assimilation via an En-

semble Kalman Filter. Journal of Hydrometeorology, 7(3):478–493, 2006.

[35] Glen E. Liston and Christopher a. Hiemstra. A Simple Data Assimilation

System for Complex Snow Distributions (SnowAssim). Journal of Hydrome-

teorology, 9(5):989–1004, 2008.

[36] Jan Magnusson, David Gustafsson, Fabia Husler, and Tobias Jonas. Assimi-

lation of point SWE data into a distributed snow cover model comparing two

contrasting methods. Water Resources Research, 50(10):7816–7835, 2014.

[37] Yuqiong Liu, Christa D. Peters-Lidard, Sujay Kumar, James L. Foster,

Michael Shaw, Yudong Tian, and Gregory M. Fall. Assimilating satellite-

158



based snow depth and snow cover products for improving snow predictions in

Alaska. Advances in Water Resources, 54:208–227, 2013.

[38] Yuqiong Liu, Christa D. Peters-Lidard, Sujay V. Kumar, Kristi R. Arsenault,

and David M. Mocko. Blending satellite-based snow depth products with

in situ observations for streamflow predictions in the Upper Colorado River

Basin. Water Resources Research, 51(2):1182–1202, 2015.

[39] Sujay V. Kumar, Christa D. Peters-Lidard, Kristi R. Arsenault, Augusto Ge-

tirana, David Mocko, and Yuqiong Liu. Quantifying the Added Value of Snow

Cover Area Observations in Passive Microwave Snow Depth Data Assimila-

tion. Journal of Hydrometeorology, 16(4):1736–1741, 2015.

[40] Sujay V. Kumar, Christa D. Peters-Lidard, David Mocko, Rolf Reichle,

Yuqiong Liu, Kristi R. Arsenault, Youlong Xia, Michael Ek, George Riggs,

Ben Livneh, and M H Cosh. Assimilation of remotely sensed soil moisture

and snow depth retrievals for drought estimation. Journal of Hydrometeorol-

ogy, page 140603130821005, 2014.

[41] Konstantinos M. Andreadis and Dennis P. Lettenmaier. Assimilating remotely

sensed snow observations into a macroscale hydrology model. Advances in

Water Resources, 29(6):872–886, 2006.
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