
ABSTRACT

Title of dissertation: INTERPOLATION OF RIGID-BODY
MOTION AND GALERKIN METHODS
FOR FLEXIBLE MULTIBODY DYNAMICS

Shilei Han
Doctor of Philosophy, 2019

Dissertation directed by: Professor Olivier A. Bauchau
Department of Aerospace

Traditionally, flexible multibody dynamics problems are formulated as initial

value problems: initial states of the system are given and solving for the equations of

motion yields the dynamic response. Many practical problems, however, are bound-

ary rather than initial value problems; two-point and periodic boundary problems,

in particular, are quite common. For instance, the trajectory optimization of robotic

arms and spacecrafts is formulated as a two-point boundary value problem; deter-

mination of the periodic dynamic response of helicopter and wind turbine blades is

formulated as a periodic boundary value problem; the analysis of the stability of

these periodic solutions is another important of problem.

The objective of this thesis is to develop a unified solution procedure for

both initial and boundary value problems. Galerkin methods provide a suitable

framework for the development of such solvers. Galerkin methods require inter-

polation schemes that approximate the unknown rigid-body motion fields. Novel

interpolation schemes for rigid-body motions are proposed based on minimization



of weighted distance measures of rigid-body motions. Based on the proposed inter-
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for the formulation of geometrically exact beams, for the determination of solutions

of initial and periodic boundary value problems, for the stability analysis of periodic

solutions, and for the optimal control/optimization problems of flexible multibody

systems.
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Chapter 1: Introduction

1.1 Motivation

Traditionally, flexible multibody dynamics problems are formulated as initial

value problems: initial states (including configuration and velocities) of the system

are given and solution of the equations of motion yields the dynamic response. Many

practical problems, however, are boundary rather than initial value problems; two-

point and periodic boundary problems, in particular, are quite common. Consider,

for instance, the following problems:

• optimal control (or trajectory optimization) of robotic arms and spacecrafts,

which involves determining the optimal control inputs that move the vehicle

from a starting state to a specified terminal state and minimize a given cost

function simultaneously;

• determination of the periodic dynamic response of helicopter and wind turbine

blades, of rotating shafts and blades in power generation turbines, turboshaft

engines, and jet engine, of internal combustion engines, and of many flexible

mechanisms.

The motion of multibody systems is governed by differential-algebraic equa-

1



tions (DAEs). Accordingly, optimal control of flexible multibody dynamics is for-

mulated as a DAE-constrained optimization problem, where the boundary values

of DAEs are specified. In some cases, the terminal state can be partially fixed or

totally free, which leads to mixed initial-boundary value problem. A closely related

topic is the optimization problem, which involves determining the optimal geomet-

ric and material parameters such that an objective function is minimized. In most

cases, only the initial values are specified in optimization problem.

The investigation of periodic boundary value problems involves two inter-

twined tasks: first, the determination of the periodic response of the system, and

second, the analysis of the stability of this periodic solution. Different solvers have

been developed to determine solutions of initial and periodic boundary value prob-

lems; the characterization of the stability of these periodic solutions is based on yet

a different set of numerical tools.

The objective of this thesis is to develop a unified solution procedure for both

of initial and boundary value problems. Galerkin methods provide a suitable frame-

work for the development of such solvers. Galerkin methods require interpolation

schemes that approximate the unknown rigid-body motion fields. Novel integra-

tion schemes for rigid-body motions are proposed based on minimization of the

weighted distance measures of rigid-body motions. Based on the proposed interpo-

lation schemes, a unified continuous/discontinuous Galerkin solver is developed for

the formulation of geometrically exact beams, determination of solutions of initial

and periodic boundary value problems, stability analysis of periodic solutions, and

optimal control/optimization problems of flexible multibody systems.

2



1.2 Literature review

Prior research related to kinematics of rigid-body motion, interpolation, beam

formulation, time integration schemes for initial value problems, solvers for periodic

problems, stability analysis, optimal control and optimization problems are reviewed

in this section.

1.2.1 Kinematics of rigid-body motion

Dual numbers were introduced in the 19th century by Clifford [1]. Typically,

they are written as â = a+ ε b, where a and b are referred to as the primal and dual

parts, respectively, and parameter ε is such that εn = 0 for n ≥ 2.

Application of dual number to kinematics of rigid-body motion is now well

established, see Yang and Freudenstein [2], Dimentberg [3], or the textbooks of

Bottema and Roth [4] and McCarthy [5]. The geometric interpretation of the rather

abstract concept of dual numbers is described by Angeles [6] and Pennestr̀ı and

Stefanelli [7] have explored the associated numerical algorithms. Their application

to dynamics has been explored by Keler [8] and Brodsky and Shoham [9, 10]. A

comprehensive review of the application of dual numbers to various fields is given

by Fischer [11]. More recent presentations focusing on computational issues include

those of Condurache and Burlacu [12], or Han and Bauchau [13].

Despite the efficient and elegant manner by which dual numbers deal with

rigid-body motion, their use has remained limited to the field of kinematics. Al-

though rigid-body motion is a key concept in rigid and flexible multibody dynamics,

3



dual numbers are rarely mentioned in these fields. Yet, the implementation of rigid

multibody formulations requires extensive operations of motion and these operation

can be simplified dramatically with the help of dual number algebra.

1.2.2 Interpolation of motion

Interpolation techniques in Euclidean space are well established. Difficulties

arise when the same techniques are applied to rotation and motion fields. Indeed,

rotations form the Special Orthogonal group, denoted SO(3), and motions form the

Special Orthogonal group in D3×3, denoted SO(3), which is isomorphic to the Special

Euclidean group SE(3).. Interpolation schemes for rotation and motion fall into four

broad categories: the interpolation of rotation (motion) increments and vectors,

embedding-based approaches, geodesic-based approaches, and minimization-based

approaches.

Rotation increments and rotation parameter vectors live in the Euclidean space

and interpolation scheme in Euclidean space can be applied to these quantities di-

rectly. Such schemes has been used in the early stages of application of the finite

element method to geometrically exact beams [14–16]. As first noted by Crisfield

and Jelenić [17], interpolation schemes should be path-independent, i.e., solutions are

defined by the final configuration only, and objective, i.e., the strain measures are

invariant under the superposition of a rigid-body motion. Interpolation of rotation

increments results in path-dependent solutions, while interpolation of rotation pa-

rameter vectors is not objective. To remedy the situation, Crisfield and Jelenić [17]
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proposed the interpolation of relative rotation parameter vectors and showed that

this approach was both path-independent and objective. Similarly, interpolation of

relative motion parameter vectors is both path-independent and objective [18].

Rotation matrix R and unit quaternion ê are embedded in Euclidean spaces R9

and R4, respectively, and are subjected to six and one orthonormality constraints,

respectively. The interpolated rotation is obtained by interpolating the rotation

matrix or quaternions in Euclidean space R9 or R4, respectively, and mapping the

result back onto the manifold via the closest point projection [18–21], which typi-

cally corresponds to a re-normalization operation. Motion interpolation algorithms

are found by developing similar schemes operating on dual quantities [22, 23]. Em-

bedding based approaches lead to path-independent and objective schemes in the

framework of finite element methods. Several authors [24, 25] have noted that the

re-normalization operation can be skipped altogether: constraints are enforced at

the nodes only. Romero [20] pointed out that this practice leads to softer elements.

In geodesic-based approaches, the linear operation in Euclidean space is re-

placed by a geodesic operation on manifold SO(3) and SO(3), for rotation and mo-

tion, respectively. In the Euclidean space, the geodesic line between two points is

the straight line joining these two points and interpolated quantities lie along this

line. Similarly, the geodesic line on SO(3) is the arc of big circle passing through two

rotations and interpolated rotations should lie along this line. Based on this idea,

Shoemake [26] proposed the spherical linear interpolation (SLERP) for quaternions.

He also proposed a higher-order interpolation scheme for quaternions on Bézier

curves based on the recursive application of SLERP with the aid of de Casteljau’s
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algorithm. Park and Ravani [27] investigated Bézier curve interpolation on Rieman-

nian manifold by means of matrix exponentials and logarithms.

These ideas were extended to the interpolation of motion by operating on dual

quaternions, leading to the Screw Linear Interpolation (ScLERP) [13, 22]. SLERP

and ScLERP produce constant-curvature interpolations, which have been used in

geometrically exact beam formulations by Borri and Bottasso [28] and Sonneville

et al. [29] to construct constant-strain elements. Alternatively, Merlini and Moran-

dini [30,31] have shown that interpolation scheme can be recast as vanishing of the

weighted summation of the logarithm of the relative motion. Sonneville et al. [32]

extended this interpolation technique by using an arbitrary motion parameter vector

for relative motion.

In minimization-based approaches, the interpolation is recast to a minimiza-

tion problem: minimizing the weighted summation of distance. Minimization prob-

lem can be used to derive interpolation or averaging schemes in any space provided

that the selected distance function is a valid measured of distance in that space.

Based on this idea, Pennec [33] formulated the rotation averaging problem as a min-

imization problem: he defined the objective function as the weighted summation of

the geodesic distances from the average rotation to the rotations at the grid points.

Buss and Fillmore [34] formulated the rotation interpolation problem as a mini-

mization problem and also proved the existence and uniqueness of the minimum.

Buss and Fillmore’s approach leads to geodesic-based interpolation, i.e., SLERP

and the interpolation scheme proposed by Merlini and Morandini [30,31]. A similar

approach was followed by Sander [35] to develop a geodesic-based finite element
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method. Rotation averaging schemes based on other distance functions have been

investigated by numerous authors [36–40]. Rotation interpolation schemes based on

other distance functions, however, has not been explored.

1.2.3 Formulations of geometrically exact beam

Geometrically exact beam models were developed by Reissner [41] based on the

rigid cross-section assumption. Simo [14, 42] generalized the formulation to beams

undergoing large motion. When dealing with beams presenting complex sectional

geometries and made of anisotropic laminated composite materials, sectional in- and

out-of-plane warping have been shown [43–45] to alter stress distributions and sec-

tional stiffness properties significantly and hence, the rigid-section assumption is no

longer valid. For these problems, Hodges and his coauthors [44, 46, 47] have shown

that the three-dimensional nonlinear problem decomposes into a nonlinear, one-

dimensional analysis along the reference line and a linear, two-dimensional analysis

over the cross-section. Their approach is based on variational asymptotic meth-

ods and on the decomposition of the rotation tensor. More recently, Bauchau and

Han [48–54] have proposed a reduction procedure based on the Hamiltonian formal-

ism that brings the three-dimensional, nonlinear elasticity problem to geometrically

exact beam problems.

Because geometrically exact beams are Cosserat material lines, their kine-

matic description involves both displacement and rotation fields and it is customary

to treat these two fields independently, following the footsteps of Simo [42] and of
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numerous other researchers [15, 17, 24, 55]. The key to the rigorous description of

geometrically exact beams is the treatment of finite rotation, a topic that has been

the subject of intensive investigation [56–59]. Indeed, rotation tensors form the spe-

cial orthogonal group SO(3), in contrast with the displacement field that forms an

Euclidean space. As underlined by numerous authors [18, 20, 60], the traditional

interpolation techniques of finite element methods cannot by used to interpolate

the rotation tensor. Although suitable techniques have been developed based on

the vectorial parameterization of rotation, the relationship between the strain com-

ponents and rotation vectors is highly nonlinear, leading to complex equations of

motion.

To avoid the complexity introduced by finite rotations, intrinsic formulations

has been proposed by Hegemier and Nair [61] and Hodges [62, 63]. In intrinsic

formulations, the unknowns are the sectional strains and velocities: displacement

and rotation variables are eliminated. The resulting equations of motion exhibit low-

order nonlinearities and space-time conservative schemes can be developed easily.

With this formulation, however, the assembly of the beam elements is more complex

because displacement and rotation variables do not show up explicitly. Zupan and

Saje [64,65] developed a novel beam element based on the interpolation of the strain

field, which is integrated to yield the displacement and rotation fields. The element

is free of locking because shear and axial strains are interpolated directly. The strain

based formulation, however, requires more computational effort than that based on

displacement and rotation fields.

In recent years, a new approach to the description of the kinematics of beams
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has been developed by Borri and Bottasso [28], McRobie and Lasenby [66], Merlini

and Morandini [67], Sander [68], Sonneville et al. [69], and Demoures et al. [70].

In this approach, called the motion formalism, the displacement and rotation fields

are treated as a unit that forms the special Euclidean group SE(3). This unified

treatment of the displacement and rotation fields leads to simple governing equa-

tions presenting low-order algebraic nonlinearities and simplifies time integration

for dynamic problems. As was the case for the interpolation of rotation, the in-

terpolation of motion is a thorny issue that must be treated carefully, as discussed

by numerous authors [18,32,67,71]. In general, these schemes produce complicated

expressions for the curvatures at the Gauss points and the evaluation of the elastic

forces and stiffness matrix of beam elements becomes arduous. To alleviate this

problem, many authors [24,25,72] simplify the expressions for the curvatures, lead-

ing to more compliant beam elements that although incompatible, converge under

mesh refinement.

1.2.4 Initial value problem of multibody dynamics

Numerous time integration schemes have been applied to the solution of the

differential-algebraic equations governing flexible multibody systems. Classical ap-

proaches to the solution of initial value problems include backward finite difference

schemes [73] and implicit Runge-Kutta schemes [57,74,75]. In recent years, the mod-

eling of flexible multibody systems has become based on the finite element method,

as explained in the textbooks of Géradin and Cardona [76] or Bauchau [77], lead-
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ing to far stiffer equations of motion. In this approach, asymptotic annihilation of

the fictitious high-frequency modes resulting from the finite element discretization

becomes indispensable, prompting the use of a different set of integrators present-

ing unconditional stability and asymptotic annihilation, such as the Hilber-Hughes-

Taylor scheme (HHT) [76,78,79] and generalized-α scheme [80,81]. Integrators that

do not present these characteristics lead to divergent oscillations for the accelerations

and Lagrange multipliers [82].

Discontinuous Galerkin method has been applied for the time integration of

flexible multibody and it leads to unconditionally stable and asymptotically annihi-

lating schemes. Hughes and Hulbert [83, 84] applied space-time finite element for-

mulations to elasto-dynamics problems and used classical polynomial interpolation

schemes in both space and time. Unfortunately, these classical schemes developed

for linear fields cannot be used for the nonlinear configuration manifolds, such as

finite rotation or rigid-body motion, that describe the kinematics of multibody sys-

tems. To bypass this difficulty, many authors [57,85–87] simply extended the existing

schemes to accommodate the nonlinear rotation and motion fields. This approach

leads to a reduction of accuracy of the schemes, which was later explained in a rig-

orous manner by Borri and Bottasso [88] who developed a general framework for in-

terpreting finite element formulations in time. For instance, the time-discontinuous

Galerkin scheme using two-node elements in time is third-order accurate for linear

structural dynamics but reduces to second order for nonlinear multibody dynamics.
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1.2.5 Periodic problem and stability analysis

All too often, the solution of periodic problems is obtained using solvers for

initial value problems: starting from arbitrary initial conditions, time stepping algo-

rithms are used to obtain the dynamic response of the system. Physical, or numerical

energy dissipation, or both then bring the system to its periodic state, once the tran-

sient have died out. This approach suffers from serious drawbacks: first, it is not

clear when a truly periodic solution is obtained and second, the method becomes

ineffective for systems presenting low levels of damping, such as most systems found

in aerospace applications.

Initial values solvers can also be used to find the solution of period problems

via iteration, a process called the “shooting method.” Unfortunately the shooting

method is inefficient for flexible multibody dynamics: typically, a large number of

iterations is required due to the high condition number of the system.

Periodic boundary value problems can be solved directly by using continu-

ous or discontinuous Galerkin methods. Test and trial functions are chosen to be

harmonic or periodic sinc functions, leading to the harmonic balance or Fourier col-

location approach [23], respectively. These methods are computationally expensive

because they involve Jacobian matrices of large bandwidth: indeed, for nonlinear

problems, all harmonics of the system are coupled. Test and trial functions can

also be selected as polynomials with a local support in time. This approach, often

called the “finite element method in time” method, was pioneered by Bailey [89]

and Leipholtz [90]. Applications involving finite element techniques were developed
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shortly thereafter [85, 86, 91, 92] and lead to Jacobian matrices of much reduced

bandwidth.

Two distinct approaches have been used for the analysis of the stability of pe-

riodic problems: Floquet’s [93–98] and Hill’s method [98–102]. As was the case for

the harmonic balance method, Hill’s method is based on a harmonic expansion of

the solution, leading to a large eigenvalue problem, theoretically of infinite size. Fur-

thermore, Hill’s method requires the use of de-aliasing techniques, further increasing

its computational cost. Floquet’s method is based on the evaluation of the state

transition matrix for one period. Stability characteristics of the system are related

to the dominant eigenvalues of this state transition matrix, called the monodromy

matrix. The monodromy matrix can be evaluated via time integration of the lin-

earized governing equations [96] or by matrix elimination in Galerkin methods [85].

Bauchau et al. [103,104] developed an approach, called the “implicit transition ma-

trix approach,” that evaluates the dominant eigenvalues of the monodromy matrix

without its explicit evaluation.

1.2.6 Optimal control and optimization problem

Two fundamental approaches have been used for the DAE-constrained opti-

mization problem: the nested iteration (or black-box) and simultaneous iteration

(or all-at-once, direct transcription) methods.

In the nested iteration method [105–110], an existing DAE solver is embedded

into the optimization loop. The DAE solver provides solutions of state variables,
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gradients of state variables with respect to control inputs or design variables, and

possibly seconder-order derivatives to the outer optimization solver. Typically, the

gradients and seconder-order derivatives are evaluated using adjoint method or al-

gorithmic differentiation. The optimization solver solves a reduced optimization

problem where the state variables are eliminated numerically. Because the DAEs

are nonlinear in general, each solving step for the state variables consists of several

Newton iterations until the solutions converges. On the other hand, there is no need

to satisfy constraint equations exactly in the early stages of optimization process

when the state variables are far from their optimal values.

The simultaneous iteration method [111–113] solves the full size optimization

problem directly, i.e., the state variables, control inputs and design variables are

treated as independent variables. The method leads to a large scale nonlinear pro-

gramming problem (NLP). Usually, second-order optimization algorithms such as

sequential quadratic programming (SQP) are used to solve the resulted NLP. The

simultaneous iteration method is more efficient because both of the DAEs and op-

timality condition are satisfied only at the final iteration.

1.3 Thesis contributions

The main objective this thesis is to develop an unified Galerkin solver for the

beam formulation, initial and periodic boundary value problems, stability anlysis

of periodic solutions, optimal control and optimization problems of flexible multi-

body dynamics. The thesis does contain several new developments in each topics it
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focused.

Interpolation of rigid-body motion It it found that interpolation schemes in

the Euclidean space can be recast as minimization problems for weighted distance

metric. This observation allows the straightforward generalization of interpolation

in the Euclidean space to interpolation on manifolds, provided that a metric of

the manifold is defined. Four metrics of the motion manifold are proposed: the

matrix, quaternion, vector, and geodesic metrics. For each of these metrics, the

corresponding interpolation schemes are derived and their advantages and drawbacks

are discussed.

Beam formulation The proposed motion interpolation schemes yield closed-

form expressions for curvatures at the mesh nodes. Based on this fact, the spectral

element formulations are proposed. The expressions for the internal forces and tan-

gent stiffness matrices are simplified. Consequently, the proposed spectral element

formulation is much easier to implement than its conventional counterpart.

Initial value problem The discontinuous Galerkin scheme is proposed based

on the dual spherical linear interpolation (dual-SLERP). The proposed scheme is

third-order accurate for both of rigid and flexible multibody dynamics. While the

traditional approaches applied approximation on interpolation of rotations and mo-

tions and the approximation leads to a second-order scheme.

Periodic boundary value problem and stability analysis The continuous and dis-

continuous Galerkin methods are developed based on the dual-SLERP. It is found

that the discontinuous method is third- and second-order accurate for non-stiff and

stiff problems, respectively. For stability analysis, the monodromy matrix can be
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constructed directly from the Jacobian matrix in both the continuous and discontin-

uous Galerkin methods. The discontinuous Galerkin method works well for stability

analysis of flexible systems. While the continuous Galerkin method, without upwind

mechanism, fails for stability analysis of flexible multibody systems.

Optimization and optimal control problems The simultaneous iteration method

is used. Both of the continuous and discontinuous Galerkin methods are applied for

discretization of the optimization problem. Exact Hessian matrices are derived to

yield a decrease of the number of iterations and simultaneously a decrease of the

overall computational time.

Related publications are listed

• Han, S.L. and Bauchau, O.A.: “Manipulation of Motion Via Dual Enti-

ties.”Nonlinear Dynamics, 85(1): 509-524, 2016. (Materials of Chap. 2.)

• Han, S.L. and Bauchau, O.A.: “Spectral Methods for the Periodic Solution

of Flexible Multibody Dynamics.” Nonlinear Dynamics, 92(4): pp 1599-1618,

2018. (Materials of Chap 3).

• Han, S.L. and Bauchau, O.A.: “On the Global Interpolation of Motion.” Com-

puter Methods in Applied Mechanics and Engineering, 337: 352-386, 2018.
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Figure 1.1: Content of the thesis.

1.4 Thesis organization

The contents of this thesis is summarized in table 1.1. The kinematics of

rigid-body motion is investigated in Chap. 2. Chap. 3 focuses on the development

of interpolation schemes for rigid-body motions. Chap. 4, 5, 6, and 7 focus on appli-

cations of the proposed interpolation schemes and Galerkin methods to four types

of problem: (1) beam formulation, (2) initial value problem (or time integration of

dynamics equations), (3) determination of periodic solutions and stability analysis

of these solutions; (4) optimization and optimal control problems. Detailed content

for each chapter are introduced as follows.

Rigid-Body Motion Dual numbers are introduced in section 2.1. The Plücker

coordinates of lines and their dual-vector representations are introduced in sec-

tion 2.2. The dual orthogonal matrix representation of rigid-body motions is dis-

cussed in section 2.3. Rodrigues’ formula is proved in section 2.4; the formula relates

the dual orthogonal matrix representation with Chasles’ axis and dual angle. The

dual quaternion representation of rigid-body motion is discussed in section 2.5; this
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section also consists of composition rules of quaternions, trace identities that will be

used in Chap. 3, and quaternion extraction algorithms. The generic vectorial repre-

sentation of rigid-body motion is introduced in section 2.6; three specific vectorial

parameterization: the Cartesian, linear, and Euler-Rodrigues motion parameters are

introduced. For the application in dynamics and elasticity, derivatives, variation,

and increments of rigid-body motion are introduced in section 2.7. Second-order

derivatives of rigid-body motion and identities of commutativity are discussed in

section 2.8. The tangent tensor, which relates the derivatives of rigid-body motion

with derivatives of motion parameters, is introduced in section 2.9. The concept of

tangent space, inner product and Riemann metric are introduced in section 2.10;

inner product and Riemann metric are defined with the help of extended notations,

which transform dual matrices and vectors of size 3 to real matrices and vectors

of size 6. With the help of extended notations, gradient and Hessian of functions

of rigid-body motions are investigated in section 2.11; it is shown that the Hessian

is unsymmetric. Solving nonlinear equations and optimization problem by using

Newton method is discussed in section 2.12.

Interpolation of Motion Staring with a review on interpolation schemes in

Euclidean space, section 3.1, the interpolation problem is formulated as a minimiza-

tion of weighted distance functions in section 3.2. Four types of distance between

two rigid-body motions are defined in section 3.3. Interpolation schemes based on

these four distance functions are investigated in sections 3.4, 3.5, 3.6, and 3.7. The

motion increments and curvatures resulting from interpolations are investigated in

section 3.8. Numerical examples are given in section 3.9.
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Beam Formulation Kinematics of the problem is investigated in section 4.1.

The proposed interpolation schemes is applied for beam problem in section 4.2. The

weak and finite element formulations are obtained in section 4.3 and 4.4, respectively.

Numerical examples are presented in section 4.5.

Initial Value Problem Lagrangian and Hamiltonian of a typical multibody sys-

tem are obtained in section 5.1. In section 5.2, the weak formulations of continuous

and discontinuous Galerkin methods for periodic and non-periodic problems are de-

rived by using Hamiltonian variation principle. The discontinuous Galerkin method

is applied for initial value problem. Introducing the test and trial functions in sec-

tion 5.3 to the weak form leads to governing equations of initial value problem, as

discussed in section 5.4. Numerical examples including time integration of rigid and

flexible body dynamics are presented in section 5.5.

Periodic Problem and Stability Analysis This chapter starts with preliminaries

of periodic problem in section 6.1, which consists of Floquet’s theorem, Floquet’s

and Hill’s methods for stability analysis, and a comparison of Floquet’s and Hill’s

method for multi-dimensional Mathieu equations. The continuous Galerkin method

is applied for determination of periodic solutions in section 6.2 and stability analysis

in section 6.3. Post processing for continuous Galerkin method is investigated in

section 6.4. The discontinuous Galerkin method is applied for determination of

periodic solutions in section 6.5 and stability analysis in section 6.6. Post processing

for discontinuous Galerkin method is investigated in section 6.7. Numerical examples

are presented in section 6.8.

Optimal Control and Optimization Problems This chapter starts with a math-
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ematical statement for optimal control and optimization problems in section 7.1.

Both of continuous and discontinuous Galerkin method are applied for discretiza-

tion in section 7.2. The first-order optimality condition are obtained in sections 7.3

and 7.4, for discontinuous and continuous Galerkin methods respectively. New-

ton method is applied to solve the nonlinear equations resulting from optimality

condition and a solving strategy is proposed to deal with the structure matrix in

section 7.5. Hessian matrices for both the continuous and discontinuous Galerkin

methods are obtained in section 7.6. Numerical examples are presented in sec-

tion 7.7.
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Chapter 2: Preliminary of rigid-body motion

This chapter provides definitions, notations, and identities for rigid-body mo-

tions that will be used in the following chapters. Sections 2.1 to 2.9 focus on kine-

matic of rigid-body motions. Sections 2.10 to 2.12 provide materials used in static

and dynamics.

2.1 Dual numbers

The classical notation for dual scalars is

a = a+ ε a◦, (2.1)

where a and a◦ are the primal and dual parts of the dual scalar. The domain of

dual numbers is denoted D and hence, a ∈ D. Bookkeeping parameter ε is such that

εn = 0 for n ≥ 2. The nth power of a dual scalar is obtained easily

an = an + ε a◦nan−1. (2.2)

A function of a dual variable is itself a dual scalar written as f = f(a), or

more explicitly, f = f(a, a◦) and f ◦ = f ◦(a, a◦). The dual functions to be used here
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are required to be analytic [114], which implies that they can be written as

f(a) =
∞∑
n=0

cn(a− a0)n, (2.3)

for any a0. Using eq. (2.2) to express the powers of the dual scalar leads to f =∑∞
n=0 cn(a−a0)n, which implies that f = f(a) is a real analytic function of variable

a only and f ◦ = (a◦ − a◦0)
∑∞

n=0 ncn(a − a0)n−1 = (a◦ − aa◦0)f ′, for any a◦0, which

implies f ◦ = a◦f ′, where notation (·)′ indicates a derivative with respect to a.

In summary, analytic dual functions must present the following form

f(a) = f(a) + ε a◦f ′(a). (2.4)

Two important observations can be made: (1) the primal part of an analytic function

depends on the primal part of its dual variable only and (2) the dual part of an

analytic function is a linear function of the dual part of its dual variable.

2.2 Representing lines by dual vectors

A straight line, denoted L = (xP ,
¯̀), is defined by the position vector, xP , of

an arbitrary point P on the line, and the unit vector, ¯̀, along the direction of the

line. Alternatively, a line can be represented by a unit dual vector

p̄ = p̄+ ε p◦. (2.5)
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Dual vector p̄ is also referred to the Plücker coordinates or a line. Unit vector p̄ = ¯̀

provides the orientation of the line and vector p◦ = x̃P ¯̀. Note that ‖p̄‖ = 1 and

p̄Tp◦ = 0, as expected for unit dual vectors. Note that p◦ is not a unit vector. The

point on the line that is at the shortest distance from the origin of the reference

frame is xS = p̃p◦.

p
_

q
_

Shortest
distance

Angle

α

αo

Figure 2.1: The short-
est distance and angle be-
tween two lines

Consider two lines, LP = (xP , p̄) and LQ =

(xQ, q̄), and their dual unit vector representations, de-

noted p̄ and q̄, respectively. The scalar product of

two unit vectors defines the cosine of the angle, α, be-

tween the two vectors. Similarly, the scalar product of

dual vectors, illustrated in fig. 2.1, is such that p̄T q̄ =

p̄T q̄+ ε(p̄T x̃Qq̄+ q̄T x̃P p̄). The primal part of this dual scalar is p̄T q̄ = cosα, where α

is the angle between the two lines and its dual part is p̄T x̃Qq̄ + q̄T x̃P p̄ = −α◦ sinα,

where α◦ is the shortest distance between the two lines. Defining dual scalar a such

that

a = α + ε α◦, (2.6)

then cosa is an analytic dual function. In summary,

p̄T q̄ = cosa. (2.7)

Similarly, if the scalar product of two unit dual vectors vanishes, i.e., if p̄T q̄ = 0,

lines p̄ and q̄ are mutually orthogonal, intersecting lines. The null dual scalar is
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denoted 0 = 0 + ε 0.

