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Sequence classification is an important problem in many real-world applications. 

Sequence data often contain no explicit "signals," or features, to enable the 

construction of classification algorithms. Extracting and interpreting the most useful 

features is challenging, and hand construction of good features is the basis of many 

classification algorithms. In this thesis, I address this problem by developing a 

feature-generation algorithm (FGA). FGA is a scalable method for automatic feature 

generation for sequences; it identifies sequence components and uses domain 

knowledge, systematically constructs features, explores the space of possible features, 

and identifies the most useful ones.  

 

In the domain of biological sequences, splice-sites are locations in DNA sequences 

that signal the boundaries between genetic information and intervening non-coding 



  
 

 

 

regions. Only when splice-sites are identified with nucleotide precision can the 

genetic information be translated to produce functional proteins. In this thesis, I 

address this fundamental process by developing a highly accurate splice-site 

prediction model that employs our sequence feature-generation framework. The FGA 

model shows statistically significant improvements over state-of-the-art splice-site 

prediction methods.  

 

So that biologists can understand and interpret the features FGA constructs, I 

developed SplicePort, a web-based tool for splice-site prediction and analysis. With 

SplicePort the user can explore the relevant features for splicing, and can obtain 

splice-site predictions for the sequences based on these features. For an experimental 

biologist trying to identify the critical sequence elements of splicing, SplicePort offers 

flexibility and a rich motif exploration functionality, which may help to significantly 

reduce the amount of experimentation needed. In this thesis, I present examples of the 

observed feature groups and describe efforts to detect biological signals that may be 

important for the splicing process.  

 

Naturally, FGA can be generalized to other biologically inspired classification 

problems, such as tissue-specific regulatory elements, polyadenylation sites, 

promoters, as well as other sequence classification problems, provided we have 

sufficient knowledge of the new domain. 
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Chapter 1: Introduction 

Many data-mining problems involve data that is best represented as a sequence. 

Sequence data comes in many forms, including 1) human communication, such as 

speech, handwriting, and printed text; 2) time series, such as stock prices, temperature 

readings, and web-click streams; and 3) biological sequences, such as DNA, RNA, and 

proteins. Sequence data in these domains may exhibit certain characteristics and 

relationships. Let us consider, for example, a document written in a language like 

Chinese. Written Chinese does not mark word boundaries. Instead, each Chinese 

character is written one after the other without spaces. Since each character usually 

represents a meaningful unit and since words can be composed of one or more characters, 

it is often difficult to know where words should be segmented. Proper word segmentation 

is necessary for many applications particularly including parsing and text-to-speech. The 

way a sentence is broken up into words influences its pronunciation. The identification of 

correct word boundaries is a very important part of this process. 

Another example is in the domain of biological sequences. The central dogma of 

molecular biology states that the flow of genetic information is from DNA sequences to 

RNA sequences to protein sequences. Genes, which are parts of DNA sequences that 

store genetic information, are transcribed (that is, copied), to messenger RNA (mRNA). 

The mRNA sequence carries this information outside the cell nucleus into the cytoplasm. 

There this information is translated into proteins. However, this process is more complex 

than the mere copying of sequence letters. In eukaryotic organisms, protein-coding genes 

are often interrupted by intervening sequences, called introns, and these need to be 

recognized and removed from mRNA before it is translated in order to produce 
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functional proteins. The classification of sequence segments into correct categories is a 

fundamental part of this process. 

Sequence classification is an important problem that arises in many real-world 

applications: text classification, speech recognition, intrusion detection, and protein-

coding sequence prediction, among others. Given a sequence, the task of a sequence 

classifier is to assign a class label to that sequence. In this context, “sequence” means an 

ordered combination of letters drawn from a finite alphabet; for instance, a vocabulary of 

English words in the case of text classification, the four-letter alphabet of nucleotides in 

the case of coding-sequence classification. Class labels, however, are typically drawn 

from a finite set of mutually exclusive choices, i.e. parts-of-speech: noun, pronoun, etc. 

In many domains, sequence data contain useful “signals,” or features, that enable 

the construction of classification algorithms. In handwriting recognition, the features may 

include horizontal and vertical profiles, internal holes, strokes, and other characteristics 

of handwritten characters.  In speech recognition, the features may include phonemes, 

noise ratios, length of sounds, and more. In the domain of spam detection, examples of 

features are email headers (their presence and form), grammar characteristics, n-gram 

frequency counts, and more. In biological sequence-classification problems, gene- and 

protein-sequence features may be nucleotide or amino-acid blocks, their respective 

positions in the sequence, as well as many other possible combinations. 

In all these cases, extracting and interpreting the most useful features is 

challenging, and hand construction of good features is the basis of almost all 

classification algorithms. Automatic methods usually use a “brute force” approach, in 

which sequence-classification models are provided with a vast number of features, 
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hoping that the important features will not be overlooked. The large number of features 

introduces a dimensionality problem having several disadvantages: enumerating all 

possible features is impractical; many features are irrelevant to the classification task and 

affect accuracy adversely; and knowledge discovery is complicated by the large number 

of parameters involved. 

Feature-selection techniques are used to select a representative feature set from 

the available features for classification algorithms. A feature-selection technique may use 

the intrinsic properties of the dataset or the classification goal and the classification 

algorithm as a guide for heuristic searches to find a useful and informative set of features 

from a large collection of features. When the large collection of features is pruned by a 

feature-selection technique, its size is reduced, leaving useful features for the task at 

hand.   

In this thesis, we develop a scalable method for automatic feature generation for 

sequences. The algorithm uses sequence components and domain knowledge to 

systematically construct features, explores the space of possible features, and identifies 

the most useful ones. This focused feature-generation algorithm (FGA) integrates feature 

construction and feature selection in a systematic way.  We show that, coupled with an 

appropriate classification algorithm, FGA is very effective in the task of sequence 

classification [26,29]. 

To demonstrate our algorithm, we implement a novel splice-site prediction 

procedure for mRNA sequences. Splice-sites are the boundaries of introns in the primary 

mRNA (pre-mRNA) transcript, and splicing is the process that involves the excision of 

introns and the ligation of exons to form the mature mRNA, ready to be translated to 
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protein. This process is one of the essential cellular processes in eukaryotic organisms 

and, although it has been studied extensively, many unanswered questions still remain. A 

crucial one is: how are the splice sites accurately identified and correctly paired across 

the intron? It is currently believed that identification is accomplished, at least partially, 

through the conserved sequences at the sequence boundaries. However, these conserved 

sequences are short and not well defined, and are often hard to distinguish from the 

numerous, unutilized sequences throughout the genome. 

Elucidating the complex details of the gene-splicing process is of significant 

importance for biology and medicine: it has been estimated that ~ 15% of human genetic 

diseases are caused by errors in splicing [34]. Understanding splicing is a major step 

towards understanding these diseases. Furthermore, improved understanding of splicing 

directly impacts computational gene finding [38]. This is in the form of better 

computational models and increased prediction accuracy. Today, computational gene 

finding is arguably the most important task in genomics. Large quantities of genomic 

sequences are generated daily by numerous gene-sequencing projects, and their accurate 

annotation by gene-finding algorithms presents a major challenge.  

In bioinformatics, automatic sequence classification has many other applications 

ranging from the implementation of fast database searches to the identification of patterns 

for some specific physical traits.  

In addition to its value in sequence classification, a carefully selected set of 

features has other notable benefits. For a biologist trying to identify the signals or 

patterns that contribute to splicing, for example, the features generated by FGA provide a 

good hypothesis set. Rather than trying to guess the critical sequence elements and to 
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validate them by expensive experimentation, the biologist can start with the high-scoring 

features from FGA, thereby significantly reducing the amount of experimentation needed. 

We compared FGA features with known signals in literature and were able to show that 

many high-scoring features of FGA did correspond to functional elements [27]. So that 

biologists might take advantage of the features discovered by FGA for splice-site 

prediction, we created SplicePort [28], a web-based tool for splice-site analysis. 

SplicePort allows the user to make splice-site predictions for submitted sequences. The 

user may also browse the rich catalog of features underlying the predictions. Selected 

feature sets may be searched, ranked, or displayed.  The user may then browse clusters of 

features and their contributing elements, look for new and interesting signals, or validate 

previously observed signals.  

1.1 Contributions of this thesis 

This thesis presents, evaluates, and details an automatic feature-generation 

algorithm for sequence classification. Our contribution also extends to the field of 

bioinformatics, since we employ the feature-generation algorithm as a tool to study the 

gene-splicing problem. Specifically, our contributions are as follows:  

Catalog of sequence features: We begin our study by categorizing the basic 

feature elements for sequences and we build a catalog of generic sequence feature types, 

along with the corresponding feature-construction methods for each of them. The feature-

construction methods iteratively build composite features using the basic feature 

elements. For the problem of splice-site prediction, we generate a rich catalog of features 

capturing the compositional and the positional information of the splice-site sequence.   
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Feature-generation algorithm: The feature types are integrated into a scalable 

method for automatic feature generation: the feature-generation algorithm (FGA). The 

algorithm systematically constructs features, explores the space of possible features, and 

identifies the most useful ones. FGA integrates feature construction with feature-selection 

methods in order to identify a final set of informative features. An appropriate classifier 

learns the sequence-classification model, using the FGA identified set of features. FGA is 

a flexible, modular algorithm that can be easily adapted to any sequence-classification 

problem by identifying the most appropriate feature-selection method and most effective 

classifier.  

Splice-site predictor: Using FGA, we identified a mix of features that, when 

used to build splice-site detection classifiers, achieved results that were significantly 

more accurate than those from existing, state-of-the-art splice-site-prediction algorithms. 

SplicePort: We developed an interactive feature-browsing and visualization tool 

for splice-site analysis. This web-based tool allows the user to make splice-site 

predictions for submitted sequences based on our FGA analysis. The user can also 

browse the rich catalog of features underlying the predictions. Then, the user can view 

and explore subsets of splice-site-prediction features — either the features that account 

for the classification of a specific input sequence or the complete collection of features. 

  The web server is also intended to make the method generally applicable to 

different species without any major changes and with an equivalent performance. 

Feature-motif exploration enables researchers to rapidly explore the space of 

computationally identified signals and effectively pose hypotheses for experimental 

testing and validation. We explore the knowledge-discovery power of our algorithm for 
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the splice-site prediction problem by looking closely at the generated features, using 

SplicePort functions. The features detect biological signals, which may be important for 

the splicing process. The generated features for splice-site prediction include known 

functional elements and can be used to infer novel aspects of the splicing signal.  

Structure features: We consider a different FGA role: can we extend the 

algorithm to model features that describe properties that are more complex? We employ 

some modifications to our initial features-construction methods, and we construct 

features that capture the three-dimensional structure of the pre-mRNA sequence near the 

splicing signals. These features capture specific structural contexts that indicate a 

significant influence of the secondary-structure properties upon gene-splicing. To explore 

the potential of the newly discovered features, we again use the SplicePort web server. 

Finally, we extend the splice-site model to include both the pre-mRNA sequence and 

structure characteristics. The new model significantly outperforms the sequence-based 

features model.  

1.2 Organization of the thesis 

Chapter 2 provides the necessary background for the topics covered in this thesis, 

gives an overview of the biological literature that stimulated our research, and we discuss 

the existing literature on computational splice-site prediction models. Chapter 3 describes 

the feature-generation algorithm detailed for sequence data, the different feature types 

describing sequence properties and their construction algorithms, feature-selection 

methods, and the Least Squares classifier. The latter part of the chapter details the 

experiments for splice-site prediction. Chapter 4 discusses the motivation for knowledge 

discovery and feature-space exploration to find biologically meaningful signals. The 
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chapter also describes the SplicePort web server and its rich functionality. Chapter 5 

discusses the knowledge-discovery power of the feature-generation algorithm, illustrated 

with biologically relevant signals that we find, and their supporting literature. Chapter 6 

revisits the splice-site problem and its definition, describing also the three-dimensional 

shape of a splicing event. The potential of the structural properties motivate our feature-

generation algorithm for secondary-structure features. We describe new feature types and 

their construction methods, as well as the experiments that validate the secondary-

structure importance of gene splicing. This chapter also summarizes and discusses the 

results obtained and outlines suggestions for further research.  
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Chapter 2: Splice-site prediction  

This chapter describes the necessary background to understand the important 

process of gene splicing as a biological event. Splicing was discovered in 1977 [3,11]. 

This crucial discovery made clear that the gene was not a simple unit of heredity or 

function, but rather a series of exons, including the coding information for proteins and 

separated by long non-coding stretches called introns. Here, we give a simplified 

overview of the splicing mechanism and only briefly mention the complex proteins in the 

cell nucleus that regulate and facilitate this process. Next, we describe a set of existing 

computational methods for predicting splice sites. These sequence-based approaches are 

only a sample of the large body of literature on splicing, but provide the motivation for 

our research. 

2.1 Genetic information 

Deoxyribonucleic acid (DNA) is a nucleic acid molecule in the form of a twisted 

double strand that is the major component of chromosomes and carries genetic 

information. DNA, which is found in all living organisms except some viruses, is 

responsible for passing along hereditary characteristics from one generation to the next. 

Ribonucleic acid (RNA) is another nucleic acid found in all living cells that is essential 

for the manufacture of proteins according to the instructions carried by DNA. RNA has 

only one strand. The basic units capable of transmitting hereditary characteristics are 

called genes. A gene consists of a specific sequence of DNA found in a fixed position on 

a chromosome. The majority of genes code for proteins. Proteins are essential substances 

for the structure and function of all living cells and organisms.  
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The flow of genetic information, according to the central dogma of molecular 

biology, is from DNA to RNA to protein. The gene sequences of DNA serve as templates 

for the synthesis of messenger RNA (mRNA) molecules, in a process known as 

transcription. Messenger RNA carries this information outside the cell nucleus into the 

cytoplasm, where it is translated into proteins (Figure 2.1). In eukaryotic organisms, such 

as plants, and animals, protein-coding genes are often interrupted by intervening 

sequences, called introns, which must be removed from mRNA in order to produce 

functional proteins. The cellular process that involves the excision of introns from the 

primary mRNA transcript and the ligation of remaining exons into the mature mRNA is 

called splicing. The mature mRNA transcript, then, is transported outside the cell nucleus 

to ribosomes, where the information encoded in the nucleic acid sequence is translated to 

an amino acid sequence and converted into protein during the process of translation. 

The DNA sequence is composed of four different nucleotides: Adenine, Cytosine, 

Guanine and Thymine (A, C, G, and T). The mRNA sequence also contains four 

nucleotides, with the exception that Thymine is substituted for Uracil (U). Amino acids 

(of which there are 20) are the building blocks of proteins. A string of three consecutive 

nucleotides (codon) codes for one amino acid. Several amino acids are coded by more 

than one codon. The protein code begins with the start codon (ATG) and ends with one of 

the three possible stop codons (TAA, TAG, or TGA). The coding regions of mRNA are 

usually preceded and succeeded by untranslated regions, which stabilize mRNA 

molecules and improve translation efficiency. These regions do not code for protein but 

serve as regulatory sequences.  
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2.2 Pre-mRNA splicing 

The boundary locations between exon and intron regions are called splice sites. 

Splice sites are either acceptor sites, which mark the beginning of an exon, or donor sites, 

which mark the end of an exon, as shown in Figure 2.2. The entire coding region of a 

gene, as well as the untranslated regions of the mRNA (the "5' UTR" and "3' UTR") lie 

within the exons.  

Splice-site signals (Figure 2.3) are short sequences of nucleotides preferred in the 

immediate splice-site neighborhood. Most introns start with the dinucleotide GT (GU in 

RNA sequence) and end with the dinucleotide AG (in the direction 5` to 3`). The 

occurrence of these specific dinucleotides, upstream and downstream, is not sufficient to 

signal the presence of an intron. Generally, the donor splice signal is conserved better 

than the acceptor splice signal, which is harder to recognize. Another distinct signal is the 

branch site, with consensus sequence YTRAY, where Y stands for pyrimidines (C or T) 

and R stands for purines (A or G). The nucleotide A is believed to be generally 

conserved, and found in all genes. Its location varies; typically, it is found 30 nucleotides 

upstream of the acceptor site, but it can also be found as close as 11 or as far as 100 

nucleotides upstream. Another signal preceding the acceptor splice site is the pyrimidine-

rich region.  

 In cells, the splicing process is usually catalyzed by a large protein complex, 

called a spliceosome, which consists of five small nuclear RNAs (U1, U2, U4, U5, and 

U6) and numerous other splicing factors. Splicing occurs in two consecutive chemical 

reactions. In the first reaction, the donor splice site at the 5’ exon/intron junction is 

cleaved and the intron 5’ end is ligated to the branch point. In the second reaction, 
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cleavage of the acceptor (3’) splice site releases the intron as a lariat structure and 5’ and 

3’ exons are joined together (Figure 2.4).  Splice-site recognition and spliceosome 

assembly occur simultaneously: the 5’ splice site is initially recognized through 

interaction with the U1 molecule [41]. In human and other similar organisms, this base-

pairing interaction involves approximately nine nucleotides (nt), encompassing the last 

two or three exonic nucleotides and the first five or six nucleotides of the intron. 

Subsequently, the branch-point sequence base-pairs with U2 [4]. The other three snRNAs 

are then added to this complex through other base-pairing interactions. The complex then 

undergoes a series of structural rearrangements and is capable of catalyzing splicing 

reactions [53]. This summary is a simplified overview of this complex event. 

 Splicing of introns must be performed with single-nucleotide precision in order to 

produce functional proteins. This requires that the actual splice sites be accurately 

recognized and correctly paired across the intron. The recognition of splice sites is, at 

least partially, achieved by interaction between some spliceosomal snRNAs and short 

consensus sequences located at the 5’ splice site and the branch point (an example for 

human introns is given in Figure 2.3). Conserved sequences are also found at the 3’ splice  

site and in the form of a polypyrimidine tract (located immediately upstream from the 3’ 

splice site), which mediate splicing through their interactions with splicing factors. 

  However, these consensus sequences are not uniquely associated with functional 

splice sites; there are numerous occurrences of these signals throughout the genome not 

utilized by the splicing machinery. This is illustrated in a study by Sun and Chasin [54], 

where positional weight matrices (described in the next section) were trained on 2400 

instances of real human donor and acceptor sites to search for splice sites in the 42-kb 
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human hprt gene, which contains eight introns. This approach identified eight real donor 

sites along with over 100 pseudo donor sites with scores higher than that of lowest 

scoring real donor site. The results were even more discouraging for acceptor sites, since 

683 pseudo sites were predicted. Not yet fully understood is how the precise specificity 

required to distinguish correct splice sites from similar “pseudo-sites” is achieved or how 

the correct donor/acceptor pairs are brought together.  

2.3 Splice-site prediction approaches 

The accurate location of splice sites is vital in gene finding. Gene finding is one of 

the first and most important steps in understanding the genome of a species once it has 

been sequenced. In eukaryotic organisms, especially complex organisms such as human 

beings, gene finding is challenging because of the splicing mechanism. Typically, a 

protein-coding human gene sequence can be divided into a dozen exons, each often less 

than two hundred nucleotides in length, some as short as ten or twenty. It may also 

include an exceptionally long exon, extending more than a thousand nucleotides. The 

design of a highly effective computational approach is complicated by the absence of a 

discernable pattern for sequence characteristics, such as the pre-mRNA sequence length, 

coding sequence length, and the number and length of exons and introns.  

Relying on biological knowledge and results, researchers in computational 

biology approach this problem by modeling consensus sequences around splice sites and 

within introns. Various methods are used to model splicing signals, such as the simple 

consensus sequence model, which either looks for a specific sequence motif or allows 

some alternative nucleotides at certain positions in the motif; position-weight matrices, 

which represent the frequency of appearance of the A, C, G, and T nucleotides at each 
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position of the consensus sequence; and weight arrays, which exploit statistical 

dependences between adjacent nucleotides [8,19,47]. Weight matrices and weight arrays 

are used to score candidate sequence motives.  

The weight matrix model (WMM) [51] computes the probabilities of nucleotides 

in each position in the splice-site sequence, assuming independence between positions.  

The weight array model (WAM) [62] extends WMM by taking into account the 

dependencies between adjacent nucleotides in the sequence.  The maximal dependency 

decomposition (MDD) [8] is a decision-tree model that improves on previous models by 

capturing dependencies between non-adjacent, as well as adjacent nucleotides in the 

splice-site sequence.  

These sequence models are usually not used in isolation; rather, they are 

integrated with content models that use coding statistics to distinguish between coding 

and non-coding regions. Integrated approaches can either be stand-alone splice-site 

predictors or gene finders that attempt to identify entire gene structures (splice sites in 

intron-containing genes and in the boundaries of coding regions). These methods yield 

better accuracy for splice-site recognition because they eliminate false positive splice 

sites that do not have the necessary shift in coding potential [7]. There are a number of 

methods used to combine signal detection with coding statistics for stand-alone splice-

site prediction, including neural networks [25]; Bayesian networks [1,13]; rule-based 

expert systems [55]; and discriminant analysis [50].  

