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Many epidemiologic studies forgo probability sampling and turn to volunteer-based 

samples because of cost, confidentiality, response burden, and invasiveness of biological 

samples. However, the volunteers may not represent the underlying target population 

mainly due to self-selection bias. Therefore, standard epidemiologic analyses may not be 

generalizable to the target population, which is called lack of “external validity.” In survey 

research, propensity score (PS)-based approaches have been developed to improve 

representativeness of the nonprobability samples by using population-based surveys as 

references. These approaches create a set of “pseudo-weights” to weight the nonprobability 

sample up to the target population. There are two main types of PS-based approaches: (1) 

PS-based weighting methods using PSs to estimate participation rates of the nonprobability 

sample; for example, the inverse of PS weighting (IPSW); (2) PS-based matching methods 

using PSs to measure similarity between the units in the nonprobability sample and the 

reference survey sample, such as PS adjustment by subclassification (PSAS). Although the 

PS-based weighting methods reduce the bias, they are sensitive to propensity model 

misspecification and can be inefficient. The PS-based matching methods are more robust 

to the propensity model misspecification and can avoid extreme weights. However, 



matching methods such as PSAS are less effective at bias reduction. This dissertation 

proposes a novel PS-based matching method, named the kernel weighting (KW) approach, 

to improve the external validity of epidemiologic analyses that gain a better bias–variance 

tradeoff. A unifying framework is established for PS-based methods to provide three 

advances. First, the KW method is proved to provide consistent estimates, yet generally 

has smaller mean-square error than the IPSW. Second, the framework reveals a 

fundamental strong exchangeability assumption (SEA) underlying the existing PS-based 

matching methods that has previously been unknown. The SEA is relaxed to a weak 

exchangeability assumption that is more realistic for data analysis. Third, survey weights 

are scaled in propensity estimation to reduce the variance of the estimated PS and improve 

efficiency of all PS-based methods under the framework. The performance of the proposed 

PS-based methods is evaluated for estimating prevalence of diseases and associations 

between risk factors and disease in the finite population. 
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Chapter 1 Introduction 

1.1 Significance 

Large-scale cohort studies are the gold standard of design in epidemiology. However, 

establishing large-scale cohort studies has become more difficult in the United States in 

recent years because of increasing costs and declining response rates (Morton et al., 2006; 

Nohr et al., 2006), often due to concerns about confidentiality, volunteer burden, and 

invasiveness of biological samples. 

To optimize resources, current epidemiologic cohorts are beginning to assemble 

samples within integrated health care systems that have electronic health records and a 

large pre-existing base of volunteers to recruit, such as the UK Biobank in the National 

Health Service (Collins, 2012). Unfortunately, volunteer-based cohorts generally have 

difficulty representing the target population. Many cohorts are well known to have “healthy 

volunteer effects” (Pinsky et al., 2007), usually resulting in lower disease incidence and 

mortality in the volunteers than in the general population. For example, the all-cause 

mortality rate in the UK Biobank was only half that of the UK population (Fry et al., 2017), 

and it is not representative of the UK population with regard to many sociodemographic, 

physical, lifestyle, and health-related characteristics. In another example, Katki et al. 

(2016) found that the lung cancer death risk calculated from the National Lung Screening 

Trial (NLST) cohort is seriously underestimated when compared to estimates based on 

nationally representative survey data. 
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Representative samples are important for generalizing statistical results from 

cohorts to the underlying target population (“external validity”) in many circumstances. 

Studies of disease surveillance strongly require population representativeness to ensure that 

trends in disease incidence and mortality observed in the study are actually occurring in 

the target population. Studies of “translational epidemiology,” which attempt to project the 

impact of epidemiologic findings on population health, require population 

representativeness. 

There are two difficulties in improving representativeness of epidemiologic cohorts 

for external validity. First, the volunteer participants cannot represent the finite target 

population due to self-selection bias, low response rate, and coverage issues. As a result, 

the point estimates obtained directly from the cohorts will be biased from the true values 

in the population. Since participants volunteer to enroll the study, the selection probabilities 

are unknown, which makes them hard to measure for reducing bias. Second, many national 

cohort studies usually assemble samples in multiple study centers over the whole country. 

Examples include The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening 

Trial and the National Institutes of Health (NIH)–American Association of Retired Persons 

(NIH-AARP) Diet and Health Study. Correlation may be induced by the homogeneity of 

the participants from the same study center. The finite population variance can be 

underestimated without considering correlation of outcomes within study centers. 

Therefore, the Type I error of significance tests can be inflated and coverage probability of 

confidence intervals may be too low even if the point estimates are approximately 

unbiased. 
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1.2 Research Gaps, Goals, and Innovations 

We develop a methodology to improve external validity of non-representative 

epidemiologic studies using a population representative survey sample as a reference. Our 

goal is not to eliminate 100% of bias due to non-representativeness (which is probably 

unrealistic in practice) but rather to gain a better bias–variance tradeoff that improves 

external validity of the epidemiologic cohorts. 

Research Gaps 

Population-Based Health Surveys (PBHSs) have been conducted for many years, 

collecting broad types of data, comprising demographic, socioeconomic, dietary 

characteristics, health-related data, and examination measurements. Examples of PBHSs 

include the U.S. National Health and Nutrition Examination Survey (NHANES) and the 

U.S. National Health Interview Survey (NHIS) both conducted by the U.S. National Center 

for Health Statistics (NCHS). Some of PBHSs also collect DNA samples and provide 

genetic information (NHANES 1998-2002). These PBHSs employ stratified multistage 

cluster sample designs to select samples that represent the finite target population. The 

resulting samples are less susceptible to selection bias and coverage issues that can occur 

in volunteer-based cohorts assembled in epidemiologic studies. 

It is worth noting the main disadvantages of PBHSs. First, the cost required to 

ensure population representativeness is high. For example, it cost NCHS around $100 

million to conduct NHANES III yet sampled only 16,397 individuals from 1988 to 1994 

(NCHS, Korn & Graubard, 1999). Second, the sample sizes of PBHSs are much too small 

to study even common chronic diseases like cancers. Longitudinal PBHSs are more 

expensive due to the expense required to follow-up participants and have smaller sample 
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sizes because of panel attrition. Third, most PBHSs do not collect biospecimens, which is 

critical to modern epidemiologic research. Although PBHSs may not be the best sources 

for epidemiologic studies of novel exposure-disease associations, their population 

representativeness can be useful to improve external validity of epidemiologic cohorts. 

Attaining population representativeness requires attempting to recruit a probability-

based sample. However, formal probability sampling as done in surveys substantially 

increases the cost of assembling epidemiologic cohorts (LaVange et al., 2001; Duncan, G. 

J., 2008; Michael & O'Muircheartaigh, 2008). There are debates between epidemiologists 

and statisticians about the value of probability sampling (Little, 2010; Keiding & Louis, 

2016; Ebrahim & Smith, 2013). 

Because probability sampling is considered unrealistic for epidemiologic studies, 

we advocate that statistical research should focus on improving population 

representativeness of cohorts for external validity. However, to date, there has been little 

attention paid by biostatisticians to this issue. Powers et al. (2017) proposed a method to 

evaluate disease prediction models using a non-representative cohort. Keiding & Louis 

(2016) discussed problems with self-selected entry to epidemiological studies and surveys 

when making population level inference. Stuart et al. (2011) generalized results from 

volunteer randomized trials to populations using a PS-based weighting method (discussed 

in Chapter 2). There is still a lack of general-purpose methods for improving external 

validity of epidemiologic analyses. 

The issues faced by epidemiologists are analogous to those faced in contemporary 

survey research. As nonprobability samples, such as web panels and big data from social 

media, become increasingly popular due to their cost- and time-efficiency (Baker et al., 
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2013; Kennedy et al., 2016), there are growing concerns about lack of population 

representativeness in survey research. Two major types of PS-based methods have been 

studied to improve the representativeness of nonprobability samples using probability-

based samples as external references. The first type is PS-based weighting methods that 

use (functions of) PSs to estimate the participation rates of the nonprobability samples 

(Valliant, & Dever, 2011; Elliott, 2013; Elliott & Valliant, 2016; and Chen et al, 2019). 

The second type is the PS-based matching methods that use PSs to measure the similarity 

between the nonprobability and probability survey sample units (Lee & Valliant, 2009; 

Rivers, 2007). The goal of these methods is to create “pseudo-weights” for the 

nonprobability samples to improve the representativeness.  

Both PS-based weighting and PS-based matching methods have limitations. The 

PS-based weighting methods can potentially fully correct bias under appropriate propensity 

models, but they are sensitive to the propensity model specification (Lee et al., 2010). 

Moreover, PS-based weighting methods are likely to produce extreme weights due to the 

estimates of PSs close to 0. The variances of the pseudo-weighted Horvitz–Thompson (HT) 

estimators (Horvitz and Thompson, 1952) can be inappropriately large if extreme weights 

are related more to the PS estimation procedure than to the true underlying sample selection 

(Stuart 2010). Weight trimming, which sets weights above some maximum to that 

maximum, has been proposed as one solution to reducing variance (Potter, 1993). However, 

the effect of weight trimming on increasing bias or reducing variance is unclear (Lee et al., 

2010; Potter and Zheng, 2015), and there is relatively little guidance regarding the 

trimming level.  
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Compared to PS-based weighting methods, PS-based matching methods do not 

require the propensity model to accurately estimate nonprobability sample participation 

rates. Therefore, matching methods are less sensitive to model misspecification. The PSAS 

method, as a commonly used matching method (Lee & Valliant, 2009; Valliant & Dever, 

2011; Brick, 2015), classifies the combined nonprobability and probability survey sample 

by quintiles of estimated PSs, and evenly distributes the survey sample weights to the 

nonprobability units within each subclass. It avoids extreme weights (Rubin 2001), and 

therefore yields less variable estimates. However, PSAS is less effective at bias reduction 

(Valliant & Dever, 2011) because of the key assumption that cohort units represent equal 

number of population units within subclasses. In addition, the measure of similarity of PSs 

is ad hoc with limited guidance and justification for forming the subclasses. 

To gain efficiency, the existing PS-based matching methods fit the propensity 

model to the combined (cohort vs. unweighted survey) sample when estimating PS (Lee, 

2006; Lee & Valliant, 2009; Valliant & Dever, 2011; Brick, 2015; Rivers, 2017). However, 

as found in this dissertation, they require a critical Strong Exchangeability Assumption 

(SEA) stating that the expectation of the outcome variable given the PS is the same in the 

cohort, survey, and the finite population. Without SEA, the resulting estimates of finite 

population means can be biased even under the correct propensity model fitted to the 

unweighted sample. Furthermore, there is no general approach for validating the propensity 

model to estimate the PSs for the matching methods.  

Finally, more attention needs to be paid to the variance estimation of the PS-based 

pseudo-weighted estimates from the cohorts. There are three sources of variability that 

should be considered in variance estimation: (1) randomness due to estimating PS; (2) 
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potential clustering effects within the cohort; and (3) differential pseudo-weights of the 

cohort. The first two sources are not well considered in existing literature. In contrast with 

classical survey sampling, in which the sample weights are fixed by the sample design, the 

pseudo-weights for the cohort are functions of the PS estimated from the propensity model. 

Ignoring the randomness of the estimated PS can lead to severe underestimation of the 

variance, especially for the PS-based weighting methods, which directly estimate the 

participation rates from the PS. Many epidemiologic cohort studies recruit volunteers at 

multiple study centers clustered in the geographical areas where the target population 

resides. The resulting samples may have geographical effects (clustering and correlation of 

observations) due to differences in the distribution of variables among study centers, which 

influences the variance estimation.  

Specific Goals 

The specific goals of this dissertation that address the concerns and research gaps 

mentioned above are stated below. 

Specific Goal 1: Develop a new PS-based matching method that provides a set of pseudo-

weights for the volunteer-based cohort to improve the bias–variance tradeoff in target 

population disease prevalence estimation.  

Specific Goal 2: Establish a unifying framework for both PS-based weighting and 

matching methods to relax the SEA to a more realistic Weak Exchangeability Assumption. 

Specific Goal 3: Provide appropriate variance estimation for the PS-based pseudo-

weighted estimates of population means/prevalences that considers all sources of 

variability. 
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Specific Goal 4: Apply the new methods to finite population relative risks estimation from 

the epidemiologic cohorts. 

Innovations 

A novel KW approach is proposed to improve external validity of epidemiologic cohort 

analyses. The KW approach first estimates PS from the propensity model fitted to the 

combined (cohort vs. unweighted survey) sample. Then, the survey sample weights are 

fractionally distributed to the cohort according to their similarities measured by difference 

in kernel-smoothed PSs. The KW approach, as a matching method, is less likely to produce 

extreme weights than the IPSW method. Meanwhile, the KW method is be more efficient 

at bias reduction than the PSAS approach because it relaxes the assumption of equal 

representativeness of cohort units within subclasses by PSAS. We prove that the KW 

estimators of finite population means/prevalences are consistent under SEA and other 

standard conditions. 

 Next, we establish an innovative unifying framework for both PS-based weighting 

and matching methods. For the matching methods, we relax the SEA to a weak 

exchangeability assumption (WEA) by estimating PSs from the propensity model fitted to 

the combined (cohort vs. weighted survey) sample. We prove that the enhanced KW 

method, under the WEA, provides consistent estimators of finite population means, which 

is usually unachievable for other matching methods such as the PSAS method. 

Nevertheless, fitting the propensity model to the weighted sample, when compared to the 

unweighted sample, can greatly increase the variance of the PS-based pseudo-weighted 

estimators due to the high variability of the estimated PSs. To improve efficiency, we 

propose scaling the survey weights (i.e., dividing the survey weights by their mean) in the 
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propensity model. This simple scaling recovers much of the statistical efficiency.  In our 

data example, the enhanced KW method, under WEA and using scaling, generally provides 

the smallest mean-square error, while protecting against large bias that can be incurred by 

methods that rely on the SEA. 

Taylor linearization (TL) and Jackknife replication (JK) methods are developed for 

estimating finite population variance of the PS-based pseudo-weighted estimates of the 

finite population means under the framework. Both the TL and JK methods take the 

variability of estimating PS, unequal pseudo-weights, and the cluster effects of the survey 

and/or cohort into account. 

1.3 Overview of the Chapters 

The remainder of this dissertation comprises the following five chapters. Chapter 2 presents 

the background and rationale for the study through a comprehensive literature review. It 

starts by discussing epidemiologic cohorts and the issue of representativeness. PBHSs are 

then introduced, including sampling designs and sample weights. After that, the PS-based 

approaches are described as bias reduction methods in epidemiology and in survey 

research. The mathematical notations, advantages, and disadvantages for each method, as 

well as research gaps, are included. A kernel smoothing technique is then introduced to 

improve the existing weighting methods. At the end, motivation and recent research of 

using scaled weights to improve efficiency of logistic regression analyses are reviewed. 

Chapter 3 proposes the KW method under the SEA that improves the cohort estimates of 

population means/prevalences, with the proof of consistency and JK variance estimation 

provided. Chapter 4 first shows the necessity and difficulties of SEA for PS-based 

matching methods with illustrative examples. The unifying framework is then established 
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for both PS-based weighting and matching methods under which SEA is relaxed by WEA 

for the matching methods. The KW method is enhanced, as an example of the PS-matching 

method, under WEA. Chapter 5 investigates the bias in naïve cohort estimates of relative 

risks for developing diseases in the finite population under different scenarios of implicit 

cohort participation mechanisms. The performance of the proposed PS-based methods are 

compared in reducing bias in estimated relative risks. Monte Carlo simulations and real 

data examples are provided in Chapters 3-5 to evaluate the performance of the proposed 

PS-based methods. Discussion and future work are given in Chapter 6. 
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Chapter 2 Literature Review 

2.1 Epidemiologic Cohort Studies 

Large-scale long-term epidemiological cohorts are an ideal epidemiologic study design. 

However, they are becoming more difficult to assemble because of increasing costs and 

declining response rates (Morton et al., 2006; Nohr et al., 2006; Galea & Tracy, 2007), 

often due to concerns about confidentiality, volunteer burden, and invasiveness of 

biological samples. To optimize resources, new epidemiological cohorts are being 

assembled within integrated health care systems that have electronic health records and a 

large pre-existing base of volunteers to recruit, such as the UK Biobank in the National 

Health Service (Collins, 2012). Unfortunately, these volunteer-based cohorts generally 

inadequately represent the target population where the cohorts are obtained due to self-

selection bias, low recruitment/response rates, and coverage issues. 

For example, the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening 

Trial, conducted by the National Institutes of Health (NIH), is a large randomized, 

controlled trial of screening tests for multiple cancers. Upon completion of the trial, 

participants continued to be followed up as a cohort for the purpose of studying potential 

risk factors for many types of cancer. The intended target population of this study is all 

adults aged from 55 to 74 years old in the United States, but as it was a randomized clinical 

trial, population representativeness and external validity could not be a priority. The age-

eligible individuals were first sampled and invited by mail to be in the study. Interested 

participants were then contacted by one of 10 study centers at their convenience and were 

assessed for eligibility. The low population coverage of the mailing list used to send 
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invitations can cause severe coverage bias. Also, as volunteers self-selected to participate 

in the study, selection bias may arise if the volunteered participants were systematically 

different from the non-participants. The detailed study design of the PLCO trial is 

described in Prorok et al., (2000). Figure 2.1 below depicts the overall protocol of the 

cohort recruitment. Due to the coverage issue and self-selection bias, it is difficult to assess 

if the cohort truly represents the target population. 

Figure 2.1 Protocol of Volunteer-Based Epidemiological Cohort Recruitment 

 

Under the context of epidemiology, representative samples are required in many 

circumstances so that statistical results from the samples can be generalized to the 

underlying population (external validation). Studies of disease surveillance strongly 

require population representativeness to ensure that trends in disease incidence and 

mortality observed in the study are actually occurring in the target population. Studies of 

“translational epidemiology,” which attempt to project the impact of epidemiologic 

findings on population health, require population representativeness. Lack of population 

representativeness can have serious consequences for epidemiological analyses that require 

representativeness. For instance, “healthy volunteer effects” (Pinsky et al., 2007) are not 

unusual in analyses of these types of cohorts. Often, the disease incidence and mortality 

rates are much lower in the volunteers than in the general population. For example, the all-
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cause mortality rate in the UK Biobank was only half that of the UK population (Fry et al., 

2017). The distribution of the Biobank sample is quite different from the UK population 

with regard to many sociodemographic, physical, lifestyle, and health-related 

characteristics. Katki et al. (2016) found that lung cancer death risk calculated from the 

National Lung Screening Trial (NLST) is seriously underestimated compared to nationally 

representative survey data. 

However, there is limited statistical research investigating the representativeness of 

cohorts in epidemiology. Cochran & Chambers (1965) addressed the problem of inferences 

from sample to population and found that the simple random sample assumption may not 

be realistic. First, the sampling frame from which the sample is drawn can be quite different 

from the target population that one wanted to make inference from. Second, the issue of 

nonresponse can distort the distribution of the sample. As a result, the sample cannot 

represent the target population and the statistical results cannot be generalized to the target 

population. Later, Keiding & Louis (2016) discussed issues of volunteer-based samples 

that are typically used in epidemiologic research, including coverage, response, and 

selection bias. Improving the representativeness of cohorts is still an open area in 

epidemiology. 

2.2 Population-Based Health Surveys 

2.2.1 Overview 

Population-Based Health Surveys (PBHS) have been conducted for many years, collecting 

broad types of data, ranging from demographic to socioeconomic to health-related 

information such as the occurrence of healthy and unhealthy behaviors, exposures to 
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potential risk factors, dietary intake, physiologic measures of the population, and costs and 

utilization of health care services. Examples of PBHSs are the National Health and 

Nutrition Examination Survey (NHANES) and National Health Interview Survey (NHIS) 

both conducted by the National Center for Health Statistics (NCHS). The large sample 

sizes enable the study of relatively small but important associations between variables, 

relatively rare events, and subpopulations of interest. These surveys employ stratified 

multistage cluster sample designs to select samples that represent the target population. 

With appropriate statistical methods, the results of analyses can be made for the target 

population. This section briefly introduces the commonly used sample designs for 

population-based surveys, sample weights, and variance estimation of weighted estimates 

accounting for complex survey sampling designs. 

2.2.2 Sample Designs 

2.2.2.1 Multistage Sampling 

Multistage sampling designs are commonly used for PBHSs. The target population is firstly 

divided into strata defined by geographical areas (e.g., states). Within each stratum, a 

random sample of clusters (primary sampling units, or PSUs) of individuals is selected at 

the first stage. Then smaller clusters are successively subsampled within selected PSUs, 

and finally individuals are successively subsampled. Take the NHANES III as an example. 

The PSUs of counties (a group of contiguous counties or standard metropolitan area) 

exhausting the land area of the continental United States are formed and then grouped into 

mutually exclusive strata. The first stage selected PSUs within each stratum, followed by 

the other two stages in which segments and households are sampled within selected PSUs 
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and segments sequentially. At the final stage, individuals are randomly selected within each 

household in the sample  

Figure 2.2). At each stage of sampling, units may be sampled with different probabilities 

(Section 2.2.2.2) based on their characteristics. 

Figure 2.2. Sampling Design of NHANES III 

 

2.2.2.2 Differential Sampling Rates 

Differential sampling rates are usually applied in the complex sampling designs, mainly 

aiming to decrease the variability of the estimates. They can be used as a single stage 

sampling, or for any stage of the multistage sampling. Take probability proportional to size 

(PPS) sampling as an example. For PPS sampling, some known information is selected to 

be a continuous measure of “size” variable (𝑍), which the inclusion probabilities are taken 

to be proportional to. For example, a survey of hospitals may sample hospitals with 

probability proportional to the bed size. With the assumption that the sampling is without 

replacement, the inclusion probability of the 𝑖-th unit in the population is: 

𝜋! =
𝑛𝑍!

∑ 𝑍"#
"$%

, 
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where 𝑛 and 𝑁 are the sample size and population size respectively. PPS sampling may 

decrease the variance of mean and total estimates if the size variable, 𝑍, is correlated with 

the variable of interest. Under PPS sampling, the joint inclusion probabilities are needed 

for variance estimation purpose. However, they are usually hard to obtain. The sample can 

be treated as if it had been drawn with replacement when the sampling fraction 𝑛/𝑁 is 

small enough to be ignored (Cochran, 1997). 

With a multistage sampling design, differential sampling rates can be incorporated 

for any stage. The final sampling rate (inclusion probability) is the production of the 

sampling rates at each stage. 

2.2.3 Sample Weights 

The sample weight of a sampled person is the (estimated) number of individuals that the 

person represents in the population. Korn & Graubard (1999) defined three components of 

the sample weight as differential sampling rates (base weights), adjustments for 

nonresponse, and adjustments for inadequate frame coverage. Ignoring the sample weights 

could lead to invalid inference for the target population if the weights are informative 

(Fuller, 1999).  

• Base Weights 

Base weight is the component of the sample weight that accounts for the differential 

sampling rates. It is defined as the inverse of the inclusion probability of the individual in 

the sample; that is, 𝑑! = 1/𝜋! for the sample unit 𝑖, where 𝜋! is the inclusion probability 

defined in Section 2.2.2.2. 

• Nonresponse and Noncoverage Adjustment 
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If the unobserved distribution of answers to a question from individuals who do not respond 

is different from that of those who do respond, then estimates based on the respondents’ 

data alone will be biased (Korn and Graubard, 1999). The nonresponse adjustment can be 

formed by modeling the probability of responding as a function (e.g., logistic regression) 

of variables available on all sampled units. The nonresponse adjustment factor to the 

sample weight for respondent 𝑖, denoted by 𝑓!#&, is taken as the inverse of the estimated 

probability of response (Iannacchione et al., 1991).  

The sample frame, in which the individuals are randomly drawn, may not cover the 

whole target population. There is no information for the uncovered people in the target 

population who should have been in the sample. If the characteristics of these uncovered 

people are different from people covered in the sample frame, then the estimates based on 

covered people only may lead to biased estimates. The poststratification adjustment is 

usually applied to reduce the coverage error (Holt & Smith, 1979; Kish, 1965; Kalton & 

Flores-Cervantes, 2003). The adjustment cells for the sampled individuals are formed by 

demographic variables such as age, sex, and race/ethnicity. Within each cell, the 

adjustment factor for individual 𝑖, denoted by 𝑓!#' , is given by the known census total 

divided by the sum of the sample weights of the sampled individuals, assuming that the 

census figures are more accurate than the survey coverage.  

 The final sample weight for sample unit 𝑖 is calculated by the production of the 

three components, 𝑑! ⋅ 𝑓!#& ⋅ 𝑓!#' . 

2.2.4 Consistent Estimation of Finite Population Quantities from Survey Samples 

Sample weights are usually incorporated in the analyses to ensure consistency (or 

approximate unbiasedness) of the population parameter estimation. For sample estimation 
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of population means and proportions, sample weights need to be considered if the variable 

of interest is correlated with the sample weights. The unweighted sample mean is biased if 

the variable of interest distributes differently in sample and the population. The weighted 

sample mean converges to the population mean under suitable conditions, as the sample 

size increases (Korn & Graubard, 1999). 

In regression analyses, sample weights also need to be incorporated. To improve 

the efficiency of parameter estimates, the sampling design often depends on some key 

study variables of interest even after conditioning on other covariates. Such a design is 

referred to as an informative sampling design (Fuller, 1999). For example, in 2011–2014 

NHANES, the major strata were formed based on urban–rural measures and health ranking 

calculated from state-level, health-related variables (Figure 2.3), including death rate, adult 

high blood pressure, overweight or obese, smoking status, etc. (Johnson et al., 2014). 

Figure 2.3 State Groupings in NHANES (2011-2014) 

 

The sampling design can be informative when we analyze the association between these 

health-related variables and some risk factors. The relationship between the covariates and 

the study variable is distorted in the sample if the design is informative. Hence, ignoring 

sample weights will lead to biased estimates of association.  
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If the study variable is independent from design variables conditional on the 

covariates in the regression analysis, then the sampling design is non-informative. When 

the relationships between the study variable and the covariates are correctly modelled, the 

unweighted sample estimates of association are unbiased. However, the weighted and 

unweighted estimates of regression coefficient may differ when the regression model is 

misspecified. Korn and Graubard (1999) addressed this problem using an example of 

regressing gestational age on birthweight in the 1998 National Maternal and Infant Health 

Survey (NMIHS). The NMIHS is a stratified random sample of women who had a live 

birth, fetal death, or infant death in the United States. In 1998, the strata were constructed 

using states, the mother’s race, and baby’s birth weight. The sampling fractions varied so 

that Black babies and low-birthweight babies were oversampled (Sanderson et al. 1998).  

Figure 2.4 Plots of Mean Gestational Age versus Mean Birthweights with and without Weights in 
1998 NMIHS 

 

This design is non-informative for the analysis of gestational age regressed on baby’s birth 

weight. Figure 2.4 below shows the scatter plot and the regression line with (left) and 

without (right) sample weights considered. The size of bubbles in the plot on the left 

indicates the magnitude of sample weights. The regression model is misspecified as a linear 
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regression. Since the sample and population distribution of the independent variable 

(birthweight) differ, the regressions are attempting to fit a straight line to different parts of 

a curvilinear relationship. The weighted regression has the advantage that it is at least 

estimating a population quantity. Although the unweighted slope fits the unweighted 

sampled data better, the parameter being estimated by the unweighted slope will change 

depending upon the sample design (Korn & Graubard, 1999). 

Although PBHSs are designed to produce valid finite population inferences, they 

cannot provide ideal data sources for epidemiologic analyses. First, the cost taken to ensure 

population representativeness is high. For example, For example, it cost NCHS around 

$100 million to conduct NHANES III yet sampled only 16,397 individuals from 1988 to 

1994 (NCHS, Korn & Graubard, 1999). Second, the sample sizes of PBHSs are much too 

small to study even common chronic diseases such as cancers. Longitudinal PBHSs will 

be more expensive due to the expense on follow-up and have smaller sample sizes because 

of panel attrition. Third, PBHSs collect little information that is desired in modern 

epidemiology (e.g., biospecimens), limiting its usefulness for epidemiologic research. 

Although PBHSs may not be the best sources for epidemiologic studies of novel exposure–

disease associations, they can be considered as good references to improve external validity 

of epidemiologic cohorts. The next section introduces propensity score (PS) methods that 

help improve representativeness of the nonprobability sample by using a probability-based 

survey sample as an external reference. 

2.3 PS Adjustment in Epidemiology Studies and Survey Research 

PS-based methods were initially developed to match the covariates distributions in the 

controls with that in the cases for observational studies in epidemiology so that the 
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unbiased estimates of treatment effects can be obtained by comparing the cases and the 

adjusted controls (Rosenbaum & Rubin, 1983). Analogous to matching the covariate 

distributions between cases and controls in observation studies, improving 

representativeness of the nonprobability samples needs the covariate distributions in the 

nonprobability samples to be close to that in the target finite population. In survey research, 

similar PS-based methods have been developed by treating the nonprobability sample as 

the cases, and treating the reference probability survey sample as the controls (Lee, 2004). 

A set of “pseudo-weights” are calculated for the nonprobability sample so that the 

distribution of covariates in the pseudo-weighted nonprobability sample are similar to that 

in the underlying target finite population. This section critically reviews the PS-based 

methods developed for estimating treatment effects in observation studies, and for 

improving representativeness of the nonprobability samples in survey research. 

2.3.1 PS-Based Adjustments for Treatment Effect Estimation in Observational 

Studies 

2.3.1.1 Introduction 

Group comparison is a common method for presenting scientific research results in 

epidemiology. A fundamental problem of the group comparison, though, especially for 

observational studies, is that the two groups are not randomly selected. The resulting 

comparison may have confounding bias caused by the different characteristics of the two 

groups other than the treatment assignment. For example, in an observational study of heart 

transplant and mortality, patients receiving the transplant were more likely to be older and 

have worse health conditions, which led to a greater death risk than those who did not 

receive the transplant. The different mortality rates in the two groups may not be related 
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only to the heart transplant, but also confounders such as age and health conditions. The 

comparison of mortality will not be convincing unless the confounders are controlled. 

2.3.1.2 Estimating Treatment Effects 

The estimation of causal effects of treatments, firstly formalized in Rubin (1974), is 

inherently a comparison of potential outcomes. Suppose in a population 𝑈, we consider the 

case of one treatment and one control group, with variables of outcome 𝑦%  and 𝑦( , 

respectively (1 for presence and 0 for absence of the disease). In principle, each unit 𝑖 ∈ 𝑈 

has both responses 𝑦%,!  and 𝑦(,!  that would have resulted if it had treatment or not, 

respectively, under the framework of casual inference. The causal effect of treatment is: 

 𝜏 = 𝜏% − 𝜏( = 𝐸(𝑦%) − 𝐸(𝑦(), (2.3.1) 

where 𝐸(⋅) is the expectation with respect to the distribution of 𝑦  in 𝑈 . Suppose in a 

random sample of the population, 𝑠 , with size 𝑛 . Denote 𝜏̂% =
%
*
∑ 𝑦%,!!∈,  and 𝜏̂( =

%
*
∑ 𝑦(,!!∈,  as the sample estimates of 𝜏% and 𝜏(, respectively. By the law of large numbers, 

it can be shown that 𝐸(𝜏̂%) = 𝜏% and 𝐸(𝜏̂() = 𝜏(. 

However, the “fundamental problem of causal inference” is that one can only 

observe one of the two outcomes, either 𝑦%,! or 𝑦(,! for individual 𝑖 (Holland et al., 1985). 

Let 𝑧!  be the binary treatment assignment for unit 𝑖 ∈ 𝑠 , (1 for being selected in the 

treatment group 𝑠% of size  𝑛%; 0 for being selected in the control group 𝑠( of size 𝑛(). We 

can only observe 𝑦%,! for 𝑖 ∈ 𝑠% and 𝑦(,! for 𝑖 ∈ 𝑠(. The treatment effect 𝜏 can be estimated 

by the average treatment effect from observed data: 

𝜏̂ = (𝜏̂%|𝑧 = 1) − (𝜏̂(|𝑧 = 0) =
1
𝑛%
A 𝑦%,!

!∈,!
−
1
𝑛(
A 𝑦(,!

!∈,"
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Under the randomization assumption, the outcome is independent from the group 

assignment; that is, 

 (𝑦%, 𝑦() ⫫ 𝑧. (2.3.2) 

Lee (2004) proved that 𝐸(𝜏̂) = 𝜏 as 

 𝐸[𝐸{(𝜏̂%|𝑧 = 1) − (𝜏̂(|𝑧 = 0)}] = 𝐸(𝜏̂% − 𝜏̂() = 𝜏. (2.3.3) 

2.3.1.3 Balancing Scores and Propensity Score 

As it was discussed earlier, in observational studies, Equation (2.3.3), may not hold because 

the treated individuals can be systematically different from the individuals in the control 

group. This may confound the outcome and violate assumption (2.3.2). A Balancing score, 

𝑏(𝒙) defined in (2.3.4), should be used to balance the covariates 𝒙 in the treatment (𝑧 = 1) 

and control group (𝑧 = 0) such that the conditional distribution of 𝒙 given 𝑏(𝒙) is the 

same for the two groups (Dawid, 1979; Rosenbaum & Rubin, 1983).  

 𝒙 ⫫ 𝑧|𝑏(𝒙). (2.3.4) 

Rosenbaum & Rubin (1983) proposed to use the PS, which takes the coarsest form of the 

balancing score. A PS is defined as the probability of a unit being assigned to the treatment 

group (𝑧 = 1) given a set of covariates 𝒙, denoted as: 

 𝑒(𝒙) = Pr(𝑧 = 1|𝒙). (2.3.5) 

By assuming that the treatment assignment is strongly ignorable—that is, (𝑦%, 𝑦() ⫫

𝑧|𝑒(𝒙)—it gives: 

 𝐸{𝑦%|𝑒(𝒙), 𝑧 = 1} − 𝐸{𝑦(|𝑒(𝒙), 𝑧 = 0} = 𝐸{𝑦% − 𝑦(|𝑒(𝒙)}. (2.3.6) 

Therefore, 
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𝐸-𝐸.∣-{𝑦%|𝑒(𝒙), 𝑧 = 1} − 𝐸-𝐸.∣-{𝑦(|𝑒(𝒙), 𝑧 = 0}

= 𝐸-𝐸.∣-{𝑦% − 𝑦(|𝑒(𝒙)}																																																						
= 𝜏% − 𝜏( = 𝜏.																																																																						

 (2.3.7) 

where the expectation 𝐸-  and 𝐸.∣-  are with respect to the distribution of 𝑒(𝒙) and the 

distribution of 𝑦 given 𝑒(𝒙) respectively. That is, if 𝒙 contains all confounders and the 

distribution of 𝑒(𝒙) can be correctly modeled, unbiased estimate of treatment effect can be 

achieved by certain PS-based adjustment. 

There are five assumptions under which the PS-based adjustments can reduce the 

bias of treatment effect estimation in observational studies (Rosenbaum & Rubin, 1983; 

Rosenbaum, 1984a, 1984b). 

(1) Strong ignorability: (𝑦%, 𝑦() ⫫ 𝑧|𝑒(𝒙) : This indicates that the study outcomes 

(𝑦%, 𝑦() and the treatment group assignment are conditionally independent given 

the PS. Under this assumption, the observed average treatment effect is unbiased 

given the PS. 

(2) No contamination among study units: A treatment assignment of one unit does not 

affect the assignment for any other units. 

(3) Non-zero assignment probability of treatment or control group: All units have a 

positive probability to be assigned to the treatment or control group for any 

configuration of covariates 𝒙. 

(4) No missing confounders: The observed covariates 𝒙 included in the propensity 

models can handle all confounding in the treatment assignment. 

(5) Treatment assignment does not change the covariate values. 

In principle, the true PSs in the population should be used as the balancing score so 

that an unbiased estimate of the treatment effect can be obtained. However, the true PSs 
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are usually not available, and need to be estimated from propensity models fitted to the 

observed data. Rubin & Thomas (1992, 1996) showed that the using sample estimates of 

PSs are more effective at bias reduction than using the truth. Many parametric models can 

be used to estimate the PSs among which the logistic regression is the most commonly 

used (Stuart, 2010; Lee, 2004). The propensity model is fitted to the combined sample of 

the treatment and control group (𝑠 = 𝑠% ∪ 𝑠() as: 

 log R
𝑒(𝒙)

1 − 𝑒(𝒙)S = 𝜷0𝒙, (2.3.8) 

where 𝜷 is a vector of coefficients to be estimated, and 𝒙 is a vector of covariates. To 

obtain statistically reliable estimates, the distribution of the estimated PSs in the treatment 

and control groups have to be well overlapped (Rosenbaum & Rubin, 1983). 

In terms of the covariate selection in Model (2.3.8), literature gives different 

suggestions. Many of these suggestions recommend using variables related to both the 

study outcome and the treatment assignment to satisfy the assumption of ignorability 

(Rosenbaum & Rubin, 1984; Rubin and Thomas, 1996; Heckman et al., 1998b). Shadish 

et al. (2008) showed that no substantial bias reduction was found if a small set of 

“predictors of convenience” such as demographics were used. Stuart (2010) summarized 

these articles and made suggestions on selecting covariates in the propensity model for 

balancing the bias-variance tradeoff in treatment effect estimation. Excluding important 

confounders may limit the bias reduction. Including variables unassociated with the 

outcome can increase the variance, but there is little cost to include variables unassociated 

with treatment assignment. Hence, Stuart (2010) suggested including as many variables 

related to treatment assignment and/or outcome when sample size permits. With a small 

sample size, priority should be given to variables related to the outcome, as there is a higher 
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cost in efficiency loss when including variables unrelated to the outcome but highly related 

to treatment assignment (Brookhart et al., 2006). However, a potential disadvantage of 

giving priority to variables related to the outcome is that the propensity model can be 

selected subjectively for the desirable results of the analysis. 

2.3.1.4 PS-Based Methods for Treatment Effects Estimation 

There are three types of PS-based methods that balance the covariates distributions 

between treatment and control groups: pair matching, subclassification, and weighting. 

Both the pair matching and the subclassification methods use estimated PS 𝑒̂(𝒙) , to 

measure the similarity between individuals in the control group and the treatment group. 

The pair-matching method matches two individuals based on 𝑒̂(𝒙)—one from the 

treatment group, and the other from the control group. The treatment effect is estimated 

from the matched samples only. The subclassification method divides the combined sample 

of treatment and control group by 𝑒̂(𝒙) into subclasses. Within each class, an identical 

weight is assigned to all individuals in the control group so that the weighted control group 

represents the same number of treated individuals within the class. Different from these 

two methods, the weighting method uses 𝑒̂(𝒙) to estimate the inclusion probability of the 

treatment group versus the control group and uses a function of 𝑒̂(𝒙) as the weights for 

controls and/or treated individuals. This section describes the three approaches in details 

with their advantages and disadvantages. 

• PS-based Pair-Matching Method 

The purpose of the pair-matching methods in observational studies is to select a sample of 

untreated individuals that have a close 𝒙-distribution to the treatment group. Rosenbaum 
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& Rubin (1985) proposed to use differences in estimated PS as the distance measure. The 

distance between individuals 𝑖 and 𝑗 for matching is defined as:  

𝐷!" = V𝑒̂! − 𝑒̂"V 

where 𝑒̂! and 𝑒̂" are the predicted PS for units 𝑖 and 𝑗, respectively.  

Pair matching by PS has shown to successfully reduce the bias for treatment effect 

estimation (Rosenbaum & Rubin, 1985). It helps to select a control group that has a similar 

𝒙-distribution with the treatment group before the study variables of interest are collected 

and to save the cost. It can be also applied when the outcome data are already available by 

selecting a subsample from the control group to match with the treatment group. However, 

one apparent drawback of the pair-matching method is that some control group members 

who are not selected to match with any treated individuals are discarded in the analysis and 

therefore lower the statistical power of the analyses due to the reduced sample size. 

Note that 𝑒(𝒙) has a bounded support (0, 1) and is skewed when the proportion of 

the controls is small or large in the trial. A tiny difference in 𝑒(𝒙) may result from large 

differences in covariates 𝒙  when 𝑒(𝒙)  is close to the boundary, which can bias the 

estimates of treatment effects. These boundary problems can be avoided by using the linear 

propensity score 𝑞(𝒙) = logit 𝑒(𝒙) (Rubin and Thomas, 1992; Rubin, 2001). 

• PS-based Subclassification 

Cochran & Chambers (1965) was one of the first uses of subclassification with a single 

confounder 𝑥 being used to form the subclasses. Suppose the treatment and the control 

groups are sampled from the treatment and the control populations. The union of two 

groups (𝑠 = 𝑠% ∪ 𝑠() is divided into 𝐺 sub-classes according to the distribution of 𝑥. The 

estimate of the mean difference is given by: 
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Δ =A 𝑤1^𝑦_(,1 − 𝑦_%,1`
2

1$%
, 

where 𝑦_(,1  and 𝑦_%,1  are the means of outcome 𝑦  in subclass 𝑔  for the control and the 

treatment group, respectively, and 𝑤1 is the adjustment weight for subclass 𝑔, 𝑔 = 1,⋯ , 𝐺. 

If the variance of 𝑦  appears constant within sub-classes, then 𝑤1  could be taken as 

𝑛(,1𝑛%,1/^𝑛(,1 + 𝑛%,1` by minimizing Δ using the usual least-squares principles. 

Cochran (1968) further examined the subclassification method on a single 

continuous covariate of age in investigating the death rates among smoking groups (non-

smokers, cigarettes only, and cigars and/or pipe) in three countries (Canada, U.K., and 

U.S.). The death rates were found to be much higher for the cigars and/or pipe group, due 

to the higher age. However, the adjusted death rates exhibited no elevation over those for 

non-smokers. 

Rosenbaum & Rubin (1983) expanded Cochran’s work by using estimated PS, 

𝑒̂(𝒙), instead of a single confounder to form the subclasses. This method is widely used in 

clinical trials (e.g., Lavori & Keller, 1988; Cook & Goldman, 1989; Stone et al., 1995; 

Rubin, 1997) because of the following advantages: (1) it is easier to operate than the pair 

matching; (2) the size of the control group is not required to be larger than that of the 

treatment group; (3) all individuals in the study can be used in the analysis, unlike the pair 

matching, which discards unmatched individuals; and (4) it is less likely to produce 

extreme weights than the inverse probability of treatment weighting (IPTW; see next 

bullet). However, it is unclear how many subclasses should be used. Five-class adjustment 

was recommended by Cochran (1968) and Rosenbaum and Rubin (1985b), which could 

remove at least 90% of the bias in the estimated treatment effect in their study. On the 

contrary, other literature (e.g., Lunceford & Davidian, 2004) suggested considering more 
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subclasses (e.g., 10–20) when sample size permits. More work is needed to determine the 

optimal number of subclasses that ensures adequate bias reduction without causing 

variance inflation. 

• PS-based Weighting Methods 

The weighting method estimates the probability of group membership from (function of) 

the PS. The inverse of the estimated probabilities are used as the weights so that the 𝒙-

distriution in the weighted control group matches with that in the (weighted) treatment 

group. This weighting method is known as inverse probability of treatment weighting 

(IPTW; Czajka et al., 1992; Robins et al., 2000; Lunceford & Davidian, 2004). 

There are two types of treatment effects: (1) “average treatment effect” (ATE), or 

𝐸(𝑦% − 𝑦(), which is the treatment effect on individuals in combination of the treatment 

and control groups (Imbens, 2004); and (2) “average effect of the treatment on the treated” 

(ATT), or 𝐸(𝑦% − 𝑦(|	𝑧 = 1), which is the effect for individuals in the treatment group. 

The IPTW method assigns different weights for estimating the two treatment effects. To 

estimate ATE, both treatment and control group members get weights: 

𝑤! =
𝑧!
𝑒̂!
+
1 − 𝑧!
1 − 𝑒̂!

, 𝑖 ∈ 𝑠% ∪ 𝑠(, 

where 𝑧! = 1 if 𝑖 ∈ 𝑠%, and 𝑧! = 0 if 𝑖 ∈ 𝑠( so that either of the group is weighted up to the 

combined sample. To estimate ATT, the control group is weighted up to the treatment 

group, with the weight: 

𝑤! = 𝑧! + (1 − 𝑧!)
𝑒̂!

1 − 𝑒̂!
, 𝑖 ∈ 𝑠% ∪ 𝑠(. 

A potential drawback of IPTW is that the variance can be inflated due to extreme large 

weights if some estimated PSs are close to 0. Especially when the propensity model is 
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misspecified, the extreme weights can result from the propensity estimation, but not the 

true probabilities of treatment assignment. Weight trimming, setting weights above some 

maximum to that maximum, has been proposed as one solution to reducing variance 

(Potter, 1993). However, the effect of weight trimming on increasing bias or reducing 

variance is unclear (Lee et al., 2010; Potter and Zheng, 2015), and there is relatively little 

guidance regarding the trimming level. 

2.3.2 PS-Based Methods for Improving Representativeness in Epidemiology and 

Related Areas 

In addition to balancing the different distributions of cases and controls in observational 

studies, PS-based methods can also be used to improve the representativeness of the study 

samples. As discussed in Section 2.1, epidemiologic cohorts frequently lack population 

representativeness, which can have serious consequences for epidemiologic analyses. 

However, there is limited statistical research investigating the methods of improving 

external validity and representativeness of the cohorts, among which the PS-based 

approaches were considered.  

Stuart et al. (2011) used a PS-based weighting approach to estimate the 

participation rates of a randomized trial (denoted by 𝑠) so that the estimates of treatment 

effects in target finite population (denoted by 𝐹𝑃) can be obtained from the trial. In their 

paper, a logistic regression model was fitted to 𝐹𝑃 (size =	𝑁) to estimate the participation 

rate of the randomized trial for individual 𝑖  in the finite population, given a set of 

covariates	𝒙: log 3#
%43#

= 𝜷0𝒙!, for (𝑖 ∈ 𝐹𝑃) where 𝜋! = 𝑃{𝛿! = 1|𝒙!} is the probability of 

being included in the randomized trial for 𝑖 ∈ 𝐹𝑃, and 𝛿! is the indicator for being included 
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in the trial (=1 if 𝑖 ∈ 𝑠, 0 for 𝑖 ∈ 𝐹𝑃 − 𝑠). The estimated participation rate for 𝑖 ∈ 𝐹𝑃  is 

denoted by 𝜋g!. 

Stuart et al. (2011) proposed to measure the representativeness of the trial 

participants to the target population using the difference in averaged predicted PSs between 

the trial participants and the nonparticipants in the finite population: 

𝛥! =
1
𝑛
% 𝜋'"

"∈$
−

1
𝑁 − 𝑛

% 𝜋'"
"∈(&'($)

 

If 𝛥5  is large, which means 𝑠 is not representative of 𝐹𝑃, then the weight of %
36#

 will be 

assigned to trial participant 𝑖 ∈ 𝑠. Within the trial, the PS-based adjustment can be applied 

to match the 𝒙-distribution in the control group to that in the treatment group. For example, 

individual 𝑖 in the control group obtains a weight of %
%4-̂(𝒙#)

, where 𝑒(𝒙!) = 𝑃( 𝑧! = 1 ∣∣ 𝒙! ) 

is the propensity of being in the control group given being selected in the trial for individual 

𝑖, and 𝑧! is the binary indicator for control/treatment group membership (=0 for controls, 

=1 for treatments). The final weight for control group member 𝑖 is given by %
36#
⋅ %
%4-̂(𝒙#)

. 