Let p and q be two dual vectors; the vector product of two dual vectors as

u = p̃q = p̃q + ε
(
p̃q◦ + p̃◦q

)
, (2.8)

The vector product of dual vectors is a dual vector.

a
_

b
_

δ
Shortest
distance

Angle

α

n
_

A

B

Figure 2.2: The vector prod-
uct of two lines.

The vector product of two unit vectors defines

the sine of the angle between the two vectors, p̃q̄ =

sinα n̄, where n̄ is the unit vector normal to vectors

p̄ and q̄ and oriented according to the right hand

rule. Similarly, the vector product of two unit dual

vectors, illustrated in fig. 2.2, is

p̃q̄ = sina n̄ (2.9)

where sina is an analytic dual function, and dual scalar a is defined by eq. (2.6).

Because n̄T p̄ = n̄T q̄ = 0 , line n̄ is normal unit vectors p̄ and q̄ and intersects lines

p̄ and q̄. This means that line n̄ joins the point of lines p̄ and q̄ that are at the

shortest distance from each other, denoted points P and Q in fig. 2.2.

2.3 Motion of a rigid body
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Figure 2.3: Two frames with a rela-
tive displacement, u, and a relative
rotation, R.

A rigid-body motion is defined as the

transformation that brings inertial frame F =

[O, I = (̄ı1, ı̄2, ı̄3)] to material frame Fb =

[B,B = (b̄1, b̄2, b̄3)], as shown in figure 2.3.

Rigid-body motion can be represented by mo-

tion tensor

R = R + ε ũR, (2.10)

where rotation tensor R brings inertial basis I to material basis B, and vector u is the

relative position vector of reference point B with respect to the origin, O. The motion

tensor is an special orthogonal dual matrix: RTR = RTR+ 2ε RT (ũ− ũ)R = I and

det(R) = 1. The set of motion tensors form the Special Orthogonal group in D3×3,

denoted SO(3), which is isomorphic to the Special Euclidean group SE(3).

As shown in fig. 2.3, the three orthogonal lines passing through vector bases

ı̄k and b̄k, k = 1, 2, 3, are denoted as

īk = ı̄k + ε 0̃ı̄k = ı̄k + ε 0,

b̄k = b̄k + ε ũb̄k,

(2.11)

respectively. It follows that

b̄i = R īi, (2.12)

which indicates that the motion tensor transforms a line in inertial frame F to Fb.
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2.4 Rodrigues’ formula

Chasles’ theorem [115] states that the most general motion of a rigid body

consists of a translation along a line followed by a rotation about the same line.

Hence, a general motion is characterized by its Chasles’ line of Plücker coordinates

n̄ = n̄+ε n◦ and the magnitudes of the rotation and intrinsic displacement, denoted

φ and φ◦, respectively, for a total of six parameters. The scalar characteristics of

the motion form a dual angle,

φ = φ+ ε φ◦. (2.13)

In this section, the basic formulæ required for the manipulation of motion are ex-

pressed in terms of geometric entities (n̄,φ).
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e
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Figure 2.4: Material line of a
body before and after motion

The Plücker coordinates of a material line of

the body before and after it undergoes the specified

motion are denoted ā and b̄, respectively, as shown

in fig. 2.4. Vector product ñā = sina v̄ defines line

v̄ that is perpendicular to and intersects lines n̄ and

ā at points O and A, respectively. Dual scalar a =

α+ε λ defines the angle α between the lines and their

shortest distance, λ, see fig 2.4. Next, vector product

ṽn̄ = ū defines the last line of the canonical frame of the motion, F = (ū, v̄, n̄).

Figure 2.4 shows a cylinder of radius λ and axis n̄ coincident with Chasles’ line.

Line ā is in the plane tangent to this cylinder at point A. During motion, line ā
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rotates around the cylinder by an angle φ and translates along line n̄ by a distance

φ◦. At the end of the motion, material point A has moved to point B and line b̄ is

in the plane tangent to the cylinder at point B.

Because lines n̄ and ā are material lines of the body, their distance and relative

orientation remain unchanged, i.e., n̄T ā = n̄T b̄ = cosa. For the same reasons,

ñb̄ = sina ē, where line ē is in the plane normal to n̄ at a distance φ◦ from

point O, i.e., ē = cosφv̄ − sinφū. It follows that ñb̄ = sina(cosφv̄ − sinφū), a

vector-product equation whose solution is given as

b̄ = µn̄− sina ñ(cosφ v̄ − sinφ ū). (2.14)

Dual scalar µ is found to be µ = n̄T b̄ = n̄T ā, leading to b̄ = n̄n̄T ā + sinφ ñā −

cosφ ññā. Finally, identity (A.1b) yields the desired result,

b̄ = Rā, (2.15)

where

R(n̄,φ) = I + sinφ ñ+ (1− cosφ)ññ, (2.16)

is the motion tensor, which is fully defined by geometric entities (n̄,φ). The primal

part of the motion tensor, R, relates the orientations of the lines ā and b̄ as b̄ = R ā,

where R = exp(φñ) = I + sinφñ+ (1− cosφ)ññ.
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2.5 Dual unit quaternions

Rigid-body motion can also be represented by unit dual quaternions

q̂ = q̂ + ε q̂◦, (2.17)

where q̂ = {η, q1, q2, q3} = {η, q} and q̂◦ = {η◦, q◦1, q◦2, q◦3} = {η◦, q◦} are the primal

and dual parts, respectively. Because q̂T q̂ = q̂T q̂ + ε 2q̂T q̂◦ = 1, it follows that q̂ is

unit and q̂◦ is orthogonal to q̂. The following notation is introduced to define the

dual scalar part, η, and dual vector part, q, of the dual quaternion,

η = scal(q̂) = η + ε η◦, (2.18a)

q = vec(q̂) = q + ε q◦. (2.18b)

Unit dual quaternions are related to Chasle’s line n̄ and dual angle φ, such that

dual vector q = vec(q̂) = n̄ sinφ/2 and dual scalar η = scal(q̂) = cosφ/2. The

motion tensor can be expressed in terms of the unit dual quaternions,

R(q̂) = I + 2ηq̃ + 2q̃q̃

= (η2 − qTq)I + 2ηq̃ + 2q qT ,

(2.19)

where identity (A.1b) is introduced to yield the second equality.

Consider three unit dual quaternions q̂, q̂1, and q̂2 such thatR(q̂) = R(q̂1)R(q̂2).
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The composition rule for dual quaternions is

q̂ = A(q̂1)q̂2 = B(q̂2)q̂1, (2.20)

where matrix operators A and B are defined as

A(q) =

 η qT

−q ηI + q̃

 , B(q) =

 η qT

−q ηI − q̃

 . (2.21)

It is verified easily that

AT (q̂)A(q̂) = BT (q̂)B(q̂) = I, (2.22a)

A(q̂)BT (q̂) = BT (q̂)A(q̂) = diag[1,R(q̂)]. (2.22b)

Example 2.5.1. Trace of a product of matrices

Consider the matrix product RTG, where R is an orthogonal dual matrix and G an

arbitrary dual matrix. In view of identity (2.19), the trace of dual matrix product

is then tr(RTG) = tr[(η2 − qTq)G − 2ηq̃G + 2q qTG]. Trace identities (A.3e)

and (A.3f) imply tr(q̃G) = 2qTaxial(G) and tr(q qTG) = qT symm(G) q, respec-

tively, leading to tr(RTG) = (η2−qTq)tr(G)+4ηqTaxial(G)+2qT symm(G) q and

finally,

1 + tr(RTG) = 1 + tr(GTR) = q̂TW (G) q̂, (2.23)
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where symmetric matrix W (G) is

W (G) =

1 + tr(G) 2axialT (G)

2axial(G) [1− tr(G)]I + 2symm(G)

 . (2.24)

If matrix G is itself orthogonal, i.e., if it represents a motion, matrix W

becomes

W (G) = 4ĝ ĝT , (2.25)

where unit dual quaternion ĝ represents motion tensor G. Finally, if G = R,

eq. (2.23) becomes 1 + tr(RTR) = q̂T [4q̂ q̂T ]q̂ = 4(q̂T q̂)2 = 4; because tr(RTR) =

tr(I) = 3, this relationship is satisfied.

Example 2.5.2. Transformation of matrix W

Let q̂1 and q̂2 be two unit dual quaternions representing two motions. Composition

rule (2.20) now implies that the unit dual quaternions representing composed motion

R(q̂) = R1R2 is q̂ = A(q̂1)q̂2 = B(q̂2)q̂1. Equation (2.23) yields 1 + tr[RTG)] =

1+tr[(R1R2)TG)] = q̂TW (G)q̂ = q̂T2 [AT (q̂1)W (G)A(q̂1)]q̂2. The same operation

can be recast as 1 + tr[RT
2 (RT

1G)] = êT2W (RT
1G)q̂2 and because quaternion ê2 can

be selected arbitrarily, the following identity results,

W (RT
1G) = AT (q̂1)W (G)A(q̂1). (2.26)

Equation (2.20) expresses the motion tensor in terms of unit dual quaternions.

In many applications, the inverse operation is also required, i.e., given the motion
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tensor, find the unit dual quaternions. For an orthogonal tensor, the symmetric

matrix defined be eq. (2.25) becomes

W = 4q̂q̂T = 4



q2
0 q0q1 q0q2 q0q3

q0q1 q2
1 q1q2 q1q3

q0q2 q1q2 q2
2 q2q3

q0q3 q1q3 q2q3 q2
3


, (2.27)

where q0 = η. According to Klumpp [116] and Shepperd [117], the most accurate

results will be obtained by extracting unit dual quaternions from the column of W

which presents the largest diagonal term for the primal part. It can be readily shown

that

max (W00,W11,W22,W33) = max (tr(R), R11, R22, R33) . (2.28)

If m is the index corresponding to the column with the maximum diagonal term,

the desired Euler motion parameters then follow

qi =
Tim

2
√
Tmm

, i = 0, 1, 2, 3. (2.29)

2.6 Vectorial parameterization of motion

The vectorial parameterization of motion [118] is more general and defined as

p = p(φ)n̄, (2.30)
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where p(φ) is a dual function of dual scalar φ, called the “generating function,” for

short. The primal part of the generating function is the generating function for the

vectorial parameterization of rotation, p(φ). Because the generating dual function

is selected to be analytic, see eq. (2.4), the generating dual function is of the form

p = p(φ) + ε φ◦p′(φ), where notation (·)′ indicates a derivative with respect to φ. A

more explicit expression of the motion parameter vector becomes

p = p+ ε p◦ = p(φ)n̄+ ε [φ◦p′(φ)n̄+ p(φ)n◦] . (2.31)

Clearly, vector q gathers all the information about the motion: Chasles’ line, n̄, and

dual scalar φ.

Two dual scalar functions play an important role in the vectorial parameteri-

zation of motion,

ν =
sinφ/2

p
, (2.32a)

ε =
2 tanφ/2

p
=
ν

η
. (2.32b)

Equation (2.16) implies

Rp = p, (2.33)

i.e., motion parameter vector p is an eigenvector of the motion tensor associated

with its unit eigenvalue.

Introducing the vectorial parameterization of motion into eq. (2.16) yields the
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expression for the motion tensor,

R = I + ζ1p̃+ ζ2p̃p̃, (2.34)

where

ζ1(φ) =
sinφ

p
=
ν2

ε
, ζ2(φ) =

1− cosφ

p2
=
ν2

2
. (2.35)

Three specific vectorial parameterizations of motion are presented: the Carte-

sian, linear, and Euler-Rodrigues motion parameters. The naming of the various

parameterizations presented here is mnemonic. The generating function and coeffi-

cients for these three parameterizations are listed in tab. 2.1.

p(φ) ζ1 ζ2 χ0 χ1

Cartesian φ (sinφ)/φ (1− cosφ)/φ2 1 (1− 1/ε)/φ2

Linear sin(φ) 1 ε/2 (2− ε)/ε −ε/4
Euler-Rodrigues sin(φ/2) η 1/2 η χ2

Table 2.1: Coefficients of the vectorial parameterization.

For the Cartesian parameter vector, expanding the trigonometric functions in

eq. (2.35) with infinite series yields

R(p) =
∞∑
k=0

p̃k = exp(p̃), (2.36)

which is the exponential map. The inverse operation, logarithmic map, is defined

as p̃ = log(R) =
∑∞

k=1(−1)k−1/k(R− I)k.
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2.7 Velocities, curvatures, variations, and increments of motion

Let R(t) = R(t)+ ε ũ(t)R(t) be the time-dependent motion tensor that brings

inertial frame FI = (ī1, ī2, ī3) to material frame F(t) = (b̄1, b̄2, b̄3). Because the

motion tensor is an orthogonal dual matrix, a time derivative yields (RT Ṙ)T +

RT Ṙ = 0 , which shows that the dual matrix in the parentheses must be a skew-

symmetric dual matrix

ṽ = RT Ṙ = −ṘTR = ω̃ + ε R̃T u̇, (2.37)

where ω̃ = RT Ṙ. Dual vector v stores the components of the velocity vector resolved

in the material frame

v = ω̃ + ε RT u̇, (2.38)

The primal part of the dual velocity vector is the angular velocity vector, while its

dual part is the linear velocity of the rigid body. This quantity can be interpreted

as the linear velocity of the point of the rigid body that instantaneously coincides

with the origin of the reference frame, point O.

Similarly, let R(s) be the space-dependent motion tensor that brings inertial

frame FI = (ī1, ī2, ī3) to frame F(s) = (b̄1, b̄2, b̄3). A spatial derivative of the

motion tensor

k̃ = RTR′ = −(RT )′R = κ̃+ ε R̃Tu′. (2.39)

where k̃ = RTR′. Dual vector k stores the components of the curvature vector
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resolved in the material frame.

k = κ+ ε RTu′, (2.40)

The primal part of the dual curvature vector is the curvature vector.

The velocity and curvature vectors can be expressed in terms of geometric

entities (n̄,φ) and their time or spatial derivatives. Introducing eq. (2.16) into

eqs. (2.37) and (2.39) leads to

v = φ̇ n̄+ sinφ ˙̄n− (1− cosφ)ñ ˙̄n, (2.41a)

k = φ′ n̄+ sinφ n̄′ − (1− cosφ)ñn̄′, (2.41b)

The definition of the virtual and incremental motion vector, δu, is analogous

to that of the differential motion vector,

δ̃u = RT δR = −δRTR = δ̃ψ + ε RT δu, (2.42a)

∆̃u = RT∆R = −∆RTR = ∆̃ψ + ε RT∆u, (2.42b)

where δ̃ψ = RT δR and ∆̃ψ = RT∆R. Explicit expressions for the components of

the virtual and incremental motion vector are

δu = δψ + ε RT δu, (2.43a)

∆u = ∆ψ + ε RT∆u. (2.43b)
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2.8 Commutativity of second order derivatives

Consider the the velocity and curvatures vectors resolved in the material frame

as defined in eqs. (2.37) and (2.39). Taking a spatial of eq. (2.37) and a time

derivative of eq. (2.39) leads to

(ṽ)′ = R′T Ṙ+RT (Ṙ)′, (2.44a)

(k̃)̇ = ṘTR′ +RT (R′)̇. (2.44b)

The second derivatives of the motion tensor must commute, i.e., (Ṙ)′ = (R′)̇,

because it is a continuous function of both temporal and spatial variables. Sub-

tracting eq. (2.44b) from eq. (2.44a) then yields (ṽ)′ − (k̃)· = R′T Ṙ − ṘTR′ =

(R′TR)(RT Ṙ) − (ṘTR)(RTR′) = k̃T ṽ − ṽT k̃ = ṽk̃ − k̃ṽ. Finally, introducing

identity ṽk̃ − k̃ṽ = ṽk leads to v′ − k̇ = ṽk.

The following results are obtained in a similar manner

v′ = k̇ + ṽk, (2.45a)

δv = ˙δu+ ṽδu, (2.45b)

δk = δu′ + k̃δu. (2.45c)

Equation (2.45a) are known as the compatibility equations. Equations (2.45b) and (2.45c)

are known as the transpositional relationships [119–121]. Although the transposi-

tional relationships and compatibility equations bear different names, they are all
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consequences of the commutativity of the second derivatives of the motion tensor.

2.9 Tangent tensor and identities of composition

Taking a time derivative of the matrix operator A(q̂) and left-multiplying by

AT (q̂) yield

AT (q̂)A( ˙̂q) =

 η qT

−q ηI − q̃


η̇ −q̇T

q̇ η̇I + ˙̃q



=

 q̂T ˙̂q η̇qT − ηq̇T + qT ˙̃q

ηq̇ − η̇q − q̃q̇ q q̇T + (ηI − q̃)(η̇I + ˙̃q)



=
1

2

0 −vT

v ṽ

 =
1

2
A(v̂),

(2.46)

where 1/2ṽ = 1/2RT Ṙ = q q̇T + (ηI − q̃)(η̇I + ˙̃q) by using the second identity

in eq. (2.19), and 1/2v = ηq̇ − η̇q − q̃q̇ by using identity (A.1a), (A.1b), and

η2 + qTq = 1. The augmented velocity vector is defined as v̂ = {0,vT}T . Identity

1/2v = ηq̇ − η̇q − q̃q̇ is rewritten to

˙̂q =
1

2
A(q̂)v̂ =

1

2
B(v̂)q̂. (2.47)

Taking a time derivative of the motion parameter vector yields ṗ = p′φ̇n̄+p ˙̄n.

Identity (A.1a) leads to ññṗ = pññ ˙̄n = p[n̄ n̄T−I] ˙̄n = −p ˙̄n = p′φ̇n̄−ṗ, because

n̄ is a unit vector. It follows that φ̇n̄ = (I + ññ)ṗ/p′ and introducing these results
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into eqs. (2.41a) then leads to

ṗ = T−1(p)v, (2.48)

where the inverse of tangent tensor is found as

T−1(p) = χ0I +
1

2
p̃+ χ2p̃p̃. (2.49)

Two scalar functions were defined,

χ0 = p′, (2.50a)

χ2 =
1

p2

(
p′ − 1

ε

)
. (2.50b)

Tangent tensor T enjoy the following remarkable propertie,

R(p) = T (−p)T−1(p) = T−1(p)T (−p). (2.51)

Consider three motion tensors R1, R2 and R, such that R = RT
1R2, i.e., R

are the relative motion of motionR2 with respect to motionR1. A time derivative of

this relationship yields RT Ṙ = RT ṘT
1R2 +RTRT

1 Ṙ2 and hence, v = −RTv1 +v2,

where ṽ1 = RT
1 Ṙ2, and ṽ2 = RT

2 Ṙ2. Suppose that q̂1, q̂2, and q̂3 are the unit dual

quaternions associated with motion tensorR1, R2, andR, respectively. Introducing

eq. (2.47) into yields AT (q̂) ˙̂q = −RT v̂1 + v̂2 and finally, identities (2.22) leads to

˙̂q = −B(q̂)v̂1 +A(q̂)v̂2. (2.52)
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Similarly, the following identities hold for variations and increments

δq̂ = −B(q̂)δ̂u1 +A(q̂)δ̂u2, (2.53a)

∆q̂ = −B(q̂)δ̂u1 +A(q̂)δ̂u2, (2.53b)

where δ̂uk = {0, δuTk }T and δ̂uk = {0,∆uTk }T for k = 1, 2.

Suppose that p
1
, p

2
, and p

3
are the vector parameters associated with mo-

tion tensor R1, R2, and R, respectively. Introducing eq. (2.48) yields T (p)ṗ =

−RTT (p
1
)ṗ

1
+ T (p

2
)ṗ

2
and finally, identity (2.51) leads to

ṗ = −T−1(−p)v1 + T−1(p)v2. (2.54)

Similarly, the following identities hold for variations and increments

δp = −T−1(−p)δu1 + T−1(p)δu2, (2.55a)

∆p = −T−1(−p)∆u1 + T−1(p)∆u2. (2.55b)

The Euler-Rodrigues parameter vector is the vector part of the unit dual

quaternion, i.e., p = q = sin(φ/2)n̄ = vec(q̂). Accordingly, the inverse of tan-

gent tensor of Euler-Rodrigues parameter vector is the lower-left 3×3 submatrix of

matrix operator A(q̂), denoted as

T−1(p) = T−1(q) = vec[A(q̂)] = ηI + q̃. (2.56)
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2.10 Tangent space, Riemann metric, and the extended notation

The tangent space at an element R on the manifold SO(3), is TRSO(3) =

{R s̃|s̃ = −s̃T}. Clearly, the velocities, curvatures, variations, and increments of

rigid-body motions live in the tangent space at identity I. In a neighborhood of an

element R̄, the rigid body motion can be represented by vector s as

R = R̄ exp(s̃), s = s+ εs◦, ‖s‖ < δ, (2.57)

where exp(·) is the exponential map and ‖s‖ < δ indicates that the rotation angle

should be in a small range.

Suppose s ∈ TRSO(3) and r ∈ T∗RSO(3), where superscript (·)∗ indicates the

dual of a space. For instance, let s = δu = δψ+ ε RT δu define the virtual motion of

the rigid body, where δψ and RT δu are the virtual rotation and motion of the rigid

body, respectively. Furthermore, let r = m+ε f define the generalized forces, where

m and f are the moment and force applied to a rigid body, respectively. The inner

product operation in dual number domain sTr = δψTm+ ε (δψTf + δuTRm) does

not yield the expected virtual work: while the primal part of this dual scalar does

indeed represent the virtual work done by the moment, its dual part has no physical

meaning; in fact, its units are not correct and are not even consistent. Diment-

berg [3] underlined the problems discussed in the previous paragraph; he advised:

“as a result, many dynamics and statics problems must be solved on the basis of

general screw theory with the screw expressed by means of six Plücker coordinates.”
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Brodsky and Shoham [9, 10] have shown that the use of dual numbers to handle

dynamics problems is quite complicated and requires the introduction of dual in-

ertia operators. This approach will not be pursued here. Following Dimentberg’s

advice, the “extended notation” is introduced to tackle dynamics problems. The

inner product in tangent space is defined as

〈s, r〉 = sT r = sT r + (s◦)T r◦. (2.58)

Similarly, the Riemann metric is on defined as

〈s, s〉M = sTM s =


s◦

s


T M11 M12

MT
12 M22



s◦

s

 , (2.59)

where M ∈ R6×6 is the Riemann metric tensor. For instance, s = v represents

the velocity of a rigid body, M is the mass matrix, and 1/2sTM s represents the

kinematic energy. Therein, bold symbols indicates the extended notation that recast

dual vectors and matrices in D3 to entities in R6, i.e.,

s = s+ ε s◦ → s =


s◦

s

 , S = S + ε S◦ → S =

S S◦

0 S

 . (2.60)

The extended notations that will be used in the following part of this paper are

listed in table. 2.2.
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Dual number notation Extended notation
Velocity vector v v
Curvature vector k k
Variation of motion δu δu
Increment of motion ∆u ∆u
Motion tensor R R
Tangent tensor T T

Table 2.2: The dual entity and extended notations.

2.11 Gradient and Hessian on SO3

Consider a differentiable function f : SO3 → R. The gradient of function f at

R, denoted as ∇R f , is defined as

sT (∇R f) =
df [R exp(εs̃)]

dε
|ε=0. (2.61)

Clearly, ∇R f lives in the dual of the tangent space. The second order derivatives of

f at R, are not unique because that the matrix multiplication is not commutative.

The seconder order derivatives are defined as

sTL(∇2
R f)sR =

∂2f [R exp(εRs̃R) exp(εLs̃L)]

∂εL∂εR
|εL,εR=0, (2.62a)

sTL(∇̄2
R f)sR =

∂2f [R exp(εLs̃L) exp(εRs̃R)]

∂εL∂εR
|εL,εR=0. (2.62b)

It is verified easily that

∇2
R f = (∇̄2

R f)T . (2.63)
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The Taylor expansion of function f in a neighborhood of R is

f [R̄ exp(s̃)] = f(R ) + sT (∇R f) +
1

2
sT (∇2

R f)s

= f(R ) + sT (∇R f) +
1

2
sT (∇̄2

R f)s .

(2.64)

Suppose that ∇2
R f + ∇̄2

R f is positive definite, then R̄ is a local minimal of function

f if the gradient ∇R f vanishes.

2.12 Solving nonlinear equation and optimization problems on SO(3)

Consider a set of nonlinear equations formulated on SO3

r(R ) = 0, (2.65)

where vector valued function r : SO3 → R6. The nonlinear equation is solved by

using Newton method

Algorithm 1: Newton method on SO3. Therein, ∆ψ the primal part of ∆u and δ is
radius of the trust region.

1: Initial guess R
2: while ‖r‖ > ε do
3: Evaluate Jacobin ∇R r and residual r
4: Solve ∆u = −(∇R r) \ r

5: ∆u = min{ δ

‖∆ψ‖
, 1}∆u

6: Update R = R exp(∆̃u)
7: end while
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Consider an optimization problem

min J(R , θ)

s.t. r(R , θ) = 0

(2.66)

where J represent the cost functional, vector θ stores the design parameters, and

r : R → Rm, 1 ≤ n < 6, represents the constraint. The augmented Lagrangian

L = J(R , θ)+νT r(R , θ) is introduced, where ν ∈ Rn stores the Lagrange multipliers.

Vanishing of the first order variation, δL = 0, leads to the first-order optimality

condition

δθ : ∇θJ + (∇θr)
Tν = 0 (2.67a)

δu : ∇R J + (∇R r)
Tν = 0 (2.67b)

δν : r = 0 (2.67c)

The nonlinear equations resulting from first-order condition are solved by using

Newton method. An linearization of eq. (2.67) yields


∇2
θL ∇2

θR (∇θr)
T

∇2
R θL ∇2

RL (∇R r)
T

∇θr ∇R r




∆θ

∆u

∆ν


= −residuals. (2.68)

In most cases, the main effort of solving optimization problem is to derive the second

order derivatives ∇2
RL.
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Chapter 3: Interpolation of motion

In this chapter, the interpolations of rotation and motion are treated. For

simplicity of the discussion, the motion field is assumed to depend on a single variable

η only. All the interpolation schemes presented in the chapter generalize easily to

multiple dimensions.

3.1 Interpolation in Euclidean spaces

Interpolation techniques in Euclidean space are well established. Given a set

of vectors, xk ∈ Rm, located at grid points ηk, k = 0, 1, . . . , N , classical interpolation

schemes define the interpolated vector, x(η), as

x(η) =
N∑
k=0

lk(η)xk, (3.1)

where lk(η) are the shape functions that are required to satisfy the property of

partition of unity,
N∑
k=0

lk(η) = 1. (3.2)

Interpolation scheme (3.1) represents the weighted average of the vectors at the grid

points: shape function ellk(η) is the weight associated with vector xk. In the finite
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element methods, it is customary to use the Lagrangian polynomial.

Interpolation scheme (3.1) can be recast as the following minimization prob-

lem,

x(η) = arg min
x∈Rm

J(x, xk), where J(x, xk) =
N∑
k=0

lk(η)dist2
E(x, xk). (3.3)

The distance between points x and xk in the Euclidean space is defined as distE(x, xk) =√
(x− xk)T (x− xk). The solution of minimization problem (3.3) is found by im-

posing the stationarity of objective function J(x, xk), leading to δxT [
∑N

k=0 lk(η)(x−

xk)] = δxT [x −
∑N

k=0 lk(η)xk] = 0, which then implies interpolation scheme (3.1).

Because the Hessian at the stationary point, I, is positive-definite, the stationary

point is a minimum. Minimization problem (3.3) can be used to derive interpola-

tion schemes in any space provided that the distance function, dist(·, ·), is a valid

measure of distance in that space. Clearly, interpolation schemes can be derived in

any space once a distance or metric of the space is defined.

3.2 Interpolation of motion fields

Application of classical interpolation scheme (3.1) to rigid-body motion fields

leads to

R(η) =
N∑
k=0

lk(η)Rk, (3.4)

where Rk are the nodal motion tensors. The interpolated tensor does not represent

a rigid-body motion because it is not orthogonal. This stems from the fact that

motion fields do not form a linear space, in contrast with displacement fields that
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do.

Interpolation scheme (3.1) cannot extended, as is, to interpolation on a man-

ifold because linear operations are not valid on the manifold. Due to the special

structure of the Euclidean space, scheme (3.1) provides a valid approach to inter-

polation in that space only. A natural question arises: is it possible to reformulate

classical interpolation scheme (3.1) in a manner that becomes independent of the

properties of the Euclidean space?

Figure 3.1 depicts the motion interpolation problem in a schematic manner.

The motion tensor that brings reference frame FI to the frame at grid point ηk

is denoted Rk and the corresponding dual quaternion is denoted q̂k. The desired

interpolated motion tensor at point η is denoted R and the corresponding dual

quaternion is denoted q̂. Nodal and interpolated motions are resolved in the inertial

frame. For clarity, the dual quaternions that define the various motions, q̂k, k =

0, . . . , N and q̂, are indicated in fig. 3.1. Parameter η can be interpreted as a spatial

or a temporal parameter leading to the spatial or temporal interpolation problems,

respectively.

i1
_

O
FI

i2
_

i3
_

q0
^

q1
^

q2
^

s0
^

s2
^s1

^

q3
^

q̂

η0

s3
^ η3

η2

η1
η

Figure 3.1: Interpolation of a motion field.