GeneSplicer [45], proposed by Pertea et al., is a state-of-the-art computational 

tool for splice-site detection tool that employs a combination of MDD and Markov 

modeling techniques. GeneSplicer looks at splice sites which are boundaries for coding 
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exons and non-coding regions. GeneSplicer considers a splice site as a complex entity 

and is based on the following premise: since a coding-region splice site (by definition) is 

surrounded by a coding region and a non-coding region, a splice-site model should 

consider the coding difference between the two regions. GeneSplicer models the splice-

site signal and the coding content in the upstream- and the downstream-sequence regions. 

The GeneSplicer algorithm combines three different models for splice-site 

prediction. First, the statistical model of the immediate neighborhood of the site is, 

essentially, an MDD tree, modified so that a first order Markov chain, instead of a 

WMM, is built for each leaf of the decision tree. The other two models are second-order 

Markov chains trained on coding and non-coding sequences. They collected sequences of 

80 nucleotides on either side of the true splice-sites, grouped them into coding and non-

coding sets, and then used these data to build the Markov models. For exons and introns 

shorter than 80 nucleotides this procedure includes sequences from both coding and non-

coding regions. But, since this only slightly changes the Markov probabilities, it is 

considered acceptable. Then, the final prediction for a given sequence is a combined 

score, the sum of the contributions of the three models. GeneSplicer is an accurate splice-

site predictor that has successfully combined the signal statistical models (WAM and 

MDD to capture the consensus signal), with the content-sensor methods (Markov chains 

to capture coding/non-coding compositional differences). 

To analyze a genomic sequence in order to recognize a target signal, such as the 

splice site, it is important to use all the information that can be extracted from the 

sequence. Specific candidate features can be generated and evaluated according to their 

relevance. The ability to select the relevant features has been the focus of intensive 
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research. Recently, feature-selection techniques have received increased attention for 

biological-data applications. The following is a non-comprehensive list.  Liu and Wong 

[37] gave a good introduction for filtering methods in the prediction of translation-

initiation sites.  Degroves et al. [16] described a wrapper approach that used both SVMs 

and Naive Bayes to select relevant features for splice sites. Yeo et al. [59] used a model 

based on maximum entropy, in which only a small neighborhood around the splice site 

was considered. Zhang et al. [66] proposed a recursive-feature elimination approach 

using SVM. 

Splice-site prediction has been the focus of other works, such as [2,17,61], that 

reported promising results when compared with GeneSplicer, but it is difficult for a 

biologist to interpret the features employed in those models. Especially, it is challenging 

to relate them to actual biological signals. SpliceMachine [17] is similar to our approach; 

because both methods employ sequence-based features. The SpliceMachine application 

performs a series of feature-subset selection steps to find the best combination for an 

accurate splice-site prediction model. It details an extensive search for the best set of 

features, which is different from the guided feature-generation algorithm discussed here. 

2.4 The feature-generation approach 

The next chapter describes a new approach to biological-sequence classification 

in general and a new method of splice-site prediction in particular.  The feature-

generation algorithm uses sequence properties to automatically construct useful features. 

The features have two components: the sequence alphabet and relative position. Feature-

construction procedures produce complex features, including features containing 

elements that are not directly adjacent, and features that may be associated with a range 
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of relative positions in the sequence.  When new features are constructed, feature-

selection techniques are employed to assess the constructed features and identify those 

most promising. Then, in an iterative fashion, feature construction procedures are 

employed again.  When building features, this algorithm follows the GeneSplicer lead 

and considers a long subsequence window for splice-site prediction. The larger 

neighborhood provides information for less-prominent but important signals that are not 

usually considered in gene-finding models. Then, a classification algorithm uses the 

identified features to predict splice sites. 

Features constructed using sequence-domain knowledge are important for 

knowledge discovery. Given a set of search and browsing procedures, molecular 

biologists can explore collections of such computationally identified signals to discover 

new motifs and, possibly, to guide them in experimental testing and validation.  
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2.5 Figures of Chapter2 

 

 

Figure 2.1. The flow of genetic information in a eukaryotic cell. 

 

 

 

 

Figure 2.2. Depiction of a portion of a pre-mRNA transcript.  

Splice sites mark the beginning (donor) and the end of an intron (acceptor). This figure shows an intron, 

which is removed from the RNA flanked by two exons.  Real genes have a variable number of alternating 

exons and introns, and not all exons are protein-coding.  
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Figure 2.3. Signals involved in intron splicing in human genes.  

 

  Figure 2.4. Splicing of pre-mRNA. 
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Chapter 3: Feature-Generation Algorithm  

A good methodology for sequence-data analysis comprises these steps: (a) 

constructing candidate features from sequences, (b) selecting relevant features from the 

candidates and (c) integrating the final set of features in a system that recognizes specific 

properties in sequence data. Feature-generation algorithm, described in this chapter, is a 

process that integrates these three steps. The feature-generation process combines 

domain-specific feature-construction methods and off-the-shelf feature-selection 

methods. For generating candidate features, first, we present a catalogue of general 

sequence feature types, and then we describe their characteristics and the corresponding 

automatic construction methods. The starting points of the feature-construction methods 

are sequence alphabet (to construct words) and sequence-position information (to 

construct position-specific words). Then, a variety of operators, such as logical Boolean 

operators, are used to construct more complex features. These features have generic 

definitions and are suitable for various sequence data, not necessarily of biological origin. 

After describing feature construction, we next discuss different feature-selection methods 

and explain how they can be incorporated in the feature-generation algorithm to generate 

different feature types. Then we introduce a complete sequence classification framework 

based on the feature-generation algorithm. We discuss how to use such features to build 

reliable systems for sequence classification and present a thorough evaluation of the 

complete method using splice-site prediction as a benchmark problem. 
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3.1 Sequence data  

The sequence data-classification problem is defined as follows. Given a set of 

categories C and a training set of sequences in each category, the goal is to learn a model 

so that for each previously unseen sequence, we can predict to which category it belongs. 

As an example, consider the protein-family classification problem. Given a set of protein 

families, find the family of a new protein. Moreover, consider the speech recognition 

problem. Given a set of utterances of a set of words, classify a new utterance to the right 

word.  

Classification is an extensively researched topic in data mining and machine 

learning. Providing the assumption that training data has a fixed number of attributes, all 

of the existing classification methods may be used.  In contrast, sequence data may 

possess no explicit features, as it is the case with DNA sequence data. In addition, 

sequences are of variable length with a special notion of order that may be important to 

capture.  

To overcome these difficulties, the sequences that constitute the training set are 

usually restricted to a predefined length, and the sequence is represented as a vector of 

features, where each feature is a dimension and its coordinate value is a Boolean value, 

the aggregated count or some other computed score. 

3.1.1 Sequence-data properties 

A sequence is defined as a series of building blocks drawn from a pre-defined 

alphabet. For example, the building blocks may be the set of the twenty-six letters of the 

English alphabet. These form the words of the English language and words form an 

English-language document. In the case of biological sequences, the building blocks may 
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be the four nucleotides of the DNA sequence. Three-consecutive nucleotides form 

codons. These are the words that code for amino acids, the building blocks of proteins. A 

sequence of codons forms a protein-coding sequence, which in turn, translates into a 

protein. 

In an English-language document, the identification of the correct meaning of any 

given sequence necessarily involves several knowledge sources, such as knowledge about 

the meaning of the words individually, knowledge of the grammatical structure of the 

sequence, knowledge about the context in which a particular word is occurring and 

common sense knowledge about the overall topic. Sequence composition is defined by 

the particular choice of words that describe the topic or topics of interest in the document. 

The relative positions of the words in the sequence, or their local context, i.e. the words 

“say” and “mean”, and “eat” and “see” change the meanings of the sentences and 

therefore their topics of interest, in the following example.  

As an example, consider the following excerpt from Lewis Carroll in Alice in 

Wonderland: 

“Then you should say what you mean,” the March Hare went on.  

“I do,” Alice hastily replied; “ at least–at least I mean what I say— that’s 

the same thing you know.” 

“Not the same thing a bit!” said the Hatter. “You might just as well say 

that ‘I see what I eat’ is the same thing as ‘I eat what I see’!” 

DNA sequences, on the other hand, are examples of sequence data that possess no 

explicit words. Yet, a genomic sequence possesses biologically meaningful functional 

sites such as acceptor and donor splice sites that are associated with the primary structure 
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of genes. So, similar to the English language example, in Figure 3.1, we have two 

sequences with similar word composition, but different positioning of nucleotides. Both 

figures show two nucleotide-frequency plots, standing for acceptor and donor splice 

signals. The nucleotide-frequency plots depict the most common nucleotides found in 

those positions and they switch places in the figures. In both figures, they are linked by a 

string of 120 nucleotides. The relative positions of the splice signals change the meaning 

of the DNA sequences. In the figure on the left, we have the depiction of an exon of the 

average length in the human genome. In the figure on the right, we have the 

representation of a short intron of the human genome. 

We say that, in a given sequence, the collection of words or building blocks that 

form the sequence defines its compositional information. In addition, the position of each 

present word in the given sequence, or the relative position of each present word with 

respect to other words in the sequence, defines its positional information. It is important 

that a catalogue of sequence of features captures both compositional and positional 

information. Accordingly, we use the sequence building blocks and their relative position 

in the sequence to define a series of feature types that capture these properties. For each 

feature type, we describe an incremental feature-construction procedure, which begins 

with an initial set of features and produces an expanded set of features.  

3.2 Sequence feature types 

We define a sequence S of length L as a string of L consecutive building blocks, S 

= s1s2 …, sL, Each si denotes the sequence block in the ith sequence position, for i equals 

1,..,L. For the DNA sequences, si is one of the characters {A, C, G, T}. We illustrate the 

feature types and the feature-construction procedures with examples on the DNA 
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sequence data, but the definitions and procedures apply to any sequence data defined over 

some fixed alphabet. We start with features that describe mainly the composition of 

sequences, and then we incorporate the position information.  

3.2.1 Compositional features  

A compositional feature is a feature that describes the sequence content. We distinguish 

several feature types: 

General k-mers: A general k-mer is a string of k consecutive letters. For 

example, ttta is a general 4-mer defined over the DNA sequence alphabet, {A, C, G, T}. 

The general k-mers are useful for capturing information such as coding potential of 

sequences. For each general k-mer, we count the number of times the feature is present in 

the sequence. Consider the sequences SA and SD, shown in Figure 3.1. The value of the 4-

mer ttta in sequence SA is 2 and in sequence SD is 3, because it occurs two times in SA 

and three times in SD. Given the four-letter alphabet for DNA sequences, the number of 

distinct k-mers is 4 k for each value of k. For all the sequences in our training set, we 

measure the general k-mer composition for k ranging from 2 to 6. For these values of k, 

there are 5,456 features.   

Construction Method: Given an initial set of k-mer features, the construction 

method expands them to a set of (k+1)-mers by appending the letters of the alphabet to 

each k-mer feature. For example, suppose we begin with an initial set of 4-mers 

Finitial={ttta}. From that set, we construct the extended set of 5-mers Fconstructed={tttaa, 

tttac, tttag, tttat}. In that manner, we incrementally construct level k+1 from level k. For 

the sequences SA and SD in Figure 3.1, the new constructed features will have these 
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values; SA, (1,0,0,1), and SD, (1,0,0,2), since tttaa occurs once in both sequences, tttat 

occurs once in SA and twice in SD but there are no occurrences of tttac and tttag.    

Splice-site sequences of coding exons, which is the case in the sequences of our 

dataset, characteristically have a coding region and a non-coding region, as shown in 

Figure 2.2. For donor splice-site sequences bordering coding exons, the region of the 

sequence on the left of the splice-site position (upstream) is the coding region, shown in 

blue in Figure 3.1, and the region on the right of the splice-site position (downstream) is 

the non-coding region, shown in green in Figure 3.2. The opposite is true for acceptor 

splice sites of coding exons. The upstream region is part of the intron and the downstream 

region is part of the exon. These regions may exhibit distinct compositional properties. 

To capture these differences, we use region-specific k-mers. 

Region-specific k-mers: A region-specific k-mer is a general k-mer found in a 

specified sequence interval, such as the upstream or downstream region. In this work, we 

consider both the upstream and the downstream regions. Other regions and interval 

specifications are also possible. For each upstream (downstream) k-mer, we count the 

number of times the feature is present in the upstream (downstream) neighborhood of the 

splice site. For example, in the sequences of Figure 3.2, the values of the upstream 4-mer 

ttta are: SA, 1, and SD, 1. Similar to general k-mers, for all the sequences in our training 

set, we measure the upstream and downstream k-mer composition for k values ranging 

from 2 to 6. This results in 10,912 potential features. 

Construction Method: The construction procedure for upstream and downstream 

k-mer features is the same as the general k-mer method, with the addition of a region 

indicator. For the sequences SA and SD, the Fconstructed={tttaa, tttac, tttag, tttat}upstream 
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features will have these values; SA, (1,0,0,1), and SD, (1,0,0,1). For both sequences, tttaa 

and tttat occur once in the upstream region, and there are no occurrences of tttac or tttag. 

However, the Fconstructed={tttaa, tttac, tttag, tttat}downstream features will have these values; 

SA, (0,0,0,0), and SD, (0,0,0,1), since tttat occurs once in the downstream region of SD, 

and there are no occurrences of the others. 

3.2.2 Positional features 

Position-specific nucleotides: A position-specific nucleotide, or a position-

specific 1-mer, describes the occurrence of any particular nucleotide, {A, C, G, T}, at 

position i in the sequence. When many related sequences are aligned to the region of 

interest, the position-specific nucleotides capture the nucleotides preferred in certain 

positions. For example, when many splice-site sequences are aligned to the splice-site 

position, for both acceptor and donor sites, the frequency of observing each nucleotide in 

each sequence position is computed. Figure 3.1 shows the frequency plots of the acceptor 

and donor site signals. As shown in the figures, some nucleotides happen to be observed 

much more frequently in certain positions than others. The most frequent nucleotides for 

each position identify the consensus sequence, and all position-specific nucleotides, 

identify the position-specific matrix. Consensus sequences and position-specific matrices 

are used commonly in DNA sequence-classification analysis to describe various DNA 

sequence signals.  

A position-specific nucleotide is a Boolean feature; for each feature we report if it 

is present in the sequence or not. As an example, assume that our feature set is 

Finitial = a1,c1,...,gn ,tn{ }, where si denotes nucleotide s at the ith sequence position. Our 

sequences have a length n of 162 nucleotides; therefore, our position-specific set of single 
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nucleotides contains 648 features. We use this initial feature set to construct complex 

position-specific features. For the sequences SA and SD of Figure 3.2, the feature set {a1, 

c1, g1, t1} will have the values; SA, (0,0,0,1), and SD, (0,0,0,1), since for both sequences 

the first nucleotide is T. 

Position-specific k-mers: A position-specific k-mer is a string of k-characters 

that, starting at position i in the sequence, represents the substring appearing at positions 

i, i+1,.., i+k-1. These features are the most common features used for finding signals in 

the DNA sequence data. Position-specific 1-mers are a subset of position-specific k-mers; 

they are the simplest features of this type for the case k=1.  

This feature type is useful for discovering species-specific functional signals, as 

well as evolutionary conserved functional signals. For the splice-site signal, these 

nucleotides are also of primary importance, as they may capture binding information. 

Position-specific k-mers capture the correlations between k-adjacent nucleotides. They 

are Booloean features. For each position-specific k-mer, we record the presence or 

absence of that feature in the neighborhood of the splice-site. As an example, for the 

sequences SA and SD in Figure 3.2, the feature a2a3c4a5 will have the values; SA, 1, and 

SD, 0, since the 4-mer aaca is present in positions 2, 3, 4, and 5, in sequence SA, but not 

in SD. This results in n − k +1( )× 4 k  potential features for each value of k and sequence of 

length n.  

Construction Method: This method starts with an initial set of position-specific k-

mer features and extends them to a set of position-specific (k+1)-mers by appending the 

letters of the alphabet to each position-specific k-mer feature.  As an example, consider 

an initial set of 2-mers, Finitial={a3c4, c7c8} where the subscript denotes the sequence 
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position. Fconstructed={a3c4a5, a3c4c5, a3c4g5, a3c4t5, c7c8a9, c7c8c9, c7c8g9, c7c8t9} is the 

extended set of position-specific 3-mers. In this manner, we can incrementally construct 

level k+1 from level k. For the sequence SA feature set Fconstructed will have these values;  

(1,0,0,0,1,0,0,0), since a3c4a5, and c7c8a9 are the correct nucleotides in those positions. For 

the sequence SD all these features will have the value zero, since none of these nucleotide 

combinations occur in those positions. 

3.2.3 Composite positional features  

Conjunctive position-specific features: A k-nucleotide position-specific feature 

is a set of k position-specific 1-mers combined with the logical operator AND. This 

feature type is useful for discovering interacting functional signals in the sequence. It 

captures the correlations between different nucleotides in non-consecutive positions in 

the sequence, and identifies the preferences of co-occurrence for not-necessarily-adjacent 

position-specific sets of k-nucleotides. A conjunctive position-specific feature is a 

Boolean feature. For each conjunctive positional feature, we record the presence or 

absence of that feature in the neighborhood of the splice site. Its dimensionality is 

inherently high. If the number of conjuncts is k in a given iteration, then we have a total 

of 
n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ × 4 k  such features, for a sequence of length n.  

Construction Method: We construct conjunctions of (k+1)-nucleotide position-

specific features by starting with an initial conjunction of k position-specific features and, 

adding another conjunct feature in an unconstrained position. Let our position-specific 

nucleotides set be { }nnbasic tgca ,,...,,F 11= , where, a1 denotes nucleotide a at the first 

sequence position and so on. If our initial set is Finitial={a1, g2}, we can extend it to the 
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second level of position-specific base combinations Fconstructed={a1 ∧ a2, a1 ∧ c2,…, g2 ∧ tn}, 

by forming a conjunction between every element of the initial set and every element of 

the basic set. Given an initial set of k-conjuncts, this construction method selects from the 

set of position-specific nucleotides to add another conjunct in an unconstrained position, 

thereby constructing the set of (k+1)-nucleotide conjuncts. A duplication check ensures 

that each feature in the Fconstructed set is unique. In this manner, we can incrementally 

construct higher levels.   

Composite positional features: A composite positional feature consists of a 

conjunction of n nucleotides in n different positions co-occurring in the sequence. 

Composite positional features are a special case of conjunctive position-specific features. 

The difference is the initial feature set. Here, we start with a position-specific k-mer, and 

iteratively add other position-specific nucleotides in the nearby positions to form a 

composite positional feature. While the position-specific k-mers capture only the 

correlations among nearby positions, the composite positional features, similar to 

conjunctive position-specific features, are intended to capture the correlations between 

different nucleotides in non-consecutive positions in the sequence. An advantage of these 

features is their interpretability. Because we start with a given position-specific k-mer set, 

which serves a seed, these composite features are easier to interpret. The dimensionality 

of this kind of feature is still inherently high, but it is more restrictive than the 

conjunctive positional features. For a sequence of length n, if the initial feature set is the 

position-specific k1-mer set, and the total number of conjuncts is n1, k1 < n1 << n , we have 

a total of n − k1 +1( )× 4n1 ×
n − k1

n1 − k1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  such features.  
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Construction Method: Given the initial set of position-specific k-mers, this 

construction method selects from the set of position-specific nucleotides to add another 

conjunct in an unconstrained position. In this manner we construct the set of ( )1+k -

conjuncts. Now, if our initial set is Finitial = a1g2{ }, we can extend it to the composite 

positional features of three conjuncts: Fconstructed = a1g2 ∧ a3,a1g2 ∧c3,...,a1g2 ∧ tn{ }. Then, 

starting with the constructed composite feature set of three conjuncts, we can add another 

conjunct in an unconstrained position, to obtain a composite feature set of four conjuncts. 

Again, a duplication check ensures that each feature in the newly constructed set is 

unique. Incrementally, we can construct higher levels, in this manner. 

Composite interval-specific features: A composite interval-specific feature is a 

composite positional feature that lies within a specified sequence region. The composite 

positional features, defined above, are obtained using position-specific nucleotides from 

the original sequence of length n. A specified sequence region is a subsequence within 

the original sequence. The difference between a composite interval-specific feature and a 

composite positional feature is the initial position-specific features set. For example, a 

composite upstream-region-specific feature is constructed using an initial feature set from 

the upstream-region position-specific k-mer features, and is expanded using the 

upstream-region position-specific 1-mer features. This definition can be extended to other 

sequence regions or "user-defined intervals".  