This paper provided a way of obtaining external validity using a volunteer-based 

randomized trial. However, it is not common that the individual level covariates 𝒙 are 

available in the entire population, required for estimating 𝜋! , and therefore limits the 

application of the proposed method. Typically only a representative probability survey 

provides information on 𝜋!. Furthermore, this paper only focused on a simple estimate of 

treatment effect. Performance of the proposed approach can be evaluated for more general 

analyses. In addition, the variance estimation was not studied. 
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2.3.3 PS-Based Methods for Improving Representativeness of Nonprobability 

Samples in Survey Research 

2.3.3.1 Introduction 

In survey research, the principal goal is to make reliable and accurate inferences to a 

broader target population. Hence, probability-based sampling designs have been chosen to 

generate population representative samples for most large-scale surveys (Frankel & 

Frankel, 1987). However, nonprobability sampling is still widely used in many areas such 

as polling. Like volunteer-based epidemiologic studies, the nonprobability survey samples 

are not randomly selected, and they cannot closely represent the target population. Survey 

researchers have developed several PS-based approaches to improve the representativeness 

of the nonprobability samples. This section introduces nonprobability samples in survey, 

existing weighting approaches, and how to apply them to volunteer-based epidemiologic 

studies. 

2.3.3.2 Nonprobability Samples in Surveys 

In recent decades, the combination of rapidly increasing costs, declining response rates, 

and rising concerns about coverage has raised expectations about the potential benefits of 

web surveys, especially as internet penetration has increased (Couper 2000). However, it 

is difficult for web surveys to recruit and sample respondents as traditional face-to-face or 

random digit dialing (RDD) telephone surveys due to unavailability of a sampling frame. 

Alternative approaches are developed relying on nonprobability methods, most notably 

opt-in panels composed of volunteers. Figure 2.5 below shows the protocol of volunteer-

based panel web surveys. 
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The protocol of volunteer-based panel web surveys described in Figure 2.5 is 

similar with that of the volunteer-based cohort studies in epidemiology (Figure 2.1). 

Figure 2.5 Protocol of Volunteer-Based Panel Web Surveys 

 

Two main bias sources are coverage and self-selection. Considering the similarity between 

these two types of samples, we can apply the existing weighting methods in survey 

statistics to epidemiologic studies for representativeness improvement. In the next section, 

two major types of PS-based methods in survey statistics are critically described. 

2.3.3.3 PS-Based Methods for Nonprobability Survey Samples 

The existing PS-based adjustments assume that the nonprobability samples have some 

probability sampling mechanism under which each selected unit has an inclusion 

probability (or participation rates) and a corresponding sample weight. The goal is to 

estimate the unknown sample weights (pseudo-weights) relying on a true probability 

sample that well represents the finite target population. The reference sample is assumed 

to be independently selected from the same target population with the nonprobability 

sample and has common variables that explain the unknown sampling mechanism. There 

are two major types of existing PS-based adjustments in survey statistics: PS-based 

weighting methods, which use (functions of) PSs to directly estimate participation rates of 
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the nonprobability sample, and PS-based matching methods, which use PS to measure the 

similarity between the nonprobability sample and the reference sample units.   

• PS-Based Weighting Methods 

The PS-based weighting approaches attempt to estimate the unknown participation rates 

for the nonprobability sample units using PS and use the inverse of estimated participation 

rates as the pseudo-weights. Suppose there are two samples independently (self-) selected 

from a finite target population (𝐹𝑃): a volunteer-based nonprobability sample (𝑠;) with 𝑛; 

units, and a reference probability-based survey sample (𝑠,) with 𝑛,  units, each with a 

sample weight of 𝑑! , for 𝑖 ∈ 𝑠, . The ultimate goal is to estimate the participation rate 

𝜋!
(;) = 𝑃j𝛿!

(;) = 1|𝒙!k; that is, the probability of being included in 𝑠;  for unit 𝑖 ∈ 𝐹𝑃 

given some observed covariates 𝒙!, where 𝛿!
(;) (=1 if 𝑖 ∈ 𝑠;; =0 if 𝑖 ∈ 𝐹𝑃 − 𝑠;) is a binary 

variable indicating whether individual 𝑖  in the finite population 𝐹𝑃  is included in the 

nonprobability sample 𝑠;. This can be done by fitting a logistic regression in 𝐹𝑃 with all 

variables that relate to the unknown sampling mechanism of the nonprobability sample 

being included in the propensity model as covariates (Stuart, 2011). The PS represents the 

likelihood of being in the nonprobability sample for the population units. However, it is 

unrealistic to obtain population information. Several alternative PS-based weighting 

methods are proposed instead. 

The first PS-based weighting method is the inverse of PS weighting (IPSW) method 

proposed by Valliant & Dever (2011). The IPSW method estimates the propensity of being 

observed in the nonprobability sample by fitting a logistic regression model (2.3.9) to the 

combined nonprobability sample and weighted survey sample:  
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 log l
𝑝!

1 − 𝑝!
n = 𝜷0𝒙! , 𝑖 ∈ {𝑠; ∪∗ 𝑠,} (2.3.9) 

where 𝑝! is the likelihood of 𝑖 ∈ 𝑠; conditional on the cohort and weighted survey sample, 

𝜷 is a vector of coefficients, and 𝒙! is a vector of observed covariates for 𝑖 ∈ {𝑠; ∪∗ 𝑠,}. 

The notation ∪∗ represents the combination of the two samples that allows people to be 

selected in both a cohort and the survey. The participation rate 𝜋!
(;) is then estimated by 

𝑝̂! = expit^𝜷r0𝒙!`, where 𝜷r is the estimate of coefficients 𝜷. The corresponding pseudo-

weight 𝑖 ∈ 𝑠; is the inverse of predicted pseudo-inclusion probability; that is, 𝑤s!=>?@ = %
5A#

.  

The IPSW method has been shown to reduce bias of the naïve nonprobability 

sample estimates of finite population means (Valliant and Dever, 2011). However, the 

IPSW method implicitly requires that 𝑠, is selected from the complement of 𝑠;, 𝐹𝑃 − 𝑠;, 

which can be assumed only if the sample fraction of 𝑠;  is low. Otherwise, the IPSW 

pseudo-weighted estimates of finite population quantities can be biased.  

 Chen et al. (2019) proposed a similar PS-based weighting method, refer to as CLW 

method, estimating the participation rate 𝜋!
(;) under a well-defined likelihood function: 

 𝐿(𝜸) =v w𝜋!
(;)x

B#
(%)

w1 − 𝜋!
(;)x

%4B#
(%)

!∈C>
 (2.3.10) 

By assuming a logistic regression for 𝜋!
(;) , that is, 𝜋!

(;) = expit(𝜸0𝒙!), the consistent 

estimator of coefficients 𝜸, denoted by 𝜸y can be estimated by maximizing the pseudo-log 

likelihood in the combined nonprobability sample and the weighted survey sample: 

𝑙5(𝜸) =A log
𝜋!
(;)

1 − 𝜋!
(;)!∈,%
+A 𝑑! logw1 − 𝜋!

(;)x
!∈,'

, 

which is equivalent to solving the pseudo-estimating equations: 
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 𝑆5(𝜸) =
𝜕𝑙5(𝜸)
𝜕𝜸 =A 𝒙!

!∈,%
−A 𝑑!𝜋!

(;)𝒙!
!∈,'

= 𝟎. (2.3.11) 

The participation rate is estimated by 𝜋g!
(;) = expit(𝜸y0𝒙!), and the corresponding pseudo-

weight is 𝑤s!'D@ = %

36#
(%). 

 The CLW method provides consistent pseudo-weighted estimates of the finite 

population means under the correct model of participation rate, regardless of the sample 

fraction of the nonprobability sample. However, the IPSW method is easier to implement 

than the CLW method by using existing functions in the software (e.g. “svyglm” in survey 

package of R, and proc “surveylogistc” in SARS).  

Furthermore, both the CLW and the IPSW methods assume a logistic regression 

for the propensity model fitted to the combined (𝑠; vs. weighted 𝑠,) sample. Due to the 

highly variable weights in the combined sample (common implicit weight of 1 for 𝑠;, and 

relatively large differential sample weights for 𝑠,), variances of the estimated coefficients 

𝜷r  and 𝜸y  can be large, leading to inefficient pseudo-weighted estimators of the finite 

population quantities. 

Different from the IPSW and the CLW methods that fit propensity models to the 

combined (𝑠; vs. weighted	𝑠,) sample, Elliott (2009) modeled 𝜋!
(;) by: 

 𝜋!
(;) ∝̇ 𝜋!

(,) 𝑝�!
1 − 𝑝�!

, for	𝑖 ∈ 𝑠; (2.3.12) 

where 𝜋!
(,)  is the probability of being selected to 𝑠,  from the 𝐹𝑃  for 𝑖 ∈ 𝑠; , 𝑝�! =

𝑃(𝑖 ∈ 𝑠;|𝒙! , 𝑠; ∪∗ 𝑠,) is the propensity of being observed in the nonprobability sample 

given the combined 𝑠; and unweighted 𝑠,, and 𝒙! is the set of common covariates available 

to both samples that are assumed to fully explain the sampling mechanism for both. Two 
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models are needed to estimate the probabilities 𝜋!
(,)  and 𝑝�!  separately. Elliott (2009) 

suggested to estimate 𝜋!
(,) for 𝑖 ∈ 𝑠; by fitting a beta regression model (Ferrari & Cribari-

Neto, 2004) of 𝜋"
(,) on 𝒙" for 𝑗 ∈ 𝑠,, which ensures the estimated response variable, 𝜋g!

(,) 

for 𝑖 ∈ 𝑠; is between 0 and 1, and estimate 𝑝�! by fitting the logistic regression model: 

 log l
𝑝�!

1 − 𝑝�!
n = 𝜷�0𝒙! , 𝑖 ∈ {𝑠; ∪∗ 𝑠,} (2.3.13) 

to the combined (𝑠;  vs. unweighted 𝑠,) sample. Notice that 𝜷� in Model (2.3.13) can be 

different from 𝜷 in Model (2.3.9) because the two models are fitted to different samples. 

The pseudo-weight for 𝑖 ∈ 𝑠; is given by inverse of the estimated participation rate 𝜋g!
(;): 

 𝑤s!E ∝
1
𝜋g!
(,) ⋅

1 − 𝑝��!
𝑝��!

, (2.3.14) 

One advantage of Elliott’s method, compared to the IPSW and CLW methods, is that the 

two models (one for estimating 𝜋!
(,) , and the other for estimating 𝑝�! ) are fitted to the 

unweighted samples, which avoid the low efficiency caused by the highly variable weights 

in the combined (𝑠; vs. weighted 𝑠,) sample to which the IPSW and CLW methods fit the 

propensity model. Another advantage is that Elliott’s method can be adapted to situations 

in which the nonprobability sample represents only a portion of the population. However, 

compared to the IPSW and CLW methods, Elliott’s method requires one more model to 

estimate 𝜋!
(,)  for 𝑖 ∈ 𝑠; . The misspecification of either model may bias the pseudo-

weighted estimates. 

All three of the PS-based weighting methods described above (IPSW, the CLW 

method, and Elliott’s method) yield approximately unbiased estimates of finite population 

means if the propensity models are correctly specified and if the sample fraction of the 
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nonprobability sample is small. Nevertheless, there are some common drawbacks to the 

PS-based weighting methods: (1) the biasness of the pseudo-weighted estimates heavily 

depend on the propensity model specification since the PSs are directly used to predict 

participation rates; and (2) extreme weights may occur when the estimated PSs are close 

to 0, leading to inappropriately inflated variance of the pseudo-weighted estimates. 

• PS-Based Matching Methods 

Different from the PS-based weighting methods that directly use PSs to estimate the 

participation rates, the PS-based matching methods use the PS to measure the similarity 

between units in the nonprobability sample and the survey sample. The survey sample 

weights are distributed to the nonprobability sample units according to their similarity 

measure by the PS. 

• PS Adjustment by Subclassification (PSAS) 

The PSAS approach has been widely used to improve representativeness of nonprobability 

samples in survey research (Lee, 2004, 2006; Lee & Valliant, 2007; Schonlau et al., 2004; 

Terhanian & Bremer, 2000). Although the ultimate goal is also to estimate the sample 

weights, unlike the PS-based weighting methods, PSAS does not use the PS to estimate the 

inclusion probabilities. Instead, it uses the PS to measure the similarity between the two 

samples units in terms of the common covariates 𝒙. To avoid potential inefficiency of the 

pseudo-weighted estimates due to the highly variable weights in the combined (𝑠;  vs. 

weighted 𝑠, ) sample, the propensity model (2.3.13) is fitted to the combined (𝑠;  vs. 

unweighted 𝑠,) sample (Lee & Valliant, 2009). In order to create a single set of weights 

that can be applied to a wide range of inferences for the population, the covariates should 
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include variables related to sample mechanism of the nonprobability sample and/or the 

survey. 

Then, the combined sample 𝑠 = 𝑠; ∪∗ 𝑠, is sorted by the estimated PS, 𝑝��! , 𝑖 ∈ 𝑠 and 

partitioned into 𝐺  subclasses. Cochran (1968) recommended to use quintiles. The 

assumption here is that all units in each subclass have approximately the same PS. In the 

𝑔-th subclass of the combined sample, denoted as 𝑠(1), 𝑔 = 1,⋯ , 𝐺, suppose there are 

𝑛(1) = 𝑛;
(1) + 𝑛,

(1)  units, where 𝑛;
(1)  and 𝑛,

(1)  are the number of units from the 

nonprobability sample and survey sample, respectively, in subclass 𝑔 . The PSAS 

adjustment weight for nonprobability sample unit 𝑖 in 𝑠(1) is calculated by: 

 𝑤s!>?F? =
∑ 𝑑""∈G,'

(()H

𝑛;
(1) , (2.3.15) 

where 𝑠,
(1) is the set of probability sample unit in the 𝑔-th subclass, and 𝑑" is the sample 

weight for probability sample unit 𝑗. 

Compared to the IPSW method, the PSAS method is less likely to produce extreme 

weights if the number of class 𝐺 is not large. The variance of the PSAS estimate is therefore 

smaller than that of the IPSW estimate. However, the PSAS method is less effective at bias 

reduction than the IPSW method (Valliant & Dever, 2011). 

• Sample Matching 

Rivers (2007) proposed an alternative sample matching approach to create a sample from 

the nonprobability sample that has a close joint distribution of the covariates, 𝒙 , to the 

finite target population. This approach also requires a representative sample as a reference 

that also have covariates 𝒙 in the nonprobability sample. 
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Suppose there is a sufficiently large and diverse nonprobability sample 𝑠; and a 

probability sample 𝑠,  with each unit having a sample weight 𝑑! , 𝑖 ∈ 𝑠, . The variable of 

interest, 𝑦, is available in 𝑠;, but not in 𝑠,. For each unit 𝑗 ∈ 𝑠,, a closest match 𝑖, called 

matched unit, is found from 𝑠;  based on a certain measure of distance (e.g., PS, 

Mahalanobis distance metric). The set of matched units selected from 𝑠; is called matched 

sample, denoted by 𝑠I, and it will resemble 𝑠, in terms of the covariate distribution. The 

pseudo-weight for 𝑖 ∈ 𝑠;, denoted by 𝑤s!J, is given by: 

𝑤s!J = l
𝑑" 	if	𝑖 ∈ 𝑠I	and	𝑖	is	the	matched	unit	for	𝑗 ∈ 𝑠,,
0			if	𝑖 ∈ 𝑠; − 𝑠I.																																																										

 

Under the following regularity conditions, Rivers showed that the matched sample can be 

used as if it were a probability sample: 

(1) Continuous covariates with overlap: The distribution of 𝒙 in both selection frames 

of nonprobability and probability sample is absolutely continuous and the supports 

of 𝒙 in the two samples are bounded and well overlapped. 

(2) Bounded densities: The density function of 𝒙 is bounded in both samples. This 

assumption ensures availability of a close match with a sufficiently large panel. 

(3) Smoothness: The density function of 𝒙 and the conditional expectation 𝜇(𝒙) =

𝐸(𝑦|𝒙) is continuous on the support of 𝒙. 

(4) Bounded variance: There exists 𝑐 < ∞ such that 𝑉𝑎𝑟(𝑦|𝒙) ≤ 𝑐 almost surely. 

An optional step is to use the PSAS approach to adjust the matched sample. Rivers showed 

it through simulations that the further step of the PSAS adjustment helps to reduce more 

bias of the estimate of population mean obtained from the matched sample. 

The Rivers method provides a way to select a subsample from the nonprobability 

sample to resemble to the reference probability sample. However, the unmatched 
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individuals from the nonprobability sample are discarded, which may reduce the efficiency 

of the analyses due to limited sample size. 

2.3.3.4 Variance Estimation for Pseudo-Weighted Estimates 

Taylor linearization (TL) and Jackknife replication (JK) are two popular variance 

estimation methods in design-based inference under complex sample designs that take into 

account the randomness due to both multistage sample design and unequal sample weights. 

Both TL and JK variance estimators are design consistent. However, different from the 

design-based inference for the probability-based sample in which the sample weights are 

known, the pseudo-weights for the nonprobability samples are estimated. The variance 

estimation for pseudo-weighted estimates should consider all sources of randomness due 

to estimating the pseudo-weights, differential pseudo-weights, and the potential complex 

participation mechanism (e.g., homogeneity among the participants). Ignoring any sources 

of the randomness may lead to biased variance estimation of the pseudo-weighted 

estimates. This section introduces the existing TL and JK estimation for variance of the 

pseudo-weighted estimators of finite population mean, 𝜇C> = %
#
∑ 𝑦!!∈C> .  

• Naïve Taylor Linearization 

The naïve TL approach treats the estimated pseudo-weights for the nonprobability sample 

as fixed. Only the randomness due to differential pseudo-weights and the potential complex 

participation mechanism will be considered. Denote the pseudo-weighted estimate of the 

finite population count (𝑁), and the pseudo-weighted estimate of the finite population total, 

𝑌 = ∑ 𝑦!!∈C> , obtained from the nonprobability sample as 𝑁r(;) = ∑ 𝑤s!!∈,%  and 𝑌� (;) =

∑ 𝑤s! ⋅ 𝑦!!∈,% , respectively, where 𝑤s!  is the pseudo-weight for 𝑖 ∈ 𝑠;  provided by a PS-
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based method. The pseudo-weighted estimate of 𝜇 is 𝜇̂(;) = KL (%)

#M(%)
. The native TSL variance 

estimation is given by: 

𝑣𝑎𝑟#0D^𝜇̂(;)` = ^𝜇̂(;)`
N
�
𝑣𝑎𝑟^𝑁r(;)`

^𝑌� (;)`N
+
𝑣𝑎𝑟^𝑌� (;)`

^𝑁r(;)`N
−
2𝑐𝑜𝑣^𝑌� (;), 𝑁r(;)`

𝑌� (;) ⋅ 𝑁r(;)
�. 

When there is an underlying stratified cluster sample design for the nonprobability sample 

assembling with 𝐻 strata and 𝑎O  clusters in the sample from stratum ℎ, the variance is 

estimated by: 

 𝑣𝑎𝑟#0D^𝜇̂(;)` = A
𝑎O

𝑎O − 1
A�𝑢OP∗ −

1
𝑎O
A𝑢OP∗
Q)

P

	�

NQ)

P$%

R

O$%

, (2.3.16) 

where 𝑢OP∗ = ST
SK
�
K$KL (%)

𝑌�OP
(;) + ST

S#
�
#$#M(%)

𝑁rOP
(;) = %

#M(%)
𝑌�OP
(;) − %

UKL (%)V
*𝑁rOP

(;), is the known as the 

linear substitute (Wolter, 2007, Chapter 6), 𝑌�OP
(;)  and 𝑁rOP

(;)  are the pseudo-weighted 

estimates of population total and population size of cluster 𝛼 in stratum ℎ, respectively. 

 The naïve TL method tends to underestimate the variance of the pseudo-weighted 

estimates due to, especially for the variances of the IPSW and the CLW estimates. The two 

methods fit the propensity model to the sample with highly variable weights between the 

nonprobability and survey samples, which can lead to large variance of the estimated PSs. 

Using the inefficient estimates of PSs to estimate the participation rates (i.e., inverse of the 

pseudo-weights) can substantially increase the variance of the pseudo-weighted estimates 

of the finite population quantities. Hence, ignoring the randomness of the estimated 

pseudo-weights can result to severe underestimation of the variance for the IPSW and CLW 

estimates.  

• Taylor Linearization Considering the Randomness of Estimating Pseudo-Weights 
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Chen et al. (2019) proposed the TL variance estimation for CLW estimates of the finite 

population means that considers the variability due to estimating PS by using the pseudo-

estimating system:  

 Φ(𝜼) =

⎩
⎨

⎧
1
𝑁
A 𝛿!

(;)(𝑦! − 𝜇C>)
!∈C>

																										

1
𝑁
A 𝛿!

(;)𝒙!
!∈C>

−
1
𝑁
A 𝛿!

(,)𝑑!𝜋!
(,)𝒙!

!∈C> ⎭
⎬

⎫
= 𝟎, (2.3.17) 

where 𝜼 = (𝜇C> , 𝜿)0  is a vector of parameters to be estimated, and 𝜿  is nuisance 

parameters for participation rate estimation defined in (2.3.10). Using a first order Taylor 

expansion, the finite population variance of 𝜼y can be approximated as follows: 

 𝑉𝑎𝑟(𝜼y) =̇ [𝐸{𝜙(𝜼)}]4%𝑉𝑎𝑟{Φ(𝜼)}[𝐸{𝜙(𝜼)}0]4% (2.3.18) 

where 𝜙(𝜼) = 𝜕Φ/𝜕𝜼, the expectation 𝐸  and variance 𝑉𝑎𝑟  is with respect to random 

selection of the nonprobability and the probability samples. The sample estimate of 𝑉𝑎𝑟(𝜼y) 

can be obtained by substituting the finite population quantities in (2.3.18) with the sample 

estimates. 

 Chen et al. (2019) provided a framework for estimating the participation rates of 

the nonprobability sample and for deriving TL variance estimation for pseudo-weighted 

estimates of finite population means. A similar approach can be applied for more complex 

estimates such as regression coefficients, which, may require extra tremendous derivation. 

On the contrary, the JK method can take into account the randomness due to estimating 

pseudo-weighting by re-estimating all the parameters in replication, which avoids extra 

computation for different estimates. 

• Jackknife Replication 

Lee & Valliant (2009) proposed a JK variance estimation for the PSAS estimates of 

population means. It can be similarly applied to other PS-based pseudo-weighted estimates 
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of finite population quantities. The nonprobability sample is randomly divided into 𝐺 

equal-sized replication groups. The JK estimator for an estimate of population parameter 

𝜃�>@ is: 

 𝑣𝑎𝑟WX(𝝎y>@) =
𝐺 − 1
𝐺 A^𝝎y (1)

>@ −𝝎y>@`N
2

1$%

, (2.3.19) 

in which 𝝎y (1)
>@ is the pseudo-weighted estimate obtained from the nonprobability sample 

omitting units in the 𝑔-th group, 𝑔 = 1,⋯ , 𝐺. In reach replicate, the pseudo-weights are 

re-calculated. This indirectly reflects the facts that the estimated weights are subject to 

sample variation. This approach is shown to perform better than the naïve TL method (Lee 

& Valliant, 2009) which ignores the variability of estimating the pseudo-weights.  

 However, estimator (2.3.19) does not consider the variability due to randomness of 

survey sampling or the potential homogeneity in the nonprobability sample. In order to 

include these two components in the JK variance estimator, the nonprobability sample can 

be treated as an extra stratum in the combined sample. Each replicate omits one cluster in 

the probability survey sample or in the nonprobability sample. 

2.3.4 Summary 

This section summarized two types of PS-based methods (PS-based weighting and 

matching methods), which improve representativeness of nonprobability samples by using 

a probability survey sample as the reference. The PS-base weighting methods can reduce 

bias when the propensity model is correctly specified. Nevertheless, the pseudo-weighted 

estimates can be inefficient especially if there are extreme pseudo-weights. For the IPSW 

and the CLW methods, the highly variable weights among the combined nonprobability 

and probability sample can also lead to inefficient estimates of PSs, which inflate the 
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variance of the pseudo-weighted estimates. Furthermore, they can be sensitive to 

propensity model specification because the PSs are used to estimate the participation rates. 

Compared to the PS-based weighting methods, the PS-based matching methods can be less 

sensitive to the propensity model specification because the PSs are used to measure the 

similarity between the nonprobability and probability sample units. The sample matching 

method can provide unbiased estimates under some standard conditions but sacrifices the 

sample size. The PSAS method avoids extreme weights (Rubin 2001), and therefore yields 

less variable estimates. However, the PSAS method is less effective at bias reduction 

(Valliant & Dever, 2011) because the key assumption that nonprobability sample units 

represent equal numbers of population units within subclasses is hard to be satisfied in 

reality. Moreover, the measure of similarity of PSs is ad hoc with limited guidance and 

justification for forming the subclasses.  

The TL methods provide close forms of variance estimators, and they are more 

computing-efficient than replicate methods. The naïve TL variance estimator, however, is 

well known for possibly underestimating the variance as it ignores the randomness due to 

estimating PSs (Lee & Valliant, 2009; Landsman & Graubard, 2013; Abadie & Imbens, 

2016). The complete TL variance estimator (Chen et al., 2019) should be derived from the 

estimating system, including both PS estimation and the estimation of the finite population 

quantities. The complete TL estimator may require tremendous calculation for different 

estimators. 

On the contrary, the JK variance estimators can automatically take into account all 

sources of variability by re-estimating the pseudo-weights at each replicate. The JK 

estimator proposed by Lee & Valliant (2009), however, does not consider the randomness 
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due to survey sample selection because the replicates only drop groups of nonprobability 

sample units. More research is required to test how the randomness of reference survey 

sample would influence the variance estimation. Moreover, Lee & Valliant (2009) did not 

consider potential cluster effects of the data. In epidemiologic cohort studies, volunteers 

are usually recruited from a set of study centers. There may be intra-class correlation due 

to geographical homogeneity. New variance estimation is required to fill these gaps. 

2.4 PS-Based Kernel Smoothing 

2.4.1 Introduction 

Kernel smoothing is a widely used nonparametric regression technique to estimate the 

conditional expectation of outcome 𝑦  given a vector of covariates 𝒙 . Let 

(𝒙%, 𝑦%),⋯ , (𝒙*, 𝑦*) be a sample of 𝑛 independent and identically distributed observations 

where 𝑦!’s are scalar response variables and the 𝒙!’s are covariates. Let the conditional 

mean of 𝑦 given 𝒙( be denoted by	𝑚(𝒙() = 𝐸(𝑦|𝒙(), where 𝒙( is any possible value of 

the vector of covariates 𝒙. The kernel estimator of 𝑚(𝒙() is given by a weighted mean of 

the observed outcome 𝑦: 

𝑚y(𝒙() =
∑ 𝑊!(𝒙()𝑦!*
!$%
∑ 𝑊!(𝒙()*
!$%

, 

where 𝑊!(𝒙)  is the kernel weight (Nadaraya, 1964; Waston 1964) for sample unit 𝑖 , 

estimating the conditional distribution of ( 𝑦 ∣∣ 𝒙 ), defined as follows: 

𝑊!(𝒙() =
𝐾 ¯‖𝒙(, 𝒙!‖ℎ ±

∑ 𝐾 ¯‖𝒙(, 𝒙!‖ℎ ±*
!$%
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where 𝐾(⋅) is a kernel function (described later), ‖⋅‖ represents the distance between the 

two units (e.g., Euclidean distance) and ℎ > 0 is the bandwidth depending on the sample 

size 𝑛 and the choice of 𝐾(⋅). The kernel weight 𝑊!(𝒙() is a relative distance between the 

covariate 𝒙( and covariates 𝒙! compared to all other covariates with ∑ 𝑊!(𝒙()*
!$% = 1. The 

more similar the covariates 𝒙( and 𝒙! are, the larger the 𝑊!(𝒙() will be.  

The kernel function 𝐾(⋅)  satisfies the conditions: ∫ 𝐾(𝑢)𝑑𝑢 = 1  and 

∫ |𝐾(𝑢)|𝑑𝑢 < ∞ . Some commonly used kernel functions are described in Benedetti 

(1997): 

Table 2.1 Examples of Kernel Functions. 
Uniform Quadratic Triangular Gaussian 

𝐾(𝑢) =
1
2
⋅ 𝐼{|𝑢| < 1} 𝐾(𝑢) =

3
4
(1 − |𝑢|*)+ 𝐾(𝑢) = (1 − |𝑢|)+ 𝐾(𝑢) =

1
√2𝜋

𝑒(,!/* 

 

Different kernels may yield different kernel weights 𝑊!(𝒙). For example, in Table 2.1, a 

uniform density kernel gives the same weights to the units whose distances from 𝒙 are 

within the support (−1, 1), whereas the other three kernels give more weights to units that 

are close to 𝒙(. With a Gaussian density kernel, all sample units receive positive kernel 

weights. With a quadratic, or triangular density kernel, units receive a weight of 0 if their 

distances with 𝒙( are larger than ℎ. 

The consistency of the kernel regression estimates requires the bandwidth ℎ → 0 

and 𝑛 ⋅ ℎ → ∞  when 𝑛 → ∞  (Owen, 1987). There are various methods for bandwidth 

selection. Here we introduce five methods that are most commonly used for kernel density 

estimation: (1) Silverman’s rule of thumb Silverman (1986), (2) Scott’s method (Scott, 

1992), (3) unbiased cross-validation (UCV; Scott & Terrell, 1987), (4) biased cross-

validation (BCV; Scott & Terrell, 1987), and (5) Sheather & Jones’s method (S&J; 
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Sheather & Jones, 1991). The kernel density estimation estimates the unknown probability 

density function of the random variable 𝑥, 𝑓(𝑥) by 

 𝑓�O(𝑥) =
1
𝑛ℎA 𝐾j

𝑥 − 𝑥!
ℎ k

*

!$%
, (2.4.1) 

The five methods select a bandwidth by minimizing mean integrated squared error (MISE) 

or asymptotic mean integrated squared error (AMISE). Minimizing AMISE with respect 

to ℎ gives the optimal bandwidth: 

 
ℎYZ[ = µ

𝑅(𝐾)
𝑛𝜎X\𝑅(𝑓]])

¸
%/_

, 
(2.4.2) 

where 𝐾  is the kernel density function, 𝜎X  is the corresponding standard deviation, 

𝑅(𝐾) = ∫ 𝐾N(𝑧)𝑑𝑧, 𝑛 is the sample size, and 𝑓 is the unknown density distribution to be 

estimated, with 𝑓]] being the second derivative of 𝑓. Since 𝑓 is unknown, 𝑅(𝑓]]) has to be 

estimated. 

Silverman (1986) uses a density function of 𝑁(𝜇̂, 𝜎g) to replace 𝑓 in Expression 

(2.4.2) where 𝜇̂, and 𝜎g are the sample mean and standard deviation. If 𝐾(⋅) is a Gaussian 

density kernel, then the bandwidth is: 

 ℎ`5a = ¯
4
3𝑛±

%
_
𝜎g, (2.4.3) 

where 𝑛 is the sample size. Scott (1992) modified Silverman’s method by using a more 

robust estimate of standard deviation, min(𝜎g, 𝐼𝑄𝑅/1.35)  to replace 𝜎g  in Expression 

(2.4.3), where IQR is the interquartile range (difference between third and first quartile). 

The S&J method improved Silverman’s and Scott’s methods by using an empirical 

estimate of 𝑅(𝑓]])  instead of using normal density to approximate 𝑓  in (2.4.2). They 

applied a two-stage approach to obtain the optimal bandwidth in (2.4.2). At the first stage, 

𝑓  is estimated by (2.4.1) with ℎ  selected by Silverman’s rule of thumb and obtain an 
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empirical estimate of 𝑅(𝑓]]), denoted by 𝑅(𝑓]])¾ . At the second stage, the final optimal 

bandwidth is obtained by using 𝑅(𝑓]])¾  to substitute 𝑅(𝑓]]) in (2.4.2). 

UCV and BCV use cross-validation techniques to estimate the expectation of the 

estimated density function by minimizing MISE and AMISE, respectively, that is, using 

%
*
∑ 𝑓�4!(𝑥!)*
!$%  to estimate 𝐸¿𝑓�(𝑥)À, with 𝑓�4!(𝑥!) =

%
O(*4%)

∑ 𝐾 jb#4b+
O
k"c! . 

2.4.2 KW Methods for Treatment Effect Estimation 

In economics, kernel weighting methods have been proposed to match the controls to the 

treatment units in estimating average treatment effects (Heckman et al., 1997; 1998a; 

1998b; Imbens, 2004). The same as notations introduced in Section 2.4, ^𝑦(,! , 𝑦%,!` are the 

potential outcome for sample unit 𝑖; 𝑠( and 𝑠% denote the control and treatment group, with 

sizes 𝑛( and 𝑛% respectively; 𝑍! is a binary variable indicating the treatment group (0 for 

𝑖 ∈ 𝑠( , and 1 for 𝑖 ∈ 𝑠% ). The conditional expectation of outcome 𝑦  given a vector of 

covariates 𝒙 , 𝜇d(𝒙) = 𝐸[𝑦|𝑧, 𝒙] , is estimated by 𝜇̂d(𝒙) = ∑ 𝑦d,!𝑘!!∈,, ∑ 𝑘!!∈,,⁄ ,where 

𝑘! = 𝐾 j‖𝒙#4𝒙‖
O

k. The potential outcome 𝑦(," for unit 𝑗 ∈ 𝑠% is missing, and is imputed with 

a consistent estimator: 

 𝜇̂(^𝒙"` =A 𝑘!"𝑦(,!
!∈,"

A 𝑘!"
!∈,"

Ã , (2.4.4) 

where 𝑘!" = 𝐾 jf𝒙#4𝒙+f
O

k. The treatment effect, Δ, is calculated by:  

 Δr =
1
𝑛%
A j𝑦%," − 𝜇̂(^𝒙"`k

"∈,!
. (2.4.5) 

The unbiasedness of Δr in (2.4.5) requires the condition of mean independence; that is,  

 𝐸[𝑦(|𝒙, 𝑧 = 0] = 𝐸[𝑦(|𝒙, 𝑧 = 1]. (2.4.6) 
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Heckman et al. (1998a) proposed to use the difference in the propensity of being in 

the control group versus the treatment group to measure the distance between 𝒙! and 𝒙" 

(i.e., using {𝑒(𝒙!) − 𝑒^𝒙"`}  to replace Ä𝒙! − 𝒙"Ä  in 𝑘!" ) to avoid the dimensionality 

problem.  

We found that this approach can be viewed as assigning weights to the control 

group. The estimated treatment effect Δr in (2.4.5) can be written as: 

Δr =
1
𝑛%
A R𝑦%," −A

𝑘!"𝑦(,!
∑ 𝑘!"!∈,"!∈,"

S
"∈,!

 

				=
1
𝑛%
A 𝑦%,"

"∈,!
−
1
𝑛(
𝑛(
𝑛%
A A

𝑘!"𝑦(,!
∑ 𝑘!"!∈,""∈,!!∈,"

 

				=
1
𝑛%
A 𝑦%,"

"∈,!
−
1
𝑛(
A 𝑊!𝑦(,!

!∈,"
 

where 𝑊! =
*"
*!
∑ g#+

∑ g#+#∈'"
"∈,!  is a PS-based weight for 𝑖 ∈ 𝑠(, and  

A 𝑊!
!∈,"

=
𝑛(
𝑛%
A A

𝑘!"
∑ 𝑘!"!∈,""∈,!!∈,"

 

																			=
𝑛(
𝑛%
A A

𝑘!"
∑ 𝑘!"!∈,"!∈,""∈,!

=
𝑛(
𝑛%
⋅ 𝑛% = 𝑛(. 

After the transformation, the condition of mean independence (2.4.6)required by the 

unbiasedness of Δr becomes:  

 𝐸[𝑦(|𝑊, 𝑧 = 0] = 𝐸[𝑦(|𝑊, 𝑧 = 1]. (2.4.7) 

There are two factors affecting the performance of this method in terms of the MSE: kernel 

function 𝐾(⋅) and bandwidth ℎ. A kernel function with a flatter curve can result in larger 

bias but smaller variance of Δr due to smaller variance of the weights {𝑊! , 𝑖 ∈ 𝑠(}. For 

example, with a uniform density kernel 𝑈(−1, 1), control group member 𝑖 obtains a PS-
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based weight 𝑊! =
*"
*!
∑ =ij-(𝒙#)4-U𝒙+VjkOl

∑ =ij-(𝒙#)4-U𝒙+VjkOl#∈'"
"∈,! . Control group members can obtain an 

identical PS-based weight 𝑊 if the distance between their PSs is smaller than ℎ, which 

lead to less variable {𝑊! , 𝑖 ∈ 𝑠(} . However, they may have different values of 𝒙  and 

correspondingly different values of 𝑦(. As a result, the condition of mean independence 

(2.4.7) is violated, leading to a biased estimate of Δ. A large bandwidth can increase bias 

but reduce variance due to the same reason. 

2.4.3 Summary 

For treatment effect estimation, the kernel smoothing method, as a PS-based matching 

method, provides a way to balance the tradeoff between bias reduction and variance 

inflation. By choosing an appropriate kernel function and bandwidth, it can be less likely 

to produce extreme weights that inflate the variance than the PS-based weighting methods, 

such as IPSW. Meanwhile, it can be more effective at bias reduction than the PSAS method. 

However, there is no existing literature comparing the performance of the kernel smoothing 

method, IPSW, and PSAS in the context of treatment effect estimation. In finite population 

inference, there is no kernel smoothing method proposed for improving the population 

representativeness of nonprobability samples. The kernel weighting (KW) can be 

addressed to create a set of pseudo-weight for the volunteer-based nonprobability samples 

by distributing the survey sample weights to the nonprobability sample units based on their 

similarity measured by kernel smoothed distance in PS. Both theoretical and practical work 

have to be done to investigate the properties of the KW method and to compare its 

performance with the existing IPSW and the PSAS methods. 
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2.5 Improving Efficiency of the PS Estimation by Scaling the Weights 

As discussed in Section 2.3.3, fitting propensity model to the combined nonprobability and 

weighted probability survey sample, as the IPSW method does, may cause high variance 

of the estimated PSs, which may lead to inefficient pseudo-weighted estimates of the finite 

population quantities. A similar problem occurs in the population-based case-control 

studies where the highly variable sample weights among the sample cases and controls lead 

to large variance of the estimated regression coefficients. Scott and Wild (1986, 2002) 

showed that although the sample-weighted estimates of the regression coefficients are 

design consistent and more robust to the outcome model misspecification, they can be 

inefficient. Scott and Wild (1986, 2002) suggested an alternative approach that rescales the 

sample weights so that the control or case weights sum up to the sample size of controls or 

cases. The scaled sample weights between the cases and controls have much lower overall 

variation than the original sample weights, and thus can improve the efficiency of the 

regression analyses. Although the scaled sample weighted estimate of the intercept is 

biased, the bias can be removed by adding an offset. Li et al. (2011) and Landsman & 

Graubard (2012) extended Scott and Wild’s work to more general complex sample designs.  

Suppose a sample of 𝑛% cases (𝑠%) and a sample of 𝑛( controls (𝑠() are randomly 

selected from the population of cases and controls respectively. The binary response 

variable 𝑦 (1 for cases, and 0 for controls) and a vector of explanatory covariates 𝒙 follow 

a logistic regression model in the population: 

logit{Pr( 𝑦 = 1 ∣∣ 𝒙, 𝜽 )} = 𝜃( + 𝜽%0𝒙 

where 𝜽 = (𝜃(, 𝜽%0)0 is a vector of the coefficients, with 𝜃( being the intercept, and can be 

consistently estimated by solving the weighted estimation equations: 
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 A 𝑑!𝒙!{𝑦! − expit(𝜃( + 𝜽%0𝒙)}
!∈,"∪,!

= 𝟎 (2.5.1) 

The scaled sample weight is defined as:  

𝑑!∗ = 𝑦!𝑑!/𝑀% + (1 − 𝑦!)𝑑!/𝑀( 

where 𝑑!  is the sample weight for individual 𝑖 ∈ 𝑠( ∪ 𝑠% , 𝑀% = ∑ 𝑑!!∈,! /𝑛% , and 𝑀( =

∑ 𝑑!!∈," /𝑛( are the scaling factors; that is, the mean of the sample weights within cases 

and controls, respectively. The coefficients 𝜽 estimated by solving the scaled-weighted 

estimating equations with 𝑑!∗ replacing 𝑑! in estimating equations (2.5.1), denoted by 𝜽r,n, 

is consistent to 𝜽 + log jJ%
J(
k ⋅ (1, 0,⋯ ,0)0  (Scott & Wild, 1986). Scott & Wild (2001) 

showed, by simulations, that the variance of 𝜽r,n is much smaller than that of 𝜽rn estimated 

from (2.5.1).  

 Scaling the sample weights for logistic regression analyses in case-control studies 

has been shown to gain great efficiency of the regression coefficients estimation only at 

the sacrifice of the biased estimate of the intercept, which can be adjusted by a known 

offset (Scott & Wild, 2001; Li et al., 2011; Landsman and Graubard, 2012). This approach 

can be applied to any logistic regression analyses that have estimating equations with the 

same form of (2.5.1). For example, the IPSW method fits the logistic regression model to 

the combined sample of nonprobability and sampled weighted probability sample. The 

resulting estimates are known to have large variance due to highly variable weights in the 

combined sample. However, no weighting adjustment has been developed to solve this 

problem. Scaling the survey sample weights may help reduce variance of the estimated 

propensity model coefficients and, therefore, improve efficiency of the IPSW estimates.   
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Chapter 3 A Kernel Weighting Approach for Estimating Finite 

Population Means from Volunteer-Based Epidemiological 

Cohorts 

3.1 Introduction 

As discussed in Section 2.3.3, IPSW and PSAS are two of the commonly used approaches 

that improve the representativeness of the nonprobability sample in survey research. They 

also can be applied to improve external validity of epidemiologic studies. However, both 

approaches are known to have disadvantages.  

The IPSW approach, as a PS-based weighting method, uses (functions of) PS to 

estimate participation rates of the nonprobability sample. Hence, the estimates can be 

sensitive to propensity model misspecification. In addition, by fitting the propensity model 

to the combined (nonprobability vs. weighted survey) sample, the highly variable weights 

between the nonprobability and the survey sample may lead to inefficient pseudo-weighted 

estimates of the finite population quantities. Furthermore, the IPSW method tends to 

produce extreme weights when the estimated PSs are close to 0. These extreme weights 

may not be caused by the true underlying small selection probabilities, but by the 

propensity model misspecification. As a result, variance of weighted estimates would be 

inappropriately inflated. Though weight trimming may help to reduce the variance, its 

effect on reducing bias and variance is unclear (Lee et al., 2010; Potter & Zheng, 2015), 

and there is relatively little guidance regarding the trimming level.  

Different from the IPSW method, the PSAS method, as a PS-based matching 

method, is less sensitive to the propensity model misspecification because it uses the PS to 
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measure the similarity between the units in the nonprobability and survey sample. In 

addition, the PSAS method avoids extreme weights (Rubin 2001), and therefore yields less 

variable estimates. Nevertheless, the PSAS method is less effective at bias reduction 

(Valliant & Dever, 2011) because of the key assumption that nonprobability sample units 

represent equal numbers of population units within subclasses. Moreover, the measure of 

similarity of propensity scores is ad-hoc with limited guidance and justification for forming 

the subclasses.  

Moreover, little attention has been paid to the effect that geographic clustering 

within the nonprobability sample has on variance estimation. Different from the web 

surveys that can recruit people almost everywhere, the epidemiologic cohort studies 

usually recruit volunteers at multiple study centers that are in various locations in the 

geographical areas where the target population resides. The resulting samples may have 

geographical effects (clustering and correlation of observations). Ignoring the geographical 

correlation may lead to invalid variance estimation of association between smoking and 

lung cancer. However, existing PS-based methods do not take into account geographic 

clustering effect for the variance estimation. 

In this chapter, we propose a new PS-based matching method, the kernel weighting 

(KW) approach, to improve the representativeness of the volunteer-based epidemiologic 

cohort (cohort for simplicity) by using population-based survey sample as a reference. The 

KW pseudo-weighted cohort will be used to improve the external validity of the disease 

prevalence rate estimation. The new method is not expected to remove bias due to non-

representativeness, but to gain a better bias-variance tradeoff in estimating disease 

prevalence in the population. Under certain regular conditions, the KW pseudo-weighted 
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estimator is consistent to the true finite target population mean. The naïve Taylor 

linearization (TL) and jackknife replication (JK) methods are applied to provide variance 

estimation for the KW estimates of population prevalence. 

Monte Carlo simulation studies are conducted to evaluate performance of the KW 

estimates of disease prevalence comparing to the existing IPSW and PSAS estimates. The 

three weighting methods (IPSW, PSAS, and KW) are also applied to estimating nine-year 

disease incidence and mortality from the National-Institutes-of-Health-American-

Association-of-Retired-Persons (NIH-AARP) cohort, using the 1997 National Health 

Interview Survey (NHIS) as the reference. 

3.2 Method 

3.2.1 Basic setting 

Let the target finite population (𝐹𝑃) consist of 𝑁 individuals indexed by 𝑖 ∈ {1,⋯ ,𝑁}, 

where each individual 𝑖 has values for the outcome variable of interest 𝑦! and for the vector 

of covariates 𝒙!. We focus on estimating the FP mean of y, i.e., 𝜇C> = 𝑁4% ∑ 𝑦!!∈C> . Let 

𝑠; ⊂ 𝐹𝑃	denote a cohort with 𝑛; individuals. We define a random indicator variable 𝛿!
(;) 

(= 1 if 𝑖 ∈ 𝑠;; 0 otherwise) that specifies which individuals in 𝐹𝑃 participate in 𝑠;. Note 

that FP and 𝑠; are also used to denote sets of indices for the target finite population and the 

cohort, respectively. The underlying cohort participation rate for each 𝑖 ∈ 𝑠; is defined by 

𝜋!
(;) ≡ 𝑃(𝑖 ∈ 𝑠; ∣ 𝐹𝑃) = 𝐸;j 𝛿!

(;)
∣∣ 𝐹𝑃 k, 

where	the expectation 𝐸; is with respect to the unknown random cohort sample selection 

process from 𝐹𝑃. The corresponding cohort implicit sample weight is 𝑤! = 1/𝜋!
(;) for 𝑖 ∈
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𝑠;. All the finite population units are assumed to have a positive participation rate, i.e., 

𝜋!
(;) > 0 for 𝑖 ∈ 𝐹𝑃. 

In addition, a reference survey sample 𝑠, with 𝑛, individuals is randomly selected 

from the 𝐹𝑃. The sample inclusion indicator, inclusion probability, and the corresponding 

sample weights are defined by 𝛿!
(,)(= 1 if 𝑖 ∈ 𝑠,; 0 otherwise), 𝜋!

(,) = 𝐸,j 𝛿!
(,)
∣∣ 𝐹𝑃 k, and 

𝑑! = 1/𝜋!
(,), respectively, where 𝐸, is the expectation with respect to the survey sample 

selection and 𝑠, also denotes the subset of indices for individuals in the survey sample from 

the 𝐹𝑃. In practice, the inclusion probability and the sample weights are assumed to be 

adjusted by the nonresponse and calibrated to the known population quantities. 

3.2.2 Kernel Weighting Method to Create Pseudo weights for a Cohort 

In this section, we propose a new PS-based matching method, the kernel weighting (KW) 

approach, to create pseudo-weights for the cohort by using a probability survey sample as 

a reference. Analogous to the PSAS method, KW uses PS to measure the similarity of the 

covariate distributions between the cohort and the survey samples. Accordingly, the 

propensity model (3.2.1) is fitted to the combined (𝑠; vs. unweighted 𝑠,) sample. 

 log l
𝑝�!

