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The breakthroughs in material science have enabled industrialized fabrication and 

production of nanomaterials. To date, nanoscale materials have been shown to exhibit 

improved functionalities, providing numerous novel applications. Titanium dioxide 

(TiO2) nanomaterials have been widely utilized in the food industry due to their unique 

properties under light. Upon light irradiation, TiO2 nanoparticles (NPs) generate highly 

active reactive oxygen species (ROS) therefore can be potentially used as light tunable 

antibacterial packaging materials. Moreover, it has also been reported that a considerable 

amounts of TiO2 NPs is found as an ingredient in food, cosmetics, personal care, and 

pharmaceutical products. With improved photoactivity, nano TiO2 generates higher 

amounts of ROS upon light irradiation that can result in oxidative damage. The present 

study investigates the combined effect of sunlight irradiation and TiO2 nanoparticles 

(NPs) on sensitive antioxidants and food colors. Upon simulated sunlight irradiation, 

TiO2 NPs weakened the radical scavenging ability of antioxidants by photocatalytic 

decomposition or surface adsorption. The decomposition of a widely used food azo dye 

FD&C Yellow No. 5 (tartrazine) by sunlight activated TiO2 NPs was also investigated. 



	
  
	
  

The mechanism is pH dependent, involving the depletion of two main ROS species, 

hydroxyl radical and singlet oxygen. Compared with the photocatalyst TiO2 sample P25, 

food-grade TiO2 NPs also showed strong ROS promoting ability and resulted in the 

degradation of selected synthetic dyes, including tartrazine, allura red and sunset yellow, 

as well as the semi-synthetic food color chlorophyllin sodium copper salt. Thus, TiO2 

NPs should be used with caution when added to or used in contact with food ingredients 

that depend solely on the existing antioxidants and colors in the system. The ability of 

TiO2 to generate ROS was found to be phase-dependent. The rutile phase TiO2 generated 

the least amount of ROS when compared to anatase phase and did not lead to noticeable 

color degradation in the studied light irradiation period. Thus, when possible, rutile phase 

TiO2 should be used in food as it provides a more stable system compared to anatase and 

mixed phases. The results in this study provide clear insights on setting up proper 

protocols for evaluating and administrating nanosized TiO2 in food uses. 
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Chapter 1 Introduction 

Nanotechnology is an interdisciplinary science involving the production, engineering, 

fabrication, and application of materials less than 100 nm in at least one dimension. The 

breakthroughs in nanotechnology in the last few decades have largely influenced variety 

of fields, including electronic engineering, medical care and medicine, sustainable energy 

production, environmental remediation, transportation, communication (Buzea et al., 

2007), as well as agriculture and food systems (Scott & Chen, 2012). The vast potential 

of nanotechnology has encouraged the burgeoning interests in the research area. In 2014 

alone, more than $1.7 billion US federal budget has been provided to the National 

Nanotechnology Initiative (NNI) for nanotechnology related research (NNI, 2014). The 

data from 2008 estimated that the governments of the European Union (EU) and Japan 

invested approximately $1.7 billion and $950 million, respectively, in nanotechnology 

research and development. The governments of China, Korea, and Taiwan also invested 

approximately $430 million, $310 million, and $110 million, respectively (Roco et al., 

2011). Being a new technology that is still at an emerging stage, commercialization of 

nanotechnology appears to be growing at a fast pace alongside the evolution in science. 

To date, 1,628 commercial products that rely on the utilization of nanoscale materials 

already exist in the market, among which 194 are food products. These trends suggest 

that the number of nanotechnology products worldwide will double every three years, 

achieving a $3 trillion market by 2020 (Roco et al., 2011). 

The possible benefits associated with nanotechnology have been recognized in almost 

every step of the food supply chain, including agricultural production, food processing, 

packaging and storage, distribution as well as home preparation. Those examples include 
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agrochemical delivery (Ghormade et al., 2007), pesticide detection based on 

nanomaterials (Vamvakaki et al., 2007), food detection methods such as ELISA & PCR, 

food packaging (Echegoyen & Nerin, 2013), as well as improvements in nutrient and 

bioactive delivery systems including encapsulation and emulsification (Magnuson et al., 

2011; Sumithra & Vasugi 2012). Nanoparticles, including titanium dioxide, zinc oxide 

and nano-silver, and, have been incorporated into food packaging for their antibacterial or 

UV protection.  

One of the most important intrinsic characteristics of nanoparticles is their reduced size 

and increased surface area. The change in size to nanoscale renders dramatic changes in 

physical and chemical properties of material. When the size of a material is reduced to 

nanoscale, its physical and chemical properties are dramatically different from the bulk 

material with the same substance (Sharma et al., 2003). Among those applications, direct 

addition of engineered nanoparticles to food products receives lots of attention, mainly 

because of the elevated concerns over food safety and public health. However, there 

remains a void in the literature on the interaction between nanosized ingredients and 

other active compounds in food and/or other consumer products. Such information is 

critical in ushering new applications for nanomaterials as well as establishing proper 

protocols for risk assessments of nanotechnology. 
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Chapter 2 Literature review 

Adapted from Li, M., Yin, J.-J., Wamer, W. G., Li, M., & Lo, Y. M.,   
Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using 
electron spin resonance. Journal of Food and Drug Analysis, 22, 1, 76-85. 
 
2.1 Introduction 

Titanium dioxide nanoparticles (TiO2 NPs) have been widely applied as a coloring agent 

to provide whiteness and/or opacity in paints, personal care products, as well as being 

used as a food additive and a drug delivery agent. Moreover, due to their excellent 

ultraviolet (UV) absorbance and deflecting properties, TiO2 NPs are a commonly used 

functional ingredient in cosmetics or skincare products to provide protection against 

sunlight. In environmental engineering, titanium dioxide nanocomposites have been 

employed as a photocatalyst in water pollutant purification and hazardous chemical 

detoxification. When exposed to UV light, TiO2 NPs absorb photons having an energy 

equal to or higher than its band gap (> 3.0 eV), exciting electrons in the valence band to 

the conduction band. Photoexcitation, therefore, results in an increased number of 

conduction band electrons, and consequently increased valence band holes. Electrons in 

the conduction band interact can reduce substrates in the chemical environment, e.g. 

reduction of oxygen results in the formation of superoxide radical anion. Holes in the 

valence band can oxidize substrates such as water or hydroxide ions and generate 

hydroxyl radicals (•OH) (Chen & Mao, 2007; Yin et al., 2012). Photocatalyzed chemical 

decomposition usually involves formation of reactive oxygen species (ROS), including 

superoxide radicals (O2-•) and singlet oxygen (1O2) (Nosaka et al., 2004), as well as other 

intermediate species such as H2O2 or O2 (Chen & Mao, 2007). Because of those highly 
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reactive free radicals generated during UV irradiation, engineered TiO2 NPs have also 

been recognized for their light-induced biocidal effects against a broad range of harmful 

microorganisms, including bacteria such as Escherichia coli (Wu et al., 2010), molds, 

such as Aspergillus niger (Yu et al., 2013), as well as protozoa such as Giardia and 

Acanthamoeba species (Sökmen et al., 2008).  

Exposure to ROS derived from photoexcited TiO2 NPs has raised concerns because ROS 

are believed to play an important role in many inflammatory skin disorders, skin aging, 

and cancer formation (He et al., 2005). Due to the ability of nano-TiO2 to induce ROS 

generation when irradiated, tremendous efforts have been focused on investigating 

potential risks associated with human exposure to TiO2 NPs. In addition to direct 

exposure through consumption of products containing TiO2 NPs, inhalation of 

nanoparticles in the workplace, or through other environmental sources are possible 

exposure routes (e.g. emitted nanomaterials that reach the land can potentially 

contaminate soil and migrate to water systems) (Ray et al., 2009). To date, various 

nanomaterial studies have linked toxicity to the production of ROS. It is well known that 

generation of intercellular ROS can lead to oxidative stress, resulting in inflammation, 

immune response, cellular damage, and genotoxicity (Tournebize et al., 2013).  

Free radicals, including ROS, are very short-lived entities, making them very difficult to 

detect when evaluating toxicity associated with oxidative stress. Electron spin resonance 

(ESR, aka EPR, electron paramagnetic resonance) has been recognized as a “gold 

standard” and state-of-the-art tool for detecting and quantifying ROS in chemical and 

biological systems. Another ESR technique, ESR oximetry, has been used to monitor 

lipid peroxidation induced by highly reactive radicals. This article summarizes the 
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advantages and recent developments using ESR as a tool to unravel the mechanism of 

nano-TiO2 induced cytotoxicity and phototoxicity. In addition, immuno-spin trapping, 

another methodology based on the spin trapping technique to detect protein or DNA 

radicals, is briefly introduced. Combination of immune-spin trapping with ESR spin 

trapping and ESR oximetry can provide deep insight into the mechanism of ROS 

generation triggered by nanomaterials, as well as the subsequent oxidative damage to 

proteins, DNA, and lipids. 

2.2 Electron spin resonance 

2.2.1 ESR spin trapping 

Electron spin resonance (ESR) is a spectroscopic technique used to detect chemical 

species with unpaired electrons. ESR has been recognized as the least ambiguous method 

for characterizing free radicals. Due to its high sensitivity and the ability to identify the 

generation of radicals in-situ, ESR spin trapping technique is commonly employed in 

nanoscience research to evaluate both the ROS scavenging capability of nanomaterials 

with regards to their potential applications in health promotion and cancer chemotherapy 

(Yin & Fu, 2009), and to investigate toxicities related to ROS generation. ESR 

spectroscopy has also been used for the validation of results obtained using other 

methods. For instance, the data from ESR spectroscopy using different spin probes 1-

Hydroxy-3-carboxy-2,2,5,5-Tetramethylpyrrolidine (CPH) and 4-phosphonooxy-2,2,6,6-

tetramethylpiperidine-N-hydroxyl (PPH) showed good agreement with the data from 

confocal fluorescence imaging using different dyes, including 2′,7′-

dichlorodihydrofluorescein diacetate (DCF-DA), MitoSOX™, and MitoTracker® red 
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CM-H2XRos (Kuznetsov et al., 2011). Moreover, the development of non-toxic spin traps 

makes it possible for the detection of free radicals both in vivo (Tada et al., 2004) and ex 

vivo (Guarini et al., 1996). 

ROS are low-level and short-lived free radicals. They are difficult to determine in 

chemical and biological systems. Spin trapping agents are therefore employed to intercept 

the target free radical and to form a relatively stable and distinguishable spin adduct that 

can be quantified and identified by ESR spectroscopy (Yin & Fu, 2009). Based on their 

characteristic structures, spin traps can be divided into two groups: nitroso and nitrone. 

Nitroso spin traps are less readily used in biological studies because of high reactivity of 

their C-nitroso group (Kalyanaraman et al., 1979). The most commonly used nitrone spin 

traps include 5,5-dimethyl-1-pyrroline N-oxide (DMPO), α-phenyl-N-tert-butylnitrone 

(PBN) α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN), and 5-diethoxyphosphoryl-5-

methyl-1-pyrroline-N-oxide (DEPMPO). The spin label probes 2,2,6,6-tetramethyl-4-

piperidone (TEMP) and 4-oxo-2,2,6,6-tetramethyl-2-piperidone (4-oxo-TEMP) have 

been employed to detect singlet oxygen (Lion et al., 1976). The reaction of 1O2 with 4-

oxo-TEMP leads to the formation of a nitroxide radical 4-oxo-2,2,6,6-

tetramethylpiperidine-N-oxyl (TEMPONE) that exhibiting a stable triplet ESR spectrum 

(Eq (1)): 

                                                                    (1) 
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In comparison with other nitrone spin traps, DMPO is generally preferable because of its 

low redox activity and the ability to yield ESR spectra that are highly dependent on the 

radical species. However, a major drawback of DMPO is that the decomposition of 

DMPO/O2-• to DMPO/•OH makes it difficult to distinguish between the formation of O2-

•and •OH (Yin et al., 2012). On the other hand, 5-methyl-1-pyrroline N-oxide (BMPO) 

provides an ideal solution to this problem because of the formation of a more stable 

BMPO/O2-• adduct that does not decompose to BMPO/•OH (Noda et al., 1999). 

BMPO/•OH has an ESR spectrum similar to that of DMPO/•OH, exhibiting a 

characteristic set of four lines (1:2:2:1) (Yin et al., 2012). Another method to further 

distinguish whether the signal is from DMPO/•OH or DMPO/O2-• spin adduct is to 

observe the effects of superoxide dismutase (SOD) (Wang et al., 2013) or mannitol on the 

ESR spectrum (Reeves et al., 2008). Since the former only scavenges O2-•, while the 

latter only reacts with •OH, the predominant species (•OH or O2-•) in the system can be 

determined by observing changes of the ESR spectra.  

2.2.2 ESR spin label oximetry 

As aforementioned, ESR spectroscopy detects molecules with unpaired electrons. 

Theoretically, the direct detection of molecular oxygen by ESR is possible because 

molecular oxygen is a triplet radical that possesses two unpaired electrons. However, the 

broadening of lines in the spectrum of oxygen in biological systems makes oxygen 

undetectable by ESR.  This problem has been solved using a stable free radical (usually 

non-toxic) as a spin label in ESR oximetry (Gallez et al., 2004). ESR oximetry is based 

on the changes observed in the ESR spectrum of the spin label produced by collisions 

with molecular oxygen.  ESR oximetry allows monitoring oxygen 
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consumption/formation in a dynamic system. Collision of the spin label with O2 produces 

a spin exchange, resulting in shorter relaxation times (both T1 and T2) and ESR signals 

with broader line widths and decreasing peak height. The line broadening is caused by 

Heisenberg exchange between the spin label and molecular oxygen dissolved in solution 

(Gallez et al.,. 2004). Measurements that depend on T1 and T2 can both offer a direct 

indication of the O2 concentration. Because it is more easily measured experimentally, 

investigators primarily examine changes in T2-sensitive line width rather than T1-

sensitive saturation recovery for ESR oximetry (Altenbach et al., 1989). 

ESR spin label oximetry has been applied extensively to study biological processes 

involving the participation of oxygen, including measuring cellular respiration rate 

(James et al., 1995), studying O2 concentration across the cell plasma (Yin et al., 1999), 

and the detection of lipid peroxidation. It has been suggested that this method is more 

sensitive than the traditional thiobarbituric acid assay, especially in very early stages of 

lipid peroxidation (Hyde & Subczynski, 1989). It is well recognized that lipid 

peroxidation proceeds as a chain reaction involving continuous depletion of O2. Thus, 

oxygen consumption by such mechanisms can be a direct indicator of the peroxidation 

rate and can be observed as a reduction in line widths and increase in peak height for the 

spin label. Since the area beneath the signal intensity vs. magnetic field curve remains 

constant, the narrowing of the ESR signal is necessarily accompanied by an increase in 

the peak height of the ESR spectrum (Yin et al., 2012). Therefore, the value of oxygen 

concentration can be obtained from a calibrated curve of the ESR line width vs. the 

oxygen concentration (Yin et al., 2012).  

2.3 TiO2 NPs and reactive oxygen species 
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2.3.1 Photogeneration of ROS  

Reactive oxygen species are a group of highly reactive molecules that are intermediate 

products of cellular oxidative metabolism. Biologically relevant ROS include singlet 

oxygen (1O2), peroxides (e.g. hydrogen peroxide), and free radicals (e.g. superoxide 

radical (O2
-•), peroxylradical (•OOR) and hydroxyl radical (•OH)). ROS play critical 

roles in a variety of physiological processes in plants and animals with regard to 

regulation of the immune system and the development of the inflammatory response, 

activation of transcription factors and gene expression, and modulation of programmed 

cell death (i.e. apoptosis)  (Brieger et al., 2012; Hancock et al., 2011). Excessive levels of 

ROS can oxidize cell constituents such as lipids, proteins, and DNA, and consequently 

pose a threat to cell integrity (Scherz-Shouval & Elazar, 2011). Mitochondria are one of 

the main sources of ROS in cells. In the mitochondrial respiratory chain, electrons are 

continuously transferred to molecular oxygen, producing ROS as a by-product of 

oxidative phosphorylation (Guzun et al., 2011). With the presence of TiO2 NPs (10 

ug/ml) and UVA, alteration of mitochondrial function was observed for HaCaT cells, 

accompanied by 14-fold increase in mitochondrial DNA damage, indicated by 

mitochondrial “common deletion” (Jaeger et al., 2012). Several studies have identified 

the intercellular oxidative stress caused by ROS as an important factor for genotoxity 

(Yin et al., 2012), cytotoxicity (Wang et al., 2013; Sarkar et al., 2011; Liu et al., 2010), as 

well as tissue damage and inflammation (Cui et al., 2011; Sun et al., 2012; Li et al., 

2010). 

