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Abstract 
 
In this note, we consider a variation of the economic order quantity (EOQ) model where 
cumulative holding cost is a nonlinear function of time.  This problem has been studied by 
Weiss (1982), and we here show how it is an approximation of the optimal order quantity for 
perishable goods, such as milk, and produce, sold in small to medium size grocery stores 
where there are delivery surcharges due to infrequent ordering, and managers frequently 
utilize markdowns to stabilize demand as the product’s expiration date nears.  We show how 
the holding cost curve parameters can be estimated via a regression approach from the 
product’s usual holding cost (storage plus capital costs), lifetime, and markdown policy.  We 
show in a numerical study that the model provides significant improvement in cost vis-à-vis 
the classic EOQ model, with a median improvement of 40%.  This improvement is more 
significant for higher daily demand rate, lower holding cost, shorter lifetime, and a 
markdown policy with steeper discounts.     
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1 Introduction 

In this note, we consider an application of the model by Weiss (1982) to an inventory 

management of perishables problem.  The model by Weiss (1982) is a variation of the 

economic order quantity (EOQ) model where cumulative holding cost is a convex function of 

time; this is in contrast with the classic EOQ model where holding cost is a linear function of 

time.  More specifically, the cumulative holding cost for one unit that has been stored during 

t units of time is ( )H t htγ= , where  and h 1γ ≥  are constants; if 1γ =  then the problem 

reduces to the classic EOQ model with  being the cost to hold one unit for one time period. h

This problem is an approximation of the optimal order quantity for perishable goods, 

such as milk and produce, sold in small to medium size grocery stores such as WholeFoods.  
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Because of their relatively small size, these stores do not receive daily deliveries and often 

face a fixed delivery charge between $10 and $100 per delivery; in many cases, there are 

separate deliveries for each product type.  (In contrast, this fee is often waived for large 

retailers such as Kroger and Wal-Mart, where deliveries may occur five to six times a week.) 

Product demand and cost are fairly constant over time, however, the cost to stock the product 

increases over time, as we discuss below. 

Because products are perishable, meeting a constant demand over time with an aging 

product may require markdowns in their prices or removal of spoiled product.  The use of 

either practice can be modeled as convex holding costs with time, as we show through two 

examples in §3.  Our experience with several retailers indicates that retailers usually limit the 

number of markdowns to two for each batch.  The first markdown occurs at roughly half the 

product’s sellable lifetime and is typically 10–50% of the product’s original price.  The 

second markdown occurs at 75% of product’s sellable lifetime and is typically 25–75% of the 

original price.  For example, a $4 gallon of milk with an expected lifetime of 12 days can be 

marked down to $2 at day 6 days and to $1 at day 9.  We note that not all retailers practice 

markdown pricing while others practice it to a lesser extent; other alternatives include selling 

the older product to restaurants or donating the aged product to food banks.   

A second contributor to convex holding cost is spoilage, or variable expected shelf 

life.  Within a product category, the percentage of individual units that spoil each day 

increases as the product ages.  As we show in §3.2, spoilage can be approximated by a 

convex holding cost curve even in the absence of markdown pricing.  In that case, however, 

the order quantity in the model must be adjusted upwards to account for spoilage.    

Variations on the EOQ model are numerous; for a review see Zipkin (2000).  Specific 

reviews of perishable inventory models are given by Raafat (1991) and Nahmias (1982).   
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Most papers on perishable inventory models with deterministic demand consider that 

inventory spoils (decays) with time, at different patterns, and that demand depends on the 

level of inventory (e.g., Ghare and Scharder 1963; Elsayed and Teresi 1983; Padmanabhan 

and Vrat 1995).     

Deterministic demand inventory models with nonlinear holding costs have been 

analyzed by, besides Weiss (1982), Goh (1992) and Giri and Chaudhuri (1998).  In both Goh 

(1992) and Giri and Chauduri (1998), however, demand depends on stock level; our 

application assumes a constant demand rate due to a markdown policy.   

Thus, the contribution of this paper is to provide a real–life application of the model 

by Weiss (1982) to the case of perishable products.  We provide a simple methodology to 

estimate the holding cost curve parameters given a product’s lifetime, regular holding 

(storage + cost of capital) cost, and markdown policy or spoilage curve.  We also provide a 

comprehensive numerical analysis of the benefits of using this policy vis-à-vis the EOQ 

model, using data provided to us by actual stores.          