Next, the components of the relative motion tensors from point η to points ηk,

all resolved in interpolated frame R, are denoted Sk = RTRk. The corresponding
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dual quaternions and motion parameter vectors are denoted ŝk = AT (q̂)q̂k and sk,

respectively. The following notation is introduced

G =
N∑
k=0

lk(η)Rk, S =
N∑
k=0

lk(η)Sk = S + ε S◦, S = RTG, (3.5)

where the last equation is a direct consequence of the previous definitions. The

corresponding relationships for the dual quaternions are

ĝ =
N∑
k=0

lk(η)q̂k, ŝ =
N∑
k=0

lk(η)ŝk = ŝ+ ε ŝ◦, ŝ = AT (q̂)ĝ. (3.6)

Interpolation on SO(3) is obtained easily as an extension of eq. (3.3)

R = arg minR∈SO(3)J(R,Rk), with J(R,Rk) =
N∑
k=0

lkdist2(R,Rk). (3.7)

Different metrics leads to different interpolation schemes. Minimization of a dual

function is defined as following

Definition 3.2.1 (Minimization of a dual function). The minimization of a dual

function of dual variables implies the satisfaction of two conditions: (1) the variation

of the function vanishes and (2) the primal part of the function achieves a minimum.

3.3 The distance between two motions

A metric or distance is a function, denoted dist(x1, x2), that defines a mea-

sure of distance between two elements, denoted x1 and x2, of set U . In gen-
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eral, metrics must satisfy the following four conditions: (1) the metric is non-

negative, i.e., dist(x1, x2) ≥ 0, (2) the metric vanishes for identical elements only,

i.e., dist(x1, x2) = 0 if and only if x1 = x2, (3) the metric is a symmetric function

of its arguments, i.e., dist(x1, x2) = dist(x2, x1), and (4) the triangular inequality is

satisfied, i.e., dist(x1, x2) ≤ dist(x1, x3) + dist(x3, x2) for any element x3 ∈ U .

These four conditions do not define the metric uniquely. In practice, metrics

are selected to be geometrically meaningful and easy to handle mathematically.

Usually, the distance between two vectors of the Euclidean space, x1, x2 ∈ Rm, is

defined as ‖x1 − x2‖ =
√

(x1 − x2)T (x1 − x2).

Motions are defined in the domain of dual numbers and the associated metrics

are dual number functions, selected to be analytic. If dist(R1,R2) is an analytic

function, its primal part is dist(R1, R2), where rotation tensors R1 and R2 are the

primal parts of motion tensors R1 and R2, respectively. Because the norm of dual

numbers is not defined, dual numbers cannot be compared. Consequently, dual

number metrics must satisfy the following four conditions: (1) the primal part

of the metric is non-negative, i.e., dist(R1, R2) ≥ 0, (2) the metric vanishes for

identical elements only, i.e., dist(R1,R2) = 0 if and only if R1 = R2, (3) the

metric is a symmetric function of its arguments, i.e., dist(R1,R2) = dist(R2,R1),

and (4) the triangular inequality is satisfied for the primal part of the metric, i.e.,

dist(R1, R2) ≤ dist(R1, R3) + dist(R3, R2) for any rotation R3.

With this definition, any metric in R for rotation can be extended to a corre-

sponding metric in D for motion simply by replacing the operation on real numbers

by the corresponding operation on dual numbers, as expected from the principle
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of transference. Metrics for rotation have been proposed based on various types of

representations of rotation: the rotation tensor [36, 37, 39, 40, 122–125] (defined in

R3×3), unit quaternions [36, 39, 40, 124, 125] (defined in R4), or rotation parameter

vectors [39,125,126] (defined in R3). Although rotation metrics can be defined based

on Euler angles [125, 126], these metrics are not invariant because Euler angles do

not form a vectorial representation of rotation. The next four sections present four

metrics of motion based on different types of representations of motion.

3.3.1 The matrix based metric

The first metric to be proposed is based on the expression of the motion tensor:

the distance between two motions, R1 and R2, is defined as the Euclidean distance

between the matrix representations in D3×3, leading to the matrix metric,

dist2
m(R1,R2) = ‖R1 −R2‖2

F = tr[(R1 −R2)T (R1 −R2)]

= 6− 2tr(R12),

(3.8)

where ‖ · ‖F denotes the Frobenius norm, and R12 = RT
1R2 denotes the relative

motion. Let φ12 = θ12 + ε d12 be the dual angle associated with relative motion

R12. The trace of the relative motion now becomes tr(R12) = 1 + 2 cos(φ12) and

introducing this result into eq. (3.8) yields

dist2
m(R1,R2) = 4(1− cosφ12) = 4(1− cos θ12) + ε 4d12 sin θ12. (3.9)
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Because the relative rotation angle θ12 ∈ [−π, π), the primal part of matrix metric

distm(R1, R2) ∈ [0, 2
√

2].

3.3.2 The quaternion based metric

If motions R1 and R2 are represented by dual quaternions q̂1 and q̂2, respec-

tively, the distance between the motions can be measured by the Euclidean distance

between the dual quaternion in D4, leading to the quaternion metric,

dist2
q(R1,R2) = ‖q̂1 − q̂2‖2 = ‖1̂− q̂12‖2 = 2− 2scal(q̂12)

= 2(1− cosφ12/2),

(3.10)

where notation ‖ · ‖ indicates the Euclidean norm and q̂12 = AT (q̂1)q̂2 is the dual

quaternion representing the relative motion. The second equality of eq. (3.10) re-

sults from the fact that matrix A is orthogonal for unit dual quaternions. Because

quaternions +q̂ and −q̂ represent the same motion, it is always possible to select

the signs of quaternions q̂1 and q̂2 to render the primal part of scal(q̂12) positive.

The primal part of matrix metric distq(R1, R2) is in the range of [0,
√

2].

3.3.3 The motion parameter vector based metric

Let p
12

be the motion parameter vector representing relative motion RT
1R2.

The Euclidean norm of the relative motion parameter vector in D3 leads to the

vector metric,

dist2
v(R1,R2) = ‖p

12
‖2. (3.11)
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Any of the vectorial parameterizations of motion presented in section 2.6 can be used

to define the distance. Selecting, for instance, the Euler-Rodrigues parameterization,

see section 2.6, leads to

dist2
v(R1,R2) = ‖p

12
‖2 = 4 sin2(φ12/2) = 2(1− cosφ12), (3.12)

which is half of the matrix metric defined by eq. (3.10). If the motion parameter

vector is selected as p = 4 sin(φ/4)n̄, the vector metric becomes

dist2
v(R1,R2) = ‖p

12
‖2 = 16 sin2(φ12/4) = 8(1− cosφ12/2), (3.13)

which is four times of the quaternion metric defined in eq. (3.10). Other choices of

the generating function will lead to other definitions of the metric.

3.3.4 The geodesic based metric

If motion parameter vector p = φn̄ is used, see section 2.6, vector metric (3.11)

becomes

dist2
g(R1,R2) = ‖axial[log(RT

1R2)]‖2 = φ2
12. (3.14)

The geodesic metric corresponds to the arc-length along the geodesic line on man-

ifold SO(3) starting from motion R1 and ending at motion R2, as discussed in

section [71]. The primal part of matrix metric distg(R1, R2) is in the range of [0, π].
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3.3.5 Properties of the four metrics

For reference, the definitions of the matrix, quaternion, and geodesic metrics

are listed in table 3.1. It is verified easily that all metrics satisfy the four conditions

required for a proper metric. The distance measures obtained with the matrix and

quaternion metrics are the same as those obtained with the vector metric based on

different choices of the motion parameter vectors within a multiplicative constant.

This does not mean, however, that the vector metric is well suited for global

motion interpolation. Indeed, the rotation parts of motion parameter vectors rep-

resent rotation with three parameters only, and hence, all encounter singularities,

as shown by Stuelpnagel [127]. In contrast, the matrix metric, which is based on a

nine-parameter representation of motion, is free of singularity over the entire range

of motions. Because a two-to-one correspondence exists between dual quaternions

and motion, the quaternion metric also encounters problems for global interpolation

of periodic motion.

Metric type Definition Value

Matrix metric distm = ‖R1 −R2‖F
√

4(1− cosφ12)

Quaternion metric distq = ‖q̂1 − q̂2‖2
√

2(1− cosφ12/2)

Vector metric distv = ‖p
12
‖

{√
2(1− cosφ12),√
8(1− cosφ12/2),

Geodesic metric distg = ‖axial[log(RT
1R2)]‖ φ12

Table 3.1: List of proposed metrics on SO(3). The two values listed for the vector
metric correspond to two choices of generating function: p = 2 sin(φ/2)n̄ and p =
4 sin(φ/4)n̄.
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A metric is objective and tensorial if

dist(RR1,RR2) = dist(R1,R2), (objective) (3.15a)

dist(R1R,R2R) = dist(R1,R2), (tensorial) (3.15b)

for all R,R1,R2 ∈ SO(3), respectively. Objectivity implies that the distance re-

mains unchanged under the superposition of a rigid-body motion. If the distance

remains unchanged when choosing a different body-fixed frame, it is tensorial, i.e.,

the distance is a tensor of order zero. All four metrics defined in table 3.1 are ob-

jective because they depend on the relative motion only, RT
1R2 = (RR1)T (RR2).

It is verified easily that the primal parts all four metrics are also tensorial although

their dual parts are not.

Under the superposition of rigid-body motion Rg, the motion tensors at the

grid points becomeRgRk. If the metric is left-invariant, dist(R,Rk) = dist(RgR,RgRk),

and hence, objective function (3.7) remains invariant under the superposition of

rigid-body motions. Therefore, interpolation scheme (3.7) is objective for any of the

four metrics listed in table 3.1.
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3.4 Interpolation based on the matrix metric

Using matrix metric (3.8), the objective function of minimization problem (3.7)

becomes

J(R,Rk) =
N∑
k=0

lk(η)[6− 2tr(RTRk)] = 6− 2tr(RTG) = 6− 2tr(S). (3.16)

According to definition (3.2.1), the minimization of this objective function re-

quires the satisfaction of stationarity condition δJ = 0, leading to δJ = −2tr(δS) =

2tr(δ̃uS) = 0, where δ̃u = RT δR is the virtual motion vector. Introducing trace

identity (A.3e) then yields δJ = −4δuTaxial(S) = 0, which implies that dual ma-

trix S must be symmetric. Definition (3.2.1) also requires the minimization of the

primal part of the objective function. The second variation of the objective func-

tion is δ2J = −4δuTaxial(δS) = 4δuTaxial(δ̃uS) and identity (A.3b) then yields

δ2J = 2δuT [tr(S)I − S]δu; the Hessian of the problem is [tr(S)I − S] and its pri-

mal part, [tr(S)I − S], must be positive-definite if the primal part of the objective

function is to be a minimum.

3.4.1 The implicit interpolation scheme

The solution of minimization problem (3.7) implies the vanishing of the ax-

ial part of matrix S. Using eq. (3.5) now yields axial(S) = axial(
∑
lkR

TRk) =
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∑
lkaxial(Sk) = 0 and finally

N∑
k=0

lk(η)sk(η) = 0, (3.17)

where sk(η) = axial(Sk(η)) = sinφk(η)n̄k(η) is the linear motion parameter vector,

see section 2.6, associated with relative motion matrix Sk(η) = RT (η)Rk. Because

relative motion parameter vector sk(η) is a nonlinear function of the unknown inter-

polated motion tensor R(η), interpolation scheme (3.17) is an implicit interpolation

scheme.

3.4.2 The polar decomposition approach

As implied by eq. (3.5), the interpolated motion is such that G = RS, where

dual matrix R is orthogonal and dual matrix S is symmetric; furthermore, matrix

[tr(S)I − S] must be positive-definite. The polar decomposition theorem (A.5.1)

provides a unique solution to this problem. This approach has been proposed by a

number of authors [13,23,128] and is a natural extension of the polar decomposition

of the deformation gradient tensor used in continuum mechanics.

3.4.3 The quaternion approach

The quaternion-based approach for the minimization of objective function (3.16)

was proposed by Davenport [129,130]. As shown in the paragraphs above, the mini-

mization of J is equivalent to the maximization of tr(S). In view of equation (2.23),
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the maximization of tr(S) is stated as

max
q̂∈{D4|q̂T q̂=1}

tr
[
RT (q̂)G

]
= max
q̂∈{D4|q̂T q̂=1}

q̂TW (G) q̂

= max
q̂∈D4,λ∈D

[
q̂TW (G) q̂ + λ(1− q̂T q̂)

]
,

(3.18)

where symmetric operator matrix W (G) is defined by eq. (2.24) and λ is the La-

grange multiplier used to enforce the normality constraint for dual quaternion q̂.

Variation with respect to λ gives the normality condition for dual quaternion q̂ and

variation with respect to q̂ yieldsW (G) q̂ = λq̂, which also implies λ = q̂TW (G) q̂.

In summary, the maximization problem requires λ to be the eigenvalue of matrix

W with the largest primal part.

The dual eigenvalue problem is recast as [W (G) + ε W ◦(G◦)](q̂ + ε q̂◦) =

(λ+ ε λ◦)(q̂ + ε q̂◦), which expands to

W (G)q̂ = λq̂, (3.19a)

W (G)q̂◦ +W ◦(G◦)q̂ = λq̂◦ + λ◦q̂. (3.19b)

Solution of eigenvalue problem (3.19a) yields λmax, the largest eigenvalue of W ,

and the associated eigenvector q̂. Combining eq. (3.19b) with normality condition

q̂T q̂◦ = 0 yields a linear system for the remaining unknowns

W (G)− λmaxI4 −q̂

−q̂T 0



q̂◦

λ◦

 = −


W ◦(G◦)q̂

0

 . (3.20)
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If dual matrix G happens to represent a motion, i.e., is orthogonal, eq. (2.25)

implies W (G) = 4q̂q̂T −I and the algorithm degenerates into the determination of

the unit dual quaternion associated with an orthogonal dual matrix. The process is

singularity free and yields a uniquely defined unit dual quaternion. The primal part

of this problem corresponds to the scheme proposed by Klumpp and Shepperd [116,

117] for the determination of the unit quaternion associated with an orthogonal

tensor.

3.4.4 Relationship between the two approaches

Let G = R(q̂p)S denote the solution of the minimization problem obtained

from the polar decomposition approach. Identity (2.26) now yields the following

result

W (G) = AT (q̂p)W (S)A(q̂p). (3.21)

Because matrix A is orthogonal, eq. (3.21) represents a similarity transformation

and hence, the eigenvalues of matrices W (S) and W (G) are identical.

Equation (2.24) provides the explicit expression of W (S) as

W (S) =

tr(S) 0

0T 2S − tr(S)I

 .

The eigenvalues of the primal part, W (S), can be found easily as [130–132] tr(S) =

√
λ3+
√
λ2+η

√
λ1,
√
λ3−
√
λ2−η

√
λ1, −

√
λ3+
√
λ2−η

√
λ1, and−

√
λ3−
√
λ2+η

√
λ1,

where
√
λ1 ≤

√
λ2 ≤

√
λ3 are the singular values of G, and η = ±1 depends on
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the sign of det(G), as discussed in section A.4. Clearly, the largest eigenvalue of

matrix W (S) is tr(S), the corresponding eigenvector is the identity quaternion, 1̂.

In view of the similarity transformation, the largest eigenvalue of matrix W (G) is

1̂ and the corresponding eigenvector is A(q̂p)1̂ = q̂p. Clearly, the solutions of the

polar decomposition and quaternion approaches are identical.

The polar decomposition and quaternion approaches have been presented inde-

pendently in the literature and the previous two sections show that both approaches

provide solutions of the same minimization problem. The present section proves that

these two solutions are identical, as expected.

Discussion 3.4.1. The matrix metric based interpolation can be summarized as

follows: (1) interpolate the matrix representations in Euclidean space D9 at the

grid points and (2) map the result back onto the manifold using the minimization

procedure. The second step of the process can be understood as a projection onto

the manifold via a “closest point projection,” the meaning of which depends on the

selected metric. Because the interpolation scheme operates on a set of redundant

variables (nine dual numbers), all singularities are avoided. On the other hand, the

projection operation is computationally expensive: indeed, both polar decomposition

and quaternion approaches require the solution of an eigenvalue problem.

Matrix metric based interpolation has been investigated by numerous authors

for rotation [18–21], and motion [18, 23]; both computer vision and finite element

applications were targeted. In the finite element method, the closest point projection

adds to the complexity of the formulation and hence, some authors [24,25,72] simply
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ignore this step, leading to simpler formulations. In spectral methods, the closest

point projection vanishes from the formulation naturally; it only arises as a post-

processing step if the interpolated field must be evaluated at intermediate locations

between the grid points [23].

Averaging of rotation have received considerable attention in many areas of

engineering. This problem is very similar to interpolation: in the case of averaging,

the weight functions lk(η) in eq. (3.7) are all set to unity. Matrix metric based av-

eraging has been investigated for rotation [36, 37, 39, 40, 124] and for motion [133].

The estimation of the orientation of spacecraft, crystals, or other objects from mea-

sured data leads to a rotation averaging problem, known as Wahba’s problem [134].

Approaches to the solution of this problem fall into two categories: (1) approaches

based on the polar decomposition theorem, or equivalently, on the singular value

decomposition [37, 124, 130, 135–138] and (2) approaches based on quaternion al-

gebra [129, 132, 138–140]. Both approaches can be extended easily from rotation to

motion by using dual entities. Clearly, the same concepts and tools are used for

interpolation and averaging.

The multiplicative decomposition of the deformation gradient tensor, G, into

a rotation tensor, R, and a stretch tensor, S, as G = RS, is a fundamental tool of

continuum mechanics [141, 142]. This decomposition is unique and is provided by

the polar decomposition theorem. This operation can be though of as finding rotation

tensor R that is the “closest point projection” of the deformation gradient tensor.
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3.5 Interpolation based on the quaternion metric

Using quaternion metric (3.10), the objective function of minimization prob-

lem (3.7) becomes

J(q̂) =
N∑
k=0

lk(η)[2− 2scal(ŝk)] = 2− 2scal[AT (q̂)ĝ] = 2− 2q̂T ĝ, (3.22)

where the second equality results from eq. (3.6) and the last from the definition of

matrix A in eq. (2.21). In general, dual quaternion ĝ is not unit.

In view of definition (3.2.1), the minimization of this objective function re-

quires the satisfaction of stationarity condition δJ = 0, leading to δJ = −2δq̂T ĝ =

−δuT [AT (q̂)ĝ] = 0̂. Note that the scalar part of δu always vanishes and hence, the

stationarity condition implies vec[AT (q̂)ĝ] = vec(ŝ) = 0, i.e., s = 0. Next, defini-

tion (3.2.1) requires the minimization of the primal part of the objective function,

J = 2− 2q̂T ĝ.

Stationarity condition s = 0 can be solved explicitly. Indeed, vec[AT (q̂)ĝ] = 0

implies s = −πq + ηg − q̃g = 0, where η = scal(q̂), q = vec(q̂), π = scal(ĝ), and

g = vec(ĝ). The solution of equation −πq+ηg− q̃g = 0 implies that vectors q and

g are parallel, i.e., ηg = πq. Multiplying this relationship by itself yields π2‖q‖2 =

η2‖g‖2 = (1− ‖q‖2)‖g‖2 and solving for ‖q‖2 leads to ‖q‖2 = ‖g‖2/(π2 + ‖g‖2) =

‖g‖2/‖ĝ‖2. Because q and g are parallel, ‖q‖2 = ‖g‖2/‖ĝ‖2 implies q = g/‖ĝ‖.

Introducing q = g/‖ĝ‖ into identity ηg = πq yields to η = π/‖ĝ‖. Combining the
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scalar and vector parts leads to

q̂ =
ĝ

‖ĝ‖
=

∑N
k=0 lk(η)q̂k

‖
∑N

k=0 lk(η)q̂k‖
. (3.23)

Because AT (q̂) is orthogonal, the norms of relative dual quaternion ŝ becomes

‖ŝ‖2 = [AT (q̂)ĝ]T [AT (q̂)ĝ] = ‖ĝ‖2. Because the vector part of ŝ vanishes, it follows

that ŝ = ‖ĝ‖1̂. The only singularity that can arise in eq. (3.23) is the vanishing

of the denominator, i.e.,
∑N

k=0 lk(η)q̂k = 0; this hardly ever happens in practical

problems.

To guaranty that the primal part of the objective function, J(q̂) = 2 − 2q̂T ĝ,

reaches its minimum, its Hessian should be positive-definite. Taking the second-

order variation of J(q̂) leads to

δ2J = −δψTvec[AT (δq̂)g] = −δψTvec[AT (δq̂)A(q̂)ŝ]

= δψTvec[A(δ̂ψ/2)ŝ] = 1/2 σδψT δψ,

(3.24)

where σ = scal(ŝ). As discussed in section 3.3.2, it is always possible to select the

sign of q̂ to render σ non-negative and hence, the primal part of the Hessian, σI, is

positive semi-definite; the stationary point is a minimum, as required.

In summary, the closed-form solution of the quaternion-metric based interpo-

lation scheme is

q̂ =
ĝ

γ
, (3.25)
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where

γ = ‖ĝ‖ = ‖ŝ‖ =
√
π2 + ‖g‖2. (3.26)

The solution of the minimization problem was established by Sonneville et al. [32].

Although the quaternion-metric based interpolation scheme was formulated as a

minimization problem, it can also be stated as

s =
N∑
k=0

lk(η)sk = 0, (3.27a)

ŝ =
N∑
k=0

lk(η)ŝk = γ1̂. (3.27b)

Discussion 3.5.1. The quaternion metric based interpolation can be summarized as

follows: (1) interpolate the quaternion representations in Euclidean space D4 at the

grid points and (2) map the result back onto the manifold using the minimization

procedure. The second step of the process is a projection onto the manifold via a

“closest point projection.” For the quaternion metric, the closest point projection

corresponds to a simple orthonormalization of the interpolated dual quaternion, as

implied by eq. (3.23).

Because the interpolation scheme operates on a set of redundant variables (4

dual numbers), singularities are avoided. This does not imply, however, that quater-

nion metric based interpolation can be used in all cases: the two-to-one correspon-

dence between unit dual quaternion and motions may cause the interpolation of a

periodic motion to be either discontinuous or non-periodic. Section 3.9.2 presents

examples of these problems.
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Quaternion metric based interpolation has been investigated by numerous au-

thors for rotation [18, 19] and motion [18, 22, 32, 143]. Furthermore, quaternion

metric based averaging has been investigated for rotation [36, 40, 124]. The scheme

can be described simply as “the interpolated frame is the normalized weighted average

of the nodal bi-quaternions; the weighting factors are the classical polynomial shape

functions.” Although the interpolated frame can be written in an explicit manner,

the interpolated motion is a nonlinear function of the nodal motions.

3.6 Interpolation based on the vector metric

Using vector metric (3.11), the objective function of minimization problem (3.7)

becomes

J(s) =
N∑
k=0

lk(η)‖p
k
‖2, (3.28)

where p
k

= pk(φk)n̄k denotes an arbitrary motion parameter vector corresponding

to relative motion tensor RTRk. In view of definition (3.2.1), the minimization of

this objective function requires the satisfaction of stationarity condition δJ = 0,

leading to

δJ = 2
N∑
k=0

lk(η)pT
k
δp

k
= −2

N∑
k=0

lk(η)pT
k
T−1(−p

k
)δu

= −2δuT
N∑
k=0

lk(η)
dpk
dφk

p
k

= 0,

(3.29)

where eq. (2.55a) and the expression of tangent tensor (2.49) were used to obtain the

second and third equalities, respectively. The stationarity of the objective function
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requires
N∑
k=0

lk(η)
dpk
dφk

p
k

= 0, (3.30)

where φk is the dual angle associated with relative motion parameter vector p
k
.

Consider, for instance, motion parameter vector p
k

= m sin(φk/m)n̄k. Ele-

mentary trigonometric identities yield (dpk/dφk) pk = m/2 sin(2φk/m)n̄k, which

amounts to using a different motion parameter vector, sk = (dpk/dφk) pk. Equa-

tion (3.30) becomes
N∑
k=0

lk(η)sk = 0. (3.31)

This equation defines the interpolated motion implicitly and hence, it must be solved

numerically, typically via Newton iteration, to determine the interpolated motion.

This approach yields good results for as long as the motion parameter vector does

not encounter singularities.

The minimization of the objective function J also requires its primal part,

J =
∑N

k=0 s
T
k sk, to achieves its minimum, which implies that the Hessian of J

should be positive-definite. Taking the second-order variation of J leads to

δ2J = 2δψT
N∑
k=0

lk(η)T−1(−sk)δψ, (3.32)

where sk is the primal part of sk. Introducing the tangent tensor defined by eq. (2.49)

and identity (3.2) into eq. (3.32), yields

δ2J = 2δψT

[
N∑
k=0

lk(η)(a0,kI + a2,ks̃ks̃k)

]
δψ = δψTH δψ. (3.33)
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In general, the Hessian of the problem, H is not positive-definite and hence, existence

of the solution of minimization problem cannot be guaranteed. For small relative

rotation motions sk → 0 and H → 2I; the Hessian now becomes positive-definite

and the minimization problem can be solved.

Discussion 3.6.1. The vector metric based interpolation have been used by numer-

ous authors in the framework of the finite element method [13, 16, 20, 144], where

interpolation of the rotation field within an element is required. As the size of the

element decreases, the relative rotation within the element also decreases. Singulari-

ties are avoided and a unique solution of implicit interpolation scheme (3.31) exists.

Similarly, interpolation schemes based on motion parameter vectors provide suitable

schemes for the interpolation of motion [13].

Interpolation scheme (3.31) is akin to that proposed by Merlini and Moran-

dini [31, 145] who used the Cartesian motion vector presented in section 2.6 for

the interpolation. It can be described as follows: “the weighted average of the rela-

tive nodal motion parameter vectors vanishes; the weighting factors are the classical

polynomial shape functions.” Clearly, the scheme depends on the choice of a motion

parameter vector; different choices lead to slightly different interpolated motions.

The quaternion- and vector-metric based interpolation schemes are identical when

the latter uses the Euler-Rodrigues motion parameter vector.
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3.7 Interpolation based on the geodesic metric

The geodesic metric is obtained by using motion parameter vector p = φn̄

and hence, is a particular case of the vector metric presented in section 3.6. All the

developments presented in that section apply to the geodesic metric. In particular,

the stationarity condition of the objective function becomes

N∑
k=0

lk(η)sk = 0, (3.34)

which implies that the weighted sum of the relative motion vectors vanishes. The

Hessian of the problem is

H = 2

[
I +

N∑
k=0

lk(η)χ2,ks̃ks̃k

]
. (3.35)

As was the case for the vector metric, the Hessian is not positive-definite, in general.

When the relative motions remain small, the Hessian becomes positive-definite.

Motion parameter vector φkn̄ is singularity free in the range θk ∈ [−π, π) and

Newton iteration provides an efficient solution of implicit interpolation scheme (3.34)

for |θk| < π. As |θk| approaches π, Newton iteration fails to converge. Buss and

Fillmore [34] proposed a fixed point iteration method for rotation interpolation that

was later extended by Kavan et al. [22] for motion interpolation. These approaches

also fail to converge as |θk| approaches π, a situation commonly encoutered in global

interpolation.
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Discussion 3.7.1. As an example of interpolation scheme (3.34), consider interpo-

lation between two grid points using linear shape functions, (1−η)/2axial[log(RTR1)]+

(1 + η)/2axial[log(RTR2)] = 0. It is verified easily that the explicit interpolation

formula is

R = R1 exp[k̃(1 + η)/2] = R2 exp[−k̃(1− η)/2], (3.36)

where q
12

= axial[log(RT
1R2)]. The interpolation leads to the geodesic on SO3 pass-

ing through R1 and R2.

The rotation portion of interpolation scheme (3.36) is the spherical linear in-

terpolation (SLERP) first proposed by Shoemake [26] for computer animation appli-

cations. When expressed in terms of dual quaternion, interpolation scheme (3.36)

becomes the Screw Linear Interpolation (ScLERP) developed by Kavan et al. [22,

143, 146]. Because it is limited to local interpolation, scheme (3.34) has been used

in the finite element framework. Borri and Bottasso [28] and Ghosh and Roy [60]

developed constant-strain element based on SLERP. Merlini and Morandini [67,147]

proposed motion interpolation scheme (3.34) for beams, plates, and shells. The same

approached was followed by Sander [68,148] and Sonneville et al. [29,69]. Buss and

Fillmore [34] were the first to recast rotation interpolation schemes as minimization

problems using the geodesic metric. More recently, Sander [68,148] proposed geodesic

metric based finite elements for which the motion interpolation was obtained by solv-

ing optimization problem (3.28) directly. Numerous authors [33,37,39,40] have also

cast the problem of averaging of rotations through a minimization approach.
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3.8 The incremental motion and curvature fields

Sections 3.4, 3.5, 3.6, and 3.7 have focused on the interpolation of motion

based on the matrix, quaternion, vector, and geodesic metrics, respectively. It is

remarkable that all these approaches to the interpolation of motion can be recast in

the form of an implicit interpolation formula

N∑
k=0

lk(η)sk(η) = 0. (3.37)

For the matrix, quaternion, and geodesic metric based interpolation schemes, rel-

ative motion parameter vectors sk are the linear, Euler-Rodrigues, and Cartesian

motion parameter vectors associated with relative motion tensors Sk(η) = RT (η)Rk,

respectively, see section 2.6. A linearization of eq. (3.37) leads to

δu = [
N∑
i=0

liT
−1(−si)]−1

N∑
k=0

lkδuk, (3.38)

where identity (3.2) is introduced. Similarly, taking a derivative of eq. (3.37) leads

to

k = [
N∑
i=0

liT
−1(−si)]−1

N∑
k=0

l′ksk. (3.39)

The interpolations in eqs. (3.38) and (3.39) can be simplified in three cases

listed in the following paragraphs.