2. 3. 1. 1 Mechanism of ROS generation 
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Generation of ROS during photoexcited TiO2 was first discovered in the early 20th 

century. A study by Goodeve and Kitchener in 1938 described photobleaching of dyes by 

TiO2. Photobleaching was attributed generation of   active oxygen species on the surface 

of photoexcited TiO2. TiO2 absorbs light in the UVA (320 to 400 nm) and UVB (290 to 

320 nm) spectral regions of the terrestrial solar spectrum. When TiO2 absorbs photons 

with energy equal to or higher than its band gap (3.0 eV for rutile and 3.2 eV for anatase 

phase), electrons are excited from the valence band of TiO2 to its conduction band, 

resulting in the formation of an electron-hole pair (e-•/h+) (Chen & Mao, 2007). The holes 

(h+) in the valence band are highly oxidizing and can react with H2O or hydroxide ions to 

produce hydroxyl radicals (•OH), and the electrons in the conduction band can reduce O2 

to produce superoxide radical anions  (O2-•) (Hashimoto et al., 2005). This reduction-

oxidation (redox) potential of TiO2 has a significant impact on biological systems. The 

fundamental process of ROS production involving photo-induced electrons and holes can 

be expressed as follows (Hashimoto et al., 2005; Dodd & Jha, 2011): 

TiO2 + hν → e-
cb + h+

vb                                                                                                      (2) 

O2 + e-
cb  → O2-•                                                                                                                                                                          (3) 

H2O + h+
vb   → •OH + H+                                                                                                 (4) 

OH- + h+
vb    → •OH                                                                                                          (5) 

O2-• + 2H+ + e-
cb → H2O2                                                                                                                                                    (6) 

2 h+
vb   + 2H2O → H2O2 + 2H+                                                                                                                                     (7) 
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Eq. (2) describes the absorption of a photon. Eqs (3-5) are photocatalytic redox pathways 

involved in the generation of superoxide radical anion and hydroxyl radical. Eqs (6-7) 

show the possible generation of hydrogen peroxide by reductive (6) or oxidative (7) 

pathways. Electrons and holes generated during photoexcitation are localized at different 

defect sites on the surface and in the bulk material (Chen & Mao, 2007). Electron spin 

resonance is usually used when identifying the charge trapping center formed by UV 

irradiation of the catalyst (Gopal et al., 2005). The results show that electrons are trapped 

as Ti(III) centers, while the holes are trapped as oxygen-centered radicals, such as •OH, 

covalently linked to surface titanium atoms (D'Arienzo et al., 2011; Hurum et al., 2005). 

However, it remains unclear whether the production of ROS occurs on the surface of the 

TiO2 or in the solution (Dodd & Jha, 2011).  

2. 3. 1. 2 Hydroxyl and superoxide radicals 

The photocatalytic mechanisms and formation of ROS of the photoirradiated TiO2 NPs 

have been studied intensively using ESR spectroscopy. It has been suggested that, in 

general, TiO2 photocatalytic reactions proceed mainly from the hydroxyl radicals (•OH) 

by the oxidation of water and superoxide radicals (O2-•) produced by the reduction of 

oxygen (Lipovsky et al., 2012). In aqueous solutions, the formation of •OH spin adducts 

have been observed using different spin traps, including DMPO, POBN, DEPMPO 

(Dodd & Jha, 2011), and BMPO (Yin et al., 2012). Hydroxyl radical has been recognized 

as the most important cause for the photogenotoxicity of TiO2 NPs (Reeves et al., 2008). 

In contrast, only a few studies reported positive results on the formation of superoxide 

radicals (Daimon et al., 2008), while other studies using ESR spectroscopy observed no 
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evidence of O2-• generation (Yin et al., 2012; Reeves et al., 2008; Dodd & Jha, 2011; 

Wamer & Yin, 2011). 

2. 3. 1. 3 Singlet oxygen 

Besides •OH and O2-•, several studies also found singlet oxygen generation during 

photoexcitation of TiO2 (Nosaka et al., 2012; Yin et al., 2012). The mechanism is rather 

complicated and unequivocal evidences are suggested by different studies. Sterically 

hindered cyclic amines, including 2,2,6,6-tetramethyl-4-piperidinol (TMPol) and 2,2,6,6-

tetramethyl-4-piperidone (TEMP), can be used to detect 1O2, since they do not react with 

other oxygen radicals such as •OH and O2-• (Lion et al., 1976; Dzwigaj & Pezerat, 1995). 

The reaction between these spin traps and singlet oxygen yields stable nitroxide radicals 

that can be monitored by ESR signals. When using TMPol as the spin trap, Reeves et al. 

(2008) observed that no singlet oxygen was formed on UVA irradiated TiO2 NPs in 

aqueous solutions (Reeves et al., 2008). Another study by the same group of researchers 

reported similar results (Dodd & Jha, 2011), and argued that false positive results may 

have been obtained because those amines can be oxidized by other ROS such as •OH 

(Rosenthal et al., 1987). Interestingly, in a study conducted by Nosaka et al. (2006), 

electrochemical measurements revealed that sterically hindered cyclic amine 4-hydroxy-

2,2,6,6-tetramethylpiperidine (HTMP) can be directly oxidized with holes (h+) in 

photoexcited TiO2 to produce the TEMPOL radical. The possibility of other processes, 

such as reactions with singlet molecular oxygen, superoxide radical, and hydroxyl 

radical, was excluded from the reaction mechanism in that study. 
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Konaka et al. (1991) provided evidence for the direct production of singlet oxygen during 

photoexcitation of TiO2 using ESR spectroscopy (Konaka et al., 1999). It was noted that 

the generation of 1O2 originated from direct production rather than a sequential reaction 

involving O2
•-, based on the fact that the addition of DMPO to the reaction mixture 

amplified the signal of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), a reaction product 

of spin probe TEMP and 1O2. However, a completely different result has been found in a 

later study by Lipovsky et al. (2012) (Reeves et al., 2008). The ESR signal of singlet 

oxygen (using TEMP as the spin probe) was found to disappear with the addition of 

DMPO to the suspension of TiO2 NPs. Under similar experimental conditions (i.e. 

aerated aqueous TiO2 NPs suspension), Daimon et al. (2008) confirmed the generation of 

1O2 using luminal chemiluminescence probe method (Daimon et al., 2008). It was 

suggested that the production of 1O2 could be due to an electron transfer process 

involving O2
-•. A two-step mechanism was thus proposed for the 1O2 formation. The first 

step is a reduction of O2 to O2
-• using conduction band electrons (e-), with the second 

being the oxidation of O2
-• to 1O2 using valence band holes or trapped holes (h+). Using 

ESR spectroscopy with TEMP as the spin probe, Yin et al. (2012) also observed similar 

results and successfully detected the formation of 1O2 (Yin et al., 2012). Using BMPO as 

spin trap, only BMPO/•OH adduct was observed and no ESR signal for BMPO/ O2
-• was 

found, suggested by the fact that the ESR spectrum of BMPO spin adduct did not change 

perceptibly when SOD is added (Fig 2-1, C &D). However, this study suggested that part 

of the 1O2 formation proceeds via a superoxide-dependent mechanism, whereas the •OH 

formation is not formed via superoxide. This prediction is supported by the observation 
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that addition of SOD leads to a noticeable reduction of 1O2 signal without effects on •OH-

dependent ESR signal (Fig 2-1). 

 

Figure 2-1 Effect of SOD on the generation of hydroxyl radicals and singlet oxygen by P25 
during photoexcitation with UVA light. ESR spectra were recorded at ambient temperature 
2 min after the UV light was turned on. Samples containing 25 mM BMPO and (A) without 
TiO2; (B) with 0.1 mg/ml R100; (C) 0.1 mg/ml A325; (D) 0.1 mg/ml A25; (E) 0.1 mg/ml P25 
and (F) same as E, but with the addition of 20% DMSO. Stars (*) indicate the ESR signal of 
the BMPO/•CH3 adduct. Instrumental settings: microwave power, 10mW; modulation 
frequency, 100 kHz; modulation amplitude, 1 G; scan range, 100 G. Reprinted with 
permission from ref 2. Copyright 2012 Toxicology and Applied Pharmacology. 

 

2.3.2 Effects of intrinsic properties on ROS generation 

2.3.2.1 Particle size and crystal phase 

The photoreactivity of TiO2 NPs is largely dependent on their inherent material 

properties, such as their particle size, shape, surface characteristics, and crystal structure 

(Liu et al., 2010; Sharma, 2009). Generally, nanomaterials exhibit higher reactivity 



15	
  
	
  

compared to the corresponding bulk material due to the increased surface area. From this 

standpoint, TiO2 NPs with smaller sizes promote more ROS formation when 

photoexcited, which consequently may elicit more oxidative stress to biological systems 

(Yin et al., 2012; Nosaka et al., 2004; Xue et al., 2010). Anatase and amorphous forms of 

nano-TiO2 show higher phototoxicity and cytotoxicity than its rutile form (Xue et al., 

2010; Sanders et al., 2012). Furthermore, the arrangement and coordination of the surface 

atoms on the different crystal facets largely influence the photocatalytic activity of TiO2 

nanocrystals. Several studies have suggested that the anatase {001} face is associated 

with higher photocatalytic efficiency due to its highly active titanium and oxygen centers 

(Ma et al., 2010), whereas others found that the anatase {101} surface exhibited 

enhanced activity (Nagaveni et al., 2004).  

Sayes et al. (2006) conducted a study on toxicity of TiO2 NPs using human dermal 

fibroblasts and human lung epithelial cells (Sayes et al., 2006). Their aim was to correlate 

the crystal structure of nano-TiO2 with their ability to elicit cytotoxicity and inflammatory 

responses. Their results suggested that the phase composition of nano-TiO2 was strongly 

correlated to cytotoxicity as well as ROS generation. Anatase TiO2 showed 100 times 

more cytotoxicity than rutile TiO2 at the equivalent treatment level. In their study, ROS 

generation was quantified by measuring azo dye photodegradation. Using a more direct 

and non-destructive method, ESR spectroscopy, Yin et al. (2012) observed similar results 

for ROS generation in TiO2 NPs suspensions (Yin et al., 2012). After UVA irradiation, 

the intensity of •OH generation for different crystal forms at the same concentration (0.1 

mg/mL) followed the trend: P25 (31nm, anatase/rutile) > A25 (< 25nm, anatase) > A235 

(325 mesh, anatase), while R100 TiO2 (<100nm, rutile) in the same aqueous solution did 
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not show hydroxyl radical production (Yin et al., 2012). The relative efficiency of ROS 

generation by these four nano-TiO2 particles was in agreement with the phototoxicity 

studies using human HaCaT keratinocytes, a transformed epidermal human cell line, 

further confirming the hypothesis that ROS production was most likely involved in the 

phototoxic mechanism.  

2. 3. 2. 2 Synthesis method and surface coating 

Both synthesis method and surface coating are critical in determining the toxicity of 

nano-TiO2. Nagaveni et al. (2004) noted that under identical UV exposure, combustion-

synthesized nano-TiO2 resulted in 2 times higher initial degradation rate of phenol 

compared with commercial P25 TiO2 (Nagaveni et al., 2004). This superior 

photocatalytic activity can be attributed to crystallinity, higher surface area, more surface 

hydroxyl groups, and improved optical absorption at higher wavelengths (570 and 467 

nm, corresponding band gap energies of 2.18 and 2.65 eV). Using an in-situ sol-gel 

method, Kavitha (2013) synthesized anatase phase titania-chitosan NPs with spherical 

and irregular morphology (4.5-10.5nm) (Kavitha et al., 2013). Having tunable 

biocompatibility with human gastric adenocarcinoma cells and efficient antibacterial 

activity against Staphylococcus aureus, this nano-TiO2 material might be a promising 

biomaterial for orthopedic and tissue engineering applications.  

Using ESR spectroscopy, Sawada et al. (2010) demonstrated that TiO2 NPs coated with 

fluoridated apatite (FAp-TiO2, 100 nm) promoted ROS via photo-catalysis, and exhibited 

antifungal activity towards Candida albicans (Sawada et al., 2010). In a study by Carlotti 

et al. (2009), the oxidation of linoleic acid and porcine ear skin induced by UV irradiation 
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was investigated in the presence of different uncoated and coated titanium powders. They 

noted that surface characteristics largely influenced the observed oxidative damage. In 

their study, two types of coated TiO2 specimens were used, namely PW Covasil S-1 and 

Tego Sun TS plus. While the former showed a high photocatalytic activity toward the 

peroxidation of linoleic acid, the latter displayed a marked protective effect (Carlotti et 

al., 2009). 

In addition, nano-silver, the most widely employed antimicrobial nanomaterial, has been 

deposited onto TiO2 NPs, a common strategy for synthesizing nanocomposites. The 

strong antibacterial activity of TiO2@Ag NPs against different bacterial species has been 

reported under UV light (He et al., 2002), visible light illumination (Yuan et al., 2010), as 

well as in the dark (Allahverdiyev et al., 2013). TiO2@Ag NPs reduced the viability of 

Leishmania tropica, and Leishmania infantum promastigotes 3 and 10 fold in the dark, 

respectively, while these rates diminished approximately 20 fold for each species in the 

presence of visible light. Non-visible light-exposed TiO2@Ag-NPs were more effective 

against L. infantum parasites while visible light-exposed TiO2-Ag-NPs exhibited nearly 

the same anti-leishmanial effect against both species (Allahverdiyev et al., 2013). A 

decrease in pH was discovered during photocatalysis using silver modified titanium 

dioxide nanoparticles. And such pH change has been attributed to the reduction of silver 

ion (Vamathevan et al., 2002). 

2.3.3 Effects of environmental conditions on ROS generation 

Environmental conditions, including light illumination, pH, solution composition and 

biological media, also influence the generation of ROS by nano-TiO2.  
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2.3.3.1 UV irradiation and light illumination 

Previous studies have suggested that, without UV exposure, nano-TiO2 show little 

cytotoxicity (Rehn et al., 2003). It is generally agreed that ROS production of TiO2 

nanomaterials is initiated by UV irradiation. To date, there is no conclusion whether ROS 

can be generated on TiO2 surface in aqueous condition without illumination. For TiO2 

NPs of different crystal forms and size, no ROS promotion was detected by ESR without 

exposure to light (Yin et al., 2012). Wamer & Yin (2011) conducted a study using human 

dermal fibroblasts to evaluate the toxicity of TiO2 in tattoo inks. The results suggested 

that anatase TiO2 was phototoxic but not cytotoxic, while the sample that only contains 

rutile TiO2 was neither phototoxic nor cytotoxic (Wamer & Yin, 2011).  

However, Lipovsky et al. (2012) investigated visible light-induced reactions of a 

suspension of TiO2 NPs in water using ESR spin-trapping technique, and their results 

suggested that, without light illumination, formation of both •OH and O2
-• were detected 

for TiO2 rutile and anatase phases (50 nm NPs), but singlet oxygen was not detected in 

aqueous suspensions of TiO2 NPs for either of these two crystal forms. When exposed to 

light in the blue part of visible spectrum (400-500 nm), increased levels of both •OH and 

O2-• were detected. Singlet oxygen formation was observed with rutile NPs during 

irradiation (Lipovsky et al., 2012).  

Without light exposure, long-term exposure to TiO2 NPs has been proved to lead to 

significant alterations in the expression of various genes, and promoted production of 

reactive oxygen species and peroxidation of lipids, proteins and DNA in mouse lung 

tissue (Li et al., 2013). Exposure of zebrafish embryos to TiO2 NPs produced 
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malformation and death only when the fish were also illuminated (light source: 250W 

blue-spectrum metal halide lamp) (Bar-Ilan et al., 2012). A similar result was obtained 

using a fish cell viability assay. TiO2 alone (0.1–1000 µg/mL) had limited effect on 

goldfish skin cells, whereas co-exposure with UVA (0.5–2.0 kJ/m−2) caused a significant 

dose-dependent decrease in cell viability, which was dependent on both the concentration 

of TiO2 and the dose of UVA administered (Reeves et al., 2008). Using the comet assay, 

the same group of researchers also found that TiO2 NPs are in fact genotoxic without UV 

irradiation, as all concentrations tested produced a significant increase in the level of Fpg-

sensitive sites, which suggests that 8-hydroxyguanine (8-OH-G) is probably a major 

product of TiO2-induced oxidative stress linked to genotoxicity. ROS promotion was also 

observed in toxicity studies using animal models. In a study where mice were injected 

with TiO2 NPs for 45 days consecutively, accumulation of TiO2 NPs and ROS were 

found in mouse spleen, accompanied by the development of congestion and lymph 

nodule proliferation of spleen tissue (Li et al., 2010). 

2. 3. 3. 2 pH and solvents 

It is notable that, when employing ESR to evaluate the ability of materials to 

generate/scavenge ROS, different experiment conditions, such as type of spin trap, pH 

and composition of solvent may lead to different results (Finkelstein et al., 1980). In early 

study, Jaeger & Bard (1979) have observed ESR spectra consistent with formation of 

both •OH and O2
•- following absorption of UV radiation by TiO2 (anatase) (Jaeger & 

Bard, 1979). However, Wamer et al (1997), using DMPO as a spin trap, observed, during 

UV irradiation of TiO2, an ESR signal characteristic of DMPO/•OH spin adduct alone 

(Wamer et al., 1997). Dodd & Jha (2011) also reported the formation of •OH adduct in 
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UVA irradiated nano-TiO2 (aerated aqueous suspension) using different spin traps 

including POBN, DMPO and DEPMPO, and also found no evidence of O2
-•. Their 

research also showed that in absence of O2, no ESR signal was observed for PBN, 

DMPO, or DEPMPO. Only POBN/•OH adduct was observed under hypoxic conditions 

(Dodd & Jha, 2011). In a recent study to determine the phototoxicity of TiO2 NPs with 

different crystal forms and molecular sizes, the generation of •OH in aqueous suspension 

was observed using BMPO spin trap, and no characteristic BMPO/O2
-• was observed 

(Yin et al., 2012). 