1 − 𝑝�!
n = 𝜷�0𝒙! , 𝑖 ∈ {𝑠; ∪∗ 𝑠,} (3.2.1) 

The PS for 	𝑖 ∈ 𝑠;  and 𝑗 ∈ 𝑠,  and are denoted by 𝑝�!
(;) = expitw𝜷�0𝒙!

(;)x	 and 𝑝�"
(,) =

expw𝜷�0𝒙!
(;)x, with the superscripts (𝑠) and (𝑐) denoting that unit 𝑖 and unit 𝑗 are in the 

survey and in the cohort, respectively.  

For 𝑖 ∈ 𝑠,,	we compute the (signed) distance of its estimated PS from each 𝑗 ∈ 𝑠;, 

𝑝�"
(,) − 𝑝�!

(;), which ranges from −1 to 1. We apply a kernel function centered at zero to 
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smooth the distances. The closer to zero the distance is, the more similar the pair of units 

is with respect to the covariates, and accordingly the KW method assigns a larger portion 

of the survey sample weight 𝑑! 	to the cohort unit 𝑗 based on the kernel weight:  

 𝑘!" =
𝐾 wj𝑝�"

(,) − 𝑝�!
(;)k ℎ⁄ x

∑ 𝐾 wj𝑝�"
(,) − 𝑝�!

(;)k ℎ⁄ x!∈,%

								for	𝑖 ∈ 𝑠; , (3.2.2) 

where 𝐾(⋅)  is a zero-centered kernel function (Epanechnikov, 1969) (e.g. uniform, 

standard normal, or triangular density), and 	ℎ  is the bandwidth corresponding to the 

selected kernel function (see Section 2.4.1 for discussion of various bandwidth selection 

methods). Note that ∑ 𝑘!"!∈,% = 1	and 𝑘!" ∈ 	 [0, 1]. The larger the 𝑘!" is, the more similar 

the propensity scores are between cohort unit 𝑗 and survey unit 𝑖.  

Finally, the KW pseudo-weight 𝑤!X@  for 𝑖 ∈ 𝑠; , is a sum of the survey sample 

weights, ¿𝑑" , 𝑗 ∈ 𝑠,À, that are weighted by the cohort unit 𝑖’s kernel weights, ¿𝑘!" , 𝑗 ∈ 𝑠,À, 

given by 

 w!
X@ =A 𝑘!" ⋅ 𝑑"

"∈,'
 

(3.2.3) 

 Note the pseudo weight w!
X@  takes larger proportion of the survey weights 

associated with survey members whose PSs are closer to cohort unit 𝑖. The KW estimator 

of the finite population prevalence, 𝜇C>, is 

𝜇̂X@ =
1

𝑁rX@
A 𝑤!X@ ⋅ 𝑦!

!∈,%
, 

where 𝑁rX@ = ∑ 𝑤!X@!∈,%  is the sum of the cohort pseudo-weights. Notice that 𝑁rX@ is an 

unbiased estimator of the finite population count 𝑁. It can be shown 

 𝑁rX@ = 𝑁r?oK , (3.2.4) 
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where 𝑁r?oK = ∑ 𝑑""∈,'  is a unbiased estimator of 𝑁  from the survey sample, because 

∑ 𝑤!X@!∈,% = ∑ ∑ ^𝑘!" ⋅ 𝑑"`"∈,'!∈,% = ∑ ^𝑑" ⋅ ∑ 𝑘!"!∈,% `"∈,' = ∑ 𝑑""∈,' . Hence,  

𝐸^𝑁rX@` = 𝐸^𝑁r?oK` = 𝑁 

Furthermore, the KW estimators of population means or prevalences are design consistent, 

under regularity conditions (Theorem 3.1) 

Theorem 3.1 Consistency of the KW estimate of the finite population mean  

Suppose, in the superpopulation, the variable of interest 𝑦 has an expectation 𝐸(𝑦) = 𝜇 <

∞,  where 𝐸  denotes the expectation with respect to the joint distribution of 𝑦  and 

covariates x. Assume that the cohort and the survey sample are selected from a finite 

population (a simple random sample from a superpopulation) and the distributions of the 

estimated propensity scores are well overlapping between the two samples. If the following 

conditions are satisfied:  

(a) for the kernel function 𝐾(𝑢) , ∫ 𝐾(𝑢)𝑑𝑢 = 1 , 𝑠𝑢𝑝
p
|𝐾(𝑢)| < ∞ , and 𝑙𝑖𝑚

|p|→s
|𝑢| ⋅

|𝐾(𝑢)| = 0;  

(b) for the bandwidth ℎ = ℎ(𝑛;), ℎ → 0, but 𝑛; ⋅ ℎ → ∞ as 𝑛; → ∞; 

(c) exchangeability,  𝐸{𝑦|𝑝�, 𝑐𝑜ℎ𝑜𝑟𝑡} = 𝐸{𝑦|𝑝�, 𝑠𝑢𝑟𝑣𝑒𝑦	} = 𝐸{𝑦|𝑝�};  

(d) bounded second moment, 𝐸(𝑦N) < ∞; and 

(e) bounded survey sample weights, 𝑤! < 𝑀 for some 𝑀 ∈ ℝt(, 𝑖 ∈ 𝑠,; 

then the KW estimator of the population mean 𝜇̂X@ =
∑ n#

./⋅.##∈'%
∑ n#

./
#∈'%

→ 𝜇 in probability as 

the finite population size 𝑁 → ∞, the survey sample size 𝑛, → ∞, the cohort sample size 

𝑛; → ∞, with *%
#
= 𝑂(1), and *'

#
= 𝑂(1) (proof in Section 3.6.1). 
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In practice, if a cohort or a survey sample includes only specific subgroups of 

people in the population (e.g. a women’s health cohort), then both samples should be 

constrained to the same subgroup. Otherwise, the estimated propensity scores of the two 

samples may not overlap well for important covariates, which can lead to unreliable 

pseudo-weighted estimates (Stuart 2011; Stürmer et al., 2010). We recommend checking 

on the extent of overlap of the PSs used to compute the pseudo-weights from the IPSW, 

PSAS, and KW methods. Another issue is the covariate selection for Model (3.2.2). 

Following Stuart (2010), we suggest including as many variables that could be related to 

the unknown (self-)selection scheme of the cohort, as possible. All cohort selection-related 

variables that are common to both samples and their two-way interactions might be initially 

included in the model. Model selection criteria such as a stepwise procedure (D’Agostino, 

1998) with Akaike information criteria (AIC) can be applied to obtain a final model.  

Also note that PSAS is a special case of the KW method, with a uniform kernel 

function in each subclass of estimated PSs, assuming that cohort units within subclasses 

represent equal numbers of population units (proof in Section 3.6.2). In contrast, the KW 

method relaxes the key PSAS assumption by assigning various portions of the survey 

weights to the cohort units according to the similarity of covariates considered in the 

propensity model, measured by the PS. 

3.2.3 Variance Estimation 

In this section, the naïve Taylor Linearization (TL) and the Jackknife replication (JK) 

methods are discussed for variance estimation. JK variance estimators that considers all 

sources of variability are proposed for the pseudo-weighted estimators using the IPSW, 

PSAS, and KW methods.  
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As it was discussed in Section 2.3.3.4, the naïve TL method treats the pseudo-

weights as the fixed sample weights. Suppose the cohort is collected from 𝐶 study centers 

which are treated as clusters for variance estimation. The naïve TL variance estimator for 

the estimated population prevalence is given by Expression (2.3.16), with the linear 

substitute for study center 𝛼  being 𝑢P∗ =
%

#M./
𝑌�PX@ − KL./

(#M./)*
𝑁rPX@ , where 𝑌�PX@ =

∑ 𝑤!X@𝑦!!∈P , 𝑁rPX@ = ∑ 𝑤!X@!∈P , and 𝑌�X@ = ∑ 𝑤!X@ ⋅ 𝑦!!∈,% . 

Though the naïve TL method provides a close form of the variance estimation 

which is computing efficient, it can underestimate the true variance due to ignoring the 

variability for estimating PSs. Lee & Valliant (2009) addressed this underestimation for 

PSAS. To improve variance estimation, we propose a JK method to account for all sources 

of variability (Ch. 2.5, Korn & Graubard, 1999). 

Suppose that the survey sample 𝑠, be randomly selected from a target population 

by a stratified multistage sample design with 𝐿 strata in the population as described in 

Section 2.1 of the main text. At the first stage of sampling, 𝑚v clusters (i.e., PSUs) are 

randomly selected (approximated by sampling with replacement) from stratum 𝑙, for 𝑙 =

1,⋯ , 𝐿. The cohort is recruited from 𝐶 study centers, which are treated as a random sample 

of clusters (i.e., PSUs) from the finite population.  

We combine the cohort with the survey sample and treat the cohort as the (𝐿 + 1)-

th stratum in the combined sample. The leave-one-out jackknife (JK) variance estimation 

procedure involves leaving one PSU out of the combined sample at a time, adjusting the 

weights in the survey or cohort for the smaller number of sampled PSUs, recomputing new 

pseudo-weights for the cohort with these adjusted weights, re-estimating the quantity of 

interest, e.g., prevalence, and then estimating the variance as the variability across the re-
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estimated quantities of interest. The modified sample and weights after removal of each 

PSU are called jackknife replicates. The total number of replicates is 𝑅 = ∑ 𝑚v
Dw%
v$% , where 

𝑚Dw% = 𝐶 , i.e., the total number of PSUs and study centers in the survey and cohort. 

Formally the jackknife variance estimation procedure follows as: 

Step 1. Leave out 𝛼-th PSU (a survey sample cluster or a cohort study center) in stratum 𝑙, 

with 𝛼 = 1,⋯ ,𝑚v, and 𝑙 = 1,⋯ , 𝐿 + 1. Then weight up the units in remaining PSU’s in 

stratum 𝑙 by the ratio of the number of PSUs in 𝑙 to the number of remaining PSUs, i.e., 

I0
I04%

. This weight adjustment factor for unit 𝑟 ∈ 𝑠; ∪∗ 𝑠,  in replicate-𝑙𝛼, 𝑙 = 1,⋯ , 𝐿 +

1	and	𝛼 = 1,⋯ ,𝑚v 	 can be written as	 

𝑓x(vP) = Î

				0,									for	unit	𝑟	in	stratum	𝑙	cluster	𝛼;										
𝑚v

𝑚v − 1
,			for	unit	𝑟	in	stratum	𝑙	cluster	𝛼′ ≠ 𝛼;

					1,								otherwise.																																																			

 

Step 2. Refit Model (2.1.1) in the main text with weights of 𝑓x(vP), and then re-estimate the 

PS for each unit in the replicate-𝑙𝛼 sample, denoted by 𝑝��!
(;) and 𝑝��"

(,) for cohort unit 𝑖 and 

survey sample unit 𝑗. 

Step 3. Compute pseudo-weights. The smoothed kernel weight for cohort unit 𝑖 borrowed 

from survey unit 𝑗 is 

𝑘!"(vP) =
𝐾 wj𝑝��"

(,) − 𝑝��!
(;)k ℎ⁄ x

∑ 𝐾 wj𝑝��"
(,) − 𝑝��!

(;)k ℎ⁄ x!∈,%(01)

, for	𝑖 ∈ 𝑠;(vP); 𝑗 ∈ 𝑠,(vP) 

where  the bandwidth ℎ is the same as obtained from the original combined sample (Korn 

& Graubard, 1999 page 89); 𝑠,(vP)  and 𝑠;(vP)  denote the cohort and survey sample in 

replicate-𝑙𝛼, respectively. The KW pseudo-weight for cohort unit 𝑖 in replicate-𝑙𝛼 is  
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𝑤!(vP)
X@ =A 𝑘!"(vP) ⋅ 𝑑" ⋅ 𝑓"(vP)

"∈,'(01)
, for	𝑖 ∈ 𝑠;(vP). 

Step 4. Re-estimate the population mean/prevalence as  

𝜇̂(vP)X@ = µA 𝑤!(vP)
X@

!∈,%(01)
¸
4%

⋅A 𝑤!(vP)
X@ ⋅ 𝑦!

!∈,%(01)
.	 

The JK variance estimator for 𝑌_�X@ is  

𝑣𝑎𝑟(𝜇̂X@) = A
𝑚v − 1
𝑚v

A^𝜇̂(vP)X@ − 𝜇̂X@`N
I0

P$%

Dw%

v$%

.	 

The PSAS and IPSW JK variance estimators are calculated similarly as described above, 

but differ at Steps 2 and 3. At Step 2, the IPSW method estimates propensity scores with 

weights of 𝑓"(vP)𝑑" for each survey unit 𝑗. At Step 3, the PSAS method creates pseudo-

weights by partitioning the replicate- 𝑙𝛼  sample into quintiles of predicted propensity 

scores, and then dividing the sum of survey replicate weights (i.e., ∑ 𝑓"(vP)𝑑""∈,py( , where 

𝑠𝑢𝑏1 is the 𝑔-th subclass, 𝑔 = 1,⋯ , 𝐺) by the number of cohort units in each quintile. At 

Step 3, the IPSW method uses the inverse of predicted odds as the pseudo-weights. 

3.3 Simulations  

3.3.1 Finite Population Generation 

A finite population of 𝑀 = 3,000 clusters with each cluster composed of 3,000 units was 

generated (population total 𝑁 = 9,000,000). The 2015 one-year estimates at county level 

from the American Community Survey (ACS) were used to generate the finite population 

of clusters of individuals. For example, the four-category race/ethnicity (Non-Hispanic 

White, Non-Hispanic Black, Other Non-Hispanic, and Hispanic) from the ACS had the 
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weighted proportions of 𝑜g
(P), 𝑘 = 1,⋯ , 4 for the 𝛼-th county, 𝛼 = 1,⋯ ,𝑀. Accordingly, 

the race/ethnicity for individuals in 𝛼 -th cluster in the simulated finite population is 

generated by a multinomial distribution with parameter 𝑜(P) = j𝑜%
(P), 𝑜N

(P), 𝑜z
(P), 𝑜\

(P)k. The 

other variables generated from the ACS estimates included age, using a normal distribution 

with cluster specified mean and variance sex (sex), household income level (ℎℎ_𝑖𝑛𝑐), and 

urban/rural area (urb). We further generated a continuous environmental factor 𝐸𝑛𝑣 ∼

min{4.5, LogNormal(𝜆Q , 0.5)}	, where 𝜆P ∼ Uniform(0, 0.5), for 𝛼 = 1,⋯ ,𝑀, resulting 

in an intra-class correlation (ICC) within the clusters of 0.054 for the finite population.  

The disease status 𝑦 (1 for presence and 0 for absence) was generated to have an 

ICC within the clusters of 0.07 for the finite population, with the probability of disease 

generated by 𝜇( = expit(𝜽𝒗)  (Hunsberger et al., 2008; Oman & Zucker, 2001). The 

parameter 𝜽 = (−5, 0.5, −1, 1, 0.3, 0.10)0 where the intercept was −5, and the variables 

in vector 𝒗 included age level (=1 if 10-19yrs; =2 if 20-29yrs; =3 if 30-39yrs; =4 if 40-

49yrs; =5 if 50-59yrs; =6 if >=60 yrs), sex (1 = male and 0 = female), Hispanic (1=Hispanic 

and 0= otherwise), 𝐸𝑛𝑣, and an interaction between age and 𝐸𝑛𝑣. The disease prevalence 

in the population was 9.59%. A substitute of 𝜇( was generated by 𝑧 = 𝜇( + 𝑒, with 𝑒 ∼

Normal(0, 0.085N) in the finite population to reflect situations occurs in real data when 𝜇 

is not available but related variables are available. The correlation between 𝑧 and 𝑦 was 

𝜌 = 0.30. 

3.3.2 Sampling from the Finite Population to Assemble Survey Sample and Cohort 

We conducted two-stage cluster sampling to select the cohort and the survey sample 

independently to ensure that the true propensity models for all three methods (IPSW, 
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PSAS, and KW) had the same functional form. This sample design enabled us to form a 

fair comparison among the three methods because each of them would achieve the greatest 

bias reduction under the same true propensity model.  

A survey sample of 𝑛, = 1,500 individuals (150 clusters of each 10 individuals) 

was selected by two-stage cluster sampling. At the first stage, 150 clusters were sampled 

by probability proportional to size (PPS) sampling, with the measure of size (MOS) for 𝑖 ∈

𝐹𝑃 defined by  

A 𝑟!y
!∈p1

, 

where 𝑢P is the set of individuals from the 𝛼-th cluster for 𝛼 = 1,⋯ ,𝑀;	𝑏 ∈ ℝt(; and 

 𝑟! = exp(𝛾( + 𝜸0𝒙!), (3.3.1) 

where 𝛾( = 0, 𝜸 = (𝛾%, 𝛾N, 𝛾z, 𝛾\)0 = (0.3, −0.4, 0.7, 0.7)0 , and the vector of covariates 

𝒙! included 𝑥!,% = 𝑎𝑔𝑒, 𝑥!,N = ℎℎ_𝑖𝑛𝑐, 𝑥!,z = 𝐸𝑛𝑣, and 𝑥!,\ = 𝑧. At the second stage, 10 

individuals were selected by PPS sampling within each sampled cluster with MOS of 𝑟!y. 

The final sampling weight (i.e., the reciprocal of the selection probability, %

3#
(')) for 𝑖 ∈ 𝐹𝑃 

was ∑ x#
2

#∈34
*'⋅x#

2 . Using this MOS implies that clusters and individuals with larger values of 𝑟! 

(older people who have lower household income, higher environmental exposure, or larger 

probability of having disease) were sampled at higher rates to form the survey sample. 

A cohort sample of size 𝑛; = 11,250 people (75 clusters of each 150 individuals) 

was sampled independently using a similar two-stage PPS design but with different MOSs 

in the PPS sampling at stages one and two, given as ∑ 𝑟!Q!∈p1  and	𝑟!Q, respectively, 𝑎 ∈

ℝk(. As such, clusters and individuals with smaller 𝑟! were sampled at higher rates in the 
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cohort. Table 3.1 below describes the two-stage PPS cluster sampling for both cohort and 

survey sample selection.  

Table 3.1 Two-stage PPS cluster sampling applied in the simulations. 
Sample Design Measure of Size† 

(MOS) 
Inclusion Probability 

Cohort 
Stage 1- clusters selected by PPS  % 𝑟".

"∈,"
 

𝜋"
(/) =

𝑛/ ⋅ 𝑟".

∑ 𝑟𝑖𝑎𝑖∈𝐹𝑃
 

Stage 2- subjects selected by PPS 𝑟". , 𝑖 ∈ 𝑢0 

Survey  
Stage 1- clusters selected by PPS  % 𝑟"1

"∈,"
 

𝜋"
($) =

𝑛$ ⋅ 𝑟"1

∑ 𝑟𝑖𝑏𝑖∈𝐹𝑃
 

Stage 2- subjects selected by PPS 𝑟"1 , 𝑖 ∈ 𝑢0 

†𝑢5 is the set of individuals from 𝛼-th cluster (𝛼 = 1,⋯ ,𝑀). 

Under the two-stage PPS sampling described above, the true propensity models for 𝑝! =

𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 )  used by the IPSW method, and 𝑝�! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝑠, ) 

used by the PSAS and KW methods were 

 
logit{𝑝!} = 𝛽( + 𝜷%0𝒙! , and 

logit{𝑝�!} = 𝛽ß( + 𝜷�%0𝒙! 								 
(3.3.2) 

respectively, where 𝛽(  and 𝛽ß(  were the intercepts, 𝜷% = 𝑎 ⋅ 𝜸 , and 𝜷�% = (𝑎 − 𝑏) ⋅ 𝜸 

(proof in Section 3.6.4). The consistent estimates of the regression coefficients can be 

obtained by fitting the two models to the combined (𝑠; vs. weighted 𝑠,) sample (used by 

the IPSW method), and to the combined (𝑠; vs. unweighted 𝑠,) sample, respectively (proof 

in Section 3.6.5). Note that both models had the same functional form of the covariates 𝒙. 

This ensures that, the IPSW and KW methods would result in unbiased estimation under 

the true PS models with the same functional form. Otherwise, a simulation could result in 

unbiased estimation from one method, but not the other.  
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The constants 𝑎 and 𝑏 are real numbers that control the difference of the covariate 

distributions between the cohort and the survey. We let 𝑎 ⋅ 𝑏 ≤ 0 so that the cohort and 

survey oversample people with different characteristics, which generally is what occurs in 

real data. For example, population-based surveys tend to oversample minority 

subpopulations such as Hispanics, but minorities tend to be grossly under-represented in 

cohort studies. According to the cohort and survey sample selection probabilities in Table 

3.1, when 𝑎 = −1 and 𝑏 = 1, population units with larger values of 𝑟!4% (or 𝑟!) tend to be 

oversampled in the cohort (or survey). The larger |𝑎 − 𝑏|  is, the more different the 

covariate distributions are between the cohort and the survey. Results with |𝑎 − 𝑏| =

1.5	(𝑎 = −1 and 𝑏 = 0.5) are presented in Figure 3.1, Table 3.2, and Table 3.4. The results 

under an extreme case |𝑎 − 𝑏| = 3.7 are presented in Table 3.3.  

3.3.3 Evaluation Criteria 

We compared the KW estimates (𝜇̂X@) of the population disease prevalence (𝜇C>), with 1) 

the survey estimates (𝜇̂?oK), which were approximately unbiased, 2) the unweighted naïve 

cohort estimates (𝜇̂#Q!�-) ignoring the sample designs, 3) the IPSW estimates (𝜇̂=>?@), and 

4) the PSAS estimates (𝜇̂>?F?). The IPSW method used the inverse of estimated odds as 

the pseudo-weights. The PSAS method used quintiles of estimated propensity scores to 

form subclasses. For the KW method, the kernel was the symmetric triangular density on 

(-3, 3) with the bandwidth selected by Silverman’s Rule (see Section 3.6.3); other kernel 

functions and bandwidths performed similarly (see Section 3.3.6).  

We used relative bias (%RB), empirical variance (𝑉), mean squared error (MSE) 

of the estimators, defined by %RB = %
�
∑ T6(2)4T34

T34
�
y$% 100% , V = %

�4%
∑ w𝜇̂(y) −�
y$%
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%
�
∑ 𝜇̂(y)�
y$% x

N
	, and MSE = %

�
∑ ¿𝜇̂(y) − 𝜇C>À

N�
y$% , respectively, to evaluate the performance 

of the prevalence estimators, where 𝐵 = 1,000 is the number of simulations, 𝜇̂(y) is the 

estimate of the prevalence obtained from the 𝑏-th simulated samples. 

For each mean estimator, two variance estimators were evaluated, i.e., the naive TL 

estimator and the JK estimator using the variance ratio (VR), and coverage probabilities 

(CP) of the corresponding 95% confidence intervals, defined by 𝑉𝑅 =
!
6
∑ �A (2)6
27!

o
, and 𝐶𝑃 =

%
�
∑ 𝐼^𝜇C> ∈ 𝐶𝐼(y)`�
y$%  respectively, where 𝑣g(y)  is the variance estimate of 𝜇̂(y) , and 

𝐶𝐼(y) = j𝜇̂(y) − 1.96ã𝑣g(y), 𝜇̂(y) + 1.96ã𝑣g(y)k is the 95% confidence interval from the 

𝑏-th simulated samples. 

3.3.4 Results under Correctly Specified and Six Misspecified Propensity Models 

The naïve cohort prevalence, 𝜇̂#Q!�-, was biased by -42.48% (Table 3.2). Figure 3.1 shows 

the results under the correctly specified propensity model (Model T) and six misspecified 

models.  

The KW estimates, 𝜇̂X@ , tended to have the smallest mean squared error and 

maintained the nominal coverage probability the best. Although IPSW removed slightly 

more bias than KW when all variables correlated with both sample selection and the 

outcome 𝑦 were included in the model, the estimates were much more variable. The bias 

reduction and variance of 𝜇̂=>?@  were sensitive to propensity model specification. The 

PSAS estimates, 𝜇̂>?F?, had the smallest variance, but also the smallest bias reduction. The 

JK variance estimates were approximately unbiased for all three methods. The naïve TL 
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method underestimated the variances of the IPSW estimates by 16%-26%, and the 

variances of 𝜇̂>?F? or 𝜇̂X@ by <10% (Table 3.2). 

Figure 3.1 Simulation results from 1,000 simulated cohorts and survey samples with each cohort 
and survey sample fitted to the correct propensity model and six misspecified propensity 

models†. 

 
†The labels of the 𝑥-axises represent the propensity models as follows 
Model 𝑇:   true model.              logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧.  
Model 𝑈8: underfitted model    logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑧;  
Model 𝑈9: underfitted model.   logit(𝑝) ∼ 𝑎𝑔, 𝐸𝑛𝑣;  
Model 𝑀:  misspecified model logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣,𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥;  
Model 𝑂8: overfitted model      logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝;  
Model 𝑂9: overfitted model      logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥;  
Model 𝑂:: overfitted model      logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝑢𝑟𝑏. 
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 Models 𝑈% and 𝑈N were incorrectly under-fitted: Model 𝑈% did not include ℎℎ_𝑖𝑛𝑐 

that was uncorrelated with disease status 𝑦 , while Model 𝑈N  also excluded 𝑧  that was 

highly predictive of 𝑦. The bias of three pseudo-weighted estimates under Model 𝑈% were 

all close to the bias under Model 𝑇 (the true model). However, the empirical variance of 

𝜇̂=>?@  was dramatically reduced because the missing variable ℎℎ_𝑖𝑛𝑐 was uncorrelated 

with the outcome 𝑦 (similar to the findings in Stuart, 2010). Also, the empirical variances 

of 𝜇̂>?F?, and 𝜇̂X@ were slightly smaller under Model 𝑈% than the variances under Model 

𝑇. In contrast, under Model 𝑈N with missing 𝑧, all three estimates had higher biases but 

smaller variances, especially 𝜇̂=>?@. 

Model 𝑀 did not include the highly predictive variable 𝑧 along with ℎℎ_𝑖𝑛𝑐 that 

were in Model 𝑇, but added two extra variables, being Hispanic and sex, which were 

predictive of 𝑦 . Comparing results under Models 𝑈N  and 𝑀 , we observed that adding 

additional predictors of the outcome 𝑦  in the under-fitted model reduced, but did not 

eliminate, the bias. Adding these extra variables increased the variance of 𝜇̂=>?@ but did 

not affect the variances of 𝜇̂>?F? and 𝜇̂X@. 

Models 𝑂% , 𝑂N , and 𝑂z  were incorrectly over-fitted, including unnecessary 

variables. Model 𝑂% and 𝑂N had one (being Hispanic) and two (sex and being Hispanic) 

additional predictors of 𝑦 , respectively. Model 𝑂z  included on extra variable (𝑢𝑟𝑏 ) 

unrelated to 𝑦 . Under these three models, the bias reduction was similar for all three 

estimates compared to the bias reduction under the true model respectively. However, 

adding extra variables resulted in higher variance of 𝜇̂=>?@. Though the variances of 𝜇̂>?F? 

and 𝜇̂X@ . did not increase, the JK variance estimates were slightly inflated when the 
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propensity model included covariate(s) unrelated to the propensity modeling or the 

outcome variable.  

Table 3.2 Simulation results from 1,000 simulated cohorts and survey samples with each cohort 
and survey sample fitted to the correct propensity score model and six misspecified propensity 

score models. 

Model 
Estimate 
(ℎ × 102) 

%RB 
 

V 

(× 103) 
VR  

(TL) 
VR 

(JK) 
CP 

(JK) 
MSE 

(× 103) 

 𝜇̂4."56 -42.48 2.39 0.19 NA NA 168.45 
 𝜇̂789 -0.11 6.42 1.06 1.06 0.96 6.42 
Model 𝑇 (True model): logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧 
 𝜇̂:'7; -0.19 7.54 0.76 0.99 0.95 7.54 
 𝜇̂'7<7 -9.37 5.05 0.93 1.03 0.71 13.12 
 𝜇̂=;(9.43) -0.91 6.00 0.95 1.02 0.94 6.07 
Model 𝑈> (Underfitted model 1): logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑧 
 𝜇̂:'7; -0.36 6.67 0.78 0.95 0.94 6.68 
 𝜇̂'7<7 -9.40 4.90 0.92 1.02 0.70 13.02 
 𝜇̂=;(9.90) -1.43 5.58 0.93 0.98 0.93 5.76 
Model 𝑈* (Underfitted model 2): logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣 
 𝜇̂:'7; -5.10 5.71 0.84 0.96 0.85 8.10 
 𝜇̂'7<7 -10.85 4.88 0.90 1.03 0.65 15.69 
 𝜇̂=;(10.85) -2.68 5.49 0.92 0.99 0.91 6.14 
Model 𝑀 (Underfitted + Overfitted model): logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥 
 𝜇̂:'7; -4.59 5.96 0.81 0.96 0.87 7.89 
 𝜇̂'7<7 -9.23 4.91 0.92 1.07 0.73 12.74 
 𝜇̂=;(10.14) -1.72 5.54 0.92 1.01 0.93 5.81 
Model 𝑂> (Overfitted model 1): logit(𝑝) ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝 
 𝜇̂:'7; -0.02 7.66 0.75 0.99 0.95 7.65 
 𝜇̂'7<7 -9.31 5.01 0.94 1.05 0.71 12.98 
 𝜇̂=;(9.42) -0.76 6.01 0.96 1.04 0.95 6.06 
Model 𝑂* (Overfitted model 2): logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥 
 𝜇̂:'7; 0.13 7.82 0.74 0.99 0.95 7.81 
 𝜇̂'7<7 -9.30 5.02 0.93 1.06 0.71 12.97 
 𝜇̂=;(9.41) -0.71 6.03 0.96 1.05 0.95 6.07 
Model 𝑂2 (Overfitted model 3): logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝑢𝑟𝑏 
 𝜇̂:'7; -0.10 7.66 0.75 0.99 0.95 7.65 
 𝜇̂'7<7 -9.22 5.02 0.94 1.09 0.73 12.84 
 𝜇̂=;(9.38) -0.79 5.96 0.97 1.08 0.95 6.01 

 

We also considered the situation where the propensity model includes the variable of 

interest, 𝑦 as the single predictor, though it usually does not occur in practice. The KW and 
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the IPSW methods can exactly the same estimator as the survey sample estimator 

regardless the correct propensity model (proof in Section 3.6.6).  

3.3.5 Results under Extreme Selection Probabilities 

As noted in Section3.3.2, we changed values of 𝑎 and 𝑏 to -2.5 and 1.2, respectively so 

that the cohort was an extremely non-representative sample of the finite population. Some 

of the selection probabilities for the cohort sample were close to zero due to extremely 

small MOS of 𝑟!Q . For example, the minimum selection probability was as small as 

7.44 × 104%N, corresponding to an extremely large weight. Such large weights increased 

the variability of the pseudo-weighted estimates (Table 3.3). As a result, 𝜇̂=>?@  

Table 3.3 Simulation results from 1,000 simulated cohorts and survey samples with the true 
propensity model fitted to each cohort and survey sample under extreme selection probabilities. 

Method %RB 𝑽	(× 10(3) MSE (× 10(3) VR (TL) VR (JK) CP (JK) 
𝜇̂4."56 -71.02 1.17 465.26 0.21 NA NA 
𝜇̂789 -0.69 8.36 8.40 1.06 1.06 0.95 
𝜇̂:'7; 7.60 392.29 397.24 0.29 1.56 0.88 
𝜇̂'7<7 -35.16 5.88 119.60 0.90 1.78 0.09 
𝜇̂=; -6.85 33.31 37.59 0.97 2.40 0.96 

 

had an inflated variance, and the largest MSE among the three pseudo-weighted estimates. 

In contrast, 𝜇̂X@  had much smaller MSE than the others. The variances for all three 

estimates were overestimated by the JK method due to small sample bias that was likely 

induced mainly by highly variable weights.  

3.3.6 Choice of Kernel and Bandwidth  

We compared 𝜇̂X@ using two kernel functions: (1) a standard normal density kernel, and 

(2) a truncated triangular density kernel with support on (-3, 3). For either kernel function, 

the bandwidth was selected assuming a standard normal density kernel function using five 
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methods: Silverman method (Silverman, 1986), Scott method (Scott, 1992), unbiased 

cross-validation (Scott & Terrell, 1987), biased cross-validation (Scott & Terrell, 1987), 

and Sheather & Jones’ method (Sheather & Jones, 1991).  

Table 3.4 Simulation results from 1,000 simulated cohorts and survey samples, comparing effects 
of two kernel functions and five bandwidth selection methods†  

Kernel 
Function 

Bandwidth  
(Method) 

%RB 
 

V 

(× 10(3) 
VR 

(TL) 
VR 

(JK) 
CP 

JK 
MSE 

(× 10(3) 
 𝜇̂4."56 -42.48 2.39 0.19 -- -- 168.45 
 𝜇̂789 -0.11 6.42 1.06 1.06 0.96 6.42 

𝑁(0, 1)       
 0.00987 (Silv)    -0.26 6.18 0.96 1.08 0.95 6.18 
 0.01162 (Scott)  -0.42 6.13 0.96 1.05 0.95 6.14 
 0.00188 (UCV)  0.05 6.61 0.96 4.67 1.00 6.61 
 0.00775 (BCV)  -0.14 6.28 0.95 1.23 0.96 6.28 
 0.00149 (S&J)    0.03 6.70 0.96 7.60 1.00 6.79 

𝑇(−3, 3, 0)       
 0.00987 (Silv)j   -0.75 6.02 0.96 1.04 0.95 6.07 
 0.01162 (Scott)  -0.94 5.99 0.96 1.02 0.95 6.06 
 0.00188 (UCV)  -2.00 6.22 0.93 3.55 1.00 6.58 
 0.00775 (BCV)  -0.70 6.08 0.95 1.14 0.96 6.12 
 0.00149 (S&J)    -2.52 6.23 0.93 5.74 1.00 6.81 

†The fitted propensity model is logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥, which includes two extra 
covariates 𝐻𝑖𝑠𝑝 and 𝑠𝑒𝑥 compared to the true model. The bandwidth selection methods include Silverman’s 
rule of thumb (Silv), Scott’s method (Scott), unbiased cross validation (UCV), biased cross validation (BCV), 
and S&J’s method (S&J). Notice: these results are slightly different from those in Table 3.2 under Model O2 
because the bandwidths were different.  
 

The results of bandwidth selection in Table 3.4 were consistent with the existing literature 

(Terrell & Scott, 1985; Jones et al. 1996): the Silverman’s and Scott’s methods tend to give 

larger bandwidths than the other three. Based on the simulation results, either of these two 

methods is recommended because the other methods tend to result in smaller bandwidths 

that increase the empirical variance and inflate the JK variance estimation due to more 

variable pseudo-weights across replicates. With the same bandwidth, it is observed that the 

standard normal density kernel, compared to the triangular density kernel, resulted in 

smaller bias but larger variances of 𝜇̂X@. This is because the standard normal density kernel 

uses more extreme values for the distances than the truncated triangular density kernel. 
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Hence, the combination of triangular density kernel and Silverman’s bandwidth appears to 

behave the best with regard to its overall MSE reduction. 

3.4 Data Analysis: The NIH-AARP Cohort Study 

We estimated (1) prevalence of eight self-reported diseases, (2) prospective nine-year rates 

of all-cause mortality and (3) all-cancer mortality for people aged 50 to 71 using the US 

National Institutes of Health and the American Association of Retired Persons (NIH-

AARP) Diet and Health Study. These prevalences and mortalities were also available in 

the US National Health Interview Survey (NHIS), serving as the gold standard that allowed 

us to examine how much bias in the NIH-AARP estimates can be corrected by the pseudo-

weighting methods in practice. 

The NIH-AARP cohort recruited 567,169 AARP members from 1995-1996, aged 

50 to 71 years, who resided in California, Florida, Pennsylvania, New Jersey, North 

Carolina, or Louisiana, or in metropolitan Atlanta, Georgia, and Detroit (NIH-AARP, 

2006) in the US. The NIH-AARP cohort is linked with Social Security Administration 

Death Match File and National Death Index (NDI) (NCHS 2013) by standard record 

linkage methods up to 2011 (NIH-AARP 2006), providing mortality and cause of death 

ascertainment. AARP members were mailed questionnaires, but only 17.6% returned 

questionnaires, raising further questions about the representativeness of the NIH-AARP 

cohort for the US population. 

For the reference survey, we used the NHIS, a cross-sectional household interview 

survey of the civilian noninstitutionalized US population. To make the two samples 

comparable, we chose the contemporaneous 1997 NHIS respondents aged 50 to 71 years 

(9,306 participants). The 1997 NHIS has a multistage stratified cluster sample design (see 
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Section 2.2.2) with 339 strata of each consisting of two sampled PSUs (NCHS, 2000). 

NHIS was also linked to NDI through 2006 for mortality information (NCHS 2009). All 

the links were treated as true and no linkage error were considered in this analysis. 

After harmonizing variables between NIH-AARP and NHIS, the distribution of 

common variables and variables of interests are described in Table 3.5 and Table 3.6 

respectively. 

Table 3.5 Distribution of selected common variables in NIH-AARP and NHIS 
 NIH-AARP (1995-96)  NHIS (1997) 
  𝑛 %  𝑛 % weighted 𝑛 weighted % 
Total 529708  100  9306  100 49761895 100 
DEMOGRAPHIC           
Age in years           
  50-54 69207 13.07  2637 28.34 15064732 30.27 
  55-59 117417 22.17  2091 22.47 11480359 23.07 
  60-64 148726 28.08  1861 20.00 9995586 20.09 
  65-69 174567 32.96  1944 20.89 9474745 19.04 
  70-71 19791 3.74  773 8.31 3746473 7.53 
Gender           
  Male 314269 59.33  4059 43.62 23528092 47.28 
  Female 215439 40.67  5247 56.38 26233803 52.72 
Race           
  NH-White 485486 91.65  6693 71.92 39565812 79.51 
  NH-Black 19576 3.70  1249 13.42 4758442 9.56 
  Hispanic 9628 1.82  1055 11.34 3468003 6.97 
  NH-Other 15018 2.84  309 3.32 1969638 3.96 
Marital Status           
  Married or living as married 366327 69.16  5381 57.82 35937686 72.61 
  Widowed 58296 11.01  1365 14.67 4765959 9.58 
  Divorced or Separated 79545 15.02  1919 20.62 5613727 13.26 
  Never married 25540 4.82  641 6.89 2267497 4.56 
SOCIOECONOMIC STATUS           
Education           
  High school or less 200498 37.85  5382 57.83 27564686 55.39 
  Post-high school/some college 123325 23.28  2052 22.05 11440010 22.99 
  College graduate/postgraduate 205885 38.87  1872 20.12 10757199 21.62 
HEALTH BEHAVIOR           
BMI         
  <18.5 4233 0.80  130 1.40 654914 1.32 
   18.5-24.9 182946 34.54  3208 34.47 17143743 34.45 
  >=25 342529 64.66  5968 64.13 31963238 64.23 
Smoking (quit years or dose)           
  Never   184416 34.81  4026 43.26 21264038 42.73 
  Former, quit>=10 years 213657 40.33  2235 24.02 12747525 25.62 
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  Former, quit<10 years 69108 13.05  935 10.05 4926262 9.90 
  Current, <=1 pack/day 40396 7.63  1644 17.67 8215497 16.51 
  Current, >1 pack/day 22131 4.18  466 5.01 2608573 5.24 
Physical Activity           
  <3 times/week 286822 54.15  7775 83.55 40930891 82.25 
  >=3 times/week 242886 45.85  1531 16.45 8831004 17.75 
Health Status (Self-reported)           
  Excellent 87439 16.51  1837 19.74 10954418 22.04 
  Very good 191114 36.08  2578 27.70 14943138 30.06 
  Good 182621 34.48  2664 28.63 14738240 29.65 
  Fair 58741 11.09  1273 13.68 6597770 13.27 
  Poor 9793 1.85  540 5.80 2471456 4.97 

 

Of note is the importance of self-reported health status, a variable often excluded 

in epidemiologic analyses as being a proxy for disease, but which turns out to be strongly 

predictive of the propensity to be selected in NIH-AARP versus NHIS. This is expected 

because cohorts often recruit healthier people (Pinsky et al., 2007; Fry et al., 2017).  

 We used a stepwise procedure based on the AIC to choose the propensity model 

fitted to the combination of the NIH-AARP cohort and unweighted NHIS sample, which 

initially included all main effects of five common demographic characteristics (age, sex 

Table 3.6 Distribution of self-reported diseases at baseline and nine-year mortality in NIH-AARP 
and NHIS 

 NIH-AARP (1995-96)  NHIS (1997) 
  𝑛 %  𝑛 % weighted 𝑛 weighted 
Total 529708   9306   49761895 % 
Self-Reported Diseases           
  Diabetes 48471 9.15  1064 11.43 5215661 10.48 
  Emphysema 14530 2.74  325 3.49 1794778 3.61 
  Stroke 11272 2.13  377 4.05 1879697 3.78 
  Heart Disease 74532 14.07  660 7.09 3608156 7.25 
  Stroke or Heart Disease 81468 15.38  930 9.99 4920432 9.89 
  Colon Cancer 4797 0.91  67 0.72 344287 0.69 
  Breast Cancer (Female) 10285 4.77  187 3.56 903296 3.44 
  Prostate Cancer (Male) 10154 3.23  83 2.04 493470 2.10 
Nine-Year Mortality           
All-Cause Mortality           
  Overall 65732 12.41  1324 14.89 6794116 13.67 
  Age 50-54 2863 4.85  167 6.65 945836 6.27 
  Age 55-59 8226 7.19  215 10.73 1116271 9.71 
  Age 60-64 16489 11.39  296 16.55 1563759 15.66 
  Age 65-72 38154 18.04  646 24.97 3168250 24.09 
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All-Cancer Mortality              
  Overall 42458 8.02  499 5.61 2688875 5.41 
  Age 50-54 2366 4.01  72 2.87 61728 2.83 
  Age 55-59 6607 5.77  79 3.94 56952 3.92 
  Age 60-64 12181 8.41  119 6.65 67972 6.80 
  Age 65-72 24641 11.65  229 8.85 81622 8.61 
  Male 29775 9.47  267 6.82 1540510 6.56 
  Female 16020 7.44  232 4.66 1148365 4.38 
  Age 50-54, male 1409 4.27  39 3.38 254351 3.47 
  Age 55-59, male 4072 6.12  48 5.36 286824 5.36 
  Age 60-64, male 7758 9.10  62 7.52 362227 7.41 
  Age 65-72, male 16536 12.77  118 11.32 637110 10.78 
  Age 50-54, female 957 3.68  33 2.43 172198 2.23 
  Age 55-59, female 2535 5.29  31 2.80 164006 2.67 
  Age 60-64, female 4423 7.43  57 5.91 316953 6.22 
  Age 65-72, female 8105 9.89  111 7.18 495208 6.84 

 

race/ethnicity, etc.), three lifestyle factors (smoking status, physical activities, and body 

mass index [body weight (kg)/height (m) squared]), self-reported health status, and 31 two-

way interactions. Table 3.7 below shows the final model estimated by fitting the propensity 

model with (for IPSW) and without (for PSAS and KW) NHIS sample weights. Note that 

all the following analyses used the model described in Table 3.7. 

Table 3.7 Results for Main effects of the fitted propensity model with (𝜷_) or without (𝜷̀_) NHIS 
sample weights† 

 𝜷̀_ (unweighted sample)  𝜷_ (weighted sample) 

Coefficients: Estimate Std. Error  Estimate Std. Error 
Age -0.045 0.016**  -0.004 0.022 
Sex (ref: male) 
  Female -0.69 0.18***  -1.28 0.28*** 
Race/Ethnicity (ref: NH-White) 
  NH-Black -2.22 0.45***  -1.61 0.82* 
  Hispanic -6.20 0.51***  -3.06 1.06** 
  NH-Other -5.29 0.801  -2.91 1.19* 
Marital Status (ref: married or living as married) 
  Widowed   2.35 0.46***    0.47 0.70 
  Divorced or Separated -1.08 0.37**  -1.05 0.59. 
  Never married -1.02 0.57.  -0.36 0.96 
Education level -0.53 0.20**  -0.31 0.29 
BMI -0.15 0.027***  -0.11 0.043* 
Smoking (ref: Never) 
  Former, quit>=10 years   1.32 0.3993***    1.48 0.60* 
  Former, quit<10 years   0.31 0.5496    0.41 0.84 
  Current, <=1 pack/day -3.04 0.4655***  -1.46 0.79. 
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  Current, >1 pack/day -3.75 0.7680**  -2.64 1.06* 
Physical Activity (ref: <3 times/week) 
  >=3 times/week -1.62 0.4337***  0.15 0.54 
Self-reported health status   0.93 0.1557***  0.51 0.23* 

†The 31 pairwise interactions included in the model are age:race/ethnicity, age:marital status, age:education, 
age:bmi, age:smoking, age:physical activities, age:health status, sex:race/ethnicity, sex:matrital status, 
sex:education, sex:bmi, sex:smoking, sex:physical activities, sex:health status, race/ethnicity:marital status, 
race/ethnicity:education, race/ethnicity:smoking, race/ethnicity:physical activities, race/ethnicity:health 
status, marital status:education, marital status:physical activities, marital status:health status, education:bmi, 
education:smoking education:physical activities,, education:health status, bmi:smoking, bmi:physical 
activities, smoking:physical activities, smoking:health status, physical activities:health status. The magnitude 
of the p-values are represented by ‘***’ p-value< 0.001; ‘**’ p-value< 0.01; ‘*’ p-value< 0.05; ‘.’ p-value< 
0.1. 
 

 Figure 3.2 plots the distributions of the estimated propensity score on the logit scale 

in the unweighted NIH-AARP cohort, and the three pseudo-weighted NIH-AARP cohorts 

by the IPSW, PSAS and KW methods, compared to the sample-weighted NHIS sample. 

The percentage of overlapped propensity scores in the data from NHIS and NIH-AARP 

exceeded 99.9%. All three pseudo-weighted distributions of propensity scores were close 

to the weighted NHIS sample, among which KW was the closest, followed by IPSW with 

Figure 3.2 Comparison of Distributions of Estimated Propensity Scores on Logit Scale 
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some right-skewness, and PSAS with excess kurtosis. Because the KW and PSAS methods 

fitted a propensity model to the unweighted sample, their estimated propensity scores were 

close to 1 due to the predominance of cohort units in the combined cohort-survey sample. 

In contrast, the IPSW method used the propensity model to estimate NIH-AARP cohort 

membership in the combined cohort and the weighted NHIS sample (representing the 

underlying US population), resulting in small propensities and thus large pseudo-weights. 

We used the relative difference from the NHIS estimates (𝜇#R=?): %𝑅𝐷 = (𝜇̂ −

𝜇#R=?)/𝜇#R=? ⋅ 100% , and the percent of bias reduction from the naïve NIH-AARP 

estimates ( 𝜇̂#Q!�- ): %𝐵𝑅 = (𝜇̂#Q!�- − 𝜇̂)/(𝜇̂#Q!�- − 𝜇#R=?) ⋅ 100%  to evaluate the 

performance of the estimators, where 𝜇̂ is one of the IPSW (𝜇̂=>?@), PSAS (𝜇̂>?F?), and 

KW (𝜇̂X@) estimates.  

Table 3.8 shows the results for estimating prevalences eight self-reported diseases. 

