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Measuring change in a construct over time in educational or psychological re-

search is often achieved by administering the same items to the same respondents

repeatedly over time. When item response data are categorical, a second-order la-

tent growth model (LGM) can be used by incorporating an item response theory

(IRT) model as the measurement model (referred to as LGM-IRT). Common item

effects can be specified as orthogonal specific factors in the measurement model.

This study investigated three issues in using LGM-IRT with common item effects,

namely model parameterization, estimation of model parameters, and sample at-

trition. Selected longitudinal IRT models were first reviewed. The Schmid-Leiman

transformation was used to transform the second-order model to first-order for-

mulation so that the model could be estimated in common multidimensional IRT



software packages. Simulation studies were carried out to examine different meth-

ods of estimating the model, namely using different estimation methods (diagonally

weighted least square estimator, Monte Carlo expectation-maximization algorithm

and Metropolis-Hastings Robbins-Monro algorithm) and using reduced models. The

estimation methods were examined under different test lengths, sample sizes, and

panel attrition mechanisms. The reduced models were examined under complete

data situation. One empirical analysis was conducted to compare and contrast

the different methods using data from the “Multistate Study of Pre-Kindergarten

2001–2003” by the National Center for Early Development and Learning. The re-

sults of this research can provide provide guidelines on the utility of the model

using aforementioned three estimation methods and the reduced models. The re-

search combines modeling techniques of structural equation modeling and IRT and

can make contribution to the literature of this unified general framework.
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Chapter 1: Introduction

Measuring change in an educational or psychological construct of interest over

time has been an active area in the field of educational and psychological research.

The measurement of the change is often achieved by a repeated measures design,

where the same items or the same subset of items are administered to the same

examinees repeatedly over time. When item response data are categorical, item

response theory (IRT) models are often adopted by researchers who have two pur-

poses, namely item analysis and scoring. IRT provides the benefit of characterizing

the items and examinees separately via item analysis and scoring (Lord, 1980). In

order to utilize these features of IRT models in longitudinal data analyses, various

longitudinal IRT models (e.g., Cai, 2010b; Embretson, 1991; Liu & Hedeker, 2006;

te Marvelde, Glas, Van Landeghem, & Van Damme, 2006) have been proposed to

calibrate items and measure examinees’ latent change as a special application of

multilevel IRT models and multidimensional IRT models (MIRT).

Under the framework of structural equation modeling (SEM), latent growth

modeling (LGM; see e.g., Meredith & Tisak, 1990) has been a popular approach

to longitudinal data analysis. The second-order LGM (See, Section 2.1.3 for more

details) was proposed and widely used to analyze longitudinal data with observed

1



continuous indicators (Duncan & Duncan, 1996; Hancock & Buehl, 2008; Hancock,

Kuo, & Lawrence, 2001; McArdle, 1988; Sayer & Cumsille, 2001). When the response

data are categorical, summed or average scores have traditionally been used as the

measures of the construct of interest. Using IRT model as the measurement model

in a second-order LGM (referred to as LGM-IRT in this study) to give fair attention

to both measurement and structural models is a relatively recent development in

the field of IRT modeling (e.g., Jeon & Rabe-Hesketh, 2015; Paek, Li, & Park, 2016;

Wang, Kohli, & Henn, 2016).

The LGM-IRT model has several advantages over their MIRT counterparts

such as a simple structure model in which the full variance-covariance matrix of

time specific latent abilities is estimated (See, section 2.12 for more details). First,

the LGM-IRT models are more parsimonious than as the time-specific latent fac-

tors can be summarized with latent initial status and growth variables. Second, the

LGM structure enables researchers to examine individual differences with a smaller

number of latent growth factors corresponding to a theorized trajectory. Third, the

covariance between examinees’ initial status and their growth rates can be specified

and estimated. Fourth, time-invariant and time-specific covariates could be incor-

porated into the structural part of the model to explain individual differences in the

growth factors.

While the LGM-IRT modeling approach provides aforementioned benefits, ap-

plication of the model in applied studies is somewhat limited due to several method-

ological challenges. The goals of this study are to identify and investigate the issues

in model specification, estimation, and missing data in LGM-IRT models. The
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background, purposes, and contributions of the current study are provided in the

following sections of the chapter.

1.1 Background

In educational or psychological research, the same items are sometimes re-

peatedly administered to the same examinees across time in order to measure the

examinees’ change in the construct of interest. The responses to the items are

often scored categorically due to the popularity of the Likert-scale format, which

stems from wanting to understand the degree, not simply whether or non respon-

dents agree or disagree. For example, in the “Multistate Study of Pre-Kindergarten

2001–2003” by the National Center for Early Development and Learning (Clifford,

Bryant, Burchinal, & Barbarin, 2005), the academic skills of young children from

pre-kindergarten trough kindergarten were evaluated across four semesters in two

years. The teachers were asked to rate the students’ Language and Literacy skills

as well as Mathematical Thinking skills every semester, using nine five-category

Likert-scale items per scale. In longitudinal psychological studies, such practice is

also common. For example, in the “Korean Youth Panel Survey”, 50 five-category

Likert-scale items were repeatedly administered to the junior high school cohort

over 6 waves to track changes in students’ self-identity related constructs, such as

self-esteem (measured by 12 items) and stress (measured by 17 items).

When item response data are categorical, using IRT models (see, Lord, 1980,

among others for the fundamentals of IRT models) has been a popular method to
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estimate item characteristics as well as examinees’ latent abilities, traits or tenden-

cies. As opposed to observed summed scores, IRT models have the advantage of

extracting more information from item response patterns rather than aggregating

observed scores. Since IRT takes the nonparallel items into account, measurement

error can be reduced as long as the measurement model fits reasonably well. A wide

variety of longitudinal IRT models have been proposed in the past three decades.

These models were developed under different frameworks to answer a wide range of

research questions and are distinguished, in part, because of the assumptions made

about the models such as inclusion of local item dependence assumption. This sec-

tion provides an overview of selected longitudinal IRT models and methodological

issues associated with them. Of particular interest is the second-order LGM with

IRT as the measurement model, where the issues of item local dependence and model

parameterization can cause complications in application.

1.1.1 Overview of Selected Longitudinal IRT Models

Conventional unidimensional IRT models such as the graded response model

(Samejima, 1969) were developed to estimate person and item parameters in a single

test administration. However, under repeated measures designs, the new aspect of

time adds complexities that conventional practices could no longer address properly.

Longitudinal IRT models have been around and utilized since the 1970s (see e.g.,

Fischer, 1976, for early application of IRT to longitudinal data) to analyze response

data collected under repeated measures designs. More recently, the advancements in
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multilevel IRT (e.g., Adams, Wilson, & Wu, 1997; Fox & Glas, 2001; Jiao, Kamata,

Wang, & Jin, 2012; Kamata, 2001) and multidimensional IRT (MIRT; e.g., Reckase,

1985, 2009) have provided new perspectives and methods to model longitudinal item

response data. A brief overview of selected multilevel/multidimensional IRT models

for repeated measures data (Cai, 2010b; Embretson, 1991; Jeon & Rabe-Hesketh,

2015; Liu & Hedeker, 2006; Paek et al., 2016; te Marvelde et al., 2006; Wang et al.,

2016) is presented in this section.

The conceptual path diagrams of selected models reviewed in this research are

presented in Figure 1.1 to illustrate the methods. More detailed reviews and path

diagrams of these models can be found in Chapter 2.
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Figure 1.1. Conceptual path diagrams for selected longitudinal IRT models. Diagram 1

is the simple structure correlated-factor model by te Marvelde et al. (2006).

Diagram 2 is the two-tier item factor model by Cai (2010b). Diagram 3a

is the second-order LGM-IRT model without local dependence consideration

by Paek et al. (2016). Diagram 3b is the first-order formation of Diagram

3a. Diagram 4a is the second-order LGM-IRT model with common item

effects. Diagram 4b is the first-order formation of Diagram 4a. Diagram 5 is

the second-order LGM-IRT model with order local dependence by Jeon and

Rabe-Hesketh (2015). Diagram 6a is the second-order LGM-IRT model with

common item effects but without time-specific disturbances. Diagram 6b is

the first-order formation of Diagram 6a.

Under the multilevel modeling framework (Raudenbush & Bryk, 2002), longi-
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tudinal data have been analyzed by treating time points as the level-1 units nested

within level-2 persons (see e.g., Verbeke & Molenberghs, 2000, among others for

the fundamentals of this approach). The change in the outcome variable can be as-

sessed by using the time variable as a covariate at level one. In IRT modeling, similar

techniques have been used to analyze longitudinal item response data (e.g., Liu &

Hedeker, 2006). The item response data from all time points could be incorporated

into a two-level IRT model by treating the latent scores at different time points as

the level-1 units nested within persons. The changes in examinees’ latent abilities

are modeled by regressing the time-specific abilities on time. The examinees’ growth

curves can then be interpreted using the random intercepts and random coefficients

for time (see, Curran, Edwards, Wirth, Hussong, & Chassin, 2007; Curran et al.,

2008; Liu, Hedeker, & Mermelstein, 2013, for applied examples of this method).

In the framework of MIRT, several models have been proposed to analyze longi-

tudinal item response data. For example, Embretson (1991) proposed a within-item

longitudinal MIRT model, where the items could load on multiple dimensions. The

latent variable at the first time point represented the baseline abilities, while the

dimensions at other time points were parameterized as the changes from previous

time points (see Figure 2.1 for graphical representation of this model and Section

2.1.2 for more details). Other researchers approached the question from a between-

item dimensionality perspective, where each item could only load on one dimension.

For example, te Marvelde et al. (2006) proposed using simple-structure correlated

factors MIRT to analyze longitudinal item response data. Instead of using baseline

and difference parameters as in the within-item MIRT model, the simple-structure
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correlated factor MIRT model estimates the latent abilities of examinees at all time

points (see Diagram 1, Figure 1.1). Hill (2006) and Cai (2010b) proposed using an-

other type of between-item MIRT, namely the two-tier full-information item factor

model to analyze longitudinal item response data (see Diagram 2, Figure 1.1). In

addition to the correlated factors as in te Marvelde et al. (2006), the two-tier model

introduces a series of orthogonal specific dimensions to address the residual depen-

dence among repeated categorical items even after the examinees’ latent scores are

taken into account (i.e., item local dependence; Crocker & Algina, 1986).

Recently, some researchers have extended the between-item MIRT models to

the second-order LGM model by imposing a growth structure on the time-specific

latent variables. Instead of modeling multiple correlated factors to represent the la-

tent abilities at each time point, the LGM-IRT model characterizes the growth curve

of examinees with a mathematical function while allowing individual differences in

the change parameters (e.g., random slopes and intercepts for linear change). For

example, the simple-structure correlated factor MIRT could be extended to a second-

order LGM without local item dependence (Paek et al., 2016, Diagram 3a, Figure

1.1). The two-tier model could be extended to a second-order LGM with common

item effects in the measurement model (Wang et al., 2016, Diagram 4a, Figure 1.1).

Viewing the local item dependence as an order effect, Jeon and Rabe-Hesketh (2015)

developed a second-order LGM with “order local dependence” where the response

to an item in later measurement waves was regressed on the response to the same

item in the previous wave (see Diagram 5, Figure 1.1).

Although these longitudinal IRT models are have been around, practical ap-
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plications of these models are limited due to several methodological issues. The

methodological issues in applying these longitudinal IRT models are presented in

the following section.

1.1.2 Methodological Issues in Longitudinal IRT Models

In this section, the selected longitudinal IRT models are briefly introduced

in light of three methodological issues, namely the utilization of available response

data, consideration of item local dependence, and estimation.

Utilization of all available item response data. As Hill (2006) pointed

out, even with longitudinal surveys, researchers sometimes only use the data from

the first administration for item calibration. Response data at subsequent time

points are then scored with item parameters obtained from the first time point.

This practice leaves out the additional information from subsequent measurements,

which could be used for more stable and accurate calibration. The loss of information

can be a severe issue especially when sample sizes are small, as IRT models require

sufficient sample size to be properly estimated. Thus, using only the first-wave

data for calibration under small sample size could result in unstable item parameter

estimates (i.e., estimates with large standard errors). The uncertainty in these

estimates could be further carried over in subsequent scoring processes (Cheng &

Yuan, 2010; Liu & Yang, 2017; Patton, Cheng, Yuan, & Diao, 2013, 2014; Thissen

& Wainer, 1990; Yang, Hansen, & Cai, 2012).

All the longitudinal IRT models reviewed in this research allow for joint cal-
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ibration of data from all time points. The multi-wave data are modeled either as

unidimensional IRT conditioned on time (e.g., multilevel IRT for longitudinal data),

or as MIRT models with each primary dimension representing the latent scores at a

time point. It is worth noting that, by correlating the main factors in the between-

item MIRTs, the main factors could “borrow strength” from each other to improve

the precision of item parameter estimates as well as latent ability score estimates

(Cai, 2010b).

Consideration of item local dependence. Item local independence is an

important assumption of IRT models, which requires that the responses to different

items should not be related to each other after the respondent’s latent score is

taken into account (Crocker & Algina, 1986). However, under repeated measures

designs, the local independence assumption hardly holds. After all, the examinees

actually respond to the same items or subset of items multiple times. As shown in a

simulation study by Tuerlinckx and De Boeck (2001), IRT models are typically not

robust to violation of the local independence assumption as it can cause biased item

parameter estimates. Thus, using IRT models to measure examinees’ latent change

requires mechanisms that account for the local dependence introduced by using the

same items multiple times.

Three of the aforementioned models explicitly address the issue of local item

dependence, namely the two-tier model, the LGM-IRT extended from the two-tier

model, and the LGM-IRT with order local dependence. Among them, the two-

tier model and its LGM-IRT extension parameterize the residual item dependency

as a series of orthogonal specific factors. Local item dependence is treated as a

10



random effect, which captures the unique interaction of each examinee with the

repeated items (Cai, 2010b; Maydeu-Olivares & Coffman, 2006). The same modeling

techniques have also been used to address local dependence among items that share

the same stimulus, which is referred to as the “testlet effect” (Lee & Frisbie, 1999).

In order to avoid confusion with the “testlet effect,” this research adopts the term

“common item effects” to refer to local item dependence parameterized as specific

factors in a longitudinal data analysis context.

In contrast to the common item effect, the LGM-IRT with order local de-

pendence by Jeon and Rabe-Hesketh (2015) treats item local dependence as an

item-specific fixed effect. It can be seen as a fixed adjustment to an item intercept

depending on the response to the same item in the previous wave. The two types of

local item dependence are suitable for different testing contexts. The common item

effect is a type of symmetrical “combination dependence” caused by common items,

common item stimulus or content domain, whereas the order local dependence is

most appropriate for items with ordering effects (e.g., learning from the previous

items could make the subsequent items easier) (Hoskens & De Boeck, 1997).

Estimation. Despite the advancements in multilevel and multidimensional

IRT models for analyzing repeated measures data, the application of these models in

research could be hindered by the estimation difficulty associated with these mod-

els. The major challenge is the “curse of dimensionality” (Bellman, 1957) when IRT

models are estimated using quadrature-based procedure such as the popular Bock-

Aitkin expectation-maximization algorithm for full-information maximum likelihood

(FIML-BAEM; Bock & Aitkin, 1981). The computational challenge occurs when the
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number of latent variables increases in a model because the number of quadrature

points to be evaluated to integrate out the latent variables would increase exponen-

tially. Take a model with three latent dimensions for example. If 15 quadrature

points per dimension are utilized for numerical integration, which is the default of

Mplus 7.4 (Muthén & Muthén, 1998-2012), the total number of quadrature points

that is required to evaluate the response pattern likelihood is 153 = 3375. As

the number of response patterns increases (e.g., sample size), the required time to

evaluate the likelihood also increases considerably. Typically, estimating a model

with more than three dimensions becomes considerably burdensome and impractical.

While Adaptive quadrature points (Rabe-Hesketh, Skrondal, Pickles, et al., 2002)

can be another option, the methods (e.g., mean and variance; mode and curvature)

are multiple and the performance is less examined for multidimensional IRT models.

For example, Yang & Zheng (accepted) reported that Mean method in Stata IRT

package did not properly estimate a unidimeisonal model with mixed format items.

Of the aforementioned models, the multilevel IRT model for longitudinal data

would require three-dimension integration when the growth curve is assumed to be

linear (i.e., level-1 time-specific latent variable, level-2 person-specific latent vari-

able, and random slopes of time). The number of dimensions in the between-item

MIRT model (Embretson, 1991) and the simple-structure correlated factor model

(te Marvelde et al., 2006) equals the number of time points N in an assessment,

since each dimension represents the latent scores at one time point. The LGM-IRT

without local dependence (Paek et al., 2016), an extension of the simple-structure

correlated factor model, would also have N dimensions. The two-tier model would
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have N + I dimensions, where I is the number of repeated items. Similarly, the

LGM-IRT with common item effects, an extension of the two-tier model, would

also have N + I dimensions. The LGM-IRT with order local dependence Jeon and

Rabe-Hesketh (2015) would require N dimensional integrations if the conventional

BAEM algorithm is used to obtain FIML estimates. .

It would appear that the two-tier model has the highest number of dimensions

that need to be integrated over when using FIML estimation. However, the two-tier

structure allows analytical dimension reduction techniques (Gibbons & Hedeker,

1992) to be implemented for estimation efficiency. Cai (2010b) has shown that,

when the specific dimensions are mutually orthogonal and are uncorrelated with the

general factors, the dimensionality of the model could be analytically reduced from

N+I to N+1 by breaking the integral over the I specific dimensions into a product

of I one-dimensional integrals. This means that the number of dimensions in the

two-tier model after dimension reduction is always N + 1 regardless of the number

of repeated items. The dimension reduction technique in IRT models is similar

to the method by Cudeck, Harring, and du Toit (2009), where three-dimensional

integration is reduced to a one-dimensional problem by utilizing conditional linearity

in the context of nonlinear SEM.

As will be demonstrated in Chapter 2, The LGM-IRT model without local

dependence can be transformed to a first-order model using the Schmid-Leiman

transformation (Schmid & Leiman, 1957) so that it has a two-tier structure (see

Diagram 3b Figure 1.1), which also allows for only three-dimensional integration

after the dimension reduction technique is implemented. However, when common
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item effects are included in the LGM-IRT, the re-parameterized first-order forma-

tion cannot be reduced to three dimensions. This is because the specific factors

for common item effects and the specific factors for time-specific disturbances are

crossed with each other when parameterized as a first-order model (see Diagram

4b Figure 1.1), making the same dimension reduction technique inapplicable. For

example, if an assessment has four waves and two repeated items, the model would

have six dimensions. Often longitudinal assessments can have more than four time

points and two items. Due to the extremely high dimensionality of the LGM-IRT

with common item effects, estimation with FIML-BAEM becomes impractical in

applied studies.

Methodological issues that require further investigation. As discussed

above, all aforementioned IRT models for repeated measures data allow for joint cal-

ibration of data from all time points. When item local dependence is ignored, the

second-order LGM-IRT can be re-parameterized as a first-order model to reduce the

dimensionality to only three. However, when item local dependence is modeled as

common item effects, the same dimension reduction technique cannot be utilized.

Thus, the estimation of the LGM-IRT becomes very challenging due to the involve-

ment of high-dimensional latent variables. Alternative methods are needed to handle

the estimation difficulty in the LGM-IRT model with common item effects. Two

such approaches are presented in the following section.
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1.1.3 Approaches to Handling Estimation Difficulty in LGM-IRT

with Common Item Effects

This section describes two potential approaches to addressing the estimation

difficulty of the LGM-IRT model with common item effects. The first method is

to explore alternative estimation methods that are more computationally efficient

than FIML-BAEM. Within the framework of FIML estimation, potential candi-

dates include Monte Carlo expectation-maximization (FIML-MCEM; Wei & Tan-

ner, 1990) and the Metropolis-Hastings Robbins-Monro algorithm (FIML-MH-RM;

Cai, 2010a), both of which were specifically developed to handle models with high

dimensionality. As far as the author is aware of, only one comparison study of the

two algorithms (see, Han & Paek, 2014) has been done in IRT models with no more

than three latent variables. The results suggested that they are comparable in terms

of parameter accuracy in three-dimensional IRT models. However, in the LGM-IRT

model with common item effects, the number of dimensions is typically much larger

than three. It is not yet clear whether the full model could be stably estimated with

either algorithm.

Aside from estimation methods under the FIML framework, methods within

the limited information estimation framework can also be considered, such as the

diagonally weighted least squares (DWLS) estimation for categorical data (e.g.,

Christoffersson, 1975; Muthén, du Toit, & Spisic, 1997). The limited informa-

tion estimation method utilizes only the univariate and bivariate margins in the

contingency table for estimation, which greatly reduces the computational burden.
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However, as Maydeu-Olivares and Joe (2005) pointed out, the computational ease

of limited-information estimation is achieved by ignoring higher-order associations

among items. In theory, limited-information estimation is less ideal than the FIML

method due to the omission of higher-order information. But it is not clear how

the limited-information solutions will compare with the FIML methods when the

LGM-IRT model is fitted under different data conditions.

An issue that could further complicate the performance of FIML and limited

information estimation methods in the longitudinal data context is sample attrition

(i.e., examinees permanently dropping out of the study). Attrition is a common

problem in longitudinal surveys, which poses two potential challenges for longitudi-

nal analysis. First, attrition makes the matrix of response data more sparse, which

could have a negative effect on the performance of the estimation methods. More

importantly, when the missing mechanisms (Rubin, 1976) are not handled properly,

the parameter estimates could be biased and the inference could be misleading. For

example, attrition not at random can lead to biased inference. Even when the attri-

tion occurs at random, different missing at random (MAR) mechanisms could have

different effects on the performance of aforementioned estimation methods. Previous

research showed that FIML estimation methods could produce consistent estimates

under MAR with respect to both covariates and observed outcomes (see e.g., Enders,

2001, among others), while limited information estimators such as DWLS were only

consistent under MAR with respect to covariates (MAR-X; Asparouhov & Muthén,

2010). Comparison studies of FIML and limited information estimation have mostly

been conducted without missing data (e.g., Forero & Maydeu-Olivares, 2009). The
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effects of MAR attrition on the performance of the three estimation methods have

not yet been comprehensively compared.

The second potential method to circumvent the high-dimensionality issue is to

simplify the model so that the dimension-reduction technique (Gibbons & Hedeker,

1992) could be utilized to reduce the dimensionality of the model to only three.

There are two types of nuisance factors in the LGM-IRT, namely the common item

effects in the measurement part of the model and the time-specific disturbances in

the structural part. When either type of nuisance factor is dropped from the model,

the model can be transformed into a three-dimensional integration problem. As

shown in Diagrams 3b and 5b in Figure 1.1, the two reduced models can be trans-

formed from the second-order formulations to their first-order equivalents. Using

the first-order formulation of the reduced models, it is easy to find that, assuming a

linear growth trajectory, the total number of dimensions in either model is always

three no matter how many items or time points are present. It is assumed that

mis-specifying the model by dropping one type of nuisance could cause bias in the

parameters of the measurement part and/or the structural part of the model. How-

ever, literature in this regard is limited. Wang et al. (2016) indicated that omitting

the common item effects had little influence in the parameter estimates of the model

in their empirical example, citing a pilot test they conducted. But the sensitivity of

the parameter estimates to the omissions of nuisance factors has not been compre-

hensively investigated with simulation studies. If the item or structural parameters

were indeed robust to the omission of either kind of nuisance factors, it would be

advantageous to use the simplified models for computational efficiency.
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1.2 Purposes of the Study

This study considers a LGM-IRT model that includes random common item

effects in its measurement model. Motivated by the estimation complications caused

by high dimensionality of the model, this research seeks to achieve five specific goals.

The first goal of the research is to provide a review of selected longitudinal IRT

models. Special attention will paid to the parameterizations of these models under

both SEM and MIRT frameworks. The interrelations among these models will also

be explained. Detailed reviews of selected longitudinal IRT models are presented in

Chapter 2.