Hydrogen peroxide plays an important role in regulation of a wide variety of biological 

processes. It has been demonstrated that with the addition of H2O2 into aqueous 

suspension containing TiO2, the concentration of O2
-• increased with a small amount of 

H2O2 and slightly decreased at a certain concentration, and then became almost 

unchanged at a higher H2O2 concentrations (Daimon et al., 2008). The authors suggested 

that the first increase in O2
•- could be attributed to the oxidation of H2O2 with h+: 

 h+
vb   + H2O2 + 2OH- →  O2

-• + 2H2O                                                                                           

(8) 

At the same time, the consumption of the valence band hole (h+) hinders the (e−)-(h+) 

recombination, and consequently accelerates the reduction of O2 to generate O2
-• (Eq. 

(2)). When the concentration of H2O2 is above 0.2 mM, O2
-• decreases with the further 

increase of H2O2, which might be explained by desorption of O2 from the TiO2 surface, 

resulting from the adsorption of H2O2. This competition of adsorption on the TiO2 surface 

was also suggested in a similar study using ethanol.  Here, the addition of a small amount 
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ethanol resulted in the increased formation of O2
-• yet subsequently decreased with 

further additional ethanol to the suspension. However, singlet oxygen decreased 

monotonically with additional ethanol.  

2.4 TiO2 NPs resulted cellular oxidative damage  

2.4.1 Lipid peroxidation  

Lipid peroxidation is an oxidative damage that leads to change of the integrity and 

functionality of cell membranes. It happens when free radicals abstract electrons from the 

lipid molecules. Nanomaterials can disrupt normal cellular function through lipid 

peroxidation, and reactive oxygen species have been proved to be responsible for the 

membrane damage that eventually leads to degeneration of cells (Sayes et al., 2006). In 

vivo studies have suggested that lipid oxidation is involved with pathogenesis of various 

aging related diseases, including coronary heart disease, Parkinson’s disease, and cancer 

(Agil et al., 2006; Gago-Dominguez & Castelao, 2008; Regnström & Nilsson, 1994). 

Wang et al. (2013) reported a toxicity study in which the rat synovial cells were treated 

with different concentrations of TiO2 NPs (0, 3, 30, and 300 mg/ml) (Wang et al., 2013). 

ROS were over-produced especially in the cells exposed to 30 and 300 mg/ml TiO2 NPs. 

They also observed malondialdehyde (MDA), a lipid peroxidation product, as well as 

oxidative damage in cells. Significant decrease in activity of the endogenous antioxidant 

enzymes including superoxide dismutase (SOD) and catalase (CAT) was also detected. 

TiO2 NPs has been demonstrated to lead to skin peroxidation in animal models, for 

example, porcine skin, which is a well-accepted and readily available model for 

estimating damage to human skin (Carlotti et al., 2009). Oxidative stress has also been 
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found to occur during TiO2 NPs dermal application on rats. In a 14 consecutive day 

toxicity study, different dose of TiO2 NPs (20nm; 14, 28, 42, and 56 mg/kg) were applied 

to rat skin. The results of this study suggested that exposure to TiO2 NPs increased 

peroxidation of lipids, and confirmed that nano-TiO2 toxicity is associated with the 

oxidant generation and the resultant oxidative stress to cells (Unnithan et al., 2011). The 

results of these studies suggest that when investigating TiO2 NPs toxicity, lipid 

peroxidation is a critical factor due to its impact on cell membranes. These studies are 

particularly relevant   because of the use of TiO2 NPs in many skincare and cosmetic 

products.  

Egg PC liposome suspension were prepared as lipid membrane model to study possible 

oxidative damage resulting from ROS generated during exposure  of TiO2 NPs to UV 

light. By measuring the hyperfine structural changes of the ESR spectrum with 15N-PDT 

as the spin label, it has been demonstrated that that ROS can produce a time-dependent 

peroxidation (Yin et al., 2012), and the peroxidation rate is P25>A25>A325>R100, 

which follows the same trend of ROS production in TiO2 NPs suspension (Fig. 2-2).  
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Figure 2-2 Effect of different TiO2 samples on lipid peroxidation in liposomes. 
Oxygen consumption was measured in a closed chamber using liposome suspensions 
and the spin label 15N-PDT. The liposome samples contained 30 mg/ml Egg PC and 
0.1 mΜ 15N-PDT spin label mixed with (A) no TiO2; (B) 0.03 mg/ml of R100; (C) 
0.03 mg/ml of A325; (D) 0.03 mg/ml of A25; and (E) 0.03 mg/ml of P25. Lipid 
peroxidation was initiated by UV (340 nm) irradiation. The ESR spectra were 
recorded with the low field line of the 15N-PDT spin label every 4 min after the 
sample was sealed in a quartz capillary tube. The spectra were obtained with 0.5 
mW incident microwave power and with 0.05 G field modulation at ambient 
temperature. The progressive increases in peak-to-peak signal intensity (and 
accompanying progressive narrowing of the line width) in each panel are due to 
time-dependent oxygen consumption resulting from lipid peroxidation, as shown in 
panel F. The enhancement effects of different TiO2 nanoparticles on lipid 
peroxidation may be seen as bigger changes in the peak-to-peak signal intensities 
seen in panels B, C, D and E compared to panel A. Reprinted with permission from 
ref 2. Copyright 2012 Toxicology and Applied Pharmacology. 

The ESR spin trap technique has also been employed for in vivo determination of lipid 

radicals, the products of lipid peroxidation, and to evaluate oxidative damage (González 
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et al., 2013). Here, intact Navicula sp. algae were suspended in 40 mM PBN stock 

solution with the addition of spin trap POBN (130 mM) prior to detection. The authors 

acknowledged the possible drawbacks for employing ESR including probe instability, 

interference with tissue metabolism, and lack of spin specificity. However they found this 

technique useful, especially when combined with other biochemical strategies.  

2.4.2 Nucleic acid damage 

The specificity of the reactions between nitrone spin traps with free radicals has already 

made spin trapping with ESR detection the most universal tool for the detection of free 

radicals in biological systems (Mason 2004). Based on this concept, the immune-spin 

trapping technique has been developed and extensively studied by Mason et al. (2004) to 

detect DNA or protein radicals. By trapping those radicals with DMPO, stable nitrone 

adducts can be formed and easily detected using an anti-DMPO serum with ELISA and 

Western blot assays (Mason, 2004). Using the method described by Mason et al. (2006 & 

2010) (Ehrenshaft & Mason, 2006; Ranguelova et al., 2010), a significant increase in 

human serum albumin (HSA) protein radical was observed using DMPO as the spin trap 

when HSA protein was treated with P25 TiO2 NPs and UV irradiation (Yin et al., 2012).   

2.5 Concluding remarks 

     Concomitant with the growing uses of nanomaterials is the need to better define their 

safety. As the size of particles decreases, so does their surface area for the same quantity 

of material increase? This leads to many of the dramatic changes in the properties for 

nanomaterials. This change is of particular interest for nanomaterials capable of 

generating highly reactive oxygen species. However, detection of such short-lived 
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radicals remains technically challenging. ESR spectroscopy, a sensitive, nondestructive, 

in situ approach, is capable of unraveling the mechanisms of ROS-related toxicity of 

nanomaterials. The formation of ROS species (including 1O2, •OH and O2-•) could be 

detected using different spin traps and depends on the intrinsic properties of the 

nanomaterials, including size, crystal phase, and surface characteristics, as well as 

environmental conditions. In particular, ESR spin label oximetry that detects changes in 

O2 levels in a system is a reliable and effective method to monitor lipid peroxidation rate. 

Such an oxygen-monitoring ability is of critical importance when it comes to assessing 

cellular oxidative damage due to ROS that could lead to subsequent adverse health 

effects. Moreover, the knowledge generated from ESR studies on TiO2 NPs could form a 

solid base for evaluating risk associated with nanomaterials. 
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Chapter 3 Research objectives 

TiO2 NPs can be activated by sunlight irradiation and consequently lead to oxidative 

decomposition of sensitive food compounds. The ultimate goal of the present study was 

to elucidate the combined effects of simulated sunlight and TiO2 NPs toward common 

food antioxidant and food colors. The specific objectives include: 

1) To investigate the effect of TiO2 NPs on the free radical scavenging ability of 

seven major antioxidants of significance in both food matrixes and physiological 

systems, namely resveratrol, ascorbic acid, α-tocopherol, thiol-containing 

antioxidants (glutathione and cysteine), as well as polyphenols (epicatechin and 

epicatechin gallate) extracted from green tea. 

2) To evaluate decomposition of the selected azo dye FD&C Yellow No. 5 in the 

presence of TiO2 NPs that is photoactivated by simulated sunlight. During this 

process, ROS generation was monitored and the reaction mechanism was 

characterized by electron spin resonance spectroscopy and mass spectra at 

different pH values. 

3) To characterize the ROS promoting ability of TiO2 with regard to its phase 

composition, namely the anatase phase, the rutile phase and the mixed phase 

(P25), the degradation of representative food colors was investigated, including 

one semi-synthetic dye chlorophyllin copper sodium salt (E141) and three widely 

used synthetic food dye, namely tartrazine (E102), sunset yellow (E110), and 

allura red (E129). 
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Chapter 4 Combined effects of sunlight and TiO2 nanoparticles on 

radical scavenging ability of seven selected dietary antioxidants 

4.1 Introduction 

A free radical is an atom, molecule or ion that bears an unpaired electron. Being 

extremely reactive, they are capable of engaging in rapid chain reactions that lead to 

destabilization of other molecules and accumulation of more radicals. In the human body, 

two main free radical species, reactive oxygen species (ROS) and reactive nitrogen 

species are generated by various endogenous systems. Those free radicals originated 

during body metabolism are able to adversely alter lipids, proteins and nucleic acids, and 

have been implicated in aging and a number of human diseases (Devasagayam et al., 

2004). In living organisms, the levels of free radicals and related species are controlled by 

a complicated antioxidant defense system, which minimize oxidative damage to 

biomolecules (Aruoma & Halliwell, 1991). To maintain proper physiological function, a 

balance between free radicals and antioxidants is necessary (Lobo et al., 2010). 

Numerous epidemiological studiess have correlated regular intake of foods containing a 

high content of antioxidants with a lower incidence and mortality rates due to cancer and 

heart diseases (Dragsted et al., 1993; Ness & Powles, 1997; Joseph et al., 1999). Typical 

foods with high levels of nature antioxidants including fruits and vegetables (Wang et al., 

2010; Zhang &Hamauzu, 2004); tea and fruit juice as well as grains (Wennermark et al., 

1994). Besides natural food materials, various dietary supplements and functional foods 

focusing on antioxidant functionality have emerged in the market in recent years, 

including vitamins and phenolics from fruit and vegetable extracts, thiol-containing 
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antioxidants such as glutathione and cysteine, and some other synthetic antioxidants. In 

addition to providing those well recognized health benefits, antioxidants are also 

intentionally added into a wide range of food products to ensure food stability by 

delaying oxidative quality deterioration.  

Sunlight is an important environmental factor during storage of food products. It consists 

of a broad range of light wavelength including ultraviolet, visible and infrared. Even 

though it has been reported that the effect of sunlight on antioxidant ability is negligible 

during storage of products such as pomegranate juice (Perez Vicente et al., 2004) and 

orange juice (Solomon et al., 2000), irradiation by light reduced the antioxidant activity 

of phenolic compounds during the storage of olive oil (Servili et al., 2002). Exposure to 

sunlight promotes quality deterioration by triggering the activation of oxygen. This effect 

might be amplified by photoactive or photosensitive compounds in the system (Min & 

Boff, 2002).  

Titanium dioxide (TiO2) is a common white pigment and anti-caking agent found in food 

and cosmetic products. It has also shown promising applications as an active compound 

in sunblock lotions to provide photo protection to our skin (Hansenne & Lety, 1995). 

Select sunscreen products contained as high as 10% TiO2 by weight (Weir et al., 2012). 

However, the use of TiO2 has been challenged due to its high photo activity under 

irradiation by sunlight. It has been demonstrated that under light irradiation, TiO2 NPs 

can induce generation of ROS and sequentially, lead to oxidative damage in epidermal 

human cell lines (Yin et al., 2012). Moreover, photoactivated TiO2 resulted in 

degradation of phenolics (Wang et al., 2013) and reduction of intracellular levels of GSH 

(Sha et al., 2013),.   
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In the current study, seven major antioxidants that are of great significance in both food 

matrixes and physiological systems have been selected. These include resveratrol, 

ascorbic acid, α-tocopherol, thiol-containing antioxidants including glutathione and 

cysteine, as well as polyphenols extracted from green tea namely epicatechin and 

epicatechin gallate (structures are shown in Fig 4-1). By measuring radical scavenging 

ability, we studied the effects of TiO2 and sunlight on the antioxidant capacity of these 

antioxidants. The scavenging of DPPH radicals, hydroxyl and superoxide radicals were 

monitored by ESR spectroscopy with spin trapping techniques, which is a quick and 

reliable method for identification and quantification of short-lived free radicals (Roubaud 

et al., 1998).  
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Figure 4-1 Chemical structure of epicatechin (EC), epicatechin gallate (ECG), 
resveratrol (RV), ascorbic acid (AA), α-tocopherol (TCP), glutathione (GSH) and 
cysteine (Cyst). 

 

4.2 Materials and methods 

4.2.1 Materials 

The spin-trap 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) was 

purchased from Applied Bioanalytical Labs (Sarasota, FL). 1-Hydroxy-3-carboxy-

2,2,5,5-tetramethylpyrrolidine (CPH) was purchased from Alexis, Enzo Life Sciences, 

Inc. (NY, USA). 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•), ethanol, hydrogen 

peroxide, ammonium iron(II) sulfate heptahydrate, xanthine (XAN), 
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diethylenetriaminepentaacetic acid (DTPA), reduced L-glutathione (GSH), and L-

cysteine (Cyst), L- ascorbic acid (AA), (−)-epicatechin (EC), resveratrol (RV), (−)-

Epicatechin gallate (ECG) and α-tocopherol (VE) were all purchased from Sigma-

Aldrich (Saint Louis, MO). Xanthine oxidase (XOD) was obtained from Roche 

Diagnostics GmbH (Mannheim, Germany). Aeroxide® TiO2 P25 was a gift from 

EVONIK Industries AG (Frankfurt, Germany). Organic solvents methanol and 

acetonitrile (CHCN3) are both from Sigma. Standard buffer solution was purchased from 

Sigma and treated with Chelex® 100 molecular biology grade resin from Bio-Rad 

Laboratories (Hercules, CA) to remove trace metal ions before use. Milli-Q water (18 

MΩ cm) was used for all solution preparation.  

4.2.2 ESR spectroscopy 

All ESR measurements were carried out at ambient temperature (23 °C) using a Bruker 

EMX ESR spectrometer (Billerica, MA). Fifty milliliter aliquots of control or sample 

solutions were put in glass capillary tubes with internal diameters of 1 mm and sealed 

using Critoseal™ capillary tube sealant. The capillary tubes were inserted in the ESR 

cavity, and the spectra were recorded at selected times. The following parameters were 

used for all detection of the radicals: 20 mW microwave power, 100 G scan range and 1 

G field modulation amplitude, and 100 kHz modulation frequency. The instrument was 

calibrated before use and data was obtained with error of less than 5%.  

4.2.3 DPPH radical scavenge 

DPPH radical (DPPH•) is a long-lived, stable nitrogen-centered free radical that has been 

commonly used to determine the radical scavenge ability of antioxidants (Zhou et al., 
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2013). ESR spectroscopy is a quantitative measurement of specified radicals (Li et al., 

2014). Therefore, antioxidant activity is evaluated via ESR spectroscopy on the basis that 

DPPH• signal intensity is inversely related to the radical scavenge ability of the 

antioxidant (Packer, 1999). Antioxidant stock solution were made at 100mM in water 

(EC, ECG, AA), 100mM in PBS buffer (pH 7.4, 100mM), or in acetonitrile (TCP and 

RV). Seven selected antioxidants, including EC, ECG, GSH, Cyst, AA, TCP, and RV 

were mixed 0.1 mg/mL TiO2 NPs solutions, and then exposed to simulated sunlight for 

30 and 60 min. Before light treatment, the initial concentration of the antioxidants was 

10mM. The reaction mixtures, either without (control group) or with exposure to sunlight 

(experiment group), were mixed with DPPH• in ethanol to determine the radical 

scavenging abilities of the antioxidants. DPPH radical scavenging activity was measured 

according to the method described by Zhou et al. (2013) with slight modifications. 

Briefly, 5 uL of 500uM DPPH radical in ethanol was mixed with equivalent volume of 

10mM antioxidant solutions (a) without TiO2 NPs and not exposed to sunlight; (b) with 

addition of TiO2 NPs but not exposed to simulated sunlight, (c) with 0.1mg/mL TiO2 and 

exposed to simulated sunlight for 30 min and (d) for 60 min. Forty microliter water was 

added to make a 50uL volume final solution. After vortexing, 50 uL aliquots of the 

samples were collected for ESR spectroscopy. ESR spectra were collected after 5 min of 

mixing.  

4.2.4 Superoxide radical scavenge 

The superoxide radical scavenging activity assay was carried out according to Yin et al. 