Construction Method: The user initially identifies the interval of interest within 

the original sequence, for example, the branch-site interval, involving the positions [-40,-

20] in the acceptor-site sequence. The position-specific nucleotides of this specified 

interval form { }20204040 −−−−= ,t,...,g,caFbasic . Then, the construction method starts with an 
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initial set of composite features associated with the given interval, for example 

{ }2930F −−= gainitial  and, for each iteration, it selects an additive conjunct, in an 

unconstrained position, from the newly defined basic feature set. In this manner, we 

construct higher levels.  

An interval-specific composite feature can have, up to, nintv conjuncts, where nintv is 

the specified-interval length. In this case, the constructed set is a subset of position-

specific nintv-mers. 

Composite relative features: The positional features discussed so far define 

patterns of nucleotides in particular sequence positions. However, a biologist may also 

want to discover patterns of nucleotides in relative sequence positions. Therefore, we 

define this specific feature type. A composite relative feature is a conjunctive pattern of 

k-nucleotides that is not tied to a specific position in the sequence. These features consist 

of basic conjuncts that belong to a short sequence window of length n1, and the start of 

the first conjunct may be anywhere in the given sequence of length n, where n1 << n .  

Construction Method: For each relative composite feature we record the number 

of times that feature is present in the neighborhood of the splice-site. As an example, 

consider the feature ta*c, or ti ∧ ai+1 ∧ ci+3, and the sequence SA in Figure 3.1. The feature 

is constructed from two conjuncts in the window of length four, and it occurs six times in 

the given sequence of length 162. A relative composite feature set may have up to n1 

conjuncts. If all the conjuncts are used, the feature set becomes a subset of general n1-

mers. 
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3.3 Feature-Selection Analysis 

Feature-selection methods reduce the size of the constructed feature set, keeping 

only the features useful for the task at hand. The problem of selecting useful features has 

been the focus of extensive research and many approaches have been proposed 

[5,30,32,58,60]. Generally these approaches are divided into three major categories: 

Filter approaches use the intrinsic properties of the dataset, such as feature-class entropy, 

to compute a feature-relevance score. Low-scoring features are removed, independent of 

the classifier algorithm. These approaches are usually very fast and are primarily used for 

high dimensional datasets.  Wrapper approaches constitute the second class of feature-

selection methods. They perform a heuristic search through all the subsets using the 

classification algorithm as a guide to find promising subsets of features. These 

approaches have the disadvantage of being computationally intensive, which limits 

wrapper approaches to datasets of low-dimensionality.  In the third group, embedded 

approaches, the feature-selection method makes direct use of the parameters of the 

learned model to include or reject features. In the following we take a closer look at the 

first group. 

3.3.1 Filter-selection methods 

In our experiments, we considered different feature-selection methods to reduce 

the size of our constructed feature sets. We used several filter approaches, including 

information gain (IG), chi-square (CHI), mutual information (MI) and KL-distance (KL), 

to prune the feature-type sets during the generation stage of our method. We define these 

measures following Yang and Pedersen in [58].   
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IG: IG is frequently employed as a feature-goodness criterion in the field of 

machine learning. It measures the number of bits of information obtained for category 

prediction by knowing the presence or absence of a feature. If the number of categories in 

the given dataset is m, the categories are c1, …, cm, and P denotes probability, then the 

information gain of feature f is defined to be: 
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MI: MI is a criterion commonly used in statistical modeling of word associations 

in natural language documents. The MI between a feature f and the class ci is defined to 

be: 
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We combine the category specific scores to find average mutual information value:  
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CHI: The CHI statistic measures the lack of independence between feature f and 

the category ci. The contingency table of a feature f and class ci produces the following 

numbers: Nfc, the number of data points that contain feature f and belong to class ci; Nfn, 

the number of times f occurs without ci; Nnc, the number of times ci occurs without f, and 

Nnn, the number of times neither f nor ci occurs. Assuming the size of dataset it N, the 

CHI measure is defined as: 
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KL: The KL criterion measures the divergence between the distribution of 

features present in a training sequence and the categories to which that sequence may 

belong [48]. KL is defined as follows:  
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log
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In the experiments discussed in the next section, we found that MI performed best for 

selecting compositional features, CHI for positional features, and IG for composite 

features. 

3.3.2 Logistic selection scheme 

As we described in the previous section, the filter-selection method assigns a 

score to every feature in the feature set based on the intrinsic properties of the dataset 

such as feature-class entropy. Recall also that we obtain the composite positional features 

by adding a new nucleotide from any position in the sequence to the initial feature set. 

The empirical test we performed on the data suggested improvements in performance by 

adding a score that penalizes the distance, such that the farther away the position of the 

newly added nucleotide to the original feature is, the lower the score of the newly 

constructed feature. We normalized the distance values to a standard normal distribution. 

Then, we applied a logistic scheme to assign these scores to each of the features in the 

constructed set of positional features. Finally, each feature was assigned a score 

according to the following formula:  

( ) ( )1exp −+= distfIGFscore  
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3.3.3 Recursive feature elimination 

After we generate features for each feature type individually, we collect all the 

selected features into a combined set. At this stage we perform another feature-selection 

procedure, the recursive feature elimination. This procedure is more expensive than the 

filter-selection methods, and it involves the classification algorithm. Starting with the 

mixed set, we learn a prediction model using a max-margin classifier. A max-margin 

classifier, such as a linear support vector machine (SVM), produces a decision boundary 

to discriminate between two different categories. Each feature is assigned a weight during 

learning. These weights define the decision boundary and can be used for feature ranking. 

Features with zero weights, or weights very close to zero, are assumed to not contribute 

to the classification task [66], and are therefore eliminated. We used a regularized least-

squares classifier [64] to learn the decision boundary and the individual feature weights.  

We recursively trained the classifier, learned a new model, and eliminated a fixed number 

of features after each iteration.  

3.4 Feature-Generation Algorithm (FGA) 

Our algorithm for feature generation uses domain knowledge and data properties 

to construct and select useful features for the prediction task. Starting with an initial 

feature set, FGA iteratively calls a feature-construction method to expand the current 

feature set, and a feature-selection method to reduce the feature set size to manageable 

levels. After a specified number of iterations, the algorithm produces an output feature 

set. Those features are then used by a classification algorithm to perform sequence 

classification. 
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Traditional feature-selection approaches consider a single brute-force selection 

over a large set of all features of all different types. In contrast we find that by 

categorizing the features into different feature types, it is possible to apply appropriate 

construction and selection methods suitable to the different types. Thus, we can extract 

relevant features from each feature-type set more efficiently than if a single selection 

method had been applied to the whole set. The type-oriented feature selection approach 

allows the use of different feature selection models for each type set; for example, for a 

feature set whose dimensionality is not too high, one may use a wrapper approach in the 

selection step, while for a large feature type set, one may use filter approaches. 

Furthermore, this allows features of different types to be generated in a parallel fashion. 

To employ the information embedded in the selected features for sequence 

prediction, we use the following three-step algorithm: 

• Feature Generation: The first stage generates feature sets for each feature type.  

For each defined feature type, we tightly couple the corresponding feature-

construction step with a specified feature-selection step. We iterate through these 

steps to generate richer and more complex features. Each iteration, we eliminate 

features that are assigned a low selection score by the feature-selection method. 

• Feature Collection and Selection: We collect features of different types and 

apply another selection step. The selection method we apply is recursive feature 

elimination. We recursively train the classifier and remove the low-scoring 

features. We produce a final set of features originating from different feature 

types and different selection procedures. 
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• Classification: The last stage of our algorithm builds a classifier over the final set 

of features. The regularized least-squares classifier, C-Modified Least Squares 

(CMLS), described by Zhang and Oles in [64], is a max-margin classification 

method similar to SVM. Compared to SVM, CMLS has a smoother penalty 

function, which allows calculation of gradients that provide faster convergence. 

 

While feature generation remains a computationally intensive process, the 

organization of the generation process according to the different types allows us to search 

a much larger space efficiently.  Moreover, this feature-generation approach has other 

advantages, such as the flexibility to adapt each individual generation process with 

respect to the feature type and the possibility to incorporate the module in a generic 

learning algorithm. To deal with the large number of features, we use CMLS, which is 

very efficient at handling problems of this size. 

The feature generation stage is also very generic and offers the flexibility to 

accommodate several different scenarios. This component may operate in the coupled or 

uncoupled mode, as shown in Figure 3.3. When the component is in the uncoupled mode, 

see Figure 3.3, the feature-construction and selection steps are independent of each other. 

All the features constructed in the iteration step i, regardless of the scores assigned by the 

feature-selection method, are used in the next feature-construction step. This mode allows 

even the low-scoring features to expand in the next iteration. In our experiments, we 

allow this component to operate in the uncoupled mode during compositional-features 

generation. 
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When this component is in the coupled mode, see Figure 3.3, the quality of the 

features produced by the feature-construction method in the next iteration depends on the 

ability of the feature-selection method to detect the useful features in the current iteration. 

The features that score below the decided threshold are not allowed to expand in the next 

iteration. This mode of operation is useful when the dimensionality of the feature set is 

very high, as in our experiments with composite-positional features. 

3.5 The Regularized Least-Squares Classification Algorithm  

Now we take a closer look at the third stage of our method, i.e. classification and 

explain in detail how we perform this step. For this we take the set of features coming 

from the generation step and feed it to CMLS, a least-squares classifier algorithm. We 

found, when compared to AdaBoost, Support Vector Machines, Naïve Bayes and 

Maximum Entropy, this was the classifier that consistently gave the best performance. 

This linear classifier has a performance similar to linear support vector machines, but 

with a much faster convergence and therefore a shorter training time. Here we give a 

description summary of the regularized least-squares classifier as described by Zhang and 

Oles [64].  

A two-class classification problem is to determine a label y ∈ 1,−1{ } associated 

with a vector x  of feature values. A useful method for solving this problem is by using 

linear discriminant functions, which consist of linear combinations of the feature input 

values. For a training set of labeled data x1,y1( ),..., xN ,yN( ), where N is the number of 

examples in the training set, we seek a weight vector ω  and a threshold θ  such that 

ωT x < θ  if its label y = −1 and ωT x ≥ θ  if its label y =1. Thus, the hyperplane ωT x = θ  

would approximately separate the training examples into the two classes that they belong. 
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Adjusting the equation so that we may take θ = 0, the error rate for the linear classifier 

with weight vector ω  is s ωT xiyi( )
i= 0

n

∑ , where s is the step function s z( )=
1 if  z ≤ 0
0 if  z > 0

⎧ 
⎨ 
⎩ 

. 

The least-squares fit algorithm finds the linear separator ˆ ω  that minimizes the 

error. In the regularized least-squares formulation, a regularization parameter λ  is added 

in order to ensure that the problem will always have a solution:  

ˆ ω = argmin
ω

ωT xiyi −1( )2
+ λω 2

i= 0

n

∑  

The solution is given by ˆ ω = xixi
T + λnI
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⎠ 
⎟ , where I denotes the 

identity matrix. Because of λ , the ill-condition problem has a solution and the inverse of 

the matrix can be computed. 

 

This formulation is very similar to the standard linear support vector machine, 

differing only in that SVM explicitly includes θ  into the equation as follows: 

ˆ ω , ˆ θ ( )= argmin
ω ,θ

g yi ωT xi −θ( )( )+ λω 2

i= 0

n

∑ , where g z( )=
1− z if  z ≤1

0 if  z >1
⎧ 
⎨ 
⎩ 

. 

Zhang and Oles discuss that the non-smoothness of the loss function g z( ) 

introduces difficulties for direct numerical optimization. So the standard support vector 

machine formulation is solved as a quadratic programming problem or in its dual 

formulation. The authors observe that if the loss function were replaced by a smooth 

function, then it would be much easier to be solved directly in its primal formulation. 

A slight modification to the equation replaces the function g z( ) with a smoother 

function, h z( ), to allow for an efficient application of the direct numerical optimization.  
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ˆ ω = argmin
ω

h ωT xiyi( )+ λω 2

i= 0

n

∑ , where h z( )=
1− z( )2 if  z ≤1

0 if  z >1

⎧ 
⎨ 
⎩ 

. 

 

Zhang and Oles, then, modify the function h z( ) further, by generalizing its 

desirable properties: the new function, f z( ), should be relatively smooth, with a 

continuous first-order derivative, and a non-negative piece-wise continuous second-order 

derivative. This formulation is convex, with a unique local minimum, which is also the 

global minimum. Numerical optimization methods, such as line-search methods, can be 

implemented then to find the optimal ˆ ω . These methods are guaranteed to converge, 

however, they may result in small step sizes, which slow down the convergence. To 

overcome this, the authors introduce a continuation parameter c ∈ 0,1[ ] and the new loss 

function is fc z( )=
1− z( )2 if  z ≤1

c 1− z( )2 if  z >1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
. 

So, for every step, a new c is chosen that 1 = c1 ≥ c2 ≥ ... ≥ cK = 0, and the function 

f z( ) is modified accordingly. This C-modified least-squares algorithm (CMLS), is not 

required to converge, however it has been shown to accelerate the rate of convergence. 

3.6 Evaluation Metrics 

The performance of a class discrimination model is usually measured using the 

following basic measures: the number of true positives (TP), the number of false 

positives (FP), the number of true negatives (TN), and the number of false negatives 

(FN). After executing  the prediction algorithm on a held-out test dataset, we calculate 

these numbers as follows: TP is the number of correct positive classifications returned by 

the prediction algorithm, FP is the number of data points classified as positive by the 
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system, which are not actual positives, TN is the number of data points correctly 

classified as negatives by the prediction algorithm, and FN is the number of actual-

positive data points, which are not retrieved by the prediction algorithm and therefore, are 

wrongly classified as negatives. 

Precision and recall, then, the standard performance measures of a classification 

method are defined: precision =
TP

TP + FP
×100 , and recall =

TP
TP + FN

×100 . Precision, 

also known as positive predictive value, is the measure of how much of information that 

the system returned is correct. Recall, on the other hand, also known as sensitivity, is a 

measure of how much relevant information the system has extracted. In this sense, 

precision and recall are antagonistic to one another, since a conservative system that 

strives for perfection in terms of precision will invariably lower its recall score.  

We evaluate the performance of our model and we discuss our results based on 

these performance evaluation criteria: 11-point average precision, false positive rate, and 

Receiver Operating Characteristic (ROC) analysis, which we define next.   

 

11-point average precision: The average precision of 11 recall points (11ptAvg 

Precision) [57] is a numerical measure that represents that average precision of the 

prediction system. It is calculated as follows: For any sensitivity ratio, we calculate the 

precision at the threshold, which achieves that ratio. Precision, measures the proportion 

of the sequences scoring above the threshold that are correctly retrieved, in our case, 

these are true splice sites. The 11ptAvg is the average of precisions estimated at these 

sensitivity values 0%, 10%, 20%, ..., 100%.  
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False-positive rate: Another performance measure commonly used for biological 

data is the false positive rate (FPr) defined as FPr =
FP

FP + TN
, where FP and TN are the 

number of false positives and true negatives, respectively, defined above. FPr can be 

computed for all recall values by varying the decision threshold of the classifier.  

ROC analysis: We also draw the ROC curve, which is the graphical 

representation of the sensitivity (on the y-axis) versus false positive rate (on the x-axis). 

False positive rate is the value we wish to minimize, and the ROC graph shows the 

tradeoff between sensitivity and false positive rate. 

Alternatively, we also present our results in the form of precision-recall curves. 

These curves plot the average precision at a given level of sensitivity (recall). Another 

metric that attempts to combine recall and precision into a single value is the break-even 

point. The break-even point is the value where precision equals recall. We also present 

results using this measure. In all our experiments, the results reported use three-fold 

cross-validation. 

3.7 Experiments and Discussion 

3.7.1 Data Description 

The dataset used for feature generation is a collection of 4,000 human RefSeq pre-

mRNA sequences, generously collected and provided by Alexander Souvorov (personal 

communication). All the splice sites in these pre-mRNA sequences contain the consensus 

di-nucleotides AG for acceptors and GT for donors. Following the GeneSplicer format, 

we marked the splice sites and formed subsequences consisting of 80 nucleotides 

upstream and 80 nucleotides downstream from the sites. We constructed negative 
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examples for the acceptor or donor datasets by choosing random AG-pair or GT-pair 

locations that were not annotated splice sites and selecting subsequences as we did for the 

true sites. From the true splice-site sequences we excluded the sequences containing 

unknown nucleotides, and, similar to GeneSplicer, we counted only the splice sites 

bordering coding exons. We only checked that the site itself lie in a coding region, but 

did not put any restriction on how long the coding region should be. Thus, the acceptor 

site data contains 20,996 positive instances and 200,000 negative instances. The donor 

site data contains 20,761 true positive instances and 200,000 negative instances. This data 

contains more acceptor sites than donor sites. This is due to the fact that more donor-site 

sequences contained unknown nucleotides in the region considered.  

For further evaluation, we tested the classification model of the final set of 

features on the B2hum dataset, provided by the GeneSplicer team. This dataset contains 

1115 human pre-mRNA sequences. There is no overlap between the set of these 

sequences and those the FGA algorithm is trained on. 

Next, we discuss the prediction of acceptor and donor splice sites using the 

feature-generation algorithm. Let us remind that acceptor splice-site prediction is 

considered a harder problem than donor splice-site prediction, which is characterized by a 

better-conserved sequence structure. 

3.7.2 Feature generation 

A primary step in the construction of solid classification algorithms is the 

collection of features that distinguish between the two classes of interest. In a divide-and-

conquer fashion, we examine each feature type separately and produce a brief evaluation 

of the effectiveness of the different feature types, when used in isolation. 
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Compositional features and region-specific compositional features: K-mer 

composition plays an important role in distinguishing sites and functional regions. In this 

analysis, we aim to identify those k-mer features that can help recognize the splice sites.  

We start with sets of all k-mers for each value of k from 2 to 6 and examine each k-mer 

feature set independently. Because the number of features is not very large (we have 16, 

64, 256 and 1024 features for k values from 2 to 6) we use the FGA uncoupled mode. In 

this process, we allow all the constructed features to expand in the next level. After each 

construction step, we applied each of the feature selection methods listed in Section 3.3.1, 

to give a score to every feature. We ranked the features according to their score in 

decreasing order and selected the top scoring half. For each selected feature set, we used 

the CMLS classification algorithm to measure the splice-site prediction performance. We 

discovered that, when we used the MI selection method, the splice-site prediction 

performance for each selected feature set was as good as the whole k-mer feature set for 

each value of k, for both general k-mer and region-specific k-mer features.   

Figure 3.4 shows the process of feature generation for general and region-specific 

feature sets for donor and acceptor dataset. We show the accuracy results for each general 

k-mer and region-specific k-mer feature sets after each iteration. In these experiments, 

after ranking the features according to each feature selection score, we selected the top 

50% for each value of k. These results are for the MI selection method, as it worked best 

for compositional features. The results show that k-mer features carry more information 

when they are associated with a specific region (upstream or downstream) and this is 

shown by the significant increase in their 11ptAvg precisions. 
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Positional features: Next, we examine each position-specific k-mer feature set. 

K-mer compositional features adjacent to a particular site position may be used to 

discriminate such a site.  In this analysis, we explore k-values from 1 to 6. Similar to 

compositional features, we use the FGA in the uncoupled mode and we measure the 

performance for splice-site prediction, when we use the complete set of position-specific 

k-mers and when we select the top scoring 1000 features, for each value of k.  

The prediction results for this feature type are shown in Table 3.1 for acceptor and 

donor splice-site prediction. After each generation step, we observe a gradual increase in 

performance until level 3; then, the performance gradually drops. This can be explained 

with the exponential increase in the number of features after each level; i.e. the feature set 

of position-specific 6-mers contains more than 600,000 features. We believe that, for k 

values 4, 5 and 6, we are experiencing a form of overfitting, because the number of 

features we are constructing is very large. In this case, we need a larger number of 

sequences in order to be able to distinguish between the two classes.  

In Table 3.1 we also list 11ptAvg precision results for the position-specific k-mer 

feature sets on acceptor and donor data when we use the IG, MI, CHI, and KL feature-

selection methods to select the best 1000 scoring features. The IG and CHI feature-

selection methods have a similar behavior. Our paired-t tests for statistical significance 

on the difference between their results reveal that the differences in these values are not 

statistically significant. The results on position-specific 6-mer features on both datasets 

and position-specific 4-mer features for the acceptor data were statistically significant. 

The KL distance shows good performance initially, but does not work well for more 

aggressive feature selection. This is most relevant for the set of position-specific 6-mers, 
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where we have the largest reduction in feature set size. The MI method seems unreliable 

for the set of position-specific 3-mers for the donor data, but works well for the other 

cases. We choose CHI to work with this feature type, but IG would also be a good choice. 