The second goal of the research is to compare, via a simulation study, the per-

formance of the aforementioned three estimation methods (namely FIML-MCEM,

FIML-MH-RM, and DWLS) in estimating the full model when no attrition is present.

The three estimation methods will be compared in terms of estimation time and pa-

rameter accuracy under different data conditions such as test length, sample size

and so on.

The third goal of the research is to assess the performance of the two reduced

models by dropping the common item effects or the time-specific disturbances. The

estimated item and structural parameters from the reduced models will be compared

to the true generating values to gauge the effects of the misspecifications.

The fourth goal of the research is to compare the performance of the three

estimation methods in estimating the full model when attrition occurs under MAR.

Two types of MAR mechanisms are considered, namely, MAR with respect to both
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covariates and observed outcomes, and MAR with respect to covariates only (MAR-

X). It should be noted that the missing-completely-at-random (MCAR) mechanism

is not examined in this study since it is less common in longitudinal studies (Young

& Johnson, 2015). The missing not at random (MNAR) mechanism is also not

included in the study, since there is another line of research that specifically deals

with MNAR in LGM models. Investigating these methods is out of the scope of the

current study.

The fifth goal of the research is to provide an empirical illustration of applying

the LGM-IRT model to real-world data with all three estimation methods. The

feasibility of using these methods are examined. And the results from the three

methods will be compared and contrasted.

This research is to answer three main research questions listed below.

• How does the performance of the aforementioned estimation methods compare

with each other under complete data?

• What is the impact of dropping common item effects or time-specific distur-

bances on model parameter estimates under complete data?

• How does the performance of the aforementioned estimation methods compare

with each other under MAR and MAR-X panel attrition?

1.3 Contributions of the Study

Although the LGM-IRT model with common item effects has been presented

previously (Wang et al., 2016), it has not yet been used in applied studies due to
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estimation difficulties. The estimation of the LGM-IRT model is less explored. The

performance of different estimation methods within the context of LGM-IRT was

not fully examined before as far as the author is aware of. The current study can

provide guidelines on the utility of the model using aforementioned three estimation

methods.

The study can also provide information on the effects of ignoring the nuisance

factors. Due to the estimation difficulties of the full model, researchers sometimes

omit components of the full model for computational ease. As mentioned before,

when either of the two types of nuisance factors is dropped, the dimensionality of

the model could be reduced to only three. Even though dimension reduction lifts the

computational burden greatly, its effect has not been comprehensively investigated.

The findings of the current study can provide new insights into the issue.

The current study combines modeling techniques of the two-tier item factor

model and latent growth model. The equivalence of second-order latent growth

models and MIRT models is demonstrated with re-parameterization. The study is

situated in the unified framework of IRT and structural equation modeling (SEM)

and makes contribution to the literature under this unified general framework.
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Chapter 2: Literature Review

To achieve the first goal of the research, three classes of IRT models for lon-

gitudinal analysis are first reviewed. The parameterizations of the models and the

interrelations between the models are explained by numeric equations as well as

path diagrams. The Candidate estimation methods for high-dimensionality IRT

models are then described, namely FIML-MCEM and FIML-MH-RM, and limited-

information estimators. Lastly, sample attrition in longitudinal studies and its ef-

fects on the performance of these estimation methods are also introduced.

2.1 Longitudinal Item Response Theory Models

Three classes of longitudinal IRT models are identified in this research based

on the frameworks under which they were developed. The three frameworks and

the specific models are presented in Table 2.1. Each model is described in detail,

and the interrelations between these models are discussed.

It should be noted that some early longitudinal IRT models are not reviewed in

this study, such as the linear logistic test model (Fischer, 1973, 1983, 1995) and the

linear logistic model with relaxed assumptions (Fischer, 1976, 1983, 1989), because

they require stronger assumptions and are less used nowadays. The focus of this
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Table 2.1

Classification of Longitudinal IRT Models Reviewed in This Study

Framework Models
Multilevel IRT models Multilevel IRT model that decomposes person parameters

Single-level MIRTs Within-item multidimensional model
Simple structure correlated factor model
Two-tier item factor model

LGM-IRT models LGM-IRT without local dependence consideration
LGM-IRT with order local dependence
LGM-IRT with common item effects

study is on longitudinal IRT models that measure latent change at the test level.

Therefore this research does not include models that measure item-level change,

such as the three-level multilevel IRT model that decomposes the item intercepts

(Liu & Hedeker, 2006) and the item-level growth curve model (Paek et al., 2016).

For the purpose of model description, the following indices are used throughout

the review:

• n = 1, . . . , N is the index for time points.

• tnj is the time value associated with the nth time point for person j. If the

testing timings are the same for all examinees, the time value for all examinees

at the nth time point is tn

• i = 1, . . . , I is the index for items that are repeated at each time point.

• j = 1, . . . , J is the index for examinees.

For simplicity of model description, all the models reviewed in this chapter are

described using the two-parameter logistic (2-PL) model (Birnbaum, 1968), assum-

ing that the tests are made up of dichotomous items. They can be easily generalized
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to polytomous items when the graded response model is adopted (Samejima, 1969)

or mixed-format tests. The 2-PL model can be written as:

P (Yij = 1 | θj) =
1

1 + exp(−αiθj − λi)
, (2.1)

where Yij is person j’s response to item i, θj is the latent score of the person, and

αi and λi are the slope (i.e., discrimination) and intercept of item i respectively.

The difficulty of the item is −λi/αi. The term −λi is referred to as the “threshold”

in categorical confirmative factor analysis. For discussions on the equivalence of

IRT and categorical confirmative factor analysis, readers are referred to the works

of Takane and De Leeuw (1987) and Kamata and Bauer (2008).

2.1.1 Multilevel IRT Models for Assessing Change

Multilevel modeling (Raudenbush & Bryk, 2002) has been a popular method

to account for nested data structures, which are common in education settings (e.g.,

students are nested within classes within schools). Under the multilevel modeling

framework, multilevel IRT models (see e.g., Adams et al., 1997; Fox & Glas, 2001;

Jiao et al., 2012; Kamata, 2001) have been developed to handle the clustering effect

of examinees. This is typically achieved by decomposing the person parameters

into level-1 (e.g., students) and level-2 (e.g., schools) components. In a repeated

measures design, the data structure can be viewed as items nested within time

points within examinees. When multilevel IRT models are used to assess test-level

change in repeated measures context (see, Curran et al., 2007, 2008; Liu et al., 2013,
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for applied examples of this method), the students become the level-2 units, while

time points are the level-1 units. A smooth growth curve (e.g., linear or polynomial)

function is fitted by entering the time value variable into the multilevel structure as

a level-1 covariate. The latent scores are represented as a combination of fixed and

random effects. Take the 2-PL IRT model for example, examinee j’s probability of

answering item i at the nth time point can be written as:

P (Yinj = 1 | θnj) =
1

1 + exp(−αiθnj − λi)
, (2.2)

where αi and λi are the item slope and intercept respectively. The subscripts of the

item parameters do not include time point index n, assuming that item parameters

are time-invariant. When the growth curve is assumed to be linear, the time-specific

latent ability θnj for person j at time point n can be decomposed as a combination

of fixed and random person effects and time-specific residuals:

θnj = (γ0 + u0j) + (γ1 + u1j)tnj + εnj, (2.3)

where γ0 is the population-level intercept; γ1 is the population linear change rate; u0j

and u1j are the random intercept and random slope effects for examinee j; and εnj is

the level-1 disturbance term for person j’s latent score at the nth time point. Thus,

each examinee’s growth curve could be quantified with his/her unique intercept and

growth rate. The multilevel structure in Equation (2.3) could also be modified to

accommodate other person-level or occasion-level covariates and other trajectory
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function forms (e.g., quadratic or exponential curve).

Using multilevel IRT models to measure change in latent scores has several

advantages. First, time-invariant and time-variant covariates could be entered into

level two and level one of the model, respectively. One could use standard likelihood

ratio tests or fit indices to decide what covariates should be included. Second, since

the change is modeled as some smooth function of time, the timings of the tests

do not have to be the same for each examinee. Note that in Equation (2.3), the

time value tnj could be person-specific. This means that not all examinees have

to be measured at the same occasion, although this is less common in educational

testing. Third, by allowing person-level random effects, the multilevel IRT models

could account for the heterogeneity in examinees’ growth curves. The covariance of

the random intercepts and the random slopes could also be estimated.

In repeated measures designs, it is common that the time-specific disturbances

εnj could have a time series structure (Hedeker & Gibbons, 2006). It is worth noting

that such covariance structures are used to model the dependence of respondent’s

disturbances over time. Thus they do not account for item-level conditional depen-

dence. Lack of local dependence consideration is the major disadvantage of this

model.

Multilevel longitudinal IRT models are typically estimated by the method of

maximum likelihood. Ideally, it is more statistically efficient to simultaneously fit

and test both the measurement model in Equation (2.2) and the random coeffi-

cient model in Equation (2.3), since no information is lost in the process when all

parameters are jointly estimated. However, as Curran, Edwards, Wirth, Hussong,
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and Chassin (2007) pointed out, empirical data in developmental research are of-

ten characterized with significant complexity. A simultaneous estimation strategy

might not be feasible in empirical studies due to convergence problems stemming

from estimation difficulties. Jointly testing covariates and the time series covariance

structure can be time consuming. When convergence was an issue, Curran et al.

(2007) advocated a two-stage estimation strategy, where item calibration was done

in stage 1 and the growth curve was fitted and tested in stage 2. Such an approach

would lead to loss of statistical efficiency. But it could be a practical compromise

with empirical data.

2.1.2 Multidimensional IRT Models for Longitudinal Data

The second class of longitudinal IRT models were developed under the general

framework of MIRT (Reckase, 1985, 2009). Three MIRT models for longitudinal

data are reviewed in this section, namely the within-item multidimensional model

(Embretson, 1991), the simple structure correlated-factor model (te Marvelde et al.,

2006), and the two-tier model (Cai, 2010b; Hill, 2006). The details of the three

models are presented below.

Embretson (1991) presented a within-item multidimensional Rasch model (Rasch,

1960) where the change from one time point to the next was explicitly parameter-

ized. Within-item multidimensionality means that each item could load on more

than one latent dimension. In the within-item longitudinal MIRT model, each time
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point represents a dimension. The model is expressed as:

P (Yinj = 1 | θj) =
1

1 + exp(−
∑N

n=1 θnj − λi)
. (2.4)

At the first time point, latent score θ1j is the baseline ability. When n > 1, θnj

is interpreted as the change in person j’s latent ability from time point (n − 1) to

time point n. For example, θ2j was the change in latent score for person j between

the first and the second testing occasion. The item intercept λi was assumed to be

time-invariant, while the item loadings were all set to “1” following the tradition of

Rasch models. The change in latent scores are not modeled as a smooth function.

Rather, a specific change parameter is estimated after the first time point for each

person in a piece-wise manner.
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Figure 2.1. Within-item multidimensional IRT Model for longitudinal data by Em-
bretson (1991). This example includes four time points and four re-
peated items. The upper panel is based on the original parameterization
of Rasch model, where all loadings are 1. The model can be transformed
to a second-order structure as shown in the lower panel.

The path diagram of the within-item multidimensionality model is presented

in the upper panel of Figure 2.1 based on the original parameterization of Embretson

(1991). The path diagram could be transformed to the second-order structure as

shown in Figure 2.1 using a Schmid-Leiman transformation (Schmid & Leiman,

1957), which is more common in the SEM framework. Even though the original

model was developed as a Rasch model, it could be easily generalized to a 2-PL

model by relaxing the equal-discrimination constraint (see Koran, 2009). It can be
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observed from the lower panel of Figure 2.1 that this model is equivalent to the

latent change score model (McArdle, 2001, 2009) with categorical indicators. The

potential weakness of this model is that, as demonstrated in the lower panel of

Figure 2.1, the variance of latent scores has to increase constantly along time, which

might not be realistic in empirical research.

Instead of using a within-item MIRT model, some researchers proposed us-

ing between-item-dimensionality MIRT models for longitudinal data, where items

administered at a time point only loaded on an occasion-specific dimension. One

such example is the simple structure correlated-factor model proposed by te Mar-

velde et al. (2006), the measurement part of which can be written as Equation 2.2.

The structural part is a correlated structure. The path diagram for this model is

shown in Figure 2.2. te Marvelde et al. (2006) claimed that the correlations between

factors should account for the conditional dependence of repeated items. However,

some other researchers observed that the correlations between the factors should be

viewed as a measure for the stability of the measured construct (Cai, 2010b; Cudeck

& Harring, n.d.). The dependence of repeated items between occasions could persist

even after the examinees’ latent scores at different time points are correlated. Other

techniques are needed to address the conditional dependence.

29



Figure 2.2. Simple structure correlated-factor model for longitudinal data by te
Marvelde et al. (2006). This example includes four time points and
four repeated items. Measurement invariance across time is assumed.

When items are scored on a continuous rating scale, conditional dependence

is typically addressed by using correlated residuals (see e.g., Hancock et al., 2001;

McArdle, 1988). With categorical items, bifactor-type models are often used to ac-

count for conditional dependence with orthogonal specific factors (e.g., Cai, Yang, &

Hansen, 2011; Gibbons & Hedeker, 1992; Hill, 2006; Rijmen, 2009) in the framework

of full-information item factor analysis (IFA) (Gibbons & Hedeker, 1992; Takane &

De Leeuw, 1987). Hill (2006) first proposed a MIRT model with common item ef-

fects to address the issue of item local dependence with repeated measures data.

However, Hill (2006) found that this model was too complex to be practically useful

due to its high dimensionality. Building on the work of Hill (2006), Cai (2010b) for-

malized this model as the “two-tier full-information item factor model.” Cai (2010b)

further found that the two-tier structure allows analytical dimension reduction tech-

nique (Gibbons & Hedeker, 1992) to be implemented, which greatly alleviated the
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estimation burden of the model. The model is described in detail here.

In the two-tier model, each item and its repeated duplicates at different time

points are seen as a bundle. If a test with I items is repeated over time, all the

items across time can be sorted into I bundles. In addition to the correlated main

factors, the two-tier IFA model introduced I orthogonal specific factors (one for

each bundle). Each bundle of items can only load on their specific factor and the

main factor. Measurement invariance across occasions is assumed. The loadings

of items within a bundle on their specific factor can be constrained to be equal to

those on the main factor. No cross loading is allowed. The two-tier model could be

represented as:

P (Yinj = 1 | θnj, ξij) =
1

1 + exp(−αiθnj − αiξij − λi)
, (2.5)

where ξij is the common item effect for person j on item i. A vector of the common

item effects ξj are from I independent normal distributions. The term αiξij is the

common item effect for item i and person j. It has also been referred to as an

“item-specific random effect” (Jeon & Rabe-Hesketh, 2015). In the two-tier model,

each item would have one intercept and two equal slopes, one for the main factor

and the other for its specific factor. By comparing Equation (2.8) and (2.5), it

is easy to see that the two-tier IFA model is a more general form of the simple

structure MIRT model by te Marvelde et al. (2006). The two-tier model not only

accounts for the correlation of latent scores at different time points, but also the

conditional dependence of the repeated items. The path diagram of the two-tier
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model is presented in Figure 2.3.

Figure 2.3. Two-tier item factor model for longitudinal data by Cai (2010b). This
example includes four time points and four repeated items. Measure-
ment invariance across time is assumed.

One advantage of the two-tier model is that it can utilize the dimension re-

duction technique (Gibbons & Hedeker, 1992) to greatly reduce estimation burden

during FIML estimation via the FIML-BAEM algorithm. Using the dimension re-

duction techniques, the conditional distribution of an examinee’s response pattern

given the model parameters and his factor scores can be written as:

f(Yj|ω,θj, ξj) =

∫
RN

∫
RS

f(Yj,θj, ξj)dξjdθ =∫
RN

S∏
s=1

∫
R

[∏
i∈Is

f(Yij|θj, ξjs,ω)f(ξjs|ω)dξjs

]
f(θj|ω)dθj,

(2.6)

where Yj is the observed response data for person j, θj is a length N vector of

primary factors, ξj is a length S vector of specific factors, ω represents the model
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parameters, and Is is the index for items that load on specific dimension s. The

likelihood of the model can then be written as:

L(Y|ω,θ, ξ) =

∫
RN

S∏
s=1

∫
R

[
J∏

j=1

∏
i∈Is

f(Yij|θj, ξjs,ω)f(ξjs|ω)dξjs

]
f(θj|ω)dθj. (2.7)

As shown in the above two equations, the (N + S)-dimensional integration is re-

duced to (N + 1)-dimensional integration. For example, a two-tier model with two

time points only requires three-dimensional integration regardless of the number

of repeated item. Even though dimension reduction technique can be used in the

two-tier model to alleviate some estimation burden, estimating the two-tier model

via FIML-BAEM algorithm could still be a major issue when the number of testing

occasions N increases. Therefore two-tier full-information IFA model might not be

suitable for situations where there are a large number of repeated measurements.

Estimation methods with alternative computation algorithms can be explored in

situations with a large number of time points.

Despite their differences, one common feature of the three longitudinal MIRT

models is that they do not assume any smooth growth curve function. Instead,

the latent abilities are estimated individually for each person at each time point.

The advantage is that the model could accommodate complex and atypical growth

processes.
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2.1.3 Second-Order Latent Growth Curve Models

More recently, some researchers began to explore applying latent growth mod-

eling (LGM) techniques to model the change in examinees’ latent construct, using

IRT as the measurement model (Jeon & Rabe-Hesketh, 2015; Paek et al., 2016; Wang

et al., 2016). Although combining LGM and IRT is a relatively new strategy, the

theory of the second-order LGM has been utilized for some time to model observed

continuous indicators in the literature of SEM (Duncan & Duncan, 1996; Hancock

& Buehl, 2008; Hancock et al., 2001; McArdle, 1988; Sayer & Cumsille, 2001). In

a second-order LGM, a latent variable (i.e., the first-order factor) is measured by

multiple continuous indicators at each time point (Sayer & Cumsille, 2001). A

second-order factor structure is then imposed on the first-order factors to separate

the variances that are associated with growth from the time-specific disturbance

variances that are not related to growth (Sayer & Cumsille, 2001). Change can

be estimated for the first-order latent variables instead of the individual observed

continuous indicators to reduce measurement errors.

An LGM-IRT can be seen as an extension of a second-order LGM to categorical

observed indicators in the SEM framework. The first-order variable are measured by

categorical indicators with an IRT model. The variances/covariances of the latent

variables are then decomposed with a second-order structure. In the IRT framework,

the LGM-IRT can also be seen as an MIRT model, whose correlated factors structure

is replaced by a higher-order growth structure to capture the change process of the

time-specific factors. For example, if the change process of examinees is assumed to
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be linear, the common structure model can be expressed as:

θnj = γ0j + γ1jtnj + εnj, (2.8)

where θnj is the person- and time-specific latent ability, γ0j and γ1j are the random

intercept and slope of the person j respectively, and εnj is the person-specific dis-

turbance. It can be observed that the structural model under the SEM framework

in Equation (2.8) is mathematically equivalent to Equation (2.3) under multilevel

modeling framework. The LGM model can be seen as a multilevel model formulated

as a single-level model. For discussion on the equivalence of two types of models,

readers are referred to the works of Chou, Bentler, and Pentz (1998), and Bauer

(2003) among others.

There are several advantages of the LGM-IRT model as opposed to the MIRT

model that it is extended from. First, the LGM-IRT model is more parsimonious

than its corresponding MIRT model. In a longitudinal study with N time points

(N ≥ 3), the N variances, N × (N − 1)/2 covariances and N means in the corre-

sponding MIRT model are summarized with only five parameters in the LGM-IRT

(i.e., the means of the intercepts and slopes, the variances of the intercepts and

slopes, and the covariance between the intercepts and slopes). Second, the random

intercept and slope allows researchers to examine individual differences in initial

status and growth rate as they are modeled as random effects. Third, by estimat-

ing the covariance between the random slopes and intercepts, the LGM-IRT model

could answer the specific question of “what is the correlation between initial status
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and growth rates?” This can be an important piece of information for applied re-

searchers, because whether a person with lower initial status changes faster or slower

than one with higher initial status may have very different policy implications. It is

worth noting that the latent intercept of the LGM does not necessarily have to be

the first time point. It can be parameterized at any time point arbitrarily based on

the purpose of the research. Fourth, time-invariant or time-specific covariates can

be incorporated into the model.

Depending on the type of IRT model used in the measurement part, this study

identifies three types of second-order LGM-IRT models, namely LGM-IRT without

local dependence considerations, LGM-IRT with order local dependence, and LGM-

IRT with common item effects. The three models are presented here respectively.

Paek et al. (2016) proposed a second-order LGM-IRT using a Rasch model (Rasch,

1960). If the equal-discrimination constraint is relaxed, the more general form of

the model is presented in the upper panel of Figure 2.4. Even though the original

model was formulated as a first-order model, the model could be transformed to

its second-order equivalent as shown in the lower panel of Figure 2.4. It can also

be observed from the first-order path diagram that the model only requires three-

dimensional integration after dimension reduction technique (Gibbons & Hedeker,

1992) is implemented, as there are no cross loadings of the disturbances. If the

growth curve is modeled as a quadratic function, a quadratic growth factor will be

added to the structural part of the model. The number of dimensions would increase

by 1. The model would then require four-dimensional integration after dimension

reduction.
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Figure 2.4. Second-order LGM-IRT model without local dependence consideration
by Paek et al. (2016). This example includes four time points and four
repeated items. The upper panel is based on the original parameteriza-
tion in MIRT framework. γ0 and γ1 are the latent intercept and slope
respectively. εn is the time-specific disturbance. The model can be
transformed to the second-order structure as shown in the lower panel.
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Although developed under a different framework, the LGM-IRT by Paek et al.

(2016) is in fact mathematically equivalent to the longitudinal IRT model developed

under the multilevel modeling framework described earlier, as both the models do

not have local dependence considerations. The model could also be seen as imposing

the latent growth structure on the correlated factors of the simple structure MIRT

model by te Marvelde et al. (2006). Similar to the MIRT by te Marvelde et al. (2006),

the major weakness of the model is that it lacks local dependence consideration,

which may lead to bias in item and/or structural parameters.

Wang et al. (2016) extended the two-tier model to a LGM-IRT model where

the local dependence is modeled as common item effects. The measurement part of

the model is the same with the aforementioned two-tier model (see Equation (2.5))

and is not repeated here. In contrast to order local dependence, the item local

dependence in this model is modeled with random effects, which means that the

dependence among items could vary across examinees. Thus, common item effects

could be seen as the unique interactions between examinees and items. According

to Hoskens and De Boeck (1997), local item dependence parameterized as random

effects can be conceptualized as a type of symmetrical “combination dependence”

as opposed to order local dependence. Hoskens and De Boeck (1997) argued that

combination dependence is most suitable for those items that tap on partial aspects

of the same knowledge or items that share the same stimulus content.

The path diagram of the second-order LGM-IRT with common item effects

is presented in the upper panel of Figure 2.5. The second-order structure can also

be transformed to first-order formation as shown in the lower panel of Figure 2.5.
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As we can see in the first-order path diagram, the nuisance factors for the common

item effects and the time-specific disturbances are crossing with each other. As

a result, the dimension reduction technique can only reduce the dimensionality of

the model to four, which would still be computationally demanding using FIML-

BAEM. Moreover, currently there is no statistical package that implement dimension

reduction for this model. Without dimension reduction, the number of dimensions

equals I + N in the second-order parameterization and I + N + 2 using the first-

order formation. Therefore in a study with many repeated items and time points,

the application of this model is greatly limited. In fact, the full LGM-IRT model

with common item effects was not used in the empirical study by Wang et al. (2016).

The authors resorted to dropping all the specific factors in the model to reduce the

estimation difficulty. Wang et al. (2016) argued that the simplification in model

did not cause significant bias, citing a pilot test they had conducted. However, the

effects of ignoring item local dependence on item and structural parameters have

not yet been comprehensively examined through simulation studies.
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Figure 2.5. Second-order LGM-IRT model with common item effects to address local

dependence. This example includes four time points and four repeated items.