The naïve NIH-AARP cohort disease prevalence estimates, 𝜇̂FF&>, were biased on average  

Table 3.8 Estimated population prevalences of eight self-reported diseases at baseline using four 
methods† 

 
Self-reported Disease 

 
𝜇4?:7(%) 

%RD %BR 
𝜇̂4."56 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 

Diabetes 10.48 -12.70 -12.48 -17.64   -8.94 1.74 -38.86 29.61 
Emphysema   3.61 -24.03 -29.79 -25.03 -28.25 -23.99 -4.16 -17.55 
Stroke   3.78 -43.61 -45.87 -47.05 -42.85 -5.18 -7.89 1.75 
Heart Disease   7.25  94.05  45.13  43.41  46.09 52.01 53.84 50.99 
Stroke or Heart Disease   9.89  55.54  19.72  18.25  20.84 64.49 67.13 62.48 
Breast Cancer (Female)   3.44  38.53  16.19  21.51  17.75 57.98 44.19 53.92 
Colon Cancer   0.69  31.52    3.91    5.91   3.88 87.61 81.24 87.69 
Prostate Cancer (Male)   2.10  54.00  18.05  11.80  11.50 66.58 78.15 78.70 
Average   44.25  23.89  23.83  22.51 46.00 46.16 49.12 

†The propensity model included nine main effects of age, sex, race/ethnicity, marital status, education, 
BMI, smoking, physical activities, and self-reported health status, as well as 31 interactions. The estimates 
closest to the corresponding NHIS estimates are in bold. 
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by ~44%, assuming the NHIS estimates as the truth. All three weighting methods removed 

roughly half the bias across the eight diseases. The KW method removed slightly more bias 

than the IPSW and PSAS methods, including a ~88% bias reduction for colon cancer, and 

~79% bias reduction for prostate cancer. However, for all three methods, there was little 

bias reduction for stroke, and the bias increased for emphysema, possibly due to lack of 

covariates predictive of cohort membership, or accuracy of self-reported disease status 

(e.g., measurement errors). 

Because self-reported diseases had potential measurement errors, we also examined 

nine-year all-cause mortality as it was obtained from linkage of NIH-AARP (and NHIS) to 

the NDI (Table 3.9). Surprisingly, the naive NIH-AARP estimate of nonage-specific all-

cause mortality had only ~9% bias. However, stratifying mortality by age revealed that the 

NIH- 

Table 3.9 Estimated all-cause nine-year mortality (overall, and by age) using three PS-based 
methods† 

  
𝜇4?:7(%) 

%RD %BR 
Age Group 𝜇̂4."56 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 

  Overall 13.67 -9.21 -16.9 -15.37 -15.51 -83.81 -66.91 -68.39 
     50-54   6.27 -22.64 -19.6 -23.87 -18.00 13.28 -5.44 20.50 
     55-59   9.71 -26.03 -20.6 -22.22 -18.90 20.77 14.63 27.37 
     60-64 15.66 -27.28 -22.5 -21.47 -19.95 17.68 21.29 26.87 
     64+ 24.09 -25.09 -18.7 -17.95 -17.07 25.57 28.44 31.95 

  Average  25.26  20.3  21.38  18.48 19.45 15.36 26.83 
†The estimates closest to the corresponding NHIS estimates are in bold. 

AARP estimates had a ~25% bias in each age group, which was reduced to 18% by KW 

(26% bias reduction), the most reduction among the three methods. Thus, the all-cause 

mortality was confounded by the age distribution: NIH-AARP oversampled older people 

(Table 3.5), which artificially inflated its overall mortality rate and offset the lower age-

specific mortality in the cohort. 
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The results for all-cancer nine-year mortality differed from all-cause mortality 

(Table 3.10). The KW estimate had lowest bias for the overall all-cancer mortality (30% 

bias reduction). When stratifying cancer mortality by age, the PSAS method had slightly 

more bias reduction, and when stratifying by sex, the KW method reduced more bias. When  

Table 3.10 Estimated all-cancer nine-year mortality (overall, and by age and/or sex) using three 
PB-based methods† 

  
𝜇4?:7(%) 

%RD %BR 
Group 𝜇̂4."56 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 𝜇̂:'7; 𝜇̂'7<7 𝜇̂=; 

  Overall   5.41 48.25 35.86 35.34 33.98 25.67 26.76 29.57 
     50-54   2.83 41.76 41.63 32.13 40.87 0.31 23.05 2.13 
     55-59   3.92 47.11 42.12 40.92 42.56 10.59 13.14 9.65 
     60-64   6.80 23.69 21.10 20.40 20.63 10.90 13.88 12.88 
     64+   8.61 35.37 28.48 26.30 26.31 19.48 25.64 25.62 

  Average  36.98 33.33 29.94 32.59 9.86 19.05 11.86 
     Male   6.56 44.47 32.13 29.38 29.63 27.76 33.94 33.37 

     Female   4.38 69.74 42.38 46.14 42.16 39.24 33.85 39.55 
  Average  57.11 37.25 37.76 35.90 34.77 33.88 37.14 

     50-54, male   3.47 23.28 25.96 18.96 26.79 -11.48 18.58 -15.05 
     55-59, male   5.36 14.23 22.24 16.24 22.82 -56.21 -14.09 -60.30 
     60-64, male   7.41 22.85 30.98 31.37 30.88 -35.57 -37.30 -35.17 
     64+,    male 10.78 18.40 21.70 22.83 21.39 -17.93 -24.08 -16.26 

     50-54, female   2.23 65.31 67.15 53.00 63.91 -2.82 18.85 2.15 
     55-59, female   2.67 97.87 77.42 84.58 77.83 20.89 13.58 20.47 
     60-64, female   6.22 19.41 13.37 13.08 12.91 31.13 32.60 33.50 
     64+,    female   6.84 44.75 34.37 34.08 33.67 23.20 23.84 24.75 

  Average  38.26 36.65 34.27 36.27 4.22 10.44 5.20 
†The estimates closest to the corresponding NHIS estimates are in bold. 

we categorized mortality by age and sex, different weighting methods removed the most 

bias in different categories without clear patterns, including the naïve NIH-AARP 

estimates having the least bias in three of the categories. Part of the reason was the small 

sample sizes of all-cancer deaths by age and sex in the NHIS sample. In addition, cancer 

mortality was not as well predicted as all-cause mortality from the covariates in the 
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propensity model, thereby reducing the effectiveness of bias correction for all three 

weighting methods.  

3.5 Summary 

The KW approach, as a PS-based matching method, is proposed to improve external 

validity of cohort analyses, using a representative survey sample as a reference of the target 

population. In brief, the KW approach produces a pseudo-weight for each cohort member 

in three steps: (1) estimate the PS for each unit in the combined cohort and survey sample, 

(2) fractionally distribute the sample weight of each survey sample unit to all cohort units 

based on their similarity measure by the kernel smoothed distance in estimated PS, and (3) 

create the pseudo-weights for the cohort units as the sum of the sample weights they 

obtained from all the survey sample units. The sum of the cohort pseudo-weights equals 

the sum of survey weights. The KW method provides a consistent estimator of population 

mean/prevalence under the true propensity model and some standard assumptions.  

Unlike the naïve TL method, our JK variances take account for all sources of 

variability in creating pseudo-weights. The three PS-based methods (IPSW, PSAS, and 

KW) were applied to reduce bias in prevalence estimates from the NIH-AARP cohort using 

the weighted 1997 NHIS sample as the reference. The KW method generally removed 

more bias than the IPSW or PSAS method, illustrating the potential benefits of the method. 

In a few cases, small samples or possibly lack of factors predictive of cohort membership 

and outcome diseases could increase bias, illustrating practical limitations.  

In simulations, the KW estimates had smaller mean squared errors and better 

confidence interval coverages than the IPSW and PSAS estimates under both properly- and 

mis-specified propensity models that we considered. The IPSW estimates had the lowest 
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bias among the three pseudo-weighted estimates when the propensity model was properly 

specified. However, the IPSW method tended to produce extreme weights that inflate 

variances, as noted previously (Stuart, 2010). Furthermore, the bias reduction and variance 

of the IPSW estimator can be sensitive to propensity model specification. PSAS is a special 

case of the KW method, with a uniform density kernel function in each subclass of 

estimated propensity scores that generally oversmoothed the pseudo-weights. Thus, PSAS 

tends to produce the least variable weights, resulting in the smallest variances, but also the 

least bias reduction (also noted by Valliant & Dever, 2011).  

The naïve TL variances worked well for the KW and PSAS estimates but failed for 

the IPSW estimates. The naïve TL method substantially underestimated the variance of the 

IPSW estimates by ignoring variability due to estimating propensity scores. Since the 

IPSW method fits the propensity model to the combined sample of cohort and weighted 

survey sample, the estimated model coefficients and propensity scores can have large 

variance due to variable survey sample weights as well as the naturally high variability 

among cohort weights of 1 and the survey weights (Li et al., 2011). In contrast, the PSAS 

and KW methods fit a propensity model to the unweighted sample, which yields less 

variable estimates of PSs and more effective pseudo-weighted estimates of finite 

population means/prevalences. The JK variance estimation is recommended for the IPSW 

estimates. 

 For the NIH-AARP cohort, the KW method reduced bias by 49% on average for 

estimating the prevalences of eight self-reported diseases (3% more than IPSW and PSAS 

methods). For nine-year nonage-specific all-cause mortality, the naïve cohort estimate had 

the smallest bias. However, mortality is strongly confounded by age. For age-specific 



 84 

mortality rates, the KW estimates had a greater averaged bias reduction (27%) than the 

IPSW (19.45%) and PSAS (15.36%) estimates. Thus, the better performance of the naïve 

cohort estimator for nonage-specific mortality was caused by disproportionately older 

volunteer recruitment in the NIH-AARP cohort.   

For overall nine-year all-cancer mortality, KW reduced bias the most (~30% 

reduction). But when stratifying on key confounders (age and sex), no one method worked 

best for all categories, and PSAS had slightly higher averaged bias reduction than the other 

two methods across the eight age by sex categories. This result could be due to small 

sample bias (few cancer deaths in each age by sex category of NHIS sample) or the lack of 

factors predictive of all-cancer mortality in the propensity model. 

The KW method was developed to reduce bias when estimating population 

prevalence of outcome variables available in cohorts but not in surveys, such as novel 

molecular or genetic risk factors. In our data example, we purposely selected outcome 

variables available in both cohort and survey, allowing for quantifying the relative bias by 

assuming the survey estimates as the gold standard. However, survey estimates can vary 

from the truth due to sampling errors, and non-sampling errors such as undercoverage and 

nonresponse bias. Unfortunately, there are few examples where a census of reported 

diseases is available in the United States. 

 The simulations provide guidance for choosing propensity model predictors, the 

kernel function, and bandwidth for using the KW method. For the propensity model, Stuart 

(2010) suggested including all variables that may be associated with treatment assignment 

and the outcomes to reduce bias, but for small samples, it is useful to prioritize variables 

related to the outcome to control the variance (Brookhart et al., 2006). The simulations in 
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the dissertation agree that adding extra predictors of the outcome in the propensity model 

reduces bias, but at a cost of potential increase in variance, especially for the IPSW method. 

We suggest that the propensity models aim for maximal bias reduction by including all 

variables distributed differently in the cohort and the survey sample, all significant 

interaction terms, and all variables predictive of the outcome. Then, to control variance, 

we found that the triangular kernel effectively removed the influence of extreme 

imprecisely estimated weights for the KW method. Finally, we found that the Silverman 

and Scott bandwidth selection methods provided bias reduction yet controlled variance in 

our simulations. 

3.6 Proofs 

3.6.1 Proof of Theorem 3.1 (Consistency of the KW Estimate of 𝑭𝑷 Mean) 

Suppose in the superpopulation, variable (𝑦, 𝑝(𝒙)) has the joint distribution function 𝐹. 

The finite population consists of (𝑦%, 𝑝%),⋯	(𝑦# , 𝑝#) with (𝑦g , 𝑝g) being a realization of 

a pair of random variable (𝑦, 𝑝), and with (𝑦%, 𝑝%),⋯	(𝑦# , 𝑝#) being independent and 

identically distributed (i.i.d) from 𝐹. The cohort (𝑦%, 𝑝%),⋯	(𝑦I, 𝑝I) and survey sample 

(𝑦%, 𝑝%),⋯ (𝑦*, 𝑝*) are two random samples of the finite population. 

Under the conditions (a), (b) and (c), it can be proved by applying Theorem 2.1 

and 3.1 in Noda (1976) that 

𝑦∗ =
∑ 𝐾 j

𝑝 − 𝑝"
ℎ k ⋅ 𝑦""∈,%

∑ 𝐾 j
𝑝 − 𝑝"
ℎ k"∈,%

>
→ 𝐸(𝑦|𝑝), 

and 
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 𝐸{|𝑦∗ − 𝐸(𝑦|𝑝)|} → 0, (3.6.1) 

Denote 𝑦g∗ =
∑ XG

;<=;+
) H⋅.++∈'%

∑ XG
;<=;+

) H+∈'%

, 𝜇g = 𝐸(𝑦|𝑝g) for 𝑘 = 1,⋯ ,𝑁 in the finite population. By 

applying (3.6.1),  

 𝐸(|𝑦g∗ − 𝜇g|) → 0, (3.6.2) 

Let 𝑌_∗ = 𝑁4% ∑ 𝑦g∗#
g$%  and 𝜇̅g = 𝑁4%∑ 𝜇g#

g$%  in the finite population, and then it 

follows 𝐸(|𝑌_∗ − 𝜇̅g|)
>
→0 as 𝑁 → ∞ based on (3.6.2). By Law of Large Numbers, 𝜇̅g

>
→𝜇. 

Therefore, 

 𝐸|𝑌_∗ − 𝜇| → 0, (3.6.3) 

as 𝑁 → ∞ and 𝑛; → ∞.  

Under condition (d), it follows that 𝑉𝑎𝑟(𝑌_∗ − 𝜇) → 0 as 𝑛; → ∞ and 𝑁 → ∞. Hence, by 

Chebyshev's inequality we have  

 𝑌_∗ − 𝜇
>
→0. (3.6.4) 

Denote the Hajek estimator (Hajek 1971) for 𝑌_∗  as 𝑌_�∗ = %
#M>?@

∑ 𝑑!𝑦!∗!∈,' . According to 

Isaki and Fuller (1982), with condition (e)	we have 

 𝑌_�∗ = 𝑌_∗ + 𝑂5 µ𝑛,
4%N¸, (3.6.5) 

as 𝑁 → ∞, 𝑛, → ∞.  

 By (3.6.4) and (3.6.5), 

 𝑌_�∗
>
→𝜇. (3.6.6) 

By the Law of Large Numbers,  

 𝜇C> = 𝜇 + 𝑂5 ¯𝑁
4%N±, (3.6.7) 
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where 𝜇C> = %
#
∑ 𝑦!!∈C>  is the finite population mean. (3.6.6) and (3.6.7) together implies  

 𝑌_� ∗ − 𝜇C>
>
→0. (3.6.8) 

(3.6.3) and (3.6.5) together implies  

 𝐸j𝑌_�∗k → 𝜇, (3.6.9) 

as 𝑁 → ∞, 𝑛, → ∞, and 𝑛; → ∞. 

Notice that by applying 𝑁rX@ = 𝑁r?oK  in Equality (3.2.4), the KW estimator of finite 

population mean 𝜇̂X@ = 𝑌_�∗ because  

𝑌_� ∗ = %
#M
∑ ¿𝑑! ⋅ ^∑ 𝑘!"𝑦""∈,% `À!∈,' = %

#M./
∑ ¿𝑦" ⋅ ^∑ 𝑘!"𝑑!!∈,' `À"∈,% = %

#M./
∑ 𝑤"X@ ⋅ 𝑦""∈,% .  

This completes the proof of Theorem 3.1. 

3.6.2 PSAS method as a special case of KW method 

As described in Section 2.3.3.3, suppose the PSAS method divides, 𝑠 = 𝑠; ∪∗ 𝑠, , the 

combined sample of nonprobability cohort and the probability-based survey sample into 𝐺 

subclasses according to the predicted PSs, and 𝑠(1) is the combined sample in subclass 𝑔, 

𝑔 = 1,⋯ , 𝐺. The PSAS pseudo-weights for cohort unit 𝑖 ∈ 𝑠(1) is  

 𝑤!>?F? =
∑ 𝑑""∈,(()

𝑛;
(1) , (3.6.10) 

where the subscript 𝑗 indicates a unit in the survey sample, and 𝑛;
(1) is the number of cohort 

units in subclass 𝑔. Expression (3.6.10) can be written as 

A 𝐼"∈,(()
1
𝑛;
(1) 𝑑""∈,'

, 
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where 𝐼"∈,(()  is the indicator for subclass membership (1 if survey unit 𝑗 ∈ 𝑠(1) , 0 

otherwise). the term 𝐼"∈,(()
%

*%
(()  can be treated as the kernel weight 𝑘!"  in KW pseudo-

weight, and it is equivalent to  

𝐾 wj𝑝�"
(,) − 𝑝�!

(;)k ℎ⁄ x

∑ 𝐾 wj𝑝�"
(,) − 𝑝�!

(;)k ℎ⁄ x!∈,%

. 

where the kernel function 𝐾(⋅) = 𝜅 ⋅ 𝐼!∈,(() ⋅ 𝐼"∈,(()  with 𝜅  being a constant such that 

∫ 𝐾(𝑢)𝑑𝑢 = 1. The bandwidth ℎ is decided depending on how the subclasses are formed. 

The more subclasses are formed, the smaller ℎ will be. However, with a fixed number of 

subclasses (e.g. 𝐺 = 5, 20, 30), the bandwidth does not satisfy the condition (b), ℎ → 0, 

but 𝑛; ⋅ ℎ → ∞  as 𝑛; → ∞  in Theorem 3.1. Hence, the PSAS estimators of finite 

population means/prevalences are not consistent. 

3.6.3 Optimal bandwidth minimizing asymptotic mean integrated squared error 

One of the most commonly used optimality criteria for bandwidth selection is the 

Asymptotic Mean Integrated Squared Error (AMISE) (Silverman, 1986; Scott, 1992; 

Sheather, 2004). Minimizing AMISE with respect to ℎ gives the optimal bandwidth  

 ℎYZ[ = µ
𝑅(𝐾)

𝑛𝜎X\𝑅(𝑓]])
¸
%/_

, (3.6.11) 

where 𝐾(⋅) is the kernel density function, 𝜎X  is the corresponding standard deviation, 

𝑅(𝐾) = ∫ 𝐾N(𝑧)𝑑𝑧, 𝑛 is the sample size, and 𝑓 is the unknown density function to be 

estimated, with 𝑓]] being the second derivative of 𝑓. Since 𝑓 is unknown, 𝑅(𝑓]]) needs to 

be estimated. Silverman (1986), and Scott (1992) approximate 𝑓 by a normal density with 
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the sample estimates 𝜇̂ , and 𝜎g  used for the mean and standard deviation. After some 

calculation, it can be shown that 𝑅(𝑓]]) = z
�
𝜎g4_/√𝜋.  

 As shown by the formula (3.6.11)s, the optimal bandwidth ℎYZ[ will change based 

on the given kernel function 𝐾(⋅). Here we give two examples of kernel functions: a normal 

density with mean 0 and standard deviation 𝜎X , 𝑁(0, 𝜎X), and a symmetric triangular 

density on the support of (−𝑡, 𝑡), 𝑇(−𝑡, 𝑡, 0). 

3.6.3.1 𝑁(0, 𝜎X) 

It can be shown that 𝑅(𝐾) = %
N√3�.

. Then the optimal bandwidth is  

 ℎYZ[ = é

1
2√𝜋𝜎X

𝑛𝜎X\ ⋅
3
8 𝜎g

4_/√𝜋
ê

%/_

≈ 1.06
𝜎g
𝜎X
⋅ 𝑛4

%
_, (3.6.12) 

Silverman’s rule of thumb (Silverman, 1986) and Scott’s method (Scott, 1992) used the 

smaller value of 	𝜎g and =�&
%.z\

 where IQR is the interquartile range of the sample. Silverman 

(1986) further recommended reducing the constant 1.06 in Equality (3.6.12) to 0.9 to avoid 

missing bimodality. 

When 𝜎X = 1, i.e., 𝐾(⋅) is the density function of a standard normal distribution 

(i.e., 𝜎X = 1), Silverman’s rule of thumb and Scott’s method give the bandwidths ℎ���� =

0.9 ⋅ min j𝜎g, =�&
%.z\

k ⋅ 𝑛4%/_, and ℎ��Y[[ = 1.06 ⋅ min j𝜎g, =�&
%.z\

k ⋅ 𝑛4%/_ respectively.  
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3.6.3.2 𝑇(−𝑡, 𝑡, 0) 

With 𝐾(⋅) being the density function of a symmetric triangular distribution, 𝑇(−𝑡, 𝑡, 0), 

we have the standard deviation 𝜎X =
a
√�

, and 𝑅(𝐾) = N
za

. As before, the normal density is 

assumed for 𝑓. The optimal bandwidth is  

ℎYZ[ =

⎝

⎛

2
3√6𝜎X

𝑛𝜎X\ ⋅
3
8 𝜎g

4_/√𝜋
⎠

⎞

%/_

≈ 1.05
𝜎g
𝜎X
⋅ 𝑛4

%
_, 

or, 2.57 �6
a
⋅ 𝑛4

!
A. Following the same logic of Silverman (1986) and Scott (1992), we use 

the smaller one of	𝜎g  and =�&
%.z\

 to replace 𝜎g . The resulting optimal bandwidth is ℎ0(a) =

2.57 �6
a
⋅ min j𝜎g, =�&

%.z\
k ⋅ 𝑛4

!
A. 

As can be seen in the two examples, 3.6.3.1 and 0, the optimal bandwidth ℎYZ[ changes 

with the value of the scale parameter of the kernel density function. However, the 

corresponding kernel density 𝐾 wj𝑝�!
(,) − 𝑝�"

(;)k/ℎ`5ax remains invariant to changes in the 

value of the scale parameter, which results in the KW pseudo-weights being also unaffected 

by scale parameter. 
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3.6.4 True propensity models under two-stage cluster sampling designs 

3.6.4.1 True Propensity-Score Model assumed by PSAS and KW methods 

Using the same notation in the main text, we denote 𝑠; and 𝑠, as the cohort and survey 

sample respectively, and denote 𝐹𝑃 as the finite population from which the 𝑠; and 𝑠, are 

selected. Define 𝑝�! as the probability of being self-selected in the cohort for 𝑖 ∈ 𝐹𝑃 given 

it has been selected into the combined sample of cohort and survey sample, given by 

 

𝑝�! = 𝑃{ 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝑠, } =
𝑃{ 𝑖 ∈ 𝑠; ∣∣ 𝐹𝑃 }

𝑃{ 𝑖 ∈ 𝑠; ∪∗ 𝑠, ∣∣ 𝐹𝑃 }
 

=
𝜋!
(;)

𝜋!
(;) + 𝜋!

(,),																																																																 
(3.6.13) 

where 𝜋"
(/) = @#⋅B$

%

∑ 𝑟𝑖
𝑎

𝑖∈𝐹𝑃
 and 𝜋"

($) = @&⋅B$
'

∑ 𝑟𝑖
𝑏

𝑖∈𝐹𝑃
 (Table 3.1) are the inclusion probabilities of cohort 

and survey sample respectively for 𝑖 ∈ 𝐹𝑃  under the two-stage PPS sampling in the 

simulations with 𝑟! = exp(𝛾( + 𝜸0𝒙!)  defined in Formula (3.3.1). The notation ∪∗ 

represents the combination of the two samples that allows population units to be selected 

in both cohort and survey. The duplicates of 𝑠;  and 𝑠,  will be counted twice in the 

combined sample 𝑠; ∪∗ 𝑠,.  

Accordingly, 1 − 𝑝�! = 𝜋!
(,) j𝜋!

(;) + 𝜋!
(,)kð  is the probability of 𝑖 ∈ 𝐹𝑃  being 

selected in the survey conditional on being selected into the combined cohort and survey 

sample. Hence, the log-odds of the 𝑝�! can be written as 

log ¯
𝑝�!

1 − 𝑝�!
± = logñ

𝜋!
(;) j𝜋!

(;) + 𝜋!
(,)kð

𝜋!
(,) j𝜋!

(;) + 𝜋!
(,)kð

ò = log �
𝜋!
(;)

𝜋!
(,)�															 

= logµ
𝑛𝑐 ⋅ 𝑟𝑖𝑎 ∑ 𝑟!Q!∈C>⁄
𝑛𝑠 ⋅ 𝑟𝑖

𝑏 ∑ 𝑟!y!∈C>⁄
¸ = log µ

𝑛; ⋅ ∑ 𝑟!y!∈C>

𝑛, ⋅ ∑ 𝑟!Q!∈C>
¸ + log µ

𝑟𝑖𝑎

𝑟𝑖
𝑏¸,														 
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Therefore, the true model for 𝑝�! is  

 log ¯
𝑝�!

1 − 𝑝�!
± = 𝛽ß( + (𝑎 − 𝑏) ⋅ 𝜸0𝒙! , (3.6.14) 

where 𝛽ß( = log ¯*%⋅∑ x#
2

#∈34
*'⋅∑ x#

G
#∈34

± + (𝑎 − 𝑏) ⋅ 𝛾( is the intercept. Note that the vector of model 

coefficients 𝜷� = (𝑎 − 𝑏) ⋅ 𝜸 can be estimated by fitting the propensity model (3.6.14) to 

the combined (𝑠;  vs. unweighted 𝑠, ) sample. The estimated PS, i.e., 𝑝��! = expit j𝛽ß�( +

𝜷�r0𝒙k is used by the PSAS and KW methods to measure the similarity between cohort units 

and survey units.  

3.6.4.2 True Propensity-Score Model assumed by the IPSW method 

As defined in Model (2.3.9), 𝑝! ,  for 𝑖 ∈ 𝐹𝑃 , the probability of being in the cohort 

conditional on the sample of cohort combined with the finite population (FP), written as 

𝑝! = 𝑃(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃) =
𝜋!
(;)

𝜋!
(;) + 1

, for	𝑖 ∈ 𝐹𝑃. 

Again, the notation ∪∗ means the combination of 𝑠; and 𝐹𝑃, allowing duplicated 𝑠; in the 

combined set 𝑠; ∪∗ 𝐹𝑃. Accordingly,  

				log ¯
𝑝!

1 − 𝑝!
± = log ñ

𝜋!
(;) j𝜋!

(;) + 1kð

1 j𝜋!
(;) + 1kð

ò = logj𝜋!
(;)k 

= logµ
𝑛𝑐

∑ 𝑟!Q!∈C>
¸ + log(𝑟𝑖𝑎). 

Therefore, the true model for 𝑝! is  

 log ¯
𝑝!

1 − 𝑝!
± = 𝛽( + 𝑎 ⋅ 𝜸0𝒙! , (3.6.15) 
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where 𝛽( = log ¯ 𝑛𝑐
∑ x#

G
#∈34

± + 𝑎 ⋅ 𝛾( is the intercept. Note that model coefficients 𝜷 = 𝑎 ⋅ 𝜸 

can be estimated by fitting the propensity model (3.6.15) to the combined (𝑠; vs. weighted 

𝑠,) sample. The predicted odds, i.e. 5A#
%45A#

= exp^𝛽�( + 𝜷r0𝒙` is used by the IPSW method to 

estimate the self-selection probability for cohort units.  

3.6.5 Approximate unbiasedness of 𝜷�r  and 𝜷r under two-stage cluster sampling 

designs in the simulation with the defined MOS 

3.6.5.1 Proof of the approximate unbiasedness of 𝛽ß�  and 𝛽�  under the situation of single 

binary covariate in MOS 

The theoretical justification suppose there is a sequence of finite population 𝐹𝑃g of size 

𝑁g , for 𝑘 = 1, 2,⋯ . Cohort 𝑠;,g  of size 𝑛;,g  and survey sample 𝑠,,g  of size 𝑛,,g  are 

sampled from each 𝐹𝑃g . The sequences of the finite populations, cohort samples, and 

survey samples have sizes satisfy lim
g→s

*H,<
#<

→ 𝛾�, where 𝑑 = 𝑐, 𝑠 and 0 < 𝛾� ≤ 1. In the 

following, the index 𝑘 is suppressed for simplicity (Krewski & Rao 1981; Chen et al., 

2019). As such, 𝑂5(𝑁4%) = 𝑂5(𝑛;4%) = 𝑂5(𝑛,4%)  

Suppose the MOS of the PPS sampling is 𝑟!Q and 𝑟!y for survey and cohort sample 

selected respectively for 𝑖 ∈ 𝐹𝑃, with 𝑟! = exp(𝜃( + 𝜃%𝑥!) as defined in Equality (3.3.1) 

where 𝑥  is a binary covariate. Accordingly, the true propensity model fitted to the 

combined ( 𝑠;  and unweighted 𝑠, ) is log j 5�#
%45�#

k = 𝛽ß( + 𝛽ß%𝑥! , with 𝛽ß% = (𝑎 − 𝑏)𝜃% . 

Suppose the binary covariate 𝑥 has the distribution in 𝐹𝑃 shown below. 

𝑥 0 1 Total 
Count 𝑁J 𝑁> 𝑁 
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Then 𝑟! has two possible values depending on the binary covariate 𝑥, defined by 𝑟% and 𝑟( 

as below 

R𝑟!|
(𝑥! = 0) = 𝑒�" 				≜ 𝑟(,

𝑟!|(𝑥! = 1) = 𝑒�"w�! ≜ 𝑟%
 

The (self-)selection probabilities of the cohort and the survey samples for 𝑖 ∈ 𝐹𝑃, 𝜋!
(;) and 

𝜋!
(,), are defined as follows: 

cohort: ñ
j𝜋!

(;)�𝑟! = 𝑟(k ≜ 𝜋(
(;)

j𝜋!
(;)�𝑟! = 𝑟%k ≜ 𝜋%

(;) ; 					survey: ñ
j𝜋!

(,)�𝑟! = 𝑟(k ≜ 𝜋(
(,)

j𝜋!
(,)�𝑟! = 𝑟%k ≜ 𝜋%

(,) 

Suppose in the combined (𝑠; and unweighted 𝑠,) sample, the table of sample membership 

𝑇 (𝑇! = 0 if 𝑖 ∈ 𝑠,; 1 if 𝑖 ∈ 𝑠;) and 𝑥 is as follows 

 
𝑥 

𝑇 (sample membership) 
0 (𝑠$) 1 (𝑠/) 

0 𝑛JJ 𝑛J> 
1 𝑛>J 𝑛>> 
Total 𝑛$ 𝑛/ 

 

A propensity model logit(𝑝�) = 𝛽ß( + 𝛽ß%𝑥 is fitted to the unweighted combined sample. As 

𝑒��M! = *""⋅*!!
*"!⋅*!"

, the expectation of 𝛽ß�% is  

 𝐸 j𝛽ß�%k = 𝐸(log 𝑛(() + 𝐸(log 𝑛%%) − 𝐸(log 𝑛(%) − 𝐸(log 𝑛%(). (3.6.16) 

By Taylor linearization, we have  

 𝐸(log 𝑛%%) = log 𝐸(𝑛%%) −
𝑉𝑎𝑟(𝑛%%)
2𝐸N(𝑛%%)

+ 𝜉, (3.6.17) 

where 𝜉 is the remainder that has lower order than oQx(*!!)
NE*(*!!)

. The first term of (3.6.17)can 

be written as log 𝐸(𝑛%%) = logw𝑁%𝜋%
(;)x, because 
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				𝐸(𝑛%%) =A 𝐸w𝑥! ⋅ 𝛿!
(;)x

!∈C>
=A 𝑃w𝛿!

(;) = 1|𝑥! = 1x ⋅ 𝑃{𝑥! = 1}
#

!$%
 

=A 𝜋%
(;) ⋅

𝑁%
𝑁

#

!$%
= 𝑁%𝜋%

(;) 

In the second term of (3.6.17), 𝑉𝑎𝑟[𝑛%%] is  

𝑉𝑎𝑟(𝑛%%) =A 𝐸w𝑥! ⋅ 𝛿!
(;)x ø1 − 𝐸w𝑥! ⋅ 𝛿!

(;)xù
!∈C>

= 𝐸(𝑛%%) R1 −
𝐸(𝑛%%)
𝑁 S 

Therefore, the second term of (3.6.17) is oQx(*!!)
NE*(*!!)

= %4E(*!!)/#
NE(*!!)

= 𝑂5(𝑛;4%). Hence,  

 𝐸[log 𝑛%%] = log𝑁%𝜋%
(;) + 𝑂5(𝑛;4%) (3.6.18) 

It can be similarly shown that  

𝐸(log 𝑛(%) = log𝑁(𝜋(
(;) + 𝑂5(𝑛;4%), 𝐸(log 𝑛(() = log𝑁(𝜋(

(,) + 𝑂5(𝑛;4%), 

and 𝐸(log 𝑛%() = log𝑁%𝜋%
(,) + 𝑂5(𝑛;4%). 

(3.6.19) 

Equalities (3.6.16), (3.6.18) and (3.6.19) together give 

𝐸 j𝛽ß�%k = log �
𝜋%
(;)𝜋(

(,)

𝜋(
(;)𝜋%

(,)� + 𝑂5(𝑛;
4%) 

Under the two-stage PPS design described in Section 3.3.2, 3!
(%)

3"
(%) =

x!
(%)

x"
(%) = 𝑒y�!, and 3"

(')

3!
(') =

x!
(')

x"
(') = 𝑒4Q�!. Hence,  

𝐸 j𝛽ß�%k = log¿𝑒(y4Q)�À + 𝑂5(𝑛,4%) = 𝛽ß% + 𝑂5(𝑛,4%). 

The intercept 𝛽ß�( = log *"!
*""

. Based on Equalities (3.6.19), 𝐸 j𝛽ß�(k = log 3"
(%)

3"
(') + 𝑂5(𝑛,4%) , 

where 

log
𝜋(
(;)

𝜋(
(,) = log µ

𝑛; ⋅ ∑ 𝑟!y!∈C>

𝑛, ⋅ ∑ 𝑟!Q!∈C>
¸ + (𝑎 − 𝑏)𝜃( = 𝛽ß( 
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This completes the proof. 

For the propensity model fitted to the combined (𝑠; vs. weighted 𝑠,) sample, it can 

be similarly proved that 𝐸ú𝛽�%û = 𝛽% + 𝑂5(𝑛,4%), and 𝐸ú𝛽�(û = 𝛽( + 𝑂5(𝑛,4%) by using the 

following table of sample membership 𝑅  (𝑅! = 0  if 𝑖 ∈ 𝑠; ; 1 if 𝑖 ∈ 𝐹𝑃 ) and 𝑥  in the 

combined (𝑠; vs. weighted 𝑠,) sample as 

 
𝑥 

𝑅 
0 (weighted 𝑠$) 1 (𝑠/) 

0 𝑁_J = 𝑛JJ/𝜋J
($)	 𝑛J> 

1 𝑁_> = 𝑛JJ/𝜋J
($) 𝑛>> 

Total 𝑁_ = 𝑁_J = 𝑁_> 𝑛/ 

3.6.5.2 Empirical justification of the approximate unbiasedness of 𝛽ß� and 𝛽�  in simulations 

In simulations, we empirically verify the approximate unbiasedness of 𝛽ß�  and 𝛽� . The MOS 

for cohort and survey sample selection were 𝑟!Q and 𝑟!y respectively, for 𝑖 ∈ 𝐹𝑃 where 𝑟! =

exp(𝛾( + 𝛾%𝑎𝑔𝑒! + 𝛾Nℎℎ_𝑖𝑛𝑐! + 𝛾z𝐸𝑛𝑣! + 𝜃\𝑧!)  with 𝛾( = 0 , 𝜸 = (𝛾%, 𝛾N, 𝛾z, 𝛾\) =

(0, 0.3, −0.4, 0.7, 0.7), 𝑎 = −1, and 𝑏 = 0.5 (detailed in Section 3.3).  

As derived in (3.6.14) and (3.6.15), the regression coefficients of the true propensity 

models of 𝑝! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝐹𝑃 ) and 𝑝�! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝑠, ) are  

𝜷 = −𝜸 = −(𝛾%, 𝛾N, 𝛾z, 𝛾\) and 𝜷� = (𝑎 − 𝑏) ⋅ 𝜸 = −1.5(𝛾%, 𝛾N, 𝛾z, 𝛾\), 

respectively. The percent of relative bias (%RB), empirical variance (V) of the estimates 𝜷r 

and 𝜷�r are shown in Table 3.11. 

As expected, the unweighted and weighted sample produced approximately 

unbiased estimates of 𝜷� = −1.5𝜸 and 𝜷 = −𝜸, respectively. Thus, the three methods can 

achieve greatest bias reduction under the true propensity models that have the same  
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Table 3.11 Results of coefficients of propensity model fitted to unweighted and weighted 
combined cohort and survey sample over 1,000 simulation runs 

 𝛾> = 0.3 𝛾* = −0.4 𝛾2 = 0.7 𝛾K = 0.7 
Estimate    

𝜷̀_ -0.44 0.59 -1.04 -1.06 

𝜷_ -0.29 0.39 -0.68 -0.71 
Relative Bias%    

𝜷̀_ -2.2 -1.7 -0.6 0.6 

𝜷_ 3.3 -2.5 2.9 1.4 
Empirical Variance (× 102)   

𝜷̀_ 0.71 1.98 8.61 93.02 

𝜷_ 1.03 3.53 15.43 189.29 
𝜷JK is estimated from the propensity model fitted to the combined (𝑠J  and unweighted 𝑠K), which is used by 
the PSAS and KW methods.𝐸 L𝜷JKM ≈ −1.5𝜸 = (−0.45, 0.6, −1.05,−1.05). 
𝜷K is estimated from the propensity model fitted to the combined (𝑠J  and weighted 𝑠K), which is used by 
the IPSW method.𝐸V𝜷KW ≈ −𝜸 = (−0.3, 0.4, −0.7, −0.7). 
 

functional form of covariates 𝒙 in the simulation (the IPSW and KW estimates are expected 

to be approximately unbiased while the PSAS estimates can be biased under the true 

propensity model due to invalid assumption of the equal representativeness of cohort units 

within subclasses). This allows for a fair comparison among the three methods in the 

simulation. 

However, the coefficients estimated from the propensity model fitted to the 

weighted sample had much larger empirical variances than the coefficients estimated from 

the model fitted to the unweighted sample due to the highly variable weights (weights of 1 

for cohort units, and the sample weights for survey units). Hence, we expect that the naïve 

Taylor linearization (TL) method, which ignores variability due to estimating propensity 

scores, may substantially underestimate the variance of the IPSW estimates.  
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3.6.6 The KW and IPSW Estimators of Population Means When the Propensity 

Model Includes Variable of Interest Only 

Regardless the true propensity model, we fit the model logit(𝑝�) ∼ 𝑦 to the combined (𝑠; 

vs. unweighted 𝑠,) sample, where 𝑦 is the variable of interest. Suppose the distribution of 

𝑦 in the combined sample is as follows. 

Table 3.12 Distribution of variable of interest in the cohort and survey sample 
 
𝑦 

𝑇 sample membership 
0 (𝑠$) 1 (𝑠/) Total 

0 𝑛JJ 𝑛J> 𝑛J⋅ 
1 𝑛>J 𝑛>> 𝑛>⋅ 

Total 𝑛⋅J(𝑛$) 𝑛⋅>(𝑛/) 𝑛⋅⋅ 
 

Suppose the estimated coefficients of the propensity model are 𝜷�r = j𝛽ß�(, 𝛽ß�%k. Since 𝑦 is 

the only covariate in the propensity model, there are only two values of the estimated PSs: 

𝑝��( = expit(𝛽ß�() , and 𝑝��% = expit j𝛽ß�( + 𝛽ß�%k . Assume that the kernel function 𝐾(⋅)  and 

bandwidth ℎ  satisfy conditions (a) and (b) in Theorem 3.1so that 𝐾¿^𝑝��( − 𝑝��(` ℎ⁄ À =

𝐾¿^𝑝��% − 𝑝��%` ℎ⁄ À = 𝐾(0) > 0 and 𝐾¿^𝑝��( − 𝑝��%` ℎ⁄ À =̇ 0. The KW estimator of the total 

number of diseased people in the population, 𝑌�X@ is equal to the survey estimator, 𝑌� ?oK =

∑ 𝑑"
*!"
"$% . The proof is as follows: 

					𝑌�X@ =A 𝑤!X@ ⋅ 𝑦!
!∈,%

 

=A 𝑑" ý
∑ 𝐾 wj𝑝��"

(,) − 𝑝��!
(;)k ℎ⁄ x 𝑦!!∈,%

∑ 𝐾 wj𝑝��"
(,) − 𝑝��!

(;)k ℎ⁄ x!∈,%

þ
"∈,'

	(switching	order	of	summation) 

=A 𝑑"
∑ 𝐾(0) ⋅ 0*"!
!$% + ∑ 0 ⋅ 0*!!

!$%

∑ 𝐾(0)*"!
!$% + ∑ 0*!!

!$%

*""

"$%
+A 𝑑"

∑ 0 ⋅ 1*"!
!$% + ∑ 𝐾(0) ⋅ 1*!!

!$%

∑ 0*"!
!$% + ∑ 𝐾(0)*!!

!$%

*!"

"$%
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=A 𝑑"
∑ 𝐾(0)*!!
!$%

∑ 𝐾(0)*!!
!$%

*!"

"$%
=A 𝑑"

*!"

"$%
= 𝑌�?oK . 

Meanwhile, since 𝑁rX@ = 𝑁r?oK (proof in Equality (3.2.4)), 

𝑌_�X@ =
𝑌�X@

𝑁rX@
=
𝑌� ?oK

𝑁r?oK
= 𝑌_�?oK . 

Under the IPSW method, we expand the survey sample by their population weights, hence 

𝑛(( and 𝑛%( are replaced by 𝑛(( = ∑ 𝑑"
*""
"$%  and 𝑛%( = ∑ 𝑑"

*!"
"$% . The estimated PSs are 

{𝑝̂|(𝑦 = 1)} = 𝑛%% w^∑ 𝑑"
*!"
"$% ` + 𝑛%%x⁄ , and {𝑝̂|(𝑦 = 0)} = 𝑛(% w^∑ 𝑑"

*""
"$% ` + 𝑛(%x⁄ . 

By using 𝑝̂4%  as the pseudo weight proposed by Dever & Valliant (2009), the 

resulting pseudo-weighted estimator of population mean, 𝑌_  is  

𝜇̂∗ =
∑ {𝑝̂|(𝑦 = 1)}*!!
!$%

∑ {𝑝̂|(𝑦 = 1)}*!!
!$% + ∑ {𝑝̂|(𝑦 = 0)}*"!

!$%
=
^∑ 𝑑"

*!"
"$% ` + 𝑛%%
∑ 𝑑""∈,' + 𝑛;

. 

Compared to the survey estimator of 𝜇C>, 𝜇̂?oK =
∑ �+
L!"
+7!

∑ �++∈''
, 𝜇̂∗ is biased. The bias goes to 0 

when the sample fraction of the cohort is small, i.e., *%
#
→ 0. To get unbiased estimators, 

the IPSW method should use the inverse of odds as the pseudo weights, i.e., 𝑤=>?@ = %45A
5A

. 

𝜇̂=>?@ =
∑ 𝑤!=>?@𝑦!!∈,%
∑ 𝑤!=>?@!∈,%

=

∑ 𝑑"
*!"
"$%
𝑛%%

⋅ 𝑛%%
∑ 𝑑"
*!"
"$%
𝑛%%

⋅ 𝑛%% +
∑ 𝑑!
*!"
"$%
𝑛(%

⋅ 𝑛(%

=
∑ 𝑑"
*!"
"$%

∑ 𝑑""∈,'
= 𝜇̂?oK 

Hence, when 𝑦  is the only predictor in the propensity model, the KW and the IPSW 

methods will give exactly the same estimator as the survey estimator, which is design 

consistent to the finite population mean. 
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Chapter 4 Efficient and Robust Propensity-Score-Based 

Weighting Methods for Finite Population Inference from 

Nonprobability Epidemiologic Cohort 

4.1 Introduction 

In this chapter, we demonstrate that all PS-based matching methods that fit the 

propensity model to the combined (cohort vs. unweighted survey) sample require a hidden, 

but critical, strong exchangeability assumption (SEA) for estimating the finite population 

means. The SEA states that the expectation of the outcome variable given the estimated PS 

is the same in all three of the cohort, the survey, and the finite population. We prove that, 

without the SEA, current PS-based matching estimates are biased, even when a correctly 

specified propensity model is fitted to the combined (cohort vs. unweighted survey) 

sample. We establish a unifying framework for both PS-based weighting and matching 

methods. We relax the SEA to a weak exchangeability assumption (WEA) by defining 

matching scores that are (functions of) PSs estimated from the propensity models fitted to 

the combined (cohort vs. weighted survey) sample. 

However, fitting the propensity model to the weighted sample (when compared to 

the unweighted sample) increases variability in PS estimation and can greatly increase the 

variance of pseudo-weighted estimates of finite population quantities. To increase 

efficiency, we propose scaling survey weights by their mean in PS estimation. Scaling is 

motivated by the method of scaling weights in population-based case-control studies where 

the sample weights are highly variable among the cases and the controls (Scott & Wild, 

1986; Li et al., 2011; Landsman & Graubard, 2013). We demonstrate that this simple 
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scaling greatly reduces variance while retaining the consistency of the estimators of finite 

population means. We derive TL variances for pseudo-weighted estimates of finite 

population means that take the variability of estimating the pseudo-weights into account 

under the framework. Two types of TL sample estimators of the finite population variances 

are given, depending on the underlying self-selection process of the cohort sample.  

Monte Carlo simulation studies are conduced to evaluate the performance of the 

proposed PS-based methods under the SEA and the WEA with correct and misspecified 

propensity models. We apply our methods to an example where we use the naïve 

(unweighted) US National Health and Nutrition Examination (NHANES) III as the 

“cohort” and the sample weighted 1997 US National Health Interview Survey (NHIS) as 

the reference survey. This example is contrived, but the use of naïve NHANES allows the 

assessment of the bias reduction obtained by the proposed PS-based methods, without 

differences in the population coverage and measurement errors between a cohort and the 

reference survey that usually occur.  

4.2 Basic Setting 

We use notation consistent with Section 3.2.1 in Chapter 3. In addition, we require the 

following standard assumptions for the cohort participation: 

A1. The cohort participation indicator 𝛿(;) is independent of the outcome variable 𝑦 given 

the covariates 𝒙, i.e., Pr^ 𝛿(;) = 1 ∣∣ 𝑦, 𝒙 ` = Pr^ 𝛿(;) = 1 ∣∣ 𝒙 `. 

A2. All finite population units have a positive participation rate, i.e., 𝜋!
(;) > 0 for 𝑖 ∈ 𝐹𝑃. 

For the reference survey, it is assumed that the sampling is also independent of the 

outcome variable 𝑦 given the covariates x, i.e., Pr^ 𝛿(,) = 1 ∣∣ 𝑦, 𝒙 ` = Pr^ 𝛿(,) = 1 ∣∣ 𝒙 `.  
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4.3 Strong Exchangeability Assumption 

PS-based matching methods use a matching score (a function of PS) to measure the 

similarity of the cohort and survey units in terms of the covariate distributions. Hence, they 

do not require the matching scores accurately to estimate the participation rates 𝜋!
(;) for the 

cohort units. To avoid low efficiency of pseudo-weighted estimates due to high variability 

of the estimated pseudo-weights, the existing PS-based matching methods, including the 

PSAS method (Lee & Valliant, 2009), the Rivers’ matching method (Rivers et al., 2007), 

and the KW method proposed in Chapter 3, use the propensity of participating in the cohort 

(𝑠;) versus being selected in the survey sample (𝑠,) as the matching score, defined by,  

 

𝑝�! = 𝑃{ 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝑠, } =
𝑃{ 𝑖 ∈ 𝑠; ∣∣ 𝐹𝑃 }

𝑃{ 𝑖 ∈ 𝑠; ∪∗ 𝑠, ∣∣ 𝐹𝑃 }
 

=
𝜋!
(;)

𝜋!
(;) + 𝜋!