Conjunctive positional features: Finally, we examined conjunctive positional 

features. Small groups of nucleotides adjacent to particular site positions, not necessarily 

adjacent to each other, may show a tendency to co-occur; therefore, they may be used to 

discriminate the site. These feature sets are extremely large; for example, for just three 

conjuncts there are 40 million unique combinations. For this reason, and because of our 

experience with position-specific k-mer features, in these experiments, we use the FGA in 

the coupled mode. We explored sets of 2 to 6 conjuncts, denoted as P2, P3, P4, P5, P6. At 

each level, we used the IG selection method to select the top scoring 1000 features. We 

repeated the generation using this selected set to produce the next level of features.  

Figure 3.5 depicts the performances of the conjunctive feature sets for acceptor 

and donor data. For comparison, we introduce a baseline method, which is the average of 

10 trials of randomly picking 1000 conjunctive features from each level. We can see from 

the graphs in Figure 3.5 that feature generation algorithm is picking up informative 

features that help distinguish the true splice-site locations. The 11ptAvg precision of 

these feature sets gradually drops as we generate more complex features. This happens 

because the feature set that is explored grows exponentially with each addition of another 

conjunct. The difference in precision values however, between FGA and the baseline 

method is highly significant on every value of k (alpha=0.005). Moreover, the generated 

features of this type can capture important functional biological signals. 
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3.7.3 Prediction results for individual feature types 

In the previous section, for each feature type, we produce a final set of features 

consisting of features from each construction level. For example, the final set of general 

k-mer features consists of general 2-, 3-, 4-, 5-, and 6-mers. Here, we compare these 

collections of different levels of the feature sets of different types. The results are 

summarized in Figure 3.6. 

Compositional features and region-specific compositional features: For the 

compositional feature sets, during each iteration of the FGA algorithm, we used the MI 

selection method to reduce the number of features in half. Therefore, after collecting all 

the selected k-mer features, we have a total of 2728 features for k values ranging from 2 

to 6 for general, upstream or downstream k-mers. In order to reduce these numbers 

further, we used the recursive feature elimination. We eliminated 100 features at a time 

and stopped when the cross-validated 11ptAVG value started to drop. The number of 

features and splice-site prediction results are as follows.  

The first three bars in Figure 3.6, acceptor, show the results for the best k-mer 

features for k ranging from 2 to 6 on acceptor data. The general k-mer feature set contains 

700 features and 11ptAvg precision is 39.84%. The upstream and downstream k-mer 

feature sets sizes are 1,500 features and 1,800 features, and their results are respectively 

58.77% and 52.01%.  Similarly, in Figure 3.6, donor, the first three bars summarize the 

results for the general and region-specific k-mer features on donor data. The general k-

mer feature set contains 1000 features and its 11ptAvg precision is 47.82%. The upstream 

and downstream k-mer feature sets size is 1200 features each, and their results are, 

respectively, 62.52% and 60.65%. 
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Position-specific k-mers: The fourth bar shows the results for position specific 1-

mers. The respective precision results are 80.27% for acceptor data and 82.11% for donor 

data. The next bar in Figure 3.6, acceptor, shows 5000 position-specific k-mer features 

selected using the CHI selection method.  The 11ptAvg precision of this set is 85.94%. 

The result for 5000 position-specific k-mer features on donor data is 86.67% represented 

with the fifth bar in Figure 3.6, donor. 

Composite positional features: The sixth bars on both graphs in Figure 3.6 show 

the results for composite positional features.  For acceptor data we have a collection of 

3000 composite positional features for k ranging from 2 to 6 selected using IG. The 

11ptAvg precision that this collection set gives is 82.67%. The collection of composite 

positional features for donor data results in an 11ptAvg precision of 83.95%. These 

results clearly show that using complex position-specific features is beneficial. 

Interestingly, these features typically are not considered by existing splice-site prediction 

algorithms. 

Figure 3.6 also shows the performance of GeneSplicer on the same datasets as the 

last bar in the graph. We see that even in isolation, our positional features and our 

composite positional features perform better than GeneSplicer. These results are also 

statistically significant. 

3.7.4 Splice-site prediction with FGA features  

Once we collected all the features that we presented in Figure 3.6, general k-mers, 

upstream/downstream k-mers, position-specific k-mers and composite position-specific 

features, we ran the CMLS classification algorithm for both acceptor and donor. We 

achieved 11ptAvg precision performances of 92.08% and 89.70% in the acceptor and 
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donor datasets, respectively. These improvements are highly statistically significant, 

(alpha=0.005 for both acceptor and donor).  

The improvement is dramatic over one of the leading programs in splice-site 

prediction, GeneSplicer, which yields 11ptAvg precisions of 81.89% and 80.10% on the 

same datasets. The precision results of FGA-generated features at all individual recall 

points, shown in Figure 3.7, are consistently higher than those of GeneSplicer for both 

acceptor and donor site prediction. The break-even points for acceptor splice-site 

prediction for FGA and GeneSplicer are 67.8% and 54.9%, respectively. Donor splice-

site prediction produced break-even values of 66.7% and 58.7%, respectively for FGA 

and GeneSplicer. 

In Figure 3.8 we explore feature-selection options that are more aggressive, using 

the more expensive recursive feature-elimination method in order to select a smaller 

working feature set.  Recursive feature elimination shows that the generated features 

using this algorithm are very robust. For donor splice-site prediction, even the feature set 

of size 500 yields an 11ptAvg precision of 89.66%. This is an improvement of 9.56% 

over GeneSplicer on the same dataset. For acceptor splice-site prediction, even the 

feature set of size 1000 yields an 11ptAvg precision of 91.01%. This is an improvement 

of 9.12% over GeneSplicer on the same dataset. 

Next, for further evaluation, we tested both algorithms on the B2hum dataset 

provided by the GeneSplicer team, which contains 1115 human pre-mRNA sequences.  

The FGA final feature sets for acceptor and donor splice-site prediction contained 3000 

and 1500 features, respectively. In Figure 3.9 we present the false positive rates for a 

range of recall values from 5% to 95%.  Figure 3.9 shows actually ROC curves with the 
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false positive rate shown on the y-axis. (An ROC analysis describing FGA splice-site 

prediction in comparison with GeneSplicer and MaxEnt, is shown in Figure 3.10, for both 

acceptor and donor sites.) If we compare the AUC values for FGA and GeneSplicer, we 

get the following results. In the task of acceptor splice-site prediction, FGA algorithm 

and GeneSplicer score 99.37% and 98.71%, respectively.  In the task of donor splice-site 

prediction, the AUC scores are 99.25% and 98.58% for FGA and GeneSplicer, 

respectively. The feature-generation algorithm, with its rich set of features, consistently 

performed better than GeneSplicer in the B2hum dataset as well (B2hum is the dataset 

the latter algorithm is trained on). FGA false positive rates, as depicted in Figure 3.9, are 

favorably lower at all recall values. At a 95% sensitivity rate the false positive rate 

decreased from 6.2% to 2.5% for acceptor and from 6.7% to 3.3% for donor splice-site 

prediction. This significant reduction in false positive predictions can have a great impact 

when splice-site prediction is incorporated into a gene-finding program. 

It should also be noted that there is no significant difference in the running time of 

FGA compared to GeneSplicer. Once the final set of features is determined, FGA 

performs a linear search (in terms of sequence length) along the given sequence to find 

high scoring sites. 

3.7.5 Splice-site prediction with other classifiers 

Now we refer to the note we mentioned in Section 3.5 that CMLS, the least-

squares classifier algorithm, gave the best performance when compared to AdaBoost, 

Support Vector Machines and Naïve Bayes. The SVM implementation available to us, at 

the time, was several times slower. As an example, it took three days to train SVM, but 

only four hours to train CMLS at the time we were doing these experiments. Today there 
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exist much faster SVM implementations compared to the time we started working on 

these experiments. In this respect, when deciding which classification algorithm to 

choose, the training time criterion is not the main constraint. However, as shown in 

Figure 3.11, the linear classifier has a performance almost identical to linear support 

vector machines. In addition, the individual numbers of these precision-recall curves for 

all the classification algorithms are detailed in Table 3.2. In this table, it is also shown 

that the classification performance of CMLS is better than the others (precision values are 

consistently higher than those of the other algorithms), even when compared to SVM 

performance.  This difference is not statistically significant when we compare CMLS and 

SVM, but it is significant when compared to AdaBoost and Naïve Bayes.    

3.8 Summary 

We have presented a general feature generation framework that integrates feature 

construction and feature selection in a flexible manner. We showed how this method can 

be used to build accurate sequence classifiers. We presented experimental results for the 

problem of splice-site prediction. Using the feature generation approach, we were able to 

search over an extremely large space of feature sets effectively, and we were able to 

identify the most useful set of features of each type. By using this mix of feature types, 

and searching over their combinations, we were able to build classifiers that achieved 

accuracy improvements of 10.6% and 9.5% over an existing state-of-the-art splice-site 

prediction algorithm, GeneSplicer. The specificity values were consistently higher for all 

sensitivity thresholds and the false positive rate decreased favorably. We have also shown 

that some of these features describe biologically significant functional elements. They are 

freely available to all interested researchers, and can be viewed at www.spliceport.org or 
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http://www.cs.umd.edu/projects/SplicePort/.  We describe these in the next chapter. This 

algorithm, with its systematic feature generation basis, can be applied to more complex 

feature types and other sequence-prediction tasks, such as translation start-site prediction, 

protein sequence-classification problems. Moreover, it can easily be extended to genomic 

data of other organisms. 
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3.9 Tables of Chapter 3 
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Table 3.1. Feature generation comparison for position-specific k-mer features for k 

from 1 to 6 for acceptor and donor splice-site prediction 
We give the 11ptAvg precision for each set when all the features are used and for each selected set 

with different selection methods.   

Acceptor 
Pspec-Kmer 11ptAvg (Acc) IG-1,000 MI-1,000 CHI-1,000 KL-1,000

1 79.85     
2 85.96 84.91 76.49 84.68 84.84 
3 86.54 82.43 74.36 82.46 79.54 
4 84.92 73.94 72.59 75.96 70.09 
5 80.60 72.59 71.94 72.65 60.94 
6 68.64 58.84 58.58 59.31 30.27 

Donor 
Pspec-Kmer 11ptAvg (Don) IG-1,000 MI-1,000 CHI-1,000 KL-1,000 

1 82.11     
2 86.47 85.61 82.75 85.02 85.20 
3 87.46 84.58 65.42 84.45 84.06 
4 87.31 80.80 79.15 80.77 77.18 
5 86.31 80.34 80.93 80.48 77.77 
6 84.93 68.94 70.16 70.35 47.21 
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Table 3.2. Comparison of precision-recall values for CMLS, SVM, AdaBoost and 

Naïve Bayes classifiers 
We give the 11ptAvg precision for each.   

Acceptor 
Recall points CMLS SVM AdaBoost Naïve Bayes 

0 1 1 1 1 
0.1 0.9969 0.9966 0.9880 0.8768 
0.2 0.9955 0.9944 0.9836 0.8701 
0.3 0.9924 0.9932 0.9778 0.8611 
0.4 0.9910 0.9908 0.9759 0.8516 
0.5 0.9879 0.9878 0.9688 0.8389 
0.6 0.9819 0.9808 0.9528 0.8176 
0.7 0.9750 0.9711 0.9372 0.7855 
0.8 0.9607 0.9554 0.9071 0.7408 
0.9 0.9261 0.9205 0.8449 0.6580 
1 0.3213 0.2867 0.1356 0.1448 

11ptAVG 0.9208 0.9161 0.8793 0.7677 
     

Donor 
Recall points CMLS SVM AdaBoost Naïve Bayes 

0 1 1 1 1 
0.1 0.9944 0.9939 0.9765 0.9370 
0.2 0.9923 0.9928 0.9740 0.9304 
0.3 0.9900 0.9883 0.9696 0.9231 
0.4 0.9852 0.9844 0.9676 0.9008 
0.5 0.9798 0.9802 0.9625 0.8770 
0.6 0.9746 0.9728 0.9525 0.8591 
0.7 0.9625 0.9598 0.9349 0.8329 
0.8 0.9445 0.9399 0.9117 0.7979 
0.9 0.9118 0.9072 0.8475 0.7285 
1 0.1926 0.1903 0.1354 0.1467 

11ptAVG 0.9025 0.9009 0.8756 0.8122 
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3.10 Figures of Chapter 3 
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Figure 3.1. A schematic representation of a DNA sequence composition.  

The figure on the left shows an acceptor-splice signal followed by a 120-nucleotide stretch, followed by the 

donor-splice signal. The splice signals are reversed in figure on the right. 

 

 

 

Figure 3.2. Sequence examples for acceptor (SA) and donor (SD). 

The sequences consist of 162 letters each from the nucleotide alphabet {A, C, G, T}. The middle letters are 

AG for acceptor and GT for donor. The upstream region of the sequence is composed of the 80 nucleotides, 

shown in blue, and the downstream region consists of 80 nucleotides, shown in green. 
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Figure 3.3. Feature generation component operating in uncoupled and coupled 

mode.  

When feature generation operates in the coupled mode, features scoring below the decided threshold, after 

the feature selection step, are not allowed to expand in the next iteration. 
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Figure 3.4. Feature generation comparison for performances of different feature type 

sets, general k-mers, upstream k-mers, and downstream k-mers, shown for different 

values of k for acceptor splice-site prediction and donor splice-site prediction. 
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Figure 3.5. 11ptAvg results for the position specific feature sets generated with FGA 

algorithm vs. randomly generated features for acceptor and donor splice-site data. 
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Figure 3.6. Performance results of the FGA method for different feature types as well 

as the GeneSplicer program in acceptor splice data and donor splice data.  

The depicted feature sets are as follows: Gen - selected general k-mers, Up - selected upstream k-mers, 

Down - selected downstream k-mers, P1 - position-specific nucleotides, P-Kmer - selected position-specific 

k-mers, comprising features from all considered values of k, P-All – composite positional features 

comprising selected features for P2, P3, P4, P5, and P6. 
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Figure 3.7. Precision results for each recall value for FGA with the complete set of 

features compared to GeneSplicer for acceptor and donor data. 
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Figure 3.8. 11ptAvg precision results for FGA compared to GeneSplicer for acceptor 

and donor data.  

We start with the complete set of features and recursively train the algorithm eliminating 1000 features at a 

time. 
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Figure 3.9. The false positive rate results for FGA with the final feature set 

compared to GeneSplicer, varying the recall threshold, for acceptor and donor data. 

 



 

 65

 

 

Figure 3.10. Receiver Operating Curve analysis for FGA, GeneSplicer, and MaxEnt 

for acceptor and donor splice-site prediction.  

The true positive rate (TP/(TP+FN)) is plotted versus the false positive rate (FP/(FP+TN)). We show the 

sensitivity values ranging from 50% to 95%. When the score threshold for each method is adjusted, such 

that 5% of the true sites are missed (sensitivity is 95%), MaxEnt has recalled 10.48 % of the false sites; 

GeneSplicer, 5.80%; and FGA, only 2.49% for acceptor splice-site prediction, and MaxEnt has recalled 
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6.61 % of the false sites; GeneSplicer, 6.40%; and FGA, only 3.30% for donor splice-site prediction.These 

results are computed on the Human dataset of GeneSplicer, which contains 1115 pre-mRNA sequences. 
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Figure 3.11. Precision-recall curve analysis for FGA, for acceptor and donor splice-

site prediction comparing CMLS, SVM, AdaBoost and Naïve Bayes classifiers.  
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In all cases we performed a three-fold cross-validation, and here we present the average of the three folds. 

AdaBoost is run with decision trees as the weak classifier and the trees are grown until level 3. the least 

squares classifier, CMLS and SVM exhibit almost identical performances, with the exception that SVM 

took much longer to train. We decided to go with CMLS because of its speed and good performance.  
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Chapter 4: SplicePort — An interactive splice-site 

analysis tool 

In Chapter 3, we described FGA, the feature-generation algorithm for sequence 

classification and the resulting splice-site prediction model that uses FGA-generated 

features. The FGA prediction model is capable of achieving high classification accuracy 

on human splice sites. The accurate selection of splice sites, as discussed in Chapter 2, 

requires both relatively well-characterized signals at the splice sites and auxiliary signals 

in the neighborhood sequence region. These signals are still not completely understood, 

and an easy-to-use method that would help biologists discover and interpret them is 

highly desirable.  

In this chapter, we discuss our feature-space exploration to find biologically 

meaningful signals. In order to find relevant signals, we built SplicePort, a web server 

with rich functionality that is capable of predicting splice sites for user-input sequences, 

and browsing the whole collection of features generated by the FGA algorithm [150]. 

SplicePort may be important to a biologist for searching for interesting signals or 

validating previously observed signals that may be represented in the FGA-generated 

features. We discuss SplicePort in detail and we present examples detailing its rich 

functionality. 

4.1 Discovering relevant splice-site signals 

Accurate splice-site prediction is a critical component of eukaryotic gene 

prediction.  Whole genome analysis of a single organism or comparison of genomes 

depends on accurate gene annotation.  However, annotation is still limited by our ability 
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to properly identify splice sites [22]. As described in Chapter 3, FGA-identified features, 

in combination with a large-margin classification algorithm, produce accurate splice-site 

prediction on human pre-mRNA sequence data. These features capture important 

properties that distinguish actual splice sites from other similar DNA sequences, and they 

may help researchers in the further understanding of the splicing problem. 

We have built SplicePort, a web-based interactive tool, which allows the user to 

explore the FGA features and allows the user to make splice-site predictions for 

submitted sequences based on these features. Other Internet resources that offer online 

splice-site prediction are: GeneSplicer [45], NetGene [25,7], MaxEntScan [59] and 

SplicePredictor [6]. For each input mRNA sequence, these web services provide the user 

with a list of predicted splice-site locations. However, a researcher may also be interested 

in identifying the signals used by the computational method to predict the splice site. 

 Any element in the DNA sequence of a gene that helps to specify the accurate 

splicing of the pre-mRNA sequence is a splicing signal. Branch sites, pyrimidine tracts, 

exon splicing enhancers, and silencers are all examples of known functional signals in the 

neighborhood of splice sites in eukaryotic genomes (see [35] for review). SplicePort, in 

addition to splice-site prediction, allows the user to explore all the FGA-generated 

features. None of the other online splice-site prediction systems provides this capability. 

We hope this will provide a useful resource for the identification of signals involved in 

specific splicing events, and possibly for the discovery of previously unappreciated 

splicing motifs. 
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4.2 SplicePort 

The SplicePort web server is located at www.cs.umd.edu/projects/SplicePort or 

www.spliceport.org. From the SplicePort initial page, the user has two options: splice-site 

prediction and motif exploration. The splice-site predictor receives the user’s input 

sequence and reports the whole set of predicted splice sites that confirm the constituent 

model (AG-dinucleotide consensus for acceptor and GT-dinucleotide consensus for 

donor). The motif explorer can be used to investigate acceptor and donor model feature 

sets identified in the input sequence or the sets of features FGA has discovered in the 

training sequences. The latter allows the user to browse the entire collection of positional 

features identifiable during the training phase. This motif exploration is novel and useful. 

While we illustrate its use on the FGA selected features, we believe this interface is 

general and can be used to explore other feature types [18,9,56] and features selected by 

other learning algorithms [21,65]. In Figure 4.1, we summarize the functionality of 

SplicePort, and we describe its components in greater detail in the following sections. 

4.3 The FGA splice-site prediction model 

We applied FGA to the task of splice-site prediction for the human genome 

(formally, the classification of AG dinucleotides into acceptors and non-acceptors and the 

classification of GT dinucleotides into donors and non-donors), as described in Chapter 3. 

FGA achieves very high accuracy compared to other splice-site prediction programs. For 

example, compared to GeneSplicer, FGA was able to achieve improvements of 43.0% 

and 50.7% in the reduction of the false positive rate, at the 95% sensitivity level, for 

acceptor splice sites and donor splice sites, respectively (see figures in Chapter 3). 
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  As described in Chapter 3, for the human RefSeq training sequences, the FGA 

algorithm selected 3000 features for acceptor splice-site prediction and 1600 features for 

donor splice-site prediction. The acceptor site model contains 1362 compositional 

features and 1638 positional features, while the donor site model contains 764 

compositional features and 836 positional features. We call these sets of features the 

acceptor-model feature set and the donor-model feature set. 

The model feature sets then are used as input for the CMLS learning algorithm. 

For the splice-site prediction problem, two separate CMLS classifiers are required, one 

for acceptor, and one for donor sites. After the training phase of these classifiers, each 

feature fi in the model feature sets is assigned a weight wi. These weights define the 

decision boundary of the linear classifier that optimizes the performance. We also use 

these weights to derive feature ranking, as discussed in Chapter 3. 

