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Rendering volumetric data, as a compute/communication intensive and highly

parallel application, represents the characteristics of future workloads for desktop

computers. Interactively rendering volumetric data has been a challenging problem

due to its high computational and communication requirements. With the consis-

tent trend toward high resolution data, it has remained a difficult problem despite

the continuous increase in processing power, because of the increasing performance

gap between computation and communication. On the other hand, the new multi-

core architecture trend in computational units in PC, which can be characterized by

parallelism and heterogeneity, provides both opportunities and challenges. While

the new on-chip parallel architectures offer opportunities for extremely high per-

formance, widespread use of those parallel processors requires extensive changes in

previous algorithms to take advantage of the new architectures.

In this dissertation, we develop new methods and techniques to support inter-

active rendering of large volumetric data. In particular, we present a novel method

to layout data on disk for efficiently performing an out-of-core axis-aligned slicing



of large multidimensional scalar fields. We also present a new method to efficiently

build an out-of-core indexing structure for n-dimensional volumetric data. Then,

we describe a streaming model for efficiently implementing volume ray casting on a

heterogeneous compute resource environment. We describe how we implement the

model on SONY/TOSHIBA/IBM Cell Broadband Engine and on NVIDIA CUDA

architecture. Our results show that our out-of-core techniques significantly reduce

the communication bandwidth requirements and that our streaming model very

effectively makes use of the strengths of those heterogeneous parallel compute re-

source environment for volume rendering. In all cases, we achieve scalability and

load balancing, while hiding memory latency.
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Chapter 1

Introduction

Rendering volumetric data visually is one of the best ways to explore volumet-

ric data [HJ05], and it is critical to be able to do it “interactively”. The rendering

process is essentially a mapping from an n-dimensional data set to a 2-dimensional

screen, which entails dealing with occlusion problems because n is typically higher

than 2. To investigate the occluded parts of the data, we need to perform some

operations such as rotating the volumetric data, zooming in and out, and changing

some transparency parameters. We should be able to perform such operations “in-

teractively” for two reasons. First, the number of possible combinations of viewing

conditions is too large, thus we can not generate all the images off-line. Second,

even if such an approach is possible, it is not the best way for humans to explore

data sets because the sequential video automatically generated by some rules can

never match humans’ intelligent way of investigation.

However, interactively rendering volumetric data is a very challenging problem

due to its high demands on computation and communication requirements. For

example, rendering a volumetric data of 10243 size at 30 frames per second will

require 30 GBytes/sec memory bandwidth and about 3 Teraflops, assuming that

roughly 100 instructions are needed per voxel for projection. Compared with these

1



requirements, the latest desktop computer using Intel Core 2 Duo processor is rated

at around 100MBytes/sec maximum disk transfer rate and 8GBytes/sec memory

bandwidth with around 25 GFLOPS computing power at peak performance, which

obviously falls far short of the required performance.

On the other hand, there is a consistent trend in science, engineering, and

medicine toward increasingly generating higher resolution data as computing power

steadily increases and sensor and imaging instruments get more refined. High res-

olution data sets are often generated and stored as volumetric data of 3-D, 4-D or

even higher dimension. For example, scientists and engineers often study physical

phenomena by simulating their mathematical models on supercomputers, thereby

generating time-varying volumetric data sets of sizes ranging from hundreds of gi-

gabytes to tens of terabytes. Biomedical equipments such as CT, MRI, and 3-D

confocal microscopy are now capable of providing very high resolution 3-D or 4-D

volumetric data. Higher resolution data facilitate the understanding and analysis

of complex phenomena that scientists, engineers, or medical practitioners are inter-

ested in investigating, and can lead to new important scientific discoveries which

were not possible before.

However, this trend makes it harder to achieve interactive rendering. The

reason is that the computational power and memory bandwidth are evolving at dif-

ferent rates. Although the number of transistors on chip has been doubling every

18 months, memory bandwidth has not increased at this rate and the gap is in fact

widening. Therefore, in the situation that the data size generated increases accord-

ing to computational power increase rate, computer systems would not be able to
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match the performance required for rendering the data because rendering volumet-

ric data requires high performance combining computational power and memory

bandwidth. Thus, it has become critical to develop techniques for reducing memory

bandwidth requirements in order to enable rendering of larger volumetric data.