(,)																																																														 

(4.3.1) 

The union 𝑠; ∪∗ 𝑠, allows for duplication of individuals in both 𝑠; and 𝑠,. In practice, the 

set of duplicates is usually small and also it is not possible to identify the duplicates. 

Assume that the relationship between 𝑝�! and 𝒙 follows a logistic regression model  

 log
𝑝�!

1 − 𝑝�!
=𝜷�0𝒙! , 𝑖 ∈ {𝑠; ∪∗ 𝑠,}, (4.3.2) 

where 𝜷� is a vector of unknown regression coefficients, and can be estimated by fitting 

Model (4.3.2) to the combined (𝑠; vs. unweighted 𝑠,) sample. As proved in Section 3.6.1, 

using 𝑝� in the matching score requires the strong exchangeability assumption (SEA) 

 𝐸(𝑦 ∣ 𝑝�, 𝑠,) = 𝐸(𝑦 ∣ 𝑝�, 𝑠;) = 𝐸(𝑦 ∣ 𝑝�, 𝐹𝑃), (4.3.3) 

for consistency of the KW estimators of finite population mean, where 𝐸(⋅)  is the 

expectation with respect to the distribution of 𝑦  in 𝐹𝑃 . The SEA requires that two 
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equalities hold among the three sets 𝑠;, 𝑠,, and 𝐹𝑃. This assumption is strong and can be 

violated even when 𝑝�  is estimated under the correct propensity model fitted to the 

combined (𝑠; vs. unweighted 𝑠,) sample. This is because only the first equality of the SEA 

(equal expectations for the cohort and survey samples) automatically holds under Model 

(4.3.2) (Rosenbaum & Rubin, 1983), but the second equality (equal expectations for the 

cohort and finite population) may not necessarily hold, resulting in biased pseudo-weighted 

estimation. We use simple examples to illustrate the cases of unbiased mean estimation 

when the SEA is valid, and also the cases of biased mean estimation when the SEA is 

violated even if the propensity model is correctly specified. 

Simple Examples 

Suppose the covariates 𝒙 include two binary variables age (= 0 for young; = 1 for 

old), and sex (= 0 for male; = 1 for female). The distribution of 𝑦 depends on age and sex 

with the expectation 𝜇"g = 𝐸( 𝑦 ∣∣ age = 𝑗, sex = 𝑘 )  for 𝑗, 𝑘 = 0, 1 . We assume 𝜇"g 

differs by the four categories of age by sex. The overall finite population mean of 𝑦 is 𝜇 =

%
#
∑ 𝑁"g ⋅ 𝜇"g",g , where 𝑁"g is the number of individuals in the 𝐹𝑃 for category	𝑗𝑘 (age =

𝑗, sex = 𝑘, for 𝑗, 𝑘 = 0, 1). We assume 𝑠; and 𝑠, are two independent samples randomly 

selected by stratified simple random sample designs. The participation/sampling rates of 

𝑠; and 𝑠, are, respectively, 𝑎"
(;) and 𝑎"

(,) for age group 𝑗, and 𝑏g
(;) and 𝑏g

(,) for sex group 𝑘. 

The final participation/sampling rates of 𝑠; and 𝑠, for a population unit in category 𝑗𝑘 are 

𝜋"g
(;) = 𝑎"

(;)𝑏g
(;)  and 𝜋"g

(,) = 𝑎"
(,)𝑏g

(,) , respectively. Accordingly, the propensity of being 

included in 𝑠;  versus 𝑠,  is 𝑝�"g =
Q+
(%)y<

(%)

Q+
(%)y<

(%)wQ+
(')y<

(') by Equality (4.3.1). The sample sizes in 

category 𝑗𝑘 are 𝑛"g
(;) = 𝑁"g𝜋"g

(;) for 𝑠; and 𝑛"g
(,) = 𝑁"g𝜋"g

(,)	for 𝑠,. 
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1. SEA Valid Case 

In the SEA valid case, the values of 𝑝� are different in the four categories defined by age 

and sex. The SEA is satisfied because 𝐸(𝑦 ∣∣ 𝑝� ) = 𝐸( 𝑦 ∣∣ age = 𝑗, sex = 𝑘 ) = 𝜇"g for 𝑠;, 

𝑠,, and 𝐹𝑃. The PS-based matching methods distribute survey weights to the cohort units 

within each of the four matching groups defined by 𝑝�, i.e., pseudo-weights for all cohort 

units in category 𝑗𝑘 are commonly 𝑤s"g =
#+<
*+<
(%). Denote the pseudo-weighted estimate of 𝜇 

by 𝜇̂ = j∑ 𝑤s"g ⋅ 𝑛"g
(;)

",g k
4%
∑ 𝑤s"g,! ⋅ 𝑦!!∈(",g) . As a result, 𝜇̂ an is unbiased estimator of 𝜇 

with 𝐸(𝜇̂) = %
#
∑ 𝑁"g ⋅ 𝜇"g",g = 𝜇.  

2. SEA Invalid Case  

SEA can be invalid if the value of 𝑝� cannot differentiate the four age-by-sex categories. 

This can happen even when the true propensity model (including main effects of age and 

sex) is fitted to the combined (𝑠; vs. unweighted 𝑠,) sample. For example, if 𝑠; and 𝑠, have 

the same distribution of sex, i.e., y"
(')

y"
(%) =

y!
(')

y!
(%) = 𝑏, the PS in Equality (3.3.1) becomes 𝑝�"g =

Q+
(%)

Q+
(%)wy⋅Q+

('), which is identical within age group 𝑗 (denoted by 𝑝�"⋅) regardless of the sex 

group. The first equality in the SEA holds, i.e.,  

𝐸¿𝑦|𝑝�"⋅, 𝑠;À =
𝜇"(𝑛"(

(;) + 𝜇"%𝑛"%
(;)

𝑛"(
(;) + 𝑛"%

(;) =
𝜇"(𝑛"(

(,) + 𝜇"%𝑛"%
(,)

𝑛"(
(,) + 𝑛"%

(,) = 𝐸¿𝑦|𝑝�"⋅, 𝑠,À 

as 
*+"
(')

*+!
(') =

*+"
(%)

*+!
(%). However, the second equality in the SEA does not hold because 

𝐸¿𝑦|𝑝�"⋅, 𝐹𝑃À =
𝜇"(𝑁"( + 𝜇"%𝑁"%

𝑁"( + 𝑁"%
≠ 𝐸¿𝑦|𝑝�"⋅, 𝑠;À 
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as 𝜇"( ≠ 𝜇"%. Applying a PS-based matching method, the survey sample weights would be 

distributed to the cohort units according to age only, resulting in common pseudo-weights 

within age categories, i.e. 𝑤s"( = 𝑤s"% =
#+"w#+!
*+"
(%)w*+!

(%)  for 𝑗 = 0, 1 . As a result, the pseudo-

weighted estimate 𝜇̂ is biased as shown below 

𝐸(𝜇̂) =
1
𝑁 �

𝑁(( + 𝑁(%
𝑛((
(;) + 𝑛(%

(;) ⋅ j𝜇((𝑛((
(;) + 𝜇(%𝑛(%

(;)k +
𝑁%( + 𝑁%%
𝑛%(
(;) + 𝑛%%

(;) j𝜇%(𝑛%(
(;) + 𝜇%%𝑛%%

(;)k� ≠ 𝜇. 

As shown by the simple examples, when cohort units within a subgroup have 

different participation rates, but the same estimated PS, the PS-based matching methods 

cannot match the distribution of 𝑦 in the pseudo-weighted 𝑠;  to that in the 𝐹𝑃. This is 

because the second equality in SEA is invalid even if the propensity model is correctly 

fitted to the unweighted sample. 

4.4 Unifying Framework for Using Propensity Scores in PS-Based 

Methods 

We observe the covariates 𝒙!  for all 𝑖 ∈ 𝐹𝑃 , but we do not observe the cohort 

participation indicator 𝛿!
(;)  for all 𝑖 ∈ 𝐹𝑃 . Instead of directly modeling the cohort 

participation rate, 𝜋!
(;), we define 𝑝! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 ), where the notation ∪∗ 

represents the union of 𝑠; and 𝐹𝑃 which includes the duplication of the individuals in 𝑠; 

that, of course, are in 𝐹𝑃 . Therefore, 𝑠; ∪∗ 𝐹𝑃  contains 𝑁 + 𝑛;  individuals. As to be 

shown, duplicating the units in 𝑠; is a computational device that allows us to recover an 

estimate of the underlying inclusion probability 𝜋!
(;) from a propensity model. According 

to the definition of 𝑝!, it gives 
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 𝑝!
1 − 𝑝!

=
𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 )
𝑃( 𝑖 ∈ 𝐹𝑃 ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 )

																																																											 

													=
𝑃(𝑖 ∈ 𝑠;) 𝑃(𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃)⁄
𝑃(𝑖 ∈ 𝐹𝑃) 𝑃(𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃)⁄ = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝐹𝑃 ) = 𝜋!

(;). 

(4.4.1) 

Assume a logistic regression model for 𝑝! 

 log l
𝑝!

1 − 𝑝!
n = 𝜷0𝒙! , for	𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃. (4.4.2) 

Combining (4.4.1) and (4.4.2) gives 𝜋!
(;) = exp(𝜷0𝒙!), allowing us to obtain the cohort 

participation rate via a logistic propensity model. The log-likelihood function is given by 

 

𝑙(𝜷) =A 𝑅! ⋅ log 𝑝! + (1 − 𝑅!) log(1 − 𝑝!)
!∈,%∪∗C>

 

=A log 𝑝!
!∈,%

+A log(1 − 𝑝!)
!∈C>

,									 
(4.4.3) 

where 𝑅! indicates the membership of 𝑠; in 𝑠; ∪∗ 𝐹𝑃 (i.e., 𝑅! = 1 if 𝑖 ∈ 𝑠;, and = 0 if 𝑖 ∈

𝐹𝑃), and the propensity score 𝑝! can be rewritten as 𝑝! = 𝑃(𝑅! = 1 ∣∣ 𝒙! ) for simplicity. 

Furthermore, 𝑝! = expit(𝜷0𝒙!)  based on Model (4.4.2). Note that 	𝜷  differs from 𝜷�  in 

Model (4.3.2) since the two models define the propensity differently, i.e., the probability 

that individual 𝑖  is included in 𝑠;  vs. 𝐹𝑃  under Model (4.4.2) as compared to the 

probability that individual 𝑖  is included in 𝑠;  vs. 𝑠,  under Model (4.3.2). To obtain a 

consistent estimator of 𝜷, we fit Model (4.4.2) to the combined (𝑠; vs. weighted 𝑠,) where 

we use the sample weights 𝑑!  for 𝑖 ∈ 𝑠, , in the estimation through the pseudo log-

likelihood function  

 𝑙ÿ(𝜷) =A log 𝑝!
!∈,%

+A 𝑑! log(1 − 𝑝!)
!∈,'

. (4.4.4) 

Heuristically, we are substituting the sample weighted 𝑠, for 𝐹𝑃. The estimator 𝜷r of 𝜷 is 

obtained by solving the following weighted estimating equations for 𝜷 
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𝑆ÿ(𝜷) =
𝜕𝑙ÿ(𝜷)
𝜕𝜷 =A (1 − 𝑝!)

!∈,%
𝒙! −A 𝑑!𝑝!𝒙!

!∈,'
= 𝟎. 

According to Equation (4.4.1), the participation rate 𝜋!
(;) for unit 𝑖 ∈ 𝑠;  is estimated by 

𝜋g!
(;) = 5A#

%45A#
, with 𝑝̂! = expit^	𝜷r0𝒙!` being the estimated PS under the propensity model 

(4.4.2). 

4.4.1 Inverse PS Weighting (IPSW) Method as a PS-Based Weighting Method 

The IPSW method (Valliant and Dever, 2011) uses the inverse of estimated participation 

rate as the pseudo-weight, i.e., 𝑤!=>?@ = 1/𝜋g!
(;). The corresponding IPSW estimator of 

finite population mean, 𝜇C> = %
#
∑ 𝑦!!∈C> , is 𝜇̂=>?@ =

∑ n#
N4>/

#∈'% .#
∑ n#

N4>/
#∈'%

. 

4.4.2 A Weak Exchangeability Assumption for PS-Based Matching Methods  

We relax the SEA for the PS-based matching methods under the framework described 

above by using 𝑝 = 𝑃(𝑅 = 1 ∣ 𝒙 ) (Rosenbaum & Rubin, 1983) or 𝑞 = logit(𝑝) (Rubin 

& Thomas, 1992) as the matching score to measure the similarity among the cohort and 

survey units. 

In general, the cohort 𝑠; is not representative of the finite population 𝐹𝑃 because 

𝑠; is not a random sample from FP. There are no cohort sample weights that can be used 

to equalize the distributions of covariates 𝒙 in 𝑠; and 𝐹𝑃 if they are different. The pseudo-

weights created using the 𝒙 serve as the sample weights for 𝑠; to weight the 𝒙 distribution 

in 𝑠; up to that in 𝐹𝑃.  

The matching methods classify the cohort and survey individuals into “matching 

groups” with similar 𝒙-distributions (as measured by certain matching scores), and then 
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distribute the survey weights (evenly by the PSAS method or fractionally by the KW 

method) to the matched cohort units. As a result, the marginal 𝒙-distribution in the pseudo-

weighted 𝑠;  becomes closer to the 𝒙 -distribution in the 𝐹𝑃  (estimated by the sample 

weighted 𝑠,). The balancing score, defined below, should be used to group (or match) 

cohort and survey units so that the individuals sharing the same balancing score have the 

same 𝒙-distribution in 𝑠; and in 𝐹𝑃. The balancing score 𝑏(𝒙) is a function of covariates 

𝒙 such that the conditional distribution of 𝒙 given 𝑏(𝒙) is the same in the 𝑠; as that in the 

𝐹𝑃. We use the notation in Rosenbaum & Rubin (1983) 

 𝒙 ⫫ 𝑅|𝑏(𝒙), (4.4.5) 

where 𝑅  is defined in log-likelihood (4.4.3). The coarsest balancing score is 𝑝 =

Pr( 𝑅 = 1 ∣ 𝒙 ), or any one-to-one functions of 𝑝, e.g., the participation rate 𝜋(;) = 5
%45

 or 

𝑞 = logit 𝑝 (Rubin & Thomas, 1992), which can be estimated from the propensity model 

(4.4.2) fitted to the combined (𝑠; vs weighted 𝑠,) sample.  

 For estimating 𝜇C>, the requirement that the matching score should be a balancing 

score satisfying Definition (4.4.5) can be relaxed to the WEA 

 𝐸{ 𝑦 ∣∣ 𝑏(𝒙), 𝑠; } = 𝐸{ 𝑦 ∣∣ 𝑏(𝒙), 𝐹𝑃 }, (4.4.6) 

where 𝐸 is the expectation with respect to the distribution of 𝑦 in 𝐹𝑃. The matching scores 

𝑝 and 𝑞 satisfy WEA (4.4.6) because they are balancing scores defined in (4.4.5). Note that 

𝑝 has a bounded support (0, 1) and is right skewed when the participation rate of the cohort 

is small. A tiny difference in 𝑝 may be resulted from large differences in covariates 𝒙, 

which can bias the estimates by the PS-based matching methods. These boundary problems 

can be avoided by using 𝑞 = logit(𝑝)	(Rubin & Thomas, 1992) as the matching score. 
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4.4.3 Applying WEA to Kernel Weighting (KW) Approach  

The kernel weighting (KW) approach, as a special case of PS-based matching methods, 

has been proved to provide consistent estimators of finite population means under SEA 

along with standard conditions (Section 3.6.1), whereas other PS-matching methods such 

as PSAS may not result in consistent estimators. In this section, we propose an enhanced 

KW (referred to as KW.W) method by applying the WEA under the framework in Section 

4.4.2, and provide statistical properties of KW.W estimators of finite population means. 

Similar to the KW method, the KW.W method provides pseudo-weights, denoted 

by 𝑤!X@.@ for each individual 𝑖 ∈ 𝑠;, but the KW.W method uses 𝑞 = logit(𝑝) = 𝜷0𝒙 as 

a matching score, with 𝜷 estimated under Model (4.4.2) fitted to the combined (𝑠; 	vs. 

weighted 𝑠,) by maximizing the pseudo-loglikelihood (4.4.4). Denote the estimated logit 

of propensity scores to be 𝑞!
(;)  and 𝑞"

(,)	for 𝑖 ∈ 𝑠;  and 𝑗 ∈ 𝑠, , respectively. The KW.W 

pseudo-weight, 𝑤!X@.@ for 𝑖 ∈ 𝑠;, is calculated as  

 𝑤!X@.@ =A ý
𝐾 wj𝑞!

(;) − 𝑞"
(,)k ℎ⁄ x

∑ 𝐾 wj𝑞!
(;) − 𝑞"

(,)k ℎ⁄ x!∈,%

⋅ 𝑑"þ
"∈,'

, (4.4.7) 

where 𝐾(⋅)  is a zero-centered kernel function (Epanechnikov, 1969) (e.g. uniform, 

standard normal, or triangular density), ℎ is the bandwidth corresponding to the selected 

kernel function. The KW.W estimate of 𝜇 is 𝜇̂X@.@ =
∑ n#

././
#∈'% .#
∑ n#

././
#∈'%

. Under the WEA and 

the conditions in Theorem 4.1. below, 𝜇̂X@.@  is design consistent with the finite 

population variance approximation 𝑉X@.@(see definition below). 

 We consider the following limiting process (Krewski & Rao 1981; Chen et al., 

2019) for the theoretical justification of Theorem 4.1. Suppose there is a sequence of finite 

population 𝐹𝑃g of size 𝑁g, for 𝑘 = 1, 2,⋯. Cohort 𝑠;,g of size 𝑛;,g and survey sample 𝑠,,g 
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of size 𝑛,,g are sampled from each 𝐹𝑃g. The sequences of the finite populations, cohort 

samples, and survey samples have sizes satisfy lim
g→s

*H,<
#<

→ 𝛾� , where 𝑑 = 𝑐, 𝑠 and 0 <

𝛾� ≤ 1. In the following, the index 𝑘 is suppressed for simplicity.  

Theorem 4.1 Consistency of the KW.W estimate of the finite population mean. 

Under the WEA (4.4.6), conditions A1, A2 and C1-C5 in Section 4.10.2, the KW.W 

estimate of the finite population mean 𝜇̂X@.@ = 𝜇C> + 𝑂5^𝑛;
4%/N`. Assuming the logistic 

regression model (4.4.2) for the propensity scores 𝑝 = 𝑃𝑟(𝑅 = 1 ∣ 𝒙 ) , and under 

conditions C6, C8, C9 in Section 4.10.2, we have the finite population variance 

𝑉𝑎𝑟(𝜇̂X@.@) = 𝑉X@.@ + 𝑜(𝑛;4%), where  

𝑉X@.@ = 𝑁4NA 𝜋!
(;)j1 − 𝜋!

(;)k{𝑤!X@.@(𝑦! − 𝜇C>) − (1 − 𝑝!)𝒃0𝒙!}
!∈C>

N
+ 𝒃0𝐷𝒃, 

𝒃0 = l∑ 𝜋!
(;)(𝑦! − 𝜇C>)

Sn#
././

S𝜷
	!∈C> n {∑ 𝑝!𝒙!𝒙!0!∈C> }4% , 𝐷 = 𝑁4N𝑉5j∑ 𝛿!

(,)𝑑!𝑝!𝒙!!∈C> k , 

and 𝑉5  denoting the design-based finite population variance under the probability 

sampling design for 𝑠,. Notice that Sn#
././

S𝜷
 depends on the choice of kernel function 𝐾(⋅) 

(proof in Section 4.10.3).  

4.4.4 Checking if SEA is satisfied, assuming WEA holds 

Although the matching methods such as the KW.W method can produce unbiased estimates 

by using the matching scores 𝑞, the variance can be inflated due to the highly variable 

weights in the combined sample. Using matching score 𝑝� defined in (4.3.1) may yield more 

efficient estimators, as the survey weights are not considered in the PS estimation. 

However, using the 𝑝� as a matching score can bias estimates of population means due to 

the potentially invalid SEA. Under the propensity model (4.3.2), we have 𝒙 ⫫ 𝑇|𝑝� with 𝑇 
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indicating the group membership of 𝑠;  versus 𝑠,  (Rosenbaum & Rubin, 1983), and 

𝐸{ 𝑦 ∣∣ 𝑝�, 𝑠; } = 𝐸{ 𝑦 ∣∣ 𝑝�, 𝑠, }. However, 𝑝� may not satisfy the second equality in the SEA 

(4.3.3), i.e., 𝐸{ 𝑦 ∣∣ 𝑝�, 𝑠; } ≠ 𝐸{ 𝑦 ∣∣ 𝑝�, 𝐹𝑃 }. Therefore, the resulting estimates of population 

means can be biased. Hence, satisfying the second equality in the SEA is crucial for using 

𝑝� as the matching score. 

We recommend using the following scatter plots to empirically determine whether 

the SEA is satisfied, if at least WEA holds. Plot 𝑞� = logit(𝑝�) = 𝜷�0𝒙, estimated by fitting 

Model (4.3.2) to the unweighted sample, versus 𝑞 = 𝜷0𝒙, estimated by fitting Model 

(4.4.2) to the weighted sample. If 𝑞� is a one-to-one function (e.g. cases 1 and 2 in Figure 

4.1) or many-to-one function (e.g. case 3 in Figure 1) of 𝑞, the second equality of the SEA 

𝐸{ 𝑦 ∣∣ 𝑞�, 𝑠; } = 𝐸{ 𝑦 ∣∣ 𝑞�, 𝐹𝑃 } holds as 𝐸{ 𝑦 ∣∣ 𝑞, 𝑠; } = 𝐸{ 𝑦 ∣∣ 𝑞, 𝐹𝑃 }. Otherwise 𝑞� will not 

satisfy the second equality the SEA (e.g. cases 4 and 5 in Figure 4.1). As a result, using 

matching scores of 𝑝� (or 𝑞� ) in the matching methods can produce biased estimates of 

population means for cases 4 and 5. 

Figure 4.1 Hypothetical scatter plots of linear propensity scores for SEA diagnoses. 
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4.5 Improving Efficiency of the IPSW and KW Estimators by Scaling 

Survey Weights in PS Estimation 

The IPSW and KW.W estimators of population means can be inefficient because of the 

generally large variability of the weights among the combined 𝑠; (with common weight of 

one) and sample weighted 𝑠, (with survey weight of 𝑑! , 𝑖 ∈ 𝑠,). Scaling the weights has 

been suggested to improve efficiency of estimators in population-based case-control 

studies when the weights are highly variable among cases and controls (Scott & Wild, 

1986; Li et al., 2010). Following the rationale of Scott & Wild (1986), we propose scaling 

the survey weights {𝑑! , 𝑖 ∈ 𝑠,	} by the scaling factor 𝑎 = *'
∑ �##∈''

 and denote the scaled 

weight for the survey unit 𝑖 ∈ 𝑠,  by 𝑑!∗ = 𝑎 ⋅ 𝑑! , so that ∑ 𝑑!∗!∈,' = 𝑛, . The propensity 

model (4.4.2) is fitted to the combined (𝑠; vs. scaled-weighted 𝑠,) sample and the pseudo 

log-likelihood (4.4.4)with the 𝑑! replaced by 𝑑!∗ is maximized to solve for 𝜷. The resulting 

estimator is denoted by 𝜷r∗. 

Lemma 4.1. 𝜷r∗ is a consistent estimator of 𝜷∗ = 𝜷 + log 𝑎 ⋅ 𝒆%, where 𝒆% = (1, 0,⋯ , 0)0, 

𝑎 is the scaling factor for survey weights, and 𝜷 is the vector of regression coefficients 

defined in Model (4.4.2) (see proof of Lemma 4.1 in Section 0).  

Lemma 4.1 shows that rescaling survey weights in the combined sample for the 

propensity modeling only affects the intercept of the coefficients, which can be corrected 

by the offset of log 𝑎. Therefore, as shown in Theorem 4.2, the resulting IPSW.S and 

KW.S estimators of the population mean 𝜇  when using the weights 𝑑!∗  for propensity 

estimation, denoted by 𝜇̂=>?@.?  and 𝜇̂X@.? , are also consistent estimators of 𝜇  as were 

𝜇̂=>?@ and 𝜇̂X@.@. 
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Theorem 4.2. Consistency of the IPSW.S and KW.S estimates of the finite population 

means. 

Under the WEA (4.4.6), conditions A1, A2 and C1-C5 in Section 4.10.2, and assuming the 

logistic regression model (4.4.2), we have 𝜇̂∗ = 𝜇C> + 𝑂5^𝑛;
4%/N	`, with 𝜇̂∗ being either 

𝜇̂=>?@.? or 𝜇̂X@.?. Under conditions C7-C9 in Section 4.10.2, we have the finite population 

variance 𝑉𝑎𝑟(𝜇̂∗) = 𝑉∗ + 𝑜(𝑛;4%), with 

𝑉∗ = 𝑁4NA 𝜋!
(;)j1 − 𝜋!

(;)k¿𝑤s!∗(𝑦! − 𝜇C>) − (1 − 𝑝!∗)𝒃∗
0𝒙!À

!∈C>

N
+ 𝒃∗0𝐷∗𝒃∗, 

where 𝑉∗can be 𝑉=>?@.? or 𝑉X@.? depending on the choice of {𝑤s!∗, 𝑖 ∈ 𝐹𝑃} being a set of 

IPSW.S or KW.S pseudo weights, 𝒃∗and 𝐷∗are obtained by replacing 𝑤!X@.@, 𝑝! and 𝑑! 

with 𝑤s!∗, 𝑝!∗ and 𝑑!∗ in 𝒃 and 𝐷 defined in Theorem 4.1, respectively (proof and details in 

Section 4.10.5). 

4.6 TL Variance Estimation 

4.6.1 Plug-in variance estimator for independent selection of the cohort units 

In this section we summarize the steps for obtaining the consistent estimators of finite 

population variances for the four IPSW and KW estimators ( 𝜇̂=>?@ , 𝜇̂X@.@ , 𝜇̂=>?@.? , 

𝜇̂X@.?), and provide their expressions. Following the proof of Theorem 4.1 (Section 4.10.3 

), both finite population variances of 𝜇̂=>?@ and 𝜇̂X@.@ can be approximated by  

 
𝑉 = 𝑁4NA 𝜋!

(;)j1 − 𝜋!
(;)k{𝑤s!(𝑦! − 𝜇C>) − (1 − 𝑝!)𝒃0𝒙!}N

!∈C>
+ 

𝒃0𝐷𝒃,																																																																																														 

(4.6.1) 
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where {𝑤s! , 𝑖 ∈ 𝐹𝑃} is the set of IPSW (𝑤!=>?@) or enhanced KW (𝑤!X@.@) pseudo-weights. 

The first summand of (4.6.1) can be consistently estimated from the pseudo-weighted 𝑠; 

assuming Poisson sampling of the cohort sample: 

 ¿𝑁r(;)À
4N
A ¯1 −

1
𝑤s!
± ¿𝑤s!(𝑦! − 𝜇̂) − (1 − 𝑝̂!)𝒃r0𝒙!À

N

!∈,%
, (4.6.2) 

where %
n� #

 is the estimate of 𝜋!
(;) , 𝑝̂!  is the PS estimated from Model (4.4.2) for 𝑖 ∈ 𝑠; , 

𝑁r(;) = ∑ 𝑤s!!∈,% , 𝜇̂  is the pseudo-weighted estimate of 𝜇C>  (either 𝜇̂=>?@  or 𝜇̂X@.@ 

depending on the choice of 𝑤s!), and 𝒃r0 = R∑ (𝑦! − 𝜇̂)!∈,%
Sn� #
S𝜷
�
𝜷$𝜷M

S ¿∑ 𝑝̂!𝒙!𝒙!0!∈,% À4%. The 

second summand, 𝒃0𝐷𝒃, in (4.6.1) is estimated by 𝒃r0𝐷r𝒃r, where 𝐷r is the survey design 

consistent variance estimator that takes the complex sample design of the reference survey 

into account. For example, under a stratified multistage clustering sampling with 𝐻 strata 

and 𝑢O primary sampling units (PSUs) in stratum ℎ, 𝐷r is estimated by  

 ¿𝑁r(,)À
4N
⋅A

𝑢O
𝑢O − 1

A (𝒛v − 𝒛_)(𝒛v − 𝒛_)0
p)

v$%

R

O$%
 (4.6.3) 

where 𝑁r(,) = ∑ 𝑑!!∈,' , 𝒛v = ∑ 𝑑!𝑝̂!𝒙!!∈(vO)  is the (𝑙ℎ) PSU total and 𝒛_ = %
Q)
∑ 𝒛v
Q)
v  is the 

mean of PSU total in stratum ℎ. 

4.6.2 Other underlying complex sampling schemes for a cohort sample 

We extend the sample estimate of 𝑉 to more complex situations where the cohort can be 

assembled under a cluster sampling design (NIH-AARP, 2006) with a fixed sample size 

(usually assumed in the software such as “survey” package in R (Lumley, 2020), and SAS). 

The first summand of 𝑉 in (4.6.1) can be estimated by  
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 ¿𝑁r(;)À
4N
⋅

𝑙
𝑙 − 1A ¿(𝑢v − 𝑢_) − 𝒃r0(𝒗v − 𝒗$)À

Nv

P$%
 (4.6.4) 

where 𝑙 is the number of clusters in the cohort, 𝑢v = ∑ 𝑤s!(𝑦! − 𝜇̂)!∈P  and 𝒗v = ∑ (1 −!∈v

𝑝̂!)𝒙!  are the cluster totals, 𝑢_ = %
v
∑ 𝑢vv
P$% , and 𝒗$ = %

v
∑ 𝒗vv
P$%  are the sample means of 

cluster totals. Terms 𝒃r0 and 𝐷r can be estimated in the same way as Section 6.1.  

In both Section 4.6.1 and 4.6.2, the sample estimate variance estimator of 𝜇̂=>?@.? (or 

𝜇̂X@.?) can be simply obtained by substituting 𝑤s! , 𝜇̂, 𝜷r , 𝑝̂!  and 𝑑!  by 𝑤s!∗, 𝜇̂∗, 𝜷r∗, 𝑝̂!∗ and 

𝑑!∗, respectively, in formulas (4.6.2)-(4.6.4). 

4.7 Simulations 

4.7.1 Generating the Finite Population 

We generated a finite population (𝐹𝑃) of size 𝑁 = 200,000, with four covariates 𝑥% ∼

𝑁(1, 1), 𝑥N ∼ 𝑁(1, 1), 𝑥z	(=1 if 𝑥% + 𝑥N > 2; 0 otherwise), and 𝑥\ ∼ LogNormal(0, 0.7). 

Note 𝑥%	and	𝑥N are correlated with 𝑥z, but independent of 𝑥\. The outcome 𝑦 for 𝑖 ∈ 𝐹𝑃 

were generated by 𝑦! = 2 + 𝑥%,! + 𝑥N,! + 𝑥z,! + 𝜖! , 𝑖 ∈ 𝐹𝑃,	where the error terms 𝜖! were 

independent and identically distributed (iid) as 𝑁(0, 1). The finite population mean of 𝑦 is 

𝜇C> = 4.50. 

For each 𝑖 ∈ 𝐹𝑃 , we created two variables, 𝑥%∗  and 𝑥%∗∗  as functions of 𝑥% : 𝑥%,!∗ =

𝑥%,! + 0.15𝑥%,!z , and 𝑥%,!∗∗  was defined as a categorical variable (=1 if 𝑥%,! ≤ 10[� percentile; 

2 if 10[� < 𝑥%,! ≤ 40[� percentiles; 3 if 40[� < 𝑥%,! ≤ 70[� percentiles; 4 if 70[� < 𝑥%,! ≤

90[� percentiles; and 5 if 𝑥%,! > 90[� percentile of 𝑥% in the 𝐹𝑃). The variables of 𝑥%∗ and 

𝑥%∗∗ were used in the simulations as a substitute of the covariate 𝑥% to reflect cases when 𝑥% 

is not available but related variables are available. 
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4.7.2 Sampling from the Finite Population to Assemble the Survey Sample and 

Cohort 

A cohort of size 𝑛; = 2,400 individuals was randomly selected from the 𝐹𝑃 by Probability 

Proportional to Size (PPS) sampling with measure of size (MOS) for individual 𝑖 ∈ 𝐹𝑃 

defined by 𝑟!
(;) = exp^𝛼%𝑥%,! + 𝛼N𝑥N,! + 𝛼z𝑥\,!` , where 𝜶 = (𝛼%, 𝛼N, 𝛼z) =

(0.6, 0.15, 0.24). The sample weight (i.e., the reciprocal of the selection probability) for 

individual 𝑖  in the cohort was 𝑤!
(;) =

∑ x#
(%)P

#7!

*%⋅x#
(%) . A survey sample of size 𝑛, = 2,000 

individuals was sampled independently of the sampling of the cohort where a similar PPS 

sampling design was used, but with a different MOS 𝑟!
(,) = exp^𝛾%𝑥%,! + 𝛾N𝑥N,! + 𝛾z𝑥\,!`.  

 Under PPS sampling described above, the true propensity model of a population 

unit included in 𝑠; vs. 𝐹𝑃 (assumed by the IPSW and KW.W methods), and that in 𝑠; vs. 

𝑠, (assumed by the original KW) are 

 
logit{𝑝(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃)} = 𝛽( + 𝜷%0𝒙! , and 

logit{𝑝(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝑠,)} = 𝛽ß( + 𝜷�%0𝒙! ,															 
(4.7.1) 

respectively, where 𝜷% = 𝜶, 𝜷�% = 𝜶− 𝜸; 𝛽(  and 𝛽ß(  are the intercepts (Section 4.10.6). 

The two propensity models have the same functional form so that the proposed PS-based 

weighting and matching methods can be fairly compared. 

Notice that values of 𝜸 = (𝛾%, 𝛾N, 𝛾z) in the MOS of survey sample selection can 

be varied to control for the validity of the SEA assumed by the original KW method 

introduced in Chapter 3. We considered two scenarios with 𝜸 = (−0.4, −0.1, 0.16) in 

Scenario 1, and 𝜸 = (−0.65, 0.2,0) in Scenario 2. Following Section 4.4.4, we made a 

scatter plot of 𝑞� = 𝛽ß( + 𝜷�%0𝒙 versus 𝑞 = 𝛽( + 𝜷%0𝒙 under both scenarios. As shown in 
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Figure 4.2, 𝑞�  was a one-to-one-function of the balancing score 𝑞  in Scenario 1, and 

therefore satisfied the second equality 𝐸(𝑦 ∣∣ 𝑞�, 𝑠; ) = 𝐸( 𝑦 ∣∣ 𝑞�, 𝐹𝑃 ) in the SEA. However, 

in Scenario 2, 𝑞� was not a balancing score (similar to case 5 in Figure 4.1), which violated 

SEA. 

Figure 4.2 Scatter plots of linear propensity scores for SEA diagnoses in the simulation 

 

4.7.3 Evaluating Criteria 

We examined the performance of the five PS-based estimators of 𝜇C>: two IPSW estimates 

(𝜇̂=>?@, 𝜇̂=>?@.?) and three KW methods (𝜇̂X@, 𝜇̂X@.@, 𝜇̂X@.?), which are compared to the 

naïve unweighted cohort estimator (𝜇̂#Q!�-) and the weighted survey estimator (𝜇̂?oK). We 

used criteria of relative bias (%RB), empirical variance (𝑉), mean squared error (MSE) of 

the estimators, defined by 

%RB= %
�
∑ T6(2)4T34

T34
�
y$% × 100, 𝑉 = %

�4%
∑ w𝜇̂(y) − %

�
∑ 𝜇̂(y)�
y$% x

N
�
y$% ,  

MSE= %
�
∑ ¿𝜇̂(y) − 𝜇C>À

N�
y$% , 

where 𝐵 = 10,000 is the number of simulations, 𝜇̂(y) is the estimate of 𝐹𝑃 mean, 𝜇C> , 

obtained from the 𝑏-th simulated sample. 
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For each mean estimator, we evaluated two variance estimators, i.e., the Taylor 

linearization (TL, described Section 4.6.2) estimator and the Jackknife replication (JK) 

estimator (Section 4.10.7), using the variance ratio (VR), and coverage probabilities (CP) 

of the corresponding 95% confidence intervals, defined by 

VR=
!
6
∑ �A (2)6
27!

o
× 100, and CP= %

�
∑ 𝐼^𝜇C> ∈ 𝐶𝐼(y)`�
y$% , 

where 𝑣g(y)  is the variance estimate of 𝜇̂(y) , and 𝐶𝐼(y) = j𝜇̂(y) − 1.96ã𝑣g(y), 𝜇̂(y) +

1.96ã𝑣g(y)k is the 95% confidence interval from the 𝑏-th simulated sample. 

4.7.4 Results under Scenario 1: the valid SEA 

Table 4.1 shows the results under the SEA. The unweighted naïve cohort mean, 𝜇̂#Q!�-, 

was biased by 20.97% while the survey estimate 𝜇̂?oK is approximately unbiased. All KW 

and IPSW methods yielded approximately unbiased estimates of 𝜇C> . Although the 

original IPSW estimate 𝜇̂=>?@ had  small bias, it was inefficient. The 𝜇̂=>?@.?, by fitting the 

propensity model to the scaled weighted sample, halved the variance of 𝜇̂=>?@, without 

increasing the bias. The extended KW estimator, 𝜇̂X@.@, also had smaller variance than 

𝜇̂=>?@ because the estimated PSs were used to measure the similarity instead of estimating  

Table 4.1 Results of from 10,000 simulated cohorts and survey samples under SEA. 
 Estimator %RB V (× 𝟏𝟎𝟑) VR(TL) VR(JK) CP(TL) CP(JK) MSE (× 𝟏𝟎𝟑) 
𝜇̂4."56 20.97 1.71 1.02  0.00  889.76 
𝜇̂789 0.07 2.82 1.01 1.02 0.96 0.96 2.83 
Model 𝑻 (True) logit{Pr(𝒙)} ∼ 𝑥>, 𝑥*, 𝑥K 
𝜇̂:'7; -0.12 9.96 0.92 1.01 0.94 0.95 9.99 
𝜇̂:'7;.7 0.07 4.59 0.99 0.99 0.95 0.95 4.60 
𝜇̂=; 0.18 2.54 1.07 1.06 0.96 0.95 2.61 
𝜇̂=;.; 0.66 4.02 1.01 1.07 0.93 0.94 4.90 
𝜇̂=;.7 0.63 3.12 1.03 1.07 0.93 0.93 3.92 
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participation rates. The KW.S estimator 𝜇̂X@.?, which used the scaled survey weights to 

estimate the PSs, further reduced the variance and improved MSE compared to 𝜇̂X@.@. The 

KW estimate, 𝜇̂X@ had the smallest variance because no sample weights were considered 

in estimating PSs. The 𝜇̂X@  required the SEA, which held in this scenario, and thus 

naturally had the smallest MSE and maintained the nominal CP in Scenario 1. The TL and 

JK methods gave similar variance estimates. 

4.7.5 Results under Scenario 2: the invalid SEA 

We changed the MOS for the sample selection of 𝑠,  while the sample selection of 𝑠; 

remained the same as given in Section 4.7.4 so that the SEA was invalid (Scenario 2 in 

Figure 2). We discuss the results under four propensity models that includes different sets 

of covariates. 

Correct propensity Model 𝑇 with 𝒙 = (𝑥%, 𝑥N, 𝑥\) 

As shown in Table 4.2 under the correctly specified propensity model (Model 𝑇), 

though the KW estimate, 𝜇̂X@, had the smallest variance among the five pseudo-weighted 

estimates, it had the largest bias, leading to low CP and the largest MSE, whereas 𝜇̂X@.@, 

and 𝜇̂X@.? had smaller biases. Similar to the results in Table 4.1, using scaled weights in 

the propensity model yielded more efficient estimates, especially for the IPSW method. 

Though 𝜇̂=>?@.? had ~60% smaller variance than 𝜇̂=>?@, it was not as efficient as 𝜇̂X@.?. 

As a result, 𝜇̂X@.? performed the best in terms of MSE.  

Underfitted propensity Model 𝑈 with 𝒙 = (𝑥%, 𝑥N) 

 Model 𝑈 was an underfitted propensity model where the covariate 𝑥\ was missing. 

Excluding 𝑥\  did not affect the extent of the bias of the estimates because 𝑥\  was 

uncorrelated with the outcome variable 𝑦. However, the empirical variances of 𝜇̂=>?@ and 
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𝜇̂X@.@  were substantially reduced compared to the variances under Model 𝑇  (same 

findings as in Chapter 3, and Stuart, 2010). In contrast, the variances of 𝜇̂=>?@.? and 𝜇̂X@.? 

were nearly unchanged.  

Misspecified propensity Model 𝑀% with	𝒙 = (𝑥%∗, 𝑥N)  

 In Model 𝑀%, the true covariate 𝑥% in Model 𝑈 was substituted by 𝑥%∗ which was a 

nonlinear function of 𝑥%. The IPSW estimates 𝜇̂=>?@ and 𝜇̂=>?@.? were biased because the 

cohort participation rates cannot be accurately estimated from Model 𝑀%. However, the 

matching methods with matching scores 𝑞g = 𝛽�%𝑥%∗ + 𝛽�N𝑥N still worked well because 𝑥%∗ =

𝑥% + 0.15𝑥%z was a one-to-one function of 𝑥%, and therefore 𝑞g was close to a one-to-one 

function of the true participation rate. As a result, the KW estimates were less biased than 

the IPSW estimates. Furthermore, using scaled survey weights, 𝜇̂X@.?  outperformed 

𝜇̂=>?@.? with smaller bias, variance, and nearly nominal CP.  

Misspecified propensity Model 𝑀N with 𝒙 = (𝑥%∗∗, 𝑥N)  

 In contrast, Model 𝑀N substituted 𝑥% by 𝑥%∗∗, which was a categorical variable that 

was coarser than	𝑥% in Model 𝑈. This misspecified model did not accurately estimate the 

cohort participation rates or provide an adequate balancing score used for matching, 

because individuals in the same category of 𝑥%∗∗ took on the same values of the matching 

scores 𝑞g  and were incorrectly assigned the same pseudo-weights. Hence, all of the 

estimates by matching methods were biased. For this scenario, 𝜇̂=>?@.? had smaller MSE 

and more accurate CP than 𝜇̂X@.? due to the smaller bias.  

TL and JK variance estimation 

The TL variance estimates were close to the truth (with the VR close to 1) for all estimates 

of 𝜇C> except for 𝜇̂=>?@ with its corresponding VR<<1. This is	due to the finite sample 
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bias caused by large variability of the sample weights in the combined (𝑠; vs. weighted 𝑠,) 

sample (with the common value of one for the cohort weights vs. values ranging from 23 

to 618 for the survey weights.) The coefficient of variance (CV) of the weights was ~160% 

in the combined sample, indicating highly variable sample weights. The finite sample bias 

of the TL variance estimator for 𝜇̂=>?@	became smaller as 𝑁, 𝑛;, and 𝑛, increased (results 

not shown). This is consistent with the previous findings from population-based case-

control studies where the TL method underestimates the variance of logistic regression 

coefficients because of the large variability in the sample weights for combined sample of 

cases and controls (Li et al. 2010; Landsman & Graubard, 2012). In contrast, the TL 

variance estimate for 𝜇̂=>?@.?  worked well since the variability of the weights in the 

combined (𝑠;  vs. scaled-weighted 𝑠, ) sample was reduced. The scaled survey sample 

weights range from 0.2 to 5.1 and the CV of weights decreases to 50%. 

The JK method consistently had larger estimates of variances compared to the TL 

variance estimates (similar results were shown by Efron & Gong, 1983), and the JK 

estimates were more accurate for the variance of 𝜇̂=>?@ . However, in some of the 

simulations the JK overestimated the variance of 𝜇̂X@ and 𝜇̂X@.?. Under Model 𝑀%, values 

of the matching score, i.e., 𝑞g can be quite different across the replicates due to the highly 

variable covariate 𝑥%∗ in the propensity model, which could slow down the convergence of 

the JK variance estimates. 

In summary, scaling the survey weights not only substantially decreased the 

variance of the mean estimates, but also reduced the finite sample bias of the TL variance 

estimates. The resulting estimates, 𝜇̂=>?@.?  and 𝜇̂X@.?  outperformed 𝜇̂=>?@  and 𝜇̂X@ , 

respectively. The proposed 𝜇̂X@.?  generally had the smallest variance among the four 
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methods, and its variance changed least among all the four estimates as the fitted propensity 

model varied. The proposed 𝜇̂X@.? had the smallest MSE when the propensity model was 

appropriately specified (Models 𝑇 and 𝑈). Under Model 𝑀% when the variable(s) in the 

fitted propensity model was no coarser than the correct variable(s), 𝜇̂X@.? was robust to 

model misspecification, and therefore unbiased and more efficient than 𝜇̂=>?@.? . Under 

Model 𝑀N, the performance of 𝜇̂X@.? and 𝜇̂=>?@.? was comparable and 𝜇̂=>?@.? had slightly 

smaller MSE than 𝜇̂X@.? due to the smaller bias. 

Table 4.2 Results from 10,000 simulated cohorts and survey samples with each cohort and survey 
sample fitted to the correct propensity model and three misspecified propensity models with 

violated SEA. 
 Estimator %RB V (× 𝟏𝟎𝟑) VR (TL) VR (JK) CP (TL) CP (JK) MSE (× 𝟏𝟎𝟑) 
𝜇̂4."56 20.97 1.72 1.02  0.00  889.89 
𝜇̂789 0.04 3.61 1.02 1.02 0.95 0.95 3.62 
Model 𝑻	(True) logit{Pr(𝒙)} ∼ 𝑥>, 𝑥*, 𝑥K 
𝜇̂:'7; -0.36 14.73 0.86 1.03 0.93 0.94 14.99 
𝜇̂:'7;.7 0.03 5.92 0.98 1.00 0.95 0.95 5.92 
𝜇̂=; 4.84 2.66 0.92 1.04 0.01 0.02 50.03 
𝜇̂=;.; 0.84 4.83 1.04 1.09 0.93 0.94 6.24 
𝜇̂=;.7 0.65 3.55 1.02 1.08 0.93 0.93 4.39 
Model 𝑼 (Underfitted) logit{Pr(𝒙)} ∼ 𝑥>, 𝑥*  
𝜇̂:'7; -0.24 13.62 0.89 1.02 0.93 0.94 13.73 
𝜇̂:'7;.7 0.04 5.76 0.98 1.00 0.95 0.95 5.77 
𝜇̂=;.; 0.80 3.92 1.12 1.13 0.94 0.94 5.22 
𝜇̂=;.7 0.57 3.39 1.02 1.08 0.93 0.94 4.05 
Model 𝑴𝟏 (Misspecified variable) logit{Pr(𝒙)} ∼ 𝑥>∗, 𝑥*  
𝜇̂:'7; 4.91 16.94 0.62 1.08 0.44 0.55 65.61 
𝜇̂:'7;.7 3.22 7.10 0.95 1.00 0.58 0.58 28.04 
𝜇̂=;.; 0.58 4.54 1.08 1.45 0.87 0.95 5.22 
𝜇̂=;.7 0.52 3.18 0.94 1.29 0.92 0.96 3.72 
Model 𝑴𝟐 (Misspecified variable) logit{Pr(𝒙)} ∼ 𝑥>∗∗, 𝑥* 
𝜇̂:'7; 1.54 7.46 0.98 1.00 0.86 0.86 12.28 
𝜇̂:'7;.7 1.58 4.58 0.99 1.00 0.82 0.82 9.62 
𝜇̂=;.; 2.08 4.10 0.99 1.12 0.70 0.75 12.87 
𝜇̂=;.7 2.04 3.62 0.92 1.10 0.65 0.72 12.01 
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4.8 Data Analysis: The U.S. National Health and Nutrition 

Examination Survey 

Note that, even if common variables are available in the cohort and the survey, and the 

propensity model is appropriately specified, there can be many other factors influencing 

performance of the proposed KW.S and IPSW.S estimates. First, the cohort may produce 

quite different estimates from the survey estimates even if the implicit self-selection 

weights are known. This can be caused by sampling errors in the estimates, under-coverage 

of cohort study centers for the finite population, and measurement errors due to different 

data collection modes or questionnaires conducted by the cohort and the survey. Second, 

different questionnaires between the cohort and the survey can make data harmonization 

difficult and imprecise, resulting in biased estimation. For example, a question about the 

same topic may provide respondents with different categories to select in their responses 

between the cohort and the survey.  