(2008) with minor modification. Superoxide radicals (O2-•) were produced using the 

xanthine/xanthine oxidase (XOD) system and trapped by spin trap BMPO as the spin 
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adduct BMPO/ O2-•. Due to partial overlap between spin adducts of BMPO/glutathione 

radical and BMPO/O2-•, spin probe CPH was used to determine the superoxide radical 

scavenging ability of glutathione (GSH) instead of BMPO. Five microliter of the 

aforementioned antioxidant solutions, either with/without TiO2 or with/without sunlight 

irradiation were individually introduced to freshly made XAN/XOD mixture where 0.2 

U/ml XOD was added to initial superoxide radical generation. Control solution included 

25 mM BMPO, 1 mM xanthine, 0.1 mM DTPA used as stabilizing agent, and 0.2 U/ml 

XOD in 10 mM pH 7.4 buffer. For GSH solutions, 0.1 mM CPH was used instead of 

BMPO. The scavenging ability on superoxide radicals was shown as the intensity 

reduction of superoxide radicals. ESR spectra were recorded at 2 min of mixing. 

4.2.5 Hydroxyl radical scavenge 

The ESR spin-trapping technique was used to evaluate the interception of hydroxyl 

radicals by antioxidants affected by TiO2 NPs. The classic Fenton reaction was employed 

to generate the hydroxyl radicals by making a fresh reaction mixture containing 25mM 

BMPO, 20 mM freshly prepared FeSO4 solution and 200 mM H2O2 with 1mM 

antioxidant solutions treated or without treatment of TiO2 and simulated sunlight. Similar 

with DPPH and superoxide radical, the scavenging effect was determined by comparison 

with a solvent-treated control group. ESR spectra were recorded at 5 min. 

4.2.6 Statistical analysis 

Data was reported as mean ± SD for triplicate determinations. Statistical analysis was 

performed using Origin software (OriginPro 8.6, OriginLab). Comparison among 
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different treatment groups was analyzed by one-way ANOVA followed Tukey tests. 

Differences were considered significant at P<0.05.  

4.3 Results and discussion 

4.3.1 DPPH radical scavenging ability 

Determination of the quenching effect of the stable DPPH free radical is considered one 

of the most convenient and reliable methods to evaluate the antioxidant activity of food 

materials or food ingredients (Brand et al., 1994). The scavenging capacity of the selected 

antioxidants before and after exposure to TiO2 and simulated sunlight was evaluated 

using DPPH radical. DPPH• in 10% ethanol solution exhibits a typical one-peak ESR 

spectrum as shown in Fig. 4-2a. The effect of adding 1mM ECG was present in Fig. 4-2a 

as an example to illustrate the effect of antioxidants on DPPH• ESR signal intensity. A 

significant ESR signal intensity reduction (94±1% reduction) was observed after the 

addition of ECG. A similar phenomenon was observed when adding the ECG solutions 

that have been mixed with TiO2 but not exposed to sunlight (93±1% reduction). 

However, when ECG was mixed with TiO2 and irradiated by simulated sunlight for 30 

and 60 min, the addition of the above ECG solution only resulted in 75±1% and 56±3% 

scavenging of DPPH•. Exposure to sunlight and TiO2 NPs reduced DPPH radical 

scavenging of the antioxidant ECG. 
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Figure 4-2 Radical scavenging ability of 1mM ECG detected by ESR spectroscopy. Control 
sample in panel (a) contained 50uM DPPH radical in 10% EtOH solutions; in panel (b) 
included 25 mM BMPO, 10 mM PBS buffer (pH 7.4), 1 mM xanthine, 0.1 mM DTPA and 
0.2 U/ml XOD; (c) was a Fenton reaction system consisting of 25 mM BMPO, 0.1 mM Fe2+, 
and 1 mM H2O2. The experiment groups were added by 1mM ECG (1) without TiO2 NPs 
and not exposed to sunlight; (2) with addition of TiO2 NPs but not exposed to simulated 
sunlight, (3) with 0.1mg/mL TiO2 and exposed to simulated sunlight for 30 min and (4) for 
60 min. 

   

Interestingly, different results were observed for all seven antioxidants. 

Fig. 4-3 summarized the DPPH• scavenging ability of these antioxidants before and after 

being treated with TiO2 and simulated sunlight, including group (a) without TiO2 NPs and 

not exposed to sunlight; (b) with addition of TiO2 NPs but not exposed to simulated 

sunlight, (c) with 0.1mg/mL TiO2 and exposed to simulated sunlight for 30 min and (d) 

for 60 min. In the time period chosen in this study, the scavenging ability of RV and GSH 

was not compromised by sunlight irradiation. The reduction of DPPH radical after adding 
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EC was 99 ±1% for group (a), 98 ±1% for group (b), 96 ±1% for group (c) and 57±4% 

for group (d). For TCP, the DPPH• reduction was found to be 90 ±1%, 90 ±1% for group, 

70 ±1%, and 48±3% for group (a) – (d), respectively. The influence of sunlight and TiO2 

on AA and Cyst was not as significant as for EC, ECG and TCP. 

 

Figure 4-3 DPPH radical scavenging ability of EC, ECG, RV, TCP, AA, GSH and 
Cyst. Sample solutions contained 50uM DPPH radical in 10% EtOH. Y axis shows 
the remained radical signal intensity percentage after adding the antioxidants (1) 
without TiO2 NPs and not exposed to sunlight; (2) with addition of TiO2 NPs but not 
exposed to simulated sunlight, (3) with 0.1mg/mL TiO2 and exposed to simulated 
sunlight for 30 min and (4) for 60 min. ESR spectra were recorded at 5 min after 
mixing the solutions. Means sharing the same superscript are not significantly 
different from each other (P<0.05). 

4.3.2 Superoxide radical scavenging ability 
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Superoxide is another important radical that poses significance to physiological systems 

(Chang et al., 2007).  Employing spin trap agent BMPO, we evaluated the generation of 

superoxide using the XAN/XOD system and the superoxide scavenging effect of the 

selected antioxidants, as well as the effects of sunlight and TiO2 exposure on their 

superoxide radical scavenging ability. BMPO itself is ESR silent, while the spin adduct 

of BMPO and superoxide radical (BMPO/O2
-•) has a typical 4 line ESR spectrum with 

hyperfine splitting structure (aN = 13.4 G, aH
β = 12.1G) (Bruker, EPR Detection of the 

Superoxide Free Radical with the Nitrone Spin Traps DMPO and BMPO). Fig. 4-2b 

shows the addition of ECG to the freshly prepared reaction mixture containing 

XAN/XOD reduced the BMPO/O2-• signals. After treatment with TiO2 in conjunction 

with simulated sunlight, the reduction of radical signal intensity was still observed 

however the scavenging effect was less significant. Spin probe CPH was used instead of 

BMPO spin trap due to the partially overlap of BMPO/GSH radical and BMPO/O2-• 

spectra. Reduction of GSH scavenging ability can be detected by ESR monitoring CP• 

radical generation, which is the oxidation product of CPH due to the excessive O2-• in the 

solution. 

Fig. 4-4 shows the effect of exposure to TiO2 and simulated sunlight on the superoxide 

radical scavenging ability of those seven antioxidants. It is noteworthy to mention that, 

instead of reducing superoxide radical scavenging ability, treating RV with TiO2 NPs and 

sunlight resulted a further decrease of BMPO/ O2-• signal compared to untreated group. 

The superoxide radical scavenging capacity of RV was 64 ±2%, 63 ±2%, 77 ±2% and 77 

±3% for group (a) – (d). The superoxide scavenging capacity of the other 6 antioxidants 
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were reduced to different levels when exposed to simulated sunlight with the presence of 

TiO2. 

 

Figure 4-4 Superoxide radical scavenging ability of EC, ECG, RV, TCP, AA, GSH 
and Cyst. Sample solutions contained XAN/XOD system as a resource of superoxide 
radicals, including 25 mM BMPO, 10 mM PBS buffer (pH 7.4), 1 mM xanthine, 0.1 
mM DTPA and 0.2 U/ml XOD. Y axis shows the remained radical signal intensity 
percentage after adding the antioxidants (1) without TiO2 NPs and not exposed to 
sunlight; (2) with addition of TiO2 NPs but not exposed to simulated sunlight, (3) 
with 0.1mg/mL TiO2 and exposed to simulated sunlight for 30 min and (4) for 60 
min. ESR spectra were recorded at 2 min after mixing the solutions. Means sharing 
the same superscript are not significantly different from each other (P<0.05). 

4.3.3 Hydroxyl radical scavenging ability 
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Hydroxyl radical (·OH) scavenging capacity is an ideal indicator to estimate antioxidant 

property of a chemical compounds since ·OH is the most reactive ROS and it involves 

with a wide range of metabolism processes (Zhou et al., 2013). The hydroxyl radicals 

were generated using a classic Fenton reaction involving the reaction between Fe2+ and 

H2O2 (Yin, et al., 2009). Spin trap BMPO was used to form the stable spin adduct 

BMPO/·OH in order to quantitatively measure the short-lived hydroxyl radical. Fig. 4-2c 

showed the typical 1:2:2:1 four-line ESR signal (aN = 13.5 G, aH
β = 15.3 G, aH

γ = 0.6 G) 

of the BMPO/·OH adducts (Zhao et al., 2001). Addition of the original antioxidants 

solution or antioxidants that have been surrendered to sunlight/TiO2 treatment resulted 

different levels of BMPO/·OH signal reduction.  
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Figure 4-5 Hydroxyl radical scavenging ability of EC, ECG, RV, TCP, AA, GSH 
and Cyst. Sample solutions contained Fenton reaction system consisting of 25 mM 
BMPO, 0.1 mM Fe2+, and 1 mM H2O2. Y axis shows the remained radical signal 
intensity percentage after adding the antioxidants (1) without TiO2 NPs and not 
exposed to sunlight; (2) with addition of TiO2 NPs but not exposed to simulated 
sunlight, (3) with 0.1mg/mL TiO2 and exposed to simulated sunlight for 30 min and 
(4) for 60 min. ESR spectra were recorded at 5 min after mixing the solutions. 
Means sharing the same superscript are not significantly different from each other 
(P<0.05). 

 

Fig. 4-5 shows the quantitative determination of hydroxyl radical quenched by those 

antioxidants with or without being exposed to TiO2 and sunlight. Exposure to sunlight 

and TiO2 NPs significantly reduced the hydroxyl radical scavenging ability of those 

antioxidants, including EC, ECG, RV, AA, GSH and Cyst, with GSH being the most 

resistant to such treatment. Interestingly, increased hydroxyl radical scavenging ability 

was observed for TCP that has been mixed with TiO2 NPs solution and irradiated by 

sunlight. The hydroxyl radical scavenging capacity of TCP was 40 ±3%, 37 ±2%, 63 

±6% and 50 ±3% for group (a) – (d). 

4.4 Discussion 

4.4.1 Initial radical scavenging ability of antioxidants  

The intrinsic properties, in particular, the chemical characteristics, are one of the 

determination factors of the oxidant scavenging capacity of antioxidants (Chang et al., 

2007).  This study found that before any treatment, different radical scavenging behaviors 

were observed for the selected antioxidants. The DPPH• scavenging capacity of those 

antioxidants at the same concentration (1mM) were found to follow the sequence RV ≈ 

TCP ≈ EC > AA ≈ ECG > Cyst > GSH (Fig. 4-3). The antioxidative action of these 
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antioxidants quenching the generation of superoxide radicals was found to follow the 

activity sequence EC ≈ ECG ≥ TCP ≈ AA > RV > Cyst> GSH (Fig. 4-4). Those 

antioxidants also scavenge hydroxyl radical generated by Fenton reaction, following the 

activity sequence Cyst  ≥  GSH > RV > EC ≥  ECG >  AA > TCP (Fig. 4-5).  

As noted before, the mechanism of radical scavenging and antioxidant defense is very 

complicated and yet to be established (Lacopini et al., 2008). In general it seems to be 

clear that in addition to the structure of the radical scavenger, intrinsic properties of the 

free radical and the stability of the reaction products are also very important in the 

scavenging mechanism (Sadeghipour et al., 2005). The phenolic compounds that were 

used in this study( EC, ECG and RV) all showed strong radical quenching ability (Fig. 3-

5). The aromatic OH groups are the reactive centers, primarily 3’,4’-dihydroxy catechol 

group. For flavonoids EC and ECG, the ortho-dihydroxy group in the B-ring (Fig. 4-1) 

has a decisive effect on the antioxidant activity. In addition, the presence of a 2,3- double 

bond in the C ring, in conjunction with 4-oxo group can enhance antioxidant potential by 

electron donating effects. The 3- and 5- OH in the A rings also contributes to an 

increased antioxidant capacity (Chang et al., 2007; Lopez et al., 2003).  

GSH and Cyst are thiol containing antioxidants that are important substrate for enzymatic 

antioxidant functions and capable of nonenzymatic radical scavenging. Thiols react 

mainly by hydrogen transfer, yielding sulfur centered radicals. The antioxidant function 

can also proceed by reacting with hydroxyl radical to yield carbon centered radicals 

(Galano & Raul, 2011). From the results shown in Fig. 4-3 to 4-5, GSH and Cyst showed 

high inhibition/scavenging effects on hydroxyl radicals compared to their effects on 

DPPH and superoxide radicals. The classic Fenton reaction was used as a resource of 
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hydroxyl radical in this study. It is possible that in a Fenton system containing Fe2+, thiol 

antioxidants (GSH and Cyst) also act as metal chelators as well as radical quenchers 

(Deneke 2000).  

As one of the strongest reductants and radical scavengers, AA reduces oxygen, nitrogen, 

carbon and sulfur centered radicals and acts as a primary defense against radicals in 

aqueous solutions (Niki, 1991). AA has two protons available per molecule for 

antioxidative donation while the number has been determined to be 3 protons for EC 

(Yilmaz & Toledo 2004), which is likely to be the reason that the radical quenching 

capacity of AA is smaller than EC for DPPH, hydroxyl and superoxide radicals, as shown 

in Fig. 4-3 to 4-5. 

4.4.2 Intrinsic characteristics of free radicals 

Reaction kinetics and mechanisms of radical scavenging reaction not only depends on the 

antioxidant capacity of the antioxidants, but also the intrinsic properties of each radical. 

In this study it was observed that for superoxide radicals, the scavenging capacity of the 

tested antioxidants was generally of smaller magnitude than those of DPPH and hydroxyl 

radicals (Fig. 4-3 to 4-5). A possible explanation for this observation is that in an 

XAN/XOD system, O2
-• can be continuously generated in the system thus equilibrium 

state is hard to obtain (Frankel and Meyer, 2000). Most antioxidants react very rapidly 

with DPPH radical and the number of DPPH• molecules that can be scavenged is 

correlated with the number of available hydroxyl group in those antioxidants (Brand et 

al., 1994). Previous studies reported that flavonoids such as EC and ECG have high 

scavenging ability against DPPH• compared to RV (Lee et al., 2004). The superoxide 
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radical scavenging activity was found to be RV > EC (Yilmaz & Toledo, 2004). 

However, Fig. 4-3 shows that RV exhibited excellent DPPH• scavenging activity, which 

may due to the solvents effect. As both RV and DPPH• have high solubility in organic 

solvents such as methanol or acetonitrile.  

Superoxide radicals are a common free radical species found in biological substrates and 

used in antioxidants assays. These radicals are slightly less reactive than ·OH and possess 

an extended half-life (~ 10-5S) compared to ·OH (~10-9 S). In this study, superoxide 

radicals were generated using a XAN/XOD system in which the activity of the XOD 

enzyme strongly affects superoxide radical concentration. One possible defect of this 

method is that the antioxidants may suppress the generation of O2
-• by hindering XOD 

activity rather than directly interacts with radicals. Based on ESR measurement, Unno et 

al. (2000) suggested that a likely action of certain antioxidants is to scavenge O2
-• without 

inhibition with the function of XOD. Moreover, to rule out the possible interference, we 

used excessive amounts of XOD in this study.  

4.4.3 Effect of sunlight and TiO2 NPs 

Fig. 4-3 to 4-5 shows that with the presence of TiO2 NPs, sunlight irradiation resulted in 

significant loss of DPPH• scavenging ability of EC, ECG, TCP, AA and Cyst, but did not 

alter the scavenging capacity of RV and GSH. Under the same treatment, significant loss 

of O2
-• scavenging ability was observed for EC, ECG, TCP, AA, but not for GSH. The 

O2
-• scavenging effect was promoted when RV had been irradiated by sunlight with TiO2. 

We also observed significant loss of ·OH scavenging ability for EC, ECG, RV, AA and 

Cyst. However an increasing in ·OH scavenging capacity of TCP was observed. These 
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results seem to be random and irrelevant at first glance, but here we made the first effort 

to explain them from the following aspects. 

4.4.3.1 General destructive effects proceed via degradation 

It has been well recognized that semiconductors, such as TiO2, exhibit photoactivity and 

promote oxidative ROS as well as hole/electron pairs in aqueous solution. Those 

oxidative species can result in oxidative degradation of a wide range of compounds. 

Therefore TiO2 is widely used as a photocatalyst. The results in this study indicate that in 

general when TiO2 is present in the solution, even at low concentrations, simulated 

sunlight had negative effects on antioxidant capacity of antioxidants, most probably by 

their oxidative destruction. In our study this case was found to be true with EC, ECG, AA 

and Cyst, regardless of the free radical species.  

4.4.3.2 Surface interaction with TiO2 NPs 

The free radical scavenging ability of GSH is found to be barely influenced when treated 

with TiO2 exposure and light irradiation. However, a different result was observed for 

another thiol-containing antioxidant, Cyst—the constituent amino acid of GSH. This 

interesting observation agrees with a previous study reported by Nosaka et al. (2012), in 

which the authors detected that TiO2, under light irradiation for 120 min resulted in slight 

decomposition of GSH, while a much higher decomposition rate was found for Cyst. 