On the other hand, current trends in PC architectures can be characterized

by parallelism and heterogeneity. First, multi-core CPUs have replaced single core

CPUs. The Intel Pentium 4 line has been replaced by Core 2 Duo and Core 2

Quad processors. Intel plans to ship even 80-core chips, which can perform a trillion

instructions per second in peak performance. These multi-core CPUs may provide

task-parallelism that is very difficult to get from GPUs.

Second, the programmable GPUs are rapidly evolving. For example, the latest

nVIDIA 8800 GTX is capable of around 345 GFLOPS peak performance and 86.4

GBytes/sec maximum bandwidth to graphics memory, which is about an order of

magnitude superior to the latest CPUs. With the computation power doubling every

year, they now offer a much more flexible memory and programming model, making

it an increasingly attractive choice for running general purpose compute-intensive

applications.

The heterogeneous and parallel computing architecture began to appear on

gaming processors. For example, Cell processors, which are shipped with Sony’s

new PlayStation 3 game console, are composed of one ‘Power Processor Element’

(PPE) which is a conventional CPU (a variant of IBM PowerPC) and multiple

‘Synergistic Processing Elements’ (SPE) that are SIMD-type simple cores. The

PPE and SPEs are linked together by an internal high speed bus having a theoretical
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peak bandwidth of 204.8 GBytes/sec. Microsoft’s XBox 360 uses an unified memory

architecture in which a CPU and GPU share the memory providing ∼ 20 GBytes/sec

memory bandwidth. Both architectures can achieve very high peak computational

performance (∼ 200 GFLOPS). We will see more and more heterogeneous parallel

compute resources combined together, each exploiting a different type of parallelism.

Programming the heterogeneous parallel PC architecture in which different

types of many-cores are working together provides significant technical challenges.

For several decades, we have been enjoying performance increase simply by scaling

frequency. Thus, without any algorithmic change in our applications, we could

get performance increases simply by upgrading to newer CPUs. However, as chip

makers decide to go toward parallel architectures, it has become almost impossible

to increase sequential algorithm performance. Now almost every algorithm has to

be changed to make use of the parallel architecture, which requires fundamental

algorithmic changes.

Moreover, programmers now have to deal with heterogeneous cores. Conven-

tional CPUs are designed to perform well in a type of program where each data

may be processed differently, and thus the memory system is optimized to provide

low latency to each operation with the help of multi-layered caches. On the other

hand, GPUs are designed to achieve the maximum performance in data-parallel pro-

cessing, in which homogeneous computation is applied to each element of the data,

and the memory systems are more optimized to provide high throughput rather

than low latency. Designing new parallel algorithms that make the best use of the

heterogeneous parallel architectures is a challenging problem although it provides
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new opportunities for applications such as volume rendering that demands high

computational power.

1.1 Contribution

This dissertation makes several contributions to the areas of out-of-core data

management and parallel graphics.

• Out-of-Core Data Management

1. We provide a new efficient data layout scheme for an out-of-core axis-

aligned slicing of large multidimensional scalar fields. We show that the

typical Z-order or Hilbert-Peano order is not optimal for the axis-aligned

slicing queries and introduce a novel component-based layout scheme pro-

viding more efficiency in a specialized problem domain, in which it is only

required to provide fast slicing at every k-th value, k > 1. The features

of our component-based data layout scheme are the following. First, it

provides much faster processing time for any type of axis-aligned slicing

queries at every k-th value, k > 1. Second, it does not duplicate data.

Last, the data layout can be generalized to any high dimension.

2. We provide a new multidimensional indexing structure - Information-

Aware (IA) 2n tree - that can provide higher indexing structure efficiency

than previous methods. While a typical 2n tree recursively subdivides the

n-D volume into 2n almost equal subvolumes, our IA-2n tree determines
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the dimensions of the subvolume based on the information embedded

in the data so that subvolumes can be as coherent as possible along

each dimension. Our IA-2n tree is particularly useful when dealing with

temporal volumetric data. The benefit of our IA-2n tree is the reduced

amount of time for both tree traversal and data reads, given the same re-

quirement on indexing structure size. We compare our tree with the best

previous indexing structure, and achieve almost an order of magnitude

higher indexing structure efficiency.