εn and ξi are the disturbance and common effect respectively. The second-

order structure is shown in the upper panel while the first-order structure is

shown in the lower panel.
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Figure 2.6. Second-order LGM-IRT model with common item effects but without time-

specific disturbances. This example includes four time points and four re-

peated items. ξi is the common item effect. The second-order structure is

shown in the upper panel while the first-order structure is shown in the lower

panel.

Similar to dropping the common item effects as shown in Figure 2.4, the
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Figure 2.7. Second-order LGM-IRT model with order local dependence by Jeon and
Rabe-Hesketh (2015). This example includes four time points and four
repeated items. γ0 and γ1 are the latent intercept and slope respectively.
The intercept of an item is regressed on the score of the item in previous
administration.

cross-loading issue in the LGM-IRT with common item effects can also be resolved

by leaving out the time-specific disturbances. As shown in Figure 2.6, the model

without the time-specific disturbances requires only three-dimensional integration

as well. The structural part of this reduced model is:

θnj = γ0j + γ1jtnj. (2.9)

However, it is uncommon to ignore time-specific disturbances in the structural part

of a LGM model. This reduced model without disturbances has not been used by

scholars as far as the author is aware of. The effects of eliminating disturbances are

not yet examined.

Approaching the issue of local dependence from a different perspective, Jeon

42



and Rabe-Hesketh (2015) proposed adding “order local dependence” in the measure-

ment part of the LGM-IRT to address the local dependence issue. The order local

dependence IRT model was first proposed by Hoskens and De Boeck (1997), where a

person’s score of a previous item could impact the difficulty of the subsequent item.

The measurement model of the LGM-IRT with order local dependence for can be

written as:

P (Yinj = 1 | θnj) =
1

1 + exp(−αiθnj + λi + δiYi(n−1)j)
, (2.10)

where δiYi(n−1)j is an adjustment of the item intercept based on previous response,

with δi being the fixed regression coefficient for item i. The path diagram of this

model is presented in Figure 2.7. Intuitively, order local dependence means that

when the score for item i in the (n−1)th wave is 1, the difficulty of the same item at

the nth is reduced by −δi/αi accordingly. If the score for item i in the (n−1)th wave

is 0, the difficulty of the item stays the same in the nth wave. It should be noted

that, the order local dependence is a feature of the item itself, which is modeled as

a fixed regression coefficient for each item. The regression coefficient δi is assumed

to be exactly the same for all examinees.

As Hoskens and De Boeck (1997) pointed out, order local dependence is es-

pecially suitable for modeling the ordering effects of items. The “order” here can

be factual (i.e., the administration order of the items), historical (i.e., order of the

learning process) or conceptual (i.e., mastering the more difficult knowledge implies

knowing the easier contents).
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2.2 Estimation of LGM-IRT

Three estimation methods in the FIML and limited-information estimation

frameworks are reviewed in this section. Under the FIML estimation framework,

two methods (FIML-MCEM and FIML-MH-RM) are introduced. Under the limited-

information estimation framework, various weighted least squares (WLS) estimation

methods including weighted WLS, diagonal-weighted WLS, and unweighted WLS

are described.

It is worth noting that Bayesian estimation method is not included in this

research. The Bayesian methods avoid using quadratures by drawing samples of

a target distribution from single chains of events. Edwards (2010) examined the

feasibility of using Bayesian methods for high-dimensional IRT models. It was found

that the difficulty in estimating a high-dimensional model cannot be avoided with

Bayesian methods. Various Bayesian estimation algorithms were even slower than

maximum-likelihood estimation methods in complex high-dimensional IRT models

(Edwards, 2010).

2.2.1 Full Information Maximum Likelihood Estimation

Under the FIML estimation framework, two estimation methods have been

specifically designed to handle high-dimensional integration problems, namely the

Monte Carlo EM algorithm (Wei & Tanner, 1990) and the Metropolis Hastings-

Robbins Monro algorithm (Cai, 2010a).

Monte Carlo EM algorithm. The FIML-MCEM algorithm (Wei & Tanner,
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1990) is an implementation of the EM algorithm pioneered by Dempster, Laird,

and Rubin (1977). The EM algorithm is an iterative procedure to find maximum-

likelihood estimates in the presence of unobserved data and parameters (e.g., random

effects). It is comprised of the expectation (E) step and the maximization (M)

step. The general EM algorithm is first described here, followed by details on the

implementation of the MCEM algorithm.

For the purpose of description, the following notation are used. Zo and Zm

are the observed and unobserved data respectively. In the context of IRT, Zo would

be the observed item responses, and Zm would be the unobserved latent variables.

Together they form the complete data Z. ω is a vector of the model parameters

to be estimated. l(ω|Zo,Zm) and l(ω|Zo) are the complete-data and observed-data

log-likelihood for the IRT model. ω(k) are item parameter estimates at the kth it-

eration of the EM algorithm. In order to obtain estimates that maximize l(ω|Zo),

the expectation of l(ω|Zo,Zm) must be first computed in the E step. Further de-

fine L(ω,ω(k)) as the expected complete-data log-likelihood conditioned on item

estimates at the kth iteration. The E step of the (k + 1)th iteration can then be

expressed as:

Lk+1(ω,ω
(k)) =

∫
l(ω|Zo,Zm)f(Zm|ω(k),Zo)dZm, (2.11)

where f(Zm|ω(k),Zo) is the posterior distribution of Zm. Parameters are updated

by maximizing the function 2.11 The E step and the M step are updated iteratively

until some arbitrary convergence criterion is met.
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The FIML-MCEM algorithm implements the EM procedure by reformulating

the E step for models requiring high-dimensional integrations. In the kth iteration,

the MCEM algorithm randomly draws a sample of Qk vectors of quadrature points

from the current conditional distribution f(Zm|ω(k),Zo). The sample is denoted as

(Z
(k)
1 . . .Z

(k)
Qk

). In the context of MIRT, each Z
(k)
q is a vector of quadrature points

sampled from a multivariate Gaussian density. Using the random draws, the cur-

rent expectation of complete-data log-likelihood can be approximated as the same

average of complete data log-likelihood as:

L̃k+1(ω,ω
(k)) =

1

Qk

Qk∑
q=1

l(ω|Zo,Z
(k+1)
q ). (2.12)

The FIML-MCEM updates the reformulated E step and the M step until the change

in parameters falls below the convergence criterion. In each iteration of the E step,

a new sample of vectors will be drawn.

As Cai (2010a) pointed out, despite being designed for solving high-dimensional

problems, there are two weaknesses associated with the FIML-MCEM algorithm

that can hinder the application of the algorithm. First, in order to achieve stable

parameter estimates, the total number of random draws must increase tremendously

as the log-likelihood approaches a maximum. Furthermore, the use of random draws

is not efficient in FIML-MCEM, as the algorithm discards all the random draws from

previous E step. Due to these weaknesses, the FIML-MCEM algorithm in practice

is often very computationally expensive when estimating high-dimensional models.

Metropolis Hastings-Robbins Monro algorithm. FIML-MH-RM (Cai,
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2010a) is anther algorithm to handle high-dimensional problems to obtain FIML

estimates. One motivation for MHRM is Fisher’s Identity (Fisher, 1925). Fisher

(1925) proved that the gradient of the observed-data log-likelihood could be obtained

from the conditional expectation of the complete-data gradient. Let ∇(ω|Zo,Zm)

and ∇(ω|Zo) be the gradients of the complete-data log-likelihood and observed-data

log-likelihood, respectively. Following the previous notation, the Fisher’s Identity

can be written as:

∇(ω|Zo) =

∫
∇(ω|Zo,Zm)f(Zm|ω,Zo)dZm, (2.13)

where f(Zm|ω,Zo) is the posterior-predictive distribution of Zm. MHRM seeks to

find the FIML estimates that make the right-hand side of Equation (2.13) equal

zero. The algorithm has three stages, namely stochastic imputation, stochastic

approximation and Robbins-Monro update.

In the stochastic imputation stage, Qk sets of missing data are imputed from

the conditional distribution of the missing data f(Zm|ω(k),Zo) via a Metropolis-

Hasting sampler (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, &

Teller, 1953). The imputed data are denoted as (Z
(k)
1 . . .Z

(k)
Qk

). In the stochastic

approximation stage, the gradient and the information of the complete-data log-

likelihood are approximated. Let s stand for the complete-data gradient. s at the

(k + 1)th iteration can be approximated as:

s̃k+1 =
1

Qk

Qk∑
q=1

∇(ω(k)|Zo,Z
(k+1)
q ) (2.14)
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Let H(ω|Z) be the complete-data information matrix, which is the negative Hessian

of the complete-data log-likelihood. The conditional expectation of the complete

information Γ at the (k + 1)th iteration can be written as:

Γk+1 = Γk + ιk

{
1

Qk

Qk∑
q=1

H(ω(k)|Zo,Z
(k+1)
q )− Γk

}
, (2.15)

where ιk is the gain constant that slowly decreases to zero over iterations. In the

Robbins-Monro update stage, new parameters are obtained using Robbins-Monro

algorithm (Robbins & Monro, 1951):

ωk+1 = ωk + ιk(Γ−1k+1s̃k+1). (2.16)

The FIML-MH-RM algorithm stops when some convergence criterion is met for the

parameter estimates.

The standard error estimates can be obtained using the approximated observed-

data information matrix. The standard errors can be approximated either as a

byproduct of the algorithm (i.e., recursive approximation) or by using the method

of Louis (1982), where the observed information matrix is approximated via Monte

Carlo simulation. Using the same notation, the observed-data information can be

written using Louis’ method as:

IZo = E H(ω,Z)|Z]− E
[
s(ω,Z)sT (ω,Z)|Z

]
+E [s(ω,Z)|Z]E [sᵀ(ω,Z)|Z] .

(2.17)
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E [s(ω,Z)|Z] is 0 when ω is evaluated at its maximum-likelihood estimates. The

remaining two terms can be approximated by drawing samples of imputed missing

data.

As for the performance of FIML-MH-RM, Cai (2010a) demonstrated via a

simulation study that FIML-MH-RM and FIML-BAEM are comparable in terms

of accuracy in a two-dimensional IRT model, while FIML-MH-RM is considerably

more computationally efficient. Bashkov (2015) showed that the FIML-MH-RM

algorithm yielded unbiased parameter estimates in two-level MIRT models with 10

dimensions. Han and Paek (2014) showed that FIML-MH-RM yielded comparable

results with FIML-MCEM and FIML-BAEM, while FIML-MH-RM required much

less estimation time than FIML-MCEM and FIML-BAEM in three-dimensional IRT

models. However, the number of dimensions is typically larger than ten in the LGM-

IRT model with common item effects. It is not yet clear whether the full model could

be stably estimated with either algorithm.

2.2.2 Multiple-Step Limited Information Estimation

WLS estimators for categorical data were developed under the general frame-

work of limited-information estimation for categorical data (e.g., Christoffersson,

1975; McDonald, 1982; Muthén, 1978; Muthén et al., 1997). The rationale for

limited-information estimation is to obtain parameter estimates that minimize the

differences between the model-implied and the observed sample thresholds and tetra-

choric/polychoric correlations. WLS estimators under this framework only use first-
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and second-order associations among observed categorical data for estimation via a

multi-stage procedure. The steps of WLS estimation are presented below.

The ordered response categories are assumed to be discrete indicators of a

continuous underlying latent construct. let x∗i j be the latent score of respondent j

for item i. Let xij denote the respondent’s score. let ki (ki = 0, 1, . . . , Ki)denote the

response categories of the item. The thresholds for the item, τ i, are defined as:

xij = ki, if τiki < x∗i j < τi(ki+1), (2.18)

where τi0 = −∞ and τiKi
= ∞. In the first step of limited-information estima-

tion, the thresholds τ for the categories are estimated one item at a time using a

probit regression via maximum-likelihood estimation. Only univariate information

is used in this stage. In the second stage, bivariate information is utilized. The

tetrachoric/polychoric correlations ρ are estimated with maximum likelihood for

each pair of items using τ̂ from the previous stage. The estimated thresholds and

correlations are stored in a vector s. In the third stage, a least squares function F

is computed. The general form of F can be expressed as:

F = (s− σ)ᵀW(s− σ), (2.19)

where σ is the model-implied intercepts and correlations, the ᵀ superscript is the

transpose operator, and W is a weight matrix. The model parameters and standard

errors can be obtained by minimizing the least squares function.
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As Forero and Maydeu-Olivares (2009) pointed out, there have been some

confusion about the different types of least squares estimators. They observed that

existing limited-information estimators are typically differentiated by the type of

weight matrix, W, used in the third stage. Let Σ be the covariance matrix of the es-

timated thresholds and correlations. When W = Σ−1, the estimator is the weighted

least squares method by Muthén (1978, 1984). The diagonal matrix is used here

in order to ease computational burden and circumvent the issue of non-invertibility

of Σ. When W = [diag(Σ)]−1/2, the estimator is the diagonally weighted least

squares (DWLS) by (Muthén et al., 1997). When W is an identity matrix, the

estimator is the unweighted least squares in Muthén (1993). The popular WLSMV

implemented in Mplus 7.4 (Muthén & Muthén, 1998-2012), which will be used in

the simulation studies, is actually the DWLS (Forero & Maydeu-Olivares, 2009) for

point estimates. The χ2 test statistic is adjusted to approximate the mean and

variance of the expected χ2 when the model is correctly specified.

The limited-information estimators circumvent numerical integration associ-

ated with maximum likelihood estimation to achieve computational efficiency. How-

ever, as Wirth and Edwards (2007) argued, the computational ease of limited infor-

mation estimation is achieved by ignoring higher-order associations among items.

In theory, limited information estimation is less ideal than FIML methods due to

the omission of high-order information. Forero and Maydeu-Olivares (2009) con-

ducted a comprehensive comparison study of FIML and limited-information estima-

tion methods for categorical data under various data conditions. They found that

the differences between the performance of these methods were very small, and that
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FIML was slightly less biased when the sample size was small (200). However, the

study did not consider missing data, which might influence the performance of the

estimation methods. The missing data issue is discussed in the following section.

2.3 Longitudinal Studies and Sample Attrition

Longitudinal analyses, in general, often suffer from some degree of panel at-

trition, when respondents fail to participate in certain waves of the survey or per-

manently drop out of the study. In a review of the attrition issue in 11 large-scale

surveys in developed countries, Lee (2003) reported that the second-wave attrition

rate could range from 4.3% to 15.3%, while the total attrition rate at the end of

the survey varied from 14.8% to 51% depending on the survey and the number of

waves.

2.3.1 Effects of Attrition on Estimation

In general, a considerable attrition rate can cause two methodological chal-

lenges for longitudinal analysis. The most apparent effect of attrition is the loss of

statistical power due to the decrease in sample size. Moreover, attrition under dif-

ferent missing mechanisms could further complicate the statistical inference of the

model and the performance of the estimation methods used. This section first de-

scribes three types of attrition mechanisms. The effects of the attrition mechanisms

on the performance of the three estimation methods are then discussed.

In the literature of missing data (see: Rubin, 1976), distinctions are made be-
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tween three kinds of attrition mechanisms, namely missing completely at random

(MCAR), missing at random (MAR), and missing not at random (MNAR). The

three mechanisms are briefly presented here. Let P (A) be the probabilities of the

realization of attrition patterns A, Yo be the values of the observed dependent vari-

ables, Ym be the values of the missing dependent variables, and X be the observed

covariates. Yo and Ym together form the complete item response matrix Y. When

the attrition occurs under MCAR, the missing is independent of all observed and

unobserved data. MCAR can be expressed as: P (A|Yo,Ym,X) = P (A). With

sufficient sample size after missing, MCAR is usually not a threat to the validity

of the model’s the statistical inference and can be ignored. Unfortunately, attrition

under MCAR is not common in longitudinal studies (Young & Johnson, 2015). Most

attrition in longitudinal surveys is due to a mix of MAR or MNAR.

When the missing mechanism is MAR, the attrition is only dependent on

observed data: P (A|Yo,Ym,X) = P (A|Yo,X). It has been well established

that FIML estimation methods (e.g., FIML-MCEM and FIML MHRM) are con-

sistent under MAR assuming all relevant covariates are included in the model

(see e.g., Enders, 2001). Under limited-information estimation, estimates are ob-

tained by pairwise deletion in the first and second stages of the WLS estima-

tion when missing data are present (Asparouhov & Muthén, 2010). According to

Asparouhov and Muthén (2010), a limited information estimator such as DWLS

was not consistent under MAR with respect to both covariates and observed out-

comes. Asparouhov and Muthén (2010) defined a more restrictive MAR mechanism,

where missing is conditioned on the observed covariates X but not observed out-
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comes Yo (referred to as MAR-X per the authors). MAR-X can be represented as:

P (A|Yo,Ym,X) = P (A|X). Through a simulation study, Asparouhov and Muthén

(2010) found that the DWLS estimator was consistent under MAR-X. Although

Asparouhov and Muthén (2010) asserted that DWLS was not consistent under the

more general MAR, its performance under the broader MAR was not examined in

their simulations. The specific effect of MAR on the performance of WLSMV is not

yet clear.

The third mechanism, MNAR, occurs when the attrition depends on the un-

observed data. MNAR can be expressed as: P (A|Yo,Ym,X) 6= P (A|Yo,X), which

indicates that the missingness is associated with some unobserved variables. MNAR

is not ignorable could cause invalid statistical inference and is usually not ignorable.

In the literature of LGM models, methods have been developed to explicitly model

the missing mechanisms when MNAR attrition is suspected to be a potential threat

in the longitudinal study (e.g., Diggle & Kenward, 1994; Enders, 2011; Wu & Car-

roll, 1988). The major problem with these modeling approaches is that they usually

rely on untestable assumptions.

As mentioned before, attrition can be addressed using FIML estimation by

including covariates as well as relevant auxiliary variables in the model. The auxil-

iary variables are related to the missingness but not part of the main analysis. The

auxiliary variables can be incorporated through the extra dependent variables ap-

proach or the saturated correlates approach (Graham, 2003; Stapleton, Harring, &

Lee, 2015). FIML estimation methods are consistent under general MAR attrition.

Besides using FIML, multiple imputation (Rubin, 1987) methods can also be used to
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handle attrition. The method draws multiple sets of plausible values for the missing

data from the posterior distribution of the target variables after observed outcomes

and auxiliary information are taken into account. The analysis results from the

multiple datasets are then pooled to obtain the point and variance estimates. The

method is also consistent under MAR. The multiple imputation approach handles

the missing data in a separate stage and can use many variables for imputation,

while FIML accounts for missing data in a single stage and can only incorporate a

limited number of auxiliary variables (Stapleton et al., 2015). Another method to

combat attrition is to use sampling weight adjustment, where the sample weights are

adjusted based on background variables so that the weighted sample after attrition

would still be representative of the target population. For discussion on methods

of sample weight adjustment, readers are referred to the work of Stapleton et al.

(2015).

Of all the models reviewed above, this research focuses on the LGM-IRT with

common item effects. In the following section, the methods for evaluating the esti-

mation methods of the LGM-IRT model are introduced.
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Chapter 3: Methods

The methods used to achieve the second to fifth research goals of the re-

search are introduced in this chapter. The first simulation study is to compare the

performance of the three aforementioned estimation methods (i.e., FIML-MCEM,

FIML-MH-RM, and DWLS) in estimating the full model without sample attrition.

The second simulation study is to assess the performance of two reduced models

in terms of model parameter bias and confidence interval coverage under complete

data. The third simulation study is to compare the aforementioned estimation meth-

ods under the MAR-X and under MAR with respect to both observed covariates

and outcomes. Finally the data and models used for the empirical illustration are

also described.

3.1 Comparison of the estimation methods without Sample Attrition:

Simulation I

This section focuses on the simulation design for the comparison of the estima-

tion methods under complete data. The data generation model and the manipulated

factors are explained in detail. The rationales for choosing the specific levels of the

manipulated factors are also provided.
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3.1.1 The Data Generation Model

The second-order LGM model with common item effects (see Figure 2.5 and

Equation (2.6)) was used to generate the item response data for the simulation study.

To be consistent with Equation (2.6), let γ0 and γ1 be the vectors of latent intercepts

and slopes, θn be the vector of the latent abilities at the nth time point, and εn be

the vector of the disturbances at the nth time point. First, the latent intercepts and

slopes were generated from a bivariate normal distribution with covariance matrix

Ψ =

 σ2
γ0

σγ0γ1
σ2
γ1

 , (3.1)

and mean vector µ = (µγ0
, µγ1

)ᵀ. Then the disturbances at each time point were

generated from a normal distribution with mean 0 and variance σ2
εn one time point at

a time. The time-specific disturbances were set to be uncorrelated. Thus, the latent

abilities θn can be generated using Equation (2.6). In total, four waves of θn were

generated in this study. With this setup, the implied variance and covariance matrix

of the latent abilities at the four time points were presented at Table 3.1. Growth

trajectories of a random sample of 100 people using these generating parameters

were plotted in Figure 3.1.
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Table 3.1

Implied Variance-Covariance Matrix of Latent Abilities at the Four Time Points
using the Generating Structural Parameters

Time1 Time2 Time3 Time4
Time1 1.5
Time2 1.2 2.1
Time3 1.4 2.0 3.1
Time4 1.6 2.4 3.2 4.5

Figure 3.1. Plot of the growth trajectories of a random sample of 100 people using the

generating structural parameters. The intercept mean and variance are 0 and

1, respectively. The slope mean and variance are 0.2 and 0.2, respectively.

The covariance between the intercepts and slopes is 0.2.

It should be noted that the disturbances could be correlated or have an elabo-

rate covariance matrix. More time points can also be used in practice. However, the

covariance matrix and the number of time points were not manipulated in this study

due to the scale of the simulation. Uncorrelated disturbance structure and four time

points were used in this study as a first step in the investigation of LGM-IRT.
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Further, let ξi be the common item effects of all examinees for item i gen-

erated from a normal distribution with mean 0 and variance σ2
ξi

. Taking θn and

ξi together, the item response data are generated using a five-category graded re-

sponse model (Samejima, 1969). Let F ∗injx be the probability of examinee j scoring

x (x = 0, 1, . . . ,M) or above on item i at the nth time point. The model is defined

as:

F ∗injx = F ∗(Yinj ≥ x | θnj, ξij) =
1

1 + exp(−αiθnj − αiξij − λix)
. (3.2)

The examinee’s probability of scoring x can be expressed as:

Finjx = F ∗injx − F ∗inj(x+1), (3.3)

where the probability for getting a score of 0 or higher is:

F ∗inj0 = 1, (3.4)

and the probability for getting a score higher then the maximum point is 0:

F ∗injM = 0. (3.5)

The specific means and variances of the latent variables used for data gener-

ation are presented in Table 3.2. The latent intercept was set to follow a normal

distribution with mean 0 and variance 1. The average growth rate was set to be

0.2. In choosing the generating latent slope variance value, a few empirical examples
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Table 3.2

Generating Values for Latent Variables in Simulation I.

Latent variable parameters Values
Distribution of latent intercepts γ0 ∼ Normal(0, 1)
Distribution of latent slopes γ1 ∼ Normal(0.2, 0.2)
Covariance of latent intercept and slope σγ0γ1

= 0.2

Distribution of time-specific disturbances εn ∼ Normal(0,
√

0.5)

Distribution of common item effects ξi ∼Normal(0,
√

0.5)

in IRT framework are reviewed. The conclusions varied depending on the specific

test. Paek et al. (2016) showed that the latent slope variance is about 1/2 of the

intercept variance in a cognitive test. Jeon and Rabe-Hesketh (2015) found that the

latent slope variance was about 1/4 of latent intercept variance in a psychological

survey. Wang et al. (2016) found that the slope variance was almost 0 in a cognitive

test. In this research, the variance of the latent growth was set to 1/5 of the inter-

cept variance as this is typically observed in empirical data following the practice of

previous simulation studies (Depaoli, 2013; Li, 2015; Liu, 2012). The covariance of

latent intercepts and slopes was set to 0.2, which was meant to represent a moderate

positive correlation of approximately 0.447 between latent intercepts and slopes. In

terms of nuisance factors, the disturbance variance was fixed at 0.50 for all time

points. The common item effect variance was also set at 0.50 for all items.