 This note is organized as follows.  In §2, we briefly review the model by Weiss.  In 

§3, we show how one can estimate the holding cost parameters with two real life examples.  

In §4, we present a numerical study that demonstrates the value of our model vis-à-vis a 

regular EOQ policy for inventory management.  Finally, we conclude in §5.   

 

2 Model 

In this section, we quickly review the model by Weiss (1982).  Consider a product 

facing a constant demand rate d.  Fixed ordering cost is K, replenishment lead-time is 

constant, and holding cost per unit increases with the time t that the product has been in stock 

according to ( )H t ht γ= , where  and h 1γ ≥  are constants.  The firm’s objective is to choose 
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an order quantity that minimizes average combined ordering and holding costs over an 

infinite horizon.  With an order quantity of Q, and constant demand rate d, the length of an 

order cycle is .  Because all order cycles are equal, consider the first order cycle 

.  First, note that ; this is the total holding cost if one unit is kept 

in stock during the period [0, t].  During the first cycle, the inventory level varies with time 

/Q d

[0,  / ]Q d 1
0
tht hv dvγ γγ −= ∫

( )I t Q d= − t .  Thus, the average holding cost during the cycle [0  is: ,  / ]Q d

 ( )1 1
10 0

1 1( )
/ /

Q Q hQH I t h u du Q du h u du
Q d Q d d

γ
γ γ

γγ γ
γ

− −
−= = − =

+∫ ∫ ( 1)
. (1) 

Thus, (1) is also the average holding cost in an infinite horizon.  Average inventory 

cost (holding + ordering) is then  

 1( )
( 1)

hQ dF Q K
d Q

γ

γγ −= +
+

. (2) 

It is easy to verify that (2) is convex in Q.  Applying the first order condition to the 

average cost function (2), we obtain the optimal order quantity  as  *Q

 ( )* 1( 1) 1 KdQ
h

γ
γ

γ
+= + .  (3) 

Equation (3) agrees with the classical EOQ model when γ = 1.   

3 Estimating Holding Cost Parameters  

In this section, we give two examples that show how the parameters  and h γ  can be 

estimated, using linear least squares regression, from the product holding cost h, the 

product’s lifetime T, and a given markdown policy or spoilage curve.  Both examples are 

based on numbers provided to us by a national U.S. grocery chain.   

3.1 Example 1: Markdown Policy 

Consider a two–gallon jug of milk, with T = 12 days (expiration date), h = 0.01/day, 

and a markdown policy that decreases the product’s price by $0.50 on days 5 and 10.  The 
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cumulative holding cost curve per unit H(t) is given as a function of time in  Table 1.  Notice 

that at day 5, the cumulative holding cost jumps from $0.04 to $0.55 ($0.01 + $0.50), which 

is a result to the product being marked down; similarly at day 10. 

We use the convex approximation ( )H t ht γ=  to the data in Table 1.  Taking logs on 

both sides yields  
 log ( ) log logH t h γ= + t . (4) 

Table 1: Cumulative holding cost curve for a two–gallon jug of milk 

Day Cumulative  
Holding Cost H(t)

1 0.01 
2 0.02 
3 0.03 
4 0.04 
5 0.55 
6 0.56 
7 0.57 
8 0.58 
9 0.59 
10 1.10 
11 1.11 
12 1.12 

 
 

Using a linear regression where the independent variable is t, and the dependent 

variable is ( )H t , we estimate  = exp(intercept), and γ = slope.  For the data in Table 1, 

intercept = –5.16, slope = 2.21, R

h

2 = 0.883; thus  = 0.0057, and γ = 2.21.  Figure 1 

plots the cumulative holding cost and its convex approximation curve 

5.16h e−=

( )H t . 
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Figure 1: Convex approximation for cumulative holding cost for example 1 
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3.2 Example 2: Spoilage 

Consider a 5 oz. pack of blueberries, with T = 5 days (expected lifetime), h = 

0.01/day, and a cost of $2 /unit.  Average spoilage, based on historical observations, is 5%, 

7.5%, 10%, and 22.5% of the remaining stock of blueberry packs after the second, third, 

fourth and fifth days respectively.  Thus, cumulative spoilage cost per unit is (0.05)$2 = 

$0.10 for the second day; (0.05 + 0.075)$2 = $0.25 for the third day, and so forth.  Adding 

the regular storage cost of $0.01 per unit per day, we obtain the cumulative holding cost, 

shown in Table 2.  Notice that at day 6, all blackberries are spoiled.     