• Parallel Graphics

1. We present a streaming model based efficient parallel implementation of

volume ray casting on the Cell processor. In particular, we achieve an op-

timized implementation of two main acceleration techniques for volume

ray casting [Lev90] - empty space skipping and early ray termination -

on the heterogeneous multi-core processor. Our streaming model based

scheme provides the following two key benefits. First, we essentially re-

move the overhead caused by traversing the hierarchical data structure by

overlapping the empty space skipping process with the actual rendering

process. Second, using prefetching, we essentially remove memory access

latency, which has been the main performance degradation factor that is

due to the irregular data access patterns. In addition to these two key

benefits, we can also achieve better SIMD utilization in the SPEs because

the SPEs know the sampling voxels to process in advance and thus they

6



can pack them into SIMD operations.

2. We present a streaming model based volume ray casting scheme for the

nVIDIA CUDA architecture. We extend the streaming model used on

the Cell processor to the PC environment where CPU and GPU are col-

laborating for volume ray casting. We show that our model essentially

removes the tree traversal optimization overhead. Also, we compare the

results against those achieved on the Cell processor and Intel Xeon pro-

cessor.

1.2 Outline

We begin the dissertation by reviewing related work in Chapter 2, covering

three categories: rendering, representation and parallelization. In Chapter 3, we

describe our new data layout scheme for an out-of-core axis-aligned slicing of large

multidimensional scalar fields. We then describe our new multidimensional index-

ing structure which can provide higher indexing structure efficiency than previous

methods in Chapter 4. In Chapter 5, we start with the introduction of the Cell

processor and describe our streaming model based parallel volume ray casting algo-

rithms for the multi-core processor. We then describe how we apply the model to

the CUDA architecture in Chapter 6. The CUDA architecture is also introduced at

the beginning of the chapter. Finally, we reiterate our contributions and conclude

this dissertation in chapter 7.
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Chapter 2

Related Work

Rendering large 3-D/4-D volumetric data efficiently can be handled in three

principal ways: the acceleration of the rendering computation, compact representa-

tion of volumetric data, and parallelization. While rendering is about how to make a

meaningful image from the 3-D/4-D data, representation is concerned with reducing

the amount of data that flows through the rendering pipeline so that the data set

can be efficiently managed with available computing resources. Compression and

multiresolution techniques are typically employed for that purpose. Due to the fast

growing size of volumetric data sets, parallel rendering has also become a necessary

step to achieve interactive frame rates and to implement a scalable rendering sys-

tem. In this chapter, we review known major techniques to handle each of the areas

mentioned above.

2.1 Rendering

In this dissertation, we are primarily interested in visualizing 3-D/4-D scalar

fields, which represents the most common type of volumetric data. Visualizing

fields can typically be done at low-level by voxel-based techniques, where no human

knowledge is incorporated into the target of the visualization and visualization is
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based only on the voxel values. However, visualizing fields can also be done at a

higher level by feature-based techniques. In feature-based techniques, features based

on domain knowledge are extracted, tracked and visualized [PVH+03].

There are generally two different approaches for visualizing 3-D discretely sam-

pled data sets using the voxel-based techniques: isosurface rendering and volume

rendering. In isosurface rendering, we typically generate an explicit geometric rep-

resentation of the surface defined by a certain density value, using a polygonal mesh

to approximate the surface [LC87]. The polygonal mesh is rendered using a graphics

hardware. In volume rendering, every sample value is initially mapped to an opacity

and a color, which is typically done using a 1-D transfer function that can be a simple

ramp, a piecewise linear function, or more complicated interpolation functions. The

color and opacity values are then composited in one of several ways. Ray casting

[Lev90], splatting [Wes90], shear-warping [LL94] and texture mapping [WE98] are

the most representative techniques for creating the final image. Volume rendering is

a powerful technique that enables an understanding of spatial relationships between

different structures embedded in the 3-D space.