Adsorption of antioxidants on the TiO2 surface not only contributes to the decomposition 

of antioxidants, but also directly hinders the radical scavenging capacity by reducing the 

functional group. For example, S-H groups of Cyst bind with the active OH site on TiO2 

surface, leading to S-S bond which can no longer donate H. In contrast, the 
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decomposition of GSH resulted from the adsorption of TiO2 surface was less likely 

compared to Cyst. The adsorption sites of GSH could be the carboxyl group or amino 

group rather than SH group, leading to self-defensive ability of GSH to photoexited TiO2 

(Nosaka et al., 2012). 

4.4.3.3 Reaction media 

Besides GSH, RV and TCP both responded differently to TiO2 and sunlight treatment 

compared with EC, ECG, AA and Cyst. One possible reason for the difference could be 

the reaction solvent. It is common knowledge that solvent composition is an important 

factor in light-triggered decomposition of antioxidants.  Sabliov et al. (2008) found that 

TCP in free form did not degrade when exposed to UV light, but the samples in organic 

solvent degraded significantly as a matter of time. The solution of RV and TCP used in 

this study contained 10% CHCN3. The DPPH• scavenging ability of RV remained after 

exposure to sunlight with TiO2 (Fig. 4-3), and the O2
-• scavenging ability indeed 

increased (Fig. 4-4). An increase of ·OH scavenging capacity was observed for TCP (Fig. 

4-5) after being irradiated with simulated sunlight with TiO2. RV and TCP are 

hydrophobic dietary antioxidants. The additional organic solvent could result a higher 

affinity between DPPH• (10% methanol) and RV (10% CHCN3), which may explain why 

RV showed strong DPPH• scavenging capacity, even after exposure to sunlight.  

4.5 Conclusion 

TiO2 nanomaterials are one of the most extensively studied materials in the field of 

nanotechnology. Upon light irradiation, TiO2 NPs generate elevated level of reactive 

oxygen species, which has been associated with oxidative stress and many diseases.  
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Antioxidants can scavenge reactive free radicals in chemical and biological systems, 

protecting cells from oxidative damage. As a result, they have been used as dietary 

supplements. In the current study, we selected seven common antioxidants that are 

widely used in food and skin care products to study the effect of sunlight and TiO2 

exposure on their radical scavenging abilities. The radical scavenging capacity of most 

antioxidants was compromised when treated with TiO2 NPs and exposed to simulated 

sunlight, including epicatechin, epicatechin gallate, ascorbic acid, cysteine, α-tocopherol, 

glutathione and resveratrol. GSH was found to be most resistant to such treatment and 

showed preserved radical scavenging ability after being treated with TiO2 NPs with 

sunlight irradiation. Interestingly, the radical scavenging ability of α-tocopherol towards 

hydroxyl radical and resveratrol towards superoxide radical increased after being mixed 

with TiO2 NPs then simulated by sunlight irradiation. Those results suggest that exposure 

to simulated sunlight with the presence of TiO2 NPs alters the free radical scavenging 

abilities of antioxidants. The effects vary, largely depending on the chemical structure of 

antioxidants as well as the targeted radical.  
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Chapter 5: FD&C Yellow No. 5 (Tartrazine) Degradation via Reactive 

Oxygen Species Triggered by TiO2 and Au/TiO2 Nanoparticles Exposed 

to Simulated Sunlight  

Partially adapted from Li, M.; He, W; Wu, H; Liu, Y; Wamer, W; Lo, Y. M.; Yin, J-J. 
FD&C Yellow No. 5 (Tartrazine) Degradation via Reactive Oxygen Species Triggered by 
TiO2 and Au/TiO2 Nanoparticles Exposed to Simulated Sunlight. Journal of Agricultural 
and Food Chemistry, 2014 (accepted by journal as of Nov. 13th, 2014) 

 

5.1 Introduction 

Titanium dioxide (TiO2) has been used as ingredients in a wide range of consumer 

products. Important examples include its use as a UV protectant in sunscreens, a pigment 

in paints, as well as coloring and anti-caking agents in drugs and food products (Carlotti 

et al., 2009). Additionally, TiO2, particularly in its anatase form, is an efficient 

photocatalyst. For this reason, TiO2 has also been extensively used as photocatalyst for 

wastewater treatment to detoxify biocides or other hazardous pollutants (Hamal et al., 

2010; Ochiai et al., 2013). To date, in the food industry TiO2 is primarily found in soft 

drinks, yogurts, ice cream, chips, pickles, honey, mustard, gum, puddings and gelatins, 

confectionary products, and baked goods (Gomez et al., 2012).  While use of TiO2 in 

food is generally considered as safe, in the US, there is a 1% by weight maximum 

allowance in food (FDA, 21CFR73.575), unlike Japan where it is permitted without 

limitations, except in specific types of food (Japan, 2000). On the other hand, tighter 

controls over the use of TiO2 are seen in different parts of the world.  The European 

Union authorizes its use at 100 mg/L (individually or in combination with other dyes) in 

non–alcoholic flavored drinks, 0.015% in desserts including flavored milk products, and 
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0.02 % in candied fruits and vegetables (EU, 1994). In India the use of TiO2 is restricted 

to chewing gum and bubble gum at no more than 1% and to powdered concentrate mixes 

for fruit beverage drinks not to exceed 0.01% by weight (India, 2004a; b).  

Accompanying the advancements of nanotechnology was the increased chemical and 

biological reactivity of food ingredients due mainly to the drastic reduction in particle 

size and increase in surface area. Recent studies revealed that the size of most TiO2 used 

in food falls into nano-range (Yang et al., 2014; Weir et al., 2012; Chen et al., 2013). 

When irradiated, TiO2 nanoparticles (NPs) absorb photon energy equal to or higher than 

its band gap (3.0 eV for the rutile and 3.2 eV for the anatase phase), exciting electrons in 

the valence band to the conduction band, resulting in conduction band electrons, and 

leaving valence band holes that can extract electrons from water or hydroxyl ions while 

generating hydroxyl radicals (•OH) (Mao&Chen, 2007; Yin et al., 2012). This process 

also involves formation of other reactive oxygen species (ROS), including superoxide 

radicals (O2
-•) and singlet oxygen (1O2) (Daimon & Nosaka, 2007), as well as some 

intermediate species such as H2O2 or O2 (Chen & Mao, 2007). Taking advantage of its 

light-tunable ROS promotion ability, TiO2 NPs have been used in food package materials 

as an anti-microbial agent (Yu et al., 2013; Wu et al., 2010) as well as in intelligent ink 

for oxygen detection (Mills, 2005). 

However, ROS generated by photoexcited TiO2 NPs may lead to oxidative damage in 

biological systems (Wamer et al., 1997; Liu et al., 2010). Of particular interest are food 

matrices because they are complicated and contain many reactive compounds. ROS have 

been observed to oxidize sensitive food colors, leading to discoloration of food products 

(Chu et al., 2009). To date, synthetic azo dyes, e.g. FD&C Yellow No. 5, FD&C Red No. 
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40 (allura red) and FD&C Yellow No. 6 (sunset yellow), are still widely used in the food, 

drug, and cosmetic industry over natural dyes because of their cost advantage and high 

stability to light, oxygen, and pH changes (Gomez et al., 2012). However, the potential 

hazard of FD&C Yellow No.5 remains controversial.  It has been associated with 

possible toxicity that might result in allergic and intolerance reactions, especially among 

asthmatic patients and those with aspirin intolerance (Alvarez Cuesta et al., 1981). 

Nevertheless, recent oral administration studies proved limited reproducibility of 

tartrazine-induced angioedema (Nettis et al., 2003) or lack of genotoxicity lesions (Poul 

et al., 2009). Therefore, the present study aimed at using FD&C Yellow No. 5 as a model 

of azo dyes to evaluate its degradation in the presence of TiO2 NPs, which were 

photoexcited by simulated sunlight. During this process, ROS generation was identified 

and the interaction between different ROS species and this azo dye was monitored at 

different pH.  

5.2 Materials and Methods 

5.2.1 Materials 

The sample of FD&C Yellow No. 5 (Y5) used in this study originated from a batch 

submitted to the FDA for certification. The purified main component of FD&C Yellow 

No. 5 (MY5) was separated by countercurrent chromatography from a portion of FD&C 

Yellow No. 5 and was generously provided by Dr. Adrian Weisz in FDA (Weisz et al., 

2014). Methanol (Fisher Scientific, Fair Lawn, NJ, USA), ammonium acetate (NH4OAc, 

Fisher), and water were of chromatography grade. The mixed-phase titanium dioxide 

Deggussa Aeroxide P25 (75% anatase and 25% rutile phase, surface area 50±15 m2/g) 
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was purchased from Degussa Corporation (Parsippany, NJ). The spin-trap, 5-tert-

butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO), was purchased from Applied 

Bioanalytical Labs (Sarasota, FL). 2,2,6,6-Tetramethyl-4-piperidone (TEMP) was 

purchased from Wako Pure Chemical Industry, Ltd. Japan. 2,2,6,6 -

Tetramethylpiperidine-1-oxyl (TEMPO) was purchased from Alexis, Enzo Life Sciences, 

Inc. (NY, USA). 15N-labeled 4-oxo-2,2,6,6-tetramethylpiperidine-d16-1-oxyl (15N-PDT) 

was purchased from Cambridge Isotope Labs (Andover, MA). Superoxide dismutase 

(SOD) and standard buffer solutions were purchased from Sigma Chemical Co. (St. 

Louis, MO). Before use, each buffer stock solution (pH 3.9 HAc-NaAc, pH 5.0 PBS, pH 

7.4 PBS, all at 0.1 M) was treated with Chelex100 molecular biology grade resin from 

Bio-Rad Laboratories (Hercules, CA) to remove trace metal ions. Distilled deionized 

water (18.2 MΩ.cm) from a Milli-Q water purification system was used in all 

experiments. 

5.2.2 Preparation of Au/TiO2 hybrid nanostructures 

 Au/TiO2 hybrid nanostructures were prepared according to  a previously reported photo-

reduction method (Tanaka et al., 2012) with modifications according to He et al. (2013). 

To obtain a  Au/TiO2 sample with a Au: TiO2 ratio = 1:100 (by weight), 10 mL of 2.0 

mg/mL TiO2 suspension in methanol (50% by volume) was mixed with 0.1 ml aqueous 

solution of HAuCl4 (2 mg/mL Au) in a 50 mL quartz Erlenmeyer flask and sealed. The 

above solution was sonicated for 5 min, then irradiated for 30 min under simulated 

sunlight with magnetic stirring in a ice water bath. The light source was an Oriel Xenon 

Arc Lamp Solar Simulator. A clearly evident color change from white to greyish pink 

was observed, indicating the formation of TiO2/Au hybrid nanostructures. After 
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centrifugation, UV spectral analysis of the supernantant after each photodeposition 

revealed that the Au  had been almost completely (>99%) deposited as Au on the TiO2 

particles.The precipitate was collected, washed three times with double distilled water, 

and then dried at 45°C overnight in oven and used for further experiments.  

5.2.3 Characterization of nanomaterials 

UV-Vis absorption spectra were obtained using a Varian Cary 300 spectrophotometer. 

Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images 

were captured on a JEM 2100 FEG (JEOL) transmission electron microscope 

(accelerating voltage of 200 kV) located at the NanoCenter, University of Maryland, 

College Park, MD. Energy-dispersive X-ray analysis (EDX) was conducted using the 

same microscope. The samples for TEM analysis were prepared by adding drops of the 

dispersed colloidal solutions onto standard holey carbon-coated copper grids, which were 

then air dried at ambient temperature.  

5.2.4 Dye degradation 

For examining the degradation of the food dye, 10 mL aqueous solution containing 25 

mg/L MY5 or Y5 and selected concentrations of TiO2 or Au/TiO2 NPs were continuously 

stirred in the dark for 30 min to establish an adsorption-desorption equilibrium between 

the NPs and dyes. The above suspension was transferred to a 50 mL quartz Erlenmeyer 

flask, sealed and irradiated using a light source to deliver simulated sunlight. The light 

resource consisted of a Universal Arc Lamp Power Supply (69920 Universal Supply, 

Newport, Irvine, CA) using xenon lamps (880 W) and an Oriel® Xenon Arc Lamp Solar 

Simulator. During irradiation, the suspension was continuously stirred and kept in ice 
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water bath. The degradation process was monitored using a Varian Cary 300 

spectrophotometer. Before UV-Vis analysis, the reaction mixture was centrifuged to 

remove the TiO2
 or Au/TiO2 particles. The photocatalytic degradation of MY5 was 

observed to follow pseudo-first-order kinetics. When the dye concentration was in the 

millimolar range, the apparent first-order rate constant, kapp was determined from the 

slope of ln (C/C0) vs irradiation time according to the following relation: 

−  𝑙𝑛 !
!!
= 𝑘!""𝑡                                                                                                                (1) 

Where t is the irradiation time, C0 is the initial concentration of dye, and C is the 

concentration of dye (mg/L) at time t (Konstantinou & Albanis, 2004). The concentration 

was determined by spectrophotometry. The UV-Vis spectrum of MY5 consists of two 

characteristic peaks at 425 nm and 258 nm. The λmax of the dye (425 nm) was chosen for 

quantitative degradation studies. 

5.2.5 Electron Spin Resonance 

ESR spin-trap spectroscopy was employed to detect the generation of reactive oxygen 

species (ROS) and occurrence of electron transfer during simulated sunlight irradiation of 

samples. The spin trap, BMPO, was used to detect the generation of superoxide radicals 

(O2
-•) and/or hydroxyl radicals (•OH). TEMP was used to investigate the generation of 

singlet oxygen (1O2). TEMPO, a stable radical that exhibits an ESR signal have three 

identical peaks, was used as spin probe to study the electrons generated in the TiO2 

aqueous solution. Oxygen consumption during dye degradation photocatalyzed by TiO2 

NPs was monitored by ESR oximetry. A water soluble  spin label, 15N-PDT, was used to 

detect the oxygen content in sample solutions. The shape of 15N-PDT ESR spectrum is 
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dependent on the amount of O2 interacting with it, where higher peak-to-peak amplitude 

(A) and narrower peak-to-peak line width (W) are found when the levels of O2 in solution 

are reduced (Yin et al., 2012).  O2 concentration was calculated by a calibration standard 

curve described by: 

𝑂! = 419.72 ∗𝑊 − 44.12                                                                                              (2) 

where [O2] is the concentration in solution (µM). The consumption of oxygen was 

expressed as [O2-time]/[O2-initial]. 

Fifty microliter aliquots of control or sample solutions were put in glass capillary tubes 

with internal diameters of 1 mm and sealed using Critoseal™ capillary tube sealant, then 

placed into the microwave cavity of a Bruker EMX ESR Spectrometer (Billerica, MA) 

for obtaining ESR spectra. All ESR measurements were carried out in situ using the 

following settings for detection of the spin adducts: 10 mW microwave power for 

detection of spin adducts using spin traps, and 1 mW microwave power for ESR oximetry 

using 15N-PDT, 100 G scan range and 1 G field modulation. Photoirradiation was 

accomplished by a lighting system consisting of a 450 W Xenon lamp equipped with a 

Schoeffel xenon arc solar simulator to generate simulated sunlight.  ESR spectra were 

collected during irradiation at different time intervals. All measurements were performed 

in replicate at ambient temperature. Control groups, either without catalysts or without 

irradiation, were also recorded for comparison. The final concentration of each 

component is described in each figure caption. 

5.2.6 Analytical HPLC 
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HPLC analyses were performed with a Waters Alliance 2690 Separation Module 

(Waters, Milford, MA, USA). The eluents were 0.2 M aqueous NH4OAc and methanol. 

The column (Xterra C18, 5 µm, 250 mm × 4.60 mm i.d., Waters, Waltham, MA, USA) 

was eluted by using consecutive linear gradients of 0–10% methanol in 5 min, 10–25% 

methanol in 10 min, and 25–40% methanol in 20 min, followed by 100% methanol for 6 

min. The effluent was monitored with a Waters 996 photodiode array detector set at 254 

nm. Other conditions included: flow-rate, 1 ml/min; column temperature, 25±5°C; 

injection volume, 20 µL. The sample analyzed consisted of an aliquot (∼1.5 ml) from the 

aqueous dye solution that was irradiated in the presence of TiO2. 

5.2.7 Liquid chromatography–mass spectrometry 

The high-resolution mass spectra of the components found in the irradiated dye solutions 

were acquired using an Agilent 6520 Q-TOF LC/MS system (Agilent Technologies, 

Santa Clara, CA, USA) equipped with Agilent MassHunter Workstation software for data 

acquisition and data analysis. The separated components were analyzed in the positive 

electrospray ionization (ESI) mode.  

5.3 Results and discussion 

5.3.1 Characterization of TiO2 nanoparticles and Au/ TiO2 hybrid nanostructures 
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Figure 5-1 TEM images of TiO2 NPs (a) and (b) Au/ TiO2 hybrid nanostructures; (c)dark 
field STEM of Au/ TiO2 hybrid nanostructures, insert showing EDS analysis; and 
(d)HRTEM of Au/ TiO2 (Au:TiO2 ratio = 1:100 by weight) hybrid nanostructures formation 
after photodeposition. Scale bars are all 10 nm. 