The item parameters of eight items used in this simulation are presented in

Table 3.3. These are also the items used in Simulation II and III. The item parame-

ters were selected from the items used in the simulation study of Cai (2010a), which

were meant to represent items in real-life situations. These items all have positive

and strong discriminations (i.e., slopes) between 1 and 3. The skewness of the items
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Table 3.3

Generating Values of Item Parameters in Simulation I, II & III

Item Slope Interept 1 Interept 2 Interept 3 Interept 4 Skewness
1 1.18 1.92 1.20 0.55 -0.28 -0.74
2 1.29 1.13 0.99 -0.05 -0.67 -0.27
3 2.17 2.45 0.56 -0.8 -2.53 0.09
4 2.57 1.72 0.18 -1.85 -4.80 -0.05
5 1.64 1.92 1.18 0.93 -0.35 -0.91
6 1.97 0.62 -0.51 -0.68 -1.56 0.51
7 2.41 5.17 3.44 2.21 1.48 -2.50
8 1.47 1.80 1.23 1.07 0.33 -1.11

is also calculated and presented in Table 3.3 (see e.g., Maydeu-Olivares, Fairchild,

& Hall, 2017, for details on the equation). Using the standard of |skewness| > 1.5

(Forero & Maydeu-Olivares, 2009), all the items were fairly symmetric except for

Item 7.

3.1.2 Manipulated Factors

Three factors are manipulated in simulation study I, which are listed in Table

3.4. The number of repeated items was set to four (first four items in Table 3.3) or

eight (all eight items in Table 3.3). With eight item coupled with four time points,

the dimensionality of the model would be 12 for second-order model and 14 for first-

order model. It is recognized that longer tests could be used in empirical studies.

However, more repeated items will further increase the dimensionality of the model,

which makes estimation under FIML impractical. As a result, the length of the test

was not further considered. Three levels of sample size (200, 500, 2000) were selected

following the work of Forero and Maydeu-Olivares (2009), corresponding to very

small, sufficient and large sample sizes, respectively. The last manipulated factor
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Table 3.4

Manipulated Factors in Simulation I

Manipulated factors Levels
Number of repeated items (4, 8)
Sample size (200, 500, 2000)
estimation method (MCEM, MHRM, WLSMV)

was the estimation method used for the model. As mentioned before, the MCEM

and MHRM have been developed under the FIML framework, while WLSMV is a

popular limited-information estimator that implements DWLS for point estimates.

MCEM and WLSMV were implemented with MplusTM 7.4 (Muthén & Muthén,

1998-2012) and MHRM is implemented with flexMIRTTM 3.4 (Cai, 2017). In total,

there were 18 conditions in Simulation I.

3.1.3 Identification of Data Analysis Model in Simulation I

The generated data were fitted with the generating model in the data analysis.

In order for the analysis model to be identified, the distribution of the latent intercept

was set to its true generating value so that γ0 ∼Normal(0, 1). This way, the model

implied total variance for the first-wave latent factor was σ2
θ1

= 1 + σ2
ε1

= 1.5 in

Simulation I. It is recognized that a variance of 1.5 does not exactly follow the

convention of setting latent variance to 1 in IRT framework. However, this should

not be an issue of concern. The structural and item parameter estimates obtained

under this parameterization can be easily converted to any other desired scales in

practice. If some of the item parameters are known a priori in empirical analysis,

the model can also be identified by fixing the parameters of these items. For the
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details of the conversion method, readers are referred to the works of Kamata and

Bauer (2008) and Wang et al. (2016).

3.1.4 Evaluation Criteria

A pilot test was conducted to examine the number of replications needed in

the simulation. The running means of the point estimates are calculated to check

when the running mean stabilized. It was found that the running means for all

estimates produced by the three methods stabilized before the first 50 replications.

An example of the running mean plot is shown in Figure 3.2. The results for other

parameter estimates were similar to Figure 3.2. In order to yield more accurate

estimates of confidence interval converage rates, 250 replications were conducted

under each condition.

Figure 3.2. Running means of estimates of a model parameter in pilot test. The estima-

tion method is DWLS. The horizontal line represented the true value. The

running means stopped fluctuating greatly before the 50th replication.

Five outcome measures were used to evaluate the performance of the estima-
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tion methods in Simulation I, including (1) estimation time (i.e., computer run time

under same number of cores and processes), (2) convergence rate, (3) percent rela-

tive bias of structural and item parameters,(4) root mean squared errors (RMSE) of

point estimates, (5) adequacy of the standard errors and (6) coverage of parameter

confidence intervals. As for person parameters, this study only considered structural

parameters (i.e., latent intercepts, slopes, and the variance-covariance structure of

the latent intercepts and slopes). Ability estimates for individual persons were not

examined in this simulation.

Convergence for FIML methods was decided by a tolerance of 1e-4 in the E

step and a positive definite Fisher information matrix. Convergence for DWLS was

decided by a tolerance of 1e-4 in the parameter estimates and a positive definite

Fisher information matrix. The convergence rate was calculated as the percentage

of converged replications among the original 250 replications. For outcome mea-

sures of model parameter estimates and their intervals, a total of 250 replications

was used, including the original datasets that have converged for FIML-MCEM and

the replacement datasets. Mean relative bias for each model parameter across repli-

cations was used to gauge the magnitude of the bias in parameter estimates, which

was calculated by dividing the mean difference between the parameter estimate and

the true parameter by the true parameter. The RMSE was calculated as the square

root of the mean squared difference between the estimate and the true value of a

parameter. RMSE is the bifurcation of bias and sampling error. The adequacy

of the standard errors was examined by comparing the estimated average standard

errors of a parameter over 250 replications to the Monte Carlo standard deviations
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of the 250 parameter estimates. The adequacy of standard errors could also be

examined by comparing the empirical variances of point estimates to mean squared

standard errors. The pilot study indicated that the two methods produced similar

results. Therefore only the results of the former method were reported. The cover-

age rates of the confidence intervals were obtained by taking the percentage of the

confidence intervals that included the true parameters over 250 replications. The

empirical coverage rates were then compared to the nominal level (95%) to assess

the performance of each estimation method. A coverage rate lower than 95% would

indicate that the confidence interval is too liberal in terms of type-I error. Whereas,

a coverage rate higher than 95% would indicate that the confidence interval is too

conservative in terms of type-I error.

3.2 Performance Assessment of Misspecified Models: Simulation II

The second simulation was to examine the performance of the reduced models

when the full model was simplified in order to achieve computational efficiency. As

mentioned before, either the time-specific disturbances or the common item effects

could be omitted for the model to be estimated with three-dimensional integration.

The setup for the simulation study is detailed below.

3.2.1 The Data Generation Model

The item response data were generated using the full model as described in

Simulation I. The details are not repeated here. After the data are generated under
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Table 3.5

Manipulated Factors in Sensitivity Analysis in Simulation II

Manipulated factors Levels
Number of repeated items (4, 8)
Sample size (200, 500, 2000)
Generated disturbance variance (0.25, 0.5, 1)
Generated common item effect variance (0.25, 0.50, 0.75,1.00)

the full model, the two reduced model as shown in Figures 2.4 and 2.6 were used to

analyze the data.

3.2.2 Manipulated Factors

In order to test the sensitivity of the parameter estimates to the misspeci-

fication of the model, different levels of disturbance variances and common item

effect variances were generated. Time-specific disturbances were set to be smaller

than intercept variance, following the work of Enders and Tofighi (2008). Specif-

ically, the disturbance variances were set at 0.25, 0.5 and 1, so that the ratio of

the intercept variance to the disturbance variance was 4:1, 2:1 and 1:1 respectively.

The common item effect variances were varied between 0.25 and 1.00. It should be

noted that the estimation method was not a manipulated factor in the simulation

study since the reduced models could be estimated with BAEM in flexMIRTTM with

three-dimensional integrations efficiently.

The manipulated factors in Simulation II are summarized in Table 3.5 for the

two sensitivity analyses. In total, both sensitivity analyses would have 72 conditions.
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3.2.3 Identification of Data Analysis Model in Simulation II

The analysis model was identified in the same manner as in Simulation I. The

details are not repeated here.

3.2.4 Evaluation Criteria

For Simulation II, two outcome measures are used to evaluate the performance

of the two reduced models, namely the percent relative bias of structural and item

parameters and the confidence interval coverage rates of the true structural and item

parameters.

3.3 Comparison of the estimation methods with Sample Attrition:

Simulation III

The third simulation was to evaluate the performance of the estimation meth-

ods with attritions under the MAR-X (i.e., missing at random with respect to co-

variates only) and the general MAR (i.e., missing at random with respect to both

observed outcomes and covariates) missing mechanisms. In this simulation, only the

missingness of the response data was simulated. That is to say, the missingness on

the covariate was not considered in the current study. The details of the simulation

design are explained below.
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3.3.1 The Data Generation Model for MAR-X

First, complete item response data were generated with a LGM-IRT model

with one time-invariant covariate. The covariate value of a person Xj was generated

from a normal distribution with mean 0 and variance 1. Instead of generating the

latent intercepts and slopes directly as in Simulation I, the disturbances of the latent

intercepts and slopes δ0 and δ1 were generated from a bivariate normal distribution.

The covariate and the disturbances were used to generate the latent slopes and

intercepts with the following equations:

γ0j = 0 + β0Xj + δ0j, (3.6)

and

γ1j = 0.2 + β1Xj + δ1j, (3.7)

where β0 and β1 are the regression coefficients of the covariates for the intercept

and slope respectively. The parameters for other latent variables are the same as

in Simulation I. The configurations of covariate and the latent variables are shown

in Table 3.6. With this setup, the model implied variances and covariance of the

latent intercept and slope were the same as in Simulation I. After the latent slopes

and intercepts wre generated, the same steps as Simulation I were used to generate

the time specific latent scores, common item effects, and finally the item response

data using the item parameters in Table 3.3. The path diagram for the LGM-IRT

model with covariate is shown in Figure 3.3.
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After the complete item response data were created, a MAR mechanism was

used to create attrition of the examinees. For simplicity, only permanent attrition

was generated in this simulation, meaning when an examinee dropped out of a wave,

he/she never returned. The probability of examinee j dropping out at time point n

(n > 1) was set to be proportional to the exponential of its negative covariate value:

P (Mnj = 1) ∝ exp(−Xj), (3.8)

where Mnj = 1 indicates dropping out permanently at the nth wave. Thus, the

permanent attrition of examinees was generated in the order of wave 1 to wave 4

based on the covariate. With four waves, there were four missing data patterns in

total. Using this MAR-X mechanism, people with higher covariate values were less

likely to drop out at any given wave. Two attrition rates (i.e., 10% per wave and

20% per wave) were considered. The 20% per wave attrition rate was meant to

represent a case with severe attrition problem based on the review of Lee (2003),

where only about half of the original examinees were retained in the last wave. The

empirical point-biserial correlations between the covariate and the missing indicators

at each wave was approximately -0.40 in conditions with 20% attrition per wave and

-0.28 in conditions with 10% attrition per wave, which represent moderately weak

correlations between the covariate and the attrition indicator.
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Table 3.6

Configuration of Covariate and Latent Variables in Simulation III.

Latent variable parameters Values
Variance of covariate σ2

X = 1
Regression coefficient of latent intercept on covariate β0 = 0.8
Regression coefficient of latent intercept on covariate β0 = 0.2
Distribution of latent intercept disturbances δ0 ∼ Normal(0, 0.36)
Distribution of latent slope disturbances δ1 ∼ Normal(0, 0.16)
Covariance of latent intercept and slope disturbances σδ0δ1 = 0.04

Distribution of time-specific disturbances εn ∼ Normal(0,
√

0.5)

Distribution of same item effects ξi ∼(0,
√

0.5)

Figure 3.3. Second-order LGM-IRT model with one covariate for generating complete

item response data in Simulation II. This example includes four time points

and four repeated items. X is the time-invariance covariate for latent inter-

cept γ0 and latent slope γ1. εn and ξi are the time-specific disturbance and

common item effect respectively.

70



3.3.2 The Data Generation Model for MAR

The steps for generating the complete item response data were the same here

as the situation under MAR-X (see Figure 3.3), while the method for generating

missingness is different. Under the general MAR, the missing mechanism depends

not only on the covariate, but also observed outcomes. After the complete item

response data are created, the probability of examinee j dropping out at time point

n (n > 1) was calculated as:

P (Mnj = 1) ∝ exp(−Xj −
I∑

i=1

Yi(n−1)j). (3.9)

The missing data were also generated from wave 1 to 4 sequentially. Besides the

covariate, the probability of a person dropping out was also conditioned on his/her

total score in previous wave. With this mechanism, people with higher covariate

values and higher sum scores from previous test were less likely to drop out of

the current assessment. The point-biserial correlations between the observed sum

scores in previous test and the attrition indicator were approximately -0.75 and -0.6

under 20% and 10% attrition rats respectively, which represent a moderately strong

correlation between the observe scores and the attrition indicator. The empirical

point-biserial correlations between the missing indicators and the covariate were

approximately -0.45 and -0.36 under conditions with 20% and 10% attrition per

wave respectively. This indicates moderate correlation between the covariate and

the attrition indicator. The correlations between the covariate and the missing
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Table 3.7

Manipulated Factors in Simulation III

Manipulated factors Levels
Number of repeated items (4, 8)
Sample size (500, 1000, 2000)
Permanent attrition rate per wave (10%, 20%)
Missing mechanism (MAR-X, MAR)
estimation method (MCEM, MH-RM, DWLS)

indicator were stronger than the data generated under MAR-X. This was due to

the fact that there was a positive correlation between the covariate and the sum

scores, since the regression coefficients of the latent slope and intercept were set to

be positive.

3.3.3 Manipulated Factors

There were two more manipulated factor in Simulation III than Simulation

I, namely the attrition rate and the missing mechanism. The permanent attrition

rate per wave was set to be 10% or 20%. For example, if the permanent attrition

rate was set at 10% per wave, the second wave would have 90% of the initial sample

size remaining. The third wave would have 90% × 90% of the initial sample size

remaining. The missing mechanisms were the MAR-X and the general MAR as

discussed above. Under panel attrition, a sample of 200 hundred people would be

too small. Therefore a sample size of 200 was not used as a condition here. A sample

size of 1000 was added as a condition in Simulation III. All the manipulated factors

are summarized in Table 3.7. In total, there are 72 conditions in this simulation.

72



3.3.4 Identification of Data Analysis Model in Simulation III

For Simulation III, the variance of latent intercept could not be fixed directly

due to the inclusion of covariate in the model. Instead, the slope of the first item

was set to the generating value for model identification. It is recognized that, in

actual applied studies, the slopes of items might not be available. In that case,

some reasonable arbitrary value (e.g., 1) can be used to fix the slope of one item.

Post hoc transformation can be used to convert the variances, covariances and item

parameters to any desired scale after the initial analysis as well.

3.3.5 Evaluation Criteria

The evaluation criteria used in Simulation III were the same with Simulation

I, namely (1) estimation time, (2) convergence rate, (3) percent relative bias of

structural and item parameters, (4) root mean square errors of point estimates, (5)

Adequacy of the standard errors, and (6) coverage of parameter confidence intervals.

3.4 Empirical Data Analysis

The empirical illustration of this study used the “Language and Literacy” rat-

ing scale data from the “Multistate Study of Pre-Kindergarten 2001–2003” by the

National Center for Early Development and Learning (Clifford, Bryant, Burchinal,

& Barbarin, 2005). As part of this longitudinal study, the “Language and Liter-

acy” skills of 1015 young children in the United States from pre-kindergarten to

kindergarten were evaluated across four semesters from Fall 2001 to Spring 2003.
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The teachers were asked to rate the students’ skills every semester in approximately

equal intervals, using the same 9 five-category Likert-scale items repeatedly.

The item response data are fitted with the LGM-IRT model with random item

intercept effects using the three estimation methods of interests, using the graded

response model (Samejima, 1969) as the measurement model. Additionally, the

two reduced models will also be fitted using FIML-BAEM with three-dimensional

integrations. In total, five analyses will be conducted. The results from the different

models and estimation methods will be compared and contrasted.
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Chapter 4: Results

The results of the three simulation studies as well as the empirical example

are presented in this Chapter.

A pilot study with 50 replications was conducted to explore the configura-

tions of the FIML-MH-RM algorithm before the simulation studies. It was found

through the pilot trial that FIML-MH-RM algorithm is sensitive to starting values

for the model being examined and can yield severely biased estimates; overestimated

variance estimates; therefore, underestimated slopes due to the scale. To provide

better starting values, DWLS point estimates were fed as the starting values for

FIML-MH-RM estimation. To make fair comparison between FIML-MCEM and

FIML-MH-RM, DWLS estimates were also used as starting values for FIML-MCEM

estimation.

To verify that Schmid-Leiman tranformation was conducted properly, both

the first- and second- order formulations of the LGM-IRT were tested using DWLS.

The results confirmed that the two parameterization methods returned identical

estimates.

The number of iterations in FIML-MH-RM estimation with post-convergence

approximated standard errors was gradually increased to explore the number of
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iterations needed to yield a positive definite information matrix. The results of the

trial suggested that a large number of iterations (15,000) were needed to yield a

convergence rate above 75% under complete data. The tuning constant was left at

default (i.e., 1) and the proposal standard deviations were tuned (between 0.24 to

0.32 depending on the data condition) so that the acceptance rates of the Metropolis

sampler were between 0.20 to 0.30.

In order to compare the estimation methods with the same number of repli-

cations, replacement datasets were added to conditions where the convergence rates

were not 100%. Convergence rates were reported with original datasets, while the

parameter estimates were compared using the original datasets that had converged

along with the replacement datasets. For those situations where the convergence

rates were below 50%, no results on point estimates or standard errors were reported.

The simulations were conducted on a computer with Intel(R) Xeon(R) dual

CPU E5-1660 @ 3.30GHZ and 3.30GHZ with 36.0GB RAM. The computer was

installed with Windows(R) 7 Professional 64-bit Operating System. One process

(i.e., no parallel processing was utilized) was used for estimation of each replication.

4.1 Results of Simulation I

Simulation I examined the performance of the three estimation methods under

complete data with a LGM-IRT. The results are summarize in this section.
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4.1.1 Convergence and Estimation Time

The convergence rates of the estimation methods are presented in Table 4.1.

DWLS estimations were able to convergence all the time under all the conditions

considered in this simulation study. The convergence rates for FIML-MCEM were

nearly 100% when the sample size was 500 or above, while the convergence rates

dropped below 70% when the sample size was 200. FIML-MH-RM had almost per-

fect convergence rates across the conditions with recursively approximated standard

errors, while the convergence rates ranged from 58% to 82% for FIML-MH-RM with

post-convergence approximated standard errors using 15,000 iterations.

The estimation times for the estimation methods are reported in Table 4.2.

As expected, DWLS was the fastest among all the methods. It took no more than

3 seconds for the model to be estimated. FIML-MCEM was the slowest estima-

tion method. For a sample with 2000 people and eight items, FIML-MCEM took

approximately one and a half hours for the model to converge. FIML-MH-RM

with post-convergence approximated standard errors took 1/5 of the time required

by FIML-MCEM. The recursive method was nearly 10 times faster than the post-

convergence method.
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Table 4.1

Convergence Rates (%) of Estimation Methods under Complete Data
200 Examinees 500 Examinees 2,000 Examinees

4 Items DWLS 100 100 100
FIML-MCEM 61.6 88.0 98.4
FIML-MH-RM (default) 95.6 99.2 100
FIML MHRM (Louis) 68.8 74.0 82.0

8 Items DWLS 100 100 100
FIML-MCEM 69.2 93.2 100.0
FIML-MH-RM (default) 97.2 99.6 99.2
FIML-MH-RM (Louis) 57.6 72.4 75.6

Table 4.2

Estimation Time (second) of Estimation Methods under Complete Data
200 Examinees 500 Examinees 2,000 Examinees

4 Items DWLS 1 1 1
FIML-MCEM 363 997 2011
FIML-MH-RM (default) 14 22 53
FIML MHRM (Louis) 153 244 575

8 Items DWLS 1 2 3
FIML-MCEM 1506 2538 5362
FIML-MH-RM (default) 45 53 118
FIML-MH-RM (Louis) 309 533 1040

4.1.2 Item Parameter Recovery

The relative bias of the item parameter estimates were calculated and then

analyzed with an analysis of variance (ANOVA) with interactions. The indepen-

dent variables were sample size, estimation method, test length, and all two-way

and three-way interactions. It was found that there was a significant main effect for

estimation method, F (2, 528) = 6.50, η̂2 = 0.023, p < 0.01, and a significant inter-

action between estimation method and sample size, F (2, 528) = 4.05, η̂2 = 0.015,

p = 0.02.

To assess the relative bias in item parameter estimates, the true generating

item parameters and their mean estimates across the replications are plotted in
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Figure 4.1. The detailed relative bias for item parameter estimates is included in

Table A.1 in Appendix A. In general, all the three estimation methods were able to

return item parameter estimates that were less than 5% biased in either direction.

The bias decreased when sample size increased. There were estimates, however, that

were biased by more than 15% in either direction. The numbers of estimates that

were more than 15% biased in either direction for DWLS, FIML-MCEM, and FIML-

MH-RM across all six data conditions were 11, 15, and 3 respectively. Judging by

the magnitudes of relative biases, FIML-MH-RM performed the best.

The RMSEs for item parameter estimates of these three estimation methods

are plotted in Figure 4.2. In general, the RMSEs decreased as the sample size

increased. RMSEs were larger for parameters with greater absolute values. The

FIML-MH-RM algorithm yielded the smallest RMSEs, while DWLS produced the

largest. The disadvantage of DWLS in terms of RMSE was more obvious under the

smaller sample size condition. This indicates that DWLS estimates had the largest

variability and disagreement among them especially when sample size was small.
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Figure 4.1. Recovery of item parameters across sample sizes and test lengths in Simula-

tion I. All three estimation methods were able to yield almost unbiased item

parameters as the points fell along the 45 degree line.

Figure 4.2. The RMSEs of the item parameter estimates for the estimation methods

across sample sizes and test lengths in Simulation I. The FIML-MH-RM

algorithm yielded the smallest RMSEs, while DWLS produced the the largest.
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To examine the adequacy of the estimated standard errors for item parameters,

the means of standard errors are plotted against the Monte Carlo standard devia-

tions of the point estimates in Figure 4.3. Points above the 45 degree line indicate

that the standard errors are overestimates, while points below the 45 degree line

mean that the standard errors are underestimated. Among all the estimation meth-

ods, DWLS produced the most proper standard errors as the points mostly fell on

the 45 degree line. DWLS produced larger standard errors than the FIML methods

too. FIML-MCEM tended to overestimate the standard errors when sample size was

small (200) and underestimate them with larger sample (2,000). This characteristic

was more apparent with longer test as shown in the lower panels of Figure 4.2. The

FIML-MH-RM underestimated the standard errors with both recursive approxima-

tion and the post-convergence approximation methods. The bias with the recursive

approximation method was more severe than the post-convergence approximation

method.

Taking both the point estimates and the standard errors into account, the cov-

erage rates of the true item parameters in the 95% confidence intervals are plotted

in Figure 4.4. With shorter tests, the coverage rates of the DWLS and FIML-

MCEM were generally between 0.90 to 1 under 200 people and 500 people. When

the sample size was increase to 2000, the coverage rates for item parameters with

large absolute values dropped considerably for DWLS. With longer tests, the cov-

erage rates dropped drastically for both DWLS and FIML-MCEM when sample

size increased. For FIML-MH-RM, the coverage rates yielded by the two standard

estimation methods were both underestimated and seemed unaffected by the sam-
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ple size. This means that the estimated confidence intervals were all too liberal

in terms of type-I error with FIML-MH-RM. The post-convergence approximation

method was slightly better than the recursive approximation method due to the less

underestimated standard errors it produced.