2.1.1 Isosurface Rendering

An isosurface can be defined as the set of 3-D points satisfying f(x,y,z)= α,

for some density value α, called isovalue. Lorensen and Cline’s Marching Cubes

algorithm [LC87] has been the most widely used strategy for extracting the polygonal

approximation of an isosurface. This algorithm uses a case table of edge intersections
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to describe how a surface cuts through each cube in a 3D data set. Since the

introduction of this strategy, a variety of more efficient algorithms have appeared in

the literature, which either use geometric partitioning such as the octree [WG92], or

use value space partitioning such as the span space [LSJ96, SHLJ96] and the interval

tree [CMM+97], or take a hybrid approach such as the seed propagation technique

[BPS96]. These algorithms use various types of indexing structures to avoid the

exhaustive volume scan in the marching cubes algorithm. Sutton et al. [SHS*99]

provides a detailed review and performance comparison of isosurfacing algorithms

on 3-D scalar fields. Note that isosurface visualization can also be achieved by ray

casting, in which no explicit geometric representation is extracted [PSL+98, Shi05,

WFM+05]

In the following, we review known techniques for visualizing 4-D (time-varying

3-D) scalar fields in more detail, grouping them into two different categories de-

pending on how they deal with the temporal dimension. In 3-D+time approach,

the fourth temporal dimension is treated as a special dimension, while in the 4-D

approach, time is treated just as another dimension.

3-D+Time Approach: In this approach, research has primarily focused on

how to extend the existing indexing structures for static data sets to time-varying

data sets while trying to reduce the size of the structure by exploiting temporal

coherence, and on how to use out-of-core techniques to deal with the inherently

large size of time-varying data sets.

Sutton and Hansen [SH00] present Temporal Branch-On-Need tree (T-BON)

in which they build a Branch-On-Need-Octree (BONO) [WG92] at each time step,
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storing general structure of the trees in a single file and achieve speed-up by using the

demand-driven paging [CE97] against the in-memory version of the BONO. BONO

is a space-efficient octree when the dimensions of a volume are not necessarily power

of two. In BONO, each lower subdivision covers the largest power of two instead of

exact half, and each node stores the minimum and maximum values of the subvolume

covered by the node. As noted in [SH00], this indexing structure does not capture

the temporal coherence, and thus its size increases linearly with the number of time

steps. Shen [She98] proposes a Temporal Hierarchical Index Tree as an extension of

the span space structure [SHLJ96] for time-varying fields. In this method, a binary

tree is built over the entire time domain, and cells (basic cubic units in a volume) that

have a small amount of variation over time are placed in the root node of the tree that

covers the entire time span while cells with a larger variation are placed in multiple

nodes of the tree multiple times, each for a short time span. They organize the cells

at each node using the span space structure [SHLJ96]. Chiang [Chi03] proposes an

out-of-core version of the hierarchical temporal tree, by incorporating an out-of-core

version of the interval tree indexing structure. He builds a time hierarchy to store the

metacells (clusters of cells) whose field values are close enough to each other for the

corresponding time interval and used the Binary-Blocked-I/O interval tree (BBIO)

[CSS98] as a secondary structure to support I/O optimal interval searches. Bajaj

et al. [BSS02] extend their seed set propagation techniques [BPS96] to deal with

time-varying data sets. In their method, the isosurface at time t is not extracted

from scratch, but refined from the isosurface at t − 1 using two steps: temporal

propagation of old components and seed set generation of new components.
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4-D Approach: Some researchers treat the fourth temporal dimension in

the same way as the other dimensions and produced some results that are not pos-

sible in the 3-D+Time approach. A 4-D isosurface can be defined as the set of

points that satisfy f(x, y, z, t) = c, for a given isovalue c. The problem of extracting

linear approximations to 4-D isosurfaces from sampling over a structured grid was

addressed by Weigle and Banks [WB98] and Bhaniramka et al. [BWC04]. Weigle

and Banks [WB98] describe a recursive contour meshing strategy for n-dimensional

grids, involving the decomposition of the hypercubes into n-simplices, followed by

contouring these simplices into (n-1)-simplices to satisfy a given constraint, and

the process is repeated for additional constraints. This strategy is useful to gener-

ate an isosurface at a non-integer time step, but very computationally demanding.