• The dual SLERP in eq. (3.36). Taking a linearization and derivative with
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eq. (3.36) leads to

∆u(η) =

[
I3 −

1 + η

2
T (−s0)T−1(s01)

1 + η

2
T (−s0)T−1(s01)

]
∆û

def
= Lu∆û,

(3.40a)

k(η) =
1

2
s01, (3.40b)

where ∆ûT = {∆uT0 , . . . ,∆uTN} and identity (2.55b) is used to yield the equal-

ity. Linearization of eq. (3.40b) yields

∆k(η) =
1

2

[
−T−1(−s01) T−1(s01)

]
∆û

def
= Lv∆û. (3.41)

• Quaternion metric based interpolation

∆u(η) =
1

σ

N∑
k=0

lk(η)T−1(sk)∆û
def
= Lu∆û, (3.42a)

k(η) =
1

σ

N∑
k=0

l′k(η)sk =
N∑
k=0

l′krk, (3.42b)

where σ =
∑N

k=0 lk(η)s0k, s0k =
√

1− sTk sk/4, and rk = sk/σ. Linearization

of eq. (3.42b) yields

∆k(η) = −(
1

σ

N∑
k=0

l′ks0kI −
1

2
k̃)Lu∆û+

1

σ

N∑
k=0

[l′kT
−1(sk) +

1

4
lkks

T
k ]∆uk

def
= Lv∆û.

(3.43)

• In the spectral formulation, the grid points are co-located with quadrature
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points, as discussed in appendix (B.4). For this type of problem, the curva-

ture vector at the quadrature points points ηj, j = 0, 2, . . . , N have simple

expressions

k(ηj) =
N∑
k=0

l′k(ηj)sjk. (3.44)

Linearization of eq. (3.44) yields

∆k̂ = B∆û, (3.45)

where k̂
T

= {kT0 , . . . ,kTN} and matrix B is composed of (N + 1) × (N + 1)

sub-matrices of size 6× 6. Notation [·]jk indicates the sub-matrix of size 6× 6

at location (j, k), j, k = 0, . . . , N ,

[B]jk =


k̃j −

∑N
i=0 l

′
i(ηj) T

−1(sji), for k = j,

l′k(ηj)T
−1(sjk), for k 6= j.

(3.46)

For all the first two cases, the following extended notations are introduced

when used in static or dynamic problem

∆u = Lu∆̂u, (3.47a)

∆k = Lv∆̂u, (3.47b)

where each dual submatrix of size 3×3 in Lu and Lv are recast to submatrix of size

6× 6 according to transformation (2.60). Similarly, extended notation of eq. (3.45)
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in spectral formulation is

∆k̂ = B ∆̂u. (3.48)

3.9 Numerical examples

A set of numerical examples will be presented to validate the proposed in-

terpolation approaches. The use of Chebyshev spectral functions, Fourier spectral

functions, and cubic B-spline interpolation functions will be demonstrated. Many of

the interpolation schemes described in sections 3.4 to 3.7 have been used for finite

element applications. Within that framework, local interpolation is sufficient and

typically, Lagrange’s polynomials are used as basis functions [149, 150]. Numerous

numerical examples can be found in the literature cited in sections 3.4 to 3.7 and

will not repeated here.

3.9.1 Interpolation of non-periodic motion

To validate the various interpolation schemes, a simple example is presented.

Figure 3.2 shows a three-dimensional curve described by parametric equation r(θ) =

ρ(θ) cos θı̄1 + ρ(θ) sin θı̄2 + p(θ)θı̄3, where ρ(θ) = 1 + 1/3[2θ/T − 1]2 + 1/5 [1 −

cos(11 θ/T )] and p(θ) = 2 + 2/11 θ/T + 1/7 sin(7 θ/T ) are the radius and pitch of

the curve, respectively, and T = 3π. At an arbitrary point B of the curve, Frenet-

Serret’s orthonormal triad B = (t̄, n̄, b̄) is defined by the unit tangent, normal, and

binormal vectors denoted t̄, n̄, and b̄, respectively. Rotation tensor R(θ) brings

inertial basis I = (̄ı1, ı̄2, ı̄3) to B. Point B and basis B define a frame FB = [B,B].
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Motion tensor R(η) brings inertial frame FI = [O, I] to FB. The components of

the tangent and curvature vectors resolved in basis B are (RT r′)T = {‖r′‖, 0, 0} and

ω = axial(RTR′) = {η, 0, κ}T , where notation (·)′ indicates a derivative with respect

to θ.

I
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n
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Figure 3.2: Configuration of the curve.
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Figure 3.3: The twist (solid line) and curvature (dashed line) of the helix.
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The twist η and curvature κ of the curve, defined as

η = ‖r′‖r
′T r̃′′r′′′

‖r̃′r′′‖2
, andκ =

‖r̃′r′′‖
‖r′‖

,

are shown in fig. 3.3 a functions of non-dimensional parameter η = θ/T .

Motion field R(θ) was interpolated based on the proposed schemes using

Chebyshev spectral functions, see appendix B.6, with an increasing number of

grid points, N = 8, 16, 32, 64, 128. To assess the accuracy of the interpolation,

each grid interval [ηk, ηk+1] was divided into 50 subintervals and notation (·)j, j =

0, 1, · · · , 50N indicates quantities evaluated at the sub-grid points. Interpolated

rotations and curvatures were evaluated and compared to their exact counterpart,

denoted (·)e. The following measures were selected to quantify errors in orientation

and curvature,

ER =
50N∑
j=0

distm(Rj −Re
j)

50N
, Eω =

50N∑
k=0

‖ωj − ωe
j‖

50N
. (3.49)

Figure 3.4 shows the orientation and curvature error measures defined by

eq. (3.49) versus the number of grid points on a logarithmic plot for two interpola-

tion schemes: interpolation scheme (3.7) with matrix metric (3.8) and interpolation

scheme (3.7) with quaternion metric (3.10).

Next, the position and tangent vector errors were quantified using the following

measures,

Er =
50N∑
j=0

‖rj − re
j‖

50N
, Ev =

50N∑
k=0

‖r′ − re′
j ‖

50N
. (3.50)
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Figure 3.4: Chebyshev spectral interpolation error for orientation and curvature
vector; distm: (◦), distq: (�). Orientation error, ER, dashed-dotted lines; curvature
error, Eω, dashed lines.

Figure 3.5 shows the position and tangent vector error measures defined by eq. (3.50)

versus the number of grid points on a logarithmic plot for the same two interpolation

schemes. Figures 3.4 and 3.5 show that all error measures converge exponentially,

as expected of spectral interpolation. The curvature based interpolation is more

accurate than the matrix and quaternion metric based approaches, whose accuracies

are comparable.

Next, the same problem was treated using the cubic B-spline interpolation

functions described in appendix B.8. An increasing number of grid points was used,

N = 8, 16, 32, 64, 128. Figure 3.6 shows the orientation and curvature error measures

defined by eq. (3.49) versus the number of grid points on a logarithmic plot for the

same two interpolation schemes. Figure 3.7 shows the corresponding position and

tangent vector error measures defined by eq. (3.50).
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Figure 3.5: Chebyshev spectral interpolation error for position and tangent vectors;
distm: (◦), distq: (�). Position vector error, Er, dashed-dotted line; tangent vector
error, Ev, dashed line.

Because the cubic B-spline interpolation functions are local, the exponential

convergence property observed with the Chebyshev spectral functions no longer

holds. Figures 3.6 and 3.7 show that the convergence rates are 4.5 for the orientation

and position vector errors and 3.5 for curvature and tangent vector errors, for both

matrix and quaternion metric based approaches. Convergence rates are one order

higher when the curvature based interpolation is used. The accuracies of the matrix

and quaternion metric based approaches are comparable.

3.9.2 Interpolation of periodic motion

Many flexible multibody systems feature a periodic response. One way of

obtaining these periodic solutions is to implement Fourier spectral methods that

impose periodicity of the solution through the use of Fourier basis functions. A pre-
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Figure 3.6: Cubic B-spline interpolation error for orientation and curvature vector;
distm: (◦), distq: (�). Orientation error, ER, dashed-dotted line; curvature error,
Eω, dashed line.

requisite of this approach is the ability to interpolate the solution over one complete

period based on its value at grid points. To achieve the exponential convergence

promised by Fourier spectral methods, the interpolated field must be continuous

and periodic.

Clearly, vector metric based interpolation schemes are not suitable for this

problem because all motion parameter vectors present singularities when interpo-

lating large rotations [127]. Although quaternions present no singularities for large

rotations, quaternion metric based interpolation schemes are equally unsuitable for

periodic problems. Indeed, the two-to-one mapping between quaternion representa-

tions and motion produce interpolated fields that are either continuous or periodic,

but not both. The two-to-one mapping arises from the fact that quaternions +ê and

−ê represent the same motion.
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Figure 3.7: Cubic B-spline interpolation error for position and tangent vectors;
distm: (◦), distq: (�). Position vector error, Er, dashed-dotted line; tangent vector
error, Ev, dashed line.

To illustrate this insidious problem, consider the periodic rotation field de-

scribed by the following time functions of the Euler angles: precession φ = Ωt,

nutation θ = π/13 sin(2Ωt), and spin ψ = π/17 [1 − cos(3Ωt)], where Ω = 9 rad/s.

The algorithm of Klumpp and Shepperd [116, 117] was used to extract the quater-

nion representation of this rotation field and fig. 3.8 shows that components e2(t)

and e4(t) present a discontinuity at φ ≈ 3π/2. This discontinuity stems from the

extraction algorithm: the sign of the extracted quaternion is selected to avoid singu-

larities, not discontinuities. Note that components e2(t) and e4(t) are discontinuous

but periodic.

In an attempt to overcome this problem, Klumpp and Shepperd’s algorithm

can be modified slightly to prevent the change of sign of the quaternion, resulting

in the second set of results shown in fig. 3.8. Discontinuities are eliminated but
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Figure 3.8: Quaternion components e2 and e4 extracted from a periodic rotation
field. Discontinuous e2: (�), and e4: (◦). Non-periodic e2: (∗), and e4: (+).

quaternion components e2(t) and e4(t) now become non-periodic because their time

derivatives at φ = 0 and 2π differ.

This lack of periodicity stems the definition of quaternions, e0(t) = scal(ê) =

cos θ(t)/2 and e(t) = vec(ê) = n̄ sin θ(t)/2: although angle θ(t) is a periodic function

of period T , functions cos θ(t)/2 and sin θ(t)/2 are periodic functions but of period

2T . This observation hints at another potential solution: the period of the problem

is taken to be 2T rather that T , leading to interpolated fields that are continuous

and periodic.

Figure 3.9 shows interpolated quaternion component e4(t) when using different

interpolation strategies with 63 grid points. First, when the non-periodic quater-

nion field is interpolated, a sharp peak occurs near φ = 2π, resulting from the

discontinuity of the velocity field. Second, when the discontinuous quaternion field
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Figure 3.9: Quaternion component e4. Exact solution: (◦); interpolation of non-
periodic field on T : (+); interpolation of discontinuous field on T : (∗); interpolation
on 2T : (�).

is interpolated, the interpolation scheme capture the discontinuity, but oscillations

result. Finally, if the interpolation scheme is applied to the problem with a period

of 2T , the interpolated field matches its exact counterpart closely.

Figure 3.10 shows the corresponding results for angular velocity of preces-

sion. For the interpolation of non-periodic or discontinuous quaternions, Gibbs’

phenomenon arises resulting in violent oscillations in the velocity field. If the inter-

polation scheme is applied to the problem with a period of 2T , a smooth velocity

field is obtained.

While the interpolation based on a period of 2T seems to yield reasonable

results, it comes with a considerable decrease in accuracy. Figure 3.11 illustrates

this point: the convergence of the matrix and quaternion metric based interpolations

are contrasted, showing the clear superiority of the former approach.
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Figure 3.10: Velocity component R T ṙ. Exact solution: (◦); interpolation of non-
periodic field on T : (+); interpolation of discontinuous field on T : (∗); interpolation
on 2T : (�).

Clearly, the best scheme for the interpolation of periodic rotation fields is the

matrix metric based scheme. To further illustrate approach, a periodic motion field

is interpolated. The rotation is described by the following time functions of the Euler

angles: precession φ = t, nutation θ = π/11 sin(5t), and spin ψ = π/7[1 − cos(3t)].

The position vector is described by its three components, r1(t) = cos(t)+1/7 sin(3t),

r2(t) = sin t+ 1/9[1− cos(5t)] and r3(t) = 1/7 sin(7t) + 1/9[1− cos(9t)].

First, this periodic motion was interpolated using Fourier spectral basis func-

tions with an increasing number of grid points, N = 4, 8, 16, 32, 64, 128. Figure 3.12

shows the orientation and angular velocity error measures defined by eq. (3.49) ver-

sus the number of grid points on a logarithmic plot for interpolation scheme (3.7)

with matrix metric (3.8). Figure 3.13 shows the corresponding results for the posi-

tion and velocity vectors error measures defined by eq. (3.50).
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Figure 3.11: Fourier spectral interpolation error; distm: (◦), distq: (�); error of
rotation ER: dashed-dotted line, error of angular velocity Eω: dashed line.

Next, the periodic motion was interpolated using cubic B-spline basis func-

tions with an increasing number of grid points, N = 4, 8, 16, 32, 64, 128. Figure 3.14

shows the orientation and angular velocity error measures for the same interpolation

schemes. Figure 3.15 shows the corresponding results for the position and velocity

vectors error measures. As was observed for non-periodic problems, a convergence

rates of 4.5 is observed for the orientation and displacement errors whereas a con-

vergence rate of 3.5 is achieved for the linear and angular velocity vectors when

using the matrix metric approach. Convergence rates are one order higher when the

velocity based interpolation is used.
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3.10 Summaries and conclusions

The classical interpolation schemes formulated for the Euclidean space have

been recast as the minimization of weighted distance measures. It then becomes

possible to use the same schemes for the motion manifold, provided that adequate

metrics of this manifold are defined. Four metrics were defined: the matrix, quater-

nion, vector, and geodesic metrics. The advantages and drawbacks of each scheme

were discussed and the relationship of the derived schemes with schemes that have

appeared in the literature were clarified.

The problem of global interpolation was given special attention. Global in-

terpolation schemes must be able to handle motions of arbitrary magnitude, in

contrast with local interpolation schemes that can deal with small relative motions

only. Schemes based on the matrix metric and on the interpolation of derivatives
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Figure 3.13: Fourier spectral interpolation error for position and velocity vectors.
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were found to be suitable for global interpolation problems; because they encounter

singularities in the presence of large motions, the other schemes failed to provide

reasonable solutions. Schemes based on the quaternion metric were found to be suit-

able for interpolation of non-periodic motion but not for that of periodic motion.

The two-to-one mapping between quaternions and motions produces interpolated

fields that are either continuous or periodic, but not both. Although this issue can

be resolved by interpolating on a double period, this practice results in a severe

reduction of accuracy. All the schemes presented in this paper are suitable for local

interpolation problems, such as those found in the finite element method. The ac-

curacy of the schemes based on the four metric were found to be similar, provided

that the same basis functions and grid points are used.
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Chapter 4: Galerkin Method in Spatial Domain: Beam Formulation

This chapter focuses on the formulation of geometrically exact beam, which

is an application of the continuous Galerkin method to a two-point boundary value

problem in spatial domain.

4.1 Kinematics of the problem

Figure 4.1 depicts an initially curved and twisted beam with a cross-section of

arbitrary shape. The volume of the beam is generated by sliding the cross-section

along the reference line of the beam, which is defined by an arbitrary curve in space

denoted C. Curvilinear coordinate s defines the arc-length of C. Point B is located

at the intersection of the reference line with the plane of the cross-section.

Frame F0 =
[
B,B0 = (b̄1, b̄2, b̄3)

]
defines the cross-section in the reference con-

figuration. The plane of the cross-section is determined by two mutually orthogonal

unit vectors, b̄2 and b̄3. The reference point and orientation of the cross-section

change as it slides along curve C and hence, frame F0 is a function of arc-length

coordinate s. In the deformed configuration, the cross-section is defined by frame

F =
[
B,B = (B̄1, B̄2, B̄3)

]
. The motion tensors that bring frame FI to F0 and FI
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Figure 4.1: Configurations of a geometrically exact beam.

to F are

R0(s) = R0 + εr̃0R0, (4.1a)

R(s) = R + εr̃R, (4.1b)

respectively. Therein r0 and r are the position vector of material point B in the

initial and deformed configurations; rotation tensor R0 and R bring basis I to basis

B0 and to basis B, respectively.

The beam’s dual curvature vector in its initial and deformed configuration are

k̃ 0 = RT
0R

′
0 = k̃0 + εt̃0, (4.2a)

k̃ = RTR′ = k̃ + εt̃, (4.2b)

respectively; Therein notation (·)′ indicates a derivative with respect to coordinate
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s; t0 = RT
0 r
′
0 and k0 = axial(R0R

′
0) are the tangent and curvature vector in the

initial configuration, respectively; t = RT r′ and k = axial(RR′) are the tangent and

curvature vector in the deformed configuration, respectively. The sectional strain

measures [49] of the beam are defined as the differences between the curvature

vectors in the deformed and reference configurations

e = k − k0. (4.3)

4.2 Interpolation of rigid-body motion

Consider a beam element with a non-dimensional coordinate η ∈ [−1, 1] along

its axis; the end points of the beam are located at η = ±1. In the spectral for-

mulation, the nodes are located at the GLL points, ηGLLk , k = 0, . . . , N . The N

Gauss points are denoted as µi, i = 0, . . . , N − 1. The configuration of the beam

is defined by the nodal values of the motion tensors, denoted as Rk, k = 0, . . . , N .

The interpolated motion tensor at point η is denoted as R, as indicated in fig. 4.2.

The relative motion tensor from η to ηGLLk and from ηGLLj to ηGLLk are RTRk and

RT
j Rk, j, k = 0, . . . , N , respectively. The motion parameter vectors associated with

relative motion tensors, RTRk and RT
j Rk, are denoted as sk and sjk, respectively;

the linear, Euler-Rodrigues, and Cartesian motion parameter vectors will be used in

this work. Let arrays ∆ûT = {∆uT0 , . . . ,∆uTN} and ∆k̂
T

= {∆kT0 , . . . ,∆kTN} store

the nodal incremental motion and generalized curvature vectors, respectively.

As discussed in chapter 3, the curvature vector resulting from the interpolation
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Figure 4.2: Interpolation of rigid-body motion in a spectral element, GLL points:
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can be found as

k(ξ) =

[
N∑
k=0

lk(ξ)T
−1(−q

k
)

]−1 N∑
k=0

l′k(ξ)qk. (4.4)

The curvature vector at the nodes (the GLL points) is

kj =
1

Jj

N∑
k=0

l′k(ηj)sjk, (4.5)

where lk denote Lagrange’s polynomial based on Gauss-Lobatto abscissæ, see ap-

pendix (B.4), and Jj is the Jacobian associated with the transformation from the

arc-length coordinate s to the non-dimensional coordinate η. The curvature field

over one element is constructed by interpolating the nodal curvatures. This ap-

proach was pioneered by Bathe and Dvorkin [151]: the nodes, or GLL points, are

used as tying points. The following assumed curvature field is introduced

k(η) =
N−1∑
i=0

¯̀
i(η)

[
j=N∑
j=0

lj(η
G
j )kj

]
, (4.6)

where ¯̀
i(η), i = 0, 1, . . . , N−1 are Lagrangian polynomials based on Gauss-Legendre

abscissæ defined in appendix (B.4), and kj are the curvatures at the GLL points

defined in eq. (4.5). Clearly, the assumed curvature fields are polynomials of degree
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N−1. Because the Gauss points are located at the zeros of the Legendre polynomial

of degree PN+1(η), the assumed curvatures equal the true curvatures at the Gauss

points if the true curvature (4.4) are polynomials of degree N . Because quantities

dj,k and lj(η
G
j ) are numerical values, the linearization of assumed curvature field

only requires the linearization of curvature expressions at the nodes, kj.

4.3 Governing equations

The governing equations of the problem will be derived from Hamilton’s prin-

ciple. Inertial effects due to sectional warping can be ignored for beams undergoing

low frequency motion, i.e., frequencies whose associated wave lengths are much

longer than the dimensions of the cross-section [53, 152]. After integration over the

cross-section of the beam, the kinetic energy can be found as

K =
1

2

∫
vTM v ds =

1

2

∫
vTp ds, (4.7)

where array p = M v stores the components of the momentum vector resolved in

the material frame. The sectional mass matrix, M , is defined as

M =

mI3 mq̃Tc

mq̃c %B

 , (4.8)

where m is the sectional mass per unit span, vector q
c

is the position vector of the

sectional center of mass with respect to reference point B, and tensor %B, of size

3× 3, is the sectional mass moment of inertia per unit span computed with respect
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to point B. Taking a variation of the kinetic energy expressed by eq. (4.7) gives

δK =
∫
δvTM v ds. Using compatibility relationships (2.45b) and integrating by

parts then leads to

δK = −
∫
δuT

(
ṗ− ṽTp

)
ds. (4.9)

Sectional warping leads to strain components of the same order as those due

to rigid-section motion and hence, warping effects must be taken into account when

evaluating the strain energy. Hodges et al. [44, 46, 47] have shown that the three-

dimensional beam problem can be decomposed into a linear, two-dimensional analy-

sis over the cross-section, and a nonlinear, one-dimensional analysis along the beam’s

span. Those authors used the variational asymptotic method to reach this conclu-

sion. More recently, the same conclusion was reached by Bauchau and Han [48, 49]

using the Hamiltonian formalism. A byproduct of the two-dimensional sectional

analysis is the sectional stiffness matrix, D, of size 6× 6, which takes into account

the warping effects due to geometric complexity and material heterogeneity of the

cross-section. The strain energy can be found as

V =
1

2

∫
eTD e ds =

1

2

∫
eTf ds, (4.10)

where vector f = D e, of size 6× 1, stores the sectional stress resultants resolved in

the material frame and vector e, of size 6×1, stores the components of the sectional

deformation measures resolved in the material frame as defined by eq. (4.3).

Taking a variation of the strain energy expressed by eq. (4.10) gives δV =
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∫
δeTD e ds. Using the compatibility relationships of eq. (2.45c), variation of the

strain energy becomes

δV =
1

2

∫ (
δu ′TF + δuT k̃ Tf

)
ds = −

∫
δuT

(
f ′ − k̃ Tf

)
ds, (4.11)

where the second equality results from integrating by parts.

For the problem at hand, the virtual work done by the externally applied forces

is expressed as

δW =

∫
δuT l ds, (4.12)

where vector lT = {nT mT}, of size 6 × 1, stores the components of the externally

applied force, n, and moment vector, m, per unit span of the beam, respectively,

resolved in the material frame.

The principle of virtual work states that δV − δK − δW = 0, introducing

eqs. (4.9), (4.11) and (4.12) leads to
∫

[δuT (ṗ− ṽTp+ k̃ Tf − l) + δuTf ] ds = 0 and

the weak form of the governing equations of motion then result from integration by

parts ∫
δuT

[
ṗ− ṽTp− f ′ + k̃ Tf − l

]
ds = 0. (4.13)

Because the virtual motion vector is arbitrary, the strong form of the governing

equations becomes (
ṗ− ṽTp

)
−
(
f ′ − k̃ Tf

)
= l, (4.14)

where the first and second terms on the left-hand side are the contributions of inertial

and elastic forces, respectively.
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4.4 Finite element formulation

The virtual motion and velocity vectors are interpolated within the elements

as

δu =
N∑
k=0

lk(η)δuk = L(η) δ̂u, (4.15a)

v =
N∑
k=0

lk(η)vk = L(η) v̂ , (4.15b)

where lk(η) denote Lagrange’s polynomial based on Gauss-Lobatto abscissæ, L(η) =

[l0I6, . . . , lNI6] stacks all the shape functions, δ̂u
T

= {δuT0 , . . . , δuTN} and v̂T =

{vT0 , . . . , vTN} store the nodal values for motion increments and velocities, respec-

tively. Introducing the interpolation into the weak form of the governing equa-

tions (4.13) and using quadrature rules will yield the discretized governing equations

M̄ ˙̂v − f̂
iner

+ f̂
int

= f̂
ext
, (4.16)
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where the mass matrix M̄ , gyroscopic force f̂
iner

, elastic force f̂
int

, and external force

f̂
ext

are defined as

M̄ =

∫ 1

−1

JLTM L dη,

f̂
iner

=

∫ 1

−1

JLT ṽTM v dη,

f̂
int

=

∫ 1

−1

[
L′TD e + JLT k̃ T (η)D e

]
dη,

f̂
ext

=

∫ 1

−1

JLTf ext dη,

(4.17)

where J = ds/dη is the Jacobian associated with the coordinate transformation.

A linearization of gyroscopic force f̂
iner

yields

∆f̂
iner

=

∫ 1

−1

JLT (ṽTM + pU) dη ∆v̂ = G∆v̂ , (4.18)

where notation (•)U , a linear map between a vector of size 6 × 1 and a matrix of

size 6× 6, is defined as k̃ Tp = (p)Uk . Similarly, eq. (3.48) is introduced to linearize

the elastic forces, leading to

∆f̂
int

=

∫ 1

−1

[
L′TDL+ JLT (k̃ TD + fU)L

]
B dη ∆̂u = K ∆̂u. (4.19)

Finally, the linearized governing equations are found as

M∆˙̂v −G∆v̂ +K ∆̂u = r̂, (4.20)
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where r̂ is the residual.

To evaluate the integration in eqs. (4.17), (4.18), and (4.19), two types of

quadrature rules are considered: the reduced Gauss-Lobatto and Gauss rules. The

force vectors and matrices based on Gauss-Lobatto quadrature rule (B.7b) are found

as

f̂
iner

= diag(ṽTk )M v̂ ,

f̂
int

=
[
N + diag(Jkwν,kk̃ Tk )

]
diag(D) ê,

M = diag(Jkwν,kM),

G = diag(ṽTk )M + diag(Jkwν,kD ek),

K =
[[
N + diag(Jkwν,kk̃ Tk )

]
diag(D) + diag(Jkwν,k[D ek)

U ]
]
B.

Derivative matrix N is defined as N = [dTdiag(wk)]⊗ I6, where matrix d is defined

by eq. (B.16), notation ⊗ indicates a Kronecker product, wν,k are the weights at

the GLL points, and vector êT = {eT0 , . . . , eTN} stacks strain components at the GLL

points. The external force vector is (f̂
ext

)
T

= {J0w0(f ext)
T

(η0), . . . , JNwN(f ext)
T

(ηN)}.

Because the nodes and quadrature points are collocated, the mass matrix becomes

diagonal and the expression for the elastic forces is simpler than that resulting from

Gaussian quadrature in conventional finite element formulations.

The force vectors and matrices based on Gauss quadrature rule (B.7) are found
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as

f̂
iner

=
N−1∑
i=0

J(µi)wµ,iL
T (µi)ṽT (µi)M v(µi),

f̂
int

=
N−1∑
i=0

[
wµ,iL

′T (µi)D e(µi) + J(µi)wµ,iL
T (µi)k̃ T (µi)D e(µi)

]
,

f̂
ext

=
N−1∑
i=0

J(µi)wµ,iL
T (µi)L(µi)

M =
N−1∑
i=0

J(µi)wµ,iL
T (µi)M L(µi),

G =
N−1∑
i=0

J(ηi)wµ,iL
T (µi)

[
ṽT (µi)M + (M v(µi))

U
]
L(µi),

K =
N−1∑
i=0

[
wµ,iL

′T (µi)D + J(µi)wµ,iL
T (µi)

[
k̃ T (µi)D + (D e(µi))

U
]]
L(µi)B.

Therein, wµ,k are the weights at the Gauss points. The curvature and strain compo-

nents at the Gauss points are evaluated through interpolations of the nodal quanti-

ties, i.e., k (µi) =
∑N

k=0 lk(µi)k
k

and e(µi) =
∑N

k=0 lk(µi)(k
k
− k

0k
).

4.5 Numerical examples

To validate the proposed approach, a set of numerical examples will be pre-

sented. In all cases, the sectional mass and stiffness matrices of the beam are

computed using SectionBuilder, a finite element based tool for the analysis of cross-

sections of beams of arbitrary configuration made of anisotropic materials [48,49,51].