The morphology of TiO2 NPs and Au/ TiO2 hybrid nanostructure was characterized by 

transmission electron microscopy (TEM). Fig. 5-1a shows the original TiO2 P25 

agglomerates with the size ranging from 22 to 48 nm. The high-resolution TEM 

(HRTEM) image (Fig. 5-1c) shows the Au NPs (dark dots) located on the surface of the 

individual TiO2 NPs. The size of the photo-deposited Au NPs was estimated to be 4 to10 

nm. After doping Au on to TiO2 surface, the surface characteristics and size of the TiO2 

NPs remained unchanged. Electron dispersive spectrum (EDS) analysis was performed to 

further confirm the formation of Au/ TiO2 nanostructure (Fig. 5-1b). The EDS spectrum 
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in Fig. 5-1c shows a strong signal for Ti and a weak signal for Au. The mass ratio of Au/ 

TiO2 for the selected area was estimated to be approximately 5% based on this spectrum. 

Elemental copper and carbon were also detected by EDS, which was associated with the 

supporting carbon coated copper grids. The HRTEM image taken from the interfacial 

region of Au and TiO2 shows the lattice image with a lattice spacing of 0.353 nm that 

corresponds to the {001} facets of anatase phase. Lattice fringes with interplanar distance 

of 0.202 nm was observed on the dark dots in Fig. 5-1d, which is similar to the planar 

distance for Au {200} (d = 0.204 nm). 

5.3.2 Degradation of FD&C Yellow 5 

5.3.2.1 Effect of initial TiO2 concentration 
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Figure 5-2 Decomposition of purified main component of FD&C Yellow No. 5 (MY5) under 
simulated sunlight. Y axis (C/C0) shows the concentration of remaining dye at irradiation 
time divided by the initial dye concentration. Reactions were carried out in (a) water 
solutions of MY5 and 0 (control), 0.01, 0.02, 0.05, 0.1, and 0.2 mg/mL TiO2 NPs irradiated 
by simulated sunlight for different time intervals or without sunlight exposure (control); (b) 
10 mM PBS buffer (pH 5.0, 6.0 and 7.4) or 10 mM acetic acid buffer (pH 3.9) solutions 
containing MY5 and 0.1 mg/mL TiO2 NPs; (c) water solutions of MY5 or batch certified 
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FD&C Yellow No. 5 (Y5) containing 0.1 mg/mL TiO2 NPs or Au/TiO2 hybrid 
nanostructures. The initial dye concentration in all samples was fixed at 25 mg/mL. 

The degradation of FD&C Yellow 5 (Y5) and the purified main component of Y5 (MY5, 

also referred to as tartrazine) in the presence of nano TiO2 was carried out under 

simulated sunlight. Fig. 5-2a illustrates the effect of the initial TiO2 NPs concentration on 

degradation kinetics. The initial concentration of MY5 was fixed at 25 mg/L, while the 

concentration of TiO2 NPs was adjusted to 0.01, 0.02, 0.05, 0.1 and 0.2 mg/mL. Fig. 5-

2a, clearly demonstrates that MY5 remains unchanged after 120 min for the control group 

which contained no TiO2 NPs but was exposed to simulated sunlight.  Dos Santos et al 

(2014) have reported a significant reduction of tartrazine in aqueous solution with 15 min 

UV irradiation. The difference between our observation and the results obtained by those 

investigators may be attributed to the different light sources and intensities used. Fig. 5-

2a shows that an increase in the concentration of TiO2 results a higher rate of degradation 

rate for MY5. At TiO2 NPs concentration of 0.1 mg/mL, the dye was not 

spectrophotometrically detectable after 30 min exposure to simulated sunlight, which was 

also confirmed using HPLC (Fig. S1). The decrease in dye concentration was plotted as 

ln (C/C0) versus time and fitted into a first-order reaction model as described in materials 

and methods. The insert of Fig. 5-1a shows the calculated reaction constant, kapp, at 

different concentrations of TiO2. The highest rate constant (kapp = 0.133 min-1) was 

observed at 0.2 mg/mL TiO2 NPs.  

5.3.2.2 Effect of pH 

The pH of the reaction mixture plays multiple roles in dye degradation process by 

affecting the ionization state of the TiO2 surface, hydroxyl radical generation in the 
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solution (Konstantinou & Albanis, 2004), as well as the structure of tartrazine (Weisz et 

al., 2014). In this study we investigated pH 3.9, 5.0, 6.0 and 7.4 to mimic the pH range of 

particular food products. Fig. 5-2b shows that under slightly alkaline condition (pH = 7.4) 

the degradation rate was significantly promoted (kapp = 0.084 min-1), whereas the rate 

constant kapp were calculated to be 0.028, 0.035 and 0.039 min-1 for pH 3.9, 5.0, and 6.0, 

respectively.  Under acidic conditions (pH < 6.8), the TiO2 surface is positively charged 

whereas it is negatively charged for pH > 6.8 (Poulios et al., 1999). When TiO2 is 

negatively charged, the hydroxyl radical and superoxide radical generated on TiO2 

surface more readily diffuse into solution and are available for chemical reactions. 

However, it has been reported that the effect of pH on TiO2 is not as significant as it is on 

the structure of azo dyes (Zhan et al, 1998). In acidic media (pH < 6), a strong adsorption 

of the dye on the TiO2 particle has been observed, resulting from the significantly high 

electrostatic attraction force between the positively charged TiO2 with the anionic dye 

molecule, whereas in alkaline condition, OH− ions compete effectively with dye ions, 

causing a decrease in adsorption and accelerating the degradation process (Banerjee & 

Chattopadhyaya, 2013).  

5.3.2.3 Effect of dye composition 

FD&C Yellow No. 5 (Y5) is batch-certified by the U.S. Food and Drug Administration 

(FDA) to ensure compliance with specifications in the Code of Federal Regulations 

(CFR) (FDA, 2014). Among the specifications is a limit of 1% for each of two 

polysulfonated subsidiary colors: the tetrasodium salt of 4-((4′,5-disulfo(1,1′-biphenyl)-2-

yl)hydrazono)-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid; and 

the trisodium salt of 4,4′-(4,5-dihydro-5-oxo-4-((4-sulfophenyl)hydrazono)-1H-pyrazol-
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1,3-diyl)bis(benzenesulfonic acid), which has been assigned the abbreviations Pk5 and 

Pk7 by Weisz et al., 2014. To our best knowledge, most of the Y5 samples in previously 

published studies were obtained from commercially available tartrazine samples which 

contain around 85% MY5. It is noteworthy that the purity and composition of those 

samples may not be similar and thus may lead to misunderstanding and inconsistency 

among studies. Therefore, we studied the batch-certified dye for food, drug and cosmetic 
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use, as well as its purified main component (MY5, ~99% purity). 

 

Figure 5-3 HPLC chromatograms of (a) purified main component of FD&C Yellow No. 5 
(MY5; aka. tartrazine); (b) batch certified FD&C Yellow No.5 (Y5); degradation products 
of (c) MY5 and (d) Y5 resulted by 30 min irradiation of simulated sunlight. Sample 
solutions in (c) & (d) contained 0.1 mg/mL TiO2 NPs. The effluent was monitored at 
wavelength 254 nm.  
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The HPLC chromatograms of Y5 and MY5 used in this study were shown in Fig. 5-3 

a&b. Fig. 5-3c&d shows the decomposition of solutions containing those samples, 

respectively. Under the same treatment conditions, the FDA certified dye showed lower 

degradation rate compared to the purified main component according to data obtained by 

spectrophotometer analysis. However, it is too early to conclude that Y5 has greater 

stability in the presence of photoexcited TiO2. Pk5 and Pk7 both have higher molecular 

weight than MY5 and moreover, have different light absorption characteristics.  

5.3.2.4 Effect of doping Au onto TiO2 surface 

Nobel metals have been widely used to enhance the photoactivity of TiO2. Au 

nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole 

separation and the subsequent transfer of the trapped electron to the adsorbed O2 acting as 

an electron acceptor. Therefore, to investigate the relationship between dye degradation 

and electron/hole pair as well as ROS generation, we synthesized Au/TiO2 hybrid 

nanostructure by depositing Au onto the surface of TiO2. Fig. 5-2c shows that, for both 

MY5 and Y5, Au/TiO2 exhibited enhanced photoactivity and accelerated color 

degradation. HPLC analysis showed that the decomposition of MY5 resulted by TiO2 and 

Au/TiO2 NPs yielded the same degradation products (data not shown here). 

5.3.3 TiO2 generated electrons and ROS 

5.3.3.1 Detection of electron reactivity during photoexcitation of TiO2 NPs 

Electron spin resonance was employed to investigate the generation of reactive oxygen 

species (ROS) and occurrence of electron transfer during photoexcitation of TiO2 in 

aqueous solution. The reactive electrons generated in 0.1 mg/mL TiO2 NPs were detected 
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using a stable spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). TEMPO is a 

stable radical that has been widely used as a spin label in ESR spectroscopy, exhibiting a 

triplet ESR spectrum, whereas its reduced form, hydroxyl amine (TEMPOH), is ESR 

silent (Lavi et al., 2004). As shown in Fig. 5-4a, the triplet-peak ESR signal of TEMPO 

remained unchanged for the control groups, either without TiO2 NPs or without simulated 

sunlight irradiation. However, with the addition of TiO2 NPs (0.1 mg/mL), the signal 

intensity significantly reduced after 3 min irradiation with simulated sunlight. Further 

flattening of ESR spectrum was observed for samples containing the same amount of Au/ 

TiO2 NPs, indicating a higher fraction of TEMPO being reduced to TEMPOH. Since our 

results indicated that TEMPO does not react with other species in the solution, such as 

hydroxyl radical or superoxide radical generated by H2O2 (See Figure A1 in Appendix), 

the reduction of TEMPO necessarily resulted from the electrons generated during 

photoexcitation of TiO2 NPs.  
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Figure 5-4 Detection of photogenerated electrons and ROS in solutions containing 0.1 
mg/ml TiO2 NPs or Au/TiO2 hybrid nanostructures. ESR spectra obtained from samples 
containing different spin probes: (a) 0.02 mM TEMPO; (b) 25 mM BMPO; (c); 2 mM 
TEMP and. Control group represents samples without nanoparticles or no exposure to 
simulated sunlight. All the spectra were recorded after 3 min of irradiation with simulated 
sunlight. 

 

5.3.3.2 Generation of hydroxyl and superoxide radicals 

The generation of hydroxyl radical by photoexcited TiO2 NPs in aqueous solution was 

confirmed using the spin trap BMPO. Being ESR silent itself, BMPO can trap hydroxyl 

radical or superoxide radical and become ESR detectable. The spin adduct BMPO/•OH 

exhibits a 1:2:2:1 peak ESR signal, with hyperfine coupling constant aN = 13.5 G, aH
β = 
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15.3 G and aH
γ = 0.62 G, while the spin adduct of BMPO and superoxide radical 

(BMPO/O2-•) has a typical 4 line ESR spectrum with hyperfine splitting structure (aN = 

13.4 G, aH
β = 12.1 G) (Zhao et al., 2001). Fig. 5-4b shows an ESR spectrum identical to 

BMPO/•OH spin adduct signal for TiO2 exposed to simulated sunlight. A similar ESR 

pattern with higher intensity was observed for Au/ TiO2 NPs under the same 

experimental conditions. Previous studies have reported difficulty when using BMPO as 

a spin trap for a system containing both •OH and O2
-• due to possible overlap of 

BMPO/•OH and BMPO/ O2
-• signals (Yin et al., 2012). For irradiated TiO2 solutions, the 

formation of •OH has been widely recognized while several studies have reported 

observation of O2
-• detected by ESR spectroscopy (Li et al., 2014). To determine whether 

superoxide radical is involved in this process, superoxide dismutase (SOD) was 

employed to scavenge superoxide radicals in order to eliminate any BMPO/ O2
-• signal 

(See Figure A2 in Appendix). With the addition of SOD (0.2 U/ml) to the above TiO2 

NPs solution, the 1:2:2:1 peak ESR signal remained the same pattern that is identical to 

BMPO/•OH spin adduct. However, the intensity of the above signal was reduced to half. 

Since SOD does not scavenge •OH, we believe that the reduction of this ESR signal 

implies that O2
- , in addition to •OH, is generated in photoexcited TiO2 NPs solutions. 

5.3.3.3 Generation of singlet oxygen 

In addition to hydroxyl and superoxide radicals, singlet oxygen is another important ROS 

that has been implicated in the degradation of azo food dyes (Rembold & Kramer, 1978). 

We used the spin probe TEMP to study singlet oxygen (1O2) generation during 

photoexcitation of TiO2 NPs. TEMP is ESR silent. When it reacts with singlet oxygen, 

the reaction product, a nitroxide radical, 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl 
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(TEMPONE), is formed and shows a 1:1:1 peak ESR spectrum (Lion et al., 1976). No 

ESR signal was observed for control groups containing the spin probe and TiO2 NPs 

without exposure to simulated sunlight or when TEMP alone was irradiated. ESR spectra 

having three lines with equal intensities (aN=16.0 G), typical of nitroxide radicals, was 

found for irradiated solutions containing TEMP and TiO2 (Fig. 5-4c) The hyperfine 

splitting constant and g factor of the observed signal were identical to those of 

commercial TEMPONE, indicating the generation of singlet oxygen during irradiation. 

Similar spectrum with higher intensity was observed for Au/ TiO2. Previous studies 

found evidence that singlet oxygen was formed through the following pathway (Daimon 

et al., 2008): 

O2
-• + h+

vb    → 1O2                                                                                                           (3) 

To test this theory SOD (0.2 U/mL) was added to the above mixture. This resulted in a 

reduction of this triplet ESR signal (See Figure A2 in Appendix). TEMPO signal 

significantly reduced upon the addition of SOD. Again, due to the fact that SOD is a 

specific enzyme that catalyzes the dismutation of superoxide (O2
-•), this result confirms 

that, during photoexcitation of TiO2 NPs aqueous solution, superoxide radicals play a role 

in the formation of singlet oxygen.  

5.3.4 Interaction between ROS and FD&C Yellow 5 

5.3.4.1 Hydroxyl radical consumption 

A time and pH dependence study was carried out to further investigate the role of 

hydroxyl radical in the decomposition of food dye (Fig. 5-5a). Insert of Fig 4a depicts the 

ESR spectrum of a typical BMPO/•OH spin adduct that was observed for all sample 
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solutions. The time dependence of the ESR signal intensity was obtained by measuring 

the peak to peak height of the second line of this ESR spectrum. Fig. 5-5a shows the time 

dependent ESR signal intensity obtained for photoexcited TiO2 NPs solutions with or 

without MY5 at pH 5.0 or 7.4. For solutions containing only TiO2 NPs, the signal 

intensities of BMPO/•OH adduct tested at pH 5.0 were significantly lower than samples 

tested at pH 7.4. This is most likely due to the lower availability of hydroxyl anions in 

acidic media. At pH 7.4, TiO2 solutions with MY5 shows significantly lowered ESR 

intensity compared with TiO2 NPs only, indicating that under the simulated sunlight 

irradiation, hydroxyl radicals generated on photoexcited TiO2 NPs were consumed by the 

azo dye MY5, which results in decomposition. Interestingly, at pH 5.0, the addition of 

MY5 did not result in a significant change in ESR intensity for •OH spin adduct, 

implying that no or little •OH was used for dye degradation. The results from this ESR 

time and pH dependent study agrees with our previous observations shown in Fig. 5-2b, 

where lower reaction rate constant was found for acidic solution.  This phenomenon 

might be explained by the previously reported theory that in acidic conditions, a strong 

adsorption of the dye on the TiO2 particle has been observed as a result from the 

significantly high electrostatic attraction force between the positively charged TiO2 with 

the anionic dye molecule. 
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Figure 5-5 ROS and O2 consumption during decomposition of dye upon simulated sunlight 
irradiation. Reactions were conducted in 10 mM buffered solutions with pH 5.0 or pH 7.4 
containing different spin probes: (a) 25 mM BMPO; (b) 5 mM TEMP; (c) 0.2 mM 15N-PDT. 
Sample solutions contained 0.1 mg/mL TiO2 or Au/TiO2 NPs with (or without) 25 mg/mL 
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MY5. Insert pictures present the ESR spectra of the detected species using corresponding 
spin probes. The time dependence of the ESR signal intensity was obtained by (a) 
measuring the peak to peak height of the second line of the ESR spectrum of the 
BMPO/•OH; (b) peak to peak height of the first line of the ESR spectrum of TEMP/1O2 
adduct. O2 concentration (c) was calculated based on the peak-to-peak line width of spin 
probe 15N-PDT. 

 

5.3.4.2 Singlet oxygen consumption 

Fig. 5-5b shows the time dependence of ESR signal for the formation of TEMPONE 

from TEMP due to the generation of 1O2. The insert in Fig. 5-5b shows the ESR spectrum 

of TEMPONE observed in all samples. ESR intensity detected at pH 7.4 was 

significantly higher compared to pH 5. This observation agrees with a previous study by 

Daimon et al. (2008), in which the generation of 1O2 was suppressed when pH < 5 and 

reaches its maximum between pH 6 to pH 11. The decrease in 1O2 at pH 5 compared to 

pH 7.4 is attributable to the suppression of O2
-• at the TiO2 surface, taking consideration 

that the 1O2 originated from the oxidation of O2
-• by the valence band holes h+ (Equation 

1). Unlike hydroxyl radical, the consumption of 1O2 by the azo dye MY5 was found for 

both acidic and alkaline conditions. At pH 5, the ESR signal for 1O2 was largely reduced 

when MY5 was added into the reaction mixture thus we did not observe any ESR signal 

for 1O2. However, when BMPO is used in the above solution, a 6 peak ESR signal 

indicating the formation of carbon center radical was recorded by ESR spectroscopy (data 

not shown)(Yin et al., 2012), confirming the oxidation of dye MY5. The decrease in 1O2 

may take place by two mechanisms: one is by direct reaction with the food dye, the other 

is due to the decrease of available O2
-• that has been consumed by dye oxidation.  