Again, running a linear regression of log (H(t)) vs. log (t), we obtain  intercept = –

4.22, slope = 2.81, R2 = 0.987; thus  = 0.012, and γ = 2.81.  Figu5.16h e−= re 2 plots 

cumulative holding cost and its convex approximation curve ( )H t . 
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Table 2: Cumulative holding cost for blueberry pack example 

Day t % Spoilage Cumulative 
Spoilage Cost

Cumulative 
Storage Cost

Cumulative 
Holding Cost H(t)

1 0.0% $          - 0.01 $    0.01 
2 5.0% $     0.10 0.02 $    0.12 
3 7.5% $     0.25 0.03 $    0.28 
4 10.0% $     0.45 0.04 $    0.49 
5 22.5% $     0.90 0.05 $    0.95 
6 55.0% $     2.00 0.06 $    2.06 

   

Figure 2: Convex approximation for cumulative holding cost for example 2
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We note that in the case of spoilage, the order quantity should be adjusted upwards to 

account for the units lost to spoilage, as the model assumes that all units ordered will be used 

to meet demand.  Since the cost of storage is already accounted for by the increasing holding 

cost term, the final order quantity is the EOQ determined through (3) plus the cumulative 

number spoiled until the next replenishment.  Using the data from the blueberry example 

above with the fact that d = 40 packs a day and K is $30, the optimal order quantity 

calculated from (3) is 128, translating to an order every 3.2 days.  Rounding to the nearest 

integer gives an order ever 3 days or an order quantity of 120.  Adding the spoilage 
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adjustment of 7 additional units (.05*80+.075*40) gives a final order quantity of 127 units 

every three days.      
 

4 Numerical Study 

In this section, we present a numerical study that compares how a retailer who uses 

the model fares against an identical retailer who uses the classic EOQ model for her 

replenishment decisions.  We base our numbers on conversations with produce managers 

from two national grocery retail chains.  We fix two parameters in our analysis: a product 

that has a unit cost of $4, and a fixed delivery charge K = $50.  We consider various 

scenarios of the demand rate d, holding cost h, markdown policy, and product lifetime T, as 

shown in Table 3, which we justify as follows.   

We choose five values of d, from 10 to 90, to represent a range of products from low 

to high daily demand.  We consider five values of h, from 0.01 to 0.09, to represent various 

levels of holding cost per day (storage cost plus cost of capital).  We consider two values of 

T, 6 and 12, to represent perishable products with short and long lifetimes, respectively.  

Finally, we consider five types of markdown policies, according to the discount given at ½ 

and ¾ of the product’s lifetime, from low discount (discounts of 12.5% and 25% of the 

original product’s price, respectively) to high discount (discounts of 50% and 75% of the 

original product’s price, respectively).    

Table 3: Experimental design used in numerical study 

Parameter Values 
d 10, 30, 50, 70, 90 
H 0.01, 0.03, 0.05, 0.07, 0.09 
T 6, 12 

Markdown Policy 
type–( ½-life discount, 
¾-life discount)  

1-(12.5%, 25%); 2-(12.5%, 50%); 3-(25%, 50%),  
4-(25%, 75%); 5-(50%, 75%) 
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Each combination h, T, and markdown policy generates a pair of values for  h  and γ, 

which are computed through linear regression, according to the procedure described in §3.1.  

The resulting values of h range between 0.036 and 0.081; the resulting values of γ  range 

between 1.38 and 3.73; finally, the resulting values of R2 range between 83% and 97%, 

averaging 91%.  Thus, our convex approximation provides a reasonable fit to the data in all 

cases.   