Reference solutions will be provided by Dymore 4, a finite element based, flexible

multibody system analysis tool that uses the classical description of kinematics, i.e.,

the displacement and rotation fields are treated separately. Predictions based on
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Gauss-Lobatto and Gauss quadrature rules are compared in the first examples; for

the remaining examples, only the predictions based on Gauss quadrature rules are

presented.

4.5.1 Cantilevered beam with a 45-degree bend
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1 in
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_
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Figure 4.3: Cantilevered beam with a 45-degree bend.

In this example, the response of the 45-degree bend cantilevered beam shown

in fig. 4.3 is investigated. The beam is cantilevered at point O and subjected to

a static tip load, P = 600 lb, acting along unit vector ı̄3. The initial curvature of

the beam about unit vector ı̄3 is k3 = −0.01 in−1. The cross-section of the beam

is 1×1 in2. The beam is made of isotropic material with the following properties:

Young’s modulus E = 107 psi, and Poisson’s ratios ν = 0.0. The non-vanishing

entries of sectional stiffness matrix D predicted by SectionBuilder are D11 = 1.00

107 lb, D22 = D33 = 4.17 106 lb, D44 = 7.03 105 lb·in2, D55 = D66 = 8.33 105 lb·in2,

and D16 = −8.33 103 lb·in.

No. of elements u1 (in) u2 (in) u3 (in)

Proposed, Gauss-Lobatto 8 (3-node element) -13.670 -23.712 53.421
Proposed, Gauss 8 (3-node element) -13.731 -23.818 53.607

Ibrahimbegović [55] 8 (3-node element) -13.729 -23.814 53.605
Bathe and Bolourchi [153] 8 -13.4 -23.5 53.4

Table 4.1: Displacement components of the free tip.
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Table 4.1 lists the present predictions based on the Gauss-Lobatto and Gauss

quadrature rules, those of Ibrahimbegović [55], and those of Bathe and Bolourchi [153].

Figure 4.4 and 4.5 show the error measure, ‖u− ur‖/‖ur‖, for the tip displacement

of the beam versus the number of spectral elements on a logarithmic plot, for the

Gauss-Lobatto and Gauss quadrature rules, respectively. The reference solution, ur,

is obtained using 128 spectral element of order N = 6. The figures shows the error

measures for spectral elements with N = 2, 3, 4, and 5 (corresponding to 3, 4, 5, and

6 nodes in each element). The predictions based on Gauss-Lobatto rules are quite

inaccurate compared with those based on Gauss rules. For the Gauss rules based

approach, the elements based on quaternion and geodesic metric interpolations are

slightly more accurate than those based on the matrix metric interpolation. For the

three interpolation schemes, the convergence rate is between 2N − 0.5 to 2N . For

3-node elements, the quaternion and geodesic metric based interpolations have the

same order of accuracy as the 3-node elements based on classical kinematics imple-

mented in Dymore 4. For 4-node elements, the proposed approach become more

accurate than those based on classical kinematics when the number of elements is

larger than 8.

For the solutions of 8 4-node elements, figures 4.6 and 4.7 show the axial and

shear strains, respectively, obtained from the interpolated and assumed strain fields

defined by eqs. (4.4) and 4.6, respectively, over the root element of the beam. The

interpolated strain field behaves as a polynomial of degree 3 and presents 3 zeros.

The interpolated and assumed strain fields are nearly identical at the Gauss points.

The beam elements based Gauss-Lobatto quadrature rules suffer from locking be-
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Figure 4.4: Tip displacement error versus number of elements and degree of the
Lagrange polynomial for elements based on Gauss-Lobatto quadrature rules. Matrix
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Figure 4.6: Axial strain ε1 in the root element. Interpolated strain (eq. (4.4)):
dashed line; assumed-strain (eq. 4.6): solid line. Gauss points: (×), Gauss-Lobatto
points: (◦).

cause the axial and shear strains interpolated at the GLL quadrature points are

very inaccurate and hence, the strain energy associated with axial and shear defor-

mation is grossly overestimated. The assumed strains is a polynomial of degree 2,

which is consistent with the motion field interpolated via polynomials of order 3.

Consequently, beam elements based on assumed strain and Gauss quadrature rules

are locking free.

4.5.2 Post-buckling of a circular arch

Figure 4.8 depicts a circular arch of radius R = 100, hinged at one end and

clamped at another, subjected to a vertical force, P , applied at mid-span. The post-

buckling behavior of this structure is investigated. The beam’s sectional stiffness
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matrix is D = diag(108, 108, 108, 106, 106, 106, 106). This example was first described

by Crisfield [154], who provides all input data in non-dimensional form.

The mesh consists of 12 4-node elements and the arc-length method of Cr-

isfield [154] is used to trace the buckling and post buckling behavior of the structure.

Figure 4.9 shows the applied load as a function of the magnitude of the displace-

ment vector of the mid-span point; the configurations of the arch for P = 897.9 and

- 17.8, labeled as curves 1 and 2, respectively, are shown in fig. 4.10. For the present

approach, all the three metrics provide the same critical buckling load Pcr = 897.9,

to four significant digits. This compares favorably with the buckling load Pcr = 897

reported by DaDeppo and Schmidt [155].
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Figure 4.8: Configuration of a clamped-hinged circular arch.

4.6 Summaries and conclusions

A novel formulation was proposed for geometrically exact beams. It com-

bines the spectral method with motion interpolation schemes. Motion interpolation

schemes based on matrix, quaternion, and geodesic metrics yield simple expressions

for the sectional strains and linearized strain-motion relationships at the nodes.

Beam elements based on Gauss-Lobatto and Gauss quadrature rules were investi-

gated. Gauss-Lobatto rules only requires summation over the nodes of the elements.

Gauss quadrature rules requires curvatures at the Gauss points that are evaluated

through an interpolation of the nodal curvatures. In both cases, the expressions

for the internal forces and tangent stiffness matrices are simplified. Consequently,

the proposed spectral element formulation is much easier to implement than its

conventional counterpart.

Numerical examples have demonstrated the Gauss-Lobatto rules based ele-

ments suffer from axial and shear locking, while the Gauss rules based elements
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are locking free. The convergence rate of a (N + 1)-node spectral element based

on Gauss rules is about 2N − 0.5 to 2N for all the three interpolation schemes.

For the static problem investigated, the matrix metric based interpolation is less

accurate than the quaternion and geodesic metric based interpolation. As the num-

ber of elements increase, the Gauss rules base formulation becomes more accurate

than the conventional beam element in Dymore 4. Excellent agreement is observed

between the various motion interpolation strategies and the prediction of classical

formulations.
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Chapter 5: Galerkin Methods in Time Domain: the Initial Value

Problem

This chapter focuses on the application of Galerkin’s method for initial value

problems. Weak formulations for both of the continuous and discontinuous Galerkin

methods are derived. The time integration schemes resulting from discontinuous

Galerkin method are unconditionally stable and suitable for initial value problems.

5.1 Lagrangian and Hamiltonian of a multibody system

Consider a flexible multibody system composed of rigid bodies, kinematic

joints, and flexible components such as beams. The finite element method is used

to discretize the problem in spatial dimensions, leading to n structural nodes.

The kinematics of each structural node is represented by motion tensor R i, i =

1, 2, . . . , n. Let the n structural nodes be subjected to m holonomic constraints,

g(R 1, . . . ,R n, t) = 0. The augmented Lagrangian of the system is

L(R 1, . . . ,R n, v̂ , λ, t) = 1/2 v̂TM v̂ − V(R 1, . . . ,R n)− λT g, (5.1)
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where matrixM ∈ R6n×6n is the mass matrix of the system, array v̂T = {v1T , . . . , vnT}

stacks the velocity for all structural nodes, V(R 1, . . . ,R n) denotes the potential en-

ergy of the system, and λ ∈ Rm are the Lagrange multipliers. The momentum is

readily found as p̂ = ∂L/∂v̂ = M v̂ . The augmented Hamiltonian of the system is

found from the Lagrangian via Legendre’s transformation,

H(R 1, . . . ,R n, p̂, λ, t) = max
v̂

[
v̂T p̂ − L(R 1, . . . ,R n, v̂ , λ, t)

]
= 1/2 p̂TM−1 p̂ + V(R 1, . . . ,R n) + λTg

= 1/2 ŵTM ŵ + V(R 1, . . . ,R n) + λTg,

(5.2)

where independent state variables, ŵ , are introduced to represent the velocities.

Theoretically, independent velocity vector ŵ should satisfy the constraints at the

velocity level, i.e., ġ = G ŵ + g
t

= 0, where g
t

= ∂g/∂t. Constraints at the velocity

level can be enforced by adding a term µT ġ into the Hamiltonian and application of

Hamiltonian variation principle will leads to an index-2 formulation. In this work,

constraints at the velocity level are omitted for simplicity.

5.2 Weak formulations of the continuous and discontinuous Galerkin

methods

tI
-

tI
+

tI-1
+

tI+1
-

tI
b

tI-1
tI-1
b

-

Figure 5.1: Illustration of discontinuous

Galerkin method.

Suppose the entire time inter-

val [0, T ] is divided to K 2-node ele-

ments denoted as [t+I−1, t
−
I ], where I =

1, . . . , K, tb0 = 0, and tbK = T . In
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general, quantities evaluated at t−I , tbI ,

and t+I are different in Galerkin meth-

ods. For the initial value problems, the equations of motion are solved element by

element. For periodic boundary value problems, the unknowns at all the time grids

of an entire period are solved for concurrently. Consider the Ith element [t+I−1, t
−
I ].

A non-dimensional coordinate η = 2(t − t+I−1)/(t+I − t−I−1) − 1 ∈ [−1, 1] is intro-

duced for convenience. Let notation (·)′ denotes a derivative with respect to the

non-dimensional time η. Clearly, (·)′ = dt/dη ˙(·)def
= J ˙(·), where J = (t−I − t

+
I−1)/2 is

the the Jacobian associated with the coordinate transformation.

The action of the system in the Ith element [t+I−1, t
−
I ] is

S =

∫ t−I

t+I−1

L dt =

∫ t−I

t+I−1

(
v̂TM ŵ −H

)
dt, (5.3)

which depends on both of the primal variables R i, i = 1, 2, . . . , n and dual variables

ŵ . The Hamiltonian variational principle states

δS +

∫ t−I

t+I−1

δ̂u
T
f extdt = δ̂u

T
(t−I )M ŵ(tbI)− δ̂u

T
(t+I−1)M ŵ(tbI−1)

+ δŵT (t−I )M Jq̂KI − δŵT (t+I−1)M Jq̂KI−1,

(5.4)

where δuT = {δu1T , . . . , δunT} stacks the virtual motion for all the structural nodes,

f ext ∈ R6n denotes the externally applied force, and q̂ represent the jump of motion
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tensor at the boundaries, defined as

Jq̂KI−1 =


logv[R 1T (tbI−1)R 1(t+I−1)]

...

logv[R nT (tbI−1)R n(t+I−1)]


, and Jq̂KI =


logv[R 1T (tbI)R 1(t−I )]

...

logv[R nT (tbI)R n(t−I )]


.

Term δŵTM Jq̂K does not appear in the classic Hamiltonian variational prin-

ciple [77, 156]; it is introduced here to account for the discontinuity of primal

variable Ri at the element boundaries. The logarithm of relative motion tensor

is used to measure the jump of rigid-body motions at element boundaries. If

the primal variables were vectors in Euclidean space, the jumps would simply be

Jq̂KI−1 = q̂(t+I−1)− q̂(tbI−1) [84, 88,157].

Introducing the expression of action (5.3) to eq. (5.4) leads to the weak form

of Hamilton equations

∫ t−I

t+I−1

[
δŵTM v̂ + δv̂TM ŵ − δH + δ̂u

T
f ext

]
dt

=

∫ t−I

t+I−1

[
δŵTM(v̂ − ŵ) +

˙̂
δuTM ŵ − δ̂u

T
[diag(w̃ i)TM ŵ + f int +GTλ− f ext] + δ(λTg)

]
dt

= δ̂u
T

(t−I )M ŵ(tbI)− δ̂u
T

(t+I−1)M ŵ(tbI−1) + δŵT (t−I )M Jq̂KI − δŵT (t+I−1)M Jq̂KI−1,

(5.5)

where eq. (2.45b) is introduced to yield the first equality; linearization of the po-

tential energy leads to the internal forces δV(R 1, . . . ,R n) = δ̂u
T
f int; linearization of

the constraints leads to the Jacobian associated with constraints δg = G δ̂u.

The boundary term in eq. (5.6) can be dealt with in three alternative manners.
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• The Bi-discontinuous Galerkin (bi-DG) formulation, in which the quantities

at (·)−, (·)b, and (·)+ are differ. The bi-discontinuous Galerkin method of

primal and dual variables has been proposed by Borri and his coauthors in

refs. [88, 158]. Integrating the term
˙̂
δuTM ŵ by parts yield

∫ t−I

t+I−1


Mδŵ

δ̂u

δλ



T 
ŵ − v̂

M ˙̂w − diag(w̃ i)TM ŵ + f int +GTλ− f ext

g


dt

=


M δŵ(t+I−1)

δ̂u(t+I−1)


T 

Jq̂KI−1

MJŵKI−1


−


M δŵ(t−I )

δ̂u(t−I )


T 

Jq̂KI

MJŵKI

 ,

(5.6)

where JŵKI−1 = ŵ(tbI−1)− ŵ(t+I−1) and JŵKI = ŵ(tbI)− ŵ(t−I ).

• The Discontinuous Galerkin (DG) method, in which both the motion tensors

and velocities evaluated at times t−I and tbI are identical. The weak form (5.6)

then become

∫ t−I

t+I−1


Mδŵ

δ̂u

δλ



T 
ŵ − v̂

M ˙̂w − diag(w̃ i)TM ŵ + f int +GTλ− f ext

g


dt

=


M δŵ(t+I−1)

δ̂u(t+I−1)


T 

Jq̂KI−1

MJŵKI−1

 .

(5.7)
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• The Continuous Galerkin (CG) method, in which the quantities evaluated at

time (·)−, (·)b, and (·)+ are identical and the jump of motion term q̂ vanishes.

Finally, the weak Hamiltonian formulation (5.5) becomes



δM ŵ

˙̂
δu

δ̂u

δλ



T 

ŵ − v̂

−M ŵ

−diag(w̃ i)TM ŵ + f int +GTλ− f ext

g


dt

= δ̂u
T

(t+I−1)M ŵ(tbI−1)− δ̂u
T

(t−I )M ŵ(tbI).

(5.8)

The underlined terms in eq. (5.8) are of opposite signs in adjacent elements

and vanish when these elements are assembled. For periodic problem, the

boundary nodes satisfy periodicity conditions R i(0b) = R i(T b) and ŵ(0b) =

ŵ(T b). The first condition is enforced by using identical nodes for times t0 = 0

and tK = T ; the second condition is enforced by the corresponding assembly

process. Finally, the weak Hamiltonian formulation (5.5) for periodic problem

becomes

K∑
I=1

∫ t−I

t+I−1



δM ŵ

˙̂
δu

δ̂u

δλ



T 

ŵ − v̂

−M ŵ

−diag(w̃ i)TM ŵ + f int +GTλ− f ext

g


dt = 0. (5.9)

The DG method is suitable for the initial value problem and will be investigated in
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the following sections.

5.3 Test and trial functions

The test functions are polynomials of the first degree, i.e., δŵ , δ̂u ∈ span(l ⊗

I6n) and δλ ∈ span(l ⊗ Im), where l = {l0(η), l1(η)} and lk, k = 0, 1, are Lagrange

polynomials of the first degree. The independent velocity and Lagrange multipliers

are interpolated linearly, ŵ =
∑1

k=0 lkŵk and λ =
∑1

k=0 lkλk. The motion tensors

are interpolated using the dual-SLERP, as investigated in chapter (3). Let

q̂
01

=


logv[R 1T (t+I−1)R 1(t−I )]

...

logv[R nT (t+I−1)R n(t−I )]


, ∆̂u(t) =


∆u1(t)

...

∆un(t)


, and ∆uuuI =


∆̂u(t+I−1)

∆̂u(t−I )

 ,

stack the relative motion parameter vectors of each structural nodes from time t+I−1

to t−I , incremental motion vectors of each structural node at arbitrary time t, and all

the structure nodes at time t+I−1 and t−I , respectively. The dual-SLERP (3.40a), (3.40b),

and (3.41) for the n structural nodes can be written as

∆̂u = LuI∆uuuI , (5.10a)

v̂ =
1

2J
q̂

01
, (5.10b)

∆v̂ = LvI∆uuuI , (5.10c)
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where

LuI =


L1
uI,1−6 L1

uI,7−12

. . .
. . .

Ln
uI,1−6 Ln

uI,7−12

 ,

LvI =


L1
vI,1−6 L1

vI,7−12

. . .
. . .

Ln
vI,1−6 Ln

vI,7−12

 .

Therein superscripts represent the label of structural nodes, subscripts 1 − 6 and

7− 12 represent the corresponding columns of matrices. In view of identity (2.55b),

a linearization of the jump of motion leads to

∆Jq̂KI−1 = TI−1,− ∆̂u(t−I−1) + TI−1,+ ∆̂u(t+I−1)

= (1T1 ⊗ TI−1,−)∆uuuI−1 + (1T0 ⊗ TI−1,+)∆uuuI ,

(5.11)

where

TI−1,− =


−T −1(−Jq1KI−1)

. . .

−T −1(−JqnKI−1)

 ,

TI−1,+ =


T −1(Jq1KI)

. . .

T −1(JqnKI)

 .
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The following notations are introduced

10 =


1

0

 , 11 =


0

1

 , ı =

(∫ t−I

t+I−1

lT l dt

)−1

10 =
1

J


2

−1

 , (5.12)

where 10 and 11 are introduced to indicate matrix or vectors with non-vanishing

block at the first and last rows.

5.4 Governing equations

For convenience, matrices C, K, and N , all of size 6n × 6n, coming from

the linearization of the gyroscopic, internal, and constraint forces, respectively, are

introduced

∆[diag(w̃i)
TM ŵ ] = C ∆ŵ , (5.13a)

∆f int = K ∆̂u, (5.13b)

∆(GTλ) = N ∆̂u +GT∆λ. (5.13c)

Introducing the test and trial functions in section 5.3 into the weak form of

DG method (5.7) leads to

www I − vvv I = ı⊗ Jq̂KI−1, (5.14a)

Mwww I + f gyro

I
+ f int

I
+ GT

I1λI = f ext

I
+ 10 ⊗ (M JŵKI−1), (5.14b)

g
I

= 0, (5.14c)
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where wwwT
I = {ŵT (t+I−1), ŵT (t−I )} and λTI = {λT (t+I−1), λT (t−I )} stack the indepen-

dent velocities and Lagrange multipliers at the two nodes, respectively;

vvv I =


1

1

⊗
q̂

01

2J
, M =

1

2

−1 1

−1 1

⊗M,

f ext

I
=

∫ t−I

t+I−1

lT ⊗ f ext dt, f int

I
=

∫ t−I

t+I−1

lT ⊗ f int dt,

f gyro

I
= −

∫ t−I

t+I−1

lT ⊗ [diag(w̃ i)TM ŵ ] dt, g
I

=

∫ t−I

t+I−1

lT ⊗ g dt,

GI1 =

∫ t−I

t+I−1

(lT l)⊗G dt.

Therein, subscript I indicates quantities of the Ith element. The subscript of matrix

M is omitted because it remains constant for all the elements. All the integrals are

evaluated with Gaussian quadrature rules by using two quadrature points.

Linearization of eq. (5.14a) leads to

∆www I = [


1

1

⊗ LvI + (ı 1T0 )⊗ TI−1,+]∆uuuI + [(ı 1T1 )⊗ TI−1,−]∆uuuI−1

def
= LI1∆uuuI + LI0∆uuuI−1,

(5.15)

where identities (5.10c) and (5.11) are introduced to yield the equality. Linearization

of eqs. (5.14b) and (5.14b) leads to

(M + CI)∆www I + (KI + NI)∆uuuI + GT
I1∆λI/s = rf + 10 ⊗M∆JŵKI−1, (5.16a)

GI2∆uuuI = rg, (5.16b)
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where rfI and rgI are residuals and

CI = −
∫ t−I

t+I−1

(lT l)⊗ C dt,

KI =

∫ t−I

t+I−1

lT ⊗K LuI dt,

NI =

∫ t−I

t+I−1

lT ⊗N LuI dt,

GI2 =

∫ t−I

t+I−1

lT ⊗GLuI dt.

Introducing eq. (5.15) into eq. (5.16a) leads to

−(101T1 )⊗ML(I−1)0




∆uuuI−2

∆λI−2/s

+

[(101T0 )⊗M + M + CI ]LI0 − (101T1 )⊗ML(I−1)1




∆uuuI−1

∆λI−1/s

+

[(111T1 )⊗M + MI + CI ]LI1 + KI + NI sGT
I1

sGI2




∆uuuI

∆λI/s

 =


rfI

srgI

 ,

(5.17)

where a scale factor s is introduced to balance the order of magnitude of equilibrium

and constraint equations. In initial value problems, terms of ∆uI−2 and ∆uI−1

do not appear because velocity ŵ(t−I−1) and motion tensors R i(t−I−1) are given as

constants when solving the equations of the Ith element. The total number of

degrees of freedom is 2(6n+m) for initial value problems.
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5.5 Numerical examples

Numerical examples are presented to validate the proposed formulation. To

measure the accuracy of the solver, the L∞ error are introduced as

eu =
‖r(T )− re(T )‖
‖re(T )‖

, eR =
1√
2
‖ log[RT

e (T )R(T )]‖F ,

ev =
‖ṙ(T )− ṙe(T )‖
‖ṙe(T )‖

, eω =
‖ω(T )− ωe(T )‖
‖ωe(T )‖

,

where subscript e indicates reference solutions

5.5.1 Dynamic problem of a rigid-body

A rigid-body undergoes the motion defined by the following position vector

and 3-1-3 Euler angles

re =


sin 2t

cos 2t− 1

0.5t− sin 4t


m, φ

e
=


2t

2 sin t

3 cos t− 3


rad.

The mass matrix of the rigid body resolved in material basis is

M =

mI3 mη̃T

mη̃ %

 , η =


0.25

−0.03

0.12


m, % =


1.25 0.57 −0.23

0.57 1.56 0.34

−0.23 0.34 2.54

 kg ·m2,
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Figure 5.2: Error of rotation versus number of elements for the rigid-body problem.
Present: (◦); Radau IIA: (×); generalized-α with ρ∞ = 1: (�).

and m = 6.0 kg. External forces and moments can then be calculated by the

equations of motion as f ext = M v̇e − ṽTe M ve.

Three schemes are used to integrate the dynamic equations over a time period

of T = 4 s: the generalized-α with ρ∞ = 1 [81], Radau IIA [57], and the proposed

discontinuous Galerkin method. The convergence plots for rotation, displacement,

angular velocity, and velocity are shown in figs. 5.2, 5.3, 5.4, and 5.5, respectively.

The generalized-α scheme is second-order accurate while both Raudau IIA and the

proposed approach are third-order accurate. The Raudau IIA scheme is less accurate

than the generalized-α scheme for large time steps and becomes superior as time

steps decrease. The proposed approach is far more accurate than both of Radau

IIA and generalized-α schemes for all considered times step sizes.
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Figure 5.3: Error of displacement versus number of elements for the rigid-body
problem. Present: (◦); Radau IIA: (×); generalized-α with ρ∞ = 1: (�).
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Figure 5.4: Error of angular velocity versus number of elements, rigid-body problem.
Present: (◦); Radau IIA: (×); generalized-α with ρ∞ = 1: (�).
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Figure 5.5: Error of velocity versus number of elements for the rigid-body problem.
Present: (◦); Radau IIA: (×); generalized-α with ρ∞ = 1: (�).

5.5.2 Dynamic problem of a hinged beam

 i2

_

i3

_

F1i1

_

F3

Figure 5.6: The sketch of a flexible beam.

Consider a uniform straight beam,

of length 2.4 m, hinged at the root so

as to allow rotation about the ı̄3 axis

and free at the tip. The cross-section

properties of the beam were given in

ref. [157]. The applied loading consists

of a tip load

F = P


−1

0

1


[1 + cos(2π

t

T 0
− π)], t ≤ T0,

F = 0, t > T0,
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Figure 5.7: Error of rotation versus number of element, hinged beam problem.
Present: (◦); generalized-α, ρ∞ = 0.5: (×); generalized-α, ρ∞ = 0: (�).

where P = 1 kN and T0 = 0.022 s. The beam is initially at rest with its reference line

along the ı̄2 axis. The beam is meshed to 12 two-node finite element for discretization

in space.

The generalized-α with ρ∞ = 0, 0.5 and proposed DG method are used to

integrate the system over a time period of T = 0.25 s. For both schemes, the

predictions for 8000 time steps (or number of elements), corresponding to a time

step length of 3.125 10−5 s, are used as reference solutions. The converge plots for

rotation and displacement are shown in fig. 5.7 and 5.8, respectively. As expected,

generalized-α and DG method are second- and third-order accurate, respectively.

The convergence plots for angular velocity and velocity are shown in figs. 5.9

and 5.10, respectively. While both schemes are second-order accurate, the DG

method is far more accurate than generalized-α scheme for the same number of

time steps. Also note that the number of unknowns for the DG method is twice
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Figure 5.8: Error of displacement versus number of element, hinged beam problem.
Present: (◦); generalized-α, ρ∞ = 0.5: (×); generalized-α, ρ∞ = 0: (�).
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Figure 5.9: Error of angular velocity versus number of element, hinged beam prob-
lem. Present: (◦); generalized-α, ρ∞ = 0.5: (×); generalized-α, ρ∞ = 0: (�).

120



102 103 104

Number of elements

10-4

10-3

10-2

10-1

100

E
rr
o
r 
o
f 
v
el
.

10-5

Slope 2

Figure 5.10: Error of velocity versus number of element, hinged beam problem.
Present: (◦); generalized-α, ρ∞ = 0.5: (×); generalized-α, ρ∞ = 0: (�).

that for the generalized-α scheme. For a fair comparison, the error of displacement

by using 103 steps is about 1.5 10−6 in DG method; the error of using 2 103 steps

is about 3 10−4 in generalized-α scheme, as shown in fig. 5.8. Indeed, the proposed

DG method is more efficient than the generalized-α scheme.

5.6 Summary and conclusions

Three types of weak formulations for flexible multibody dynamics are derived

based on Hamilton’s principle: the (1) Bi-discontinuous, (2) discontinuous, and (3)

continuous Galerkin methods. The discontinuous Galerkin method allows jumps of

motion and velocity across element boundaries and leads to unconditionally stable

schemes for the time integration of dynamics problems. The dual-SLERP is used

for interpolation of motion and leads to two-node elements in the time domain.
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The proposed scheme is validated by numerical examples. The predicted dis-

placements and rotations are third-order accurate in rigid-body and flexible beam

problems; while the velocities and angular velocities are third-order accurate in rigid-

body dynamics and second-order accurate in flexible beam dynamics, respectively.
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Chapter 6: Galerkin Methods in Time Domain: Periodic Problem

and Stability Analysis

The proposed continuous and discontinuous Galerkin formulations presented

in Chap. (5) are applied to determination of periodic solutions and stability analysis

of these solutions.

6.1 Preliminary on periodic problems

The stability of a periodic solution is determined by the Floquet multipliers

of the periodic linear system resulting from the linearization of the original system

along this periodic solution. This section reviews Floquet’s and Hill’s methods for

linear periodic systems. The importance of numerical damping in Floquet’s method

and de-aliasing techniques in Hill’s method is illustrated in numerical examples.

6.1.1 Floquet’s theorem

Consider a first-order, nonlinear dynamic system f(q̇, q, t) = 0, where f, q ∈

Rn. Suppose a T−periodic solution q∗(t) exists, i.e., q∗ = q∗(t+T ). A perturbation

about the periodic solution is denoted q(t) = q∗(t)+x(t). Introducing this expression

into the governing equation and linearizing about q∗ then leads to a first-order, linear
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periodic system

ẋ = A(t)x, (6.1)

where matrix A = (∂f/∂q̇)−1∂f/∂q|q=q∗ is also T−periodic. The fundamental solu-

tion matrix, or the state transition matrix, of linear periodic system (6.1) is denoted

as X(t), X(0) = In. Floquet’s theorem [159, 160] states that the fundamental solu-

tion matrix can be expressed as

X(t) = Q(t) exp(R t), (6.2)

where Q(t+ T ) = Q(t) is periodic and matrix R, a function of t0, is defined as

R =
1

T
log[X(t0)−1X(t0 + T )] =

1

T
log[C(t0)].

Matrix C(t0) is known as the monodromy matrix and is T−periodic with respect

to t0. For t0 = 0, the monodromy matrix becomes C(0) = X(0)−1X(T ) = X(T ),

which is the state transition matrix from time 0 to time T . In the sequel, C(0) is

abbreviated as C .