5.3.4.3 Oxygen consumption 
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It has been well established that the O2
-• in aqueous solutions containing TiO2 NPs is 

produced from the reduction of oxygen by conduction band electrons (e-
cb): 

O2 + e-
cb → O2

-•                                                                                                                 (4) 

Even though O2
-• was indirectly detected by adding SOD to the solution containing both 

TiO2 NPs and BMPO spin trap as discussed above, it was unclear how O2
-•  was involved 

in the decomposition process of MY5. Since difficulties arise when detecting O2
-• by ESR 

due to the overlap of BMPO/ O2
-• and BMPO/•OH spin adducts, a time and pH dependent 

study was conducted for O2 consumption using ESR oximetry. The insert for Fig 4c 

shows the ESR spectrum of a commonly used water-soluble spin label 15N-PDT. Fig 4c 

shows that for photoexcited solutions containing TiO2 NPs, azo dye MY5 leads to higher 

O2 consumption in both acidic (pH 5) and alkaline (pH 7.4) media. For solutions only 

containing TiO2 NPs, O2 was consumed at higher rate at pH 7.4 compared with pH 5. In 

the case that dissolved O2 in solution does not directly cause dye decomposition (control 

group in Fig. 5-2 a&b), our finding suggests that the effect of pH primarily affects the 

initial rate of O2
-• generation, other than the interaction between the azo dye and O2

-•. 

5.3.5 Degradation products 

In order to determine the main products generated during the degradation process, LCMS 

analysis was conducted using electrospray ionization (ESI) in positive mode. The high-

resolution measurements of the quasi-molecular ions (M+H)+ of the decomposition 

products was performed for 25 mg/L MY5 solution containing 0.1 mg/mL TiO2 NPs after 

being exposed to simulated sunlight for 30 min. Fig. 5-6a shows the retention time for 

detected compounds after HPLC elution. Two major peaks were found at elution time tr = 
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3.3 min and tr = 6.0 min. The corresponding molecular mass of each of the characterized 

products in addition to the mass fragments obtained during the measurement is shown in 

Fig. 5-6b&c. The result indicates the formation of Product І (m/z=284.24), resulted by 

the destruction of the C–N (=) bond bound during MY5 degradation.  The fragment ion at 

m/z = 111.04 could be a protonated dihydroxyphenyl group (C6H7O2) for which the 

calculated mass of 111.0446 matches well with the obtained mass of 111.0442. Similar 

fragmentation behavior was reported by Meetani et al. (2011). The fragment with m/z = 

59.06 could also result from the reduction of the dye molecules occurring during the 

ionization process. Furthermore, the spectrum reported for Product ІІ (m/z = 174) 

matches the calculated molecular weight sulfalinic acid. At the same retention time, 

fragment m/z = 191 was detected and could be assigned to its hydrate. Our result 

confirms that the decomposition was due to the destruction of chromosphere azo –N=N– 

group, which has a maximum absorbance at a wavelength of 427 nm (Ghezzar et al., 

2013).  Zhan et al. (1998) also reported that the azo bond was attacked during TiO2 NPs 

catalyzed degradation of MY5. In this study we also detected the degradation products of 

MY5 catalyzed by Au/TiO2 NPs. Similar results were found for both nanoparticles, 

indicating that doping Au on to TiO2 surface enhances the photoreactivity, but does not 

change the reaction pathways of azo dye destruction during simulated sunlight 

irradiation. 
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Figure 5-6 LC–ESI (+)–MS chromatograms obtained for sample mixture of TiO2 NPs (0.1 
mg/mL) and purified main component of FD&C Yellow No. 5 (MY5, 25 mg/mL) solutions 
after 30 min exposure to simulated sunlight.  

5.4 Conclusion 

Nanosized TiO2 particles have been found in a broad range of consumer products, in 

particular, foods and cosmetics. Our results confirmed that when exposed to sunlight, 

TiO2 NPs at low concentration can trigger decomposition of the azo dye, FD&C Yellow 
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No.5, which has been widely used in food, drug and cosmetic products. ESR spin trap 

technique was first used to direct observe the time- and pH-dependent color degradation 

that proceeds via reaction with ROS generated on photoexited TiO2 surface. LC/MS 

results confirmed that the azo bond is the main targeted group during decomposition. At 

pH 7.4, a significant reduction in both hydroxyl radical and singlet oxygen were observed 

after adding dye into the solution, while it was indicated that singlet oxygen became the 

main reaction species at pH 5.0. Using the widely used and relatively stable synthetic 

color FD&C Yellow No. 5 as an example, our study characterized the decomposition 

procedure and directly monitored the involving of ROS, of which the significance is 

found in both food materials as well as in physiological entities since  it leads to oxidative 

stress and damage. The findings in this study may provide important insight when 

designing new applications or evaluating the safety of nano TiO2 in food and cosmetics, 

as the interaction between nanomaterials and other ingredients should also been 

investigated in addition to study the nanomaterials as an independent components. 
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Chapter 6: Phase-dependent ROS promoting ability of TiO2 NPs and  

degradation of food dye chlorophyllin copper sodium salt, tartrazine, 

sunset yellow, and allura red  

6.1 Introduction 

Titanium dioxide (TiO2) is primarily used to provide whiteness in a wide range of 

commercial products including food, cosmetic, pharmaceutical and personal care 

products (Marmion, 1991). Moreover, it has been widely used in sunscreens because it 

effectively attenuates UV-B radiation and protects skin damage from sunlight irradiation 

(Popov et al., 2005). As a metal oxide semiconductor, it also has been extensively used in 

environmental science for pollutant treatment because of its well-recognized 

photocatalytic property (Park et al., 2007). The use of TiO2 in sunscreens can be as high 

as 10% by weight (Weir et al., 2012), while in food products it is limited not to exceed 

1% by weight in the US (FDA, 2014).  

The total production of TiO2 as a pigment has been estimated to be approximately 2 

million tons per year in the US by 2016, with a nano-TiO2 portion around 20% 

(Robichaud et al., 2009). Many applications of TiO2 would benefit from smaller particle 

sizes. The nanosized TiO2 is advantageous because it retains UV filtration and absorption 

properties while eliminating the white chalky appearance (Mu & Sprando, 2010). When 

discussing the safety of TiO2 NPs, one may argue that the use of TiO2 NPs as a pigment 

is not feasible, since the nanosized TiO2 is normally assumed to present less whiteness 

and thus may render it unfavorable compared to the traditional microsized TiO2 

(Robichaud et al., 2009). However, with the development of synthetic methods, the loss 
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in whiteness can be avoided by particle size control that allows higher contrast ratio and 

hardness (Zhang et al., 2007).  

Moreover, large amounts of TiO2 NPs have been detected in commercial food products 

as well as in commercial food-grade TiO2 powders that have been labeled as E 171. A 

systematic study with a focus on the size distribution of TiO2 in food and personal care 

products round approximately 36% of the particles (by total particle counts) in food-

grade TiO2 (E171) were found to be less than 100 nm (Weirs et al., 2012). Yang et al 

(2014) investigated 5 food-grade TiO2 (E171) samples and found that nanosized 

materials were present in all of the food-grade TiO2 samples, with different portions 

ranging from 19% to 35% by number. Their results also indicated that samples obtained 

from different vendors can have distinguishable properties in particle size and phase 

composition. Chen et al. (2013) characterized the TiO2 in chewing gum and discovered 

that over 93% of TiO2 particles in gum were in the nano range. Crystalline phase is 

another important characteristic that determines the physicochemical property of TiO2. 

Both anatase and rutile phase were found in food-grade TiO2 samples, and the 

composition of each phase was found to vary from sample to sample. 

Nanosized TiO2 shows improved photoactivity therefore being extensively applied as 

catalysts in advanced oxidation processes for the degradation of industrial waste and 

detoxification of pesticide residues. However, this photocatalytic degradation behavior is 

unwanted when using TiO2 as an ingredient in food or cosmetic products, since it may 

damage light sensitive compounds such as food colors or antioxidants. Our previous 

study suggested that when exposed to simulated sunlight, nanosized TiO2 results 

degradation of food color tartrazine and leads to loss of radical quenching ability of 
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various antioxidants. Chen et al. (2013) demonstrated that commercial food-grade TiO2 

samples exhibited photocatalytic activity. The degradation proceeded via oxidative 

decomposition that is associated with reactive oxygen species (ROS) generated by 

photoactivated TiO2 nanoparticles (NPs). In this study, food-grade TiO2 samples were 

compared with anatase, rutile TiO2, as well as the widely studied mixed phase TiO2, P25 

to determine its ROS promoting ability. The possible degradation of food colors resulted 

by food-grade TiO2 were investigated on four selected food colors, including one semi-

natural dye chlorophyllin copper sodium salt (E141) and three widely used synthetic food 

dyes, namely tartrazine (E102), sunset yellow (E110) and allura red (E129) (structures 

shown in Fig. 6-1). Since food materials are complicated matrix of various active 

ingredients, antioxidant may protect the color from being damaged by light irradiated 

TiO2. Therefore, we employed ascorbic acid to study its influence on the degradation of 

chlorophyllin copper sodium salt in solution containing food-grade TiO2.  
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Figure 6-1 Structures of the synthetic azo dye tartrazine, sunset yellow allura red and the 
semi-synthetic dye chlorophyllin copper sodium salt. 

6.2 Materials and Methods 

6.2.1 Materials 

Four TiO2 samples were obtained from different vendors. The food ingredient TiO2 

powder (FG) that has been market as white pigment was obtained from a US vendor on 

market (catalog #0514068011). Anatase TiO2 powder (AN, 325 mesh anatase, catalog 

#248576) was purchased from Sigma Chemical Co. (St. Louis, MO). TiO2 P25 powder 

(P25, 31 nm anatase/rutile, catalog Aeroxide® TiO2 P25) was purchased from Degussa 

(Alpharetta, GA).  Rutile TiO2 water dispersion (RU, 20% wt., catalog #7732-18-5) was 

purchased from US Research Nanomaterials, Inc (Huston, TX). Spin trap 5-
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tertbutoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) was purchased from 

Bioanalytical Labs (Sarasota, FL). The spin probe 2,2,6,6-Tetramethyl-4-piperidone 

(TEMP) was purchased from Wako Pure Chemical Industry, Ltd. Japan. Stable free 

radical 1,1-diphenyl-2-picryl-hydrazyl (DPPH•), Allura Red AC (AR, dye content 80%), 

Sunset Yellow FCF (SY, dye content 90%), and tartrazine (TZ, dye content >85%), L-

ascorbic acid (AA), and the chlorophyllin sodium copper salt (CCS) were all purchased 

from Sigma-Aldrich (Saint Louis, MO). Distilled deionized water (18.2 MΩ.cm) from a 

Milli-Q water purification system was used in all experiments. The copper grids coated 

with carbon film for TEM sampling were purchase from SPI supplies (West Chester, 

PA). 

6.2.2 Transmission electron microscopy 

Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images 

were obtained by a JEM 2100 LaB6 (JEOL) transmission electron microscope operated at 

200 kV, coupled to an energy dispersive X-ray analysis system (EDX). The experiment 

was conducted at the NanoCenter, University of Maryland, College Park, MD. For TEM 

analysis, 0.01 mg/mL aqueous suspension of each TiO2 samples was treated with 

ultrasonication in a water bath for 5 min at ambient temperature. Five milliliter of the 

above dispersion was dropped to standard holey carbon-coated copper grids, which were 

then air dried at ambient temperature before subsequent electron microscopy work. 

6.2.3 X-ray diffraction 

The X-ray diffraction (XRD) pattern was determined to analyze the crystal structure of 

FG TiO2. The experiments were performed using a Bruker D8-Advance Diffractometer 
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(Bruker AXS, Inc., Madison, WI) with Cu Kα radiation and an aluminum holder. Each 

sample was scanned at 2θ degree from 20° to 60° to detect characteristic TiO2 peaks. 

Semi-quantitative analysis of the crystalline phases (e.g., the ratio of anatase to rutile) 

was calculated for appropriate samples using PANalytical HighScore Plus software 

(based on the Rietveld method). 

6.2.4 ESR spectroscopy 

All ESR measurements were carried out using a Bruker EMX ESR spectrometer 

(Billerica, MA) at ambient temperature (23˚C). All samples were put in 50 µL capillary 

tubes and sealed with Critoseal™ capillary tube sealant before being placed in the ESR 

cavity. All ESR measurements were carried out using the following settings for detection 

of the spin adducts: 20 mW microwave power, 100 G scan range and 1 G field 

modulation. A solar simulator consisting of a 450 W Xenon lamp filtered to provide 

simulated sunlight was used as the light resource in ESR studies. The spin trap BMPO 

was used to verify the formation of superoxide (O2
-•) and/or hydroxyl radicals (•OH) 

during exposure of each TiO2 samples to simulated sunlight. The spin probe TEMP was 

used to detect the formation of singlet oxygen (1O2) in sunlight irradiated TiO2 solutions. 

The amount of radicals generated in TiO2 solution upon light irradiation was 

quantitatively measured by the ESR spectroscopy. ESR spectra were recorded from the 

sample mixture, containing BMPO or TEMP spin probes and TiO2 aqueous solutions. For 

samples containing BMPO or TEMP, spectra were recorded after 3 min of simulated 

sunlight irradiation. The stable free radical DPPH (DPPH•) was used to demonstrate the 

radical scavenging ability of the semi-nature color CCS and AA. ESR spectra were 

measured after 2 min of mixing for samples containing DPPH•. Control samples, either 



81	
  
	
  

without TiO2 or without simulated sunlight irradiation were also recorded for 

comparison. The final concentration of each component is described in each figure 

caption. 

6.2.5 Color degradation 

Stock solutions of AR, TZ, SY and CCS were prepared at 2500 mg/L, stored in 

refrigerator and sheltered from light. The stock solutions were used within one week. To 

exam the photocatalytic degradation of color, 0.2 mg/mL TiO2 (FG or RU) were mixed 

with 25 mg/L AR, TZ SY, or CCS. 10 mL of each mixture were transferred to a 50 mL 

quartz Erlenmeyer flask and sealed. Ascorbic acid was added to CCS solutions 

containing FG TiO2 sample to study its effect on color degradation. The mixed 

suspensions were stirred in the darkness for 30 min to allow equilibrium and irradiated 

using a light source consisting of a Universal Arc Lamp Power Supply (69920 Universal 

Supply, Newport, Irvine, CA) using xenon lamps (880 W) and an Oriel® Xenon Arc 

Lamp Solar Simulator. During irradiation, the Erlenmeyer flasks were kept in an ice tray 

to prevent thermal degradation of food colors. The degradation process was monitored 

using a Varian Cary 300 spectrophotometer. Before UV-Vis analysis, the reaction 

mixture was centrifuged to remove the TiO2 particles. The maximum absorbance λmax of 

TZ at wavelength 425 nm, AR at 504 nm, SY at 482 nm were studied for color 

degradation. The quantitative degradation study of CCS was assayed as a loss of 

absorbance at 627 nm, corresponding to both the observed and published red absorption 

maximum of CCS (Chernomorsky et al., 1997; Ferruzzi & Schwartz, 2005). Solutions 

were diluted with water (V:V = 1:1) before measurement. The results presented were the 

mean values with a total error of less than 5%.  
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6.3 Discussion 

6.3.1 Size distribution and surface morphology  

The surface morphology and number-based particle size distribution of TiO2 samples 

were studied by transmission scanning microscopy. Fig. 6-2 a-d shows the TEM pictures 

of sample RU, AN, FG, P25, respectively, while Fig. 6-2 A-D represents the 

corresponding HRTEM pictures of these samples. Particle size is recorded as the 

maximum diameter of the particle and derived from TEM images. 30 particles were 

counted for each sample and data is shown as average ± standard deviation. The primary 

particle size of RU, AN, FG, P25 TiO2 samples were found to be 52±23, 51±17, 20±15, 

22±11 nm. The sizes of RU, AN and P25 are roughly consistent with the sizes claimed by 

the vendors. Nearly all of the particles in FG TiO2 fell into nano-size which defines a 

dimension < 100nm in diameter. The TEM images shows that aggregates or big clusters 

are formed for all samples, while the biggest aggregates were observed especially for the 

smallest P25 sample. Sample FG and AN TiO2 formed comparatively smaller aggregates 

with a diameter approximately at 150-200 nm. This observation agrees with the previous 

report in which the P25 TiO2 aggregated more rapidly and into larger aggregates than 

food-grade TiO2 (Weirs et al., 2012). 
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Figure 6-2 TEM (left panel) and HRTEM (right panel) images of (a) rutile (RU); (b) anatase 
(AN); (c) food-grade (FG) and (d) Degussa P25 (P25) TiO2samples. Samples were prepared 
by dropping 0.01 mg/mL aqueous suspension of TiO2 on to carbon coated copper grip. 
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The RU TiO2 sample appears as nano-rods whereas the other samples took the form of 

more spherical-like structures. HRTEM images were captured to study the surface 

characteristics of each sample, and the lattice distance was investigated by the built-in 

function in TEM software. Fig. 6-2B shows that for AN, the anatase {101} facets (lattice 

fringes with spacing of 0.35 nm) were observed as the dominant facets. A clear lattice 

structure with lattice distance of 0.33nm, characteristic of the most stable rutile {110} 

facet (Yan et al., 2013) was observed for RU TiO2 (Fig. 6-1A). It is interesting that small 

dots (< 3nm) were found on the AN TiO2 surface. EDX analysis results (See Fig. B1 in 

Appendix) indicated that they were most likely to be TiO2 small dots since no other 

elements or impurities were detected. Fig. 6-1D reveals the polycrystalline nature of the 

anatase and rutile phases for the P25 TiO2 powders. By measuring the lattice fringes, the 

interplanar distances , 0.35 and 0.33  nm, were both observed, corresponding to the 

{101}planes of anatase and the {110} planes of rutile, respectively (Wang et al., 2011). 