When the classification model is given a new input sequence (the sequence is in 

the format [80 nucleotides +AG/GT +80 nucleotides]), initially it checks whether it is a 

candidate acceptor (AG) or a candidate donor (GT) splice-site sequence. Then, the 

classifier checks the sequence if it contains any of the features previously identified by 

the FGA algorithm in the corresponding model feature set. The classifier produces a final 

score for the input sequence, adding the weights of each present feature. This score, 

assigned by SplicePort and displayed in the output, is best understood in terms of the 

splice-site classification problem itself. 

In Figure 4.2, we use the B2hum dataset supplied by the GeneSplicer team to 

show the sensitivity and specificity differences for different FGA score thresholds. We 



 

 73

also provide a quantitative comparison between the two algorithms. Figure 4.2A depicts 

acceptor splice sites and Figure 4.2B depicts donor splice sites. 

4.4 Splice-site prediction in SplicePort 

Using the SplicePort splice-site predictor is straightforward. The user inputs a 

sequence in FASTA format. A sequence in the FASTA format is characterized by a 

header line starting with character ‘>’, and containing a short description of the sequence. 

SplicePort also accepts sequences in a flat format. The sequence can be cut and pasted 

directly into the window, or uploaded as a separate file. The server is case insensitive and 

accepts either DNA (T) or RNA (U) sequences as input. The length of the submitted 

sequence determines the time required for prediction (approximately 1 second per kb of 

submitted sequence). Once the command to predict splice sites for the given input 

sequence is given, the system will use the FGA acceptor and donor model feature sets to 

score the given sequence. Each result is tested against the default score threshold (zero) 

and if it exceeds the threshold is displayed on the screen. Once the whole sequence has 

been processed, the user is able to download the complete set of results for personal 

records or parse the results using SplicePort as discussed below. 

SplicePort splice-site predictor uses a splice-site neighborhood of 80 nucleotides 

upstream and 80 nucleotides downstream for a constituent splice-site. After the user 

submits the input sequence file, the results of splice-site prediction are displayed in a 

tabular format. Figure 4.3 shows a sample output. The table header includes: the input 

sequence description, which is the header line of the FASTA sequence; the sequence 

length; and, the sensitivity value and false positive rate for the current score threshold 

value for both acceptor and donor sites, which by default is set to zero.  
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For each prediction, the following information is listed: donor/acceptor splice site, 

the location in the sequence, a short subsequence centered at that location, and the FGA 

score. Predicted donor sites, occurrences of the dinucleotide “GT” in the input sequence, 

are listed in blue and predicted acceptor sites, occurrences of the dinucleotide “AG” in 

the input sequence, are listed in green. The location coordinate is measured from the first 

nucleotide in the input sequence. The short subsequence is 12-nucleotides long and is 

centered at “AG,” for predicted acceptor sites, and “GT,” for predicted donor sites. A 

threshold of zero, to our experience, is usually a good indicator that the predicted location 

has a high probability of being a true splice-site, however, the user can change the score 

threshold to increase or decrease the number of displayed predictions from the input 

sequence. Each new score threshold changes the sensitivity value and the false positive 

rate. The sensitivity value by default is 88.5% for donor sites and 88.8% for acceptor sites 

(correspond to score = 0). After each change, the new sensitivity and false positive rate 

values are calculated and displayed to the user, as shown in Figure 4.3(B). The user can 

choose to list all splice-site locations on the screen, or prefer to explore only donor or 

only acceptor, at a time, or switch between different views. In Figure 4.3(A), the user is 

listing all the sites, restricting the view only through score threshold. In Figure 4.3(B), the 

user has selected to explore only donor predictions and has changed the score threshold to 

0.75. Please note that the sensitivity value and false positive rate have also changed 

accordingly. Finally, the user can select one of the predictions to investigate the identified 

signals, as described in the following section. 
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4.5 Browsing features on which a selected prediction is based 

The characteristic that distinguishes SplicePort from the other online splice-site 

prediction tools is the capability to explore the features identified in any prediction on the 

original input sequence. SplicePort allows the user to explore potential splicing signals in 

the vicinity (160 nucleotides) of any particular splice site (AG or GT), by examining the 

features that contribute to the score assigned to that potential site. The signals of the 

acceptor model feature set or the donor model feature set can be listed, browsed, and 

visualized by selecting the Browse Features option.  

Features are grouped into compositional features and positional features. Usually, 

a subset of acceptor or donor model feature set is present in any predicted splice site.  

Compositional features comprise general, upstream and downstream k-mers. They can all 

be listed, clustered and sorted by their weight. Positional features comprise position-

specific nucleotides, position specific k-mers and conjunctive n-positional features in the 

160-nucleotide neighborhood. There are a variety of browsing possibilities for this set of 

features. The user specifies an interval within the 160-nucleotide window by giving the 

starting and the ending points. All the positional features associated with positions within 

this interval are listed. They are shown relative to the splice-site location, providing the 

user with a visual representation of the position of the feature, and are ordered by the 

absolute value of their individual weights. The user may further group these features, 

draw histogram and WebLogo [15] frequency plots, search by motif, and set the weight 

threshold. 

As an example (see Figure 4.5), we used SplicePort to examine exon 7 of the 

homologous SMN1 and SMN2 genes, a well-studied case [9] where a single nucleotide 
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difference at position 6 of the exon (C→T) accounts for reduced inclusion of this exon in 

SMN2 (see [9] for review). The SMN gene is linked with a common human genetic 

disorder called the Spinal Muscular Atrophy (SMA). SMA is a motor neuron disease. 

The motor neurons affect the muscles that are used for activities such as crawling, 

walking, head and neck control, and swallowing. Researchers have identified the SMN1 

gene (survival motor neuron 1) as the primary manufacturer of the SMN protein. It is the 

absence/defect of this SMN1 gene that causes SMA. An individual with SMA has a 

missing or mutated gene that does not produce as much protein, or the right kind of 

protein. Since SMN protein is critical to the survival and health of motor neurons, 

without this protein nerve cells may atrophy, shrink and eventually die, resulting in 

muscle weakness. 

SplicePort scores the SMN1 exon 7 acceptor and donor 1.78 and 0.02, 

respectively and the single nucleotide change in SMN2 reduces these numbers to 1.61 

and -0.18. This difference is very subtle for the acceptor site but the change in the donor 

site score is enough to increase the false positive rate from 1.34% to 2.08%. This means 

that the single nucleotide mutation causes this donor site to be harder to recognize, which 

may be the reason that this exon is sometimes skipped. SplicePort feature browser shows 

that the difference in donor scores is primarily due to the negatively scoring upstream 

feature TAG (-0.18).  

The seventh exon of the SMN gene is 54 nucleotides long. The single nucleotide 

mutation occurs six positions downstream the acceptor splice site and 48 positions 

upstream the donor splice site. Most of the splice-site predictors would give exactly the 

same splice-site score for both cases (i.e. MaxEntScan). GeneSplicer and NetGene would 
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pick up the difference because they look at a wider splice-site neighborhood, similar to 

SplicePort, however, they would not be able to point to the features that cause the 

difference in scores.  

4.6 Motif exploration tool 

Users can explore general features discovered by FGA for human RefSeq 

sequences, using the motif exploration tool. The sequence-specific feature browser shows 

only those features used to score the submitted sequence (from the acceptor or donor-

model features sets). In contrast, motif exploration tool presents a much richer set of 

features. In order to facilitate motif discovery, rather than focusing on the simple 

compositional features, here we have made available a variety of positional features as 

selected through several iterations of FGA. These features are much richer than the 

features of existing splice-site tools.  Each composite positional feature set we considered 

is the conjunction of a k-mer and a number of arbitrary position-specific nucleotides. We 

denote a specific set using the notation Kmer+X; for example, 4mer+2 is the set of 4mers 

together with two position-specific nucleotides.  

Figure 4.6 illustrates a portion of SplicePort motif explorer. Acceptor and donor-

site features are grouped in two conceptually similar interfaces. The figure on the top 

shows how the user selects a feature set and specifies an interval to browse the features. 

The figure on the bottom shows the results. In this example, the user is exploring the 

features generated for acceptor splice-site prediction. 

The features are shown with respect to the splice-site location, and they are 

ordered according to the absolute value of their weight. The weight of a feature is learned 

by the CMLS classification algorithm during training. These weights can be used to order 
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and group the features. A positively weighted feature is a feature mostly found in splice-

site sequences, and a negatively weighted feature is a feature more commonly found in 

non-splice-site sequences. Figure 4.7 shows the results of WebLogo and Histogram 

functions. The user can view a depiction of the positively and negatively weighted 

features in the specified interval by generating a WebLogo frequency plot. The histogram 

allows the user to visualize the role of each nucleotide for each position in the specified 

interval. We represent this with four different bars, one for each nucleotide, for each 

position. The height of each bar is the accumulated weight for that position-specific 

nucleotide and is calculated using the weights of all the features that have that nucleotide 

at that position. 

Because the features generated with the FGA algorithm are position-specific 

features, we may find the same pattern of nucleotides repeated in a given interval. 

Interval Features refer to a set of features that share the same pattern of nucleotides but 

differ in starting positions. The user can list all the interval features for a specified 

interval and feature set. SplicePort displays the number of individual features as well as 

their average weight. To obtain the list of all individual features shown relative to a splice 

site in their respective locations, the user can use the Search by Motif option. This option 

also facilitates the search for known motifs or partial motifs. The user enters a short 

sequence and receives a list of all features in the specified interval that contain that 

sequence. 

In addition, for each feature set and specified interval we perform a clustering 

procedure based on edit distance. We identify similar features, and the tool groups them 

together generating WebLogo frequency plots to represent them. The user can browse 
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these identified clusters and their individual elements by selecting Identified Motifs. This 

option may help users identify known functional motifs and may guide them in the search 

for new ones.  

An illustrative example inspired by the case of SMN1 and SMN2 is a comparison 

of TAG and CAG among 5mer features located in the -60 to -30 interval relative to donor 

sites. Features containing TAG are all negative, with multiple examples of TTTAG.  

Conversely, CAG shows primarily positive features. This example is shown in Figure 

4.8. Additional examples of using the SplicePort motif exploration tool are described in 

the Chapter 5, where we describe finding biologically relevant motifs in FGA features. 

4.7 Summary 

The SplicePort server is a versatile tool with two main functions. First, the user 

can perform accurate splice-site prediction on a sequence, which they input to the tool. 

Splice-site prediction has the added flexibility of exploring all the putative splice-site 

locations, their score, corresponding sensitivity, and false positive rate values. Second, 

the user can explore the motifs for the requested location in the input sequence and 

browse the complete collection of identified motifs for both acceptor and donor splice 

sites. This tool can both help a user decide whether there is a splice site in the given 

sequence and also allow the user to identify elements of functional motifs. An additional 

benefit of a computational exploration approach, such as SplicePort, is that it can be 

readily implemented in other genomes.  

In summary, SplicePort allows the user to gain useful insight in gene splicing 

signals. This data analysis tool provides the community of researchers investigating pre-

mRNA splicing with a powerful and flexible resource for the identification of functional 
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elements. Motif exploration enables researchers to rapidly explore the space of 

computationally identified signals and effectively pose hypotheses for experimental test 

and validation. 
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4.8 Figures of Chapter 4   
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Figure 4.1. Organization of the SplicePort interactive interface.   

On the starting page, a user chooses between splice-site prediction and motif exploration.  After potential 

splice sites are predicted and scored, the features on which the predictions are based can then be explored. 
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Figure 4.2A. Splice-site predictor for human acceptor sites. 

Part (i) depicts the sensitivity, TP/(TP+FN), and Positive Predictive Value, TP/(TP+FP), also known as 

precision, vs. FGA score for the human acceptor splice sites.  Part (ii) depicts specificity, TN/(TN+FP), and 

False Positive Rate, FP/(TN+FP), vs. FGA score. Figures (iii) and (iv) show the False Positive Rate vs. 

Sensitivity and Precision, vs. Sensitivity. In Figures (iii) and (iv) FGA results are compared with those of 

GeneSplicer. These results show that FGA produces fewer false positives and higher precision for every 

sensitivity threshold. These differences are highly statistically significant.  
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Figure 4.2B. Splice-site predictor for human donor sites. 

Part (i) depicts the sensitivity, TP/(TP+FN), and Positive Predictive Value, TP/(TP+FP), also known as 

precision, vs. FGA score for the human donor splice sites.  Part (ii) depicts specificity, TN/(TN+FP), and 

False Positive Rate, FP/(TN+FP), vs. FGA score. Figures (iii) and (iv) show the False Positive Rate vs. 

Sensitivity and Precision, vs. Sensitivity. In Figures (iii) and (iv) FGA results are compared with those of 

GeneSplicer. These results show that FGA produces fewer false positives and higher precision for every 

sensitivity threshold. These differences are highly statistically significant. 
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Figure 4.3. Splice-site predictor in SplicePort. 

Part (a) depicts a typical output example of the predicted splice sites. We have circled the displayed 

sensitivity value. From this screen, the user can select a predicted site, we have selected the donor site at 

location 139 for illustration, and click on Browse Features, which we show with the arrow, to explore the 

present features.   

Part (b) depicts the situation when the user prefers to explore acceptor or donor splice-site locations 

separately. The user can browse the features that are present in the checked sequence by clicking on 

Browse Features, which we show with the arrow. The user can change the score threshold, which we have 

circled on this screen, and list all the sites that score higher than the threshold. The sensitivity and false 

positive rate values are shown below the FASTA sequence description line.  
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Figure 4.5. Splice-site prediction output of SplicePort for SMN gene.  

SMN1 exon 7 gene sequence is shown in part (A), and SMN2 in part (B), with 1kb nucleotides 

flanking region in both cases. The acceptor site of exon 7 is at position 1000 and the donor site is at 

position 1054. We see that the single nucleotide difference at position 6 of the exon reduces the 

acceptor score from 1.78 to 1.61 and the donor score from 0.02 to -0.18.   
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Figure 4.6. Motif Exploration Tool in SplicePort.  

This figure shows initially the selection of the feature set 4mer+2 in the branch site interval. SplicePort 

outputs the list of features in the specified interval. Each feature is aligned to the splice site position 

and has a weight assigned to it by the FGA algorithm. The acceptor splice site is depicted in the output 

with the capitalized di-nucleotide AG. 
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Figure 4.7. Typical outputs of motif exploration in SplicePort.  

The are outputs of FGA features for acceptor splice-site prediction: part (A) shows WebLogo 

frequency plots of features when we select the interval [-20,1], and part (B) shows the histogram 

generated from accumulated weights of features when we select the interval [-15, 6]. The small arrows 

denote the location of acceptor splice-site consensus dinucleotide AG. 
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Figure 4.8.Outputs of SplicePort motif exploration for SMN gene related features. 

Outputs for 5mer feature set of donor splice-site prediction in the selected interval [-60,-30], related 

with the SMN1 exon 7 example. On the left, we list features that contain the motif “tag.” Note that all 

these features have a negative weight. On the right, we list features that contain the motif “cag.” Note 

that these features are mostly positive. The small arrows denote the location of donor splice-site 

consensus dinucleotide GT. 
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Chapter 5:  Features generated for splice-site 

prediction correspond to functional elements 

 In general, knowledge discovery is the analysis of the data to find patterns and 

models that help summarize the data in novel ways that are both understandable and 

useful to the data analyst. A supervised machine-learning algorithm uses a set of 

known examples (the training set) and a set of characteristics or features describing 

the training set to construct a model of the data. The learned model is evaluated by 

testing its accuracy on a held-out test set. An important input to any machine-learning 

algorithm is the choice of features describing the dataset. A challenge, which we have 

addressed with the feature-generation algorithm, is how to determine the best set of 

features for a given prediction task. Another challenge, which we have addressed in 

Chapter 4 with SplicePort, is how to discover, interpret, and assess the identified 

features.  

 In this chapter, we explore the knowledge-discovery power of the FGA 

algorithm by taking a closer look at the generated features, using the motif 

exploration tool of SplicePort. We present examples of the observed feature groups 

and describe our efforts to detect biological signals that may be important for the 

splicing process. We find that the features generated for computational splice-site 

prediction include known functional elements, and we present evidence that these 

features provide previously unknown information about some aspects of these 

splicing signals. 
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5.1 Description of FGA feature sets in SplicePort 

Here, we summarize the specific steps used to generate the composite feature 

sets used in the motif exploration tool in SplicePort. As we already discussed in 

Chapter 3, a composite positional feature set is the conjunction of a k-mer and a 

number of arbitrary position-specific nucleotides. To generate a composite positional 

feature set, we need to specify an initial set of features, an appropriate construction 

method, and a fast feature-selection method. To prepare the initial sets of features, for 

both donor and acceptor splice-site prediction, we started with the position-specific k-

mer sets for k from 3 to 6. The numbers of potential features for these feature sets are, 

respectively, 10,240, 40,960, 163,840, and 655,360. For each of these sets the 

Information Gain feature-selection method was used to select the top scoring 5000 

features. These sets constituted our initial feature sets for the construction algorithm. 

As described in Chapter 3, the feature-construction method expanded each of these 

sets by adding one position-specific nucleotide in an unconstrained position. After the 

construction step, we again used information gain to evaluate each of the features in 

the constructed set. Then we evaluated each feature according to a logistic scheme, 

taking into account the distance between the newly added nucleotide and the original 

feature, preferring features for which the distance was smaller.  

After the feature selection step, the top scoring 5000 features were selected. 

These sets constituted the input sets for the next iteration. We ran the algorithm and 

generated features up to, at most, 10 conjunct nucleotides in different positions in the 

composite feature sets. For each set of features we built a separate splice-site 

prediction model using the CMLS classification algorithm. Table 5.1 summarizes the 
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splice-site prediction performance for each of these feature sets. Some of these sets 

performed better than others, but in our analysis we explored all the sets for the 

purpose of knowledge discovery.    

In what follows, we use the shorthand notation S − kMERn p1, p2[ ] to describe 

the composite feature subsets that we studied. In this notation, S ∈ A,D{ } stands for 

acceptor (A) or donor (D) splice sites, kMER stands for the number of consecutive 

position-specific nucleotide features in the initial set, n is the number of additional 

conjuncts and [p1,p2] denotes the interval from position p1 to position p2 in the 

sequence. For example, A − 3mer3 20,40[ ] is a subset of acceptor splice-site features. 

These features were generated from the initial set of position-specific 3-mer features 

and were obtained after three FGA iterations, adding each time a new nucleotide in an 

unconstrained position within the specified interval. The sequence positions 

associated with each of the features in this subset were from the coding region 20 to 

40 nucleotides downstream the acceptor splice site. 

Following with our definitions, we say that two composite features match if 

they share the same nucleotide pattern, starting at different positions. For example, let 

4mer[1,10] = a1g2c3t4 ,a6g7c8t9{ } be the subset of composite 4-mer features from the 

interval [1,10], where a1 denotes nucleotide a at the first sequence position. In this 

case, the features a1g2c3t4  and a6g7c8t9 , are two matching composite features. A 

composite feature subset may contain several matching features that differ only in the 

starting position within the specified interval. We represent a set of such occurrences 

with an interval-feature pattern, e.g. aigi+1ci+2ti+3. An interval-feature pattern is the 

nucleotide pattern shared among the matching composite features and the number of 
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interval occurrences of a feature pattern is the number of matching composite features 

it represents. We use the notation S − kMERn p1, p2[ ]* to denote the set of all 

interval- feature patterns for the subset S − kMERn p1, p2[ ]. For the above example, 

given the set of features 4mer[1,10] = a1g2c3t4 ,a6g7c8t9{ }, the set of interval-feature 

patterns is 4mer 1,10[ ]* = aigi+1ci+2ti+3{ }. The number of occurrences for the pattern 

aigi+1ci+2ti+3 in the given feature set is two.  

In our analysis, features were ranked according to the weight assigned to them 

by the classification algorithm. We used the WebLogo program to draw frequency 

plots. We plotted histograms and used basic k-means clustering algorithms and edit-

distance measures to cluster the features into groups. Here we list some of our 

findings and illustrate them with our features. 

5.2 Knowledge discovery: generated features capture biological signals 

What kinds of biological signals do these generated features capture?  

Examples of positive signals that we might expect to find in a typical pre-mRNA 

include the branch site, the pyrimidine-rich region close to the acceptor splice site, 

splice-site consensus signals themselves, and exonic splicing enhancers.  In addition, 

it is likely that sequence elements associated with the coding sequence are present 

among our features. One may ask whether the signals identified through the 

exploration of the features positioned on the exonic regions of the sequence are really 

splicing signals or, in fact, are signals that reflect the coding properties of exons. 

Admittedly, not all features can be splicing signals. However, at the core of these 

features lies the generation procedure described with the feature-generation 

algorithm. And FGA has identified these features when learning the difference 
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between annotated splice-sites and randomly picked AG/GT surrounding regions 

(pseudo-splice sites). We believe that these features do not emphasize the coding 

properties of exons and we are mentioning two arguments in support of our claim. 