The eigenvalues of matrices R and C are referred to as the Floquet exponents

and multipliers, respectively. Let σi and λi = exp(Tσi), i = 1, 2, . . . , n denote the

Floquet exponents and multipliers, respectively. The spectral decompositions of

matrices C and R are

R = V ΣV −1, C = V ΛV −1, (6.3)
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where Σ = diag(σi) and Λ = exp(ΣT ) = diag(λi). Introducing the spectral decom-

position into eq. (6.2) leads to X(t)V = Q(t)V exp(Σ t). Suppose that x0 = v, i.e.,

an arbitrary column of matrix V . The solution of the periodic system becomes

x(t) = X(t)v = Q(t)v exp(σt). (6.4)

Clearly, the stability of periodic solutions is determined by the Floquet expo-

nents or multipliers: the solution of the periodic system is stable if Re(σi) ≤ 0 or

|λi| ≤ 1 and instable if Re(σi) > 0 or |λi| > 1. The approaches to stability analysis

fall into two broad categories: Floquet’s and Hill’s methods.

6.1.2 Floquet’s method

Floquet’s method is related to the discretiation of periodic system (6.1) in the

time domain. Suppose the time span [pT, (p + 1)T ] is partitioned to K intervals,

denoted [pT + tI−1, pT + tI ], where I = 1, . . . , K, t0 = 0, and tK = T . The

p−period shift vector is denoted x̂Tp = {xT (pT+t0), xT (pT+t1), . . . , xT (pT+tK−1)}.
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Discretizing differential equation (6.1) over the entire time span yields



. . .
. . .

. . .

K−2−1 K−1−1 K−10

K0−1 K00 K01

K10 K11 K12

. . .
. . .

. . .





...

x̂−2

x̂−1

x̂0

x̂1

x̂2

...



= 0, (6.5)

where matrices Kp q ∈ RnK×nK result from the time discretization process, which

could be based on finite difference, finite element, or spectral collocation schemes.

Matrices Kp p−1 and Kp p+1 represent the coupling of period p with periods p−1 and

p+ 1, respectively. In view of eq. (6.4), the solution of the periodic system satisfies

x̂p = λp−qx̂q. Introducing this relationship into the third row of eq. (6.5) leads to

quadratic eigenvalue problem

(K0−1 + λK00 + λ2K01)x̂−1 = 0, (6.6)

where the eigenvalues are the Floquet multipliers. Because eq. (6.6) is a quadratic

eigenvalue problem, its solution is arduous. In practice, matrices K0−1, K00, and K01

are sparse and taking this sparsity into account leads to more efficient approaches.

Suppose the K intervals are all of equal size, tI − tI−1 = T/K. Consider con-

ditionally and unconditionally stable time discretization: the second-order central
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and backward difference schemes

ẋ(I∆t) =
x[(I + 1)∆t]− x[(I − 1)∆t]

2∆t
,

ẋ(I∆t) =
3x(I∆t)

2∆t
− 2x[(I − 1)∆t]

∆t
+
x[(I − 2)∆t]

2∆t
,

(6.7)

respectively. A discretized version of the third row of eqs. (6.5) is obtained by

introducing these schemes into eq. (6.1) to find

1

2∆t



In 2∆tA(t0) −In

In 2∆tA(t1)
. . .

. . .
. . . −In

In 2∆tA(tK−1) −In





x(t−1)

x(t0)

...

x(tK−1)

x(tK)



= 0, (6.8)

and

1
2∆t



−In 4In 2∆tA(t0)− 6In

−In 4In 2∆tA(t1)− 6In

. . .
. . .

. . .

−In 4In 2∆tA(tK−1)− 6In





x(t−2)

x(t−1)

x(t0)

...

x(tK−1)



= 0,

(6.9)

for the central and backward difference, respectively.
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Elimination of intermediate variables x(t1), . . . , x(tK−2) yields


x(t0)

x(tK−1)

 =

P00 P0T

PT0 PTT



x(t−1)

x(tK)

 , (6.10)

and 
x(tK−2)

x(tK−1)

 = P


x(t−2)

x(t−1)

 , (6.11)

for the central and backward difference schemes, respectively. Eq. (6.10) can be

rewritten to


x(tK)

x(tK−1)

 =

 −P−1
0T P00 P−1

0T

PT0 − PTTP−1
0T P00 PTTP

−1
0T



x(t0)

x(t−1)

 = P


x(t0)

x(t−1)

 . (6.12)

Clearly, eqs. (6.12) and (6.11) represent the transition relationships from [x(t−1), x(t0)]

to [x(tK−1), x(tK)] and from [x(t−2), x(t−1)] to [x(tK−2), x(tK−1)], respectively. In

view of eq. (6.4), the eigenvalues of matrix P are Floquet’s multipliers λ.

6.1.3 Hill’s method

Hill’s method is related to the discretization of periodic system (6.1) in the

frequency domain. Introducing a Fourier expansion of periodic term Q(t)v into

governing equation (6.4) yields

x(t) =
∞∑

k=−∞

y
k

exp[(σ + ikΩ)t], (6.13)
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where σ is the Floquet exponent, Ω = 2π/T is the fundamental frequency, and y
k

are the coefficients of Fourier series. Periodic matrix is also expanded to A(t) =∑∞
k=−∞ Âk exp(ikΩt). Introducing these expansions into the periodic system (6.1)

yields





. . .
...

...
... . .

.

· · · Â0 + iΩIn Â−1 Â−2 · · ·

· · · Â1 Â0 Â−1 · · ·

· · · Â2 Â1 Â0 − iΩIn · · ·

. .
. ...

...
...

. . .


− σI





...

y−1

y
0

y
1

...



= 0. (6.14)

A finite truncation of eq. (6.14) leads to an eigenvalue problem for the Floquet

exponents.

The closed-form expressions for the Fourier series of matrix A(t) exist for spe-

cial cases only, where matrix A(t) involves polynomial or trigonometric functions. In

practice, Fourier series are evaluated numerically via discrete Fourier transformation,

causing the introduction of aliasing. Suppose the entire period [0, T ] is partitioned

to nT intervals of equal length ∆t = T/nT . Let tk = kT/nT , k = 0, 1, . . . , nT − 1

denotes the time grid points. Let x̂T = {xT (0), xT (∆t), . . . , xT (T − ∆t)}. The

truncated Fourier series expansion of x̂ in the real domain is

x(t) = exp(σt)

(
y

0
+

nH∑
k=0

[y
kc

cos(kΩt) + y
ks

sin(kΩt)]

)
, (6.15)
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where nH = d(nT − 1)/2e and y
nHs

vanishes for even nT . Let

ŷT = {yT
0
, yT

1c
, yT

1s
, . . . , yT

nHc
, yT

nHs
},

it follows

ŷ = (F0,nT
⊗ In)x̂, (6.16)

where F0,nT
∈ RnT×nT is the discrete Fourier transformation operator defined in

eq. (B.33), and notation ⊗ represents the Kronecker product. If the periodic term

Q(t)v is composed of harmonics up to the nHth, i.e., Q(t)v ∈ span[1, exp(iΩt),

. . . , exp(inHΩt)], the coefficients of discretized Fourier transformation coincide with

those of infinite expansions, i.e., y
kc

= (y
k

+ y−k)/2 and y
ks

= (y
k
− y−k)/(2i). In

general, these two sets of coefficients are different. Aliasing is introduced in discrete

Fourier transform (6.16) if Q(t)v involves harmonics of frequency higher than nHΩ.

Coefficients y
kc

and y
ks

of the low-frequency harmonics are polluted by these high-

frequency harmonics [161]. The simplest de-aliasing technique is to set coefficients

of higher-order harmonic to zero, i.e., setting ykc = 0 and uks = 0 for k > nD, where

nD < nH is problem dependent.

Introducing truncated Fourier expansion (6.16) into periodic system (6.1)

yields [
(F0,nT

⊗ In)diag[A(tk)](F
−1
0,nT
⊗ In)− Ω⊗ In − σI

]
ŷ = 0, (6.17)
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where

Ω = Ω diag

0,

 0 1

−1 0

 , . . . ,
 0 nH

−nH 0


 ,

for odd nT and

Ω = Ω diag

0,

 0 1

−1 0

 , . . . ,
 0 nH − 1

−nH + 1 0

 , 0
 ,

for even nT , respectively. Solving eigenvalue problem (6.17) yields the Floquet

exponents.

6.1.4 Comparison of Floquet’s and Hill’s methods: multi-dimensional

Mathieu equation

Consider the following multi-dimensional Mathieu equation

ẍ+ diag[k4ω2(1− 2µ/k2 cos(Ωt))]x = 0, (6.18)

where x ∈ Rn and k = 1, 2, . . . , n, ω and Ω are the natural and excitation frequencies,

respectively. Fig. 6.1 shows the dominant Floquet multiplier for the case of µ = 0.15

and n = 4. Four approaches are used: the second-order central and backward

difference schemes both with K = 50 and Hill’s method with nT = 13 (nH = 7)

with and without de-aliasing. The dominant Floquet multipliers predicted by the

central-difference method is of magnitude 1010 because the scheme itself introduces

spurious eigenvalues larger than unity for each time step. They are of magnitude
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1e10 and are not shown in the figure. The dominant eigenvalues blows up quickly in

the process of elimination of intermediate variables to form the final state transition

matrix in eq. (6.10). The backward-difference method yields accurate predictions

for the present problem because this scheme is absolutely stable and introduces

numerical dissipation for the high-frequency modes, i.e., for ω > Ω, see fig. 6.1.

Hill’s method predicts the theoretical instabilities at Ω/(2ω) = 1/3, 1/2, 1 but also

introduce fictitious instabilities. To avoid aliasing, Fourier coefficients above the 3rd

harmonics were set to zero; Hill’s method then provides accurate predictions for the

present problem.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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Figure 6.1: The dominant Floquet multiplier for the Multi-dimensional Mathieu
equation, backward finite difference: (◦), Hill’s method without de-aliasing: (�),
Hill’s method with de-aliasing: (×).
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6.2 Continuous Galerkin method

The test and trial functions are the same as those in section 5.3. Introducing

the test and trial functions into the weak Hamiltonian formulation (5.8) leads to

www I − vvv I = 0, (6.19a)

AK
I=1

(
−Mwww I + f gyro

I
+ f int

I
+ GI1λI

)
= AK

I=1f
ext

I
, (6.19b)

AK
I=1 gI = 0, (6.19c)

where notation AK
I=1 represents the assembly operator; www I , vvv I , f

gyro

I
, f int

I
, GI1, f ext

I
,

and g
I

are the same as those in 5.4; matrix M, different with that in chapter 5, is

defined as

M =
1

2

−1 −1

1 1

 ⊗M.

The independent velocity can be chosen to either continuous or discontinuous across

element boundaries. The latter choice is used because it allows a elimination of www I

on a element level. After a element-wise elimination, eq. (6.19) becomes

AK
I=1(−Mvvv I + f gyro

I
+ f int

I
+ GT

I1λI/s) = AK
I=1f

ext

I
, (6.20a)

AK
I=1 gI = 0, (6.20b)
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Linearization of eq. (6.20) yields

AK
I=1

−M + CI + KI + NI sGT
I1

sGI2


AK

I=1


∆uuuI

∆λI/s




=

−MT + CT + KT + NT sGT
T1

sGT2




∆uuuT

∆λT/s

 =


rfT

srgT

 ,

(6.21)

where matrices CI , KI , NI , GI1, and GI2 are the same as those defined in section 5.4;

notation (·)T indicates an assembly of the corresponding elements. The increments

after assembly are

∆uT =



∆̂u(t0)

∆̂u(t1)

...

∆̂u(tK−1)


, ∆λT =



∆λ(t0)

∆λ(t1)

...

∆λ(tK−1)


.

Because quantities evaluated at t−I and t+I are identical in the continuous Galerkin

method, tI is used for clarity. Clearly, the total number of degrees of freedom is

K(6n+m) for periodic boundary value problem.

The sparse patterns of the global Jacobian matrix is shown in fig. 6.2. Note

that each block retain its sparsity pattern resulting from the spatial topology of the

multibody system.
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P-1

PT
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P-1
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Figure 6.2: The sparse pattern in CG method. Left: Jacobian matrix for solving pe-
riodic boundary value problems; right: state transition matrix from time (t−1, t0)to
(tK−1, tK). For this illustration, the entire period was divided into four 2-node ele-
ments. The assembled blocks are indicated by (×).

6.3 Stability analysis of periodic solutions, CG method

The stability analysis is based on linearized governing equation (6.21). To

construct the state transition matrix from time t0 to tK , the periodic loop is cut at

the nodes of these time grids. The periodic loop is cut also because the solution

of a linearized periodic system is not periodic, as discussed in section 6.1.1. The

linearized governing equation (6.21) is reformulated as

S


∆uT

∆λT/s

 = −

P−1

0




∆̂u(t−1)

∆λ(t−1)/s

−
 0

PT




∆̂u(tK)

∆λ(tK)/s

 , (6.22)

where the residuals rfT and rgT vanish because the linearization is about the periodic

solution; matrix S, of size K(6n + m) × K(6n + m), is the block diagonal of the

Jacobian matrix in eq. (6.21); matrices P−1 and PT , both of size (6n + m)× (6n +

m), are the non-vanishing upper-right and lower-left corner blocks of the Jacobian

matrix. The construction of state transition matrix is similar to the process used in
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the central difference method, see section 6.1.2.

Solving matrix equation. (6.22) and eliminating the intermediate variables lead

to 
∆̂u(t0)

∆̂u(tK−1)

 =

S00 S0T

ST0 STT




∆̂u(t−1)

∆̂u(tK)

 , (6.23)

where matrices S00, S0T , ST0, and STT , all of size (6n+m)×(6n+m), result from the

solution of matrix equations. Note the components of incremental motion ∆̂u(t) are

not independent because they should satisfy constraint equations G(t) ∆̂u(t) = 0. It

follows that ∆̂u(t) = N(t)p(t), where N ∈ R6n×(6n−m), G(t)N(t) = 0, and NTN = I

is the null space of G, and p ∈ R(6n−m) represents the independent increments.

Equation (6.23) then becomes


p(t0)

p(tK−1)

 =

P00 P0T

PT0 PTT



p(t−1)

p(tK)

 , (6.24)

where

P00 P0T

PT0 PTT

 =

N(t0)

N(tK−1)


T S00 S0T

ST0 STT


N(tK−1)

N(t0)

 .

Note that the null space at tmod(i,K) are the same as that at ti. Finally, the transition

matrix of the independent state variables from time (t−1, t0) to time (tK−1, tK) can
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be found as


p(tK)

p(tK−1)

 =

 −P−1
0T P00 P−1

0T

PT0 − PTTP−1
0T P00 PTTP

−1
0T


︸ ︷︷ ︸

denoted P


p(t0)

p(t−1)

 . (6.25)

The eigenvalues of matrix P are Floquet multipliers.

6.4 Post processing of CG method

As shown in eq. (6.19a), the independent velocity vectors at the nodes are

ŵ(t+I−1) = ŵ(t−I ) = q̂
01
/(2J), and hence, velocities remain constant within each

element, i.e., ŵ(t) = ` ⊗ I6nwww I = q̂
01
/(2J). This fact indicates that velocities

converge with order 1. To increase the order of convergence, a re-interpolation is

introduced. Let ŵ∗ denote the corrected velocity and it is determined by interpola-

tion ŵ∗ = l ⊗ I6nwww∗I , where www∗I stacks the corrected nodal velocities. The corrected

nodal velocity is determined by

AK
I=1(

∫ t−I

t+I−1

lT l dt⊗www I) = AK
I=1(

∫ t−I

t+I−1

lT ldt⊗www∗I) = (AK
I=1

∫ t−I

t+I−1

lT l dt⊗I6n)www∗T , (6.26)

where subscript T represent a collection of nodal quantities in one period. Finally,

the velocity field inside each element is ŵ∗(t) = (l⊗I6n)www∗I . The corrected velocities

converge with order 2, as will be shown in numerical examples.
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6.5 Discontinuous Galerkin method

An assembly of governing equations of each element (5.14) leads to the equa-

tions for periodic problems

www I − vvv I = ı⊗ Jq̂KI−1, (6.27a)

AK
I=1

[
Mwww I + f gyro

I
+ f int

I
+ GT

I1λI

]
= AK

I=1

[
f ext

I
+ 10 ⊗ (M JŵKI−1)

]
, (6.27b)

AK
I=1gI = 0. (6.27c)

An assembly of the linearized governing equations (5.17) of each element leads to

the linearization of eqs. (6.27)


diag−2

(
−(101T1 )⊗ML(I−1)0

) +

diag−1

(
[(101T0 )⊗M + M + CI ]LI0 − (101T1 )⊗ML(I−1)1

) +

diag
(
[(111T1 )⊗M + MI + CI ]LI1 + KI + NI

)
diag

(
sGT

I1

)
diag (sGI2)





∆uuuT

∆λT/s

 =


rfT

srgT

 ,

(6.28)
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where block matrices diag(•I), diag−1(•I), and diag−2(•I) are defined as

diag(•I) =


•1

. . .

•K

 , diag−1(•I) =



•1

•2

. . .

•K


,

diag−2(•I) =



•1

•2

•3

. . .

•K


.

The sparsity pattern of the Jacobian matrix after assembly is shown in fig. 6.3.

The increments with subscript T are defined as

∆uT =



∆̂u(t+0 )

∆̂u(t−1 )

...

∆̂u(t+K−1)

∆̂u(t−K)



, ∆λT =



∆λ(t+0 )

∆λ(t−1 )

...

∆λ(t+K−1)

∆λ(t−K)



. (6.29)

The total number of degrees of freedom is 2K(6n+m) for periodic boundary value

problems.
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Figure 6.3: The sparsity pattern in the DG method. Block diagonal matrix diag(·):
grey; block lower sub-diagonal matrix diag−1(·) and diag−2(·): dark grey. Left:
Jacobian matrix for solving periodic boundary value problem; right: state transition
matrix from time (t−−1, t

+
−1, t

−
0 ) to (t−K−1, t

+
K−1, t

−
K). The entire period is divided to 4

2-node elements.

6.6 Stability analysis of periodic solutions, DG method

The stability analysis is based on the linearized governing equation (6.28).

Similarly as in CG formulation, the periodic loop is cut at the nodes of time grids

t−K−1, t+K−1, and t−K . For convenience, increments with subscript (p,−) are introduced

∆up,− =


∆̂u(pT + t−−1)

∆̂u(pT + t+−1)

∆̂u(pT + t−0 )


, and ∆λp,− =


∆λ(pT + t−−1)

∆λ(pT + t+−1)

∆λ(pT + t−0 )


.

Linearized governing equation (6.28) is reformulated as

S


∆uT

∆λT/s

 = −

P
0




∆u0,−

∆λ0,−/s

 , (6.30)
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where the residuals vanish because the linearization is about the periodic solution;

matrix S, of size 2K(6n + m) × 2K(6n + m), is composed of the diagonal and

sub-diagonal blocks of the Jacobian matrix in eq. (6.28); matrix P, of size 3(6n +

m) × 3(6n + m), is the non-vanishing upper-right corner blocks of the Jacobian

matrix. The construction of state transition relationship is similar to the process

used in the backward difference method discussed in section 6.1.2. Elimination of

the intermediate variables yields

S


∆u1,−

∆λ1,−/s

 = P


∆u0,−

∆λ0,−/s

 . (6.31)

The eigenvalues of matrix S \ P are the Floquet multipliers.

Because only the dominant eigenvalue of the state transition matrix is eval-

uated for stability analysis, the Arnoldi process can be used efficiently. It is not

necessary to evaluate matrices S andP in eq. (6.31) explicitly. The only computa-

tional expensive operation in algorithm (6.6) is the factorization of matrix S.

6.7 Post processing of DG method

To construct continuous kinematic solutions, the re-interpolation in section 6.4

can be used. Another approach is to use the Radau correction. In view of property

of Radau polynomials, identity (B.21b) in appendix B.5, the jump terms can be
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Algorithm 2: Arnoldi iteration

1: Factorize matrix S
2: Choose an arbitrary starting vector q

0
∈ R3(6n+m)

3: q
1

= q
0
/‖q

0
‖

4: for j = 1 to ` do
5: v = Pq

j

6: Solve Sw = −
{
v
0

}
with a forward and backward substitution, where 0 ∈

R(2K−3)(6n+m)

7: Select the last 3(6n+m) entries from w, denote as u, and let r − u
8: for i = 1 to j do
9: hi,j = qT

i
u

10: r = r − hi,jqi
11: end for
12: hj+1,i = r
13: q

j+1
= r/hj+1,j

14: Solve dominant eigenvalue of matrix Hjs = λs
15: if ‖hj+1,jsj‖ ≤ error bound then
16: return λ
17: end if
18: end for
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transformed to a integral over a element

10 ⊗ Jq̂KI−1 = −
∫ t−I

t+I−1

1

J
lT r̄′2 dt⊗ Jq̂KI−1, (6.32a)

10 ⊗ JŵKI−1 = −
∫ t−I

t+I−1

1

J
lT r̄′2 dt⊗ JŵKI−1, (6.32b)

where r̄2 is the right Radau polynomial of degree 2. Introducing these two identities

into eq. (5.14b) leads to

∫ t−I

t+I−1

lT ⊗M(
1

J
l′ ⊗ I6nwww I −

1

J
r̄′2JŵKI−1)dt =

∫ t−I

t+I−1

lT ⊗ (M ˙̂w∗) dt

= f ext

I
+ f gyro

I
− f int

I
−GT

I1λI ,

(6.33)

where the corrected velocity ŵ∗ is

ŵ∗(t) = l ⊗ I6nwww I − r̄2JŵKI−1. (6.34)

Clearly, jump term JŵKI−1 adds a correction to the velocity field inside each element.

The velocity field becomes continuous across element boundaries after correction,

i.e., ŵ∗(t+I−1) = ŵ(t+I−1)− [ŵ(t+I−1)− ŵ(t−I−1].

Introducing identities (6.32) into eq. (5.14a) and splitting the equation for each

structural nodes lead to

∫ t−I

t+I−1

`T ⊗ (
1

2J
q i

01
− 1

J
r̄′2Jq iKI−1) dt =

∫ t−I

t+I−1

`T ` dt⊗www i
I . (6.35)

Clearly, motion tensors R i∗, i = 1, 2, . . . , n, would be the corrected motion if they
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satisfying differential equation

(R i∗)T Ṙ i∗ =
1

2J
q̃ i01 −

1

J
r̄′2Jq̃ iKI−1, (6.36)

with boundary condition R i∗(t+I−1) = R i(t−I−1) and R i∗(t−I ) = R i(t−I ). However,

such solutions do not exist in general and there is no Radau corrections for motion

tensors. If the unknowns are vectors rather than motion tensors, eq. (6.36) becomes

q̇ i∗ = (q i
1
− q i

0
)/2J − r̄′2/Jr̄2Jq iKI−1, and the corrected solutions are

q∗
i

= l ⊗ I6q i
I
− r̄2Jq iKI−1. (6.37)

6.8 Numerical examples

Numerical examples are presented to validate the proposed formulation. The

first three are periodic boundary value problems, and the last three are stability

analyses. To measure the accuracy of the solver, the L2 error are introduced as

eu =

(∫ T
0
‖r − re‖2 dt∫ T
0
‖re‖2 dt

)1/2

, eR =

(
1

2T

∫ T

0

‖ log(RT
e R)‖2

F dt

)1/2

,

ev =

(∫ T
0
‖ṙ − ṙe‖2 dt∫ T
0
‖ṙe‖2 dt

)1/2

, eω =

(∫ T
0
‖ω − ωe‖2 dt∫ T
0
‖ωe‖2 dt

)1/2

.

Therein, subscript e indicates reference solutions and Gaussian quadrature is used

to evaluate the integrals.
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Figure 6.4: Error of displacement versus number of nodes, non-stiff problem,
(Ω/ω)2 = 2. CG: (×); DG: (�); DG with Radau correction: (◦).

6.8.1 Periodic problem of a mass-spring system

Consider a simple mass-spring system governed by equation ẍ+Ω2x = f cos(ωt).

Two cases are considered: (1) (Ω/ω)2 = 2 and (2) (Ω/ω)2 = 2 107. The latter case

is introduced to investigate the behavior of stiff problems. Two types of corrections

are used: (1) re-interpolation using eq. (6.26) and (2) Radau correction for velocity

and displacement, see eqs. (6.34) and (6.37), respectively.

Figs. 6.4 and 6.5 show the convergence behavior for the displacement and

velocity fields of the non-stiff problem, respectively. In the CG method, the dis-

placement field exhibit second-order convergence because of the linear interpolation

scheme; the velocity field exhibits first-order convergence and re-interpolation leads

to second-order convergence. In the DG method, both of displacement and ve-

locity fields exhibit second- and third-order convergence, without and with Radau
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Figure 6.5: Error of velocity versus number of nodes, non-stiff problem, (Ω/ω)2 = 2.
CG: (×); CG with re-interpolation: (�); DG : (�); DG with Radau correction: (◦).

correction, respectively.

The convergence behavior for stiff problems is shown in figs. (6.6) and (6.7).

The CG method exhibits the same order of convergence as for non-stiff problems,

for both displacement and velocity fields. In the DG method, the displacement

field exhibits second-order convergence and Radau corrections do not improve the

convergence rate; the velocity field exhibits first-order convergence and while Radau

corrections improve the accuracy slightly, the convergence order is not increased;

re-interpolation increases the convergence rate from first to second order for the

velocity field. As shown in figs. (6.6) and (6.7), the CG method is more accurate

than its DG counterpart for stiff problem, when an equal number of nodes are used.

Figs. (6.8) and (6.9) show the non-dimensional velocity field predicted using

eight 2-node elements for the non-stiff and stiff problems, respectively. For non-stiff

problems, the jumps at element boundaries are not significant and Radau correc-
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Figure 6.6: Error of displacement versus number of nodes, stiff problem, (Ω/ω)2 =
2 107. CG: (×); DG: (�); DG with Radau correction: (◦).
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Figure 6.7: Error of velocity versus number of nodes, stiff problem, (Ω/ω)2 = 2 107.
CG: (×); CG with re-interpolation: (�); DG : (�); DG with Radau correction: (◦);
DG with re-interpolation: (+).
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Figure 6.8: The velocity over one period, non-stiff problem, (Ω/ω)2 = 2. Analytic:
solid line; DG: dashed line; DG with Radau correction: dashed-dotted line.
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Figure 6.9: The velocity over one period, stiff problem, (Ω/ω)2 = 2 107. Analytic:
solid line; DG: dashed line; DG with Radau correction: dashed-dotted line.
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tions improve the predictions dramatically. For stiff problems, however, the jump

magnitudes are far larger than those observed for non-stiff problems and Radau

corrections do not improve the predictions.

6.8.2 Periodic problem of a rigid body

Consider a rigid-body undergoing the periodic motion described by the follow-

ing position vector and 3-1-3 Euler angles

re =


sin 2t

cos 4t

sin 6t


m, and φ

e
=


cos t

2 sin t

3 cos t


rad,

respectively. The mass matrix of the rigid body is given in section 5.5.1. External

forces and moments can be calculated from the equations of motion. These external

forces and moments are now applied to the rigid body and the proposed schemes

are used to predict its dynamic response.

The convergence plots for rotation, displacement, angular velocity, and velocity

are shown in figs. 6.10, 6.11, 6.12 and 6.13, respectively. Because no stiffness is

involved in this problem, the DG method and Radau corrections are expected to

behave well. The CG method exhibit second-order convergence for both of rotation

and displacement fields; the same order of convergence is also observed for the

angular velocity and velocity fields when re-interpolations corrections are used. In

DG method, order-two convergence is observed for both of rotation and displacement

149



10-4

10-3

10-2

10-1

E
rr
o
r 
o
f 
ro
t.

101 102 103

Number of nodes

Slope 2

Figure 6.10: Error of rotation versus number of nodes, periodic rigid-body problem.
CG: (×); DG: (�).
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Figure 6.11: Error of displacement versus number of nodes, periodic rigid-body
problem. CG: (×); DG: (�).
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Figure 6.12: Error of angular velocity versus number of nodes, periodic rigid-body
problem. CG with re-interpolation: (×); DG: (�); DG with Radau correction: (◦).
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Figure 6.13: Error of velocity versus number of nodes, periodic rigid-body problem.
CG with re-interpolation: (×); DG: (�); DG with Radau correction: (◦).
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fields; Radau corrections do not affect the predictions, as discussed in section 6.7;

angular velocity and velocity fields exhibit second- and third-order accuracy without

and with Radau corrections, respectively.
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Figure 6.14: The second components of velocity vector RT ṙ. Reference: solid line;
DG: dotted line; DG with Radau correction: dashed-dotted line.

Fig. 6.14 depicts the second velocity component predicted by DG method

by using 16 2-node elements. Indeed, the Radau correction (6.34) improves the

prediction of velocities dramatically.

6.8.3 Periodic problem of a spatial four-bar mechanism

This example deals with the flexible, spatial four-bar mechanism depicted in

fig. 6.15. Bar 1 is connected to the ground via a revolute joint at point A and

to bar 2 by means of a spherical joint at point B. In turns, bar 2 is connected to

bar 3 via a universal joint at point C and finally, bar 3 is connected to the ground

via a revolute joint at point D. At point D, the rotation of bar 3 is prescribed as
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θ = ωt+ [1− cos(2ωt)]/3 + sin(5ωt)]/5− [1− cos(3ωt)]/5 rad, where ω = 0.3 rad/s.