Figure 4.3. Monte Carlo standard deviations of item parameter estimates vs. mean item

paramter standard error estimates across the replications across sample sizes

and test lengths in Simulation I.
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Figure 4.4. Coverage rates of the true item parameters in the 95% confidence inter-

vals across sample sizes and test lengths in Simulation I. The horizontal line

represents nominal level of 95%.

4.1.3 Structural Parameter Recovery

The relative bias of the latent slope mean, latent slope variance, and the

covariance between latent slopes and intercepts is plotted in Figure 4.5. Overall,

all the three estimation methods were able to recover mostly unbiased structural

parameters. The relative bias was generally within 15% except when the sample size

was 200 and the number of items was 4. DWLS produced the least biased structural

parameter estimates (within ±2% in either direction). The bias for FIML-MCEM

estimates was all negative, while the bias for FIML-MH-RM was all positive. In

terms of the magnitude of relative bias, FIML-MH-RM slightly outperformed FIML-

MCEM.

The RMSEs of the structural parameter estimates are plotted in Figure 4.6 to
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compare the three estimation methods in terms of the variability of estimate across

replication. When sample size was 200, FIML-MCEM outperformed DWLS and

FIML-MH-RM. When the sample size was 500 or above, the FIML-MH-RM slightly

outperformed the other two methods.

Figure 4.5. Relative bias of structural parameter estimates across sample size and test

length in Simulation I. DWLS produced the least biased structural parameter

estimates. FIML-MH-RM slightly outperformed FIML-MCEM
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Figure 4.6. Root mean square errors of structural parameter estimates across sample

size and test length in Simulation I.

In general, DWLS produced larger standard error estimates than the two FIML

estimation methods. The ratios of mean estimated standard errors to Monte Carlo

standard deviations of point estimates are plotted in Figure 4.7 to assess the ad-

equacy of the estimated standard errors. A ratio larger than 1 means that the

standard errors are overestimates, whereas a ratio smaller than 1 indicates under-

estimates standard errors. Most noticeably, the recursively approximated standard

errors under FIML-MH-RM severely underestimated all the structural parameter

standard errors. The other three methods were less biased. FIML-MCEM overes-

timated the standard errors when sample size was small, while it underestimated

them with a large sample size. FIML-MH-RM with post-convergence approximated

standard errors underestimated the standard error when the sample size was small

(200) and the test length was four items.
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Taking both the point estimates and standard errors into account, the coverage

rates of the true structural parameters in 95% confidence intervals are plotted in

Figure 4.8. The DWLS yielded the most accurate coverage rates as they were all

very close to the nominal level. FIML-MCEM produced acceptable coverage rates

when the number of items was four and the sample size was 500 or below, while it

produced overly liberal confidence intervals in other situations. FIML-MH-RM with

post-convergence approximated standard errors yielded acceptable coverage rates

when sample size was 500 or below, while the coverage rates were too low with 2000

people. FIML-MH-RM with recursively approximated standard errors returned the

poorest coverage rates, as they were all considerably under the nominal level.
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Figure 4.7. Ratio of mean structural parameter standard errors to Monte Carlo stan-

dard deviations of point estimates across sample sizes and test lengths in

Simulation I. The horizontal line represents a ratio of 1. A ratio larger than

1 means that the standard errors are overestimates, whereas a ratio smaller

than 1 indicates underestimates standard errors. FIML-MH-RM (default SE)

is the recursively approximation method for standard errors. FIML-MH-RM

(Louis) is the post-convergence approximation method for standard errors.

FIML-MH-RM underestimated the item parameter standard errors with both

methods.
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Figure 4.8. Coverage rates of the true structural parameters in the 95% confidence inter-

vals across sample sizes and test lengths in Simulation I. The horizontal line

was the nominal level of 95%. DWLS yielded the most appropriate confidence

interval coverage.

4.2 Results of Simulation II

The results for Simulation II are summarized here, where either the common

item effects or the time-specific disturbances were omitted to utilize the dimension-

reduction technique for faster estimation under complete data.

4.2.1 Results of Omitting Common Item Effects

Convergence. The convergence rates of estimating the reduced model by

omitting the common item effects are presented in Table 4.3. The reduced model

ran into convergence issues when the time-specific disturbance variance was small

(0.25). When the disturbance variance was 0.25 and the number of items was four,
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Table 4.3

Convergence rates (%) of Estimating the Reduced Model by Omitting the Common
Item Effects

200 Examinees 500 Examinees 2,000 Examinees
C. var. = 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

4 Items D. var.=0.25 0 0 0 0 69 0 0 0 96 0 0 0
D. var.=0.50 95 81 62 0 99 96 86 65 100 100 100 97
D. var.=1.00 97 98 92 94 100 100 100 100 100 100 100 100

8 Items D. var.=0.25 100 100 87 0 75 50 0 0 91 78 0 0
D. var.=0.50 100 100 100 100 97 95 95 94 99 100 99 96
D. var.=1.00 100 100 100 100 99 98 99 97 100 100 100 99

Note. D. var=Time-specific disturbance variance; C. var=Common item effect variance.

the reduced model was not able to converge when the omitted common item effect

variance was 0.50 or above. The convergence rates increased when the length of the

test was increased to eight items. However, the reduced model was still not able to

converge when the omitted common item effect variance was 0.75 or above with a

small disturbance variance of 0.25 under 500 or 200 people.

Item parameter recovery. The relative biases of the item slope and in-

tercept estimates were both negative when the common item effects were omitted.

This means that the absolute values of these estimates were lower than those of the

true values. The mean relative bias in item parameters for data conditions where

the convergence rates were above 50% is plotted in Figure 4.9. The bias was larger

in longer tests (from -12% to -32%) than in shorter tests (from -6% to -13%). The

bias increased when the omitted common item effect variance was larger, while it

was not sensitive to the magnitude of the disturbance variance.

Due to the magnitudes of bias, the coverage rates of the true item parameters

(presented in Figure 4.10) were considerably under the nominal level especially under

large sample sizes. In sum, the item parameter estimates produced by omitting the

common item effects cannot be trusted.
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Figure 4.9. Relative bias in item parameter estimates across sample sizes and test lengths

when common item effects were omitted in Simulation II. The estimates were

all negatively biased. The bias increased along with the omitted common

item effect variance. D. var is the generating disturbance variance. C. var is

the generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition.
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Figure 4.10. Coverage rates of true item parameters in 95% confidence intervals across

sample sizes and test lengths when common item effects were omitted in

Simulation II. The horizontal line represents the nominal level of 95%. All

coverage rates were considerably below the nomoinal level. D. var is the

generating disturbance variance. C. var is the generating common item

effect variance. A missing bar means that the convergence rate was below

50% under this data condition.

Structural parameter recovery. The relative biases in the estimates of

latent slope mean, latent slope variance, and the covariance between latent slopes

and intercepts are plotted in Figure 4.11 to Figure 4.13 for data conditions where

convergence rates were above 50%. The estimated relative bias for the three struc-

tural parameter estimates was generally within 10% when sample size was 500 or

above with longer tests. The coverage rates of the true structural parameters in the

95% confidence intervals are plotted in Figure 4.14 to Figure 4.16. The coverage

rates were most appropriate when the sample size was 500 or below and the test

length was eight items. The coverage suffered when the omitted common item effect

variance increased and when the sample size was large (2,000).
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In sum, when the common item effects were left out to achieve estimation ef-

ficiency, The item parameter estimates were severely downward biased. The struc-

tural parameter estimates were mostly unbiased when the test was longer and the

sample size was sufficient (500 or above). However, when the sample size increased,

the coverage of the structure parameters in the confidence interval was too liberal.

Figure 4.11. Relative bias in latent slope mean estimates across sample sizes and test

lengths when common item effects were omitted in Simulation II. D. var is

the generating disturbance variance. C. var is the generating common item

effect variance. A missing bar means that the convergence rate was below

50% under this data condition.
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Figure 4.12. Mean relative bias in latent slope variance estimates across sample sizes and

test lengths when common item effects were omitted in Simulation II. D.

var is the generating disturbance variance. C. var is the generating common

item effect variance. A missing bar means that the convergence rate was

below 50% under this data condition.

Figure 4.13. Relative bias in estimates of covariance between latent slopes and intercepts

across sample sizes and test lengths when common item effects were omitted

in Simulation II. D. var is the generating disturbance variance. C. var is

the generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition.
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Figure 4.14. Coverage rates of latent slope means in 95% confidence intervals across

sample sizes and test lengths when common item effects were omitted in

Simulation II. D. var is the generating disturbance variance. C. var is the

generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition.

Figure 4.15. Coverage rates of latent slope variance in 95% confidence intervals across

sample sizes and test lengths when common item effects were omitted in

Simulation II. D. var is the generating disturbance variance. C. var is the

generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition.
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Figure 4.16. Coverage rates of the covariance between latent slopes and intercepts in

95% confidence intervals across sample sizes and test lengths when common

item effects were omitted in Simulation II. D. var is the generating distur-

bance variance. C. var is the generating common item effect variance. A

missing bar means that the convergence rate was below 50% under this data

condition.

4.2.2 Results of Omitting Time-Specific Disturbances

Convergence. The convergence rates of estimating the reduced model by

omitting the time-specific disturbances are presented in Table 4.4. In general, the

convergence rates decreased when the true common item effect variance was smaller.

The model was not able to converge when the sample size was 200 with the longer

tests.

It was worth mentioning that when the sample size was 500 and the number

of items was 8, the model was not able to converge when the common item effect

variance was 0.75 or above and the omitted disturbance variance was 0.50. However,

under the same common item effect variances and larger disturbance variance (1.00),
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the model had no convergence problem. The exact mechanisms of how sample size,

test length, and the nuisance factor variance affect the convergence rates were not

clear.

Table 4.4

Convergence rates (%) of Estimating the Reduced Model by Omitting the Time-
Specific Disturbances

200 examinees 500 examinees 2,000 examineese
C. var. = 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

4 Items D. var.=0.25 0 88 100 100 0 99 100 100 77 100 100 100
D. var.=0.50 0 73 98 100 0 97 100 100 0 100 100 100
D. var.=1.00 0 0 83 98 0 0 97 100 0 88 100 100

8 Items D. var.=0.25 0 0 0 0 0 100 100 100 88 100 100 100
D. var.=0.50 0 0 0 0 0 98 0 0 0 0 100 100
D. var.=1.00 0 0 0 0 0 0 99 100 0 95 100 100

Note. D. var=Time-specific disturbance variance; C. var=Common item effect variance.

Recovery of Item Parameters. When the time-specific disturbances were

omitted, the item slope and intercept estimates were both negatively biased as well.

The mean relative bias for item parameters when the time-specific disturbances

were omitted is plotted in Figure 4.17 for data conditions where the convergence

rates were over 50%. The bias increased when the omitted disturbances became

bigger. For tests with four items, The bias was mostly within 10% across the sample

sizes. When test length was eight items, the bias was within 15% when the omitted

disturbance variances were 0.5 or lower. The bias was not sensitive to magnitudes

of the common item effect variances, which were retained in the model.

The average coverage rates of the true item parameters in the 95% confidence

intervals were plotted in Figure 4.18. The confidence intervals were all too liberal

as the coverage rates were all below the nominal level. The coverage became worse

when the sample size increased.
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Figure 4.17. Average relative bias in item parameter estimates across sample sizes and

test lengths when time-specific disturbances were omitted in Simulation II.

D. var is the generating disturbance variance. C. var is the generating

common item effect variance. A missing bar means that the convergence

rate was below 50% under this data condition.
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Figure 4.18. Coverage rates of true item parameters in 95% confidence intervals across

sample sizes and test lengths when time-specific disturbances were omitted

in Simulation II. D. var is the generating disturbance variance. C. var is

the generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition. The horizontal

line represents the nominal level of 0.95%. The coverage rates were all overly

low.

Recovery of Structural Parameters. The relative bias in the estimates of

latent slope mean, latent slope variance, and the covariance between latent slopes

and intercepts is plotted in Figure 4.19 to Figure 4.21 for data conditions where

convergence rates were above 50%. The estimates for the latent slope means were

negatively biased (-1% to -21%). The estimates of the latent slope variances were

severely downwardly biased (-35% to -125%). The covariance estimates were pos-

itively biased (8% to 31%). The bias was bigger under longer tests than under

shorter tests and increased when larger disturbance variance was omitted.

The coverage rates of the true structural parameters in 95% confidence inter-

vals are plotted in Figure 4.22 to Figure 4.24 for conditions where the convergence
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rates were above 50%. The confidence intervals of the latent slope means and vari-

ance were all overly liberal except when the sample size was 500 or below with

the shorter tests. The coverage rates for the covariance were all too low across all

conditions.

In sum, when the disturbances were neglected in order to achieve faster estima-

tion, the structural parameter estimates became severely biased, especially for the

covariance components. The item parameter estimates were slightly biased when

the test length was four items. However, the coverage of the true item parameters

was all considerably lower than the nominal level. Generally speaking, omitting

disturbances is not an ideal method for estimating the LGM-IRT.

Figure 4.19. Relative bias in latent slope mean estimates across sample sizes and test

lengths when time-specific disturbances were omitted in Simulation II. D.

var is the generating disturbance variance. C. var is the generating common

item effect variance. A missing bar means that the convergence rate was

below 50% under this data condition.
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Figure 4.20. Relative bias in latent slope variance estimates across sample sizes and test

lengths when time-specific disturbances were omitted in Simulation II. D.

var is the generating disturbance variance. C. var is the generating common

item effect variance. A missing bar means that the convergence rate was

below 50% under this data condition.

Figure 4.21. Relative bias in estimates of covariance between latent slopes and intercepts

across sample sizes and test lengths when time-specific disturbances were

omitted in Simulation II. D. var is the generating disturbance variance. C.

var is the generating common item effect variance. A missing bar means

that the convergence rate was below 50% under this data condition.
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Figure 4.22. Coverage rates of latent slope means in 95% confidence intervals across

sample sizes and test lengths when time-specific disturbances were omitted

in Simulation II. D. var is the generating disturbance variance. C. var is

the generating common item effect variance. A missing bar means that the

convergence rate was below 50% under this data condition.

Figure 4.23. Coverage rates of latent slope variance in 95% confidence intervals across

sample sizes and test lengths when time-specific disturbances were omitted

were omitted in Simulation II. D. var is the generating disturbance variance.

C. var is the generating common item effect variance. A missing bar means

that the convergence rate was below 50% under this data condition.
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Figure 4.24. Coverage rates of the covariance between latent slopes and intercepts in

95% confidence intervals across sample sizes and test lengths when time-

specific disturbances were omitted in Simulation II. D. var is the generating

disturbance variance. C. var is the generating common item effect variance.

A missing bar means that the convergence rate was below 50% under this

data condition.

4.3 Results of Simulation III

This section summarizes the results of Simulation III, where the performance

of the three estimation methods under MAR-X attrition and the general MAR

attrition was examined in a conditional model with one time-invariant covariate.

4.3.1 Convergence and Estimation Time

The convergence rates for the two attrition rates (10% and 20%) crossed with

the two attrition mechanisms (MAR-X and general MAR) are presented in Table

4.5 to Table 4.8. The convergence rates of all three estimation methods were above
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90% across all conditions. Among them, DWLS estimations were able to converge

all the time across all conditions. Since the FIML-MH-RM with post-convergence

approximated standard errors was not able to produce positive definite information

matrices, its results are not reported here.

Table 4.5

Convergence Rates (%) of Estimation Methods under 10% per Wave MAR-X Attri-
tion

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 100 100 100

FIML-MCEM 96.4 97.6 100
FIML-MH-RM (default) 98.4 100 99.6

8 Items DWLS 100 100 100
FIML-MCEM 93.6 99.2 100
FIML-MH-RM (default) 97.6 94.8 95.2

Table 4.6

Convergence Rates (%) of Estimation Methods under 20% per Wave MAR-X Attri-
tion

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 100 100 100

FIML-MCEM 97.2 99.6 100
FIML-MH-RM (default) 96.0 98.8 99.6

8 Items DWLS 100 100 100
FIML-MCEM 95.6 99.6 99.6
FIML-MH-RM (default) 97.6 97.6 94

Table 4.7

Convergence Rates (%) of Estimation Methods under 10% per Wave General MAR
Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 100 100 100

FIML-MCEM 94.0 99.6 100
FIML-MH-RM (default) 99.6 100 98.8

8 Items DWLS 100 100 100
FIML-MCEM 92.4 100 100
FIML-MH-RM (default) 100 98.4 96.4
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Table 4.8

Convergence Rates (%) of Estimation Methods under 20% per Wave General MAR
Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 100 100 100

FIML-MCEM 96.0 99.6 99.6
FIML-MH-RM (default) 98.0 99.6 98.4

8 Items DWLS 100 100 100
FIML-MCEM 95.2 99.2 100
FIML-MH-RM (default) 98.0 93.6 91.2

The estimation times for the three estimation methods are presented in Table

4.9 to Table 4.12. On average, FIML-MCEM required the longest time to estimate

the models, while DWLS took the least. For a sample of 2000 and a test of eight

items, FIML-MCEM took over seven hours for the model to converge. In general,

FIML-MCEM took more time under general MAR than under MAR-X. The speed

of FIML-MH-RM with recursive approximated standard errors did not seem to be

affected by the missing mechanism.

Table 4.9

Estimation Time (second) of Estimation Methods under 10% per Wave MAR-X
Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 1 1 2

FIML-MCEM 3053 3792 5592
FIML-MH-RM (default) 36 49 106

8 Items DWLS 1 2 4
FIML-MCEM 10382 17425 39641
FIML-MH-RM (default) 71 157 239
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Table 4.10

Estimation Time (second) of Estimation Methods under 20% per Wave MAR-X
Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 1 1 2

FIML-MCEM 3884 7261 12363
FIML-MH-RM (default) 68 51 139

8 Items DWLS 2 4 4
FIML-MCEM 8924 10634 27721
FIML-MH-RM (default) 134 113 229

Table 4.11

Estimation Time (second) of Estimation Methods under 10% per Wave General
MAR Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 1 1 2

FIML-MCEM 3584 7826 14381
FIML-MH-RM (default) 31 63 94

8 Items DWLS 2 3 4
FIML-MCEM 13417 15264 27576
FIML-MH-RM (default) 66 134 203

Table 4.12

Estimation Time (second) of Estimation Methods under 20% per Wave General
MAR Attrition

500 Examinees 1,000 Examinees 2,000 Examinees
4 Items DWLS 1 1 2

FIML-MCEM 4055 7720 8162
FIML-MH-RM (default) 61 94 147

8 Items DWLS 2 4 5
FIML-MCEM 9320 20881 26113
FIML-MH-RM (default) 107 148 231

4.3.2 Item Parameter Recovery

An ANOVA identical to the one in Simulation I was conducted on the relative

bias of the item parameter estimates. It was found that under MAR-X, the main

effects for estimation method were significant for 10% per wave attrition, F (2, 530) =

14.74, η̂2 = 0.005, p < 0.01, and 20% per wave attrition, F (2, 530) = 17.40, η̂2 =
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0.060, p < 0.01. All other factors were not significant. Under MAR attrition, none

of the manipulated factors was significant.

The true generating item parameters and their mean estimates across the

replications for the two attrition rates (10% and 20%) crossed with the two attrition

mechanisms (MAR-X and general MAR) are plotted in Figure 4.25 to Figure 4.28.

The detailed relative bias in item parameters under MAR-X is presented in Table

B.1 to Table B.4 in Appendix B.

Under MAR-X attrition, all three estimation methods were able to return

nearly unbiased item parameter estimates. The numbers of estimates demonstrated

relative bias greater than 15% in either direction across the six data conditions

under 10% per wave MAR-X attrition were 14, 25, and 3 respectively for DWLS,

FIML-MCEM, and FIML-MH-RM. The same measures under 20% per wave MAR-X

attrition were 13, 30, and 3 respectively for DWLS, FIML-MCEM, and FIML-MH-

RM. Judging by the magnitude of relative bias, FIML-MH-RM performed the best,

while FIML-MCEM estimates were the most baised.

Under general MAR attrition, DWLS returned more biased estimates than the

two FIML algorithms. This can be observed in Figure 4.27 and Figure 4.28, where

some DWLS estimates noticeably deviated from the 45 degree line. The numbers of

estimates that demonstrated more than 15% in either direction across the six data

conditions with 10% per wave MAR attrition were 54, 24, and 3 respectively for

DWLS, FIML-MCEM, and FIML-MH-RM. Under 20% per wave MAR attrition,

the same measures were 63, 15, and 18 respectively for DWLS, FIML-MCEM, and

FIML-MH-RM. Judging by the magnitudes of relative bias, DWLS estimates were
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the most biased. FIML-MH-RM outperformed FIML-MCEM with 10% per wave

MAR attrition. The performance of the two FIML algorithm were comparable under

20% per wave MAR attrition.

Figure 4.25. Recovery of item parameters across sample sizes and test lengths under

10% MAR-X attrition in Simulation III. All three estimation methods were

able to yield almost unbiased item parameters as the points all fell on the

45 degree line.
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Figure 4.26. Recovery of item parameters across sample sizes and test lengths under

20% MAR-X attrition in Simulation III. All three estimation methods were

able to yield almost unbiased item parameters as the points all fell on the

45 degree line.
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Figure 4.27. Recovery of item parameters across sample sizes and test lengths under

10% general MAR attrition in Simulation III. FIML methods were able

to recover almost unbiased item parameters, while DWLS returned more

biased item parameters.
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Figure 4.28. Recovery of item parameters across sample sizes and test lengths under 20%

general MAR attrition in Simulation III. FIML estimation methods were

able to recover almost unbiased item parameters, while DWLS returned

more biased item parameters.

The RMSEs for item parameter estimates of these three estimation methods

are plotted in Figure 4.30 to Figure 4.32 to examine the aggregated magnitudes of

the errors for the item parameter estimates. In general, the FIML-MH-RM yielded

the smallest RMSEs, while DWLS produced the the largest RMSEs especially under

the smallest sample size condition (200).

Comparing the the RMSEs of item parameter estimates of the same attrition

rate under the two attrition mechanisms (for example, Figure 4.30 vs. Figure 4.32),

it can be observed that, the RMSEs produced by all three estimation methods were

greater under general MAR than under MAR-X.
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Figure 4.29. The RMSEs of the item parameter estimates for the estimation methods

across sample sizes and test lengths under 10%/wave MAR-X attrition in

Simulation III. The FIML-MH-RM algorithm yielded the smallest RMSEs,

while DWLS produced the the largest RMSEs.
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Figure 4.30. The RMSEs of the item parameter estimates for the estimation methods

across sample sizes and test lengths under 20%/wave MAR-X attrition in

Simulation III. The FIML-MH-RM algorithm yielded the smallest RMSEs,

while DWLS produced the the largest RMSEs.
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Figure 4.31. The RMSEs of the item parameter estimates for the estimation methods

across sample sizes and test lengths under 10%/wave MAR-X attrition in

Simulation III. The FIML-MH-RM algorithm yielded the smallest RMSEs,

while DWLS produced the the largest RMSEs.
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Figure 4.32. The RMSEs of the item parameter estimates for the estimation methods

across sample sizes and test lengths in Simulation III. The FIML-MH-RM al-

gorithm yielded the smallest RMSEs, while DWLS produced the the largest

RMSEs.