First, recall the composition of our training sequences. The set of our negative 

training sequences consists of randomly picked AG/GT locations in the original pre-

mRNA sequences and their surrounding regions. The only constraint we imposed on 

the AG/GT locations is that they should not be annotated splice-site locations. 

Therefore, many of our negative training sequences overlap with exons, and features 

capturing coding properties are expected to be present in our negative training 

sequences, although, admittedly, in a non-dominant level. The positive training 

sequences consist of annotated splice-site sequences from all the coding exons in the 

original pre-mRNA sequences.  So, it would be interesting to know how would FGA 

splice-site predictor on identifying splice-sites that belong to non-coding exons. And 

this forms our second argument. Second, and most significantly, FGA performs well 

on introns flanked by non-coding exons. We compiled all the annotated splice-site 

sequences flanking non-coding exons in our original pre-mRNA sequences. There 

were 4961 acceptor splice-site sequences and 2148 donor splice-site sequences 

fulfilling these criteria. We used the same set of negative sequences and we tested the 

performance of FGA on the classification of splice –sites in this new set. Our results 

show that FGA shows an 11ptAVG of 83.33% for acceptor sites and 64.52% for 

donor sites. These are impressive results for recognition of non-coding exons flanking 

splice sites. So, our features are in fact predominantly capturing splicing signals. 
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5.2.1 The Branch-Site interval 

The mammalian branch-site signal is difficult to describe because it is 

degenerate and shows very low levels of purifying selection [31]. The branch site 

plays a central role in the chemistry of splicing. In the first step in splicing the branch 

site reacts with the upstream exon. The consensus is TNCTRAC [42], although this 

sequence is based on very few biochemical determinations compared to the splice-site 

sequences, and is poorly conserved. The A is the base that attaches to the donor splice 

site, and it is usually located from 18 to 40 nucleotides upstream of the acceptor site, 

although it can be much more distant.  

In order to investigate the branch-point signal, we examined composite 

features of 6 nucleotides that start in the interval from 40 to 20 nucleotides upstream 

from the acceptor splice site (and therefore extend from -40 to -15). Our current 

feature set for this purpose was A−3mer3[−40,−20]. The subset contained 346 

selected features.  

Table 5.2 shows the top-scoring 20 features in their exact position with 

respect to the annotated acceptor site, which is found 15 nucleotides downstream of 

the interval shown. Each feature is listed, ranked by the weight assigned by the 

CMLS classification algorithm. A large number of positional features in this feature 

set captured the branch-point signal. In fact, of the 30 features that had weights above 

0.1 in this set, all but 5 contained either CTRA or at least five pyrimidines. In 

absolute numbers, 97 individual features of this set matched the branch-point 

consensus and 158 features were pyrimidine-rich. The rest of the features were 

assigned negative weights. The negatively weighted features comprised a G-rich 
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signal mostly. Of those, 44 features matched the pattern AGG and the others were A-

rich. 

Table 5.3 illustrates a subset of A − 3mer3[−40,−20]* interval-feature 

patterns. Each listed pattern represents at least five matching composite features, 

differing only in the starting position in this interval. The number of interval 

occurrences is also given and an average weight is computed for each interval-feature 

pattern from the individual CMLS weights assigned to the distinct matching 

composite features during training. We grouped these patterns into three categories: 

1) nine interval-feature patterns matching the branch-site consensus, 2) two 

pyrimidine-rich interval-feature patterns, and 3) two negatively weighted purine-rich 

interval-feature patterns.  

Table 5.4 lists all the position-specific occurrences of GCTGAC in the [-80, -

1] interval. These features matched the branch-site consensus and they were assigned 

positive weights by the classification algorithm. The distribution of scores for this one 

hexamer suggests a preferred location for the branch site A at -30 to -20. Many 

independent observations with related features (e.g. CTAAC) indicated a similar 

region. For example, in Figure 5.1, we present a comparison of four tetramer features 

present in the  set. It is apparent from the distribution of these features that positions -

27 through -16 are preferred for the branch site A. This observation agrees well with 

experimental results [12]. 

5.2.2 The acceptor splice-site (pyrimidine-tract) interval  

The protein factors that recognize splice sites need to bind to a variety of 

sequences. An example is the structure of U2AF65, or PUF60 which binds to the 



 

 97 
 

polypyrimidine tract. In Figure 5.1 we also show the distribution of TTTT and CCTT, 

in this interval. Note that this distribution is broader than the distribution of branch-

site tetramers. In addition, there is a region (-16 to -12) where the scores assigned to 

TTTT become negative and tetramers containing C have maximal scores. Similar 

peaks are observed for CTTT, TCTT, TTCT and TTTC, as shown in Table 5.5.  

In order to further investigate the characteristics of the upstream region close 

to the acceptor splice site, we also examined the feature set A − 5mer[−20,−1]. There 

were more than 2,000 selected features in this subset. We note that a large number of 

features were selected in this set, indicating stronger potential signals close to the 

splice site. Based on the weight assigned by the CMLS algorithm, we divided these 

features into two groups; positively weighted features and negatively weighted ones. 

In Figure 5.2, we used the WebLogo program to draw a frequency plot of the two 

groups of features. The annotated acceptor site is shown in the figure with the 

consensus dinucleotide AG.  

One interpretation from these plots is that the generated features are capturing 

the pyrimidine tract, and that they are scanning along the sequence for the exact AG 

dinucleotide consensus where the true acceptor site is located. The difference between 

the two frequency plots for positively and negatively weighted features is striking. 

Figure 5.2a shows that the presence of the CT-rich feature is very important in this 

interval and  Figure 5.2b shows that the presence of an AG-rich element is an 

indicator of a non-splice sequence. The frequency plot for the positively weighted 

features (Figure 5.2a) is very similar to the acceptor splice-site consensus itself.  

However, our features do not simply reflect the nucleotide frequencies seen at true 
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sites. Figure 5.2c and Figure 5.2d show the frequency distribution of the true acceptor 

sequences and non-acceptor sequences in the training dataset. The frequency 

distribution of the non-acceptor sequences in our dataset in the pyrimidine-tract 

interval (Figure 5.2d) is different from that of the negatively weighted features in the 

[ ]1,205 −−− merA  feature set (Figure 5.2b).   

In other words, our features were better than frequency data alone at 

discriminating true splice sites.  To illustrate this difference, we used the frequency 

distribution matrices of these data to discriminate the true splice sites, achieving an 

11ptAvg precision of 40.1%. On the other hand, when we trained a CMLS classifier 

on the FGA feature set, it achieved an 11ptAvg precision of 80.6% for the same task. 

Exploring the pyrimidine-tract interval further, we selected another feature 

set, which was characterized by composite positional features containing 7 

nucleotides in different positions, A − 6mer1 −20,−1[ ]. We made a list of the features, 

and we identified clusters of similar features, using the k-means clustering algorithm 

with the edit-distance similarity measure. Figure 5.3 shows some examples and 

samples of the features in each group.  

5.2.3 GGG motifs near the 5' slice site 

In order to investigate the characteristics of introns near the 5' splice site, we 

explored the intron downstream of the 5' splice site, using a number of parameters.  In 

each case, GGG and GGGG motifs were common. For example, the D − 3mer3[6,64] 

set included 54 positively ranked occurrences of GGG and four negatively ranked 

occurrences. A plot of scores versus position for GGG and GGGG is provided in 

Figure 5.4A and Figure 5.4B, showing that this motif scores positively in the intron 
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downstream of 5' splice sites but negatively in the flanking exon. GGG likewise 

dominates D − 3mer3[−80,−40]. A number of papers have reported a role for GGG 

and GGGG motifs in splicing [23,33,40]. Recognition of these motifs has been 

attributed to the U1 snRNP [39] and hnRNP H [23].   

5.2.4.The donor splice-site interval 

Next, we investigate the characteristics of the donor splice site. Sample 

clusters, similar to those created for the acceptor site, are shown in Figure 5.5. The 

first two sequence logos, Figure 5.5a and Figure 5.5b, show the frequency plot of the 

positively and negatively weighted groups of features for the set D − 6mer[−10,10]. 

The donor splice-site consensus sequence is MAGGTRAGT (where M is A or C and 

R is A or G). The next two plots, Figure 5.5c and Figure 5.5d, show the frequency 

plot for the same interval based on the true donor and non-donor sequences in the 

training dataset. Once again, the sequence logo of the positively weighted features 

resembles the logo of the nucleotide frequency of the positive data, but important 

differences are apparent, especially at positions on the periphery of the region shown.   

5.3 Exon Splicing Enhancers (ESEs) and Exon Splicing Suppressors (ESSs) 

We also compared our generated features to published work on Exonic 

Splicing Enhancers (ESEs) and Exonic Splicing Silencers (ESSs). ESEs and ESSs are 

short oligonucleotide sequences located in the exonic region that affect splicing. The 

presence of ESE sequences in the exonic region results in the enhancement of the 

recognition of the nearby splice sites. The presence of the ESS sequences, on the 

other hand, suppresses nearby splicing events. These regulatory signals have been 
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studied experimentally (reviewed in [68]) and computational methods have been built 

to find them [9,18,56,21,46,52]. 

We considered the set of distinct hexamers in the flanking exon interval, for 

both acceptor and donor by computing interval features of the region of the sequence 

downstream from the annotated splice site for acceptor and upstream for donor. We 

divided this set of interval features into positively and negatively weighted sets. We 

compared these sets of hexamers with a list of experimentally identified ESE’s and 

ESS’s of mammalian and viral RNA [68]. There are 61 experimentally determined 

ESE sequences listed by Zheng [68], including some that are identical but have 

different sources. The set of hexamers identified from our method produced an 

overlap for 54 ESE sequences comprising 641 nucleotides, out of 738, yielding a 

coverage of 87%. Twenty-eight of these sequences were perfectly identified by the 

hexamers covering all the nucleotides. The ESS sequences were not recognized as 

well as the ESE ones. These results are shown in Table 5.6. 

Rescue-ESE [18], Fas-ESS [56] and ESR [21] are computational methods that 

are specifically tailored to identifying exonic signals that impact a splicing event. 

Rescue-ESE identified candidate exonic splicing enhancers in vertebrate exons based 

on their statistical features. This method identified a set of 238 hexamers, which we 

refer to as RescueESE. Fas-ESS started with a set of experimentally identified exonic 

splicing silencer sequences of length 10. It computationally derived a set of 176 

hexamers which we refer to as FasESS. ESR identified exonic splicing regulator 

sequences based on conservation of synonymous nucleotides. This set contains 285 

hexamers, which were not necessarily divided into enhancer and silencer categories. 
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We refer to this set as AstESR. An additional method (Zhang and Chasin, [65,67]) 

compared bona fide exons with pseudo-exons in order to identify putative ESEs 

(PESEs) and putative ESSs (PESSs). The PESE set contains 2060 octamers and the 

PESS set contains 1018 octamers. There were 1701 unique hexamers in the PESE set, 

which we refer to as ChPESE, and there were 924 unique hexamers in the PESS set, 

which we refer to as ChPESS. 

In order to be able to compare the FGA-generated features with the ESE 

hexamers identified by these methods, we looked at the different FGA sets of features 

that contained six consecutive position-specific nucleotides and were associated with 

the exonic regions. We looked at the feature sets generated for both acceptor and 

donor splice sites. We selected the features that belonged to the sequence interval 80 

nucleotides downstream of annotated acceptor splice sites and 80 nucleotides 

upstream of annotated donor sites (bearing in mind that these intervals can contain 

some contribution from the adjacent intron that lies beyond the exon). Because FGA 

features were position-specific, for each set we computed the interval-feature 

patterns, thus obtaining a list of hexamers found in the exonic regions. We divided the 

features into positively weighted and negatively weighted sets denoted as 

S − kMERn p1, p2[ ]+  and S − kMERn p1, p2[ ]− , where S ∈ A,D{ } stands for acceptor 

and donor features respectively. 

We computed the overlap between each FGA-generated set of hexamers and 

each of the four published sets of exonic regulatory sequences. We present the 

overlap for each pair of sets and the corresponding p-values in Table 5.7 and Table 

5.8. The p-value shows the probability that a randomly selected set of hexamers, 
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containing as many hexamer features as found by the FGA algorithm, has an overlap 

equal to or greater than the value given in the Overlap column in these tables; this 

probability is calculated from the hypergeometric distribution.  In Table 5.7 and Table 

5.8, we have highlighted all the p-values less than 0.01 or greater than 0.99, 

indicating the significant relationship between the feature sets. All of these other sets 

have significant overlaps with our features, but the most significant are with ChPESE 

and ChPESS sets, perhaps because they were generated using methods similar to 

ours. 

In order to address possible positional preferences for ESE elements we 

examined the distribution of short motifs corresponding to ESEs among our features.  

We observed a clear preference for exon sequences, but did not find a strong 

preference for a particular interval or position.  For example, the GAAG tetramer is 

weighted positively throughout the exonic region, as illustrated in Figure 5.6A and 

Figure 5.6B. This signal was found in almost every position in the 80 nucleotide 

region and the weights of the respective features were very similar, so we cannot 

specify a region or interval of preference. The one exception was the immediate 

neighborhood of the donor site (position -4), which reflects splice-site consensus 

rather than exonic splicing enhancer signal.  In contrast, GAAG was a negatively 

weighted feature in the intronic region. 

We next asked whether those hexamers present in our set but not others have 

predictive value. As described above, many experimentally determined exonic 

enhancers (as reviewed by Zheng [68]) overlapped our features.  While this was true 

of the other sets as well, even when those previously described motifs were excluded, 
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our features still accounted for some observations. Interestingly, many of these were 

examples of the A/C-rich motifs: CACACA, GCCCAA, TCAACA, CATTCA and 

CCTACA. Such A/C–rich elements have been described before [14] but have not 

been extensively characterized.  

5.4 Summary 

In Chapter 3, we showed that our FGA algorithm could be used to build 

accurate sequence classifiers. Here we have shown that the features generated by our 

algorithm for the purpose of discriminating between true and false splice sites 

correspond to functional splicing signals. Generated features included known features 

such as the branch-site consensus, acceptor splice-site consensus, pyrimidine tracts, 

coding potential and exon splicing regulator signals. The ability of FGA to accurately 

extract the branch-site signal (Tables 4.2-4.4) is especially noteworthy in view of the 

elusive nature of this signal [31]. Furthermore, the generated features provided 

information about the preferred location and sequence of these features, as illustrated 

by the distribution of branch-site and pyrimidine-tract features. However, we note 

that because FGA does not produce features to capture particular events such as AG 

di-nucleotide exclusion zones [20], it was not able to extract contingent signals such 

as distant branch sites coupled to them.  

In addition, novel aspects of splicing signals could also be inferred from this 

method.  We point to two examples.  One is the co-occurrence of a peak of CCTT 

scores with a group of negative CMLS weights for TTTT at position -11 in the 

acceptor region. We believe that this may be a real, and previously unappreciated, 

aspect of the pyrimidine-tract signal.  This signal is recognized by the large subunit of 
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U2AF (and by PUF60; [24]).  We note that in-vitro selection experiments [49] found 

a marked preference for a CC dinucleotide in the case of U2AF but not PTB or Sxl.  

Thus, although U2AF will bind oligoU, there are other proteins that will do so and 

these are generally splicing repressors. Our observed features were consistent with the 

possibility that positions -12 and -11 may be an especially important region for 

discriminating between positive factors and negative factors that bind to similar 

sequence elements. This subtlety was revealed by our features despite the fact that it 

was not apparent from raw nucleotide-frequency data (Fig. 4.9). In a second example, 

even though our ESE hexamer features showed a statistically significant overlap with 

those obtained by other computational methods (Tables 4.5A and 4.5B), there were 

examples obtained by ours but not other methods, including a number of ESE motifs 

that corresponded to experimentally determined exonic splicing enhancers.  

Finally, this method can be easily applied to other species and to similar 

classification problems for the discovery of species-specific regulatory elements. We 

have made our features available online (www.spliceport.org). 
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5.5 Tables of Chapter 5 
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Table 5.1.  Individual classification performances of FGA-generated feature sets for 

acceptor and donor splice sites.  

FGA-generated feature sets for splice sites and their individual performances at splice-site prediction. 

Each value reported is an average precision (positive predictive value, TP/(TP+FP)) over 11 values of 

recall (sensitivity, TP/(TP+FN)), 0%, 10%, 20% ... and 100%, and is the result of a three-fold cross 

validation. All the features in these features sets extend along the whole splice-site neighborhood [-82, 

80] that we study.  

A-3mer0 86.46 

A-3mer1 84.16 

A-3mer2 77.01 

A-3mer3 69.42 

A-3mer4 63.30 

A-3mer5 56.84 

A-3mer6 49.50 

A-3mer7 41.22  

A-4mer0 84.92 

A-4mer1 77.28 

A-4mer2 69.10 

A-4mer3 63.11 

A-4mer4 56.66 

A-4mer5 49.23 

A-4mer6 41.02  

A-5mer0 80.60 

A-5mer1 69.20 

A-5mer2 62.74 

A-5mer3 56.25 

A-5mer4 49.08 

A-5mer5 40.51  

A-6mer0 68.64 

A-6mer1 61.72 

A-6mer2 54.65 

A-6mer3 47.19 

A-6mer4 39.62  

  

 

D-3mer0 86.79 

D-3mer1 83.45 

D-3mer2 80.31 

D-3mer3 70.08 

D-3mer4 56.06 

D-3mer5 42.97 
 

D-4mer0 85.21 

D-4mer1 81.14 

D-4mer2 70.47 

D-4mer3 55.38 

D-4mer4 44.77 
 

D-5mer0 83.64 

D-5mer1 77.20 

D-5mer2 57.42 

D-5mer3 38.09 
 

D-6mer0 75.03 

D-6mer1 66.68 

D-6mer2 43.31 
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Table 5.2. Top scoring features in branch site interval 

The 20 top-scoring A−3mer3[−40,−20] features (i.e. composite features that start in the 

interval between -40 and -25 derived using FGA from a seed of trimers) are all related to either 

the branch-site consensus or the pyrimidine tract. 

    
 FGA A-3mer3[-40,-20] features Weight  
    
 ------------ctgacc------- 0.1800  
 -----------ctgacc-------- 0.1678  
 ----------------ctgacc--- 0.1488  
 ----------ctgacc--------- 0.1453  
 -------------cctgac------ 0.1417  
 ---------------cctgac---- 0.1382  
 ----------------tgaccc--- 0.1371  
 --------ctgacc----------- 0.1370  
 -----------------cctgac-- 0.1368  
 ------ctgacc------------- 0.1359  
 --------------ctgacc----- 0.1358  
 -------------------tctctc 0.1303  
 ------------------ccttct- 0.1283  
 -------------------cttttc 0.1281  
 ------------------cttttt- 0.1281  
 -------------ctcacc------ 0.1254  
 -----------ctcacc-------- 0.1219  
 ---------------ctgact---- 0.1206  
 -----------cctgac-------- 0.1202  
 -------------------tccctc 0.1200  
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Table 5.3. Identified interval-feature patterns in the branch-point interval 

The first column shows the interval-feature patterns in the branch-point interval [-40,-20]. The second 

column shows the number of individual occurrences for each pattern in different positions within the 

specified interval. The average assigned weight is given in the third column. For comparison we 

include the total number of occurrences for this pattern in the complete neighbourhood ([-82, 80]) 

(forth column), and in the last column we show the narrowed range interval that comprises the total 

occurrences for each pattern. 

 

A-3mer3 
[-40,-20]* 

Interval 
occurrences 

Average 
Weight 

Total 
occurrences 

Total 
Range 

     
--cctgac-- 10 0.096 13 [-34,-16] 
---ctgacc- 9 0.131 12 [-33,-16] 
---ctgact- 8 0.082 11 [-32,-16] 
-ccctga--- 7 0.083 7 [-32,-19] 
--gctgac-- 7 0.083 8 [-34,-18] 
--tctgac-- 7 0.083 8 [-32,-18] 
----tgaccc 6 0.089 9 [-32,-16] 
--actgac-- 5 0.059 6 [-33,-13] 
---ctgatg- 5 0.068 7 [-36, 18] 

     
-cccctc--- 7 0.065 24 [-35, 0] 
---cctctc- 5 0.049 22 [-36, 0] 

     
--gggagg-- 6 -0.041 23 [-34, 14] 
--aaaaaa-- 5 -0.028 84 [-50, 80] 
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Table 5.4. Individual position-specific GCTGAC features 

A summary of position-specific GCTGAC features and their respective weight assigned by the 

CMLS classifier from the A-3mer3[-40,-20]  feature set. 