In this analysis, in order to reduce the influence of these factors, we used the Third 

U.S. National Health and Nutrition Examination Survey (NHANES III) as the volunteer-

based “cohort” (ignoring sample weights) and the contemporaneous U.S. National Health 

Interview Survey (NHIS) as the reference survey. Although this example is contrived, it 

has a key advantage for illuminating the performance of our methodology, namely that the 

“cohort” and reference survey have approximately the same target population, data 

collection mode, and questionnaires. This ensures that when applying our methodology to 

the “cohort”, we could potentially truly recover US-representative estimates, and thus 

enables us to characterize the performance of our methodology in real data. Although 
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problems with misaligned target populations and data harmonization are serious practical 

issues, they are beyond the scope of our methodology.  

 We estimated prospective 15-year all-cause mortality rates for adults in the US 

using the adult sample of the household interview part of NHANES III conducted in 1988-

1994, with sample size = 20,050. NHANES III is partly a cross-sectional household 

interview survey, and partly a medical examination survey of the civilian, non-

institutionalized population of the United States. NHANES III oversampled poverty areas, 

children under age 5, adults age 60 and over, non-Hispanic blacks, and Mexican Americans 

(Ezzati et al., 1992). The CV of sample weights is 125%, indicating highly variable 

selection probabilities, and potential low representativeness of the unweighted sample. We 

ignored all complex design features of NHANES III to treat it as a cohort. For estimating 

mortality rates, we approximate that the entire sample of NHANES III was randomly 

selected in 1991 (the midpoint of the data collection time period). 

For the reference survey, we used the 1994 NHIS respondents to the supplement 

for monitoring achievement of the Healthy People Year 2000 objectives, aged 18 and older 

(sample size = 19738). NHIS is also a cross-sectional household interview survey with the 

same target finite population as the NHANES III. The 1994 NHIS had a multistage 

stratified cluster sample design, with over sampling of the aged, low income, and Black 

and Hispanic populations (Massey et al., 1989). There were 125 strata and 248 pseudo-

PSUs in the sample. We collapsed strata with only one PSU with the next nearest strata for 

variance estimation (Hartley et al., 1969). The CV of sample weights in 1994 NHIS sample 

is 58%. NHANES III and NHIS were linked to National Death Index (NDI) for mortality 
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(NCHS 2013), allowing us to quantify the relative bias of unweighted NHANES estimates, 

assuming that the NHIS estimates are the gold standard.  

We first compared the distributions of selected common covariates in the two 

samples (Table 4.3). As expected, the covariates in the weighted samples of NHANES and 

1994 NHIS have very close distributions because both weighted samples represent 

approximately the same finite population. There are two exceptions: (1) education level, 

probably due to differences in how the question was asked in the two surveys; (2) health 

status, which was self-reported in NHANES but reported by the proxy of the household  

Table 4.3 Distribution of selected common variables in NIH-AARP and NHIS 
  NHIS 1994  NHANES III 
 Total Count 𝑛 =19738 𝑁_ =189608549  𝑛 =20050 𝑁_ =187647206 

  % Weighted %  % Weighted % 
Age Group 18-24 years 10.5 13.3  15.8 15.8 
 25-44 years 42.9 43.7  35.4 43.7 
 45-64 years 26.1 26.6  22.6 24.6 
 65 years and older 20.5 16.4  26.2 16.0 
Race NH-White 76.1 75.9  42.3 76.0 
 NH-Black 12.6 11.2  27.4 11.2 
 Hispanic 8.0 9.0  28.9 9.3 
 NH-Other 3.3 4.0  1.5 3.5 
Region Northeast 20.7 20.5  14.6 20.8 
 Midwest 26.1 25.1  19.2 24.1 
 South 31.5 32.5  42.7 34.3 
 West 21.6 21.9  23.5 20.9 
Poverty No 79.1 82.3  67.9 80.3 
 Yes 13.1 10.6  21.4 12.1 
 Unknown 7.8 7.0  10.7 7.6 
Education Lower than High school 60.5 62.0  39.0 51.6 
 High School/Some College 25.7 25.7  35.9 32.7 
 College or higher 13.8 12.3  25.1 15.7 
Health Status  
(Self-Rprtd) 

Excellent/Very good 60.5 62.0  39.0 51.6 
Good 25.7 25.7  35.9 32.7 

 Fair/Poor 13.8 12.3  25.1 15.7 
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representative in NHIS. As expected, the covariates distribute quite differently in the 

unweighted NHANES from the weighted samples, especially for design variables such as 

age, race/ethnicity, poverty, and region.  

We used an AIC-based stepwise procedure (Lumley, 2020) to choose the 

propensity model fitted to combined sample of unweighted NHANES and weighted NHIS. 

This initially included main effects of common demographic characteristics (age, sex 

race/ethnicity, region, and marital status), socioeconomic status (education level, poverty, 

and household income), tobacco usage (smoking status, and chewing tobacco), health 

variables (body mass index [BMI], and self-reported health status), a quadratic term for 

age, and all two-way interactions. Table 4.4 shows the final propensity models fitted to the 

weighted sample (for IPSW and KW.W), scaled weighted sample (for IPSW.S and KW.S) 

and unweighted sample (for KW). 

Table 4.4 Main effects of the fitted Propensity score model with or without NHIS sampling 
weights (interactions not shown) 

 Weighted Sample1  Scale-weighted 
Sample2  Unweighted 

Sample3 
 
Coefficients 

Estimate4 

(× 100) 
Std. Err.5 

(× 100)  Estimate 
(× 100) 

Std. Err. 
(× 100)  Estimate 

(× 100) 
Std. Err. 
(× 100) 

(Intercept) -718.0 35.95***  137.8 26.89***  250.7 24.89*** 
Age (in years) -11.8   1.97***  -9.7   1.48***  -16.7   1.34*** 
Age2 0.2   0.04***  0.2   0.03***  0.3   0.03*** 
Sex (ref: male) 
  Female -1.5   3.63  2.1   3.27  -10.2   3.14** 
Race/Ethnicity (ref: NH-White) 
  NH-Black 224.3 16.50***  216.5 15.31***  267.2 13.77*** 
  Hispanic 23.4 21.33  5.7 18.41  28.5 16.70· 
  NH-Other 21.2 36.27  16.6 34.05  28.6 32.54 
Region (ref: Northeast) 
  Midwest -31.3 13.89*  -46.2 10.78***  -47.7 10.16*** 
  South 22.8 11.26*  11.3   9.98  16.9   9.32· 
  West -56.1 14.46***  -74.2 11.82***  -77.3 11.10*** 
Marital Status (ref: married or living as married) 
  Previously 
married -35.3 10.11***  -13.8   7.79·  -68.3   7.31*** 
  Never married -5.3 12.00  -7.2   8.92  -75.2   8.15*** 
Education level -33.6   3.57***  -24.9   2.73***  -23.8   2.57*** 
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Poverty (ref: No) 
  Yes -105.6 18.09***  -103.4 12.83***  -93.5 11.68*** 
  Unknown -438.3 39.76***  -384.5 22.10***  -360.0 19.67*** 
Household 
Income -26.4   2.80***  -23.7   2.22***  -14.7   2.08*** 
BMI (ref: 
normal)         

  Under-weight 3.6   8.64  -9.7   7.25  -4.2   6.81 
  Over-weight 2.7   4.00  0.4   2.89  0.7   2.67 
  Obese -0.4   4.61  -4.5   3.62  -4.6   3.38 
Health Status 40.4   4.67***  47.0   3.77***  48.6   3.50*** 
Smoking (ref: Non-smoker) 
  Current smoker  17.3   4.36***  11.0   3.24***  9.8   2.99** 
  Former smoker 13.9   4.43**  13.3   3.16***  8.3   2.99** 
Chewing tobacco (ref: No) 
  Yes -19.1   5.24***  -25.5   4.28***  -23.0   4.04*** 

1Weighted Sample: The combined NHANES and weighted NHIS sample, with the weights being the NHIS 
population weights. The fitted propensity model is used by the IPSW and KW.W approaches. 
2Scale-weighted Sample: The combined NHANES and scale-weighted NHIS sample, with the weights being 
the scaled NHIS population weights. The fitted propensity model is used by the IPSW.S and KW.S 
approaches. 
3Unweighted Sample: The combined NHANES and weighted NHIS sample. The fitted propensity model is 
used by the KW approach.  
4Estimates: Estimated model coefficients on log-odds scale. 
5Std. Err.: Square root of estimated variance of estimated model coefficients.  
                 ‘***’ p-value< 0.001; ‘**’ p-value< 0.01; ‘*’ p-value< 0.05; ‘.’ p-value< 0.1. 
The 11 two-way interactions included in the propensity models are poverty: household income, 
race/ethnicity: region,  age^2: race/ethnicity, race/ethnicity: health status, age: health status, region: 
household income, marital status: household income, age^3, education level: household income, 
race/ethnicity: poverty, age^2: poverty, sex: race/ethnicity 
 

To evaluate the performance of the five PS-based methods, we used relative 

difference from the NHIS estimate %RD= T64T6PQN>

T6PQN>
× 100, bias reduction from the naïve 

(unweighted) NHANES estimates %BR= T6PG#RS4T6
T6PG#RS4T6PQN>

× 100, TL variance estimate (𝑉), 

and estimated MSE = (𝜇̂ − 𝜇̂#R=?)N + 𝑉, which treated the NHIS estimates as truth. 

 Table 4.5 shows that the weighted 1994 NHIS and the weighted NHANES III 

estimates (TW) of 15-year all-cause mortality were very close (%RD = 2.6% for overall  
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Table 4.5 Estimates of all-cause 15-year mortality (overall, and by subgroups)  
   Est            %Relative Difference from the NHIS Estimate        
 NHIS TW Naïve KW IPSW IPSW.S KW.W KW.S 
Overall 17.6 -2.6 52.2 17.7 -3.8 -3.2 -2.0 -2.2 
(%BR)    (66.0) (92.7) (93.8) (96.1) (95.8) 
Age group          
18-24 yrs 2.2 -16.1 0.5 -35.9 -33.4 -30.9 -32.4 -30.2 
25-44 yrs 3.9 -7.9 30.9 -4.5 -14.8 -14.3 -12.5 -14.0 
45-64 yrs 17.7 5.8 30.6 1.3 -3.8 -3.2 -4.1 -3.7 
65-69 yrs 45.5 0.9 9.5 -1.3 -6.4 -5.4 -5.8 -4.7 
70-74 yrs 60.0 3.5 6.4 -0.4 -1.4 -1.3 -1.3 -1.1 
>=75 yrs 86.2 1.1 4.3 3.3 3.3 3.2 3.2 3.1 
Average  5.9 13.7 7.8 10.5 9.7 9.9 9.4 
(%BR)    (43.2) (23.3) (29.2) (27.7) (31.0) 
Sex                 
Male 18.8 -7.1 58.1 15.9 0.0 0.8 1.8 2.0 
Female 16.5 1.9 46.5 21.0 -6.5 -6.8 -4.8 -5.9 
Average   4.5 52.3 18.4 3.3 3.8 3.3 3.9 
(%BR)    (64.8) (93.8) (92.7) (93.7) (92.5) 
Race                 
NH-White 18.7 -1.7 96.8 17.8 -1.9 -1.8 -0.2 -0.8 
NH-Black 18.9 -5.6 19.4 17.3 -4.4 -6.9 -4.0 -7.0 
Hispanic 10.2 -9.1 62.2 13.2 -15.3 -9.3 -13.0 -7.9 
NH-Other 9.0 -12.8 63.8 -14.1 -31.1 -23.8 -24.2 -19.0 
Average   7.3 60.5 15.6 13.2 10.5 10.4 8.7 
(%BR)    (74.2) (78.2) (82.7) (82.9) (85.7) 

 
estimate, and %RD = 4.5-7.3% on average for the estimates by subgroups). In contrast, the 

naïve NHANES III estimate of overall mortality was ~52.2% biased from the NHIS 

estimate because older people who have higher mortalities were oversampled, and the bias 

insubgroup-specific mortality reached 96.8% for Non-Hispanic Whites. All KW and IPSW 

methods substantially reduced the bias from the naïve estimates. The four methods that fit 

propensity models to the (scaled-) weighted sample (IPSW, IPSW.S, KW.W, and KW.S) 

provided the close estimates. The bias in the naïve estimate of overall mortality was almost 

eliminated by the KW.W and KW.S methods (~96.1% and 95.8% bias removed). KW.S 

on average had the least bias for the subgroup-specific mortality among the four methods. 

Similar to the simulation results, KW.W and KW.S estimates had smaller variance 
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(estimated by TL method) than the IPSW and IPSW.S estimates. As a result, the KW.S 

estimates had on average the smallest MSE.  

 

Table 4.6 Taylor Linearization variance estimates and mean squared errors of the of all-cause 15-
year mortality estimates (overall, and by subgroups)  

          TL Variance Estimate (× 𝟏𝟎𝟓)                                  MSE (× 𝟏𝟎𝟓)                      
 KW IPSW IPSW.S KW.W KW.S  KW IPSW IPSW.S KW.W KW.S 

Overall 1.2 1.4 1.0 1.0 1.0  98.2 5.8 4.3 2.3 2.5 
Age group             
18-24 yrs 0.8 0.8 0.9 0.8 0.9  7.2 6.4 5.7 6.1 5.5 
25-44 yrs 0.8 0.7 0.7 0.7 0.7  1.1 4.0 3.8 3.1 3.6 
45-64 yrs 5.2 5.4 5.1 4.9 4.9  5.7 9.8 8.2 10.2 9.2 
65-69 yrs 35.9 35.6 34.4 33.5 33.3  39.5 120.8 95.1 103.3 78.1 
70-74 yrs 32.1 31.6 30.3 30.4 29.6  32.7 39.2 36.9 36.9 33.9 
>=75 yrs 6.0 6.1 5.8 5.9 5.8  85.5 85.7 80.2 83.4 76.2 
Average 13.5 13.4 12.9 12.7 12.5  28.6 44.3 38.3 40.5 34.4 
Sex                      
Male 2.9 2.8 2.5 2.4 2.4  91.7 2.8 2.7 3.5 3.8 
Female 2.1 2.2 1.7 1.7 1.7  121.7 13.7 14.3 7.9 11.1 
Average 2.5 2.5 2.1 2.1 2.0  106.7 8.3 8.5 5.7 7.4 
Race                      
NH-White 1.9 2.2 1.7 1.6 1.6  112.1 3.5 2.8 1.6 1.8 
NH-Black 3.8 6.6 5.7 3.0 2.7  110.9 13.6 22.9 8.6 20.3 
Hispanic 2.6 6.1 5.7 1.8 1.9  20.7 30.5 14.5 19.4 8.3 
NH-Other 19.2 14.6 14.4 13.2 14.4  35.2 92.1 59.9 60.2 43.5 
Average 6.9 7.4 6.9 4.9 5.1  69.7 34.9 25.1 22.5 18.5 

 

Interestingly, the original KW method had the largest bias in overall mortality (BR%=66% 

vs. ≥92.7%), but had least bias for age-specific mortality (BR%= 43.2%	vs. ≤31.0%) and 

achieved smallest MSE for most age groups. This paradox is caused by the validity of the 

SEA for the age-specific mortality estimation, but not for overall mortality estimation. As 

shown in Table 4.5, the small biases in the KW estimates of age-specific mortality imply 

that the SAE held, meaning 𝐸( 𝑦 ∣∣ age, 𝑝�, 𝑠; ) =̇ 𝐸( 𝑦 ∣∣ age, 𝑝�, 𝐹𝑃 ). As shown in Table 4.7, 

the KW pseudo-weighted age distribution in 𝑠; (unweighted NHANES sample) differed 

from that in 𝐹𝑃  (represented by the weighted NHIS), indicating 𝑃( age ∣∣ 𝑝�, 𝑠; ) ≠
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𝑃( age ∣∣ 𝑝�, 𝐹𝑃 ). As a result, the SEA was invalid for the overall mortality estimation using 

the original KW method, that is 

𝐸( 𝑦 ∣∣ 𝑝�, 𝑠; ) = ∑ {𝐸( 𝑦 ∣∣ age, 𝑝�, 𝑠; )𝑃( age ∣∣ 𝑝�, 𝑠; )}��� 																																						  

                ≠ ∑ 𝐸(𝑦 ∣∣ age, 𝑝�, 𝐹𝑃 )𝑃( age ∣∣ 𝑝�, 𝐹𝑃 )��� = 𝐸(𝑦 ∣∣ 𝑝�, 𝐹𝑃 ). 

Table 4.7 Relative difference of age group proportion estimates from the 1994 NIHS estimates 
Age Group IPSW IPSW.S KW KW.W KW.S 
18-24 yrs -8.2 -8.3 -23.6 -7.3 -8.3 
25-44 yrs 4.5 3.1 -4.3 2.9 2.5 
45-64 yrs -1.6 0.5 4.6 -0.7 0.6 
65-69 yrs -11.7 -9.0 5.4 -10.6 -8.8 
70-74 yrs -4.0 -2.1 18.8 -1.8 0.1 
>=75 yrs 4.6 2.2 39.8 7.4 4.2 
Average 5.8 4.2 16.1 5.1 4.1 

 
This result is consistent with the findings in the simulations: the original KW 

estimates can have the smallest (or largest) MSE when the SEA is valid (or invalid). 

The other four methods (IPSW, IPSW.S, KW.W, and KW.S) had similar estimated 

mortality rates. The IPSW estimates had the largest variances, followed by the IPSW.S 

estimates. The KW.S estimates had the smallest variances with the smallest MSE in most 

cases. The results of the Jackknife replication and the TL variance estimates were similar 

in this real data example (results not shown). 

4.9 Summary 

In this Chapter, a unifying framework is established for both PS-based weighting and 

matching methods to improve estimates of finite population means from non-representative 

cohort data, by using a reference representative survey sample of the target population. 

Three contributions are made under this unifying framework. First, the underlying Strong 

Exchangeability Assumption (SEA) assumed by the existing PS-based matching methods 
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is identified. The simulations and data example demonstrate that the PS-based matching 

methods that rely on the SEA, such as the original KW estimator introduced in Chapter 3, 

have smallest MSE when the SEA holds, but have large bias when the SEA fails. As in our 

data example, SEA failed for estimating overall mortality, but held for age-specific 

mortality estimation. Second, as a remedy, PS-based matching methods are proposed 

without requiring the SEA, but a Weak Exchangeability Assumption (WEA). Third, the 

efficiency of PS-based estimates is further improved by scaling the survey weights to sum 

to the survey sample size. Scaling reduces the variance of the estimated PSs and thus 

markedly improves efficiency of the pseudo-weighted estimates, especially for the IPSW 

method. The recommended method, kernel-weighting with scaling (KW.S), is more robust 

by only requiring the WEA, yet has smallest MSE. 

 For the variance estimation, the JK method is recommended for the IPSW estimates 

because our empirical results indicate that the TL method can have greater finite sample 

bias due to highly variable weights in the combined sample. However, both the JK and the 

TL methods provided good variance estimation for the IPSW.S estimates. The TL method 

is recommended for the KW.W and the KW.S estimates because the JK method can 

overestimate the variance.  

 The unifying framework codifies two other key assumptions generally taken for 

granted. Assumption A1 ensures non-informative sampling of the cohort, allowing for 

correct estimation of participation rates. Assumption A2 ensures that the cohort and the 

survey samples cover the same target finite population. Assumption A1 is often reasonable, 

especially when the outcome is measured after the cohort is assembled, but assumption A2 

is generally violated, to some extent, in real-life. For example, most cohort studies only 
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recruit people in a few study centers in a target population (e.g., the US), while many 

surveys are representative of the target population. One solution is to use subgroups of the 

survey sample that are covered by the cohort as the reference so that the weighted cohort 

only represents a defined subpopulation. This problem of misaligned coverage between 

cohort and survey is a critical issue for future research. 

4.10 Proofs 

We consider the following limiting process (Krewski and Rao 1981; Chen et al., 2019)for 

the theoretical justification of Theorem 4.1. Suppose there is a sequence of finite 

population 𝐹𝑃g of size 𝑁g, for 𝑘 = 1, 2,⋯. Cohort 𝑠;,g of size 𝑛;,g and survey sample 𝑠,,g 

of size 𝑛,,g are sampled from each 𝐹𝑃g. The sequences of the finite population, the cohort 

and the survey sample have their sizes satisfy lim
g→s

*H,<
#<

→ 𝛾� where 𝑑 = 𝑐, 𝑠 and 0 < 𝛾� ≤

1. In the following the index 𝑘 is suppressed for simplicity. 

4.10.1 Fundamental Assumptions for Cohort Participation 

A1. The cohort participation indicator 𝛿(;) is independent of the outcome variable 𝑦 given 

the covariates 𝒙, i.e., Pr^ 𝛿(;) = 1 ∣∣ 𝑦, 𝒙 ` = Pr^ 𝛿(;) = 1 ∣∣ 𝒙 `. 

A2. All finite population units have a positive participation rate, i.e., 𝜋!
(;) > 0 for 𝑖 ∈ 𝐹𝑃. 

4.10.2 Regularity Conditions 

C1 The 𝐹𝑃  and the sampling design for selecting 𝑠,  satisfy 𝑁4% ∑ 𝑑!𝒗!!∈,' −

𝑁4%∑ 𝒗!!∈C> = 𝑂5^𝑛,
4%/N` with 𝒗! being a function of 𝒙! and outcome 𝑦!. 
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C2 For the probability of being randomly selected in the survey sample, 𝜋!
(,), and self-

selected in the cohort, 𝜋!
(;), there exists an 𝑀 ∈ ℝt( such that 1 < 𝜋!

(,)4% < 𝑀, and 1 <

𝜋!
(;)4% < 𝑀, for 𝑖 ∈ 𝐹𝑃. 

C3 The kernel function 𝐾(𝑢)  satisfies ∫ 𝐾(𝑢)𝑑𝑢 = 1 , sup
p
|𝐾(𝑢)| < ∞ , and lim

|p|→∞
|𝑢| ⋅

|𝐾(𝑢)| = 0. 

C4 The bandwidth corresponding to 𝐾(𝑢), ℎ = ℎ(𝑛;), satisfies the conditions that ℎ → 0 

and 𝑛; ⋅ ℎ → ∞ as 𝑛; → ∞. 

C5 𝑦  has bounded second moment in the 𝐹𝑃 , i.e, 𝑁4% ∑ 𝑦!N!∈C> = 𝑂(1) , and 𝒙  has 

bounded third moment in 𝐹𝑃, i.e., 𝑁4%∑ ‖𝒙!‖z!∈C> = 𝑂(1), 

C6 The 𝒙, and the propensity score 𝑝! in Model (4.10.1) below satisfy 𝑁4% ∑ 𝑝!N𝒙!𝒙!0!∈C>  

is positive definite. 

C7 The 𝒙, and the propensity score 𝑝!∗ in Model (4.10.5) below satisfy Q
#
∑ 𝑝!∗N𝒙!𝒙!0!∈C>  is 

positive definite. 

C8 The cohort participation and survey sample selection are uncorrelated given 𝒙, i.e., 

𝑐𝑜𝑣j 𝛿!
(;), 𝛿"

(;)
∣∣ 𝒙! , 𝒙" k = 0 for 𝑖, 𝑗 ∈ 𝐹𝑃. 

C9 The cohort participation are uncorrelated given 𝒙, i.e., 𝑐𝑜𝑣j 𝛿!
(;), 𝛿"

(;)
∣∣ 𝒙! , 𝒙" k = 0 for 

𝑖 ≠ 𝑗. 

 

C1 and C2 are regularity conditions for sample selection and finite population inference 

that are commonly used. C1 gives the rate of convergence of the estimated means of the 𝑦 

and the 𝒙. C2 indicates the (self-) selection rates of cohort and sample inclusion rates of 
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the survey are asymptotically bounded. C3 and C4 are standard conditions for kernel 

function and bandwidth in kernel regression (Noda, 1976). C5-C7 are standard conditions 

involving bounded moments that are used to obtain consistent estimators of 𝐹𝑃 means and 

the TL 𝐹𝑃 variance. C8 and C9 assume uncorrelated selection between cohort and survey 

sample and uncorrelated cohort participation in the 𝐹𝑃 respectively. C1-C9 are used for 

deriving the closed form of TL 𝐹𝑃 variance of the 𝐹𝑃 mean estimators from the cohort. 

4.10.3 Proof of Theorem 4.1 

Consistency of 𝜇̂X@.@ is derived in a similar way as the proof Theorem 4.1 under C1-C5. 

Notice that the consistency does not require modeling of the propensity score 𝑝 =

𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝐹𝑃 ). To obtain the finite population variance, we assume the logistic 

regression model  

 log ¯
𝑝!

1 − 𝑝!
± = 𝜷0𝒙! , 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃,	 (4.10.1) 

and consider the following system of estimating equations 

 Φ(𝜼) =

⎝

⎛
𝑈(𝜇&') =

1
𝑁, 𝛿"

(/)𝑤"=;.;(𝑦" − 𝜇&')
"∈&'

																																	

𝑆(𝜷) =
1
𝑁, 𝛿"

(/)(1 − 𝑝")𝒙"
"∈&'

−
1
𝑁, 𝛿"

($)𝑑"𝑝"𝒙"
"∈&' ⎠

⎞ = 𝟎	 (4.10.2) 

 

where 𝜼 = (𝜇𝐹𝑃, 𝜷), the KW.W pseudo-weight 𝑤!X@.@ for 𝑖 ∈ 𝐹𝑃 is a function of 𝜷. The 

solution of estimating equation (4.10.2) is denoted by 𝜼y = (𝜇̂, 𝜷r). Under C1, C2, C5, using 

the first order Taylor expansion, we have 

𝜼y − 𝜼 = −[𝐸{𝜙(𝜼)}]4%Φ(𝜼) + 𝑜5^𝑛;
4%/N` 

where 𝜙(𝜼) = 𝜕Φ(𝜼)/𝜕𝜼, and [𝐸{𝜙(𝜼)}]4% = µ
𝑈𝜇𝐹𝑃
4% 𝒃0

𝟎 𝑆𝜷4%
¸, with  
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𝑈𝜇𝐹𝑃 = 𝐸(𝜕𝑈 𝜕𝜇𝐹𝑃⁄ ) = − %
#
∑ 𝜋!

(;)𝑤!X@.@
!∈C> =̇− 1 as 𝑤!X@.@ =̇ 𝜋!

(;)4%,  

𝑈𝜷 = 𝐸(𝜕𝑈 𝜕𝜷0⁄ ) = %
#
∑ 𝜋!

(;)(𝑦! − 𝜇𝐹𝑃) Sn#
././

S𝜷T!∈C> ,  

𝑆𝜷 = 𝐸(𝜕𝑆 𝜕𝜷⁄ ) = − %
#
∑ 𝜋! ⋅ 𝑝!(1 − 𝑝!)𝒙!!∈C> 𝒙!0 −

%
#
∑ 𝑝!(1 − 𝑝!)𝒙!𝒙!0!∈C>   

																																= − %
#
∑ 𝑝!N𝒙!!∈C> 𝒙!0 −

%
#
∑ 𝑝!(1 − 𝑝!)𝒙!𝒙!0!∈C>   

																																= − %
#
∑ 𝑝!𝒙!𝒙!0!∈C> , is negative definite under C6 and thus invertible, 

and 𝒃0 = −𝑈𝜇𝐹𝑃
4%𝑈𝜷𝑆𝜷4%. 

It follows that  

 𝑉𝑎𝑟(𝜼y) = [𝐸{𝜙(𝜼)}]4%𝑉𝑎𝑟{Φ(𝜼)}[𝐸{𝜙(𝜼)}0]4% + 𝑜5(𝑛;4%), (4.10.3) 

We decompose 𝑉𝑎𝑟{Φ(𝜼)}, denoted by 𝑉�, into two parts under C8:  

𝑉� = 𝑉𝑎𝑟 µ
0																															
%
#
∑ 𝛿!

(,)𝑑!𝑝!𝒙!!∈C>
¸ + 𝑉𝑎𝑟 ñ

%
#
∑ 𝛿!

(;)𝑤!X@.@(𝑦! − 𝜇𝐹𝑃)!∈C>
%
#
∑ 𝛿!

(;)(1 − 𝑝!)𝒙!!∈C> 													
ò, 

The first summand, defined by 𝑉% , involves 𝑠,  selection only: 𝑉% = j0 𝟎0
𝟎 𝐷

k with 𝐷 =

𝑁4N𝑉5j∑ 𝛿!
(,)𝑑!𝑝!𝒙!!∈C> k, where 𝑉5 denotes the design-based finite population variance 

under the probability sampling design for 𝑠, . The second summand 𝑉N  involves 𝑠; 

selection only. Under C9, 

𝑉* = 𝑁(* ∑ 𝜋"
(/) n1 − 𝜋"

(/)o pq𝑤"
=;.;s

*(𝑦" − 𝜇&')*											 (1 − 𝑝")𝑤"=;.;(𝑦" − 𝜇&')𝒙"U

(1 − 𝑝")𝑤"=;.;q𝑦" − 𝜇𝐹𝑃s𝒙" (1 − 𝑝")*𝒙"𝒙"U 																											
t"∈&' . 

Based on Equality (4.10.3), the finite population variance of 𝜇̂ is given by  

 

𝑉𝑎𝑟(𝜇̂X@.@) = 𝑉X@.@ + 𝑜5(𝑛;4%), with 

𝑉=;.; = ;𝑈V+,
(> 𝒃U= ⋅ 𝑉W ⋅ ?

𝑈V+,
(>

𝒃
@																																																																		 

(4.10.4) 
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=
1
𝑁*, 𝜋"

(/);1 − 𝜋"
(/)={𝑤"=;.;(𝑦" − 𝜇&') − (1 − 𝑝")𝒃U𝒙"}*

"∈&'
+ 𝒃U𝐷𝒃. 

In sample estimate of 𝑉X@.@ , with the standard normal density as the kernel function, 

𝐾(𝑢) ∝ exp jp
*

N
k , we have 𝑤!X@.@ = ∑ 𝑑!"∈,'

-#+
∑ -#+#∈'%

, and Sn#
././

S𝜷T
=

∑ 𝑑!"∈,' l-#+⋅S-#+/S𝜷
T

∑ -#+#∈'%
− -#+⋅∑ U-#+⋅S-#+/S𝜷TV	#∈'%

U∑ -#+#∈'% V*
n, where 𝑒!" = exp w %

NO*
^𝜷0𝒙! − 𝜷0𝒙"`

Nx, and 

S-#+
S𝜷T

= 𝑒!" ⋅
%
O*
^𝜷0𝒙! − 𝜷0𝒙"` ⋅ ^𝒙! − 𝒙"`

0 .  

Remark: Notice that the finite population variance of the IPSW estimate of finite population 

mean, 𝜇̂=>?@, can be obtained by replacing 𝑤!X@.@ and Sn#
././

S𝜷T
 in by 𝑤!=>?@ and Sn#

N4>/

S𝜷T
=

−𝑤!=>?@𝒙!0 respectively in (4.10.4). 

4.10.4 Proof of Lemma 4.1 

Under the logistic regression Model (4.10.5) fitted to the combined sample of 𝑠;  vs. 𝑠, 

weighted by the scaled sample weights, 

 log µ
𝑝!∗

1 − 𝑝!∗
¸ = 𝜷∗0𝒙! , (4.10.5) 

the propensity score 𝑝!∗ is different from 𝑝! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝐹𝑃 ) in Model (4.10.1), and 

can be defined as 𝑝!∗ = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝑆 ), where 𝑆 is a given simple random sample 

selected from 𝐹𝑃 with a sampling rate 𝑎. Then the relationship between 𝑝!∗ and the cohort 

participation rate 𝜋!
(;) can be obtained by 

𝑝!∗

1 − 𝑝!∗
=
𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑠; ∪∗ 𝑆 )
𝑃( 𝑖 ∈ 𝑆 ∣∣ 𝑠; ∪∗ 𝑆 )

=
𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝐹𝑃 )
𝑃( 𝑖 ∈ 𝑆 ∣ 𝐹𝑃 ) =

𝜋!
(;)

𝑎  

Meanwhile, we know the cohort participation rate 𝜋!
(;) = 5#

%45#
	under Model (4.10.1). 

Hence, Model (4.10.5) can be re-parameterized as 
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log µ

𝑝!∗

1 − 𝑝!∗
¸ = log(

𝜋!
(;)

𝑎 ) = log l
𝑝!

𝑎(1 − 𝑝!)
n 

= − log 𝑎 + 𝜷0𝒙! 

(4.10.6) 

where 𝜷 is the vector of coefficients in Model (4.10.1). Comparing (4.10.5) and (4.10.6) 

gives 𝜷∗ = 𝜷 + log 𝑎 ⋅ 𝒆%, with 𝒆% = (1, 0,⋯ , 0)0that is the result of Lemma 4.1.  

4.10.5 Proof of Theorem 4.2 

The properties of 𝜇̂=>?@.? and 𝜇̂X@.? can be proved via the estimating equations  

 Φ∗(𝜼) = G
𝑈∗(𝜇&') = >

4
∑ 𝛿"

(/)𝑤I"∗(𝑦" − 𝜇&')"∈&' 																																						

𝑆∗(𝜷) = >
4
∑ 𝛿"

(/)(1 − 𝑝"∗)𝒙""∈&' − .
4
∑ 𝛿"

($)𝑑"𝑝"∗𝒙""∈&'
J = 𝟎, (4.10.7) 

where 𝑤s!∗ is the pseudo sample weight 𝑤!=>?@.? or 𝑤!X@.?. Under Conditions C1-C5, we 

have Φ∗(𝜼y∗) = 𝟎, and Φ∗(𝜼∗) = 𝑂5^𝑛;
4%/N`, where 𝜼∗ = (𝜇C> , 𝜷∗) and 𝜇̂∗ is the IPSW.S 

or the KW.S estimator of 𝜇. Using a first order Taylor expansion, we have  

𝜼y∗ − 𝜼∗ = [𝐸{𝜙∗(𝜼∗)}]4%Φ∗(𝜼∗) + 𝑜5^𝑛;
4%/N`, 

where [𝐸{𝜙∗(𝜼∗)}]4% = wS�
∗(𝜼)
S𝜼

x
4%
*
𝜼$𝜼∗

= [𝐸{𝜙(𝜼)}]4% = (
𝑈T34
∗4% 𝒃∗0

𝟎 𝑆𝜷∗
∗4%), with 

𝑈T34
∗ = 𝐸(𝜕𝑈∗ 𝜕𝜇C>⁄ ) =̇− 1 as 𝑤s!∗ =̇ 𝜋!

(;)4%,  

𝑈𝜷∗
∗ = 𝐸(𝜕𝑈∗ 𝜕𝜷0⁄ )|𝜷$𝜷∗ =

%
#
∑ 𝜋!

(;)(𝑦! − 𝜇C>)
Sn�#

∗

S𝜷T
�
𝜷$𝜷∗

!∈C> ,  

𝑆𝜷∗
∗ = 𝐸{𝜕𝑆∗(𝜷) 𝜕𝜷⁄ }|𝜷$𝜷∗ = − %

#
∑ 𝑎𝑝!∗𝒙!𝒙!0!∈C>  (negative definite and invertible under 

C7), and 𝒃∗0 = −𝑈T34
∗4%𝑈𝜷∗

∗ 𝑆𝜷∗
∗4%. 

Notice that based on Lemma 4.1, 𝑈T34
∗ = 𝑈T34 and 𝑈𝜷∗

∗ = 𝑈𝜷 for 𝑈T34
∗ , 𝑈𝜷∗

∗  in the scaled 

estimating equations (4.10.7) and 𝑈T34, 𝑈𝜷 in the original estimating equations (4.10.2). 
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Accordingly, 

𝑉𝑎𝑟(𝜼y∗) = [𝐸{𝜙∗(𝜼∗)}]4%𝑉𝑎𝑟{Φ∗(𝜼∗)}[𝐸{𝜙∗(𝜼∗)}0]4% + 𝑜5(𝑛;4%). 

The calculation of 𝑉𝑎𝑟{Φ∗(𝜼∗)} is similar to calculating 𝑉𝑎𝑟{Φ(𝜼)} in Equality (4.10.3), 

with 𝑤!X@.@ , 𝑝! , and 𝑑!  replaced by 𝑤s! , 𝑝!∗ , and 𝑎 ⋅ 𝑑!  respectively. Finally, we have 

𝑉𝑎𝑟(𝜇̂∗) = 𝑉∗ + 𝑜5(𝑛;4%), with 

𝑉∗ = ^𝑈T34
4% 𝒃∗0` ⋅ 𝑉𝑎𝑟(𝜼y∗) ⋅ µ𝑈T34

4%

𝒃∗
¸																																																							 

																							=
1
𝑁NA 𝜋!

(;)j1 − 𝜋!
(;)k¿𝑤s!(𝑦! − 𝜇C>) − (1 − 𝑝!∗)𝒃∗

0𝒙!À
N

!∈C>
+ 𝒃∗0𝐷∗𝒃∗, 

where 𝐷∗ replaces 𝑑! and 𝑝! in 𝐷 by 𝑎 ⋅ 𝑑! and 𝑝!∗ respectively. 

4.10.6 True Propensity Models in Simulations 

The propensity of unit 𝑖 ∈ 𝐹𝑃 being included in the cohort (𝑠;) vs. the finite population 

(𝐹𝑃 ), based on Equality (4.4.1), is 𝑃(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃) =
3#
(%)

%w3#
(%) . Hence, the true 

propensity model is  

logit{𝑃(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃)} = log 𝜋!
(;) = log

𝑛; ⋅ 𝑟!
(;)

∑ 𝑟!
(;)#

!$%

, 

where 𝑟!
(;) = exp(𝜶0𝒙!) is the measure of size (MOS) of the Probability Proportional to 

size (PPS) Sampling for the cohort selection. Therefore,  

logit{𝑝(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃)} = log
𝑛;

∑ 𝑟!
(;)#

!$%

+ log 𝑟!
(;) = 𝛽( + 𝜷0𝒙! , 

where 𝛽( = log *%
∑ x#

(%)P
#7!

, and 𝜷 = 𝜶.  
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The propensity of unit 𝑖 ∈ 𝐹𝑃 being included in (𝑠;) vs. the unweighted survey 

sample (𝑠,) is 𝑃(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝑠,) =
3#
(%)

3#
(%)w3#

('). Hence, the true propensity score model is  

logit{𝑝(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝑠,)} = log
𝜋!
(;)

𝜋!
(,) = log �

𝑛; ⋅ 𝑟!
(;)

∑ 𝑟!
(;)#

!$%

𝑛, ⋅ 𝑟!
(,)

∑ 𝑟!
(,)#

!$%

+ �, 

where 𝑟!
(,) = exp(𝜸0𝒙!) is the MOS of the PPS sampling for the survey sample selection. 

Therefore, 

logit{𝑝(𝑖 ∈ 𝑠;|𝑖 ∈ 𝑠; ∪∗ 𝑠,)} = log
𝑛; ∑ 𝑟!

(,)#
!$%

𝑛, ∑ 𝑟!
(;)#

!$%

+ log
𝑟!
(;)

𝑟!
(,) = 𝛽( + 𝜷%0𝒙! , 

where 𝛽( = log *%
∑ x#

(')P
#7!

*'∑ x#
(%)P

#7!
, and 𝜷% = 𝜶− 𝜸. 

4.10.7 Jackknife Variance Estimation for Pseudo-Weighted Estimates in the 

Simulations 

We treat the cohort and survey sample as 2 strata in the combined sample for Jackknife 

(JK) variance estimation since the two samples are independently selected. To reduce the 

number of replicates, we randomly grouped the cohort and survey sample into 𝑔% = 120 

and 𝑔N = 100 groups in each simulation run which ensures sufficient degrees of freedom 

for the JK variance estimation (Fay, 1985). Formally, the JK variance estimation procedure 

for 𝜇̂X@.@follows as: 

Step 1. Leave out 𝛼-th random group in stratum 𝑟, with 𝛼 = 1,⋯ , 𝑔x, and 𝑟 = 1, 2. Then 

weight up the units in remaining groups in stratum 𝑙 by the ratio of the number of groups 

in 𝑙 to the number of remaining groups, i.e., 1U
1U4%

. This weight adjustment factor for unit 𝑖 

in replicate 𝑟𝛼, 𝑟 = 1, 2	and	𝛼 = 1,⋯ , 𝑔x, can be written as	 
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𝑓!(vP) = Î

				0,									for	unit	𝑖	in	stratum	𝑟	group	𝛼;										
𝑔x

𝑔x − 1
,			for	unit	𝑖	in	stratum	𝑟	group	𝛼′ ≠ 𝛼;

					1,									otherwise.																																																

 

Step 2. Refit Model 4.2 to the combined (𝑠; vs. weighted 𝑠,) with weights of 𝑓!(%P) for 𝑖 ∈

𝑠;, and weights of 𝑓!(NP) ⋅ 𝑑! for 𝑖 ∈ 𝑠,. Then re-estimate the propensity score for each unit 

in the replicate-𝑟𝛼 sample. 

Step 3. Create the KW.W pseudo-weight for cohort unit 𝑖 in replicate-𝑟𝛼 is  

𝑤!(xP)
X@.@ =A ñ

𝐾 wj𝑞!
(;) − 𝑞"

(,)k ℎ⁄ x

∑ 𝐾 wj𝑞!
(;) − 𝑞"

(,)k ℎ⁄ x!∈,%(U1)

⋅ 𝑑" ⋅ 𝑓"(xP)ò
"∈,'(U1)

 

where the bandwidth ℎ is the same as obtained from the original combined sample (Korn 

& Graubard, 1999 page 89); 𝑠,(xP)  and 𝑠;(xP)  denote the cohort and survey sample in 

replicate-𝑟𝛼, respectively.  

Step 4. Re-estimate the population mean/prevalence estimate as  

𝜇̂(xP)X@.@ = µA 𝑤!(xP)
X@.@

!∈,%(U1)
¸
4%

⋅A 𝑤!(xP)
X@.@ ⋅ 𝑦!

!∈,%(U1)
.	 

The JK variance estimate for KW.W estimate of population mean/prevalence, 𝜇̂X@.@, is  

𝑣𝑎𝑟(𝜇̂X@.@) =A
𝑔x − 1
𝑔x

A¿𝜇̂(xP)X@.@ − 𝜇̂X@.@ÀN
1U

P$%

N

x$%

.	 

JK estimators for the variance of the KW, IPSW, IPSW.S, and KW.S estimates are 

calculated similarly as described above, but differ at Steps 2 and 3. At Step 2, the KW 

method fits the propensity model with weights of 𝑓!(xP) for each cohort and survey unit 𝑖, 

while the IPSW.S and KW.S methods fit the propensity model with the weights of 𝑎 ⋅
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𝑓!(NP) ⋅ 𝑑!  for survey unit 𝑖 , with 𝑎  being the scaling factor. At Step 3, the IPSW and 

IPSW.S methods take the inverse of predicted odds as the pseudo-replicate weights. 

  



 142 

Chapter 5 Improving External Validity of Association/Relative 

Risk Estimation from Nonprobability Cohorts 

5.1 Introduction 

In epidemiology, associations between risk factors and diseases are important to study for 

human diseases. There is fractious debate about the value of population-representative 

samples for external validity of association estimation. Some argues that lack of 

representative samples may not lead to large bias in association estimation if the 

confounders are appropriately controlled (Pizzi et al., 2011; Richiardi et al., 2013) while 

others advocate for the necessity of representative sample (Little, 2010; Keiding & Louis, 

2016). Ignoring the representativeness of the sample may lead to biased estimates of 

associations for the target finite population if the sample selection is informative, that is, 

the probabilities of sample selection are correlated with the outcome variable conditional 

on the risk factors included in the analysis model (Fuller, 1999). When the probabilities of 

sample selection are noninformative, (i.e., the sample selection is uncorrelated with the 

outcome variable conditional on the risk factors), the naïve estimates of associations, 

assuming simple random sampling, can also be biased for the target finite population 

quantities if the analic model is misspecified (Korn & Graubard, 1999). Moreover, 

significance tests for associations in the naïve sample can be different from the target finite 

population. For example, Kennedy et al. (2016) found that the significant marginal effects 

associated with race/ethnicity shown in a benchmark survey sample were rarely captured 

by nine non-probability samples. However, there is limited literature investigating the 

performance of PS-based methods in reducing bias of the nonprobability sample estimates 
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of associations. This chapter focuses on how unrepresentativeness of the cohort influences 

estimates of associations between risk factors and certain diseases for the target finite 

population, and whether or not the PS-based methods can obtain less biased and efficient 

estimates from the cohort. 

The remainder of this chapter is arranged as follows: Section 5.2 introduces the 

basic setup for regression analyses, including the justification of biasedness of naïve cohort 

estimates of regression coefficients under the informative and noninformative cohort 

participation mechanism. PS-based estimates of regression coefficients and variance 

estimation methods are also be discussed in this section. Section 5.3 presents simulation 

studies that evaluate performance of the proposed PS-based methods under two situations 

where the cohort participation is (1) informative; and (2) noninformative. The robustness 

of the PS-based methods to propensity model misspecification is examined in both 

scenarios. Section 5.4. presents estimates of relative risk of 15-year mortality for obese 

adults compared to nonobese adults in the U.S. from the naïve NHANES III sample by 

using 1994 NHIS sample as a reference sample. 

5.2 Method 

5.2.1 Setup for regression analyses 

We consider the regression of a variable 𝑦 on a vector of covariates 𝒙. Let the target finite 

population (𝐹𝑃) consist of 𝑁 individuals indexed by 𝑖 ∈ {1,⋯ ,𝑁}, where each individual 

𝑖 has values for the outcome variable of interest 𝑦!  and for the vector of covariates 𝒙! . 