The means of the estimated standard errors are plotted against the Monte

Carlo standard deviations of item parameter estimates for the four conditions in

Figure 4.33 to Figure 4.36 to assess the adequacy of the standard errors. Among all

the estimation methods, DWLS produced the most proper standard errors as points

mostly fell on the 45 degree line. FIML-MCEM underestimated the standard errors

with larger sample (2000). The FIML-MH-RM underestimated the standard errors

across all conditions with recursive approximated standard errors.
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Figure 4.33. Monte Carlo standard deviations of item parameter estimates vs. mean

item paramter standard error estimates across across sample sizes and test

lengths under 10%/wave MAR-X attrition in Simulation III.

Figure 4.34. Monte Carlo standard deviations of item parameter estimates vs. mean

item paramter standard error estimates across across sample sizes and test

lengths under 20%/wave MAR-X attrition in Simulation III.
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Figure 4.35. Monte Carlo standard deviations of item parameter estimates vs. mean

item paramter standard error estimates across sample sizes and test lengths

under 10%/wave general MAR attritionin Simulation III. The horizontal

line represents nominal level of 95%.

Figure 4.36. Monte Carlo standard deviations of item parameter estimates vs. mean

item parameter standard error estimates across sample sizes and test lengths

under 20%/wave general MAR attrition in Simulation III. The horizontal

line represents nominal level of 95%
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Taking both the point estimates and standard errors into account, the coverage

rates of the true item parameters in the 95% confidence intervals are plotted in

Figure 4.37 to Figure 4.40.

Under both MAR-X and general MAR attrition, FIML-MCEM yielded most

accurate coverage rates when the sample size was 200. However, when the sample

size increased, the coverage for those item intercepts with large absolute values

began to drop noticeably below the nominal level for longer tests. Both DWLS and

FIML-MH-RM produced confidence intervals that were too liberal. DWLS yielded

generally better coverage rates than FIML-MH-RM under MAR-X. However, when

the attrition mechanism was general MAR, the coverage rates produced by DWLS

became poorer for some item parameters. The coverage rates of confidence intervals

produced by FIML-MH-RM were consistently below the nominal level across all

data conditions due to the underestimated standard errors.
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Figure 4.37. Coverage rates of the true item parameters in the 95% confidence intervals

across sample sizes and test lengths under 10%/wave MAR-X attrition in

Simulation III. The horizontal line represents nominal level of 95%.

Figure 4.38. Coverage rates of the true item parameters in the 95% confidence intervals

across sample sizes and test lengths under 20%/wave MAR-X attrition in

Simulation III. The horizontal line represents nominal level of 95%.
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Figure 4.39. Coverage rates of the true item parameters in the 95% confidence intervals

across sample sizes and test lengths under 10%/wave general MAR attrition

in Simulation III. The horizontal line represents nominal level of 95%.

Figure 4.40. Coverage rates of the true item parameters in the 95% confidence intervals

across sample sizes and test lengths under 20%/wave general MAR attrition

in Simulation III. The horizontal line represents nominal level of 95%.
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4.3.3 Structural Parameter Recovery

The mean relative bias for the structural parameter estimates for the two

attrition rates (10% and 20%) crossed with the two attrition mechanisms (MAR-X

and general MAR) are plotted in Figure 4.41 to Figure 4.44.

Under MAR-X attrition, all three estimation methods were able to yield mostly

unbiased (from -7% to 5%) structural parameter estimates under all data conditions.

FIML-MH-RM produced the least biased estimates except when the sample size was

1000 or below under shorter tests. DWLS and FIML-MCEM produced estimates

that were consistently negatively biased. Overall, the bias of DWLS estimates was

larger than that of FIML-MH-RM. FIML-MCEM produced the most biased esti-

mates. The attrition rate under MAR-X did not seem to affect the relative bias

produced by all the estimation methods.

Under general MAR attrition, DWLS produced severely biased estimates of

latent slope means and the regression coefficients of the latent slope. The bias

became more severe when the attrition increased from 10% to 20%. FIML-MCEM

produced mostly unbiased structural parameter estimates under all data conditions.

FIML-MH-RM yielded unbiased estimates when the MAR attrition rate was 10% per

wave, while it produced positively biased (25% to 29%) latent slope mean estimates

and negatively biased (-12% to -22%) regression coefficients of the latent slope.

The directions of the bias by FIML-MH-RM and DWLS were the same across all

conditions. One possible explanation of the pattern is that, when the biased DWLS

estimates were used as starting values for FIML-MH-RM estimation, FIML-MH-RM
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was not able to completely correct the bias. FIML-MCEM seemed to be able to

correct such bias even when the severely biased starting values were used.

Figure 4.41. Relative bias of structural parameter estimates across sample size and test

length under 10% per Wave MAR-X attrition in Simulation III.
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Figure 4.42. Relative bias of structural parameter estimates across sample size and test

length under 20% per Wave MAR-X attrition in Simulation III.

Figure 4.43. Relative bias of structural parameter estimates across sample size and test

length under 10% per Wave general MAR attrition in Simulation III.
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Figure 4.44. Relative bias of structural parameter estimates across sample size and test

length under 20% per Wave general MAR attrition in Simulation III.

The root mean square errors of the structural parameter estimates for the two

attrition rates (10% and 20%) crossed with the two attrition mechanisms (MAR-X

and general MAR) are plotted in Figure 4.45 to Figure 4.48.

Under MAR-X attrition, all three estimation methods yielded mostly compa-

rable RMSEs except that FIML-MCEM produced larger RMSEs for the regression

coefficients of the latent intercept. Under general MAR attrition, the RMSEs for

the DWLS estimates of the latent slope means and the regression coefficients of the

latent slope were considerably larger than the other estimation methods due to the

large relative bias of the two estimates.
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Figure 4.45. Root mean square errors of structural parameter estimates across sample

size and test length under 10% per Wave MAR-X attrition in Simulation

III.

Figure 4.46. Root mean square errors of structural parameter estimates across sample

size and test length under 20% per Wave MAR-X attrition in Simulation

III.
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Figure 4.47. Root mean square errors of structural parameter estimates across sample

size and test length under 10% per Wave general MAR attrition in Simula-

tion III.

Figure 4.48. Root mean square errors of structural parameter estimates across sample

size and test length under 20% per Wave general MAR attrition in Simula-

tion III.
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The ratios of the mean structural parameter standard errors to the Monte

Carlo standard devaitions of the point estimates are plotted in Figure 4.49 to Figure

4.52. As can be observed from the Figures, the recursively approximated standard

errors produced by FIML-MH-RM were severely underestimated which would lead

to inflated type-I errors.

Taking both the point estimates and standard errors into account, the coverage

rates of the true parameters in the 95% confidence intervals are plotted in Figure 4.53

to Figure 4.56. DWLS yielded appropriate coverage rates under MAR-X attrition,

while it failed to cover the latent slope means and the regression coefficients of

the latent slopes due to the large magnitude of bias under MAR. FIML-MCEM

provided proper coverage for the latent slope means and the regression coefficients

of the latent slopes under both MAR-X and general MAR, while it produced overly

low coverage rates for the regression coefficients of the latent intercepts when the

sample size was 500 or above under longer tests. FIML-MH-RM produced confidence

interval coverage rates that were consistently below the nominal level for all structure

parameters due to the underestimated standard errors.
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Figure 4.49. Ratio of mean structural parameter standard errors to Monte Carlo stan-

dard deviations of point estimates across sample size and test length under

10% per Wave MAR-X attrition in Simulation III.

Figure 4.50. Ratio of mean structural parameter standard errors to Monte Carlo stan-

dard deviations of point estimates across sample size and test length under

20% per Wave MAR-X attrition in Simulation III.
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Figure 4.51. Ratio of mean structural parameter standard errors to Monte Carlo stan-

dard deviations of point estimates across sample size and test length under

10% per Wave general MAR attrition in Simulation III.

Figure 4.52. Ratio of mean structural parameter standard errors to Monte Carlo stan-

dard deviations of point estimates across sample size and test length under

20% per Wave general MAR attrition in Simulation III.
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Figure 4.53. Coverage rates of the true structural parameters in the 95% confidence

intervals across sample size and test length under 10% per Wave MAR-X

attrition in Simulation III.

Figure 4.54. Coverage rates of the true structural parameters in the 95% confidence in-

tervals errors to Monte Carlo standard deviations of point estimates across

sample size and test length under 20% per Wave MAR-X attrition in Sim-

ulation III.
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Figure 4.55. Coverage rates of the true structural parameters in the 95% confidence

intervals across sample size and test length under 10% per Wave general

MAR attrition in Simulation III.

Figure 4.56. Coverage rates of the true structural parameters in the 95% confidence

intervals across sample size and test length under 20% per Wave general

MAR attrition in Simulation III.
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4.4 Empirical Example

The “Language and Literacy” rating scale data from the “Multistate Study

of Pre-Kindergarten 2001–2003” by National Center for Early Development and

Learning (Clifford, Bryant, Burchinal, & Barbarin, 2005) were used to illustrate the

application of different estimation strategies discussed before, namely using alterna-

tive estimation methods other than the FIML-BAEM algorithm and using the two

reduced models.

4.4.1 Data

The “Language and Literacy” skills of 1015 young children in the United States

from pre-kindergarten to kindergarten were evaluated across four semesters from Fall

2001 (Fall semester of pre-kindergarten) to Spring 2003 (Spring of kindergarten) in

approximately equal intervals. The children were sampled using a stratified random

sampling design to be representative of prekindergarten children in six participating

states, including California, Illinois, New York, Ohio, Kentucky, and Georgia.

In each semester, teachers were asked to rate the children’s language and

literacy levels using the same nine Likert-scale items. The items are:

• Uses complex sentence structures.

• Understands and interprets a story or other text read to him/her.

• Easily and quickly names all upper– and lower-case letters of the alphabet.

• Produces rhyming words.
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• Predicts what will happen next in stories by using the pictures and storyline

for clues.

• Reads simple books independently.

• Demonstrates early writing behaviors.

• Demonstrates an understanding of some of the conventions of print.

• Uses the computer for a variety of purposes.

All items had five categories. The ratings of 1 to 5 corresponded to proficiency levels

of “not yet”, “beginning”, “in progress”,“intermediate” and “proficient”.

Both intermittent missing and permanent attrition were prevalent in this as-

sessment. Of the 1015 children who participated in the assessment, only 226 had

complete data across all four waves.

In the preliminary data exploration, the means and variances of the average

scores were calculated for available participants at each time point. The means for

the four time points were 2.09, 2.79, 2.40, 3.67, with variances of 6.50, 8.47, 8.38,

and 9.12 respectively. The growth of language skills for the children did not follow

a linear curve. There was a noticeable drop from the Spring of pre-kindergarten

to the Fall of kindergarten. The phenomenon where a large portion of students

lose what they have learned during academic semesters over the long summer break

is referred to as “summer achievement loss” (Cooper, Nye, Charlton, Lindsay, &

Greathouse, 1996; Entwisle & Alexander, 1992). In an empirical study using the

same data, Paek et al. (2016) used a piece-wise solution to estimate and compare
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the latent abilities at each time point. However, no general statement was made

regarding growth in different periods. In this study, a linear growth LGM-IRT

model was first fitted to the data. The data was then analyzed with the “summer

effect” model developed by Raudenbush and Bryk (2002) to account for summer loss

by estimating different growth rates for different periods. The Akaike information

criterion (AIC) and Bayesian information criterion (BIC) of the two models were

compared to determine the final analytic model. In the “summer effect” model, the

time values of the latent slope were set to (0, 1, 1, 2) instead of (0, 1, 2, 3) in a

linear LGM. Additionally, a fixed effect (i.e., mean structure) was imposed on the

four time points with loadings of (0, 0, 1, 1). With this setup, the random slope

should be interpreted as a child’s growth rate during the period from Fall semester

to the Spring semester during pre-kindergarten or kindergarten academic year. The

added mean structure should be interpreted as the average growth rate of all children

from Spring semester of pre-kindergarten to Fall semester of kindergarten when the

long summer break took place. This full LGM-IRT with the data using the second-

order formation had 13 dimensions (four time-specific factors and nine common item

effects), while the first-order formation had 15 dimensions (latent slope factor, latent

intercept factor, four time-specific disturbances and nine common item effects). It

should be noted that adding the mean structure did not add to the dimensionality

of the model.
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4.4.2 Results

The 95% confidence intervals of the AIC and BIC produced by FIML-MH-

RM for the linear model were (65487.69, 65605.84) and (65787.97, 65906.12), re-

spectively, while the same indices for the “summer effect” model were (63766.22,

63883.47) and (64071.42, 64188.67), respectively. The “summer effect” model yielded

better fit than the linear model as indicated by the smaller AIC and BIC. Thus, the

“summer effect” model was used as the final model.

The final model was estimated using the three estimation methods. Addi-

tionally, the reduced models without the common item effects or the time-specific

disturbances were estimated using FIML-BAEM after dimension reduction tech-

niques were implemented to reduce the dimensionality of the model to three. It was

found that the post-convergence approximated standard errors of FIML-MH-RM

estimates could not be produced with 30,000 iterations. Therefore, only the recur-

sively approximated standard errors are reported. Additionally, the reduced model

without time-specific disturbances could not converge, the results of which are not

reported either.

The structural and item parameter estimates using the three estimation meth-

ods are presented in Table 4.13 and Table 4.14, respectively. Among the four meth-

ods, DWLS produced the largest growth rate as well as the largest summer setback

of children’s literacy and language skills. FIML-MH-RM yielded the second largest

growth rate and summer effect. The two FIML algorithms and the misspecified

model returned similar summer effect estimates, which were all smaller than the
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DLWS estimate. All methods returned similar latent slope variance. As for covari-

ance between latent slope and intercept, all methods returned negative estimates.

However, DWLS and FIML-MH-RM produced smaller covariance than the other

two methods. It is worth noting that, FIML-MCEM structual estimates were very

similar to the reduced model, while DWLS estimates agreed with FIML-MH-RM

more. The similarity between DWLS and FIML-MH-RM may be due to that FIML-

MH-RM was sensitive to the starting values, which were DWLS estimates. The

similarity between FIML-MH-RM and the reduced model may be due to the fact

that the common item effect variances were small relative to the structural param-

eters. The differences in structural estimates create different interpretations of the

growth rates and summer effects. According to the DWLS results, students grew

their literacy skills very fast in the academic year but lost much of what they learned

in the summer. Based on FIML-MH-RM results, the students’ literacy skills grew

very fast during academic years as well. But they lost less than indicated by the

DWLS estimates. If the estimates of FIML-MCEM and the reduced model were to

be trusted, the children grew slower during regular academic year but also lost less

during the summer break.

Table 4.13

Structural Parameter Estimates of Empirical Example using Different Methods
DWLS FIML-MCEM FIML-MH-RM R1

EST (SE) EST (SE) EST (Default SE) EST (SE)
Latent intercept mean 0 (–) 0 (–) 0 (–) 0 (–)
Latent slope mean 1.49 (0.08) 0.98 (0.04) 1.41 (0.02) 0.99 (0.04)
Latent intercept variance 1 (–) 1 (–) 1 (–) 1 (–)
Latent slope variance 0.25 (0.05) 0.22 (0.02) 0.24 (0.01) 0.23 (0.02)
Covariance of intercept and slope -0.11 (0.06) -0.31 (0.02) -0.15 (0.02) -0.30(0.02)
Mean summer effect -0.62 (0.07) -0.35 (0.04) -0.40 (0.02) -0.37( 0.05)

Note. Default SE=recursively approximated standard error; R1=reduced model by omitting common
item effects.
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In terms of item parameters, the four methods yielded different estimates.

The rank order of item slopes from largest to smallest is FIML-MCEM, DWLS,

the reduce model, and FIML-MH-RM. Considerable differences were observed in

the item intercept estimates too. Noticeably, DWLS tended to return item inter-

cept estimates with very large absolute values, while the reduced model returned

the smallest intercept estimates. The item intercept estimates of FIML-MCEM

and FIML-MH-RM were mostly comparable. The patterns of the item intercept

estimates generally confirmed the patterns observed in Simulation III.

In sum, without knowing the true parameters, it is difficult to judge which

set of estimates were closer to the true parameters. However, based on the results

of Simulation III, FIML-MCEM yielded acceptable parameter recovery across all

conditions. Additionally the reduced model, which was found to produce robust

structural parameter estimates in Simulation II, agreed more with the FIML-MCEM

structural estimates. Based on these observations, stronger argument can be made

that the FIML-MCEM estimates were less biased.
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Table 4.14

Item Parameter Estimates of Empirical Example using Different Methods
DWLS FIML-MCEM FIML-MH-RM R1

EST (SE) EST (SE) EST (Default SE) EST (SE)
α1 1.99 (0.13) 1.67 (0.08) 1.13 (0.03) 1.50 (0.02)
α2 3.18 (0.25) 2.28 (0.11) 1.55 (0.04) 2.06 (0.06)
α3 2.85 (0.29) 3.27 (0.13) 2.28 (0.06) 2.63 (0.05)
α4 3.01 (0.30) 3.52 (0.16) 2.41 (0.07) 3.09 (0.05)
α5 2.71 (0.19) 3.05 (0.15) 2.13 (0.06) 2.82 (0.07)
α6 1.67 (0.11) 2.43 (0.1) 1.69 (0.05) 2.11 (0.06)
α7 2.32 (0.19) 3.17 (0.14) 2.25 (0.07) 2.79 (0.06)
α8 1.76 (0.12) 2.88 (0.13) 1.99 (0.06) 2.50 (0.05)
α9 1.13 (0.07) 1.89 (0.09) 1.32 (0.04) 1.66 (0.06)
λ11 1.59 (0.12) 1.46 (0.11) 1.41 (0.06) 1.35 (0.04)
λ12 -0.56 (0.12) -0.07 (0.09) -0.15 (0.06) -0.07 (0.04)
λ13 -2.88 (0.18) -1.70 (0.10) -1.81 (0.07) -1.58 (0.03)
λ14 -5.03 (0.25) -3.18 (0.11) -3.32 (0.09) -2.96 (0.04)
λ21 3.81 (0.27) 2.57 (0.14) 2.53 (0.08) 2.47 (0.05)
λ22 -0.71 (0.18) -0.07 (0.11) -0.16 (0.06) -0.04 (0.05)
λ23 -4.51 (0.34) -2.26 (0.12) -2.40 (0.08) -2.13 (0.07)
λ24 -8.3 (0.56) -4.43 (0.15) -4.63 (0.11) -4.22 (0.08)
λ31 1.28 (0.18) 1.06 (0.15) 0.97 (0.09) 1.02 (0.05)
λ32 -2.12 (0.24) -1.43 (0.14) -1.64 (0.09) -1.17 (0.03)
λ33 -4.84 (0.43) -3.54 (0.17) -3.85 (0.13) -3.01 (0.06)
λ34 -7.21 (0.60) -5.32 (0.2) -5.73 (0.16) -4.58 (0.09)
λ41 0.19 (0.16) 0.32 (0.16) 0.20 (0.07) 0.42 (0.06)
λ42 -3.32 (0.30) -2.34 (0.16) -2.55 (0.10) -2.09 (0.05)
λ43 -6.57 (0.53) -4.96 (0.21) -5.26 (0.16) -4.56 (0.04)
λ44 -9.44 (0.73) -7.19 (0.25) -7.6 (0.21) -6.68 (0.09)
λ51 3.20 (0.20) 2.69 (0.17) 2.69 (0.09) 2.71 (0.07)
λ52 -0.89 (0.15) -0.51 (0.14) -0.65 (0.07) -0.43 (0.07)
λ53 -4.05 (0.24) -3.05 (0.15) -3.31 (0.10) -2.95 (0.09)
λ54 -7.50 (0.38) -5.80 (0.20) -6.21 (0.15) -5.68 (0.14)
λ61 -0.67 (0.1) -0.46 (0.12) -0.58 (0.07) -0.32 (0.05)
λ62 -2.83 (0.15) -2.47 (0.14) -2.67 (0.09) -2.22 (0.07)
λ63 -4.58 (0.2) -4.27 (0.18) -4.55 (0.13) -3.92 (0.10)
λ64 -6.19 (0.26) -5.92 (0.22) -6.28 (0.16) -5.49 (0.13)
λ71 -1.26 (0.15) -0.88 (0.15) -1.09 (0.08) -0.71 (0.07)
λ72 -3.91 (0.25) -3.25 (0.19) -3.58 (0.11) -2.98 (0.09)
λ73 -6.08 (0.36) -5.33 (0.24) -5.8 (0.16) -4.98 (0.11)
λ74 -8.04 (0.45) -7.26 (0.30) -7.87 (0.21) -6.83 (0.14)
λ81 -0.79 (0.11) -0.62 (0.14) -0.79 (0.07) -0.47 (0.06)
λ82 -2.98 (0.16) -2.90 (0.18) -3.14 (0.11) -2.63 (0.08)
λ83 -4.81 (0.22) -4.96 (0.24) -5.28 (0.16) -4.59 (0.11)
λ84 -6.68 (0.29) -7.04 (0.29) -7.44 (0.21) -6.57 (0.13)
λ91 0.93 (0.09) 1.01 (0.11) 0.97 (0.07) 1.03 (0.06)
λ92 -1.23 (0.09) -1.18 (0.10) -1.33 (0.07) -1.04 (0.06)
λ93 -3.18 (0.12) -3.25 (0.13) -3.50 (0.10) -3.00 (0.09)
λ94 -4.80 (0.16) -5.05 (0.17) -5.40 (0.14) -4.73 (0.12)

Note. Default SE=recursively approximated standard error; R1=reduced

model by omitting common item effects.
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Chapter 5: Discussions

In this chapter, the research context, purposes, and the results are summarized

and discussed. In addition, limitations of the current research are identified. Finally,

potential future research areas are discussed.

5.1 Summary

Measuring change in a construct over time has been an active area in educa-

tional and psychological research. It is often achieved by administering the same

(subset of) items to the same respondents repeatedly over time. When the response

data are continuous, the second-order latent growth model (McArdle, 1988) has

been adopted to investigate change on the latent level. When response data are

categorical, using an item response theory model as the measurement model in a

second-order LGM is a natural extension of the second-order LGM with continuous

indicators. However, application of the LGM-IRT is limited due to several method-

ological issues. This study investigated three issues in using LGM-IRT, namely

model parameterization, estimation of model parameters, and sample attrition.

The first goal of the research was to provide a review of selected longitudinal

IRT models, with special attention paid to the parameterizations and interrelations

138



of selected longitudinal IRT models. A total of seven models was reviewed, including

multilevel IRT model that decompose person parameters, within-item MIRT model,

simple structure correlated factors model, two-tier item factor model, LGM-IRT

with no local dependence consideration, LGM-IRT with order local dependence,

and LGM-IRT with common item effects. It was revealed that the different types

of LGM-IRT models were extensions of their respective MIRT models. The LGM-

IRT models can be transformed from their second-order parameterization using the

Schmid-Leiman (Schmid & Leiman, 1957) transformation so that they can be es-

timated using common multidimensional IRT software packages. It was further

confirmed in the simulation studies that the transformation yielded equivalent mod-

els. However, it should be noted that the transformed model used in this study is

an extremely constrained model, in which the item loadings were all constrained to

be the same for time-specific latent variables, common item effects, and the distur-

bances. In a more general model, the loadings of the common item effects could be

freely estimated when the model identification condition is imposed on variances as

a function of factor loadings.

The second goal of the research was to compare the performance of three esti-

mation methods (namely FIML-MCEM, FIML-MH-RM, and DWLS) in estimating

the LGM-IRT with common item effects with no attrition. It was found that all

three estimation methods were able to yield sufficiently unbiased item and struc-

tural parameter estimates. FIML-MH-RM outperformed the other two estimation

methods in terms of the relative bias and RMSE of model estimates. DWLS esti-

mation could produce the results with a fraction of the time required by the other
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two estimation methods. In addition, DWLS yielded more varying estimates across

replications. But the larger standard errors produced by DWLS adequately capture

the variability. As a results, the confidence interval coverage rates produce by DWLS

were also appropriate. FIML-MCEM performance was also acceptable in terms of

bias, RMSE, and adequacy of standard errors. However, the time efficiency was

much more problematic with FIML-MCEM. Given that applied researchers gener-

ally need to fit similar models multiple times to find the best-fitting model, this can

be a serious limitation.