 

Features in exact position wrt AG 
consensus 

Weight 

  
-----------gctgac---------------------AG 0.114 
----------------gctgac----------------AG 0.114 
---------------gctgac-----------------AG 0.105 
----------gctgac----------------------AG 0.082 
------------gctgac--------------------AG 0.077 
------gctgac--------------------------AG 0.074 
---------gctgac-----------------------AG 0.068 
-------------gctgac-------------------AG 0.062 
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Table 5.5. Weight distribution comparison for tetramers CTTT, TCTT, TTCT, and 

TTTC. 

These features are a subset of [ ]5,6013 −−− merA . Note that the distributions of scores correspond 

to the well-known pyrimidine tract with the additional information that C is preferred to T at positions -

15 through -11. 

 

-24 tttc--------------- 0.019 ttct--------------- 0.041 tctt--------------- 0.061 cttt--------------- 0.031 
-23 -tttc-------------- 0.077 -ttct-------------- 0.035 -tctt-------------- 0.041 -cttt-------------- 0.045 
-22 --tttc------------- 0.060 --ttct------------- 0.026 --tctt------------- 0.079 --cttt------------- 0.073 
-21 ---tttc------------ 0.071 ---ttct------------ 0.041 ---tctt------------ 0.050 ---cttt------------ 0.095 
-20 ----tttc----------- 0.092 ----ttct----------- 0.093 ----tctt----------- 0.103 ----cttt----------- 0.122 
-19 -----tttc---------- 0.088 -----ttct---------- 0.054 -----tctt---------- 0.085 -----cttt---------- 0.093 
-18 ------tttc--------- 0.090 ------ttct--------- 0.072 ------tctt--------- 0.125 ------cttt--------- 0.099 
-17 -------tttc-------- 0.083 -------ttct-------- 0.109 -------tctt-------- 0.114 -------cttt-------- 0.111 
-16 --------tttc------- 0.104 --------ttct------- 0.125 --------tctt------- 0.085 --------cttt------- 0.119 
-15 ---------tttc------ 0.159 ---------ttct------ 0.110 ---------tctt------ 0.141 ---------cttt------ 0.152 
-14 ----------tttc----- 0.124 ----------ttct----- 0.117 ----------tctt----- 0.119 ----------cttt----- 0.074 
-13 -----------tttc---- 0.121 -----------ttct---- 0.154 -----------tctt---- 0.149 -----------cttt---- 0.008 
-12 ------------tttc--- 0.055 ------------ttct--- 0.120 ------------tctt--- 0.157 ------------cttt--- 0.127 
-11 -------------tttc-- 0.106 -------------ttct-- 0.062 -------------tctt-- 0.140 -------------cttt-- 0.085 
-10 --------------tttc- 0.163 --------------ttct- 0.072 --------------tctt- 0.092 --------------cttt- 0.169 
-9 ---------------tttc 0.122 ---------------ttct 0.078 ---------------tctt 0.077 ---------------cttt 0.076 
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Table 5.6 

FGA-generated feature sets           Nr of features 

D+: donor 6mer positively weighted       701 

D-: donor 6mer negatively weighted       271 

A+: Acceptor 6mer positively weighted    263 

A-: Acceptor 6mer negatively weighted    202 

Notation: 

in blue: donor features, in red: acceptor features overlap that do not appear in donor features 

in caps: positive features, in black: no overlap nucleotides, blue/red low case: negatively weighted 

  Overlap 
 ESE Length D+ D- A+ A- Total 
GACGACGAG 9 9 0 0 0 9 
GATGAAGAG 9 9 0 8 0 9 
AAGAAGAAG 9 9 0 9 0 9 
GAAGGA 6 6 0 0 0 6 
GAAGAA 6 6 0 6 0 6 
Gctgagt 7 0 6 0 6 6 
gAGGAAGAGAAAAGGGCAGCAGAGGAGAGgca 32 28 6 12 6 31 
GAAGAAGAAG 10 10 0 10 0 10 
GCAGCACCTGGc 12 11 0 12 0 12 
gAGGAAG 7 6 0 0 0 6 
GGAAGAAGATAAAGac 16 14 0 9 0 14 
CCAGAAGGAac 11 9 0 0 0 9 
gAGGAAGgtg 10 6 0 0 0 6 
AGAAAGAAGAAA 12 12 0 8 0 12 
AAGAAGAGg 9 8 0 7 0 8 
AAGAAGCgaa 10 7 0 6 0 7 
AAGAAGAAAAAAGAAGAAA 19 19 0 18 0 19 
gGTGACCTGCTGCAG 15 14 6 15 6 15 
CTGCGGGACGATGTGCAGAG 20 20 0 6 0 20 
GAAGAAGA 8 8 0 8 0 8 
GAAGAAGAC 9 9 0 8 0 9 
AAGAAGAAG 9 9 0 9 0 9 
aagAGGACCCGCAGGC 16 13 0 8 0 13 
AGGACAA 7 7 0 0 0 7 
TGGACCCAGAGgt 13 11 6 7 0 11 
GAAGAGGAAG 10 10 0 0 0 10 
GAAGAA 6 6 0 6 0 6 
Ggaagg 6 0 0 0 0 0 
GAAGAAGCGGAGACAGCGACGAAGA 25 25 0 13 0 25 
GAAGAAGAA 9 9 0 9 0 9 
GGAGAAAGGAGAGa 14 13 0 0 0 13 
GAGATGTGATGAAGGAGATGGgagg 25 21 9 13 7 25 
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Table 5.6 cont.       

ATCCAGGAGGGGAACAGa 18 17 0 9 0 17 
GAAGGACAGCA 11 11 0 0 0 11 
AAGAAGGAa 9 8 0 6 0 8 
AGAGATCGAGGAGGAtTTGAGAg...(22nt)...GAAGAAAGA 32 30 6 15 0 31 
gggGGGAAGCACACAGAGCCCAACGAGACCAc 32 28 6 21 6 28 
CAGACAa 7 6 0 0 0 6 
AAGAAGGAAGg 11 10 0 6 0 10 
GAAGAAGAA 9 9 0 9 0 9 
agAGGAAGGCGA 12 10 0 0 0 10 
AGGAGCAGgGGACGAAG 17 16 0 6 0 16 
aAGAGAAG 8 7 0 6 0 7 
GAGGAGGAG 9 9 0 9 0 9 
GAGGAGGAG 9 9 0 9 0 9 
GAGGAGGAG 9 9 0 9 0 9 
GAAGAAGAG 9 9 0 8 0 9 
GAAGAAGAG 9 9 0 8 0 9 
ACCACCACC 9 9 0 7 0 9 
ACTTCAACAAGtt 13 11 0 6 0 11 
CAACCACAa 9 8 0 0 6 8 
cacCATTCACGACACC 16 13 6 9 0 16 
CAAGCATCAGCAAAAGCCAAac 22 20 0 6 0 20 
Tgtcgattcca 11 0 0 0 0 0 
Tgccgtt 7 0 0 0 0 0 
Tgctgtt 7 0 0 0 0 0 
tCCTACATCCT 11 10 0 0 0 10 
Tgtcgattcca 11 0 0 0 0 0 
Tgccgtt 7 0 0 0 0 0 
Tgctgtt 7 0 0 0 0 0 
tCCTACATCCT 11 10 0 0 0 10 
Total: 738 622 51 356 37 641 
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Table 5.6 cont. 

  Overlap 
 ESS Length D+ D- A+ A- Total 
Tttgaa 6 0 0 0 0 0 
Tcttctt 7 0 6 0 0 6 
Ggctccccc 9 0 0 0 0 0 
AGAGCAGg 8 7 0 0 0 7 
Tggt 4 0 0 0 0 0 

ctagaTATGGATCC 14 7 0 6 0 9 

GTGACCCCttacctaCTCACACCACtgcATTCTCacccgc 40 24 17 6 17 32 

AAGCACctttg 11 6 6 6 0 8 

ccaAGTCAAaatttac 16 6 7 0 8 11 
Tag 4 0 0 0 0 0 
Tctttaggttccctttcaattct 23 0 12 0 0 12 

CAAGGCc 7 6 0 0 0 6 
Catgg 5 0 0 0 0 0 
Ctagactaga 10 0 0 0 0 0 
Ttgggt 6 0 0 0 0 0 
Ttag 4 0 0 0 0 0 
Pytag 5 0 0 0 0 0 

ccaatagtagtagcgGGAGAAtg 23 6 16 12 10 18 

ctagtaaacttattcttacgtctttcctgtgttgcCCTCCAGCTtttatctctGAG
ATGGtcttctttctaga 73 16 40 0 24 44 
Agttcca 7 0 0 0 0 0 

ttaAACACAAGtt 13 8 0 0 0 8 
Tagaca 6 0 0 0 0 0 

Taagtgttctgagct 15 0 6 0 0 6 

tgtggGGGACC 11 6 0 0 0 6 

Total 327 92 110 30 59 173 
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Table 5.7. FGA-generated feature set show significant overlap with ESE regulator 

signal sets. 

The number of shared features between the FGA generated sets of hexamers and the AstESR, 

RescueESE and PESE hexamer sets and the p-value stating the probability of having this overlap or a 

greater overlap by chance. We highlight the highly statistically significant probabilities. The set 

D − 3mer3 −80,−1[ ] did not contain position specific hexamers and the set D − 4mer2 −80,−1[ ] 

contained only 3 position specific hexamers, two of which overlapped with RescueESE set.  

 

     
AstESR (285) RescueESE (238) ChPESE (1701) FGAset              size Overlap, P-value Overlap, P-value Overlap, P-value 

        
A-3mer3[1,80] 313 34 0.00514 24 0.09415 175 2.09e-06 
A-3mer3[1,80]+ 177 28 0.00003 24 0.00007 130 1.42e-18 
A-3mer3[1,80]− 136 6 0.92089 0 * 43 0.9939 
        
A-4mer2[1,80] 317 35 0.00347 26 0.04319 177 1.96e-06 
A-4mer2[1,80]+ 179 29 0.00001 25 0.00003 129 2.74e-17 
A-4mer2[1,80]− 138 6 0.92714 1 0.99999 46 0.9819 
        
A-5mer1[1,80] 342 35 0.01147 27 0.05920 278 1.06e-08 
A-5mer1[1,80]+ 187 29 0.00003 25 0.00006 134 1.40e-17 
A-5mer1[1,80]− 155 6 0.96496 2 0.99915 59 0.8352 
        
A-6mer[1,80] 465 54 0.00006 27 0.53401 278 1.06e-08 
A-6mer[1,80]+ 263 38 0.00001 25 0.00899 165 6.61e-13 
A-6mer[1,80]− 202 16 0.32994 2 0.99984 76 0.8907 
        
D-5mer1[-80,-1] 64 10 0.01195 32 1.32e-23 60 5.59e-19 
D-5mer1[-80,-1]+ 56 9 0.01403 30 2.47e-23 52 4.27e-16 
        
D-6mer[-80,-1] 1052 126 1.44e-12 112 1.81e-13 613 3.73e-37 
D-6mer[-80,-1]+ 701 93 2.28e-11 109 6.16e-28 482 1.02e-57 
D-6mer[-80,-1]− 271 20 0.42504 1 0.99999 90 0.9985 
        

* p-value is very close to 1. 
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Table 5.8. FGA-generated feature set overlap with ESS regulator signal sets. 

The number of shared features between the FGA generated sets of hexamers and the FasESS 

and PESS hexamer sets and the p-value stating the probability of having this overlap or a 

greater overlap by chance. We highlight the highly statistically significant probabilities. 

 

FasESS (176) ChPESS(924) FGAset                 size Overlap, P-value Overlap, P-value 
      

A-3mer3[1,80] 313 10 0.877 73 0.5407 
A-3mer3[1,80]+ 177 1 0.999 8 * 
A-3mer3[1,80]− 136 9 0.129 59 3.19e-08 
      
A-4mer2[1,80] 317 10 0.887 72 0.6423 
A-4mer2[1,80]+ 179 1 0.999 9 * 
A-4mer2[1,80]− 138 9 0.137 57 4.22e-07 
      
A-5mer1[1,80] 342 12 0.812 70 0.9300 
A-5mer1[1,80]+ 187 3 0.999 9 * 
A-5mer1[1,80]− 155 9 0.221 54 0.000257 
      
A-6mer[1,80] 465 17 0.799 91 0.9993 
A-6mer[1,80]+ 263 7 0.943 19 * 
A-6mer[1,80]− 202 10 0.368 64 0.001374 
      
D-5mer1[-80,-1] 64 1 0.941 4 0.9999 
D-5mer1[-80,-1]+ 56 0 * 4 0.9995 
      
D-6mer[-80,-1] 1052 26 0.999 183 0.9999 
D-6mer[-80,-1]+ 701 6 0.999 63 * 
D-6mer[-80,-1]− 271 19 0.022 106 1.54e-10 

      
* p-value is very close to 1. 
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5.6 Figures of Chapter 5 
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Figure 5.1. Weight distribution comparison for pairs of tetramers CTGA, CTAA 

and TTTT, CCTT.  

The distribution of CMLS weights for four tetramers from [ ]5,6013 −−− merA  is shown 

graphically.  Note that the distributions of scores for CTGA and CTAA are similar and sharply focused 

around the peak that would place the branch A at position -24.  Note that the distributions of TTTT and 

CCTT corresponds to the well-known pyrimidine tract with the additional information that C is 

preferred  to T at positions -15 through -11, where a peak of scores for CCTT coincides with a group 

of negative values for TTTT. There are no occurrences of these four hexamers in this feature set 

upstream of the region shown. 
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Figure 5.2. The acceptor splice-site (pyrimidine-tract) interval.  

Frequency plot sequence logos for the positively and negatively weighted features in the pyrimidine-

tract interval, [ ]1,205 −−− merA , (Figure 5.2a and Figure 5.2b), compared with frequency 

distribution of the training acceptor and non-acceptor sequences in the same interval (Figure 5.2c and 

Figure 5.2d). The positive features frequency plot corresponds to the acceptor splice-site consensus, 

which is also illustrated with the true acceptor sequences frequency plot. The negative features 

frequency plot reveals an AG-rich element. 
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Figure 5.3. Clusters of negative features of the pyrimidine-tract interval.  

Examples of the individual features for two clusters of features and the assigned CMLS weight for 

each feature from the feature set A − 6mer1 −20,−1[ ]. The presence of the AG dinucleotide 

upstream the annotated 3' splice site, in the pyrimidine-tract interval is not preferred. All these features 

have negative weights. 
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Figure 5.4. G-rich features in the donor-site interval.  

Weighted histogram for all the GGG and GGGG features in the donor-site interval selected from the 

feature sets D − 3mer3 −30,45[ ] and D − 4mer2 −30,45[ ]. These features are not preferred 

upstream the donor site, but they are encouraged on the downstream region. 

A 

B 
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Figure 5.5. The donor splice-site interval. 

Frequency plot sequence logos for the positively and negatively weighted features in the donor-site 

interval, D − 6mer −10,10[ ] (parts a and b), compared with frequency distribution of the training 

donor and non-donor sequences in the same interval (parts c and d). The positively weighted features 

capture the donor-site consensus ([A|C]AGGT[A|G]AGT. 
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Figure 5.6. The weight distribution of the ESE motif GAAG in the donor splice-site 

neighborhood. 

The x-axis shows the splice-site neighborhood interval. The consensus dinucleotides AG and GT 

locations are marked with the red bars (positions -2,-1, in A and  positions 1, 2 in B). For every 
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occurrence of the feature GAAG in the sets A − 4mer −80,80[ ] (Figure 5.6A) 

and D − 4mer −80,80[ ](Figure 5.6B), we draw a bar corresponding in height to its CMLS assigned 

weight. This feature has a negative weight when it is positioned in the intronic region, but a positive 

weight in the exonic region. We notice its exceptionally high weight at position -4 in Figure 5.6B. One 

possible reason may be the reflection of the donor-site consensus signal. 
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Chapter 6:  Generating RNA secondary-structure 

features  

RNA molecules are distinguished by their sequence composition and by their 

three-dimensional shape, called the secondary structure. The secondary structure of a 

pre-mRNA sequence may have a strong influence on gene splicing. In Chapter 3, we 

showed that a splice-site model employing sequence features built by using our 

feature-generation algorithm was very effective in predicting splice sites. The 

generated sequence features also contained biologically relevant features, as 

described in Chapter 5. In this Chapter, we extend the feature-generation algorithm to 

construct secondary-structure features. These features capture the nucleotide-pairing 

tendency in the splice-site neighborhood. We extend the splice-site model to include 

both pre-mRNA sequence and structure characteristics. The new model outperforms 

the sequence-based features model. The identified secondary-structure features 

capture biologically relevant signals, such as splicing silencers. We also find that 

these signals are concentrated in specific regions around the splice-site neighborhood 

and we detail their characteristics. 

 

6.1 Secondary structure of nucleic-acid sequences  

The secondary structure of RNA molecules is defined by the pairings of the 

nucleotides along the sequence. RNA secondary-structure characteristics are 

important in biology because RNA sequences fold into structures that are critical to 
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their biological functions. Secondary-structure properties may also help identify 

subsequences of nucleotides that interact with other molecules or complexes.  

Human genes — and the genes of every eukaryotic organism — are composed 

of contiguous coding regions in the DNA sequence. Non-coding regions, introns, 

separate the coding regions, exons. Messenger RNA copies the portion of the DNA 

that contains a gene (pre-mRNA), and during the splicing process, the non-coding 

regions are excised from the pre-mRNA sequence. All the coding pieces, then, are 

ligated together into the final gene product (mRNA), ready to be translated into 

protein. Splicing takes place in several stages. There are a number of proteins that can 

recognize splice-site locations and bind to the sequence, facilitating the intron 

excision.  

Splice-site prediction is the task of recognizing the actual boundaries of the 

protein-coding regions in the DNA sequence. Accurate splice-site prediction is a 

critical component of gene prediction. Gene prediction from DNA sequence data is an 

important goal in bioinformatics, not only to provide fast and reliable annotation of 

the large quantity of sequences data, but also to provide valuable biological insights. 

In Chapter 3, we developed a splice-site prediction model achieving significant 

accuracy improvements over existing methods. In Chapter 4 and Chapter 5, we 

showed that the features generated using FGA correspond to biologically significant 

functional elements.  

So far, in our splice-site prediction model, we have considered only sequence-

based features. However, the splicing process is not a mere linear process. In fact, the 

correct identification of the splicing borders actually involves a large number of 
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proteins. The affinity of sequence nucleotides to form pairing bonds may guide these 

proteins to their binding sites, thus having an important effect in the splicing process. 

To investigate this, we use a very effective RNA secondary-structure prediction 

algorithm [43] to fold the training sequences into their secondary-structure form. 

Using the secondary-structure sequences, we extend our feature generation algorithm 

to generate structure-based features.  

The combined splice-site model of both sequence- and structure-based 

features improves splice-site prediction. The secondary-structure features also capture 

important biological properties.  

The possibility of extracting useful information from RNA secondary 

structure for splice-site prediction was proposed by Patterson et al. in [44]. Their 

splice-site prediction model combined a sequence-based splice-site predictor score 

and a few structure-based metrics, such as the optimal folding-energy score, the max-

helix score, and a second-order Markov model to capture the pairing profile of a 

folded sequence. They suggested that there are structural cues that should be 

exploited by gene-finding algorithms.  

Our approach differs from [44], in that we searched the space of possible 

position-specific nucleotide pairings in order to find specific features that improved 

splice-site prediction. We also offer biological interpretation for the identified 

features. Our recent work demonstrated that our sequence-based splice-site predictor 

achieved significantly better results than the WAM model, which was used as the 

sequence-based predictor in their work. 
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This chapter is organized as follows. Initially, we describe our data and their 

secondary-structure form.  Next, we describe how we expand the feature-generation 

algorithm to generate structure-based features. Here, we also give a brief summary of 

the definitions of the sequence-based features used in the splice-site prediction model. 

Next, we provide a detailed description of our experiments, using the secondary-

structure features. Finally, we discuss our findings and the possible biological 

relevance of the new features, and we conclude with several future directions.  

6.2 Data characteristics 

The dataset used for feature generation was the same collection of 162-

nucleotide-long training sequences centered at the splice site, as described in Chapter 

3. Both upstream and downstream regions were 80 nucleotides long and the sequence 

alphabet was {A,C,G,T}. The acceptor-site training data contained 20,996 positive 

instances and 200,000 negative instances, and the donor-site training data contained 

20,761 true positive instances and 200,000 negative instances. 