Bhaniramka et al. [BWC04] present an algorithm for constructing isosurfaces in any

dimension. They extend the marching cubes algorithms to a n-dimensional regular

grid by presenting an algorithm that can automatically generate the look-up tables

for triangulation of isosurfaces in the n-dimensional regular grid. Their algorithm

leads to several useful applications involving interval volume and morphing. How-

ever, the approach of extracting isosurfaces in four-dimensional space and taking

only a slice defined by one or more constraints is computationally prohibitive for

large scale data.
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2.1.2 Volume Rendering

Volume rendering can be achieved in several ways depending on how the color

and opacity values of sampled points are projected onto a 2-D screen. However,

all methods can be viewed as approximations of the low-albedo volume rendering

integral [Kru90]. This technique analytically computes Iλ(x, r), the amount of light

of wavelength λ that is received at location x on the image along the ray direction

r :

Iλ(x, r) =
∫ L
0 Cλ(s)µ(s)e

−
∫ s

0
µ(t)dtds,

where Cλ is the light of wavelength λ emitted or reflected at location s in the

direction r, L is the length of ray r, and µ(s) is the density at the location, which

is used to account for the higher reflectance of particles with larger densities. The

light is attenuated by the densities between the eye and the locations according

to the exponential function. Practical volume rendering algorithms use discretized

versions of the equation [MHB+00]. In the following, we review four main volume

rendering techniques.

Ray Casting: Ray casting is generally known to produce the best quality

images although it is also known to be the most time-consuming technique. The

idea behind ray casting is to shoot rays from the view point (eye position), one per

pixel on the screen into a volume, sample scalar field values along each ray, map

each sampled value into a color and an opacity value based on a transfer function,

and accumulate the mapped values along each ray to generate the final pixel value

on the screen.
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Levoy [Lev90] proposed two optimization techniques: empty space skipping

and early ray termination. He used a complete binary octree to make rays ef-

ficiently skip empty space and also made each ray traversal terminate early if the

opacity value accumulates to a level where the color stabilizes. Yagel and Shi [YS93]

proposed another optimization technique using frame-to-frame coherency in volume

animation, where the same volumetric data set is rendered, but changing some ren-

dering parameters or object attributes such as transfer functions, light source posi-

tion and color, or a viewer’s position and viewing direction. Their method saves, at

each pixel on the screen, the coordinates of the first non-empty voxel encountered

by the ray emitted from that pixel, so that rays can start from the coordinates in

the next frame avoiding the repeated traversal of the empty space. This method is

especially useful when viewing parameters are fixed because a ray can jump to the

first non-empty voxel without traversing empty space, but can also be used when

the model rotates. In that case, the stored coordinates are first rotated according

to the model rotation and reprojected to new screen pixels. Some new rays need

to be cast from empty pixels after the reprojection. This space leaping method has

been improved by Wan et al. [WSK02] in several ways.

For time-varying volume, Shen and Johnson [SJ94] propose using data co-

herence between consecutive time steps to compress data and also to accelerate

sequential visualization of each time step given fixed viewing parameters. They

generate a differential file which contains information about the voxels that changed

their values from the previous time step and use it by casting rays only for the pix-

els on the screen corresponding to the changed voxels. They achieved a significant
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speed up for the volumetric data where the number of changed values is small.

Splatting: While ray casting is a backward mapping technique (also called

image-order algorithm) which maps the screen plane onto the data by casting rays

from screen pixels to the data, splatting [Wes90] is a forward mapping technique (also

called object-order algorithm) which maps the data onto the screen plane. In this

approach, the renderer has to determine the screen space contribution ( footprint

functions) of each sample point to the final image, the sampling of the footprint

function and the spreading of the sample’s contribution. Westover [Wes90] proposed

the use of a pre-computed footprint function table to build a view-transformed

footprint table for a particular view. In this method, the renderer performs the

reconstruction for all samples along the plane, called a sheet, most parallel to the

screen plane in the object space. When all the voxels in a sheet are processed, the

sheet is composited into the intermediate image. When all sheets are processed,

the working image becomes the final image. Forward mapping techniques have an

advantage of being less computationally demanding than ray casting.

Bajaj et al. [BPRS98] used the splatting technique for visualizing volumetric

data of any dimension by projecting n-Dimensional data to a 2-D plane. To achieve

efficiency, they adopt a 2n tree hierarchical representation for multiresolution display

and use 2-D texture mapping hardware to efficiently render each splat as a 2-D

textured polygon.