The standard error estimates of FIML-MH-RM were less ideal. The recursively

approximated and post-convergence approximated standard errors were both con-

sistently underestimated. Previous research (Cai, 2008) found that the recursively

approximated standard errors were underestimated in a unidimensional model and a

bifactor model. The results of this research regarding the recursively approximated

standard errors were similar to those of Cai (2008). Additionally, this research found

that the standard errors produced by the post-convergence approximation method

were less underestimated than those produced by the recursive method. The re-

sults were different from previous research of the two methods (Yang & Cai, 2014).

Yang and Cai (2014) examined the performance of the FIML-MH-RM algorithm in

estimating the contextual effect in a nonlinear multilevel latent variable model and

found that the recursively approximated standard errors were closer to the Monte

Carlo standard deviations of the point estimates than the post-convergence approx-

imated standard errors. The main drawback of the post-convergence method was

that the standard errors for item intercepts were consistently underestimated. The

140



different conclusions regarding the comparison of the two standard error estimation

methods might have been due to the different models being examined.

The third goal of the research was to assess the performance of the two reduced

models under complete data. The first reduced model omitted the common item

effects. It was found that when common item effects were omitted, the structural

parameter estimates were slightly biased. The bias in the item parameter estimates

increased when the omitted common item effect variance became larger. The item

parameters could be underestimated by over 30% for longer tests. The model ran

into convergence problem when the time-specific disturbance variances were small

(0.25). One possible explanation is that when the time-specific disturbances were

small, the model-implied variances of the latent factors at each time point were also

small. As a result, the common item effect variances were large relative to the struc-

tural factors. Thus, when larger common item effects were omitted, the model-data

misfit became larger and convergence issues occurred. If the model could converge,

the structural point estimates might be of some use to researchers. However, it

should be cautioned that the confidence interval coverage of the structural param-

eters might not be proper based on the simulation results, especially when sample

size is large (2,000).

When time-specific disturbances were omitted, the model encountered conver-

gence problem when the sample size was small and when the common item effect

variances were small (0.25). This might be due to that the relative magnitudes of

the common item effect variances (which were retained in the reduced model) were

too small to be stably estimated. Similar phenomenon is found when the between-
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level variance is small in multilevel model estimation. When the sample size was

500 for long test, the model was easier to converge when the disturbance variances

were 1.00 than when the disturbance variances were 0.5. This might be because

that some specific combinations of disturbance variances, omitted common item ef-

fects, and test length might make the structural part easier to estimate than other

combinations. However, the exact mechanism was not yet clear and deserves further

examination. It was also possible that non-convergence was due to the stabilization

mechanisms in flexMIRT. For example, there might be no mechanism to prevent

the variance or covariance of latent variable from going to unreasonable values. The

exact mechanism that influenced the convergence required further investigation. As

for recovery of model parameters, the item parameters were somewhat biased (-3%

to -21%), while the structural parameter estimates were more biased (e.g., the bias

in latent slope variance estimates ranged from -35% to -126%). Since the struc-

tural parameters are usually of primary interest to researchers, this method is not

recommended to researchers who would like to make valid inference of the analysis.

The fourth goal of the research was to compare the performance of the three

estimation methods in estimating a conditional LGM-IRT with common item effects

when attrition occurs under MAR. Two types of MAR mechanisms were considered,

namely, general MAR with respect to both covariates and observed outcomes, and

MAR with respect to covariates only (MAR-X). The simulation results showed that

all three estimation methods were consistent under MAR-X. FIML-MH-RM outper-

formed the other two in terms of relative bias and RMSE. However, under general

MAR, the DWLS yielded biased means and regression coefficients of the latent slope.
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FIML-MH-RM was sensitive to the biased DWLS estimates as starting values. Ad-

ditionally, it was found that post-convergence approximated standard errors could

not be produced in the conditional model in the current implementation of FIML-

MH-RM in flexMIRT. Under MAR attrition, FIML-MCEM outperformed the other

two in terms of parameter recovery.

The fifth goal of the research was to provide an empirical illustration of ap-

plying the LGM-IRT model to real-world data. The language and literacy assess-

ment data in the “Multistate Study of Pre-Kindergarten 2001–2003” (Clifford et

al., 2005) were used. A “summer effect” model (Raudenbush & Bryk, 2002) was

fitted to the data using the three estimation methods. The estimates of the three

estimates diverged considerably, leading to different inferences of students’ growth

and summer effect. In general, the pattern of the item parameter estimates con-

firmed with the simulation results. It is difficult to judge which estimation method

should be more trusted without true parameters. Based on the results of Simulation

III, FIML-MCEM yielded acceptable parameter recovery across all conditions under

panel attrition. Additionally the reduced model, which was found to produce robust

structural parameter estimates in Simulation II, agreed more with the FIML-MCEM

structural estimates. Based on these observations, stronger argument can be made

that the FIML-MCEM estimates were less biased.

Overall, the results provided implications for applied researchers in choosing

the more appropriate models and estimation methods according to their research

purposes, because each method exhibited its own strengths and weaknesses. If the

dataset at hand has little missing, DWLS and FIML-MH-RM can be good choices
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to yield fast results. However, if missing data is a concern of the study, caution is

advised when applying DWLS estimation. Unless explicit assumption of MAR-X

can be made about the missing mechanism, or some measures (i.e., multiple impu-

tation or weight adjustment) have been taken to address the missing, DWLS is not

recommended to estimate the LGM-IRT. If missing data is a concern of the study,

FIML-MCEM can be utilized. As shown in simulation II, FIML-MCEM was able to

yield generally unbiased estimates under either MAR or MAR-X attrition. However,

the large amount of time FIML-MCEM requires to estimate a model is a serious lim-

itation of the method. For example, the lengthy estimation of FIML-MCEM can be

extremely cumbersome when applied researchers need to fit similar models multiple

times to find the best-fitting model. FIML-MHRM could also be a more efficient al-

ternative to FIML-MCEM. However, caution is advised regarding the interpretation

of the standard errors, as both standard error estimation methods of FIML-MH-RM

yielded underestimated standard errors. If the interest of the researcher lies only

in the structural parameters, the misspecified model by omitting common item ef-

fects could be utilized as it was able to yield almost unbiased structural parameters.

However, if item calibration is a focus of the study, the model may not be suitable

due to the biased item parameter estimates. For example, if a researcher wants to

use the calibrated item parameters for other studies or use pre-calibrated items as

anchor items in an LGM-IRT, the misspecified model is not recommended. The

misspecified model by omitting time-specific disturbances is generally not recom-

mended due to the biased structural parameter estimates, which are usually one of

the key focuses of researchers. As shown in Simulation II, the model was shown to
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produce slightly biased item parameter estimates. This characteristic of the model

may be useful for obtaining starting values for FIML estimation algorithms.

5.2 Limitations

There are several limitations associated with the current research. First, the

research used simple linear growth curve, fixed number of time points, and un-

correlated disturbances for the structural model. Extensions to models with more

complex structural setup are not investigated. If a researcher would like to use a

quadratic curve, more time points, or correlated disturbances, additional structural

factors need to be included and the same Schmid-Leiman transformation can be

applied. While such extensions seem straightforward, the performance of the three

estimation methods is unclear due to the increase in dimensionality of the model.

The maximum number of dimensions examined in this study was 14 with four time

points and eight items, which was already a highly complex model. There might be

a diminishing return on investment on concurrently estimating item and structural

parameters using the three estimation methods. One potential solution is to sep-

arate the estimation of item parameters and estimation of structural parameters.

However, the multiple-stage approach would impose another issue in estimating ap-

propriate standard errors and not necessarily avoid the computational challenge.

Another solution is to use dimension reduction techniques to analytically reduce the

model to four dimension. The idea is further discussed in “Future Studies” section

of the chapter.
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If more elaborate structural models are to be used, the Schmid-Leiman trans-

formation becomes complex. Take the autoregressive latent trajectory (ALT; Bollen

& Curran, 2004) for an example, a latent variable from previous test can determine

the current value of the same construct. The directional arrow from one time-

specific latent variable to the next makes the proportional constraints more difficult

to implement. Whether an ALT model can be used as the structural model was not

examined.

Second, the study only considered structural parameters of the LGM-IRT. The

latent scores for individual examinees were not examined. The estimation of individ-

ual scores is usually conducted in two stages, namely item calibration and scoring.

The bias incurred in the calibration stage can be carried over to the subsequent scor-

ing stage and causes biased latent score estimates and misleading inference (Cheng

& Yuan, 2010; Liu & Yang, 2017; Patton et al., 2013, 2014; Thissen & Wainer, 1990;

Yang et al., 2012). It is conceivable that more accurate item parameter estimates

(such as those produced by FIML-MH-RM in complete data or MAR-X attrition

condition) would result in less biased latent score estimates. Additionally, if the

standard errors are used in the second stage to adjust for the carried-over sampling

errors (e.g., Thissen & Wainer, 1990; Yang et al., 2012), the large standard errors for

the item parameters produced by DWLS would yield wider confidence intervals for

latent score estimates, which would be less efficient. However, without a simulation

study, it is not yet clear how the three estimation methods would compare with each

other when the two-stage IRT scoring is conducted.

Third, the study used 15,000 iterations to estimate post-convergence standard
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errors when FIML-MH-RM algorithm was used. It is not clear whether further

increasing the number of iterations could improve the convergence rate and/or the

adequacy of the standard errors.

Fourth, this research did not consider methods to handle MAR other than

FIML estimation. Approaches such as multiple imputations and variance weight

adjustment techniques were not implemented when the DWLS estimator was used.

The potential improvement of the DWLS estimator combined with these approaches

was not examined.

Fifth, the two reduced models were examined under complete data. The per-

formance of the two misspecified models was not examined with panel attrition.

Thus, the conclusions about the reduced models are limited to complete-data situ-

ations. Furthermore, the performance of available model fit indices was not exam-

ined because each estimation method yielded not necessarily comparable model fit

indices.

Sixth, the LGM-IRT considered in this research was highly constrained in that

all the item loadings of the common item effects were set to be equal to those of

the main factors. In a more general parameterization, the variances of the specific

dimensions can be fixed and the loadings of the specific dimensions can all be freely

estimated. The performance of the estimation methods with this more general model

was not examined in this the current study. It is possible that different conclusions

regarding the three estimation methods could be made when the parameterization

of the LGM-IRT model changes.
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5.3 Future Studies

Based on the findings in this research, several future research areas are iden-

tified. First, standard error estimation methods in FIML-MH-RM require further

exploration. Based on the results of this research, the recursively approximated

and the post-convergence approximated standard errors were both underestimated.

Additionally, the post-convergence approximated standard errors could not be pro-

duced in a conditional model with covariates. It is not clear whether this was due

to missing data, convergence issues or the current implementation of the algorithm

in flexMIRT. For example, flexMIRT recently started incorporating covariates and

implementing post-convergence approximation of standard errors. It is possible that

the post-convergence approximation method might have not been modified for the

conditional model with covariates. More efforts should be devoted to exploring

standard error estimation using FIML-MH-RM algorithm.

Second, the issue of starting values in FIML-MH-RM should be further exam-

ined. This research indicates that the algorithm could be sensitive to biased DWLS

estimates as starting values in a high-dimensional model under general MAR. Other

starting values can be explored. One possibility is to use estimates from the reduced

models as starting values for FIML-MH-RM. Simulation II results showed that the

structural parameter estimates were robust in the reduced model without common

item effects, while the item parameter estimates were somewhat robust in the re-

duced model without disturbances (if the model could converge at all). However,

before doing this, simulations need to be conducted to see if the two reduced models
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can still produce robust estimates under MAR panel attrition.

Third, methods to reduce the bias of DWLS estimates under MAR attrition

can be explored. It was found in the study that DWLS estimates of structural

parameters were severely biased when the attrition mechanism was general MAR.

One potential remedy for such bias is to multiply impute the missing data based

on observed outcomes and auxiliary variables. It is currently not clear how much

bias could be reduced by using multiple imputation or what imputation methods

perform best in reducing bias. Efforts can be devoted to examining the performance

of different multiple imputation methods combined with limited-information esti-

mation. Candidate imputation methods include polytomous regression, predictive

mean matching, classification and regression tree, and so on.

Fourth, this research used a linear function as a first step in the investigation

of the LGM-IRT. Schmid-Leiman transformation and estimation of LGM-IRT with

other structural models (e.g, ALT model) can be explored. The performance of the

estimators in a LGM-IRT with more time points and other structural formulations

can be examined.

Last but not least, as discussed in Chapter 2, the full LGM-IRT model with

common item effect could be analytically reduced to a four-dimensional problem

regardless of the number of repeated items and time points. Even though four-

dimensional integration with FIML-MH-RM could be time consuming, it might still

be more efficient than FIML-MCEM, especially when there are a lot of time points

and repeated items. The dimension reduction method of the LGM-IRT (formulated

as a first-order model) is currently not supported in flexMIRT. Efforts could be
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devoted to developing the codes to implement the method.
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Appendix A: Relative Bias in Item Parameter Estimates of the Three

Estimation Methods in Simulation I
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Table A.1

Percent Relative Bias in Item Parameter Estimates by the Three Estimators under Complete Data in Simulation I
4 items, 200 examinees 4 items, 500 examinees 4 items, 2,000 examinees 8 items, 200 examinees 8 items, 500 examinees 8 items, 2,000 examinees

True value DWLS MCEM MH-RM DWLS MCEM MH-RM DWLS MCEM MH-RM DWLS MCEM MH-RM DWLS MCEM MH-RM DWLS MCEM MH-RM
α1 1.18 0.5 2.5 -1.8 0.1 1.8 -0.9 0.6 1.9 -0.6 -0.2 2.0 -0.8 0.0 2.8 0.0 -0.6 1.8 -0.2
α2 1.29 -1.5 -8.4 5.8 -1.2 -7.7 1.9 -1.6 -6.2 2.4 -1.1 -6.7 1.7 -0.8 -9.0 0.2 1.6 -5.9 0.6
α3 2.17 1.1 4.6 -4.9 3.5 3.8 -2.4 4.5 4.2 -1.6 -3.9 2.9 -3.0 -3.1 5.7 -0.3 -5.0 3.9 -0.3
α4 2.57 -1.0 -7.0 1.5 -2.4 -4.5 0.5 -6.0 -3.3 2.2 -0.2 -3.4 0.9 4.3 -4.7 0.1 5.3 -4.0 -0.3
α5 1.64 -0.3 2.7 -1.4 -1.2 4.3 -0.1 -1.9 2.8 -0.3
α6 1.97 -1.6 6.5 -3.2 -4.4 7.9 -1.8 -4.7 6.9 -0.5
α7 2.41 7.1 -0.9 -7.7 2.2 11.1 0.5 -14.3 8.7 -1.0
α8 1.47 -2.8 -12.1 0.9 2.0 -9.6 1.4 3.2 -7.6 0.4
λ11 1.92 6.5 2.0 4.4 7.6 -0.4 3.4 16.1 -5.9 4.3 0.0 -0.6 0.7 -0.1 -0.7 0.2 -0.6 -0.6 0.0
λ12 1.13 2.1 3.1 1.3 1.5 2.4 2.5 8.6 -4.3 4.1 0.2 -0.7 1.2 0.2 -0.9 0.4 -0.8 -1.0 0.0
λ13 2.45 1.4 1.5 -1.2 0.0 1.2 -0.3 1.6 -1.2 1.4 0.5 -0.1 1.4 0.5 -0.5 0.2 -0.4 -0.8 -0.1
λ14 1.72 2.0 1.0 -2.9 1.3 2.5 -0.6 0.7 0.0 1.8 1.1 1.4 2.2 1.0 0.5 -0.1 0.2 -0.5 -0.3
λ21 1.92 2.8 -1.3 -1.5 0.7 1.7 1.4 3.3 -1.6 2.5 2.8 -7.3 14.2 -0.5 -13.1 2.2 -8.7 -11.9 -2.3
λ22 0.62 3.7 -2.5 -3.0 0.3 2.0 1.4 2.9 -1.5 2.4 1.2 -8.1 12.0 0.3 -11.1 1.9 -7.4 -10.8 -2.3
λ23 5.17 0.9 -0.1 -1.1 0.7 1.3 0.4 0.1 -0.1 0.9 0.1 0.1 3.1 1.3 -0.4 -0.4 -0.3 -1.9 -1.3
λ24 1.80 0.1 0.3 -0.2 0.4 0.6 0.0 0.3 0.1 0.4 0.5 3.0 3.2 2.2 2.3 -0.8 1.2 -0.4 -1.4
λ31 1.20 5.9 -2.6 -1.5 6.4 -2.0 0.3 8.0 -2.2 1.7 -8.4 -15.6 9.7 -13.3 -15.0 -0.7 -20.0 -10.7 -0.9
λ32 0.99 -8.4 1.5 5.1 0.0 -6.8 -3.1 -6.8 1.7 -6.8 -1.1 -2.8 8.6 -0.8 -3.9 -1.4 -4.6 -4.2 -1.4
λ33 0.56 0.3 1.2 -1.7 4.9 4.3 0.7 3.1 0.8 1.5 4.6 6.7 7.8 5.5 2.5 -4.0 6.3 0.2 -1.5
λ34 0.18 -2.3 -6.5 4.3 -16.0 -10.3 -0.5 -14.2 -3.4 -1.3 13.0 17.9 6.7 17.9 14.2 -3.3 20.9 6.2 -1.7
λ41 1.18 7.1 0.1 4.1 4.9 0.3 6.7 12.9 -4.6 4.8 0.0 -5.0 4.1 -3.7 -5.3 -0.5 -5.2 -3.0 0.4
λ42 -0.51 -0.3 -1.1 0.3 -0.5 -1.0 -0.6 -0.2 0.0 -1.0 0.4 -0.1 1.5 0.6 0.0 -0.2 -0.3 -0.5 -0.2
λ43 3.44 8.0 16.2 -37.3 32.2 28.2 -11.9 43.3 17.3 10.8 1.1 4.3 1.2 4.5 4.2 -0.6 3.9 1.4 -0.7
λ44 1.23 -1.0 -0.6 3.3 -2.9 -2.1 1.4 -4.5 -1.8 -0.4 2.5 13.3 -0.8 13.1 12.6 -2.0 13.7 5.5 -1.9
λ51 0.55 0.5 -3.7 4.0 -2.8 -4.4 0.3 -3.9 -3.0 0.1
λ52 -0.05 -3.4 8.2 -15.2 4.7 11.6 -1.2 9.1 9.0 -0.8
λ53 -0.80 1.3 -1.7 4.3 -0.9 -2.7 0.1 -2.1 -2.3 0.1
λ54 -1.85 -2.3 -3.0 -5.4 -3.8 -2.1 -0.5 -1.8 0.4 -0.3
λ61 0.93 4.0 2.7 9.6 -2.3 -5.5 -3.2 -4.3 -4.8 -1.6
λ62 -0.68 -0.9 -1.9 -1.7 -0.6 -0.3 0.7 -0.3 0.3 0.4
λ63 2.21 10.3 25.8 19.3 11.0 6.9 -9.7 7.2 -2.7 -5.2
λ64 1.07 -0.5 -1.4 -0.6 -0.9 -0.9 0.3 -0.8 -0.2 0.2
λ71 -0.28 5.2 -24.4 3.5 -4.9 -21.3 0.1 -18.3 -13.0 -0.2
λ72 -0.67 -20.6 48.8 -14.6 5.1 46.2 -1.7 41.6 32.4 2.6
λ73 -2.53 -11.3 21.8 -9.8 0.5 20.9 0.6 18.7 16.2 2.3
λ74 -4.80 -3.0 4.7 -2.9 -0.2 5.0 0.6 4.1 3.9 0.6
λ81 -0.35 0.3 -0.9 1.5 -0.9 -1.9 -0.4 -1.2 -1.2 -0.1
λ82 -1.56 0.9 -1.3 3.4 -1.3 -3.3 -1.0 -1.8 -2.1 -0.4
λ83 1.48 1.1 -1.3 3.9 -1.1 -3.3 -0.9 -1.9 -2.4 -0.5
λ84 0.33 3.1 -2.3 11.5 -1.6 -6.5 -4.8 -2.3 -4.9 -1.5
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Table B.1

Percent Relative Bias in Item Parameter Estimates by the Three Estimators under 10% per Wave MAR-X Attrition in Simulation
III

4 items, 200 examinees 4 items, 500 examinees 4 items, 2,000 examinees 8 items, 200 examinees 8 items, 500 examinees 8 items, 2,000 examinees
True value DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM

α1 1.18 – – – – – – – – – – – – – – – – – –
α2 1.29 0.4 22.9 -13.5 2.7 18.3 -11.1 5.3 19.4 -2.5 10.4 37.0 1.3 7.5 41.3 4.6 3.1 32.4 5.3
α3 2.17 -0.7 -1.0 1.2 -0.6 -1.2 0.4 -1.1 -0.9 0.4 0.5 -2.1 -0.2 0.8 -2.1 -0.3 1.1 -1.8 -0.3
α4 2.57 8.1 5.2 -5.2 8.0 5.6 -4.8 8.4 6.1 -1.7 -0.9 8.8 2.1 -7.4 7.2 0.7 -5.5 7.0 1.6
α5 1.64 -1.1 -22.7 -2.9 3.8 -22.4 -0.3 3.0 -20.5 -3.8
α6 1.97 -4.4 -19.1 -2.9 2.9 -18.0 -1.2 5.4 -14.1 -1.4
α7 2.41 -1.6 -5.5 -2.3 0.0 -5.3 -2.3 3.0 -4.4 -1.2
α8 1.47 0.4 2.2 0.2 -0.1 2.0 0.1 -0.1 1.8 0.3
λ11 1.92 0.9 -3.6 9.2 5.4 -4.9 8.5 7.4 -5.4 4.9 -0.9 -3.8 1.0 -1.2 -5.0 1.0 -1.9 -3.8 0.2
λ12 1.13 7.9 -22.2 48.8 25.0 -37.6 45.1 18.5 -25.2 42.6 0.0 -3.0 0.8 -0.6 -4.2 0.5 -0.9 -2.9 0.4
λ13 2.45 1.1 -0.6 1.7 0.0 -1.2 2.6 0.5 -0.6 3.0 -1.0 -7.6 -0.7 0.4 -7.5 1.7 -0.5 -5.1 1.3
λ14 1.72 0.5 0.8 -1.6 2.1 1.6 1.8 2.3 1.3 2.5 0.3 0.4 -0.5 0.8 1.0 0.3 0.6 0.7 0.2
λ21 1.92 0.6 0.4 2.8 1.5 -0.7 3.1 2.0 -0.6 3.1 1.3 -5.3 5.2 -2.3 -9.9 0.5 -3.4 -5.7 0.6
λ22 0.62 0.5 0.2 2.4 1.0 -0.6 3.2 1.7 -0.7 2.8 10.8 -46.3 41.0 -14.4 -79.6 5.8 -23.7 -44.9 6.2
λ23 5.17 1.0 0.5 0.9 0.4 -0.2 0.9 0.2 -0.4 0.8 2.1 -0.3 2.3 1.1 -1.4 0.5 0.4 -1.3 -0.6
λ24 1.80 0.6 0.3 0.2 0.4 -0.1 0.4 0.2 -0.3 0.3 2.3 1.4 1.7 1.6 1.0 0.0 1.8 0.3 -0.8
λ31 1.20 4.8 -2.0 -0.1 5.8 -1.2 2.1 7.5 -1.1 1.4 -12.2 -12.3 2.5 -15.8 -17.3 1.9 -18.6 -11.4 -0.4
λ32 0.99 -4.7 4.0 1.9 -5.2 3.4 -5.3 -7.2 3.9 -4.7 -2.0 -5.4 0.2 -1.7 -4.8 2.1 -3.2 -3.8 0.1
λ33 0.56 2.3 0.4 -0.2 2.0 -1.0 0.3 3.4 -0.2 1.7 5.5 0.5 -0.4 7.5 3.5 1.6 6.4 0.6 -0.7
λ34 0.18 -10.4 -3.6 -0.1 -10.7 0.8 1.1 -15.1 -0.9 -2.8 14.3 6.8 -2.1 17.4 11.3 -1.4 20.3 7.3 -0.5
λ41 1.18 8.3 -5.1 2.9 8.9 -1.9 4.9 13.9 -4.6 2.5 -3.0 -4.6 0.4 -5.8 -6.7 -0.1 -4.5 -3.3 0.7
λ42 -0.51 -0.2 0.1 -0.3 0.0 0.3 -0.6 -0.6 0.7 -0.5 -0.4 -1.2 -0.5 -0.4 -0.9 -0.1 0.1 -0.3 0.3
λ43 3.44 40.6 19.3 -0.7 42.1 6.8 6.2 40.4 -1.3 7.9 2.0 1.2 -1.2 3.7 2.6 -0.4 4.3 2.1 0.3
λ44 1.23 -3.7 -1.7 0.4 -3.9 -0.7 0.0 -4.0 -0.1 -0.1 7.9 6.4 -3.1 14.1 11.3 -1.0 13.9 7.1 -0.2
λ51 0.55 -2.8 -5.3 0.5 -3.0 -5.1 1.0 -3.9 -3.5 0.0
λ52 -0.05 4.6 14.7 -3.1 6.1 14.4 -4.1 9.2 10.8 0.0
λ53 -0.80 -1.1 -3.8 0.5 -1.2 -3.4 1.0 -1.9 -2.6 0.1
λ54 -1.85 -1.3 1.1 -0.2 -2.5 -0.5 -1.7 -1.0 1.3 0.4
λ61 0.93 -3.3 -6.6 -2.8 -1.8 -4.6 1.3 -1.6 -2.5 1.0
λ62 -0.68 0.2 0.6 0.8 -0.6 -0.3 -0.1 -0.8 -0.2 -0.1
λ63 2.21 -1.2 -6.3 -12.5 11.1 6.6 1.8 13.9 4.0 1.5
λ64 1.07 -0.3 -0.2 0.4 -0.8 -0.7 0.1 -1.0 -0.4 0.0
λ71 -0.28 -5.0 -14.6 4.8 -9.5 -19.8 3.7 -16.7 -13.7 0.6
λ72 -0.67 9.2 36.9 -8.5 20.0 48.1 -7.6 34.0 31.2 -2.7
λ73 -2.53 4.6 19.7 -1.9 7.9 22.9 -3.4 14.1 14.9 -1.2
λ74 -4.80 0.5 4.6 -0.5 1.8 5.7 -0.5 3.0 3.8 -0.1
λ81 -0.35 -0.5 -1.5 0.0 -0.8 -1.9 0.1 -1.0 -1.1 0.1
λ82 -1.56 -1.0 -3.0 -0.5 -1.5 -3.6 -0.1 -1.3 -1.8 0.2
λ83 1.48 -0.9 -3.2 -0.5 -1.5 -3.9 -0.1 -1.4 -2.0 0.1
λ84 0.33 -0.5 -7.0 -0.9 -2.2 -8.7 -0.9 -1.0 -4.2 0.1
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Table B.2