We used these sequences to generate sequence-based features, as described in 

Chapter 3. For secondary structure characteristics, we need the three-dimensional 

shape. We used the RNA secondary-structure prediction algorithm, Afold [43], to 

fold all the training sequences into their three-dimensional form. Alexey Ogurtsov, 

the author of Afold, modified the output of Afold such that, for each input sequence, 

it produced as output the additional information of the nucleotides which were paired 

in the secondary structure. Those constituted the secondary-structure sequences, and 

an example is shown in Figure 6.1. In this figure, we see two sequences termed S1 

and S2. These sequences have exactly 162 nucleotides, some of which are shown in 
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uppercase and some in lowercase characters. The nucleotides which are shown in 

uppercase are paired in the secondary structure. Given this representation, we can 

think of other features to consider, such as position-specific k-mers that may 

participate in pairing bonds in the three-dimensional form of the given sequence.  

This method has several disadvantages. First, the secondary-structure 

information for each sequence is computed by a computational method (Afold). As a 

result, what we are taking as ground truth, may not be correct, because we have not, 

cannot, validate these folding predictions. It is, however, claimed by the authors that 

Afold is very accurate and efficient in producing the secondary structure of pre-

mRNA sequences. Second, we are considering only the first best result of Afold for 

each sequence. A more prudent approach might be to consider the top ten structure 

predictions of Afold for each sequence. We preferred to choose one prediction for 

each sequence, since in this way we could compute features for our training dataset in 

an absolute manner, by distinguishing among features that better separated the two 

classes of sequences. If we considered many possibilities, then we would have to 

attach a probability value for each feature and this is out of the scope of this thesis. 

However, it would be an interesting future direction.     

So, given a single secondary-structure folding per sequence, we wanted to 

determine whether splicing was affected by the pairing tendency of the nucleotides in 

the close neighborhood of the splice site. To pursue that question, we plotted the 

fraction of positive sequences having a paired k-nucleotide subsequence (k-mer) for 

each position of its length and compared it with that of the negative sequences. Those 

plots are shown in Figure 6. and Figure 6.. We were surprised to see that for acceptor 
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splice-site sequences, the positive sequences showed a higher tendency to have paired 

k-mer sequences in the upstream region, with a clear peak of pairing tendency just 

before the actual splice-site position. The donor splice-site sequences, on the other 

hand, showed a tendency toward reduced k-mer pairings in the upstream region and a 

higher tendency for pairing in the downstream region. 

These observations are of special interest because they are consistent with the 

actual splicing scenario that takes place in living cells. These findings encouraged us 

to investigate the possible impact of secondary-structure features on splice-site 

prediction. 

6.3 Feature Generation for Splice-Site Prediction 

This section summarizes our feature-generation algorithm (FGA) and 

describes the new feature-construction procedures for the generation of secondary-

structure features. Recall that FGA uses domain knowledge and data properties to 

construct and select useful features for the prediction task. Starting with an initial 

feature set, FGA iteratively calls a feature-construction method to expand the current 

feature set and a feature-selection method to reduce the feature set size to manageable 

levels. After a specified number of iterations, the algorithm produces an output 

feature set. Those features are, in turn, used by a classification algorithm for the 

classification task. We consistently used the classifier CMLS in our experiments 

because of its superior performance in comparison with other classification 

algorithms, such as: AdaBoost, Naïve Bayes, logistic regression, and support vector 

machines.  
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6.3.1 Feature Construction for Splice-site prediction 

The first stage of the feature generation algorithm generates feature sets useful 

for splice-site prediction. Initially, we define the basic elements to construct features. 

In the case of pre-mRNA sequences, we use the nucleotide alphabet and sequence 

length to construct sequence-based features. 

Feature construction for sequences: As described in detail in Chapter 3, we 

considered several feature types that capture compositional and positional properties 

of sequences: general k-mer, upstream/downstream k-mer, position-specific k-mer, 

and conjunctive positional features. We described these features and their individual 

construction methods in Chapter 3. Here, we extend our algorithm to capture the 

secondary-structure characteristics of the splice-site sequence.  

Feature construction for secondary-structure sequences: We define a 

novel feature type that captures the structure characteristics of the RNA sequences, 

the position-specific paired k-mers. A position-specific paired k-mer is a string of k 

nucleotides that, in the output sequence of the RNA secondary-structure algorithm, is 

predicted to form pairing bonds with other nucleotides in the sequence. To identify 

possible binding motifs for the proteins that affect splicing, we use our feature-

generation algorithm to identify useful position-specific paired k-mer features.   

The position-specific paired k-mers are Boolean features; for each sequence 

we record whether they are present or not. Given a sequence of length n, for each 

value of k, there are n − k +1( )× 4 k  position-specific paired k-mers.   
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Construction Method: This construction method starts with an initial set of 

position-specific paired k-mer features and expands them to a set of position-specific 

paired (k+1)-mers by appending letters of the alphabet to each feature. As an 

example, assume Finitial is {A1A2C3C4}. This set contains one feature, the 4-mer 

“AACC” starting at the first sequence position. Each nucleotide of this feature is 

showed in capital letters, symbolizing the pairing in the secondary structure. Now, we 

can extend it to the next level set of position-specific paired 5-mers, Fconstructed={ 

A1A2C3C4A5, A1A2C3C4C5, A1A2C3C4G5, A1A2C3C4T5}. The constructed feature set 

contains four 5-mers such that every nucleotide is paired in the secondary structure 

description. In that manner, we incrementally construct higher levels. 

6.3.2 Feature Selection for Constructed Features 

Feature selection: To reduce the size of our constructed feature sets, we 

considered different feature-selection methods: IG, CHI, MI, and KL. The definitions 

of these measures were described in Chapter 3.  

Feature generation: For each initial feature set, we iterate between a feature-

construction method (to obtain more complex features) and a feature-selection 

method (to reduce the dimensionality of the constructed set). We perform this process 

for a predefined number of iterations. In this manner, we generate different feature 

sets, each useful for splice-site prediction.  

Recursive Feature Elimination: After we generate the individual feature sets 

separately, we collect all the features into a mixed set. Starting with the mixed set, we 

learn a prediction model using the CMLS classifier. CMLS produces a decision 

boundary that discriminates between the two different categories. Each feature is 
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assigned a weight during learning. These weights define the decision boundary and 

can be used for ranking. Features with zero weights, or weights very close to zero, are 

assumed to not contribute to the classification task, and are therefore eliminated. In 

this manner, we learn a new model and, after each iteration, eliminate a fixed number 

of features. 

6.3.3 Splice-Site Prediction Model 

Our generated features are of two major types: features capturing sequence 

properties and features capturing structure properties of the splice-site neighborhood. 

Using this natural separation, we use a classifier to learn sequence- and structure-

features splice-site prediction models. Then, we define a new model for splice-site 

prediction — a linear combination of the structure-features model and the sequence-

features model:  

Scoreseq = c0 + c1×Scorestructure + c2×Scoresequence 

 

The structure-model and sequence-model of splice-site prediction are used to score a 

held-out training-sequences set. Then, we use the classifier to learn the coefficients 

for the linear combination of the models. In the next section, we give a detailed 

analysis of all the mentioned methods and their results for the problem of splice-site 

prediction. 

6.4 Experiments and Discussion  

In Chapter 3 we discussed the feature generation procedure for the sequence-

based features, which we divided into compositional, positional and composite 
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positional features. Here, we discuss the feature generation procedure for features 

capturing information about the secondary structure of the splice-site neighborhood. 

The following experiments discuss the splice-site prediction effect of the nucleotides 

showing high pairing potential, the position-specific paired k-mer features. All the 

reported 11ptAvg precision values are the results of three-fold cross validations.  

6.4.1 Position-specific paired k-mers 

Similar to our position-specific sequence-based k-mer features, we 

constructed all the position-specific k-mers for k values ranging from 1 to 5. 

Analogous to the feature generation of sequence-based position-specific k-mer 

features, described in section 3.7.2, using the FGA in the uncoupled mode, we first 

note the splice-site prediction accuracy when using the complete sets of position-

specific paired k-mer features, for k values from 2 to 5.  Then, we scored the features, 

using the feature-selection methods, picked the top scoring 1000 features for each 

selection method, and used the top 1000 features to predict splice sites for both donor 

and acceptor sites. The results are shown in Table 6. 1. 

Similar to sequence-based position-specific k-mer features, we find that both 

IG and Chi feature selection methods, select position-specific paired features that 

result in comparable accuracy results. We collected 4000 features from position-

specific paired k-mer sets for k from 2 to 5. To this set, we added position-specific 

paired 1-mer features (648 for a 162 nucleotide-long sequence). We applied recursive 

feature elimination on those sets of features, as shown in Table 6. 2. Compared with 

individual results of our sequence-based features, the 11ptAvg precision performance 

of the position-specific paired k-mers was very promising. It clearly showed that such 
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a feature carried an important amount of information, which could possibly contribute 

to further understanding of the splicing mechanism.  

6.4.2 Splice-site prediction with sequence- and structure-based features 

In order to compute the effects of the generated structure-based features on 

splice-site prediction, we combined them with the sequence-based features generated 

in Chapter 3, in a mixed features model. Starting with Table 6.2, we selected a set of 

features from the position-specific paired k-mers to combine with our previously 

identified acceptor and donor sequence-features sets. We decided to include 3100 

structure-based features. The mixed model for donor-site prediction contained a 

collection of 1675 sequence features and 3100 structure features. These models 

produced the following 11ptAvg precision results: 89.74% for acceptor splice sites 

and 89.46% for donor splice sites. Although producing a low rate of false positives 

and ranking well, these initial results did not produce better predictions, compared 

with our sequence-based feature model (see Chapter 3 for a comprehensive 

description of those results).  

To understand the importance of the secondary-structure features for splice-

site prediction, we conducted the following experiments. Starting with the whole set 

of sequence and structure features, we applied recursive feature elimination, 

eliminating 200 features for each iteration. Table 6. 3 shows a summary of the splice-

site prediction results for both acceptor and donor datasets in our experiments. For 

each iteration, we list the number of features in the mixed-features model, as well as 

the 11ptAVG precision of the three-fold cross validation for splice-site prediction 

(acceptor and donor). For each case, we also listed the number of features that 
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described sequence composition and structure characteristics for each mixed feature 

set. Then, we picked out the sequence-based features and the structure-based features 

separately and trained the CMLS classifier. We built prediction models for each 

separate sequence- and structure-feature set and Table 6.3 lists also these individual 

11ptAvg precisions.  

From the results of these experiments, as shown in Table 6. 3, we made 

several observations. First, the sequence composition was of primary importance in 

defining a splice site. The 11ptAvg results of models built only on sequence features 

consistently showed high values. Second, specific nucleotide pairings of particular 

locations could be the key to the discovery of important binding sites. The 11ptAvg 

results of models built only on structure features were several times higher than 

random (10%). Third, secondary-structure information improves splice-site 

prediction, in addition to sequence-based features. For example, as shown in Table 6. 

3, when the number of features was reduced to 3000 for the acceptor site problem, the 

addition of paired position-specific features increased the 11ptAvg from 89.69%, 

which was the result of sequence-based features, to 90.36%. This result was 

statistically significant with an alpha of 0.005. 

6.4.3 New prediction model with sequence- and structure-based 

information 

The results in Table 6. 3 suggests that adding structure-based features with the 

large mix of features does not produce a visible difference in splice-site prediction 

results. Instead, in order to profit from the information encoded in the newly 

generated features, we used the combined model. The combined model initially learns 
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two different splice-site models: one based on the structure features and one based on 

the sequence features. To illustrate this, we selected the feature set of size 3000 in 

Table 5.3. This set contained 1679 position-specific paired k-mers (structure features) 

and 1321 general, upstream, downstream, and position-specific k-mers and 

conjunctive positional features (sequence features). The 11ptAvg result for splice-site 

prediction of the structure-based features model was 60.42% and the 11ptAvg of the 

sequence-based features model was 90.19%.  

We learned the new splice-site prediction model as a linear combination of the 

structure-features model and the sequence-features model. We trained the classifier 

and learned the coefficients that defined the linear combination model. The linear 

combination model produced an 11ptAvg precision of 91.46% for donor splice-site 

prediction. This result was an improvement over the 90.36% obtained when using the 

whole set of 3000 donor features (mixed), and over the 90.19% obtained when using 

only the sequence features, as shown in Table 5.3. This improvement is statistically 

significant for an alpha of 0.005. 

6.5 Biological significance 

As discussed in Chapter 4, the biological signals that are present in the splice-

site neighborhood fall into these categories. Exonic splicing enhancers are signals that 

activate the nearby splicing sites. Exonic splicing silencers act as suppressors to the 

splicing activity. Both enhancing and silencing effects are accomplished via the 

different types of proteins that bind to the ESE and ESS signals. Fairbrother et al. [18] 

identified 238 candidate ESE 6-mers, the RescueESE set. Goren et al. [21] identified 
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a set of 285 candidate splicing regulator 6-mers, the ESR set. And Wang et al. [56] 

derived a set of 176 candidate ESS 6-mers, the FasESS set.  

Because the FGA-generated secondary-structure features captured the pairing 

information of different nucleotides and their preferred locations, we hypothesize that 

these specific paired features may have discovered ESE and ESS sites in the splice-

site neighborhood. To test that, we compared them with the published ESE and ESS 

sets. To compare our position-specific paired 5-mers with the exonic splicing 

regulator sets, we derived all the 5-mers contained in those 6-mers. The RescueESE 

set contained 208, the ESR set contained 297, and the FasESS set contained 142 

unique 5-mers. We computed the overlap between our features and the 5-mers in the 

published regulator sets. For each overlap, we computed the p-value, based on the 

hypergeometric distribution.  

The set of FGA-generated 5-mers of the downstream donor region produced a 

significant overlap with the FasESS set of splicing silencer signals (p-value=6.93e-

19). The splicing silencer signals are more subtle signals and therefore more difficult 

to discover. The upstream donor region 5-mers produced a significant overlap with 

the ESR set of splicing regulator signals (p-value=5.04e-07). 

To investigate these signals further, we selected the 5-mer features that 

produced the overlap, and we searched their exact positions in the splice-site 

neighborhood. We divided the neighborhood into six regions: the far, near, and close 

regions upstream and downstream from the annotated splice-site position. The far 

region upstream or downstream denoted the interval 50-80 nucleotides away from the 

splice site. The near region denoted the interval from 20 to 50 nucleotides and the 
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close region denoted the 20 nucleotides upstream or downstream the splice site. We 

grouped the overlapped 5-mer features into these six regions and we listed them in 

Table 6. 4. This detailed description has not been done before and we believe it will 

be of value to biologists. Although some of the signals appear in more than one 

region, it is interesting to note that the weight of the features also changed with their 

position, sometimes even switching sign. 

6.6 Summary 

In this Chapter, we presented an extension to our feature-generation 

algorithm, constructing features that capture the three-dimensional characteristics of 

genomic sequences. This algorithm was applied to the problem of splice-site 

prediction, and a new splice-site predictor model was proposed. The new model 

employed features that captured both sequence composition and structural-shape 

characteristics of splice-site sequences. The linear combination of a structure-features 

model with a sequence-features model improved splice-site prediction accuracy 

significantly. Moreover, the features employed by the structure-based model were 

found to overlap significantly with splicing regulator motifs. We divided the 160-

nucleotide splice-site neighborhood into six regions, and we mapped the position 

preference of the identified biologically relevant signals. This detailed description 

may be valuable to biologists. In our future work, we plan to investigate other 

biologically relevant information, such as the identification and location of features 

that capture the tendency not to create a pairing bond. 
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6.7 Tables of Chapter 6 
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Table 6. 1 

Feature-generation for position-specific paired k-mer features for k from 2 to 5 for acceptor and donor 

splice-site prediction. We give the 11ptAvg precision results for all the features and when top-1000 

features are selected, using different methods. 

      
Acceptor-site Models 

K-mer All IG KL MI Chi 
1 61.79     
2 64.46 62.11 61.84 46.62 62.13 
3 59.82 55.05 - 43.46 54.96 
4 51.04 42.93 36.98 40.17 43.02 
5 44.13 38.72 27.17 37.20 - 
      

Donor-site Models 
K-mer All IG KL MI Chi 

1 61.07     
2 66.08 61.88 61.78 44.29 61.92 
3 - 54.73 53.09 47.91 54.61 
4 51.21 44.06 41.30 39.42 43.40 
5 45.29 43.15 35.12 41.37 43.70 

      

 



 

 141 
 

 

Table 6. 2 

Splice-site prediction results for position-specific paired k-mer features for different stages of recursive 

feature elimination, using CMLS. For each iteration we reduce the number of features by 500 and report the 

11ptAvg for splice-site prediction. 

 

     
 Nr of Features 11ptAvg (Acceptor) 11ptAvg(Donor)  
     
 4600 66.81 69.77  
 4100 66.84 69.82  
 3600 66.91 69.17  
 3100 66.74 69.03  
 2600 66.33 68.55  
 2100 65.24 67.68  
 1600 64.39 65.81  
 1100 61.80 65.28  
 600 58.47 63.10  
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Table 6. 3 

Acceptor and donor splice-site prediction 11ptAvg results. Recursive feature elimination is performed 

for mixed-features models of acceptor and donor sites. Each iteration we reduced the number of 

features by 200. For each case, we separated the structure- from sequence-based features and built 

separate prediction models for each. These results are also listed. 

 

      
Acceptor Models (No.Features and 11ptAvg) 

Mix Model Structure Sequence 
   

5848 89.74 2941 66.55 2907 90.35 
5000 90.05 2400 64.23 2600 90.02 
4400 90.76 1981 62.83 2419 90.27 
4000 90.55 1668 60.26 2332 90.26 
3400 90.37 1227 58.52 2173 90.09 
3000 90.36 957 55.41 2043 89.69 
2400 90.25 583 45.84 1818 89.68 
2000 89.51 376 37.60 1625 89.30 
1400 89.12 153 32.04 1248 88.51 
1000 88.42 57 24.00 943 87.79 

      
Donor Models (No. Features and 11ptAvg) 

Mix Model Structure Sequence 
      

4823 89.46 3148 - 1675 90.61 
4000 89.83 2482 64.68 1518 90.22 
3400 90.13 2009 62.11 1391 90.26 
3000 90.36 1679 60.42 1321 90.19 
2400 90.76 1206 57.00 1194 90.20 
2000 90.75 933 50.58 1067 90.23 
1600 90.57 677 44.25 923 90.13 
1000 90.15 335 34.08 665 89.82 
600 89.46 183 25.64 417 89.20 
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Table 6. 4 

The FGA-generated position-specific paired 5-mer features that overlapped with FasESS and ESR sets. 

The features are grouped into six regions:  far, near, and close upstream or downstream from the 

splice-site location. 

 

 
Region 5-mer Features overlapping with Fas-ESS signals 
  
Far - upstream CCTGG, GCTGC, TGCTG, TTGTG 
Near - upstream CCCTG, CCTGC, CCTGG, CCTTC, CGAGG, CGTGG, 

GCCAT, GCGGC, TGGAG 
Close - upstream CCAGG, CCAGT, CCATC, CCTGG, CTGCA, CTTCC, 

GGCAA 
Close - downstream AAGTT, AGATG, AGATT, AGGTG, AGGTG, AGTAT, 

AGTGA, AGTTG, AGTTT, GTTCT, GTTCT, AGGGG 
GGTAG, GGTGT, GTATA, GTTCA, GTTGT, GTTTG, 
GTTTT, AAGGG, AAGTG, GTTGG, TGGGA, CTGGG 
AGGGT, AGGTA, AGTAG, AGTCC, AGTGG, AGTTA, 
GATTA, GTAGG, GTGGC, TGGGG, TTTCT, GGGGG 

Near - downstream GAGGG, GGGAG, GGGGA, GGGTG, GTGGG, CGGGG, 
GGAGG, GGGGT, GGTGG, GGGGG, CTGGG, AGGGG 
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6.8 Figures of Chapter 6 
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Figure 6.1. Secondary-structure sequence examples for acceptor splice site (S1 

and S2), as outputted by Afold. 

The acceptor-site consensus “AG” is at positions [80,81] in the sequence. The sequences consist of 162 

letters each from the nucleotide alphabet {A, C, G, T}. The upstream region of the sequence is 

composed of the 80 nucleotides, shown in blue, and the downstream region consists of 80 nucleotides, 

shown in green. The nucleotides which the Afold algorithms has predicted to be paired in the 

secondary structure are shown in upper case, and the unpaired nucleotides are shown in lowercase. 
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Figure 6.2. Position-specific paired features found in true acceptor-site 

sequences (positive) vs. non-acceptor-site sequences (negative).  

The acceptor-site consensus “AG” is at positions [80,81] in the sequence. The upstream region, the 

sequence region to the left of the splice site, indicated pairing affinity in the true sequences. 
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Figure 6.3. Position-specific paired features found in true donor-site 

sequences vs. non-donor-site sequences.  

The donor-site consensus “GT” is at positions [80,81] in the sequence.  The upstream region shows a 

lower pairing affinity, compared to the downstream region, the sequence region to the right of the 

splice site. A smaller fraction of pairings was observed in true sequences, compared to negative 

sequences in the upstream region. 
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