Suppose that the outcome variable and the covariates follow the regression model 
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 𝐸I( 𝑦! ∣∣ 𝒙! ) = 𝑔4%(𝜃( + 𝜽%0𝒙!), 𝑖 ∈ 𝐹𝑃 (5.2.1) 

where the expectation 𝐸I  is respective to the distribution of the outcome 𝑦  given the 

covariates 𝒙  in the superpopulation (defined in Section 3.6.1), 𝑔(⋅)  is a known link 

function, and 𝜽 = (𝜃(, 𝜽%0)0  is an unknown vector of coefficients We are interested in 

estimating 𝜽%, the parameters of association. Following notation in Chapter 3 and Chapter 

4, we let 𝑠; ⊂ 𝐹𝑃  to denote a cohort with 𝑛;  individuals. The cohort participation 

indicator, implicit cohort participation rate, and the corresponding implicit cohort sample 

weight for 𝑖 ∈ 𝐹𝑃 are defined by 𝛿!
(;)(= 1 if 𝑖 ∈ 𝑠,; 0 otherwise), 𝜋!

(;) = 𝐸;j 𝛿!
(;)
∣∣ 𝐹𝑃 k, 

and 𝑤! = 1/𝜋!
(;), respectively, where the expectation 𝐸; is with respect to the unknown 

random cohort participation process from 𝐹𝑃.  

Under the assumption A1 in Section 4.2, i.e., Pr^ 𝛿(;) = 1 ∣∣ 𝑦, 𝒙 ` =

Pr^ 𝛿(;) = 1 ∣∣ 𝒙 `, the cohort participation is non-informative for the regression model 

(5.2.1) . Under A1, the regression parameters 𝜽  estimated from the naïve cohort are 

unbiased because 

𝐸𝑚 n𝑦𝑖 ∣∣ 𝒙𝑖, 𝛿𝑖
(𝑐) = 1 o = 𝐸𝑚q𝑦𝑖 ∣∣ 𝒙𝑖 s. 

However, if the outcome model is misspecified, the regression parameters estimated from 

the naïve cohort may not be approximately unbiased for the finite population quantities. 

Suppose we misspecify the outcome model as follows 

 𝐸𝑚q𝑦𝑖 ∣∣ 𝒙𝑖
∗ s = 𝑔−1 n𝜃0∗ +𝜽1∗𝑇𝒙𝑖∗o , 𝑖 ∈ 𝐹𝑃 (5.2.2) 

where 𝒙∗  is a set of predictors, and 𝜽∗ = (𝜃(∗, 𝜽%∗0)0  is a vector of parameters to be 

estimated. Note that 𝜽∗ can be different from 𝜽 if 𝒙∗ and 𝒙 are not identical. Suppose the 

predictors 𝒙∗ do not include all covariates that are correlated with both 𝑦 and 𝛿(;) (i.e., 
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confounders) in 𝒙 . Let 𝒙I  to be a vector of the missing confounders. Then we have 

Pr^𝛿(;) = 1 ∣ 𝑦, 𝒙∗, 𝒙I` = Pr^ 𝛿(;) = 1 ∣∣ 𝒙∗, 𝒙I ` , but Pr^𝛿(;) = 1 ∣ 𝑦, 𝒙∗` ≠

Pr^ 𝛿(;) = 1 ∣∣ 𝒙∗ `, and therefore  

𝐸𝑚 n𝑦𝑖 ∣∣ 𝒙𝑖
∗, 𝛿𝑖

(𝑐) = 1 o ≠ 𝐸𝑚q𝑦𝑖 ∣∣ 𝒙𝑖
∗ s. 

Hence, the naïve cohort estimates of 𝜽∗ are biased.  

If the cohort participation is informative, i.e., Pr^ 𝛿(;) = 1 ∣∣ 𝑦, 𝒙 ` ≠

Pr^ 𝛿(;) = 1 ∣∣ 𝒙 `, the regression parameters 𝜽 estimated from the naïve cohort are biased 

because 

𝐸𝑚 n𝑦𝑖 ∣∣ 𝒙𝑖, 𝛿𝑖
(𝑐) = 1 o ≠ 𝐸𝑚q𝑦𝑖 ∣∣ 𝒙𝑖 s. 

 PS-based methods can be applied to improve the representativeness of the cohort 

so that the regression coefficients 𝜽 estimated from the pseudo-weighted cohort are less 

biased. PS-based methods are first applied to create a set of pseudo weights for the cohort 

by using a survey sample 𝑠, ⊂ 𝐹𝑃 as the reference sample. Then the outcome model (5.2.1) 

or (5.2.2) is fitted to the pseudo-weighted cohort. We consider five PS-based pseudo-

weighted estimators of 𝜽: the original IPSW (𝜽r=>?@) and KW (𝜽rX@) estimates introduced 

in Chapter 3, the enhanced KW estimate (𝜽rX@.@), the IPSW and KW estimates with scaled 

survey weights in PS estimation, proposed in Chapter 4, refer to as 𝜽r=>?@.? and 𝜽rX@.?, 

respectively.  

5.2.2 Variance Estimation 

Two variance estimators for the pseudo-weighted estimates of 𝜽 are considered: the naïve 

Taylor linearization (TL) and Jackknife replication (JK) method. Similar to Section 3.2.3, 

the naïve TL method treats the pseudo weights as fixed, and ignore the randomness due to 
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estimating PS. The JK method, on the contrary, takes all sources of variability into account 

by recalculating pseudo-weights for each replicate. 

5.3 Simulations 

We examined the performance of the five PS-based estimators of the log-odds ratios, 𝜽 

(i.e., where 𝑔(∙) is the logit function), of developing a disease compared to the naïve cohort 

estimates (𝜽r#Q!�-) and the sample weighted survey estimate (𝜽r?oK) in two scenarios where 

the cohort participation was : (1) informative; and (2) non-informative.  

Under Scenario (1), 𝜽r#Q!�- may not be approximately unbiased while the pseudo-

weighted estimators would be approximately unbiased if the propensity model is correctly 

specified. Under Scenario (2), all the estimates would be unbiased under the correct 

outcome model. Under the misspecified outcome model, however, 𝜽r#Q!�-  may not be 

approximately unbiased but the pseudo-weighted estimators would be approximately 

unbiased if the propensity model was correct. The robustness of the pseudo-weighted 

estimators to the propensity model misspecification was also examined under the two 

scenarios.  

In both scenarios, we used a finite population of 𝑀 = 3,000 clusters with each 

cluster composed of 3,000 units (population total 𝑁 = 9,000,000) generated in Chapter 3 

and applied similar two-stage cluster PPS sample designs for both cohort participation and 

survey sample selection to ensure the true propensity models for all five PS-based methods 

have the same functional form so that a fair comparison can be made among these methods.  

Following the framework established in Section 4.4, we considered the cohort 

participation rate 𝜋(;) ∝ exp(𝜷0𝒗), where 𝒗 can include the outcome 𝑦, and the covariates 



 147 

𝒙 predictive to 𝑦, and their interactions. Figure 5.1 shows a simple example of a linear 

regression model of continuous 𝑦 on 𝑥 as the analytic model. If 𝒗 only includes the main 

effect(s) of 𝑥, or (and) 𝑦, the cohort participation is noninformative and the regression line 

between 𝑥 and 𝑦 is approximately the same in the sample and in the population (situations 

a, b, and c). The cohort participation is informative only if 𝒗 includes the interaction of 𝑥 

and 𝑦 (situation d).  

Figure 5.1 Noninformative and informative cohort participation rates.  

 

 
 

(a). π(c) ∝ exp(y)

x

y

(b). π(c) ∝ exp(x)

x

y

(c). π(c) ∝ exp(y-x)

x

y

(d). π(c) ∝ exp(y+x-3xy)

x

y
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5.3.1 Scenario 1: informative cohort selection 

5.3.1.1 Disease Outcome Model in the Finite Population 

A binary variable for disease status, 𝑦 (1 for presence, and 0 for absence) was generated to 

have an ICC within the clusters of 0.07 for the finite population, with the probability of 

having disease generated by 𝜇 = expit(−6 + 0.5𝑎𝑔𝑒 + 1.5𝐸𝑛𝑣) (Hunsberger et al., 2008; 

Oman & Zucker, 2001). The prevalence in the population was 14.6%. The outcome model 

of 𝑦 in the finite population was  

 log R
𝑃(𝑦! = 1)

1 − 𝑃(𝑦! = 1)S = 𝜃( + 𝜃%𝑎𝑔𝑒! + 𝜃N𝐸𝑛𝑣! , 𝑖 ∈ 𝐹𝑃 (5.3.1) 

where 𝜃(  and 𝜽 = (	𝜃%, 𝜃N) are the unknown parameters to be estimated, with the true 

values 𝜃( = −6, and 𝜽 = (0.5, 1.5). We are interested in estimating the relative risk of 𝑦 

associated with the environmental factor 𝐸𝑛𝑣 after controlling for the age group (i.e., 𝑒�*). 

A proxy of 𝑦  was generated by 𝑦∗ = 𝑦 + 𝜖 , with 𝜖 ∼ Normal(0, 0.05N)  in the finite 

population to reflect situations in real data when 𝑦 is not available for sample selection but 

related variables are available.  

5.3.1.2 Sampling from the Finite Population to Assemble Survey Sample and Cohort 

Two-stage cluster sample designs similar with those in Section 3.3.2 were applied to 

randomly select the cohort and survey sampled independently as to ensure that true 

propensity models for all PS-based methods (IPSW, KW, KW.W, IPSW.S, and KW.S) had 

the same functional form.  

 A cohort sample of size 𝑛; = 11,250 people (75 clusters of each 150 individuals) 

was sampled by a two-stage PPS design with the MOS in the PPS sampling at stages one 
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and two being ∑ 𝑟!Q!∈p1  and	𝑟!Q, respectively, where 𝑢P is the set of individuals from the 

𝛼-th cluster for 𝛼 = 1,⋯ ,𝑀; 𝑎 = 1 is a constant, and 

 𝑟! = exp(𝛾( + 𝛾%𝐸𝑛𝑣! + 𝛾N	𝑦!∗ ⋅ 𝐸𝑛𝑣!), (5.3.2) 

where 𝛾( = 0.7, 𝜸 = (𝛾%, 𝛾N)0 = (0.5, −1)0. The final cohort participation rate for 𝑖 ∈ 𝐹𝑃 

was 𝜋!
(;) = *%⋅x#

∑ x##∈34
. The cohort participation rate included the interaction between 𝑦 and 

the predictor 𝐸𝑛𝑣  (situation (d) of Figure 5.1). This was an informative design for 

regression model (5.3.1), because the correlation between the cohort participation rate 𝜋(;) 

and the covariate 𝐸𝑛𝑣 was different depending on the value of the outcome 𝑦, as shown 

below. 

𝜋!
(;) = 𝐸j𝛿!

(;)
∣∣ 𝑦! , 𝒙! k ∝ 𝑟!(𝑦! , 𝒙!) ∝ l

exp{(0.5 − 𝜖)𝐸𝑛𝑣!} ,						if	𝑦! = 0,
exp{(−0.5 − 𝜖)𝐸𝑛𝑣!} ,			if	𝑦! = 1. 

≠ 𝐸j 𝛿!
(;)
∣∣ 𝒙! k																																																																																										 

Hence, the naïve cohort estimator of 𝜃N  would not be approximately unbiased. On the 

contrary, the naïve cohort estimator of 𝜃% would be approximately unbiased because 𝑎𝑔𝑒 

was predictive to 𝑦, but not correlated with the cohort inclusion indicator 𝛿!
(;) given 𝑦. 

 A survey sample of 𝑛, = 1,500 individuals (150 clusters of each 10 individuals) 

was sampled independently from the cohort selection using a similar two-stage PPS design 

but with different MOSs in the PPS sampling at stages one and two, given as ∑ 𝑟!y!∈p1  

and	𝑟!y, respectively, with 𝑏 = −0.5.  

Under the two-stage PPS sampling described above, the true propensity models for 

𝑝�! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝑠, )  used by the KW method and for 𝑝! =

𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 ) used by the IPSW, KW.W, IPSW.S, and KW.S methods were 
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logit{𝑝�!} = 𝛽ß( + 1.5𝛾%𝐸𝑛𝑣! + 1.5𝛾N𝑦!∗ ⋅ 𝐸𝑛𝑣! , and 

logit{𝑝!} = 𝛽( + 𝛾%𝐸𝑛𝑣! + 𝛾N𝑦!∗ ⋅ 𝐸𝑛𝑣! 																					 
(5.3.3) 

where 𝛽( = log j 𝑛𝑐
∑ x##∈34

k + 𝛾(  and 𝛽ß( = log j*%⋅∑ x#
=".A

#∈34
*'⋅∑ x##∈34

k + 1.5𝛾(  are the intercepts 

(proof in Section 3.6.4). 

5.3.1.3 Results under the Correctly Specified and Three Misspecified Propensity Models 

 Table 5.1 shows the results under the correct propensity model. As expected, all the 

estimators, including the naïve cohort estimator, of 𝜃% were approximately unbiased, while 

the naïve cohort estimator of 𝜃N  was biased by -64.96%. All the examined PS-based 

methods yielded approximately unbiased estimators of 𝜃N when the propensity model was 

correctly specified. Consistent with the results observed for estimating finite population 

means/prevalences, the IPSW estimate had a much higher empirical variance than the other 

PS-based estimates, leading to the largest MSE. The KW estimate had the smallest variance 

and MSE, taking the advantage of fitting the propensity model to the combined (cohort and 

unweighted survey) sample. The other three (KW.W, IPSW.S, and KW.S) estimators 

performed equally well, with slightly higher variances and MSEs than the KW estimate.  

The TL method, which ignores the variability due to estimating the PS substantially 

underestimated the variance of the pseudo-weighted estimates of 𝜃N. The underestimation 

was more severe for the IPSW and the IPSW.S methods, because the estimated PS were 

directly used to estimate the cohort participation rates. In contrast, the JK method that 

considered all sources of variability provided approximately unbiased variance estimation 

for all five PS-based methods. However, the outcome variable 𝑦  (or the proxy 𝑦∗ ) is 

usually only available in the cohort, but not in the survey sample. Therefore, PS-based 
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Table 5.1 Results of regression coefficient estimation from 2,000 simulated cohorts and survey 
samples selected by informative designs under the correct propensity model 

 %RB  V(× 102)  VR (TL)  VR (JK)  MSE (× 102) 
Method 𝜃w> 𝜃w*  𝜃w> 𝜃w*  𝜃w> 𝜃w*  𝜃w> 𝜃w*  𝜃w> 𝜃w* 
CHT 1.46 -64.95  2.30 11.31  0.57 0.53     2.35 960.54 
SVY 1.62 0.74  2.69 19.45  1.01 0.99  1.03 1.03  2.76 19.57 
IPSW 1.49 1.40  2.37 24.03  0.93 0.49  0.99 1.01  2.43 24.47 
KW 1.48 0.18  2.52 16.89  0.93 0.79  1.09 1.06  2.58 16.90 
KW.W 1.56 0.00  2.45 17.34  0.92 0.73  1.02 1.01  2.51 17.34 
IPSW.S 1.49 0.42  2.36 17.13  0.93 0.69  0.99 1.00  2.42 17.17 
KW.S 1.56 -0.03  2.45 17.26  0.93 0.74  1.02 1.02  2.51 17.26 

 

methods cannot provide unbiased estimators of the regression coefficients if the cohort 

participation is informative. We examined the performance of the PS-based methods under 

three misspecified propensity models that missed 𝑦∗. Model 𝑈 was an underfitted model 

that only included the main effect of 𝐸𝑛𝑣. Model 𝑀%  included an extra covariate 𝑎𝑔𝑒, 

which was the predictor of the outcome 𝑦, and the interaction of 𝑎𝑔𝑒 and 𝐸𝑛𝑣. Model 𝑀N 

substituted 𝑦∗ in the true propensity model using the probability of developing the disease 

𝜇 = expit(−6 + 0.5𝑎𝑔𝑒 + 1.5𝐸𝑛𝑣). All the three misspecified propensity models only 

included (a fixed function of) predictors of the outcome 𝑦. Hence, none of the PS-based 

methods reduced bias from the naïve cohort estimator of 𝜃N (RB = −64.95%) under these 

misspecified propensity models as shown in Table 5.2.  

Table 5.2 Relative bias (%) of 𝜃w* from 2,000 simulated cohorts and survey samples selected by 
informative designs under misspecified propenstiy models 

 PS-Based Method 
Propensity Model IPSW KW KW.W IPSW.S KW.S 
Model 𝑈    logit(𝑝) ∼ 𝐸𝑛𝑣 -65.07 -64.86 -64.86 -65.10 -64.86 
Model 𝑀>: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣 -65.00 -64.92 -65.04 -65.01 -65.02 
Model 𝑀*: logit(𝑝) ∼ 𝐸𝑛𝑣, 𝜇 ⋅ 𝐸𝑛𝑣 -64.93 -65.02 -64.87 -64.91 -64.84 
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5.3.2 Scenario 2: Non-Informative Cohort Selection 

5.3.2.1 Disease Outcome Model in the Finite Population 

A binary variable of disease status, 𝑦 (1 for presence, and 0 for absence) was generated to 

have an ICC within the clusters of 0.08 for the finite population, with the probability of 

disease generated by 𝜇 = expit(1 + 0.5𝑎𝑔𝑒 + 0.5𝐸𝑛𝑣 + 0.5𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣)  (Hunsberger et 

al., 2008; Oman & Zucker, 2001). The prevalence in the population was 31.9%. The 

outcome model of 𝑦 in the finite population was  

 log R
𝑃(𝑦! = 1)

1 − 𝑃(𝑦! = 1)S = 𝜃( + 𝜃%𝑎𝑔𝑒! + 𝜃N𝐸𝑛𝑣! + 𝜃z𝑎𝑔𝑒! ⋅ 𝐸𝑛𝑣! , 𝑖 ∈ 𝐹𝑃 (5.3.4) 

where 𝜃( and 𝜽 = (𝜃%, 𝜃N, 𝜃z) are the unknown vector of parameters to be estimated, with 

the true values 𝜃( = 1, and 𝜽 = (0.5, 0.5, 0.5). A proxy of 𝑦 was generated by 𝑧 = 𝜇 + 𝜖, 

with 𝜖 ∼ 𝑁(0, 0.05N) in the finite population to reflect situations occurs in real data when 

𝜇 is not available for sample selection but related variables are available.  

5.3.2.2 Sampling from the Finite Population to Assemble Survey Sample and Cohort 

The cohort and survey sample were independently selected using two-stage PPS designs 

similar to those described in Section 5.3.1.2, but with different 𝑟! for calculation of MOSs.  

 𝑟! = exp(𝛾( + 𝛾%𝑎𝑔𝑒! + 𝛾N𝑧!), (5.3.5) 

where 𝛾( = 1, 𝜸 = (𝛾%, 𝛾N)0 = (0.45, −1)0. The cohort participation was noninformative 

for the regression model (5.3.4), because it only depended on the predictor 𝑎𝑔𝑒 and a fixed 

function of the predictors (𝑧) (situation (b) in Figure 5.1). The naïve cohort estimate of the 

regression coefficients 𝜽 = (𝜃%, 𝜃N, 𝜃z) would be unapproximately unbiased.  
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 The true propensity models for 𝑝�! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝑠, )  used by the KW 

method and for 𝑝! = 𝑃( 𝑖 ∈ 𝑠; ∣∣ 𝑖 ∈ 𝑠; ∪∗ 𝐹𝑃 ) used by the IPSW, KW.W, IPSW.S, and 

KW.S methods were 

 
logit{𝑝�!} = 𝛽ß( + 1.5𝛾%𝑎𝑔𝑒! + 1.5𝛾N𝑧! , and 

logit{𝑝!} = 𝛽( + 𝛾%𝑎𝑔𝑒! + 𝛾N𝑧! 																					 
(5.3.6) 

where 𝛽( = log j 𝑛𝑐
∑ x##∈34

k + 𝛾(  and 𝛽ß( = log j*%⋅∑ x#
=".A

#∈34
*'⋅∑ x##∈34

k + 1.5𝛾(  are the intercepts 

(proof in Section 3.6.4). 

5.3.2.3 Results under the Correctly Specified Outcome model 

 Table 5.3 shows the results under the correct outcome and propensity model. As 

expected, all the estimators, including the naïve cohort estimators, of 𝜽  were 

approximately unbiased. The naïve cohort estimates had much smaller variances and MSEs 

than any of the PS-based pseudo-weighted estimates due to ignoring the weights. The five 

PS-based methods had similar performances. The TL method slightly underestimated 

variance compared to the JK method.  

Table 5.3 Results of regression coefficient estimation of the correctly specified outcome model 
from 2,000 simulated cohorts and survey samples under non-informative designs 

 %RB V(× 10*) VR (TL) VR (JK) MSE (× 10*) 
Method 𝜃> 𝜃* 𝜃2 𝜃> 𝜃* 𝜃2 𝜃> 𝜃* 𝜃2 𝜃> 𝜃* 𝜃2 𝜃> 𝜃* 𝜃2 
CHT 0.57 -1.56 0.25 0.55 5.00 0.28 0.70 0.84 0.71 0.00 0.00 0.00 0.55 5.01 0.28 
SVY 1.32 -0.40 1.17 3.52 15.82 1.46 0.94 0.91 0.94 0.99 0.97 1.00 3.53 15.82 1.47 
IPSW 1.60 -1.19 0.83 0.89 7.17 0.43 0.94 0.92 0.92 1.04 1.03 1.02 0.90 7.17 0.43 
KW 1.54 -1.36 0.86 0.88 7.11 0.42 0.94 0.93 0.92 1.06 1.08 1.06 0.88 7.11 0.42 
KW.W 1.61 -0.26 0.39 0.89 6.89 0.42 0.93 0.94 0.92 1.02 1.04 1.02 0.89 6.89 0.42 
IPSW.S 1.66 -0.16 0.38 0.90 7.02 0.42 0.94 0.94 0.93 1.03 1.05 1.03 0.90 7.02 0.42 
KW.S 1.61 -0.26 0.40 0.89 6.91 0.42 0.93 0.94 0.92 1.02 1.03 1.01 0.89 6.91 0.42 

 



 154 

5.3.2.4 Results under a Misspecified Outcome model 

Suppose the outcome model mistakenly left out the covariate 𝑎𝑔𝑒  and the interaction 

between 𝑎𝑔𝑒 and 𝐸𝑛𝑣. The misspecified model in the finite population was 

 log R
𝑃(𝑦! = 1)

1 − 𝑃(𝑦! = 1)S = 𝜃(∗ + 𝜃N∗𝐸𝑛𝑣! , 𝑖 ∈ 𝐹𝑃 (5.3.7) 

with 𝜃(∗  and 𝜃N∗  being the unknown census regression coefficients. Although 𝜃(∗ = 2.62 

and 𝜃N∗ = 1.30 were different the parameters 𝜃( = 1 and 𝜃N = 0.5 in the true outcome 

model (5.3.4), they were finite population quantities. We were interested in estimating 𝜃N∗ 

from the cohort. Table 5.4 shows the results under the correctly specified propensity model. 

Table 5.4 Results of regression coefficient estimation of the misspecified outcome model from 
2,000 simulated cohorts and survey samples under non-informative designs. 

Estimator %RB V(× 102) VR (TL) VR (JK) MSE (× 102) 

𝜃w*∗	4."56 35.01 4.73 0.48 NA 211.36 
𝜃w*∗	789 0.60 13.80 1.05 1.06 13.86 
𝜃w*∗	:'7; 1.02 8.33 0.70 1.00 8.50 
𝜃w*∗	=; -0.13 6.77 0.83 1.05 6.78 
𝜃w*∗	=;.; 2.16 8.64 0.63 1.04 9.43 
𝜃w*∗	:'7;.7 0.75 7.19 0.81 1.00 7.28 
𝜃w*∗	=;.7 2.15 7.63 0.72 1.03 8.41 

 

The naïve cohort estimator, 𝜃�N∗	#Q!�- was biased by 35.01%. The five PS-based methods 

had similar performance in terms of relative bias, empirical variance, and MSE. The 

original KW estimate had slightly smaller variance and MSE than the other methods. The 

TL variance estimation, consistent with the previous results, underestimated the variance 

of 𝜃�N∗  due to ignoring the variability in estimating PSs, while the JK estimates were 

approximately unbiased.  

When the fitted propensity model was misspecified, the five PS-based method 

performed differently in estimating 𝜃N∗ . As shown in Figure 5.2, the KW.S estimator, 
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𝜃�N∗	X@.?, tended to have the smallest MSE among all the five PS-based pseudo-weighted 

estimators. Although the IPSW (𝜃�N∗	=>?@) and IPSW.S (𝜃�N∗	=>?@.?) estimators had smaller 

biases than 𝜃�N∗	X@.?  under the correctly specified propensity model, they were more 

sensitive to propensity model misspecification. The original KW estimator, 𝜃�N∗	X@ , 

consistently had the smallest variance, but can have large bias under the misspecified 

propensity models. The bias reduction of the KW.W estimator, 𝜃�N∗	X@.@ was also relatively 

robust to the propensity misspecification. However, it can have inflated variance due to the 

highly variable weights in the combined (cohort and weighted survey) sample. 

Figure 5.2 Results of 𝜃w*∗ obtained from 2,000 simulated cohorts and survey samples under non-
informative designs with each cohort and survey sample fitted to the correct propensity model and 
four misspecified propensity models† 

 
†The labels of the 𝑥-axises represent the propensity models as follows: 
Model 𝑈:   underfitted model    logit(𝑝) ∼ 𝑎𝑔𝑒 
Model	𝑀>: misspecified model logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝐸𝑛𝑣 
Model 𝑀*: misspecified model logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝐸𝑛𝑣, 𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣 
Model 𝑇:    true model               logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝑧 
Model O:    overfitted model.    logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝑧, 𝐸𝑛𝑣, 𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 

 

Model 𝑈  was an underfitted model that did not include 𝑧 , which was highly 

correlated with the disease status 𝑦. All the PS-based pseudo-weighted estimates had large 

bias (relative bias ~10%) and similar variances.  
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Models 𝑀%  also excluded 𝑧  but added an extra variable of 𝐸𝑛𝑣 , which was a 

predictor of 𝑦. Comparing results under Models 𝑀% and 𝑈, we observe that adding extra 

covariates that were correlated with the outcome variable in the propensity model did not 

reduce, but increased biases of 𝜃�N∗=>?@ and 𝜃�N∗=>?@.?. The potential reason is that the cohort 

participation rates were poorly estimated under Model 𝑀%. This result is different from the 

findings in estimating finite population means where adding predictors of 𝑦  to the 

misspecified propensity model usually help reduce the bias (Figure 5.4 for finite population 

prevalence estimation in Scenario 2, and Figure 3.1 for simulations in Chapter 3). Hence, 

bias reduction of the IPSW, and the IPSW.S methods were more sensitive to the propensity 

model misspecification in estimating regression finite population coefficients as compared 

to estimating the finite population means/prevalences. Moreover, the variance of 𝜃�N∗=>?@ 

increased under Model 𝑀% compared to the results under Model 𝑈 due to including an 

extra covariate in the propensity model. On the contrary, 𝜃�N∗X@.@  and 𝜃�N∗X@.?  showed 

greater bias reduction under Model 𝑀%, without inflating the variances.  

Model 𝑀N added the interaction term of 𝑎𝑔𝑒 and 𝐸𝑛𝑣 besides the main effect of 

𝐸𝑛𝑣 and 𝑎𝑔𝑒 in Model 𝑀%. Adding this interaction term reduced, but did not eliminate, 

the bias for all the pseudo-weighted estimates, among which the 𝜃�N∗X@.@  and 𝜃�N∗X@.? 

estimators had the smallest bias. However, the variances increased especially for 𝜃�N∗=>?@ 

and 𝜃�N∗X@.@  because of highly variable weights in the combined (cohort and weighted 

survey) sample.  

Model 𝑂 was incorrectly overfitted, including unnecessary variables of 𝐸𝑛𝑣 and 

race/ethnicity compared to the true propensity model. The bias reduction was similar for 
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all five estimators compared to the bias reduction under the true model. However, adding 

extra variables resulted in higher variance of 𝜃�N∗=>?@ and 𝜃�N∗X@.@.  

For the variance estimation (Table 5.6), the naïve TL method underestimated the 

variance, especially for 𝜃�N∗=>?@ and 𝜃�N∗X@.@, with the variance ratio as low as 0.17 and 0.37 

under Model 𝑀N , respectively. The JK estimates were approximately unbiased for 

variances of 𝜃�N∗=>?@ and 𝜃�N∗=>?@.?, but can overestimate the variances of 𝜃�N∗X@ 𝜃�N∗X@.@ and 

𝜃�N∗X@.?, which is consistent with the results in Chapter 4 

For comparison purpose, the results of finite population prevalence estimation were 

reported in Figure 5.4 and Table 5.6. The pattern of the results are consistent with those in 

Chapter 3 and Chapter 4.  

5.4 Data Analysis: The U.S. National Health and Nutrition 

Examination Survey 

This data example used the same nonprobability cohort and the reference survey sample as 

Chapter 4. We estimated the odds ratio of 15-year all-cause mortality associated with 

obesity (BMI ≥ 30) for adults in the US using the unweighted adult sample of household 

interview part of NHANES III conducted in 1988-1994 as the cohort. The reference survey 

sample was from the 1994 NHIS respondents to the supplement for monitoring 

achievement of the Healthy People Year 2000 objectives, aged 18 and older.  

In the outcome model, we controlled the confounders of age (continuous in years), 

sex (male, and female), race/ethnicity (Non-Hispanic White, Non-Hispanic Black, 

Hispanic, and Non-Hispanic others), education level (continuous trend), and smoking 

status (non-smokers, former smokers, and current smokers). Figure 5.3 shows the odds-
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ratios of 15-year mortality associated with obesity (with 95% confidence interval) 

estimated by seven methods: NHIS estimates with the complex sample designs considered, 

the naïve NHANES estimates ignoring all the complex sample designs, and five PS-based 

pseudo-weighted estimators (IPSW, KW, KW.W, IPSW.S, and KW.S) obtained from the 

NHANES sample.  

Figure 5.3 Odds ratio of 15-year mortality associated with obesity estimated by seven methods 

 
 

With the complex sample designs of 1994 NHIS considered, the odds of 15-year mortality 

was 1.32 times (Figure 5.3) higher for obese adults than nonobese adults in the U.S. (p-

value 5.6 × 104_ in Table 5.5). In contrast, there was no significant difference in the odds 

of 15-year mortality for obese adults than nonobese adults in the naïve NHANES sample 

(estimated odds ratio = 1.08, with p-value= 0.18 in Table 5.5). The 95% CI of the naïve 

NHANES estimate was not overlapped with the that of the weighted NHIS estimate. All 

PS-based pseudo-weighted estimates of odds ratios were close to the NHIS estimate. The 

NHIS estimate was covered by 95% CIs of the pseudo-weighted estimates. However, the 

KW method, although it removed most bias of the naïve NHANES estimate, failed to 

capture the significantly higher risk of 15-year mortality for the obese people compared to 
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the nonobese people (p-value= 0.15) due to a large JK variance (Table 5.5). The large JK 

variance estimates can be caused by the propensity model misspecification or the 

overestimation of the JK method as observed in the simulations.  

Table 5.5 Estimates of log-odds ratios for all-cause 15-year mortality with Jackknife standard 
error estimates and p-values 

 
Age 

  

  Sex              Race/Ethnicity         
Educ 

  

  Smoking Status   Obese 

 Female 
NH 

Black Hispanic 
NH-

Other 
Former 
Smoker 

Current 
Smoker Yes 

NHIS Estimate         
 0.11 -0.55 0.52 -0.13 -0.26 -0.17 0.91 0.21 0.28 
%Relative Bias  
(%Bias reduction)       
Naïve -0.7 -15.8 -43.7 68.6 176.8 -4.0 -5.2 9.9 -72.8 
IPSW 5.3 -30.2 -19.8 48.7 138.5 -8.3 11.2 15.2 3.9 
 (911) (-91) (55) (29) (22) (-110) (314) (-56) (105) 
KW 7.5 -26.4 -26.8 30.7 146.3 -7.6 11.0 10.9 -11.4 
 (1254) (-67) (39) (55) (17) (-91) (310) (-11) (84) 
KW.W 5.4 -29.2 -20.2 42.2 132.4 -8.6 11.3 16.3 2.7 
 (923) (-85) (54) (38) (25) (-115) (317) (-66) (104) 
IPSW.S 5.0 -29.5 -20.1 58.0 130.1 -6.3 11.7 16.4 6.4 
 (880) (-87) (54) (15) (26) (-57) (326) (-67) (109) 
KW.S 5.5 -28.8 -20.5 52.0 128.3 -6.7 12.5 18.6 8.5 
 (864) (-87) (54) (15) (26) (-56) (325) (-66) (112) 
Standard Error × 𝟏𝟎𝟐 (JK)       
NHIS 0.2 5.9 9.4 11.1 22.1 2.2 7.9 6.7 7.0 
Naïve 0.2 4.8 5.8 6.2 22.6 1.7 6.1 5.5 5.6 
IPSW 0.3 6.4 7.8 8.8 26.0 2.1 10.1 8.4 8.1 
KW 1.4 8.8 18.0 30.5 44.5 2.2 11.5 13.7 24.1 
KW.W 0.5 8.3 13.8 21.0 28.2 2.5 10.4 8.4 10.8 
IPSW.S 0.3 6.4 7.5 8.2 25.3 2.1 9.8 8.3 8.1 
KW.S 0.5 7.5 15.9 15.3 26.7 2.3 10.8 8.7 12.1 
P-value         
NHIS 0 0 3.1E-08 2.3E-01 2.4E-01 4.7E-14 0 2.1E-03 5.6E-05 

Naïve 0 0 4.9E-07 3.2E-04 1.6E-03 0.0E+00 0 2.2E-05 1.8E-01 
IPSW 0 1.4E-09 7.0E-08 2.6E-02 1.6E-02 1.6E-13 0 4.4E-03 3.4E-04 
KW 0 3.1E-06 3.5E-02 5.7E-01 1.5E-01 5.7E-12 0 9.4E-02 3.0E-01 
KW.W 0 2.5E-06 2.6E-03 3.7E-01 3.1E-02 8.5E-10 0 4.1E-03 7.7E-03 
IPSW.S 0 8.2E-10 3.2E-08 1.1E-02 1.8E-02 5.3E-14 0 3.8E-03 2.2E-04 
KW.S 0 1.6E-07 9.0E-03 1.9E-01 2.5E-02 5.3E-12 0 4.6E-03 1.2E-02 
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5.5 Summary 

In this chapter, we investigated the influence of unrepresentative sample on the naïve 

cohort estimators of the odds ratios from logistic regression analyses. When the cohort 

participation is correlated with the outcome variable conditional on the covariates in the 

regression model (informative participation), the naïve estimates of the regression 

coefficients would not be approximately unbiased. When the cohort self-selection is 

independent from the outcome variable given the covariates (noninformative 

participation), the naïve estimators would be approximately unbiased under the correct 

outcome model, but would not be approximately unbiased under misspecified outcome 

models. Since the outcome model is usually unknown in practice, PS-based methods 

should be applied for relative risk estimation from the nonprobability cohort. Moreover, as 

shown in the real data example, the results of significance tests obtained from the 

nonprobability cohorts can be invalid.  

As shown in the simulations, the PS-based methods corrected the bias of the native 

cohort estimators using a correctly specified propensity model under either an informative 

or a noninformative selection. The original KW estimator had the smallest variances and 

MSE on average, followed by the KW.S and the IPSW.S estimators. However, the five 

methods performed differently when the propensity model was misspecified. The KW.S 

and the KW.W methods were more robust to the model misspecification than the IPSW 

and IPSW.S methods in terms of the bias reduction. This is because these two methods use 

the estimated PS to measure the similarity between the cohort and survey sample units, 

instead of predicting participation rates. Moreover, adding predictors of the outcome 

variable in an underfitted propensity model can increase bias of the IPSW and IPSW.S 
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estimators, but decrease bias of the KW.W and the KW.S estimators. This finding implies 

that the IPSW methods are more sensitive to propensity model misspecification for the 

regression coefficient estimation as compared to the mean/prevalence estimation. The 

KW.S and IPSW.S estimators had smaller variances than the KW.W and the IPSW 

estimates, respectively. Therefore, the KW.S estimators on average had smallest MSE 

among all the PS-based estimates on average.  

In the real data example, the risk of mortality in 15-years among the obese people 

was significantly higher than that among the nonobese people in the US obtained from the 

1994 NHIS. However, the risk of 15-year mortality was not significantly different from the 

obese and nonobese adults in the naïve NHANES III sample. All PS-based methods 

substantially reduced the bias of the naïve NHANES estimator and captured the significant 

association between obesity and mortality except for the KW method due to the large JK 

variance estimate.  

As observed in simulations and the real data example, the KW estimators of 

regression coefficients can be more sensitive to propensity model misspecification than the 

KW.W and the KW.S estimators. Future research is needed to establish a general 

framework of PS estimation for regression analyses. The JK method is more likely to 

overestimate the variance of the KW estimates of regression coefficients when the 

propensity model is misspecified. In future research, the complete TL variance estimation 

should be developed to incorporate the randomness due to PS estimation.  

This chapter reveals the importance of the cohort representativeness in regression 

analysis when the cohort participation is informative or when the regression model is 

misspecified. There are more cases where the cohort representativeness should be 
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considered under the framework of regression analysis. For example, we are interested in 

estimating the total effect of an exposure on the outcome (having a disease or not). If the 

cohort participation depends on a mediator of the exposure and the outcome variable, the 

naïve cohort estimate of the total effect of the exposure would be biased. This is because 

the cohort participation is correlated with the outcome given the exposure. However, the 

mediator cannot be controlled in the outcome model, because part of the total effect can be 

absorbed by the mediator. The PS-based methods can help reduce bias in estimating total 

effect of the exposure in this situation by including the mediator as a covariate in the 

propensity model. 

5.6 Supplementary Figures and Tables 

Table 5.6 Results of regression coefficient estimation of the misspecified outcome model from 
2,000 simulated cohorts and survey samples under non-informative designs with each cohort and 
survey sample fitted to four misspecified propensity models† 

Model Estimator %RB V (× 102) VR (TL) VR (JK) MSE (× 102) 

 𝜃w*∗	4."56 35.01 4.73 0.48  211.36 
 𝜃w*∗	789 0.60 13.80 1.05 1.06 13.86 
Model 𝑈: logit(𝑝) ∼ 𝑎𝑔𝑒 
 𝜃w*∗	:'7; -9.86 6.11 0.84 0.99 22.49 
 𝜃w*∗	=; -11.84 5.58 0.94 0.99 29.21 
 𝜃w*∗	=;.; -10.82 5.46 0.95 0.98 25.18 
 𝜃w*∗	:'7;.7 -10.07 5.48 0.93 0.98 22.56 
 𝜃w*∗	=;.7 -10.82 5.46 0.95 0.98 25.18 
Model 𝑀>: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣 
 𝜃w*∗	:'7; -18.01 9.25 0.75 1.01 63.95 
 𝜃w*∗	=; -12.91 5.46 1.02 1.26 33.55 
 𝜃w*∗	=;.; -4.87 6.22 0.80 1.09 10.22 
 𝜃w*∗	:'7;.7 -16.12 6.61 0.96 0.98 50.42 
 𝜃w*∗	=;.7 -6.86 5.38 0.92 1.09 13.32 
Model 𝑀*: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣 
 𝜃w*∗	:'7; -8.96 35.77 0.17 1.04 49.29 
 𝜃w*∗	=; -5.71 5.40 1.01 1.38 10.89 
 𝜃w*∗	=;.; -1.77 13.27 0.37 1.26 13.80 
 𝜃w*∗	:'7;.7 -4.73 8.30 0.67 1.00 12.07 
 𝜃w*∗	=;.7 -1.67 6.62 0.75 1.25 7.09 
Model 𝑂: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝑧, 𝐸𝑛𝑣, 𝑟𝑎𝑐𝑒_𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 
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 𝜃w*∗	:'7; 1.74 18.15 0.33 1.07 18.66 
 𝜃w*∗	=; -0.87 5.93 1.00 1.55 6.05 
 𝜃w*∗	=;.; 3.68 12.41 0.44 1.18 14.70 
 𝜃w*∗	:'7;.7 0.86 7.55 0.79 1.00 7.67 
 𝜃w*∗	=;.7 2.16 6.93 0.81 1.13 7.71 
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Figure 5.4 Results of finite population prevalence estimation in Scenario (2) from 2,000 simulated 
cohorts and survey samples under non-informative designs with each cohort and survey sample 
fitted to four misspecified propensity models† 

 

†The labels of the 𝑥-axises represent the propensity models as follows 
Model 𝑈:   underfitted model    logit(𝑝) ∼ 𝑎𝑔𝑒 
Model	𝑀>: misspecified model logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝐸𝑛𝑣 
Model 𝑀*: misspecified model logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝐸𝑛𝑣, 𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣 
Model 𝑇:    true model               logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝑧 
Model O:    overfitted model.    logit(𝑝) ∼ 𝑎𝑔𝑒 , 𝑧, 𝐸𝑛𝑣, 𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 
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Table 5.7 Results of finite population prevalence estimation in Scenario (2) from 2,000 simulated 
cohorts and survey samples under non-informative designs with each cohort and survey sample 
fitted to four misspecified propensity models 

Model Estimator %RB V (× 102) VR (TL) VR (JK) MSE (× 102) 

 𝜇̂4."56 42.665 1.69   187 
 𝜇̂789 -1.076 1.17 1.05 1.05 1.29 
Model 𝑈: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝑧	 
 𝜇̂:'7; 0.276 3.47 0.36 1.04 3.48 
 𝜇̂:'7;.7 0.298 1.31 0.95 1.03 1.32 
 𝜇̂=; 1.035 2.73 0.46 1.04 2.84 
 𝜇̂=;.; 0.149 1.80 0.69 1.03 1.80 
 𝜇̂=;.7 0.848 1.74 0.72 1.04 1.81 
Model 𝑈: logit(𝑝) ∼ 𝑎𝑔𝑒 
 𝜇̂:'7; -11.633 2.73 0.42 1.01 16.5 
 𝜇̂:'7;.7 -10.661 1.55 0.74 0.97 13.2 
 𝜇̂=; -10.873 1.57 0.73 1.00 13.6 
 𝜇̂=;.; -11.914 1.58 0.72 0.97 16.1 
 𝜇̂=;.7 -10.873 1.57 0.73 0.99 13.6 
Model 𝑀>: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣 
 𝜇̂:'7; -2.483 3.23 0.37 1.02 3.86 
 𝜇̂:'7;.7 -4.781 1.39 0.85 1.00 3.72 
 𝜇̂=; -0.699 2.37 0.51 1.05 2.42 
 𝜇̂=;.; -4.376 1.61 0.74 1.02 3.56 
 𝜇̂=;.7 -3.621 1.54 0.77 1.04 2.88 
Model 𝑀*: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑎𝑔𝑒 ⋅ 𝐸𝑛𝑣 
 𝜇̂:'7; -2.339 3.52 0.34 1.02 4.08 
 𝜇̂:'7;.7 -2.987 1.30 0.92 1.01 2.21 
 𝜇̂=; -1.071 2.16 0.56 1.06 2.28 
 𝜇̂=;.; -3.437 1.60 0.75 1.02 2.81 
 𝜇̂=;.7 -2.725 1.52 0.79 1.04 2.28 
Model 𝑂: logit(𝑝) ∼ 𝑎𝑔𝑒, 𝑧, 𝐸𝑛𝑣, 𝑟𝑎𝑐𝑒_𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 
 𝜇̂:'7; -0.159 3.91 0.32 1.03 3.91 
 𝜇̂:'7;.7 0.282 1.38 0.90 1.00 1.38 
 𝜇̂=; 1.668 2.78 0.46 1.05 3.06 
 𝜇̂=;.; 0.186 1.85 0.67 1.00 1.86 
 𝜇̂=;.7 0.939 1.79 0.70 1.02 1.88 
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Chapter 6  Discussion and Future Work 

6.1 Summary 

In this dissertation, A new PS-based KW (matching) approach is proposed to improve 

external validity of cohort analyses, using a representative survey sample as a reference 

sample for the target population. The KW method, which is a PS-based matching method, 

uses PS to measure similarity between the cohort and survey sample units, and therefore is 

less sensitive to the propensity model misspecification compared to the PS-based weighting 

methods. In addition, the KW method relaxes the PSAS assumption of identical 

representativeness of the cohort units within subclasses by fractionally distributing survey 

sample weights to the cohort units based on their similarity measured by kernel smoothed 

distance in PS. The KW method provides consistent estimators of population 

means/prevalences/associations under the true propensity model and some regularity 

assumptions.  

To avoid high variability due to using the survey weighting in PS estimation, the 

KW approach as well as other existing PS-based matching methods estimates PS by fitting 

a propensity model to the combined (cohort vs. unweighted survey) sample. However, as 

we found in our research, it requires the strong exchangeability assumption (SEA) for 

estimating the finite population means. The SEA states that the expectation of the analysis 

variable given the PS is the same among all three of the cohort, reference survey, and the 

finite target population. It is proved in this dissertation that, without the SEA, current PS-

based matching estimators can be biased, even under the correct propensity model.  
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 A novel unifying framework is established in the dissertation for both PS-based 

weighting and matching methods. This unifying framework allows this dissertation to 

make three contributions. First, the SEA is identified for the original PS-based matching 

methods. The simulations and data example demonstrate that the PS-based matching 

methods that rely on the SEA, such as the original KW estimator, have the smallest mean 

squared error (MSE) when the SEA holds, but have large bias when the SEA fails. Second, 

as a remedy, the enhanced PS-based matching methods are proposed without requiring 

WEA under the framework, rather than the SEA. Third, the efficiency of the PS-based 

estimates is further improved by scaling the survey weights to sum to the survey sample 

size. Scaling the survey sample weights reduces the variance of the estimated PSs and thus 

markedly improves the efficiency of the pseudo-weighted estimates, especially under the 

IPSW method. The kernel weighting with scaling (KWS) method is most recommended 

because of its robustness to propensity model misspecification, and the smallest MSE in 

general. 

 The TL and JK variance estimations are developed under the framework to take 

into account all sources of variability in the final pseudo-weighted estimates. We 

recommend JK method for estimating variances of the original IPSW estimator because 

the empirical results showed that the TL method can have finite sample bias due to highly 

variable weights in the combined sample. Both the JK and the TL methods provided good 

variance estimation for the IPSW.S estimates. The TL method is recommended for the 

KW.W and the KW.S estimates because the JK method can overestimate the variance. 

The PS-based methods were developed to reduce bias when the outcome variables 

are available in cohorts but not in surveys, such as novel molecular or genetic risk factors. 
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In the data examples, the outcome variables were purposely selected so that they were 

available in both the cohort and the survey, allowing us to quantify the relative bias by 

assuming the survey estimates as the gold standard. However, the survey estimates can 

vary from the truth due to sampling errors and non-sampling errors such as undercoverage 

and nonresponse bias. Unfortunately, there is no census of reported diseases in the United 

States. 

 The simulations provide guidance for choosing propensity model predictors. For 

the propensity model, Stuart (2010) suggested including all variables that may be 

associated with treatment assignment and the outcomes to reduce bias, but for small 

samples, it is useful to prioritize variables related to the outcome to control the variance 

(Brookhart et al., 2006). The simulations agree that adding extra predictors of the outcome 

in the propensity model reduces bias, but at a potential cost of increasing variance, 

especially for the original IPSW method (Chapter 3). I suggested that the propensity 

models aim for maximal bias reduction by including all variables distributed differently in 

the cohort and the survey sample, all significant interaction terms, and all variables 

predictive of the outcome.  

All the PS-based methods assume the final weights of the probability survey sample 

are the inverse of true inclusion probabilities from the finite population. However, ideal 

survey weights are likely unachievable due to imperfect undercoverage and nonresponse 

adjustments. The accuracy of the survey weights may substantially affect the bias reduction 

of the IPSW method because this method uses survey sample weights for PS estimation 

and estimates the participation rates directly from (functions of) the PS. On the other hand, 

the matching methods empirically show less sensitivity to accuracy of the survey sample 
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weights because they use the PS to measure the similarity between the cohort and the 

survey sample units. 