Neophytou and Mueller [NM02] used the splatting technique for time-varying

data visualization based on more efficient sampling grids. Their approach first slices

a 4-D scalar field by a 4-D hyperplane making a 3-D volume and render the volume
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using the splatting technique. The speed-up in rendering time was achieved by

using more efficient sampling grids called the Body Centered Cartesian (BCC) grid

which is a generalization of the hexagonal grid. Theoretically, the BCC grids can

save almost 30% of the samples in 3-D, which directly leads to the reduction of the

rendering time.

Shear Warp: Shear Warp [LL94] is a hybrid technique that combines the

advantages of the image-order (e.g. ray casting) and object-order algorithms (e.g.

splatting). This method first shears the volume to an intermediate coordinate system

in which all viewing rays are parallel to one of the coordinate axes. Then it projects

each slice of the sheared volume onto a 2-D intermediate image in front-to-back

order because interpolation coefficients are the same in all slices, and finally warps

the 2-D image to produce the final image. Lacroute and Levoy [LL94] propose

several optimization techniques for the shear warping rendering method. In their

method, the volume is rendered by marching through run-length-encoded volume

and image simultaneously in scanline order, where transparent voxels and opaque

pixels are efficiently skipped during this traversal. Traversing the volume in storage

order is the advantage of object-order algorithms, and early ray termination coming

from skipping opaque pixels on the working image is a clear advantage of image-

order algorithms. Although shear-warp method is known to be the fastest software

rendering method, it potentially has a disadvantage of producing aliasing as the

viewing angle gets close to 45 degrees relative to the slices of the data set because

it uses bilinear interpolation to re-sample the volumetric data instead of trilinear

interpolation in ray casting. Another drawback is that it requires three copies of
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the compressed volume to allow for front-to-back traversal in all viewing directions.

These drawbacks are addressed later by Sweeney and Mueller [SM02].

For time-varying volume, Anagnostou et al. [AAW00] propose several opti-

mization techniques. In their work, they assume that a great percentage of the

volume remains unchanged over time and seek to exploit the spatial and tempo-

ral coherence. For using the temporal coherence, they exploit a common property,

called partial ray compositing, which guarantees that we can always safely divide

a ray into two or more parts, separately composite each part of ray and generate

the final image by combining them. They divide the volume into slabs (thick slice)

along the viewing direction and re-render only slabs which have changed from the

previous time step. They expand the previous RLE-encoded volumetric data [LL94]

and make it easy to update the RLE-encoded data from the previous time step.

However, it has a drawback of consuming a large amount of memory space.

Texture Mapping: As texture mapping capability has become a part of

a standard graphics hardware, researchers began using the new capability for vol-

ume rendering [CCF94, CN94, WVW94]. Texture-mapped volume rendering makes

an image by projecting a set of texture-mapped polygons that span the whole vol-

ume. In 2-D texture-mapped volume rendering, the polygons are orthographic slices

along the most parallel axis to the viewing direction, and in 3-D texture-mapped

volume rendering, the polygons are a set of slices that are perpendicular to the

viewing directions. The difference between 2-D and 3-D texture mapping lies in

the sampling accuracy (e.g. bilinear vs. trilinear). Texture mapping based volume

rendering typically shows more artifacts than the software-based ray casting, which
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is mainly due to the fact that we can not make the sampling distance equal on all

rays in perspective projection using the texture mapping technique. Nevertheless,

the texture-mapping based volume rendering has enabled interactive frame rates for

a moderate-sized data, which was not possible with the software-based rendering

methods. The performance of texture-mapped volume rendering is limited mostly

by the transfer time between main memory and texture memory, and the input must

be streamlined if the entire volumetric data is larger than the texture memory size.

For time-varying rendering, Ellsworth et al. [ECS00] used the Time-Space-

Partitioning (TSP) tree [SCM99] to exploit spatial and temporal coherence with

the 3-D texture mapping hardware for rendering. They render regions that have

high spatial coherence using untextured, flat-shaded polygons freeing the associated

texture memory. Regions with high temporal coherence are shared between two or

more time steps saving also texture memory. They also introduce color-based error

metrics to decide whether or not to use untextured polygons or share the volume

region across certain time steps. Since the scalar values of the voxels are mapped to

colors using a transfer function, the color-based error metrics improve the selection

of texture volumes to be loaded into texture memory.