The problem is periodic with a period T = 2π/ω = 20.944 s. The geometric and

material properties of the system are presented in ref. [23] and will not be repeated

here.

bar 3

A

C

D

i1
_

B

O

k

i2
_

i3
_

θ

bar 2

bar 1

0.40m

0.85m

Revolute joint
Universal joint

Spherical joint

Figure 6.15: Configuration of a spa-

tial four-bar mechanism.

Bar 1 and 3 is meshed using 1 four-

node beam elements where bar 2 is meshed

to 2 four-node elements. The periodic so-

lution of the problem is obtained using

three approaches: the Fourier collocation

method [23] and the proposed CG and DG

methods. The Fourier collocation method

uses the solution for 99 grid points as its ref-

erence solution, while the CG and DG meth-

ods use the solution of 128 elements as their reference solutions.

Figs. 6.16 and 6.17 show the convergence rates for rotation and displacement of

the material point B. Both CG and DG methods exhibit second-order convergence,

as expected. The Fourier collocation method is more accurate than the CG and

DG methods as the number of grid points or nodes becomes greater than 20. The

Fourier collocation method is computationally expensive because the bandwidth of

the Jacobian matrix is proportional to the number of time grids while the bandwidth

remains constant in CG and DG methods as the number of elements increases.

The convergence plots for angular velocity and velocity of the material point

P are shown in figs. 6.18 and 6.19, respectively. A re-interpolation is used in CG
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Figure 6.16: Error of rotation versus number of time grid points, spatial four-bar
problem. DG: (�); CG: (×); Fourier collocation: (+).
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Figure 6.17: Error of displacements versus number of time grid points, spatial four-
bar problem. DG: (�); CG: (×); Fourier collocation: (+).
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Figure 6.18: Error of angular velocity versus number of time grid points, spatial
four-bar problem. DG with re-interpolation: (�); DG with Radau correction and
re-interpolation: (◦); CG with re-interpolation: (×); Fourier collocation: (+).
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Figure 6.19: Error of velocity versus number of time grid points, spatial four-
bar problem. DG with re-interpolation: (�); DG with Radau correction and re-
interpolation: (◦); CG with re-interpolation: (×); Fourier collocation: (+).
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method. A combination of corrections is considered in DG method, i.e., the angu-

lar velocity and velocity are first corrected by eq. (6.34) then re-interpolated, see

section 6.4. The corrected angular velocity and velocity fields exhibit second-order

accuracy and Radau corrections improve the accuracy marginally. In summary, be-

cause the current problem is stiff, the DG method behaves like the stiff mass-spring

system and is less accurate than the CG method.

6.8.4 Parametric excitation of a simply supported beam

Consider a simply supported beam of length L = 2.0 m, subjected to an

end compressive load of harmonically varying amplitude, P cos(Ωt), as depicted in

fig. 6.20. The physical properties of the beam are: axial stiffness, EA = 1.275 108

N; shear stiffness about ı̄2 and ı̄3, GA = 4.17 107 N; torsional stiffness about ı̄1,

GJ = 4.80 103 N·m2; bending stiffness about ı̄2 and ı̄3, EI = 6.25 103 N·m2; mass

per unit span, m = 4.80 kg/m; moment of inertial about ı̄2 and ı̄3, J = 2.35 10−4

kg·m2.

i1

_

i3

_

P cos(Ωt)

Ground

 

Figure 6.20: The parametric excitation of a simply supported beam.

For this problem, the equations of motion can be transformed to the multi-

dimensional Mathieu equation in section (6.1.4) via the modal coordinate transfor-
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mation method. The following notations are introduced for convenience: the funda-

mental natural frequency ω = π2/L2
√
EI/m, static bucking load Pcr = π2EI/L2,

and µ = 1/2P/Pcr. The load magnitude is chosen to P = 0.15Pcr, i.e., µ = 0.3.

In the present analysis, the beam is modeled by using twelve 2-noded elements

in the spatial dimension. To find the periodic solution and perform stability analysis,

twelve 2-noded elements in the time domain are used. Fig. 6.21 shows the predicted

Floquet multipliers. The Floquet multipliers predicted by the CG method are very

large in the entire frequency range; this method cannot be used for the present

problem. The predictions of DG method are in good agreement with the analytical

solution. The DG method introduces numerical damping for high frequency modes,

i.e., Ω/(2ω) ≤ 0.7, as shown in fig. 6.21.
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Figure 6.21: Floquet multipliers versus excitation frequency, for µ = 0.15. Analytic:
(×); CG: (�); DG: (◦).
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6.8.5 Ground resonance of a rotor model

A rigid body of mass m0 = 20 kg is connected to the ground by a spring

of stiffness k0 = 12 kN/m. Four blades and are connected to the rigid body by

revolute joints and root retentions. Each blade and retention are of length L = 4.25

m and e = 0.25 m, respectively. The retentions are driven to rotate about the

rigid body at a constant angular velocity Ω. The lead-lag joints are connected by a

torsional spring of stiffness kθ = 2760 N·m/rad. Both the blades and retentions are

modeled as uniform beams with the same sectional properties: mass per unit span

m = 3 kg/m. Three cases for the in-plane bending stiffness are considered: (1) rigid

EI3 =∞ (2) stiff EI3 = 40, and (3) soft EI = 7.5 kN·m2.

kb

e = 0.25 m

L = 4.25 m

m0

i1

k0

i2

b1
b2

t

Figure 6.22: Schematic of the ground resonance

problem. For clarity, a single blade of the system

is shown.

Each root retention and

beam is modeled with one and

two cubic spatial beam ele-

ments in the spatial domain, re-

spectively. To determine the

periodic solution and analyze

its stability, twelve 2-node ele-

ments in the time domain are

used. The system exhibits cen-

tral symmetry and its stability

can also be analyzed via the

Coleman transformation [162]. Under the Coleman transformation, the periodic
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Figure 6.23: Coalescence of the frequencies.

system can be transformed into a time invariant system. For the rigid-blade case,

the three frequencies of the transformed system is shown in fig. 6.23. As the driving

frequency in the range of [15, 27] rad/s, two frequencies coalesce and the system

becomes unstable.

The instabilities predicted by the proposed Floquet’s method are shown in

fig. 6.24. The CG method works only for the rigid-blade case because it does not

have numerical damping, while the DG method works for all the tree cases. The

predictions of Coleman transformation and the proposed method agree well. The

instability zone in flexible blade case is larger than that in the rigid-blade case and

the instability zone becomes even larger as the blade becomes softer.
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Figure 6.24: Floquet multiplier of the ground resonance problem. Coleman trans-
formation: (◦); CG, rigid: (�); DG, stiff: (×); DG, soft: (+).

6.8.6 Stability of a wind turbine model

Revolute joint

 
Beam

Rigid body

Ω

H

S

e

L

Figure 6.25: Schematic of a wind turbine model.

This example deals with

the ground resonance of a four-

bladed wind turbine model, as

depicted in fig. 6.25. The tower

is of height H = 6.0 m and rep-

resented by a beam. The na-

celle is attached at the tip of

the tower, projects S = 0.8 m

forward, and is represented by

a beam rigid-connected with a

rigid body at its left tip. The
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rotor hub is located at the right tip of the nacelle and is represented by a rigid body.

Each blade is of length L = 4.25 and connected to the hub by a revolute joint and a

root retention of length e = 0.25 m. The rotor are driven to rotating about the hub

with a constant angular velocity Ω. The mass and stiffness properties are listed in

the following tables.

Body
m I22 = I33 = 1/2I11

(kg or kg/m) (kg·m2 or kg·m)

Nacelle-rigid-body 50 5
Hub 30 4

Tower 12.72 0.01
nacelle

3 0.278 10−3blade
retention

Table 6.1: Mass properties of the wind turbine model.

Body
Extension Shear Bending Torsion

(MPa) (MPa) (kN·m2) (kN·m2)

Tower 811 258 387 297
nacelle

81.1 25.8 7.51 4.87blade
retention

Table 6.2: Stiffness properties of the wind turbine model.

The tower and each blade are meshed to six 2-noded beam elements and

each root retention are meshed to one 2-noded beam element. To find the periodic

solution and perform stability analysis, twenty 2-noded element in the time domain

are used. The predicted Floquet multiplier is shown in fig. 6.26.
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Figure 6.26: Floquet multiplier predicted by DG Hamiltonian method.

6.9 Summary and conclusions

Floquet’s and Hill’s methods are investigated for the stability analysis of peri-

odic solutions. The advantages and limitations of these two methods are illustrated

by the analysis of a multi-dimensional Mathieu equation. Hill’s method introduces

fictitious instabilities resulting from aliasing. Floquet’s method provides reliable

predictions when unconditionally stable integration schemes are used but fails when

using conditionally stable schemes.

The continuous and discontinuous Galerkin formulations are applied to the

determination of periodic solutions and their stability analysis. In both formula-

tions, the monodromy matrix is constructed by manipulating the Jacobian matrix

resulting from a linearization about the periodic solution. Numerical examples of in-

creasing complexity are presented to validate the proposed methods. The continuous
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Galerkin method is second-order accurate for both stiff or non-stiff problems while

the discontinuous Galerkin method is third- and second-order accurate for non-stiff

and stiff problems, respectively. The continuous Galerkin method works for stability

analysis of rigid systems only, because it is conditionally stable. The discontinuous

Galerkin method works well for the stability analysis of flexible systems.
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Chapter 7: Galerkin Methods in Time Domain: Optimal Control

and Optimization Problems

Continuous and discontinuous Galerkin methods are applied to optimal control

and optimization problems.

7.1 The problem of optimal control and optimization

Consider a flexible multibody system composed of n structural nodes and the

kinematics of each nodes is represented by motion tensors R i, i = 1, 2, . . . , n. The

nodes subjected to m holonomic constraints, i.e., g(R i, t) = 0. The optimal control

problem is formulated as

min φ[R i(T ), ŵ(T )] +

∫ T

0

L(R i, ŵ , θ, t)dt, (7.1a)

subject to

ŵ − v̂ = 0, (7.1b)

M ˙̂w − diag(w̃ i)TM ŵ + f int +GT
pλ+GT

a θ = f ext, (7.1c)

g(R i, t) = 0, (7.1d)

ψ[R i(T ), ŵ(T )] = 0, (7.1e)
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where the cost functional consists of a terminal term denoted by φ and of an integral

term; the first three constraint equations (7.1b), (7.1c), and (7.1d) are the kinematic,

equilibrium, and constraint equations of the multibody system; θ ∈ Rl denotes the

control torques; Gp ∈ Rm×6n = ∇R g and Ga ∈ Rl×6n denote the constraint Jacobian

of the passive and actuated joints, respectively; ψ ∈ Rr denotes terminal constraints

on the state variables.

Similarly, the optimization problem is formulated as

min φ[R i(T ), ŵ(T )] +

∫ T

0

L(R i, ŵ , θ, t)dt, (7.2a)

subject to

ŵ − v̂ = 0, (7.2b)

M(θ) ˙̂w − diag(w̃ i)TM(θ) ŵ + f int(θ) +GT
p (θ)λ = f ext, (7.2c)

g(R i, θ, t) = 0, (7.2d)

ψ[R i(T ), ŵ(T )] = 0, (7.2e)

where θ ∈ Rl denotes the control design parameters; mass matrix M , internal

force vector f int, and kinematic constraints g may depend explicitly on the design

parameters.

7.2 CG and DG methods for discretization

Both of continuous and discontinuous Galerkin methods are applied to the

discretization of optimal control problem (7.1) and optimization problem (7.2).
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Suppose time span [0, T ] is divided to K two-node elements, denoted [t+I−, t
−
I ],

I = 1, 2, . . . , K. Clearly, t+0 = 0, and t−K = T . The choice of test and trial func-

tions has been discussed in section 5.3. The discretized kinematic, equilibrium,

and constraint equations, (7.1b), (7.1c), and (7.1d) in optimal control problems, are

rewritten here for convenience.

• DG method

www I − vvv I = ı⊗ Jq̂KI−1, (7.3a)

Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI = f ext

I
+ 10 ⊗ (MJŵKI−1), (7.3b)

g
I

= 0, (7.3c)

where the term GT
aIθI resulting from the discretization of actuation forces.

• CG method

www I − vvv I = 0, (7.4a)

−Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI = f ext

I
+ 11 ⊗ (M ŵ(tK))

− 10 ⊗ (M ŵ(t0)), (7.4b)

g
I

= 0, (7.4c)

where the underlined and double-underlined terms are active in the last and

first elements, respectively; the boxed term is active in optimal control prob-

lems.
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In both of the CG and DG methods, independent velocities www I can be eliminated

from eqs. (7.3a) or (7.4), respectively. Consequently, these two equations do not

enter into the final governing equations explicitly.

When the DG method is applied, the discretized optimal control problem (7.1)

becomes

min φ(R i
I,N , ŵ I,N) +

K∑
I=1

LI , (7.5a)

subject to

Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI = f ext

I
+ 10 ⊗ (MJŵKI−1),

(7.5b)

g
I

= 0, (7.5c)

ψ(R i
K,N , ŵK,N) = 0, (7.5d)

where LI =
∫ t+I
t+I−1

L dt. When CG method is applied, the discretized optimal control
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problem (7.1) becomes

min φ(R i
I,N , ŵ I,N) +

K∑
I=1

LI , (7.6a)

subject to

−Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI = f ext

I
+ 11 ⊗ (M ŵ(tK))

− 10 ⊗ (M ŵ(t0)),

(7.6b)

g
I

= 0, (7.6c)

ψ(R i
K,N , ŵK,N) = 0. (7.6d)

7.3 First order optimality condition, DG method

If the DG method is applied for the discritization, the following element-wise

augmented functional are introduced

LI = LI + νTI [Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI − f ext

I

− 10 ⊗ (MJŵKI−1)] + ξT
I
g
I

+ φ+ πTψ,

(7.7)

where the underlined term is active only for the last element, i.e.,I = K. Therein,

νI ∈ R6n(N+1), ξ
I
∈ Rm(N+1), and π ∈ Rr are Lagrange multipliers. For convenience,
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the following notation was introduced

δp
I

def
=



δuuuI−2

δλI−2

δuuuI−1

δλI−1

δuuuI

δλI



, ∆p
I

def
=



∆uuuI−2

∆λI−2

∆uuuI−1

∆λI−1

∆uuuI

∆λI



, δ(or ∆)dI
def
= δ(or ∆)



νI−2

ξ
I−2

νI−1

ξ
I−1

νI

ξ
I



,

δp
T

def
=


δuuuT

δλT

 , ∆p
T

def
=


∆uuuT

∆λT

 , δ(or ∆)dI
def
= δ(or ∆)


νT

ξ
T

 ,

where subscript T indicates a stack of quantities in all time grids in an ascent order.

Vanishing of the first order variation of functional
∑K

I=1 δLI = 0 leads to

K∑
I=1





δθI

δp
I

δdI

δπ



T 

∇θILI

∇p
I
LI

∇dILI

∇πLI




=



δθT

δp
T

δdT

δπ



T 
AK
I=1



∇θILI

∇p
I
LI

∇dILI

∇πLI




= 0, (7.8)

notation A indicates an assembly over elements. Because all variables are free,
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eq. (7.8) yields to the first-order optimality condition

AK
I=1



∇θILI

∇p
I
LI

∇dILI

∇πLI


= 02K[l+2(6n+m)+r], (7.9)

where

∇θILI = ∇θILI + GaIνI + 11(∇θφ) + FTI νI ,

∇p
I
LI =


KT
I2

KT
I1

KT
I0



νI

ξ
I
/s

+


02(6n+m)

11 ⊗ [∇R φ+ (∇Rψ)Tπ]

02m


,

∇dILI =


02×(6n+m)

Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI − 10 ⊗ (MJŵKI−1)

sg
I


,

∇πLI = ψ.

Therein, double-boxed terms are active in optimization problems only and the fol-
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lowing notation is defined

FI = ∇θI
[
Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI − 10 ⊗ (MJŵKI−1)
]
,

KI2 =

−(101T1 )⊗ML(I−1)0



KI1 =

[(101T0 )⊗M + M + CI ]LI0 − (101T1 )⊗ML(I−1)1

 ,

KI0 =

[(111T1 )⊗M + MI + CI ]LI1 + KI + NI sGT
I1

sGI2

 .

7.4 First-order optimality condition, CG method

If the CG method is applied for the discretization, the following element-wise

augmented functional is introduced

LI = LI + νTI [−Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI − f ext

I

+ 11 ⊗ (M ŵ(tK))− 10 ⊗ (M ŵ(t0))] + ξT
I
g
I

+ φ+ πTψ,

(7.10)

where the underlined term is active only for the last element, i.e., I = K. Therein,

νI ∈ R6n(N+1), ξ
I
∈ Rm(N+1), and π ∈ Rr are Lagrange multipliers. For convenience,
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the following notations are introduced

δp
I

def
=


δuuuI

δλI

 , ∆p
I

def
=


∆uuuI

∆λI

 , δ(or ∆)dI
def
= δ(or ∆)


νI

ξ
I

 ,

δp
T

def
=


δ̄uuuT

δλT

 , ∆p
T

def
=


∆̄uuuT

∆λT

 , δ(or ∆)dI
def
= δ(or ∆)


νT

ξ
T

 ,

where subscript T indicates a stack of quantities in all time grids in ascent order. In

the CG method, the motion tensors and velocities at the initial and terminal time

t0 and tK are given. Accordingly, the increments of motion tensors are rearranged

as

∆̄uuuT =



∆v̂(tK)

∆̂u(t1)

...

∆̂u(tK−1)


.

Vanishing of the first-order variation of functional
∑K

I=1 δLI = 0 leads to the

first-order optimality condition

AK
I=1



∇θILI

∇p
I
LI

∇dILI

∇πLI


= 0K[l+2(6n+m)+r]−12n, (7.11)
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where

∇θILI = ∇θILI + GaIνI + 11 ⊗ (∇θφ) + FTI νI ,

∇p
I
LI = KT

I


νI

ξ
I
/s

+


02(6n+m)

11 ⊗ [∇R φ+ (∇Rψ)Tπ]

0m


,

∇dILI =


02(6n+m)

−Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI + GT
aIθI + 11 ⊗ (M ŵ(tK))− 10 ⊗ (M ŵ(t0))

sg
I


,

∇πLI = ψ.

Therein

FI = ∇θI
[
−Mwww I + f gyro

I
+ f int

I
+ GT

pI1λI − 11 ⊗ (M ŵ(tK)) + 10 ⊗ (M ŵ(t0))
]
,

KI =

−M + CI + KI + NI sGT
pI1

sGpI2

 .

7.5 Newton method

The nonlinear equations resulting from the first-order optimality condition are

solved using Newton method. The linearization of eqs. (7.9) and (7.9) have the same
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form

AK
I=1





∇2
θI
LI ∇θI ,pILI ∇θI ,dILI

(∇p
I
,θI
LI)T ∇2

p
I
LI ∇p

I
,dI
LI ∇p

I
,πLI

(∇θI ,dILI)
T (∇p

I
,dI
LI)T

(∇p
I
,πLI)T







∆θT

∆p
T

∆dT

∆π



= −AK
I=1



∇θILI

∇p
I
LI

∇dILI

∇πLI


,

(7.12)

where the submatrices are defined in the next section.

The Hessian matrix in eq. (7.12) is composed of 4× 4 major blocks, and each

of them are sparse. Although the entire matrix can be factorized directly as a sparse

matrix, a more convenient approach is to manipulate each blocks individually. For

convenience, the linear system is rewritten as



A BT CT

B J KT GT

C K

G





∆θ

∆p

∆d

∆π


=



r2

r2

r3

r4


. (7.13)
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The first step is to obtain increments ∆p and ∆d from the second and third rows

∆p = K−1(r3 − C∆θ) = y − T∆θ, (7.14a)

∆d = K−T (r2 − J∆p−B∆θ −GT∆π) = z + (K−TJT − L)∆θ − S∆π, (7.14b)

where T = K−1C, L = K−TB, S = K−TGT , y = K−1r3, and z = K−T (r − Jy).

Matrix T represents the sensitivity of primal variables with respected to control

inputs. Clearly, the system is controllable if and only if T has full-column rank.

Introducing solutions (7.14) to the first and last rows of eqs. (7.13) leads to

A+ T TJT −BTT − T TB −(GT )T

−GT




∆θ

∆π

 =


z1

z2

 , (7.15)

where z1 = r1 −BTy − CT z and z4 = r4 −Gy.

In summary, solving the final linear systems (7.13) breaks down to the following

steps

1. Factorize matrices K and KT ;

2. Compute auxiliary matrices T = K−1C, A + T TJT , GT , and vectors K−1r3,

K−T (r − J − y), K−T r2;

3. Factorize matrix

A+ T TJT −BTT − T TB −(GT )T

−GT


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and solve reduced linear system (7.15).

7.6 Hessian matrices for CG and DG methods

In the DG method, the Hessian matrices in eq. (7.12) are defined as

∇2
θI
LI = ∇2

θI
LI + (111T1 )⊗ (∇2

θφ) + ∇θI (F
T
I νI) , (7.16a)

∇θI ,pILI =

[
0 0 0 0 HI 0

]
, (7.16b)

∇θI ,dILI =

[
0 0 0 0 GaI + FTI 0

]
, (7.16c)

∇θI ,πLI = 11 ⊗ (∇θψ)T , (7.16d)

∇p
I
,dI
LI =


0 0 KI2

0 0 KI1

0 0 KI0

 , (7.16e)

∇p
I
,πLI =

0 0 (111T1 )⊗ (∇Rψ)T

0 0 0

 , (7.16f)

where HI =
∫ t−I
t+I−1

`T ⊗ HLuI dt and matrix H, of size 6n × 6n, comes from the

linearization of actuated constraint forces, i.e., ∆(Gaθ) = Ga∆θ + H ∆̂u. The

Hessian matrix ∇2
p
I
LI , of size 6(6n+m)× 6(6n+m), is unsymmetric as discussed

in section 2.11. In the CG method, the Hessian matrices in eq. (7.12) are defined
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as

∇2
θI
LI = ∇2

θI
LI + (111T1 )⊗ (∇2

θφ) + ∇θI (F
T
I νI) , (7.17a)

∇θI ,pILI =

[
HI 0

]
, (7.17b)

∇θI ,dILI =

[
GaI + FTI 0

]
, (7.17c)

∇θI ,πLI = 11 ⊗ (∇θψ)T , (7.17d)

∇p
I
,dI
LI = KI , (7.17e)

∇p
I
,πLI =

(111T1 )⊗ (∇Rψ)T

0

 . (7.17f)

7.7 Numerical example

Numerical examples are presented to validate the proposed formulation.

7.7.1 Optimal control of flexible robotic arms

Consider a robotic arm consisting of a rigid end-effector and three flexible

beams connected by revolute joints. Bars 1, 2, and 3 are all of length 0.4 m.

The mass and stiffness properties are listed in tables. 7.1 and 7.2, respectively.

Body
m I22 = I33 = 1/2I11

(Kg or Kg/m) (Kg·m2 or Kg·m)

End-effector 2 0.1
Bar 1 19.5 4.0625 10−3

Bar 2 and 3 2.5272 6.823 10−5

Table 7.1: Mass properties of the robotic arm.
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Figure 7.1: Configuration of the robotic arm.

Body
Extension, Torsion,

shear (MPa) bending (KN·m2)

Bar 1 500, 159.4 67.66, 104.2
Bar 2 and 3 64.8, 20.65 1.137, 1.750

Table 7.2: Stiffness properties of the robotic arm.

The problem is to determine the control torques ui, i = 1, 2, 3 that minimize the

cost functional J =
∫ 0.5

t=0
u2

1 + u2
2 + u2

3 dt, and move point point D from position

r(0) = (0.7980, 0, 0.4566) m at t = 0 to r(0.5) = (0.3766, 0.5865, 0.4846)m at t = 0.5

s, from rest to rest.

The proposed DG method is applied for the problem. Each beam is modeled

by 8 2-node elements. The time period [0, 0.5] s is meshed to 20 2-node elements.

The predicted control torques are shown in fig. 7.2.
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Figure 7.2: Control torques, u1: dashed line, u2: dashed-dotted line, u3: solid line.

7.8 Summary and conclusions

The simultaneous iteration method is used for optimal control and optimiza-

tion problems. Both of continuous and discontinuous Galerkin methods are applied

to the discretization of the governing equations. A strategy is proposed for the fac-

torization of the structured Hessian matrix. The proposed DG method is validated

using the example of optimal control of a robotic arm.
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Chapter 8: Summary and Conclusions

8.1 Summary and Conclusions of the thesis

In this thesis, a unified Galerkin solver is developed for solving the geomet-

rically exact beam problem, time integration of dynamic equations, determination

of periodic solutions, stability analysis of periodic solutions, optimal control and

optimization problems.

The representations of rigid-body motion as motion tensor, dual unit quater-

nions, and dual parameter vectors are presented in Chap. 2. Derivatives and varia-

tions of rigid-body motions are defined. Of the central importance is the extended

notation that relates the dual number quantities in kinematics and the real number

quantities in statics and dynamics. With the help of the extended notion, gradients

and Hessian are defined for functions of rigid-body motions. Newton’s method for

nonlinear equations and optimization problems formulated on manifold SO(3) are

presented.

Galerkin methods require interpolation of rigid-body motion fields. A set of

unified interpolation schemes for rigid-body motion is proposed in Chap. 3. The

fundamental conclusion of this chapter is that the proposed interpolation schemes

for rigid-body motions converge with the same rate as that of interpolation schemes
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in the Euclidean space.

Application of the continuous Galerkin method to beam problems leads to the

beam formulation presented in Chap. 4. Two fundamental strategies are introduced:

(1) the curvatures at nodes (the Lobatto points), rather than at the Gauss points,

are evaluated for simplicity, and (2) the assumed curvature field is constructed via

interpolation of nodal curvatures. The strain energy is evaluated from the assumed

curvature field thereby avoiding locking.

The discontinuous Galerkin method is developed and applied to the time inte-

gration of initial value problems in Chap. 5. The time integration scheme resulting

from the dual-SLERP time interpolation is third-order accurate for both of displace-

ments and rotations. The proposed scheme is more accurate than the generalized-α

and Radau II-A schemes.

The proposed continuous and discontinuous Galerkin methods are applied to

periodic boundary value problems in Chap. 6. The CG method is superior to DG

method in determination of periodic solutions: the CG method converges with the

expected order for both of stiff and non-stiff problems; the order of accuracy of

the DG method, however, decreases for stiff problems. On the other hand, the

DG method provides a reliable tool for the stability analysis of periodic solutions,

whereas the CG method fails for such problems.

The proposed CG and DG methods are applied to optimal control and op-

timization problems in Chap. 7. Both of kinematic variables and control inputs

are treated as optimization variables and this treatment leads to a simultaneous

iteration method. The Hessian is derived analytically to decrease the number of
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iterations.

8.2 Future research

The research in this thesis could be extended in the following directions.

In-extensible Kirchhoff beams/cables. The governing equations for geometric

exact beams are stiff because the axial/shear and torsion/bending stiffness differ

significantly. In fact, the high axial/shear stiffness is akin to a penalty formula-

tion and the resulting deformation is negligible in most practical problems. Stiff

equations lead to numerical difficulties. For instance, the convergence order of dis-

continuous Galerkin methods decreases for stiff periodic problems, as shown in the

first example of Chap. 6. Two methods exist to enforce the vanishing of axial/shear

strains: (1) enforcing the axial and shear strains to vanish in the geometrically ex-

act beam formulation, and (2) enforcing the axial strain to vanish in the Kirchhoff

beam formulation. Formulations of in-extensible Kirchhoff beams/cables could be

investigated in the future.

Stable inversion based feedforward control of flexible multibody systems. The

stable inverse dynamics of flexible multibody systems is formulated as an overdeter-

mined two-point boundary value problem (TPBVP) of DAEs. The TPBVP can be

discretized by using continuous Galerkin method and the overdetermined boundary

conditions can be enforced weakly.

Optimal control and optimization problem with inequality constraints. The re-

search on optimal control/optimization problem is far from complete. For instance,
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only the discontinuous Galerkin method for optimal control problem was imple-

mented and inequality constraints were not considered. In the future, the continu-

ous Galerkin method could be implemented and optimizations problem should be

investigated in detail. Inequality constraints could be enforced by using primal/dual

interior point method.

Optimal control and optimization of periodic boundary value problems. Opti-

mization of periodic solutions are of practical interest and these problems should

be investigated in future. Mathematically, optimization of periodic boundary value

problems is easier than optimization of initial value problems because no terminal

condition is involved.
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Appendix A: Fundamental Identities

A.1 Vector identities

Important vector identities will be used throughout this book. If a, b, and c are

three arbitrary vectors, the following identities can be readily verified by painstak-

ingly expanding the various products,

(̃ã b) = ã b̃− b̃ ã, (A.1a)

ã b̃ = b aT − (aT b)I, (A.1b)

ã b̃− b̃ ã = b aT − a bT , (A.1c)

ã b̃− a bT = (̃ã b)− (aT b)I, (A.1d)

˜̃a b c = (aT c)b− (bT c)a, (A.1e)

ã b̃ c = (aT c)b− (aT b)c, (A.1f)

a bT c = (bT c)a, (A.1g)

aT b̃ c = bT c̃ a = cT ã b. (A.1h)
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If n̄ is a unit vector and a an arbitrary vector, the following identities also hold

(aT n̄)n̄ = a+ ñña, (A.2a)

ñññ = −ñ, (A.2b)

ñ ˙̃nñ = 0, (A.2c)

where notation (·)· indicates a derivative with respect to time.