6.2 Future Work 

As nonprobability samples become more and more popular in many areas in the era of big 

data, more attention should be paid to making finite population inferences from the 

nonprobability samples. Although the PS-based methods can improve the external validity 

of estimates from the nonprobability samples, there is much room for future research before 

these methods can be widely used in practice by epidemiologists and medical researchers.  

6.2.1 Propensity model diagnosis 

The amount of bias reduction of the PS-based methods crucially depends on how well the 

propensity model predictors predict the outcome. If the propensity model is poorly fitted, 

then the PS-based estimates can even be more biased than the naïve cohort estimates. 

Furthermore, including all known variables in the propensity model may not suffice for 

meaningful bias reductions. Further research is needed for developing propensity model 

selection and diagnostics to identify situations in which the PS-based method might reduce 

little bias, or even increase bias. 

 The PS-based matching methods fitting propensity model to the combined (cohort 

vs. unweighted survey) sample provide efficient and unbiased estimators of finite 

population means only under SEA. A visual scatterplot is proposed to assess if the SEA 

holds in a situation where WEA is approximately held. However, there remains much room 

for developing formal propensity model diagnostics for SEA. 
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6.2.2 Optimal scaling factor 

In Chapter 4, the scaled survey weights are proposed in propensity estimation to improve 

efficiency of pseudo-weighted estimates of finite population means. The scaling factor is 

chosen so that the scaled survey weights sum up to the survey sample size. A substantial 

gain in efficiency is observed in the simulations and the real data example. However, more 

theoretical justification is needed for quantifying the efficiency improvement. More work 

is needed to determine optimal scaling when rescaling the survey weights issued in 

propensity estimation to minimize the variance of the pseudo-weighted cohort estimates. 

Moreover, the effect of scaling weights on efficiency improvement may differ depending 

on the propensity model misspecification. For example, Kim & Skinner (2013) found that 

the weighting adjustments for regression analysis under an informative sample may 

increase the variance of the estimated regression coefficients if the analysis model is 

misspecified. Future research is needed for investigating properties of the estimators using 

scaled survey weights.  

6.2.3 Doubly robust estimators 

As discussed in Chapter 3 and Chapter 4, the PS-based estimators of finite population 

means can be biased when the propensity model is misspecified. The PS-based weighting 

methods, such as IPSW, are more sensitive to model misspecification than the matching 

methods, especially when there are extreme weights. In order to improve the robustness of 

their PS-based weighting method, Chen et al. (2019) proposed a doubly robust estimator 

of finite population means by combining a pseudo-weighted estimator from the 

nonprobability sample and a survey estimator obtained by the model-based prediction 

method.  
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The model-based prediction approach has also been explored for finite population 

inference from nonprobability samples (Elliott & Valliant, 2016; Chen et al., 2019). 

Suppose the outcome model in the finite population is: 

 𝑦! = 𝑚(𝒙!), 𝑖 ∈ 𝐹𝑃, (6.2.1) 

where 𝑚(𝑥!) = 𝐸I( 𝑦! ∣∣ 𝒙! ) with the expectation 𝐸I is respective to the distribution of 

the outcome 𝑦 given the covariates 𝒙. Under the assumption A1 in Section 4.2 that the 

cohort participation and the outcome variable are independent conditional on the 

covariates, 𝐸I( 𝑦! ∣∣ 𝒙! , 𝑅! = 1 ) = 𝐸I( 𝑦! ∣∣ 𝒙! ) = 𝑚(𝑥!) . Hence the outcome model is 

robust to cohort selection, and 𝑚(𝒙) can be modeled from the naïve cohort. The estimate 

of 𝑚(𝒙) is denoted by 𝑚y(𝒙). The doubly robust estimator (Chen et al., 2019) of the finite 

population mean (𝜇C> = %
#
∑ 𝑦!!∈C> ) combines a pseudo-weighted cohort estimator and a 

survey estimator as follows: 

 𝜇̂¢& =
1

𝑁r�
A 𝑤s! ⋅ {𝑦! −𝑚y(𝒙𝒊)}

!∈,%
+

1
𝑁r?oK

A 𝑑! ⋅ 𝑚y(𝒙!)
!∈,'

 (6.2.2) 

where 𝑁r� = ∑ 𝑤s!!∈,%  is the cohort estimator of the finite population count, 𝑤s! is the pseudo-

weight for 𝑖 ∈ 𝑠;  obtained by a PS-based method, and 𝑁r?oK = ∑ 𝑑!!∈,'  is the survey 

estimate of finite population count.  

 Chen et al. (2019) proved that their doubly robust estimator is consistent if either 

the propensity model or the outcome prediction model is correct. Increased efficiency can 

be achieved if both models are correct. Similar doubly robust estimators can be constructed 

using the IPSW or the KW pseudo-weights in the first summand of Formula (6.2.2). Future 

research should investigate further doubly robustness properties, including consistency and 
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finite population variance, when using the IPSW or the KW methods to obtain the pseudo-

weights.  

6.2.4 Combining weight trimming and the PS-based methods 

Weight trimming, which sets weights above some maximum to that maximum, has been 

proposed as a solution to reducing variance of the sampled weighted estimates (Potter, 

1993). It can be applied to the PS-based pseudo weights to improve efficiency of the 

pseudo-weighted estimates of the finite population quantities, especially for the IPSW 

methods that are more likely to produce extreme weights. However, the effect of weight 

trimming on increasing bias or reducing variance is unclear (Lee et al., 2010; Potter and 

Zheng, 2015), and there is relatively little guidance regarding the trimming level. Future 

research is needed to investigate how to minimize mean squared errors by trimming the 

pseudo-weights. The variance estimation also has to be adapted to reflect the trimmed 

pseudo-weights. 

6.2.5 Applying KW methods to adjust nonresponse bias in survey research 

Discussed in Section 2.2.3, estimates based on the respondents’ data alone can be biased if 

the unobserved distribution of study variables from nonrespondents (𝑠*x) is different from 

that of respondents (𝑠x).  

Weighting adjustment cell (WAC) method (described in Little & Vartivarian, 2003) 

and inverse of response-propensity weighting (IRW) method (Iannacchione et al., 1991) 

are two commonly used nonresponse adjustment methods (Korn and Graubard, 1999). 

These two methods have similar advantages and disadvantages of the PSAS and the IPSW 

method respectively. The WAC method divides the sampled individuals (respondents + 
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nonrespondents) into disjoint groups (“weighting adjustment cells”). Then it assigns a 

common nonresponse adjustment (i.e., the number of sampled individuals divided by the 

number of respondents) by assuming probabilities of responding for all sampled individual 

are the same within a given cell. Similar to the PSAS method, the WAC method is less 

likely to produce extreme adjustment factors but can be less efficient in reducing 

nonresponse bias due to the assumption of equal response propensity within the cell. The 

IRW method is formed by modeling the probability of responding as a function (e.g., 

logistic regression) of variables available on all sampled units. The nonresponse adjustment 

factor is taken as the inverse of the estimated probability of response. This method, like the 

IPSW method, can reduce more nonresponse bias, but can be sensitive to the response 

model misspecification and can produce extreme adjustment factor.  

The KW method can be applied to reduce the nonresponse bias, aiming for reducing 

MSE, in two ways. The first way is to fit a responding propensity model (the dependent 

variable =1 for 𝑖 ∈ 𝑠x; =0 for𝑗 ∈ 𝑠*x) to the unweighted sample, as the IRW method does. 

Then, assign the nonresponse adjustment 

 𝑓!X@% = 1 +A
𝐾wj𝑝�!

(x) − 𝑝�"
(*x)k ℎ⁄ x

∑ 𝐾 wj𝑝�!
(x) − 𝑝�"

(*x)k ℎ⁄ x!∈,U
"∈,LU

,			for	𝑖 ∈ 𝑠x , (6.2.3) 

where 𝑝�!
(x)  and 𝑝�"

(*x)  are the propensity of responding for 𝑖 ∈ 𝑠x  and for 𝑗 ∈ 𝑠*x  in the 

sample respectively. The KW adjusted sample weight for 𝑖 ∈ 𝑠x is the production of 𝑓!X@% 

and the original base weight 𝑑!: 𝑤!X@% = 𝑓!X@% ⋅ 𝑑!.  

 The second way is to fit the responding propensity model (the dependent variable 

=1 for 𝑖 ∈ 𝑠x; =0 for𝑗 ∈ 𝑠*x) to the weighted sample and obtain the KW2 adjusted sample 

weight  
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 𝑤!X@N = 𝑑! �1 +A
𝑑"𝐾 wj𝑝!

(x) − 𝑝"
(*x)k ℎ⁄ x

∑ 𝑑!𝐾 wj𝑝!
(x) − 𝑝"

(*x)k ℎ⁄ x!∈,U
"∈,LU

� ,			for	𝑖 ∈ 𝑠x , (6.2.4) 

where 𝑝!
(x)  and 𝑝"

(*x)  are the propensity of responding for 𝑖 ∈ 𝑠x  and for 𝑗 ∈ 𝑠*x  in the 

population respectively.  

 The two methods require different conditions for consistent estimates of finite 

population quantities. Moreover, the TL finite population variance and the variance 

estimation can be harder to obtain because the sets of respondents and nonrespondents are 

mutually exclusive, not independent. The variance estimation needs to take the correlation 

between the two samples into account. Future research is needed to examine the 

performance the KW nonresponse adjustment and to derive the variance estimation. 

6.2.6 Extending PS-based methods to different epidemiologic study designs 

Using PS-based methods to estimate finite population means and associations from the 

cohort is a starting point for improving external validity of cohort analyses. The ultimate 

goal is to extend the PS-based methods to other epidemiologic study designs.  

For example, many epidemiologic studies involve sampling within cohorts, such as 

the nested case-control studies, case-cohort studies, or general two-phase sampling (Li et 

al., 2016). PS-based methods can be adapted to improve the representativeness of the sub-

samples for the full cohort, which is important in situations where the subsampling is not 

totally under control of study investigators. Accordingly, the propensity model should be 

fitted to the combined subsample versus the full cohort, using as the full cohort as the 

reference. We expect that the PS-based methods should perform better for these studies 

compared to improving representativeness of the cohort to the finite population, because 

problems related to differences in data processing errors, measurement errors, and coverage 
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errors due to different study designs in the cohort and the external reference survey sample 

could be mitigated or entirely absent between the subsample and the cohort.  

Similarly, the PS-based methods can to be applied to estimating risk models (e.g., 

probability of disease in a particular time period) not only from cohort studies, but also 

from case-control studies. Due to potential unrepresentativeness of a cohort, the absolute 

risk estimates obtained from the naïve cohorts may not be generalizable to the population. 

The PS-based methods can be applied to improve the external validity of the absolute risk 

estimation from the cohorts. For example, synthetic population-based case-control studies 

(Tota et al., 2019) can be constructed to estimate individualized risk of rare diseases, in 

which the cases are from nonprobability case studies and weighted using a population-

based disease registry (e.g., Surveillance, Epidemiology, and End Results [SEER] 

Program), and the controls are from population-based health surveys (e.g. NHIS, 

NHANES).  

I hope that my work will promote attention to improving external validity of cohort 

analyses with the goal of developing reliable methodology and software for medical 

researchers.  
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APPENDIX 

R code Example for generating Table 3.2 

###################################################################### 
#                       Simulations in Chapter 3                     # 
###################################################################### 
library(survey) 
# Note: please load subfunctions (included at the end) before running 
the main program  
source("Sampling.R") 
source("getY.R") 
source("Kernel functions.R") 
source("PS weights.R") 
source("JRR.R") 
source("simu_fun_c3.R") 
# Read dataset of finite population (FP) 
fnt.pop = read.table("/Users/wangl29/Box/Research/Lingxiao Projects/KW 
codes/fnt.pop_reg_all.txt", 
                     header = T) 
# Set up random seeds 
seed = read.table("/Users/wangl29/Box/Research/Lingxiao Projects/KW 
codes/seed.txt") 
seed1=seed[,1] 
seed2=seed[,2] 
# Basic setups 
NSIMU = 2 # number of simulation runs 
N = 9000000 # FP count 
Cluster = 3000 # number of clusters in FP 
n_c = 100 # cohort size 
psu_c = 10 # number of clusters selected by the cohort 
n_s = 100 # survey sample size 
psu_s = 10 # number of clusters selected by the survey sample 
 
# Generate outcome variable y and the substitute  
theta = c(-5,0.5,-1,1,0.3, 0.1) 
n.theta = length(theta) 
set.seed(97035) 
fnt.pop$hisp=(fnt.pop$race_eth==4) 
fnt.pop$ageE = fnt.pop$age*fnt.pop$Env1 
fnt.pop$ageE[fnt.pop$ageE>15]=15 
cov.m = as.matrix(cbind(1, fnt.pop$age, fnt.pop$gender, fnt.pop$hisp,  
                        fnt.pop$Env1, fnt.pop$ageE)) 
out_y = getY(thetas = theta, design.x = cov.m, ICCy=0.07,Cluster=3000, 
clustersize=3000) 
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y_r1 = out_y$y; mu=mean(y_r1); mu 
py = out_y$py; mean(py) 
fnt.pop$y = y_r1; fnt.pop$py=py; fnt.pop$z=py-1.7*fnt.pop$u 
 
# Coefficient for generating MOS of PPS sampling 
fnt.pop$Env_h = as.numeric(fnt.pop$Env1>2.5) 
gamma.t = c(0,-0.3, 0.4, -0.7, -0.7) 
n.gamma = length(gamma.t) 
# Calculate individual level MOS 
odds_trt = exp(as.matrix(cbind(1, fnt.pop$age, fnt.pop$hh_inc,  
                               fnt.pop$Env_h, fnt.pop$z))%*% 
               matrix(gamma.t, n.gamma, 1)) 
 
#True PS model 
Formula_t = as.formula("trt ~ age+hh_inc+Env_h+z") 
#Fitted PS model 
Formula_fit = as.formula("trt ~ age+hh_inc+Env_h+z") 
# number of coefficients in the fitted PS model 
n.beta.fit=5 
# Calcualte MOS for the first stage (clustering) PPS sampling  
size.I_c = aggregate(odds_trt^2.5, list(fnt.pop$psu), sum)[, 2] 
size.I_s = aggregate(1/(odds_trt^1.2), list(fnt.pop$psu), sum)[, 2] 
 
# Name the variable storing the output  
est   = matrix(0, NSIMU, 6) # Estimates of FP proportion of y=1 
var1  = matrix(0, NSIMU, 6) # Naïve TL estimates of standard error 
var2  = matrix(0, NSIMU, 6) # JK estimates of standard error 
h_out = rep(0, NSIMU)  
# Estimates of the propensity model coefficients 
beta_est   = matrix(0, NSIMU, n.beta.fit) # PSAS and KW 
beta.w_est = matrix(0, NSIMU, n.beta.fit) # IPSW 
 
for(simu in c(1: NSIMU)){ 
  #Select a cohort 
  samp.c = samp.slct(seed     = seed2[simu],  fnt.pop = fnt.pop,  
                     n        = n_c,          Cluster = Cluster,  
                     Clt.samp = psu_c,        dsgn    = "pps-pps",  
                     size     = odds_trt^2.5, size.I  = size.I_c) 
   
  # Naïve cohort estimate 
  est [simu, 1]  = mean(samp.c$y); var1[simu, 1]  = var(samp.c$y)/n_c 
  # Cohort estimate considering the true sample weights 
  ds = svydesign(ids=~psu, data=samp.c, weights=~wt, nest=TRUE) 
  ds.rep = as.svrepdesign(ds) 
  out_c = svymean(~y, design = ds) 
  est [simu, 2] = out_c[1]; var1[simu, 2] = vcov(out_c) 
  out_c.jrr = svymean(~y, design = ds.rep) 
  var2[simu, 2] = vcov(out_c.jrr) 
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  # Select a probability sample 
  samp.s = samp.slct(seed     = seed2[simu],      fnt.pop  = fnt.pop,  
                     n        = n_s,              Cluster  = Cluster,  
                     Clt.samp = psu_s,            dsgn     = "pps-pps",  
                     size     = 1/(odds_trt^1.2), size.I   = size.I_s) 
  # Sample weighted survey sample estimate 
  ds = svydesign(ids=~psu, data=samp.s, weights=~wt, nest=TRUE) 
  ds.rep = as.svrepdesign(ds) 
  # Population estimate of disease prevalence using survey sample 
  out_s = svymean(~y, design = ds) 
  est [simu, 3] = out_s[1]; var1[simu, 3] = vcov(out_s) 
  out_s.jrr = svymean(~y, design = ds.rep) 
  var2[simu, 3] = vcov(out_s.jrr) 
   
  # PS-based methods (IPSW, PSAS, and KW) 
  samp.c_all = simu_fun_c3(chtsamp = samp.c, svysamp = samp.s, 
                           svy_wt  = "wt",   Formula = Formula_fit,  
                           krn     = "triang") 
  # Coefficients of propensity score models 
  beta_est[simu, ]   = samp.c_all$beta 
beta.w_est[simu, ] = samp.c_all$beta.w 
# IPSW estimate 
  ds.ipsw  = svydesign(ids=~psu, data= samp.c_all$chtsamp_adj, 
weights=~ ipsw, nest=TRUE) 
  out_ipsw = svymean(~y, design = ds.ipsw) 
  est [simu, 4] = out_ipsw[1]; var1[simu, 4] = vcov(out_ipsw) 
  # PSAS estimate 
  ds.psas  = svydesign(ids=~psu, data= samp.c_all$chtsamp_adj, 
weights=~ psas, nest=TRUE) 
  out_psas = svymean(~y, design = ds.psas) 
  est [simu, 5] = out_psas[1]; var1[simu, 5] = vcov(out_psas) 
  # KW estimate 
  ds.kw  = svydesign(ids=~psu, data= samp.c_all$chtsamp_adj, weights=~ 
kw, nest=TRUE) 
  out_kw = svymean(~y, design = ds.kw) 
  est [simu, 6] = out_kw[1]; var1[simu, 6] = vcov(out_kw) 
  h_out[simu] = samp.c_all$h 
   
  # JK variances for the IPSW, PSAS, and KW estimates 
  theta = JRR_var(chtsamp = samp.c,       svysamp = samp.s, 
                  svy_wt  = "wt",         h_in    = h_out[simu], 
                  psu     = "psu",        resp    = "y", 
                  Formula =  Formula_fit, krn     = "triang") 
  sum_sq = (theta$theta - c(out_ipsw[1], out_psas[1], out_kw[1]))^2 
  var2[simu, c(4:6)] = apply(t(t(sum_sq)*c(rep((psu_c-1)/psu_c, psu_c),  
                                           rep((psu_s-1)/psu_s, 
psu_s))),  
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                             1, sum) 
  print(simu)} #End of simulation 
 
# Generating Table 3.2 
mean(h_out) #Bandwidth 
# Results 
mu_hat = apply(est, 2, mean); relb_mu = (mu_hat- mu)/mu*100 # Relative 
Bais 
ev.mu = apply(est, 2, var) # Empirical variance 
 
# Analytical variances (Naïve TL, cand JK), and Variance Ratios 
av.mu1 = apply(var1, 2, var); vr.mu1 = av.mu1/ev.mu # Naïve TL 
av.mu2 = apply(var2, 2, var); vr.mu2 = av.mu2/ev.mu # JK 
mse.mu = ev.mu + (mu_hat-mu)^2 # MSE 
 
ci_lw.ntl = est - 1.96*sqrt(var1)         
ci_lw.jk  = est - 1.96*sqrt(var2)         
ci_up.ntl = est + 1.96*sqrt(var1)         
ci_up.jk  = est + 1.96*sqrt(var2)         
 
cp.ntl = apply(sapply(1:6, function(i) (mu>= ci_lw.ntl[,i])&(mu<= 
ci_up.ntl[,i])), 2, mean) 
cp.jk  = apply(sapply(1:6, function(i) (mu>= ci_lw.jk[,i]) &(mu<= 
ci_up.jk[,i])),  2, mean) 
 
 
# Generate Table 3.2 
y_out = t(rbind(RB = relb_mu, V = ev.mu*1e5,  
                VR_NTL = vr.mu1, VR_JK = vr.mu2,  
                CP_NTL = cp.ntl, CP_JK = cp.jk, MSE = mse.mu*1e5)) 
rownames(y_out) = c("Naive", "Cht", "Svy", "IPSW", "PSAS", "KW") 
round(y_out, 7) 
 
 
###################################################################### 
#                            SUBFUNCTIONS                            # 
###################################################################### 
 
###################################################################### 
# FUNCTION simu_fun_c3 is a function for 1 simulation run in         # 
#          in Chapter 3                                              # 
# Input                                                              # 
#  chtsamp: cohort sample                                            # 
#  svysamp: survey sample                                            # 
#  svy_wt:  survey sample weight                                     # 
#  rm.s:    whether remove survey sample units that are not matched  # 
#           with any cohort units for KW method or not (default is F)# 
#  h:       pre-set banddwith. If NULL, h will be calculated         # 
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# Output                                                             # 
#  chtsamp_adj: cohort sample with the IPSW, PSAS, and KW weights    # 
#  h:           bandwidth                                            # 
###################################################################### 
simu_fun_c3 = function(chtsamp,svysamp,svy_wt, Formula, krn = "dnorm", 
rm.s = F, h=NULL){ 
  krn <<- krn; rm.s<<- rm.s; h   <<-h 
  # Get names of the response variable and predictors for the  
  # propensity score estimation model 
  # response variable and covariates in the propensity model 
  Fml_names = all.vars(Formula) 
  rsp_name = Fml_names[1] # response variable 
  mtch_var = Fml_names[-1] # covariates  
  # Remove incomplete records in the cohort, if there are any.    
  chtsamp_sub = as.data.frame(chtsamp[, mtch_var]) 
  if(sum(is.na(chtsamp_sub))>0){ 
    cmplt.indx = complete.cases(chtsamp_sub) 
    chtsamp_sub = chtsamp_sub[cmplt.indx, ] 
    chtsamp = chtsamp[cmplt.indx,] 
    warning("Missing values in covariates are not allowed. Records with 
missing values in the cohort are removed.") 
  }  
  # Remove incomplete survey sample, if there are any. 
  svysamp_sub = as.data.frame(svysamp[, mtch_var]) 
  svy_wt.vec = c(svysamp[, svy_wt]) 
  if(sum(is.na(svysamp_sub))>0){ 
    cmplt.indx = complete.cases(svysamp_sub) 
    svysamp_sub = svysamp_sub[cmplt.indx, ] 
    svy_wt.vec = sum(svysamp[, 
svy_wt])/sum(svy_wt.vec[cmplt.indx])*svy_wt.vec[cmplt.indx] 
    warning("Missing values in covariates are not allowed. Records with 
missing values in the survey sample are removed.  
            The complete cases are reweighted. Missing completely at 
random is assumed.") 
  } 
  m = dim(chtsamp_sub)[1] # size of cohort (complete cases) 
  n = dim(svysamp_sub)[1] # size of survey sample (complete cases) 
   
  # Combine the two complete samples 
  chtsamp_sub[,rsp_name] = 1; svysamp_sub[,rsp_name] = 0 
  names(chtsamp_sub) = c(mtch_var, rsp_name) 
  names(svysamp_sub) = c(mtch_var, rsp_name) 
  psa_dat = rbind(chtsamp_sub, svysamp_sub) 
  
  # Fit logistic regression model to predict propensity scores 
  svyds = svydesign(ids =~1, weight = rep(1, m+n), data = psa_dat) 
  lgtreg = svyglm(Formula, family = binomial, design = svyds) 
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  # regression coefficients of the propensity model fitted to the 
unweighted sample 
  beta = summary(lgtreg)$coeff[, 1] 
  p_score = lgtreg$fitted.values 
  # Propensity scores for the cohort 
  p_score.c = p_score[psa_dat[,rsp_name]==1] 
  # Propensity scores for the survey sample 
  p_score.s = p_score[psa_dat[,rsp_name]==0] 
   
  # Fit logistic regression model to predict propensity scores (with 
weights) 
  psa_dat$wt_cmb = c(rep(1, m), svy_wt.vec) 
  ds = svydesign(ids=~1, weight = ~ wt_cmb, data = psa_dat) 
  lgtreg.w = svyglm(Formula, family = binomial, design = ds) 
  p_score.w = lgtreg.w$fitted.values 
  p_score.w.c = p_score.w[psa_dat[,rsp_name]==1] 
  # regression coefficients of the propensity model fitted to the 
weighted sample 
  beta.w = summary(lgtreg.w)$coeff[, 1] 
  ################## Calculate pseudo weights ######################## 
  # calculate IPSW weights 
  ipsw = ipsw.wt(p_score.c = p_score.w.c, svy.wt = svy_wt.vec) 
  # calculate PSAS weights 
  psas = psas.wt(p_score.c = p_score.c, p_score.s = p_score.s, svy.wt = 
svy_wt.vec, nclass = 5)$pswt 
  # calculate KW weights 
  kw_out = kw.wt(p_score.c = p_score.c, p_score.s = p_score.s, svy.wt = 
svy_wt.vec, Large=F) 
  kw = kw_out$pswt; h = kw_out$h 
  chtsamp_adj = cbind(chtsamp, ipsw = ipsw, psas = psas, kw = kw)   
   
  return(list(chtsamp_adj = chtsamp_adj, h       = h,  
              beta   = beta,beta.w = beta.w,  
              p_dat   = data.frame(p   = p_score, 
                                   trt = psa_dat[,rsp_name]), 
              p.w_dat = data.frame(p   = p_score.w,  
                                   trt = psa_dat[,rsp_name])))   
}# end simu_fun_c3 
 
 
###################################################################### 
# FUNCTION ipsw.wt is a function calculating pseudo weights using    # 
#           IPSW method                                              # 
# INPUT:                                                             # 
#  p_score.c: predicted propensity score for cohort                  # 
#  svy.wt:    a vector of survey weights                             # 
# OUTPUT: pswt      - IPSW pseudo weights                           # 
###################################################################### 
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ipsw.wt = function(p_score.c, svy.wt){ 
  pswt = as.vector((1-p_score.c)/p_score.c) 
  pswt/sum(pswt)*sum(svy.wt)} 
###################################################################### 
# FUNCTION psas.wt is a function calculating pseudo weights using    # 
#          PSAS methods                                              # 
# INPUT:                                                             # 
#  p_score.c: predicted propensity score for cohort                  # 
#  p_score.s: predicted propensity score for survey                  # 
#  svy.wt:    a vector of survey weights                             # 
#  nclass:    number of subclasses (by percentiles) for sample       # 
#  division                                                          # 
# OUTPUT                                                             # 
#  pswt:   PSAS pseudo weights                                       # 
#  nclass: actual number of subclasses used (empty classes will be   # 
#  combined)                                                         # 
# WARNINGS:                                                          # 
#  If fewer than 2 cohort units in one or more subclasses            # 
#  "Extreme weights may occur due to limited number(<=2) of cohort   # 
#   units in some cells"                                             # 
#  If there are subclasses including no cohort units                 # 
#  "Empty subclasses were combined with the neighbor subclass."      # 
###################################################################### 
psas.wt = function(p_score.c, p_score.s, svy.wt, nclass){ 
  nclass0 = nclass 
  m = length(p_score.c); n = length(p_score.s) 
  p_score = c(p_score.c, p_score.s); trt = c(rep(1, m), rep(0, n)) 
  p_score.q = quantile(p_score, prob = seq(0, 1, length = (nclass+1))) 
  p_score.q.u = unique(p_score.q) 
  nclass = length(p_score.q.u)-1   
  subclass = cut(p_score, breaks = p_score.q.u, include.lowest = TRUE)   
  levels(subclass) = c(1: nclass) 
  nclass.c = length(unique(subclass[trt==1])) 
  nclass.s = length(unique(subclass[trt==0])) 
  while (nclass.c!= nclass.s){ 
    nclass = min(nclass.c, nclass.s) 
    p_score.q = quantile(p_score,  
                         prob = seq(0, 1, length = (nclass+1))) 
    p_score.q.u = unique(p_score.q) 
    nclass = length(p_score.q.u)-1   
    subclass = cut(p_score, breaks = p_score.q.u,  
                   include.lowest = TRUE)   
    levels(subclass) = c(1: nclass) 
    nclass.c = length(unique(subclass[trt==1])) 
    nclass.s = length(unique(subclass[trt==0]))} 
  p_score_dat = data.frame(id = c(1:m), subclass = subclass[trt==1]) 
  p_score_dat = p_score_dat[order(p_score_dat$subclass),] 
  # Assign pseudo weights to the cohort units 
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  svy_N = aggregate(svy.wt, by=list(subclass[trt==0]), FUN = sum)[,2] 
  cht_n = aggregate(rep(1, m), by=list(subclass[trt==1]),  
                    FUN = sum)[,2] 
  if(sum(cht_n<=2)>0) warning("Extreme weights may occur due to limited 
number(<=2) of cohort units in some cells") 
  if(nclass<nclass0) warning("Empty cells were combined with the 
neighbor cells.") 
  wt_f  = svy_N/cht_n 
  pswt = rep(wt_f, cht_n) 
  p_score_dat$pswt = rep(wt_f, cht_n) 
  p_score_dat = p_score_dat[order(p_score_dat$id),] 
  return(list(pswt = p_score_dat$pswt, nclass = nclass)) 
}# end psas.wt 
 
###################################################################### 
# FUNCTION kw.wt is a function calculating pseudo weights using KW   # 
#  methods                                                           # 
# INPUT                                                              # 
#  p_score.c: propensity score for cohort                            # 
#  p_score.s: propensity score for survey                            # 
#  svy.wt:    a vector of survey weights                             # 
#  h:         bandwidth parameter (will be calculated corresponding  # 
#             to kernel function if h is NULL).                      # 
#  krnfun:    kernel function                                        # 
#             "triang" -triangular density on (-3, 3)                # 
#             "dnorm"  -standard normal density                      # 
#             "dnorm_t"-truncated standard normal densigy on (-3, 3) # 
#  Large:     if the cohort size is so large that it has to be       # 
#             divided into pieces                                    # 
#  rm.s:      removing unmatched survey units or not.                # 
#             Default is FALSE                                       # 
# OUTPUT                                                             # 
#  psd.wt:   KW pseudo weights                                       # 
#  delt.svy: number of unmatched survey sample units                 # 
## WARNINGS                                                          # 
#  If there are unmatched survey sample units, the program gives     # 
#  "The input bandwidth h is too small. Please choose a larger one!" # 
#  If rm.s=T, the program deletes unmatched survey sample units, and # 
#  gives "records in the prob sample were not used because of a small# 
#  bandwidth"   ## 
#  If rm.s=F, the program evenly distribute weights of unmatched     # 
#  survey sample units to all cohot units.                           # 
###################################################################### 
kw.wt = function(p_score.c, p_score.s, svy.wt, h=NULL, mtch_v = NULL, 
krn="triang", Large = F, rm.s = F){ 
  # get the name of kernel function 
  # calculate bandwidth according to the kernel function 
  #triangular density 
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  if(is.null(h)){ 
  if(krn=="triang")h = bw.nrd0(p_score.c)/0.9*0.8586768 
  if(krn=="dnorm"|krn=="dnorm_t")h = bw.nrd0(p_score.c)    
  } 
  krnfun = get(krn) 
  # create signed distance matrix     
  m = length(p_score.c); n = length(p_score.s) 
    if (Large == F){ 
    sgn_dist_mtx = outer(p_score.s, p_score.c, FUN = "-") 
    krn_num = krnfun(sgn_dist_mtx/h) 
    if(is.null(mtch_v)){ 
      adj_m = 1 
    }else{adj_m=outer(mtch_v[1:n], mtch_v[(n+1):(n+m)], FUN='==')} 
    krn_num = krn_num*adj_m; row.krn = rowSums(krn_num) 
    sum_0.s = (row.krn==0); delt.svy = sum(sum_0.s) 
    if(delt.svy>0){ 
      warning('The input bandwidth h is too small. Please choose a 
larger one!') 
      if(rm.s == T){ 
        warning(paste(sum(sum_0.s), "records in the prob sample were 
not used because of a small bandwidth")) 
        row.krn[sum_0.s]=1}else{ 
        krn_num[sum_0.s,]= 1; row.krn[sum_0.s] = m}} 
    row.krn = rowSums(krn_num); krn = krn_num/row.krn 
    # Final pseudo weights 
    pswt_mtx = krn*svy.wt; psd.wt = colSums(pswt_mtx)}else{ 
    psd.wt = rep(0, m); grp_size =  floor(n/50) 
    up = c(seq(0, n, grp_size)[2:50], n); lw = seq(1, n, grp_size)[-51] 
    delt.svy = 0 
    for(g in 1:50){ 
      sgn_dist_mtx = outer(p_score.s[lw[g]:up[g]], p_score.c,  
                           FUN = "-") 
      krn_num = krnfun(sgn_dist_mtx/h) 
      if(is.null(mtch_v)){ 
        adj_m = 1}else{ 
      adj_m=outer(mtch_v[lw[g]:up[g]], mtch_v[(n+1):(n+m)], FUN='==')} 
      krn_num = krn_num*adj_m; row.krn = rowSums(krn_num) 
      sum_0.s = (row.krn==0); delt.svy = delt.svy + (sum(sum_0.s)>0) 
      if((sum(sum_0.s)>0)){ 
        warning('The input bandwidth h is too small. Please choose a 
larger one!') 
        if(rm.s == T){ 
          warning(paste(sum(sum_0.s), "records in the prob sample were 
not used because of a small bandwidth")) 
          row.krn[sum_0.s]=1}else{ 
          krn_num[sum_0.s,]= 1; row.krn[sum_0.s] = m}} 
      row.krn = rowSums(krn_num); krn = krn_num/row.krn 
      # Final psuedo weights 
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      pswt_mtx = krn*svy.wt[lw[g]:up[g]] 
      psd.wt = colSums(pswt_mtx) + psd.wt}} 
  return(list(pswt = psd.wt, delt.svy = delt.svy, h = h)) 
} # end of kw.wt 
 
####################################################################### 
# FUNCTION samp.slct is a function to select a sample                 # 
# INPUT:                                                              # 
#  seed:     random seed that enables replication                     # 
#  fnt.pop:  the finite population                                    # 
#  n:        sample size                                              # 
#  Cluster:  total number of clusters in the finite population        # 
#  Clt.samp: number of clusters to be selected in the sample          # 
#  dsgn:     sampling designs (e.g., pps)                             # 
#  size:     MOS for the second stage                                 # 
#  size.I:   MOS for the first stage (default NULL)                   # 
# OUTPUT: a dataset of the sampled individuals including variables in # 
#         fnt.pop and the sample weight (wt)                          # 
####################################################################### 
samp.slct = function(seed, fnt.pop, n, Cluster=NULL, Clt.samp=NULL,  
                     dsgn, size = NULL, size.I = NULL){ 
  set.seed(seed); N = nrow(fnt.pop); size.Cluster = N/Cluster 
  # one-ste sample design 
  if(dsgn=="pps"){ fnt.pop$x=size; samp = sam.pps(fnt.pop,size, n)} 
  if(dsgn == "pps-pps"){ 
    # MOS for the second stage 
    fnt.pop$x = size                
    # First stage: select clusters by pps  
    index.psuI = sam.pps(matrix(1:Cluster,,1),size.I, Clt.samp) 
    index.psuI = index.psuI[order(index.psuI[,1]),]  #sort selected 
psus 
    sample.I = fnt.pop[fnt.pop$psu %in% index.psuI[,1],] 
    sample.I$wt.I = rep(index.psuI[,'wt'],each=size.Cluster) 
    # Second stage: select individuals within selected psus by pps  
    samp=NULL 
    for (i in 1: Clt.samp){ 
      popn.psu.i= sample.I[sample.I$psu==index.psuI[i,1],] 
      size.II.i = sample.I[sample.I$psu==index.psuI[i,1],"x"] 
      samp.i = sam.pps(popn.psu.i,size.II.i, n/Clt.samp) 
      samp.i$wt = samp.i$wt*samp.i$wt.I 
      samp = rbind(samp,samp.i)}} 
  rownames(samp) = as.character(1:dim(samp)[1]) 
  return(samp)} # end FUNCTION samp.slct 
###################################################################### 
# FUNCTION sam.pps is a subfunction of samp.slct to select a sample  # 
#          under pps sampling                                        # 
# INPUT:                                                             # 
#  popul: the population including response and covariates           # 
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#  MSize: MOS                                                        # 
#  n:     the sample size                                            # 
# OUTPUT: dataset of the selected sample with all variables in fnt.pop 
#          and sample weight (wt)                                    # 
###################################################################### 
sam.pps<-function(popul,Msize, n){ 
  N=nrow(popul); pps.samID=sample(N,n,replace=F,prob=Msize) 
  if (dim(popul)[2] == 1){ 
    sam.pps.data=as.data.frame(popul[pps.samID,]) 
    names(sam.pps.data) = names(popul) 
  }else{sam.pps.data=popul[pps.samID,]} 
  sam.pps.data$wt=sum(Msize)/n/Msize[pps.samID]                
  return(sam.pps = sam.pps.data)} # End FUNCTION sam.pps 
 
# Function rbern is to generate n random numbers following  
# Bernouli(1, prob) 
rbern <- function(n,prob){ 
  x <- runif(n,min = 0,max = 1); x.bern <- ifelse(x <= prob,1,0) 
  return(x.bern)} 
 
# Function getY is to generate disease status fnt.y in the finite  
#               population 
getY <- function(thetas, design.x, ICCy,Cluster, clustersize) 
{ 
  dim(thetas) <- c(length(thetas), 1)   #make it matrix of ncol=1 
  imd <- exp( design.x %*% thetas) 
  N <- nrow(design.x); p <- imd/(1+imd) #Pr(y=1|D,E) 
   
  if (ICCy==0) y <- ifelse(runif(N)<=p,1,0) 
  if (ICCy!=0){ 
    ei0 <- rep(rnorm(Cluster),each=clustersize) 
    eij <- rnorm(N); Uij <- rbern(N,sqrt(ICCy)) 
    thetaij <- qnorm(p); threshold <- Uij*ei0 + (1-Uij)*eij 
    y <- ifelse(threshold <= thetaij,1,0)} 
  return(list(y=y, py=p))} 
 
# Kernel functions 
# Triangular Density 
triang = function(x){ x[abs(x)>3]=3; 1/3-abs(x)/3^2} 
# Normal density with mean 0 standard deviation 3 
dnorm_3 = function(x) dnorm(x, sd=3) 
# Truncated standard Normal density  
dnorm_t = function(x){ 
  c = integrate(dnorm, -3, 3)$value; y=dnorm(x)/c;  
  y[y<=dnorm(3)/c]=0; y} 
 
###################################################################### 
# FUNCTION JRR_var is a function to calcualte JK variances for       # 
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#          simulations in Chapter 3                                  # 
# INPUT                                                              # 
#  chtsamp: dataframe of cohort                                      # 
#  svysamp: dataframe of survey sample                               # 
#  svy_wt:  vector of survey sample weight                           # 
#  psu:     name of psu variable in the survey or cohort sample      # 
#  Formula: Fitted propensity model                                  # 
#  resp:    name of response variable in the propensity model        # 
#  h_in:    given bandwidth for KW method (default is NULL)          # 
#  krnfun:  kernel function for KW method (default is dnorm)         # 
#  rm.s:    whether removing unmatched survey sample units (default  # 
#           is F)                                                    # 
# OUTPUT theta - JK replicate estimates using IPSW, PSAS, and KW     # 
###################################################################### 
JRR_var = function(chtsamp,svysamp,svy_wt, psu, Formula,  
                   resp, h_in = NULL, krn = "dnorm", rm.s = F){ 
  krn <<- krn; rm.s <<- rm.s; h_in <<- h_in 
  # Get names of the response variable and covariates for the 
propensity score estimation model 
  Fml_names = all.vars(Formula) 
  rsp_name = Fml_names[1]  # response variable 
  mtch_var = Fml_names[-1] #covariates 
  # Remove incomplete records in the cohort, if there are any.    
  chtsamp_sub = as.data.frame(chtsamp[, c(mtch_var, resp)]) 
  if(sum(is.na(chtsamp_sub))>0){ 
    cmplt.indx = complete.cases(chtsamp_sub) 
    chtsamp_sub = chtsamp_sub[cmplt.indx, ] 
    chtsamp = chtsamp[cmplt.indx,] 
    warning("Missing values in covariates are not allowed. Records with 
missing values in the cohort are removed.")}  
  # Remove incomplete survey sample, if there are any. 
  svysamp_sub = as.data.frame(svysamp[, c(mtch_var, resp)]) 
  svy_wt.vec = c(svysamp[, svy_wt]) 
  if(sum(is.na(svysamp_sub))>0){ 
    cmplt.indx = complete.cases(svysamp_sub) 
    svysamp_sub = svysamp_sub[cmplt.indx, ] 
    svysamp = svysamp[cmplt.indx,] 
    svy_wt.vec = sum(svysamp[, svy_wt])/sum(svy_wt.vec[cmplt.indx])* 
                                            svy_wt.vec[cmplt.indx] 
    warning("Missing values in covariates are not allowed. Records with 
missing values in the survey sample are removed.  
            The complete cases are reweighted. Missing completely at 
random is assumed.")} 
  m = dim(chtsamp_sub)[1] # size of cohort (complete cases) 
  n = dim(svysamp_sub)[1] # size of survey sample (complete cases) 
   
  # number of clusters in the cohort  
  uni_psu.c = unique(chtsamp[,psu]); m_psu = length(uni_psu.c) 
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  # number of clusters in the survey sample 
  uni_psu.s = unique(svysamp[,psu]); n_psu = length(uni_psu.s) 
  # total number of clusters in the combined sample 
  tot_psu = m_psu + n_psu 
  theta_jk = matrix(0, 3, tot_psu) 
  rownames(theta_jk) = c("ipsw", "psas", "kw") 
  h_sil = h_in   
  for (k in 1:m_psu){ 
    # remove one psu at each replicate 
    chtsamp.k = chtsamp_sub[chtsamp[,psu]!=uni_psu.c[k],] 
    m.k = dim(chtsamp.k)[1] # size of the remainder in the cohort 
    # Combine the two complete samples 
    chtsamp.k[,rsp_name] = 1; svysamp_sub[,rsp_name] = 0 
    names(chtsamp.k)   = c(mtch_var, resp, rsp_name) 
    names(svysamp_sub) = c(mtch_var, resp, rsp_name) 
    psa_dat = rbind(chtsamp.k, svysamp_sub) 
    # Fit logistic regression model to predict propensity scores 
    svyds = svydesign(ids =~1, weight = c(rep(m_psu/(m_psu-1), m.k),  
                                          rep(1, n)),  
                      data = psa_dat) 
    lgtreg = svyglm(Formula, family = binomial, design = svyds) 
    p_score = lgtreg$fitted.values 
    # Propensity scores for the cohort 
    p_score.c = p_score[psa_dat[,rsp_name]==1] 
    # Propensity scores for the survey sample 
    p_score.s = p_score[psa_dat[,rsp_name]==0]     
    # Fit logistic regression model to predict propensity scores (with 
weights) 
    psa_dat$wt_cmb = c(rep(m_psu/(m_psu-1), m.k), svy_wt.vec) 
    ds = svydesign(ids=~1, weight = ~ wt_cmb, data = psa_dat) 
    lgtreg.w = svyglm(Formula, family = binomial, design = ds) 
    p_score.w = lgtreg.w$fitted.values 
    p_score.w.c = p_score.w[psa_dat[,rsp_name]==1] 
    ############### Calculate replicate pseudo weights ############### 
    # calculate IPSW weights 
    ipsw = ipsw.wt(p_score.c = p_score.w.c, svy.wt = svy_wt.vec) 
    # calculate PSAS weights 
    psas = psas.wt(p_score.c = p_score.c, p_score.s = p_score.s,  
                   svy.wt = svy_wt.vec, nclass = 5)$pswt 
    # calculate KW weights 
    kw = kw.wt(p_score.c = p_score.c, p_score.s = p_score.s,  
               svy.wt = svy_wt.vec, Large=F)$pswt    
    chtsamp_adj = cbind(chtsamp.k, ipsw = ipsw, psas = psas, kw = kw)   
    ################# Calculate replicate estimates ################## 
    theta_jk[1, k] = sum(chtsamp.k[,resp]*ipsw)/sum(ipsw) # IPSW 
    theta_jk[2, k] = sum(chtsamp.k[,resp]*psas)/sum(psas) # PSAS     
    theta_jk[3, k] = sum(chtsamp.k[,resp]*kw)/sum(kw)     # KW     
    #print(k)}   
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  for (k in 1:n_psu){ 
    # remove one psu at each replicate 
    svysamp.k = svysamp_sub[svysamp[,psu]!=uni_psu.s[k],] 
    # updated survey weights 
    svy_wt.vec.k = svy_wt.vec[svysamp[,psu]!=uni_psu.s[k]]* 
                   n_psu/(n_psu-1)     
    n.k = dim(svysamp.k)[1]    # size of the remainder in the survey 
    # Combine the two complete samples 
    chtsamp_sub[,rsp_name] = 1; svysamp.k  [,rsp_name] = 0 
    names(svysamp.k)   = c(mtch_var, resp, rsp_name) 
    names(chtsamp_sub) = c(mtch_var, resp, rsp_name) 
    psa_dat = rbind(svysamp.k, chtsamp_sub) 
    # Fit logistic regression model to predict propensity scores 
    svyds = svydesign(ids =~1, weight = c(rep(n_psu/(n_psu-1), n.k),  
                                          rep(1, m)),  
                      data = psa_dat) 
    lgtreg = svyglm(Formula, family = binomial, design = svyds) 
    p_score = lgtreg$fitted.values 
    # Propensity scores for the cohort 
    p_score.c = p_score[psa_dat[,rsp_name]==1] 
    # Propensity scores for the survey sample 
    p_score.s = p_score[psa_dat[,rsp_name]==0]     
    # Fit logistic regression model to predict propensity scores (with  
      weights) 
    psa_dat$wt_cmb = c(svy_wt.vec.k, rep(1, m)) 
    ds = svydesign(ids=~1, weight = ~ wt_cmb, data = psa_dat) 
    lgtreg.w = svyglm(Formula, family = binomial, design = ds) 
    p_score.w = lgtreg.w$fitted.values 
    p_score.w.c = p_score.w[psa_dat[,rsp_name]==1] 
    #################### Calculate pseudo weights #################### 
    # calculate IPSW weights 
    ipsw = ipsw.wt(p_score.c = p_score.w.c, svy.wt = svy_wt.vec.k) 
    # calculate PSAS weights 
    psas = psas.wt(p_score.c = p_score.c, p_score.s = p_score.s,  
                   svy.wt = svy_wt.vec.k, nclass = 5)$pswt 
    # calculate KW weights 
    kw = kw.wt(p_score.c = p_score.c, p_score.s = p_score.s,  
                           svy.wt = svy_wt.vec.k, Large=F)$pswt    
    ################# Calculate replicate estimates ################## 
    # IPSW 
    theta_jk[1, (k+m_psu)] = sum(ipsw* chtsamp_sub[,resp])/sum(ipsw)  
    # PSAS 
    theta_jk[2, (k+m_psu)] = sum(psas* chtsamp_sub[,resp])/sum(psas)  
    # KW 
    theta_jk[3, (k+m_psu)] = sum(kw* chtsamp_sub[,resp])/sum(kw)      
    #print(k+m_psu)     
  }   
  return(list(theta = theta_jk))}#End FUNCTION JRR_var
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