The crystalline structure observed on FG TiO2 was less obvious compared with other 

samples (Fig. 6-2C), indicating that only a few portions of FG TiO2 exhibit clear 

crystalline structure. This may be the result of the techniques and methods used when 

TiO2 was produced, for example, the calcination temperature (Chen et al., 2002). 

6.3.2 Crystalline phase 

HRTEM results suggested that the phase composition of the RU, AN and P25 samples 

were consistent with the descriptions provided by the vendors. It was difficult to 

determine whether anatase, rutile or brookite TiO2 is the primary phase in food-grade 
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TiO2. X-ray diffraction analysis (XRD) was performed to determine the phase 

composition of FG TiO2. XRD patterns exhibiting strong diffraction peaks at 27°, 36° 

and 55° indicate that TiO2 was in the rutile phase. On the other hand, XRD patterns 

exhibiting strong diffraction peaks at 25° and 48° indicate TiO2 in the anatase phase 

(Thamaphat et al., 2008). Fig. 6-3 shows the XRD pattern of the FG TiO2. The black line 

represents the sample (FG) while the red line represents the standard pattern of anatase 

TiO2. The peaks in black line matches well with it in the red line, indicating that the food-

grade TiO2 sample we obtained were all anatase TiO2. The main peak at 2θ degree equal 

to 25.27° is the anatase {101} reflection. Yang et al. (2014) screened five food-grade 

TiO2 samples from different vendors and also found that four of them contain only 

anatase phase, while only one was a mixture of both anatase and rutile TiO2. 
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Figure 6-3 XRD pattern of food-grade (FG) TiO2sample (black line). Red line represents the 
XRD pattern of standard anatase TiO2 samples as a reference. 

6.3.3 Promotion of reactive oxygen species (ROS) 

TiO2 triggers the generation of reactive oxygen species (ROS) when irradiated with ultra-

visible (Miller et al., 2012), visible (Lipovsky et al., 2013) and simulated sunlight 

(Mansfield et al., 2014). The main ROS species generated in light irradiated TiO2 

aqueous dispersion includes hydroxyl radical (•OH), superoxide radical (O2-•) and singlet 

oxygen (1O2). The magnitude of ROS promotion largely depends on the particle size, 

surface morphology, crystalline phase and the concentration of TiO2. It has been 

previously reported that when the concentration and particle size are at comparable 

levels, ROS promotion ability of TiO2 follow the sequence P25 > anatase > rutile.  

Here we compared the ROS promotion ability of FG TiO2 with RU, AN and P25 by 

electron spin resonance (ESR) spectroscopy. ROS are highly reactive species that are 

difficult to detect, therefore the spin trap 5-tertbutoxycarbonyl 5-methyl-1-pyrroline N-

oxide (BMPO) was employed to trap the short-lived ROS such as •OH and O2-•, forming 

stable radicals that allow reliable measurement of ROS. The left panel of Fig. 6-4 shows 

ESR spectrum presenting a 1:2:2:1 peak pattern, which is the characteristic spectra of the 

BMPO/•OH signal. Our results confirm the observation in previous studies that P25 

shows the highest ROS generating ability, followed by anatase sample The rutile sample 

exhibits little radical signal. Food grade samples promoted nearly same amount of •OH 

compared to the anatase TiO2 sample AN. This observation agrees with the XRD 

crystallography which indicate that FG TiO2 contains >99% anatase phase. 

 



87	
  
	
  

 

Figure 6-4 ESR detection of ROS in solutions containing 0.1 mg/ml TiO2 samples. ESR 
spectra obtained from samples containing spin probe 25 mM BMPO or 2 mM TEMP and. 
Control group represents samples without nanoparticles or no exposure to simulated 
sunlight. All the spectra were recorded after 3 min of irradiation with simulated sunlight. 

 

Singlet oxygen generation was studied using spin probe 2,2,6,6-Tetramethyl-4-piperidone 

(TEMP). The spin-trapping was accomplished by utilizing the oxidation of 2, 2, 6, 6-

tetramethyl-4-piperidone (TMPD) by 1O2 which yields paramagnetic 2, 2, 6, 6-

tetramethyl-4-piperidone-1-oxyl (TEMPONE) (Yadav & Pospíšil et al., 2012). Previous 

study in our lab proved that this oxidative reaction is exclusively promoted by 1O2. The 

control group in the right panel of Fig.4 contains only TEMP and it was ESR silent upon 
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simulated sunlight irradiation. Three-peak ESR spectra were recorded for all TiO2 

samples, indicating the formation of the radical 4-oxo-2,2,6,6,-tetramethyl-1-

piperidinyloxyl (TEMPONE). The 1O2 promotion of each TiO2 sample followed the same 

sequence with •OH promotion, i.e. P25> AN ≈ FG > RU. The ROS promotion ability of 

food TiO2 NPs under dark has also being reported, as they induced a slight increase of 

ROS in cells, but no obvious cell viability and membrane damage (Chen et al., 2012). 

6.3.4 Food color degradation resulted by food-grade TiO2 

The highly active ROS triggered by light irradiated TiO2 in aqueous solution can attack 

other chemical compounds in the system and thus lead to oxidative destruction. Our ESR 

study suggested that upon simulated sunlight irradiation, food-grade TiO2 samples 

generated high amounts of •OH and 1O2, which are the main species that cause the loss of 

food colors (Salem et al., 2009). RU TiO2 resulted less amount of ROS generation. 

Therefore, we studied TiO2s sample RU and FG to investigate whether they lead to food 

color degradation upon simulated sunlight irradiation. 

6.3.4.1 Tartrazine, sunset yellow, allura red 

Tartrazine (TZ), sunset yellow (SY) and allura red (AR) are three of the seven synthetic 

dyes permitted by FDA as food colorants (Vachirapatama et al., 2008). These synthetic 

azo dyes have broad industrial application due to their low cost and relative stability 

compared to natural colorants. In our study solutions containing 25 mg/L food synthetic 

dye, including TZ, SY or AR were each mixed with 0.2 mg/mL TiO2 and irradiated by 

simulated sunlight. The concentration of the color was monitored by UV-Vis 

spectroscopy and the result is shown in Fig.5. The maximum absorbance λmax were 
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observed for TZ at wavelength 425 nm, AR at 504 nm, SY at 482 nm. The control group 

contained food dye without TiO2 and were also exposed to simulated sunlight irradiation. 

As expected, the azo dyes showed fairly good stability to sunlight irradiation. The UV 

spectra of samples in the control group did not change compared to the untreated group 

(labeled as “blank”).  

 

Figure 6-5 UV-Vis spectra of tartrazine, sunset yellow and allura red upon 2hr simulated 
sunlight irradiation. The initial concentration of dye was fixed at 25 mg/L. Groups marked 
as “blank” were not exposed to light irradiation. Reaction mixtures contained 0.2 mg/mL 
rutile or food-grade TiO2, or no TiO2 (for control group). 

 

Data in Fig. 6-5 shows that the addition of Rutile TiO2 did not result in noticeable 

decomposition of azo dye in the observed time period (2hr). However, when adding the 
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same amount of food-grade TiO2 into the dye solution, a significant degradation of dye 

was detected for all three color samples. The food-grade TiO2 caused 33%, 42%, 29% 

reduction of TZ, SY and AR respectively. The photocatalytic activity of semiconductors 

has been associated with its ROS generating ability (He et al., 2014). The difference in 

particle size is one possible reason that a significantly higher photocatalytic activity of 

FG sample (20±15) compared to RU (52±23). Smaller particles with higher surface to 

volume ratio generally exhibit improved chemical activity. Also, the FG sample was 

characterized as anatase TiO2, which has a higher Fermi level over the rutile by 0.1 eV 

(Kogo et al., 2012). This leads to a lower O2 affinity and an increased hydroxyl radical 

generation on the surface, whereas the hydroxyl radicals lead to the oxidation of dye 

molecules (Mohamed et al., 2009). 

6.3.4.2 Chlorophyllin  

Chlorophyllin copper sodium salt (CCS), the semi-synthetic water soluble bright green 

colorant has been used as food colorant as well as dietary supplement for its DNA-

protective and antioxidant properties. Derived from natural chlorophyll, CCS is not heat 

stable compared to some synthetic dyes (Ferruzi et al., 2005). In this study, in addition to 

the synthetic azo dyes, CCS was also studied for possible degradation resulting from 

sunlight irradiated TiO2 NPs. Fig. 6-6 represents the UV-Vis spectrum of CCS after 

irradiated by simulated sunlight for 0, 6, 12, 20, 40 and 60 min. As expected, CCS is 

more vulnerable to simulated sunlight irradiation compared with the synthetic azo dyes 

TZ, SY and AR. The control group (Fig. 6-6a) without TiO2 added to the solution showed 

significant loss of color upon light irradiation. However, an unexpected result was 

observed when adding the FG TiO2 into the reaction solution (Fig. 6-6b).  The additional 
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TiO2 did not accelerate the light induced degradation as expected (36±7% degradation, 

compared with control group 44±6%).  This result showed that different from the azo 

dyes, CCS showed high tolerance towards the photocatalytic activity of TiO2 NPs, even 

though it is very sensitive to light. To our best knowledge, only a few studies were 

reported on the interaction between photocatalyst TiO2 and CCS, it is hard to make an 

explanation for the observed phenomenon. However, the mechanism is possibly involved 

with the intrinsic property of CCS as its natural derivation, chlorophyll, exhibits high 

photosensitization activity (Neverov et al., 2011). Photosensitized oxidation proceeds by 

a different pathway compared to photocatalyzed degradation, as the electrons (e-) 

originate from the photosensitized dye molecules rather than TiO2 (Konstantinou & 

Albanis, 2014) . 

 

Figure 6-6 UV-Vis spectra of chlorophyllin copper sodium salt solution upon 2hr simulated 
sunlight irradiation. The initial concentration of dye was fixed at 50 mg/L. Control (a) 
contained no TiO2 while sample solution (b) contained 0.2 mg/mL food-grade TiO2 samples. 

 

6.3.5 Effect of ascorbic acid 
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Radical scavengers are able to quench hydroxyl radicals formed on photoactivated TiO2 

surfaces that lower the degradation rates (Sakai et al., 1998). In food systems, the most 

common radical scavenger is ascorbic acid. As an excellent antioxidant, ascorbic acid is 

added to during processing or before packing to protect color, aroma and nutrient content. 

Our study first attempted to unravel the complicated interaction between food color, 

food-grade TiO2 and the antioxidant ascorbic acid (AA) added to the solution. A 

simulated sunlight induced study was carried out to evaluated CCS degradation with TiO2 

as influenced by AA. Fig. 6-7a shows the CCS degradation rate expressed as the ratio of 

light absorbance at different irradiation times verses the untreated sample (readings were 

taken at wavelength 625nm). The addition of 200 mg/L AA into the solution promoted 

CCS decomposition rather than protecting it from light. This result is interesting since 

AA has been reported to hinder light induced color degradation and to protect those 

active compounds from light illumination (Lee et al., 1998). 
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Figure 6-7 Effect of ascorbic acid (AA) on chlorophyllin copper sodium salted (CCS) 
degradation (a) and DPPH radical scavenging ability (b). Solutions in (a) contained 0.2 
mg/mL food-grade TiO2 and CCS with initial concentrations fixed at 200mg/L. Y axis in (a) 
represents the CCS concentration at corresponding simulated sunlight irradiation time 
versus the initial concentration. Control in (b) contained 25 mM DPPH radical and 10% 
ethanol. The ESR spectra were recorded at 2min after adding a final concentration at 200 
mg/mL CCS, 100 mg/mL AA or both CCS and AA. 

 

Since CCS and AA both function as antioxidants, we furthered investigated their radical 

scavenging effect using the stable radical 1,1-diphenyl-2-picryl-hydrazyl (DPPH•). 

DPPH radical scavenging is a commonly used simple and effective method to determine 

the overall radical quenching. The radical scavenging study is shown in Fig. 6-7b. 

Adding 200 mg/mL CCS to the reaction mixture 70% of DPPH• was quenched, while 

adding 100mg/mL AA lead to 61% DPPH• reduction.  Adding AA and CCS together 

resulted in a higher radical quenching ability compared to adding them alone. This result 

indicates that adding AA to a solution containing CCS does not hinder the reaction 

between CCS and the radical. Therefore, AA did not promote the photocatalyzed 

degradation by direct damage to the dye molecule.  It is very possible that surface 

modification of TiO2 took place, in which the AA molecules bind to the OH site on TiO2 

surface, forming bidentate complexes through the ortho-substituted hydroxyl groups of 

furan ring. The AA molecules attached on the conduction band of TiO2 accelerate 

superoxide radical formation via the one-electron reduction of dissolved oxygen by 

conduction band electrons (Yan et al., 2005).  

6.4 Conclusion 

To date, TiO2 is used as food colorant without specific requirement on its phase 

composition. The sample food-grade TiO2 particles we obtained were characterized as 
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nanoparticles, consisting only the photoactive anatase phase. Our results indicate that 

ROS promotion ability of TiO2 is dramatically promoted when exposed to light 

irradiation. Food ingredient TiO2 nanoparticles generate high levels of ROS. Even though 

current in vitro study demonstrates that nano-TiO2 particles in food are relatively safe for 

gastrointestinal cells, the use of nano-sized TiO2 should be used with caution due to their 

light induced activity. Upon sunlight irradiation, TiO2 NPs can result degradation of 

synthetic azo dyes and in that way compromise food quality. Moreover, the TiO2 surface 

consists of both hydrophobic and hydrophilic parts, which can be absorption sites that can 

trap active compounds, for example, the dietary antioxidant ascorbic acid. Such surface 

modification accelerates the decomposition of the green food color chlorophyllin copper 

sodium salt, potentially modulating its biological activity, compromising its antioxidant 

activity and thus reduces the beneficial antimutagenic activity. 
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Chapter 7 Conclusion and Future Recommendation 

Nanotechnology brings promising applications that allow the production of better quality 

food by including new additives, enhancing nutrient delivery, improving hazard detection 

and fabricating novel packaging materials. However problems arise due to the lack of 

investigation on safety issues. Titanium dioxide nanoparticles (TiO2 NPs) have been 

widely applied as a color agent to provide whiteness and/or opacity in paints, personal 

care products, as well as being used as food additives and drug delivery agents. The 

direct addition of engineered TiO2 NPs as ingredient in food products has received 

attention because of its direct impact on food quality and public health. In addition to 

study the toxicity of TiO2 NPs itself, effort should also be made to investigate the 

possible interaction between TiO2 NPs and other active food ingredients such as food 

colors and antioxidants.  

The results of this study suggest that potential problems may arise due to the interaction 

between dietary antioxidant and TiO2 NPs in foods or other consumer related products. 

With the presence of TiO2 NPs, the radical scavenging abilities of most antioxidants were 

compromised at different degrees. When exposed to sunlight, photoexcited TiO2 NPs 

create electron/hole pairs as well as reactive oxygen species (ROS) known to result in 

oxidative damage. Oxidative damage could cause food quality deterioration including 

decomposition of color additives, such as the widely used azo dye FD&C Yellow No. 5 

(tartrazine). When exposed to simulated sunlight, pH dependent generation of ROS, 

including hydroxyl radical (•OH), superoxide radical (O2
-•) and singlet oxygen (1O2) was 

detected in solutions containing TiO2 NPs. The ROS generation of TiO2 NPs was largely 

dependent on the crystal phase composition and the size of the particles. Food-grade TiO2 
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powder was found to be in the nano-range and generated high level of ROS, resulting in 

the degradation of synthetic food dyes. Rutile phase TiO2 promoted the least amount of 

ROS and did not show noticeable photo catalytic activity, suggesting that the use of rutile 

TiO2 is safer when considering the possible oxidative quality deterioration of food 

products. The present study provided a systematic evaluation of the interaction between 

nanosized food ingredients and other food components. Conducted in aqueous solutions, 

this study simplified the reality where the food stuff is a complicated matrix that usually 

contains two or more ingredients.   
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Chapter 8 Appendix 

 

Figure A1 Effect of H2O2 on BMPO and TEMPO spin probes. ESR spectra were obtained 
from sample solutions containing 10mM H2O2 and spin probe BMPO (25 mM) or TEMPO 
(0.02 mM TEMPO), before or after 3 min exposure to simulated sunlight. 

 

 

Figure A2 Effect of SOD on ESR signal generated from TiO2 NPs solutions exposed to 
simulated sunlight.  ESR spectra obtained from sample solutions contained 0.1 mg/mL TiO2 
NPs and 25 mM BMPO or 5mM TEMP spin probes, with or without addition of 0.2 U/mL 
SOD.  

 

 



98	
  
	
  

 

 

 

Figure B1 EDX analysis of anatase TiO2 sample. 
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