In total, there are 53⋅2 = 250 experimental cells.  For each cell, we compute  

according to (3), and the corresponding classical EOQ solution 

*Q

1 2 /Q dK= h .  In some 

cells, the EOQ solution produces a length of order cycle  greater than T; in that case 

the order quantity is the demand during the product’s lifetime.  (We do not considering 

spoilage here).  More precisely,   

1 /Q d

 ( )2 / ,    if 2 / /

,              otherwise.
EOQ dK h dK h d T

Q
Td

⎧ >⎪= ⎨
⎪⎩

 (5) 

(We note that in all our experimental design, * /Q d T≤ , so such adjustment is not necessary 

for the optimal solution ).  Our performance measure of interest is the deterioration in 

average cost  of using the EOQ order quantity (5) versus the optimal policy , that is   

*Q

( )F ⋅ *Q

 
*

*

( ) (100%
( )

EOQF Q F Q
F Q

−
∆ =

)

d

. (6) 

We report here the main results of our study; our complete results are available upon 

request.  Table 4 provides summary statistics for ∆, and the difference in order cycles (in 

days) between the EOQ model and the optimal policy, that is,  .  We note 

that ∆ ranges between 1% and 401%, with a median value of 40%.  The difference in order 

cycles range between 0.4 and 7.6 days, with a median value of 2.5 days, where we note that 

in 44% of cells we have , that is, the EOQ value 

/EOQQ d − * /Q d

EOQQ T= 2 /dK h  had to be adjusted to 

the demand during the product’s lifetime T.  This indicates that managers who use the EOQ 
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model for perishables are likely to use some heuristic for adjusting the order size, such that 

the length of the order cycle does not exceed the product’s lifetime.  Overall, these results 

point to the significant value of our model vis-à-vis the EOQ model, both in terms of average 

inventory cost as well as in shorter order cycles, which result in a lower utilization of 

markdowns, and, consequently a more stable price.        

Table 4: Summary statistics for ∆ and difference in order cycles for experimental design 

Statistic Value Difference in order 
cycles (days) 

Average 69% 2.8 
Min 1% 0.4 

25th percentile 16% 1.6 
Median 40% 2.5 

75th percentile 90% 3.3 
Max 401% 7.6 

 

To gain insights into which factors contribute the most to ∆, we average, for each 

value of a given factor (e.g., d = 10), the values of ∆ across the experimental design; the 

resulting value is the average value of ∆ when d = 10 in our experimental design.  The results 

are shown in Table 5.  We note that ∆ increases as d increases, h decreases, T decreases, and 

the discount values increases.  A higher value of d indicates a higher scale of operations, and 

thus the benefit of using the optimal policy is higher.  A higher value of h results in shorter 

order cycles by the EOQ model, which more closely matches the optimal solution.  To 

illustrate, as h increases from 0.01 to 0.03 to 0.05, the average order cycle for EOQ model 

 decreases from 8.8 to 7.4 to 6.6; for the optimal policy these order cycles are 4.6, 

4.2 and 3.9, respectively.  A lower lifetime T indicates a rapidly perishable product, which 

results in a steeper cumulative holding cost curve (higher γ); consequently a higher value of 

∆.  To illustrate, when T = 6 the average value of γ  is 2.6, whereas when T = 12 the average 

value of  γ  is 2.0. Finally, a steeper markdown policy also results in a steeper cumulative 

/EOQQ d
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holding cost curve, and consequently a higher value of  ∆.  To illustrate, the average values 

of γ  are 1.9 and 2.5 for markdown policies 1 and 5, respectively.     

Table 5: Average values of ∆ in experimental design for each factor level  

Parameter Average Value of ∆ 
d  

 10 22%
 30 61%
 50 80%
 70 91%
 90 91%

h  
 0.01 149%
 0.03 83%
 0.05 52%
 0.07 35%
 0.09 25%

T  
 6 85%
 12 52%
Markdown Policy  
 1 29%
 2 50%
 3 66%
 4 87%
 5 112%

 

5 Conclusion  

In this note, we apply the extension of the EOQ model for nonlinear holding cost by 

Weiss (1982) to the inventory management of perishables in small to medium–sized grocery 

stores, where managers frequently utilize markdowns to stabilize demand as the product’s 

expiration date nears.  We show how the model’s holding cost parameters can be estimated 

via a regression approach from the product’s holding cost, lifetime, and markdown policy. 

We show in a numerical study that the model provides significant improvement in 

cost vis-à-vis the classic EOQ model, with a median improvement of 40%, ranging between 
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1% and 401%.  This improvement is more significant for higher daily demand rate, lower 

holding cost, shorter lifetime, and a markdown policy with steeper discounts; in many cases 

these conditions are associated with a steeper curve of cumulative holding cost vs. time. 
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