Percent Relative Bias in Item Parameter Estimates by the Three Estimation Methods under 20% per Wave MAR-X Attrition
in Simulation III

4 items, 200 examinees 4 items, 500 examinees 4 items, 2,000 examinees 8 items, 200 examinees 8 items, 500 examinees 8 items, 2,000 examinees
True value DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM

α1 1.18 – – – – – – – – – – – – – – – – – –
α2 1.29 6.5 25.4 -14.7 9.9 20.6 -6.7 4.1 15.8 -4.1 8.8 33.7 1.7 13.9 45.6 7.2 4.1 32.3 2.4
α3 2.17 -0.5 -1.3 1.1 -0.6 -1.0 0.3 -0.8 -0.8 0.2 0.0 -2.1 -0.3 0.5 -2.5 -0.3 0.9 -1.8 -0.2
α4 2.57 7.7 5.0 -8.7 3.9 5.7 -2.3 6.5 3.7 -1.6 -1.0 7.6 1.8 -3.3 10.6 2.0 -6.7 6.5 0.8
α5 1.64 -7.1 -22.7 -4.9 0.5 -26.2 -2.9 3.9 -19.7 -1.8
α6 1.97 -2.5 -18.0 -5.1 -2.7 -22.3 -3.2 3.1 -16.2 -2.1
α7 2.41 -2.2 -3.6 -1.3 1.8 -5.5 -0.9 5.3 -3.8 -0.8
α8 1.47 0.7 1.8 0.1 0.1 2.3 0.2 -0.2 1.8 0.1
λ11 1.92 2.5 -5.1 9.6 6.9 -7.5 6.8 9.4 -8.5 2.7 -1.1 -4.1 0.8 -1.9 -5.3 0.3 -2.2 -4.9 0.0
λ12 1.13 7.1 -37.1 39.2 6.0 -31.3 58.0 45.7 -59.1 13.4 0.2 -2.8 1.3 -0.8 -4.2 0.3 -1.3 -4.0 -0.1
λ13 2.45 0.9 -2.3 -0.2 1.0 -1.0 3.0 1.6 -2.9 0.7 2.1 -5.2 3.6 0.5 -7.3 1.5 -2.2 -8.1 -0.8
λ14 1.72 0.1 0.7 -2.3 1.8 0.8 0.9 0.5 -0.3 0.6 1.9 1.4 1.4 1.4 1.3 0.6 0.0 0.2 -0.5
λ21 1.92 1.8 -2.3 0.5 2.3 -2.3 2.0 2.9 -2.4 2.0 -2.9 -8.9 1.3 -0.9 -8.0 2.0 -2.9 -7.5 0.0
λ22 0.62 1.9 -2.7 -0.2 1.9 -2.3 1.9 2.6 -2.5 1.8 -21.7 -74.3 9.2 -4.0 -66.2 16.2 -22.5 -63.4 -2.9
λ23 5.17 0.5 -0.1 0.3 0.4 -0.2 0.8 0.2 -0.4 0.8 0.4 -2.1 0.6 1.7 -1.3 1.0 0.3 -1.8 -0.8
λ24 1.80 0.2 -0.2 -0.1 0.3 -0.1 0.2 0.3 0.0 0.4 0.7 -0.6 0.2 1.4 -0.1 -0.3 1.3 0.2 -1.0
λ31 1.20 5.9 -3.2 -0.4 6.5 -2.6 1.4 7.8 -3.3 0.7 -9.2 -10.2 4.5 -15.0 -15.6 1.0 -18.0 -15.7 -1.8
λ32 0.99 -6.6 7.0 2.0 -5.7 4.5 -4.3 -7.5 6.0 -4.1 -0.2 -3.2 2.9 -2.2 -6.4 0.8 -3.5 -5.9 -1.0
λ33 0.56 1.9 -0.6 -0.6 3.3 0.6 1.5 2.3 -0.7 0.6 4.0 0.3 0.3 4.2 -2.0 -1.7 4.9 -0.4 -1.8
λ34 0.18 -8.8 -0.8 2.1 -13.3 -3.2 -1.1 -12.7 -1.4 -0.4 10.8 5.0 -1.8 13.6 4.1 -4.3 17.6 8.0 -1.6
λ41 1.18 8.3 -6.3 3.3 8.9 -4.8 4.2 10.7 -5.4 4.5 -1.9 -3.4 2.3 -4.7 -5.7 0.5 -5.8 -5.4 -0.5
λ42 -0.51 -0.1 0.5 -0.4 0.0 0.3 -0.7 -0.1 0.3 -0.9 0.3 -0.3 0.7 0.0 -0.8 0.4 -0.3 -0.9 -0.3
λ43 3.44 34.0 12.0 4.7 32.2 8.6 2.4 40.4 11.8 11.3 2.2 1.6 -0.4 3.9 2.1 0.3 4.0 2.0 -0.3
λ44 1.23 -2.8 -1.1 0.5 -3.4 -1.2 0.1 -4.0 -1.4 -0.4 7.9 6.5 -2.1 12.3 8.2 -0.4 13.6 7.9 -1.3
λ51 0.55 -1.4 -3.6 1.9 -3.2 -4.6 1.1 -3.7 -4.3 0.1
λ52 -0.05 4.4 13.5 -3.4 9.1 16.1 -1.8 9.0 13.6 0.0
λ53 -0.80 -0.9 -3.3 0.9 -1.8 -3.8 0.6 -1.9 -3.3 0.0
λ54 -1.85 -0.8 1.1 -0.5 -1.4 1.2 -0.5 -1.4 1.1 0.3
λ61 0.93 -1.2 -4.0 1.2 -3.0 -6.8 -0.2 -2.7 -4.8 0.2
λ62 -0.68 -0.4 0.2 0.0 -0.2 0.4 0.1 -0.6 0.0 -0.1
λ63 2.21 5.6 -2.1 -3.1 5.3 -2.9 -1.3 10.4 1.7 1.1
λ64 1.07 -0.6 -0.3 0.2 -0.5 -0.2 0.2 -0.8 -0.4 0.0
λ71 -0.28 -5.3 -16.7 2.7 -14.0 -19.0 1.3 -20.0 -16.7 1.0
λ72 -0.67 8.2 38.6 -8.1 26.6 44.3 -4.0 42.4 39.9 -2.6
λ73 -2.53 2.3 18.3 -4.0 12.0 23.0 -0.3 17.3 18.5 -1.6
λ74 -4.80 0.1 4.2 -1.2 2.6 5.8 0.0 3.5 4.3 -0.5
λ81 -0.35 -0.2 -1.2 0.3 -0.6 -1.4 0.4 -1.0 -1.4 0.0
λ82 -1.56 -0.1 -2.0 0.7 -0.6 -2.5 0.8 -1.3 -2.4 0.1
λ83 1.48 -0.1 -2.3 0.7 -0.5 -2.8 0.9 -1.4 -2.7 0.1
λ84 0.33 0.9 -4.3 1.5 1.4 -5.6 2.7 -1.5 -6.2 -0.8
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Table B.3

Percent Relative Bias in Item Parameter Estimates by the Three Estimation Methods under 10% per Wave MAR Attrition in
Simulation III

4 items, 200 examinees 4 items, 500 examinees 4 items, 2,000 examinees 8 items, 200 examinees 8 items, 500 examinees 8 items, 2,000 examinees
True value DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM

α1 1.18 – – – – – – – – – – – – – – – – – –
α2 1.29 19.4 31.2 -6.2 20.2 17.0 -8.9 19.1 11.4 -1.7 20.6 28.7 -9.5 16.1 24.9 -9.2 16.8 21.8 -1.7
α3 2.17 -3.3 -1.8 0.5 -2.7 -1.0 0.2 -2.5 -0.7 -0.2 -2.2 -1.3 0.8 -2.9 -1.3 0.5 -2.8 -1.1 0.1
α4 2.57 53.3 13.3 2.4 43.9 5.1 -0.2 39.7 0.8 1.2 33.2 5.5 -2.4 31.6 4.1 -2.1 27.6 3.6 -0.3
α5 1.64 -0.2 -15.6 7.1 2.3 -15.0 6.5 0.7 -13.7 0.3
α6 1.97 -28.8 -10.7 5.5 -24.2 -12.2 3.9 -20.8 -9.3 1.1
α7 2.41 11.6 -2.5 0.9 13.9 -2.0 1.3 13.8 -2.1 -0.4
α8 1.47 -0.9 1.5 -0.6 -1.3 1.4 -0.4 -1.2 1.1 -0.1
λ11 1.92 15.6 -7.1 1.9 15.5 -4.8 4.9 18.7 -6.2 0.4 -3.1 -3.4 0.3 -3.1 -3.4 0.5 -3.5 -2.9 0.0
λ12 1.13 95.8 -42.6 -6.6 81.3 -22.1 30.6 104.3 -35.1 3.8 -2.5 -2.5 -0.2 -2.5 -2.4 0.1 -2.8 -2.1 -0.2
λ13 2.45 5.2 -1.4 -2.0 2.6 0.9 2.4 5.1 -1.4 0.2 -7.1 -3.8 -3.1 -5.4 -1.9 -0.4 -7.0 -2.8 -1.9
λ14 1.72 2.3 1.3 -3.5 0.5 3.1 1.0 1.3 0.8 0.3 -2.5 1.3 -2.7 -1.4 2.3 -1.2 -1.6 1.5 -1.1
λ21 1.92 5.7 1.0 0.9 7.9 -1.4 0.8 9.0 -2.2 0.7 -7.2 -4.6 -0.9 -9.3 -6.1 -2.4 -9.3 -4.7 -3.1
λ22 0.62 5.7 0.7 0.4 7.1 -0.9 1.2 8.4 -1.9 0.9 -71.6 -42.2 -17.6 -81.0 -48.7 -23.1 -81.3 -37.2 -28.2
λ23 5.17 0.8 1.3 0.5 1.6 0.2 0.5 2.1 -0.2 0.3 -6.7 -0.5 -2.8 -4.7 1.3 -1.3 -5.3 0.4 -2.3
λ24 1.80 0.3 0.6 0.0 0.4 0.4 0.4 0.8 0.0 0.1 -6.5 2.0 -2.7 -3.9 4.3 -1.2 -4.9 2.2 -2.7
λ31 1.20 1.3 -1.0 -0.1 3.4 -2.0 0.7 4.4 -2.3 0.8 -1.2 -12.5 -4.3 0.7 -13.0 -2.1 -2.7 -12.4 -5.0
λ32 0.99 -15.0 -2.5 0.1 -19.5 2.6 -1.1 -22.2 4.7 -0.2 -10.5 -2.6 -4.8 -11.9 -3.7 -3.8 -11.7 -3.6 -4.8
λ33 0.56 7.6 0.2 -2.0 5.6 1.2 0.4 6.7 -0.2 -0.5 -17.9 3.1 -6.4 -19.3 4.0 -4.2 -18.2 2.0 -5.3
λ34 0.18 -14.4 -2.0 4.1 -8.1 -4.4 0.0 -8.0 -3.2 0.4 -23.2 12.4 -6.7 -25.3 13.7 -4.7 -23.0 10.1 -5.2
λ41 1.18 13.0 1.2 6.0 1.8 -5.4 1.0 0.8 -6.4 1.7 6.0 -3.9 -1.8 5.1 -4.2 -1.0 3.0 -3.9 -1.7
λ42 -0.51 -3.1 -0.3 0.1 -3.7 0.4 0.3 -3.6 0.3 -0.1 -3.6 -0.4 -1.3 -3.3 0.0 -0.7 -3.3 -0.1 -0.9
λ43 3.44 138.7 16.4 -16.9 122.2 11.7 -10.8 110.1 16.0 -2.4 -15.7 2.3 -2.5 -13.9 3.5 -1.3 -12.1 2.8 -1.3
λ44 1.23 -10.1 -1.0 1.8 -8.0 -1.3 0.9 -7.0 -1.6 0.5 -39.7 8.7 -4.5 -34.1 12.2 -2.0 -29.2 9.4 -2.2
λ51 0.55 -4.7 -3.7 -0.6 -5.7 -3.9 -0.4 -6.5 -3.5 -1.2
λ52 -0.05 16.1 9.0 2.9 20.6 11.9 3.7 22.0 10.3 5.9
λ53 -0.80 -3.9 -1.7 -0.6 -5.1 -2.5 -0.8 -5.6 -2.4 -1.6
λ54 -1.85 4.6 -0.3 2.5 3.3 -1.5 1.1 4.0 -0.2 2.4
λ61 0.93 -7.9 -1.4 -2.3 -9.7 -2.7 -1.8 -10.7 -3.0 -3.2
λ62 -0.68 3.5 -0.8 0.8 3.0 -0.7 0.4 2.9 -0.4 0.7
λ63 2.21 -49.9 16.5 -8.3 -45.2 11.2 -7.4 -42.4 7.4 -9.3
λ64 1.07 2.4 -1.2 0.3 1.9 -1.0 0.2 1.8 -0.7 0.3
λ71 -0.28 -29.9 -15.3 2.3 -35.1 -17.0 1.2 -38.0 -14.6 -0.4
λ72 -0.67 68.6 35.7 -2.1 83.2 41.4 2.1 87.1 33.5 2.1
λ73 -2.53 32.2 16.4 1.1 39.1 19.0 2.6 41.2 16.0 2.9
λ74 -4.80 7.7 3.8 0.8 8.7 3.9 0.7 9.7 3.7 1.1
λ81 -0.35 -1.8 -1.1 -0.3 -2.3 -1.3 -0.1 -2.4 -1.1 -0.4
λ82 -1.56 -3.2 -1.7 -0.8 -4.0 -2.1 -0.5 -4.3 -2.0 -1.0
λ83 1.48 -3.5 -1.8 -1.1 -4.5 -2.3 -0.8 -4.6 -2.1 -1.2
λ84 0.33 -8.2 -2.0 -5.2 -8.5 -2.1 -2.1 -9.5 -2.8 -4.4
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Table B.4

Percent Relative Bias in Item Parameter Estimates by the Three Estimation Methods under 20% per Wave MAR Attrition in
Simulation III

4 items, 200 examinees 4 items, 500 examinees 4 items, 2,000 examinees 8 items, 200 examinees 8 items, 500 examinees 8 items, 2,000 examinees
True value DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM DWLS MCEM MHRM

α1 1.18 – – – – – – – – – – – – – – – – – –
α2 1.29 18.8 29.5 -19.6 8.6 19.8 -20.4 11.5 24.0 -7.8 15.2 27.4 -23.2 5.1 20.0 -21.4 6.7 17.3 -16.3
α3 2.17 -3.3 -1.9 1.3 -2.7 -1.3 1.0 -2.8 -1.4 0.5 -2.9 -1.4 1.6 -2.2 -0.7 1.7 -2.0 -0.8 1.1
α4 2.57 58.9 13.9 -1.2 51.2 8.8 -3.4 47.9 7.8 -0.9 35.5 4.7 -7.5 33.9 3.6 -7.1 32.4 2.4 -4.2
α5 1.64 9.0 -10.9 20.0 10.1 -10.5 14.7 10.5 -9.7 10.3
α6 1.97 -14.1 -11.3 13.9 -14.0 -7.5 13.4 -12.2 -7.4 9.1
α7 2.41 12.4 -2.3 4.5 17.1 0.0 4.9 15.9 -0.9 2.8
α8 1.47 -1.3 1.1 -1.7 -1.7 0.8 -1.4 -1.9 0.7 -1.1
λ11 1.92 24.4 -7.1 -3.9 24.4 -5.4 0.2 26.7 -7.1 -5.0 -3.9 -1.5 0.4 -4.6 -2.5 1.3 -4.6 -2.0 -0.4
λ12 1.13 153.7 -37.9 -54.8 161.0 -32.4 -28.9 168.1 -36.2 -49.4 -3.5 -0.5 -0.6 -4.3 -1.7 0.5 -4.4 -1.3 -1.4
λ13 2.45 8.3 0.0 -5.4 9.4 -0.6 -3.7 9.5 -0.7 -4.2 -13.2 0.6 -8.6 -13.1 -0.7 -0.8 -12.9 0.7 -6.9
λ14 1.72 4.8 2.9 -7.3 5.5 2.6 -5.2 5.0 2.6 -4.2 -5.6 2.2 -6.1 -4.5 2.7 -2.0 -4.4 2.9 -4.1
λ21 1.92 11.5 0.6 -3.8 12.4 -0.8 -3.3 13.2 -1.1 -3.6 -12.4 0.9 -4.7 -18.1 -5.8 -3.2 -15.7 -2.4 -8.4
λ22 0.62 11.5 0.1 -4.3 11.7 -0.7 -3.3 12.1 -0.5 -3.2 -114.3 6.8 -49.6 -161.3 -48.4 -31.6 -138.9 -17.4 -78.5
λ23 5.17 3.2 0.5 -1.4 3.3 -0.3 -1.6 3.0 0.1 -1.2 -9.7 2.6 -5.1 -11.4 0.0 -2.7 -9.8 1.9 -6.7
λ24 1.80 1.4 0.2 -0.8 1.3 -0.1 -0.8 1.0 0.2 -0.5 -10.1 3.8 -5.9 -10.4 2.5 -2.5 -9.1 3.9 -7.1
λ31 1.20 2.2 0.6 -1.3 5.3 -1.7 -2.2 4.9 -1.0 -1.5 3.1 -1.9 -5.4 -1.6 -6.8 1.3 -8.3 -9.0 -11.0
λ32 0.99 -29.0 -0.2 12.9 -31.3 2.1 10.7 -31.8 1.6 10.3 -15.2 1.9 -9.2 -16.5 -0.2 -1.2 -16.6 0.1 -10.4
λ33 0.56 10.9 1.0 -3.9 10.8 0.3 -3.6 11.3 -0.1 -3.8 -27.6 5.8 -10.8 -25.9 5.3 -3.0 -22.6 6.8 -10.5
λ34 0.18 -21.4 -1.4 8.4 -19.5 -1.1 7.5 -18.1 -1.7 6.6 -41.3 10.6 -13.5 -33.1 14.7 -3.0 -28.5 14.9 -11.0
λ41 1.18 8.9 -0.2 -1.2 3.5 -2.7 -2.9 2.8 -1.3 -0.7 7.0 -0.5 -3.5 5.0 -2.8 0.5 3.4 -2.8 -4.5
λ42 -0.51 -4.7 -0.4 1.3 -5.0 -0.2 1.2 -4.8 -0.2 0.9 -4.3 1.3 -1.9 -5.8 -0.4 -0.6 -5.3 0.3 -2.5
λ43 3.44 198.6 4.6 -49.8 181.0 9.7 -34.6 169.4 9.4 -31.5 -18.5 4.5 -2.6 -20.0 2.7 -1.3 -18.3 3.6 -3.7
λ44 1.23 -13.8 -0.4 3.4 -11.8 -1.1 2.1 -10.8 -1.0 1.9 -49.7 9.5 -6.1 -48.4 9.3 -3.6 -44.6 10.6 -6.3
λ51 0.55 -7.9 -2.4 -2.8 -7.4 -1.8 0.8 -8.6 -2.3 -3.4
λ52 -0.05 28.1 6.0 12.5 26.5 4.7 -0.7 29.2 4.9 14.5
λ53 -0.80 -7.4 -1.2 -3.7 -7.0 -0.9 0.0 -7.5 -0.8 -4.0
λ54 -1.85 6.5 -2.7 5.1 6.7 -1.7 1.7 6.0 -2.7 6.0
λ61 0.93 -13.1 1.0 -7.4 -15.8 -2.4 -1.8 -16.5 -1.6 -9.0
λ62 -0.68 4.1 -0.7 2.1 4.3 -0.4 0.7 4.2 -0.6 2.1
λ63 2.21 -59.5 11.0 -29.6 -61.5 9.0 -9.1 -59.8 10.4 -29.7
λ64 1.07 2.3 -0.9 1.0 2.5 -0.8 0.4 2.4 -0.8 1.1
λ71 -0.28 -36.2 -11.0 -1.3 -44.5 -14.9 -0.1 -44.0 -13.0 -3.4
λ72 -0.67 82.7 20.4 5.0 106.8 38.1 6.0 106.4 32.3 16.4
λ73 -2.53 40.7 8.1 5.9 49.8 15.3 2.2 51.2 14.1 11.9
λ74 -4.80 10.0 1.1 2.2 12.3 3.5 1.2 12.6 3.1 4.0
λ81 -0.35 -2.5 -0.5 -0.8 -2.8 -0.8 0.0 -3.3 -1.0 -1.2
λ82 -1.56 -4.7 -0.4 -2.0 -5.0 -1.1 0.1 -5.7 -1.2 -2.6
λ83 1.48 -5.4 -0.5 -2.8 -5.6 -1.0 0.1 -6.2 -1.1 -3.0
λ84 0.33 -15.3 0.5 -11.5 -14.7 0.0 -1.4 -14.3 1.1 -10.6
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