A.2 Identities for matrices and vectors

This section presents a set of useful identities that are used throughout this

book. The identities involve a matrix A, of size 3 × 3, and vector a, of size 3 × 1

and complement the vector identities presented in eqs. A.1.

axial(ãA) =
1

2
[tr(A)− A]a, (A.3a)

axial(Aã) =
1

2
[tr(A)− AT ]a, (A.3b)

axial(b̃ãA) =

[
1

2
ÃT b− axial(A)bT

]
a, (A.3c)

axial(b̃Aã) =

[
1

2
Ab̃− b axialT (A)

]
a, (A.3d)

tr(ãA) = −2aTaxial(A), (A.3e)

tr(a aTA) = aT symm(A)a. (A.3f)

These identities can be verified easily.
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A.3 Solution of the vector-product equation

Consider the following statement, ãx = b, that can be viewed as a linear

system for unknown x. Because ãa = 0, the system is singular and a forms the

null space of the system; the solvability condition is aT b = 0. The solution of the

problem is x = µa+ αãb, where µ is an arbitrary scalar and α a scalar to be solved

for. Introducing the solution yields b = ã(µa+ αãb) = αããb. Identity (A.1a) yields

b = α[a aT − ‖a‖2I]b = −α‖a‖2b, where the solvability condition implies the second

equality. Clearly, α = −1/‖a‖2 and the solution is

x = µa− ãb

‖a‖2
, (A.4)

where scalar µ remains undetermined, as expected.

A.4 The polar decomposition theorem

The polar decomposition theorem can be stated as follows.

Theorem A.4.1 (Polar decomposition theorem). An invertible matrix, G ∈ R3×3,

can be decomposed into the product of a proper orthogonal matrix, R ∈ SO(3), by a

symmetric matrix, S, as G = RS. Matrices R and S are defined uniquely if matrix

[tr(S)I − S] is required to be positive-definite.

Proof. Let the spectral decomposition of positive-definite matrixGTG be UTdiag(λ1, λ2, λ3)U ,

where positive eigenvalues, λi, i = 1, 2, 3, satisfy λ1 ≤ λ2 ≤ λ3. In view of
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identity STS = (RTG)T (RTG) = GTG, symmetric matrix S can be chosen as

UTdiag(±
√
λ1,±

√
λ2,±

√
λ3)U . Of these eight choices, two only, UTdiag(±

√
λ1,
√
λ2,
√
λ3)U ,

render matrix [tr(S)I −S] positive-definite. The sign of the lowest eigenvalue is de-

termined by the sign of det(G) = det(R) det(S) = det(S): choose the positive or

negative sign if det(G) is positive or negative, respectively.

Polar decomposition theorem (A.4.1) differs slightly from the traditional polar

decomposition theorem used in continuum mechanics [142, 163]. The proof above

shows that eight different symmetric matrices S satisfy multiplicative decomposition

G = RS. The solution is made unique by imposing an additional condition: in the

traditional and present versions of the theorem, matrices S and [tr(S)I − S] are

required to be positive-definite, respectively. When det(G) > 0, the two theorems

are identical.

A.5 The dual polar decomposition theorem

The polar decomposition theorem in section A.4 for matrices of size 3 × 3 is

now generalized to dual matrices.

Theorem A.5.1 (Dual polar decomposition theorem). An invertible dual matrix,

G ∈ D3×3, can be decomposed into the product of a dual orthogonal matrix, R ∈

SO(3), by a symmetric dual matrix, S , as G = R S . Matrices R and S are defined

uniquely if it is also required that matrix [tr(S)I − S] be positive-definite, where S

is the primal part of dual matrix S .

Proof. To prove the theorem, dual matrices R and S will be constructed and the
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solution will be shown to be unique. First, dual identity G = R S is expanded as

(G+ ε G◦) = (R + ε R◦)(S + ε S◦), which implies

G = RS, (A.5a)

G◦ = RS◦ +R◦S. (A.5b)

Equation (A.5a) expresses theorem A.4.1, i.e., proper orthogonal tensor R and sym-

metric matrix S are defined uniquely. Equation (A.5b) implies RTG◦ = S◦ +

(RTR◦)S, where matrix RTR◦ = z̃ is antisymmetric because motion tensor R is

orthogonal. Because matrix S◦ must be symmetric, axial(S◦) = 0, and extracting

the axial part of this equation yields axial(RTG◦) = axial[z̃S]. Identity (A.3a) now

yields [tr(S)I − S]z = 2axial(RTG◦), a linear system that can be solved to find

z. The dual parts of orthogonal matrix R and symmetric matrix S are found as

R◦ = Rz̃ and S◦ = RTG◦ − z̃S, respectively.
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Appendix B: Interpolation Functions

Consider a continuous function f(α) defined in α ∈ [0, T ]. The parameter α

can represent temporal or spatial coordinates. The function can be non-periodic

or periodic with period T . The Chebyshev spectral interpolation is used for the

approximation of non-periodic functions and coordinate transformation α = T (η +

1)/2 is used. The Fourier spectral interpolation is used for the approximation of

periodic functions and coordinate transformation α = Tη/(2π) is used.

B.1 Legendre polynomials

Spectral methods are based on orthogonal polynomials originating from the

solution of eigenvalue problems for ordinary differential equations, a class of prob-

lems known as “Sturm-Liouville problems.” Legendre’s polynomials, denoted as

Pn(η), η ∈ [−1, 1], are the solutions of the following Sturm-Liouville problem,

d

dη

[(
1− η2

) dPn
dη

]
+ n(n+ 1)Pn = 0, (B.1)

with boundary conditions Pn(−1) = (−1)n and Pn(1) = 1. The few lowest-order

polynomials are P0(η) = 1, P1(η) = η, P2(η) = (3η2 − 1)/2, P3(η) = (5η3 − 3η)/2.

189



Alternatively, Legendre’s polynomials are generated by the following recurrence re-

lationship

(n+ 1)Pn+1(η) = (2n+ 1)ηPn(η)− nPn−1(η), n > 0. (B.2)

Figure B.1 shows the six lowest-order Legendre polynomials. Numerous prop-

erties of these polynomial are stated in Abramowitz and Stegun [164] or derived in

textbooks [165,166].
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Figure B.1: The six lowest-order Legen-

dre polynomials.

The set of polynomials of degree less

or equal to N forms a vector space of di-

mension N + 1, denoted as PN . Clearly,

the set of Legendre’s polynomials up to

the N th degree, {P0, . . . , PN}, forms an

orthogonal basis of PN .

The Gauss-Legendre points or Gauss-

Legendre abscissæ play an important role when dealing with quadrature problems;

these points are denoted

µk, k = 0, 1, . . . , N − 1, (B.3)

and are the N real zeros of Legendre’s polynomial PN+1(η). For all polynomial

p(η) ∈ P2N−1, the following quadrature rule holds [165,166],

∫ 1

−1

p(η) dη =
N−1∑
k=0

p(µk)wµ,k, (B.4)
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where wµ,k are the weights of Gauss-Legendre quadrature rules. Numerical values

for the Gauss-Legendre abscissæ and associated weights can be found in Abramowitz

and Stegun [164].

Similarly, the Gauss-Lobatto points or Gauss-Lobatto abscissæ are denoted

ν0 = −1, νN = +1, and νk, k = 1, . . . , N − 1, (B.5)

where νk, k = 1, . . . , N − 1, are the N − 1 real zeros of polynomial P ′N+1(η) and

notation (·)′ indicates a derivative with respect to η. For all polynomial p(η) ∈

P2N−1, the following quadrature rule holds [165,166],

∫ 1

−1

p(η) dη =
N∑
k=0

p(νk)wν,k, (B.6)

where wν,k are the weights of Gauss-Lobatto rule. Numerical values for the Gauss-

Lobatto abscissæ and associated weights can be found in Abramowitz and Ste-

gun [164].

For polynomials p(η) of degree higher than 2N , the Gauss-Legendre and

Gauss-Lobatto quadrature rules, eqs. (B.4) and (B.6), respectively, become approx-

imate [165,166]

∫ 1

−1

p(η) dη ≈
N−1∑
k=0

p(µk)wµ,k, (B.7a)

∫ 1

−1

p(η) dη ≈
N∑
k=0

p(νk)wν,k. (B.7b)
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To illustrate quadrature rules B.7, integral
∫ +1

−1
cosx dx = 2 sin 1 was computed

numerically using the Gauss-Lobatto and Gauss-Legendre formulas, eqs. (B.7a)

and (B.7b), respectively, with an increasing number of sampling points, N = 2, 3, 4, 5.

Gauss-Legendre Gauss-Lobatto

N = 2 −0.42 −36

N = 3 3.7 10−03 0.63

N = 4 −1.7 10−05 −4.9 10−03

N = 5 4.7 10−08 2.1 10−05

Table B.1: Error in % for the Gauss-

Legendre and Gauss-Lobatto quadrature

rules.

Table B.1 shows the results ob-

tained with the two approaches and

calls for the following comments. For

the same number of sampling points,

the Gauss-Legendre is far more accu-

rate than the Gauss-Lobatto quadra-

ture rule. Similar accuracies are ob-

tained for the Gauss-Legendre and

Gauss-Lobatto quadrature rules pro-

vided that one additional sampling point is used in the latter approach.

This observation can be explained as follows: in Gauss-Legendre quadrature,

the location of all sampling points is optimized to obtained the most accurate results.

In contract, for the Gauss-Lobatto quadrature rule, the function is always sampled

at the end points, ν0 = −1 and νN = +1; the location of the remaining intermediate

sampling points is then selected to obtained the most accurate results. Because of

this superiority of the Gauss-Legendre quadrature rule, it is used extensively in finite

element methods for the numerical evaluation of the mass and stiffness matrices, see

textbook on the finite element methods [149,150].
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B.2 Lagrange polynomials

Lagrange’s polynomials are used extensively to interpolate functions; the are

defined as

ln(η) =
N∏

k=0, k 6=n

η − αk
αn − αk

, (B.8)

where αk, k = 0, 1, . . . , N , are called the abscissæ of the interpolation. By construc-

tion, Lagrange’s polynomials satisfy the following identity

ln(αk) = δnk, (B.9)

where δij denotes the Kronecker delta. If the discrete values of an arbitrary function

are known at the abscissæ, this function is interpolated easily as

f(η) =
N∑
k=0

lk(η)f(αk). (B.10)

At the abscissæ, the interpolating function becomes f(αj) =
∑N

k=0 lk(αj)f(αk) =∑N
k=0 δkjf(αk) = f(αj). It is verified easily that Lagrange’s polynomials satisfy the

property of partition of unity
N∑
k=0

lk(η) = 1. (B.11)

Various sets of abscissæ can be used, depending on the desired type of interpo-

lation: equally spaced abscissæ, abscissæ located at the Gauss-Lobatto quadrature

points, and abscissæ located at the Gauss-Legendre quadrature points will be illus-
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trated below.

B.3 Lagrangian polynomials based on equally spaced abscissæ

In the finite method, Lagrangian polynomials based on equally spaced abscissæ

are often used to interpolate the displacement fields within each finite element. In

the finite element literature [149,150], these Lagrangian polynomials are often called

“shape functions” of the element.

To illustrate the process, the displacement field of the element is assumed to be

defined at three nodes along the element. The first two nodes, denoted nodes 1 and

2, are located at the end points of the element, and one additional node, denoted

node 3, is inside the element. Let u1, u2, and u3 be the displacement vectors of nodes

1, 2, and 3, respectively. The displacement field of the element is now interpolated

based on the displacement vectors at the nodes using shape functions denoted h1(η),

h2(η), and h3(η),

u(η) = h1(η)u1 + h2(η)u2 + h3(η)u3. (B.12)

Node 1, 2, and 3 are located at η = −1, +1, and 0, respectively, which are equally

spaced abscissæ. The shape functions are

h1(η) = −1

2
η(1− η), h2(η) =

1

2
η(1 + η), h3(η) = 1− η2. (B.13)

Although, the ordering is different, these shape functions are Lagrangian polyno-

mials based on equally spaced abscissæ and could be written in the form given by
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eq. (B.8).

The reasoning developed in the previous paragraphs can be repeated for el-

ements presenting two, three, or four nodes, leading to linear, quadratic, or cubic

polynomial shape functions, respectively. For elements featuring two nodes located

at their end points, the two linear shape functions are

h1(η) =
1

2
(1− η), h2(η) =

1

2
(1 + η). (B.14)

For elements with four nodes, two at their end points and two internal nodes located

at η = ∓1/3, the four cubic shape functions are

h1(η) =
9

16
(η2 − 1

9
)(1− η), h3(η) = −27

16
(1− η2)(η − 1

3
),

h2(η) =
9

16
(η2 − 1

9
)(1 + η), h4(η) =

27

16
(1− η2)(η +

1

3
).

(B.15)
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Red circles indicate the node locations.
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The shape functions defined by eqs. (B.14), (B.13), and (B.15) are depicted

in the top, middle, and bottom portions of fig. B.2, respectively. Derivatives of

the shape functions with respect to variable η will also be necessary and are readily

computed from eqs. (B.14), (B.13), and (B.15). Figure B.3 depicts these derivatives.

B.4 Lagrangian polynomials based on Gauss-Lobatto and Gauss-

Legendre abscissæ

In the spectral [23,167] and assumed strain [151] formulations of the finite ele-

ment method, Lagrangian polynomials based on Gauss-Lobatto and Gauss-Legendre

abscissæ, respectively, will be used.

Lagrange’s polynomials based on the Gauss-Lobatto abscissæ are denoted l(η);

fig B.4 depicts the six Lagrange polynomials for the case N = 5. At the Gauss-
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Lobatto quadrature points, the derivatives of Lagrange’s polynomials lk(η) with

respect to η become

dj,k =
dlk
dη
|η=νj =



−N(N + 1)/4, j = k = 0,

0, j = k ∈ [1, 2, . . . , N − 1],

N(N + 1)/4, j = k = N,

PN(νj)

(νj − νk)PN(νk)
, j 6= k.

(B.16)

These derivatives are stored in matrix d, of size (N + 1)× (N + 1), such that entry

(j, k) of this matrix are [d]jk = dj,k.
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Figure B.4: Lagrange polynomials based on Gauss-Lobatto abscissæ.

Finally, Lagrange’s polynomials based on the Gauss-Legendre abscissæ are

denoted m(η); fig B.5 depicts the six Lagrange polynomials for the case N = 5.
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B.5 Lagrangian polynomials based on Gauss-Radau abscissæ: Radau

polynomials

Legendre’s polynomials of degree k, denoted as Pk(η), η ∈ [−1, 1], are orthog-

onal polynomials generated by the following recurrence relationship

(k + 1)Pk+1(η) = (2k + 1)ηPk−1(η)− kPk−2(η), k ≥ 2. (B.17)

The few lowest-order polynomials are P0(η) = 1, P1(η) = η, P2(η) = (3η2 − 1)/2,

P3(η) = (5η3 − 3η)/2. The set of polynomials of degree less or equal to N forms

a vector space of dimension N + 1, denoted as PN . Clearly, the set of Legendre’s

polynomials up to the Nth degree, {P0, . . . , PN}, forms an orthogonal basis of PN .
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The left and right Radau polynomials [125] of degree k are defined as

¯̀
k =

1

2
(Pk + Pk−1), (B.18a)

r̄k =
(−1)k

2
(Pk − Pk−1). (B.18b)

The left and right Radau points are zeros of polynomials ¯̀
k and r̄k, respectively.

Clearly, the right Radau polynomial l̄k is orthogonal to any polynomial p ∈ Pk−2.

It is verified easily that

¯̀
k(−1) = 0, ¯̀

k(1) = 1, (B.19)

r̄k(−1) = 1, r̄k(1) = 0. (B.20)

Consider a polynomial p ∈ Pk−1, integration by parts leads to

∫ 1

−1

p¯̀′
k dt = p¯̀

k

∣∣1
−1
−
∫ 1

−1

p′ ¯̀k dt = p(1), (B.21a)∫ 1

−1

pr̄ ′k dt = pr̄k|1−1 −
∫ 1

−1

p′r̄k dt = −p(−1), (B.21b)

because of identities (B.19) and p′ ∈ Pk−2.
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B.6 Chebyshev interpolation

The Chebyshev polynomials of the first kind, Tk(η), appear as a solution to

the Sturm-Liouville problem. An explicit expression of Chebyshev polynomials is

Tk(η) = cos(k arccos η), η ∈ [−1, 1]. (B.22)

The lowest polynomials are T0(η) = 1, T1(η) = η, T2(η) = 2η2−1, T3(η) = 4η3−3η,

etc. The Chebyshev polynomials can be generated from the following recurrence

relationship

Tk+1(η) = 2ηTk(η)− Tk−1(η), k ≥ 0. (B.23)

The pth order derivatives of Chebyshev polynomials are given by [168]

T
(p)
k (η) = 2pk

k−p∑
l≥0,k−p−l even

[k + p− l]/2− 1

[k − p− l]/2


([k + p+ l]/2− 1)!

([k − p+ l]/2 )!

Tl(η),

(B.24)

where notation (·)(p) indicates the pth order derivatives with respect to η.

Considering the Chebyshev polynomials up to the N th order, the Chebyshev-

Gauss-Lobatto quadrature points are given by [165,166]

ηi = − cos(πi/N), i ∈ [0, 1, · · · , N ], (B.25)

which are also the extrema of Tk(η). The Chebyshev polynomials Tk, k ∈ [0, 1, . . . , N ],
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satisfy the following discreet orthogonality relationships

γkl =
N∑
i=0

Tk(ηi)Tl(ηi) =



N, k = l = 0,

N/2, k = l ∈ [1, 2, · · · , N ],

0, k 6= l,

(B.26)

The discretized Chebyshev expansion for the function f(η) is f(η) =
∑N

l=0 flTl(η),

where the coefficients are found as γllfl =
∑N

k=0 Tl(ηk)f(ηk) by using orthogonality

condition (B.26). Introducing the coefficients fl back to the expansion then yields

the interpolation formula

f(η) =
N∑
k=0

lk(η)f(ηk). (B.27)

The spectral interpolation polynomials are

lk(η) =
(−1)N+k+1(1− η2)T ′N(η)

ckN2(η − ηk)
, (B.28)

where ck = 2 for k = 0 or N and otherwise ck = 1.

B.7 Fourier spectral interpolation and discrete Fourier transforma-

tion

The complex exponential functions of period 2π is defined as exp(ikη), where

i =
√
−1. Consider the complex exponential up to harmonic N/2 where N is even,
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the quadrature points are equally spaced over a period 2π

ηk = 2πη/(N + 1), k ∈ [0, 1, . . . , N ]. (B.29)

The complex exponential functions exp(ikη), k ∈ [−N/2, . . . , N/2], satisfy the dis-

cretized orthogonality

γkl =
N∑
j=0

exp(ikηj) exp(ilηj) =


N + 1, k = l = 0,

0, k 6= l.

(B.30)

The discreet Fourier expansion for the function f(η) is f(η) =
∑N/2

l=−N/2 f̂l exp(ilη),

where the coefficients are found as γllf̂l =
∑N

k=0 exp(ilηk)f(ηk) by using orthogo-

nality condition (B.30). Introducing the coefficients f̂l back into the expansion then

yields the interpolation formula

f(η) =
N∑
k=0

f(ηk)

 1

N + 1

N/2∑
j=−N/2

eij(η−ηk)

 =
N∑
k=0

lk(η)f(ηk). (B.31)

The Fourier spectral interpolation functions, lk(τ), are defined as

lk(η) =
1

N + 1

N/2∑
j=−N/2

eij(η−ηk) = e−i(N+1)x 1− exp(i2y)

(N + 1)[1− exp(i2x)]

= e−i(N+1)x exp(iy)

exp(ix)

exp(−iy)− exp(iy)

N [exp(−ix)− exp(ix)]
=

sin y

(N + 1) sinx
,

(B.32)

where x = (η− ηk)/2 and y = (N + 1)(η− ηk)/2. The second equality in eq. (B.32)

results from the summation formula for geometric series and the last equality comes
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from the Euler formula for complex numbers.

The discrete Fourier transformation operation and its inverse, both of size of

(N + 1)× (N + 1), are found as

F =
2

N + 1



1/2 1/2 · · · 1/2

cos η0 cos η1 · · · cos ηN

sin η0 sin η1 · · · sin ηN

...
...

. . .
...

cos(N/2η0) cos(N/2η1) · · · cos(N/2ηN)

sin(N/2η0) sin(N/2η1) · · · sin(N/2ηN)



,

F−1 =



1 cos η0 sin η0 · · · cos(N/2η0) sin(N/2η0)

1 cos η1 sin η1 · · · cos(N/2η1) sin(N/2η1)

...
...

...
...

...
...

1 cos ηN sin ηN · · · cos(N/2ηN) sin(N/2ηN)


.

(B.33)

The function values in time and frequency domains are related as



f̂0

f̂1 + f̂−1

(Hf1 − f̂−1)/i

...

f̂N/2 + f̂−N/2

(HfN/2 − f̂−N/2)/i



= F



f(η0)

f(η1)

f(η2)

...

f(ηN−1)

f(ηN)



, and



f(η0)

f(η1)

f(η2)

...

f(ηN−1)

f(ηN)



= F−1



f̂0

f̂1 + f̂−1

(Hf1 − f̂−1)/i

...

f̂N/2 + f̂−N/2

(HfN/2 − f̂−N/2)/i



.

(B.34)
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B.7.1 Properties of the spectral interpolation

Both of the Chebyshev and Fourier interpolation functions satisfy

lk(ηl) =


1, for k = l,

0, for k 6= l,

(B.35)

which guarantees the interpolation curve passing through the grid points. Further-

more, the interpolation functions satisfy the property of partition of unity (3.2).

Evaluating the derivatives of interpolation scheme (B.27) or (B.31) with re-

spect to η yields

f ′(η) =
N∑
k=0

l′k(η)f(ηk), (B.36)

At the grid points, the differentiation function can be represented by matrix I ′, of

size (N + 1)× (N + 1). The entries of I ′ located at the lth row and kth column are

denoted as l′l,k = l′k(ηl). Entries l′l,k is evaluated as

l′l,k =
2

T



−(2N2 + 1)/6, l = k = 0,

− ηl
2(1− η2

l )
, l = k ∈ [1, 2, . . . , N − 1],

(2N2 + 1)/6, l = k = N,

cl(−1)l+k

ck(ηl − ηk)
, l 6= k,

(B.37)
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for the Chebyshev spectral interpolation and

l′l,k =
2π

T


0, for k = l,

(−1)l−k

2 tan(ηl − ηk)/2
, for k 6= l,

(B.38)

for the Fourier spectral interpolation.

B.8 B-splines interpolation

Let U be a set of m + 1 non-decreasing numbers, η0 ≤ η1 ≤ η2 ≤ · · · ≤ ηm.

The scalars ηi, i = 0, 1, 2, . . . ,m are called knots, the set U the knot vector. For

the kth normalized B-spline basis function of degree p, the basis function lk,p(t) are

defined by the Cox-de Coor recursive formulae

lk,0(η) =


1, η ∈ [ηk, ηk+1),

0, otherwise,

(B.39)

for p = 0, and

lk,p(η) =
η − ηk

ηk+p−1 − ηk
lk,p−1(η) +

ηk+p − η
ηk+p − ηk+1

lk+1,p−1(η). (B.40)

for p > 0 and k = 0, 1, . . . , N . For all k and p, lk,p(η) is a non-zero polynomial

on [ηk, ηk+p+1). The number of knots m + 1, degree p, and basis functions N + 1

satisfy m = N + p + 1. At a knot of multiplicity j, basis function lk,p is Cp−j

continuous. Basis functions satisfy the property of partition of unity (3.2), i.e.,
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∑N
k=0 lk,p(η) = 1 for η ∈ [ηp, ηN+1]. In the knot span η ∈ [ηk, ηk+1), the only non-

vanishing basis functions are lk−p,p, . . . , lk,p. Efficient algorithms can be developed

for the evaluation of the basis functions [169].

The B-spline interpolation in (B.41) are valid for both non-periodic and pe-

riodic functions. In the non-periodic case, the so-called clamped B-spline curves is

generated, in which the first and last knot are of multiplicity p+ 1,

U = {η0, . . . , η0︸ ︷︷ ︸
p+1 times

, η1, . . . , ηN−p, ηN−p+1, . . . ηN−p+1︸ ︷︷ ︸
p+1 times

},

where the knots η0, η1, . . . , ηN−p+1 can be uniform or non-uniform. Given the basis

functions of degree p, lk,p(η), k = 0, 1, . . . , N and corresponding N+1 control points

gk, k = 0, 1, . . . , N , the B-spline function is set up as

f(η) =
N∑
k=0

lk,p(η)gk, (B.41)

where η ∈ [η0, ηN−p+1].

In general, the B-spline function f(η) does not pass through control points gk.

To construct function f(η) passing through points f(η̄0), f(η̄1), . . . , f(η̄N), the first

step is to determine the control point gk. Introducing f(η̄k), k = 0, 1, . . . , N into
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η0, ηN+1

η-1, ηN

η-p, ηN-p+1

η1, ηN+2

ηp+1, ηN+p+1
g-p, gN-p+1

g-1, gN

g0

Figure B.6: Warping knots and control points.

eq. (B.41) yields a linear system of size (N + 1)× (N + 1)


l0,p(η̄0) · · · lN,p(η̄0)

...
. . .

...

l0,p(η̄N) · · · lN,p(η̄N)




g0

...

gN


=


f(η̄0)

...

f(η̄N)


, (B.42)

where control points gk are the N+1 unknowns. Evaluating the derivatives of the B-

spline curve with respect to η yields f ′(η) =
∑N

k=0 l
′
k,p(η)g(ηk), where the derivative

of the basis functions are

l′k,p(η) =
lk,p−1(η) + (η − ηk)l′k,p−1(η)

ηk+p−1 − ηk
+

(ηk+p − η)l′k+1,p−1(η)− lk+1,p−1(η)

ηk+p − ηk+1

, (B.43)

starting with l′k,0 = 0.

As shown in figure B.6, to construct a periodic (or closed) B-spline curve of

degree p, the N + 1 control points “wrap around” as g−p, . . . , g−1, g0, . . . , gN where

g−1 = fN , . . ., g−p = gN−p+1. The number of control points are N + p + 1. The

knot vector also wraps around as U = {η−p, . . . , η−1, η0, . . . , ηN , ηN+1, . . . , ηN+p+1},
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where ηN+j+1 − ηN+1 = ηj − η0, and η0 − η−j = ηN+1 − ηN+1−j, j = 1, 2, . . . , p.

There are m + 1 = (N + p + 1) + p + 1 knots. Function f(η), η ∈ [η0, ηN−p+1], of

degree p defined on the above constructed control points and knot sequence is a

periodic function with Cp−1 continuity at the all grid points fk. For the periodic

case, eq. (B.41) becomes

f(η) =
N∑
k=0

lk,p(η)gk =

N−p∑
k=0

lk,p(η)gk +
N∑

k=N−p+1

[lk,p(η) + lk−N−1,p(η)]gk, (B.44)

where η ∈ [η0, ηN+1]. Given the value of function f(η) on a set of grid points, f(η̄0),

f(η̄1), . . ., and f(η̄N), the control point gk, k = 0, 1, . . . , N are then determined by


l0,p(η̄0) · · · lN−p,p(η̄0) lN−p+1,p(η̄0) + l−p,p(η̄0) · · · lN,p(η̄0) + l−1,p(η̄0)

...
. . .

...

l0,p(η̄N) · · · lN−p,p(η̄N) lN−p+1,p(η̄N) + l−p,p(η̄N) · · · lN,p(η̄N) + l−1,p(η̄N)




g0

...

gN


=


f(η̄0)

...

f(η̄N)


,

(B.45)

where the control points gk are the N +1 unknowns. To make the notations of basis

functions lk,p(η) and the spectral functions in the previous section consistent, degree

p subscript is omitted in this paper.

In Chebyshev and Fourier spectral interpolation, the evaluation of derivatives

at one grid point requires the function values at all other grid points. In contrast,

evaluation of the same derivatives for B-splines only require the function values

at the grid points in span [l − p, l + p], see eq. (B.43). When used for the solution

differential equations, Chebyshev and Fourier spectral interpolations yield governing

equations that couple the variables at all grid points and hence, the bandwidth of
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the iteration matrix is (N + 1)m, where m is the number of degrees of freedom

at each grid point. In contrast, the use of B-spline interpolation functions leads

to bandwidths of 2pm. Clearly, the computational burden associated with the use

of Chebyshev and Fourier spectral interpolations is far higher that associated with

their B-spline counterparts. On the other hand, the further achieve exponential

convergence whereas the latter do not.
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