Lum et al. [LMC02] propose compressing time-varying volume using the Dis-

crete Cosine Transform (DCT) and rendering by 2-D texture mapping hardware.

They encode sequences of scalars along the time dimension into single scalar indices

by transforming each sequence into a set of DCT coefficients, which are quantized

and stored in 8-bit values. They are encoded such that single index value represents

a sequence of temporally changing scalar values and therefore each index is a sample
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in the space of possible time varying scalar values. This indexed texture is quickly

decoded through the frame to frame manipulation of a palette on a graphics hard-

ware instead of using inverse DCT. In order to reduce the discontinuity between

window sequences, they interleave the starting times of the windows for each slice

of the volume.

2.1.3 n-D TO 2-D Mapping

Rendering a 3-D volume on a screen can essentially be viewed as a 3-D-to-2-D

mapping problem. In addition to the typical volume rendering techniques described

earlier, slicing techniques in which the user displays a 2-D slice has been widely

accepted in domains such as medical applications. Similarly, rendering a time-

varying volume can be viewed as a 4-D-to-2-D mapping problem and the same

techniques, projection and slicing, can be used.

Most of the visualization techniques for time-varying volumetric data have

taken temporal-slicing first followed by the projection approach, in which a 3-D

volume at each time step is rendered using a 3-D-to-2-D projection. However,

there have also been several interesting different efforts that are worth mentioning.

Woodring et al. [WWS03] and Neophytou and Mueller [NM02] use hyperslicing

followed by projection approach, in which not only a temporal slice but also an

arbitrary 3-D slice is projected. Kim and JaJa [KJ06] and Shi and JaJa [SJ06] also

use hyperslicing first, but visualized the resulting 3-D volume using isosurface ren-

dering. On the other hand, Bajaj et al. [BPRS98] use only the projection approach.
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They perform the n-Dimensional volume rendering just like an X-ray projection,

which makes the ordering issue with n-D to 2-D projection irrelevant. They pro-

pose a scalable graphical interface for an easy n-Dimensional data exploration based

on generalization of the splatting technique to a higher dimension. Woodring and

Shen [WS03] also use only projection approach proposing a technique called Chrono-

volume, which integrates time-varying volumetric data along time and generates a

single view that captures the essence of multiple time steps. The benefit of their

method is in enabling users to view the surrounding context of adjacent time steps

of a region of interest in a single view.

2.2 Representation

One of the most challenging issues associated with large volume visualization

is how to manage the large size of the data to enable interactive exploration and

discovery. The large amounts of data not only increase storage costs, but also

increase I/O costs from disk to main memory or main memory to video memory.

There are simple ways of reducing data size like cropping, dimension reduction (e.g.

extracting a slice), and sub-sampling. However, more general ways are to use out-

of-core algorithms, multiresolution, and compression techniques.

2.2.1 Out-of-Core Algorithms

Dealing with large data very often involves accessing data directly from hard

disk drive during run time because whole data can not fit in main memory. However,
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due to their electromechanical components, disks have several orders of magnitude

longer access time than random access main memory. Out-of-core algorithms are

concerned with how to efficiently perform certain operations when data is on external

memory, typically hard disk drive. A single disk access reads or writes a block of

contiguous data at once. The performance of an out-of-core algorithm [Vit00] is often

dominated by the number of I/O operations, each involving the reading or writing of

disk blocks. Hence designing an efficient out-of-core visualization algorithm requires

a careful attention to data layout and the organization of disk accesses in such a way

that necessary data blocks are moved in large contiguous chunks into main memory.

A number of out-of-core techniques to handle scientific visualization problems

have appeared in the literature [HJ05], as larger and larger data sets are being gen-

erated. Cox and Ellsworth [CE97] show that application-controlled paging and data

loading in a unit of subcube with the ability of controlling the page size can lead

to better performance in out-of-core visualization. Out-of-core isosurface extraction

algorithms are reported in [SH00, Chi03, SJ06]. Out-of-core volume rendering algo-

rithms are reported in [SCM99, LM99, FS01]. Silva et al. [SCESL02] provide a good

survey on out-of-core algorithms for scientific visualization and computer graphics.

For efficient out-of-core data accesses, it is important to lay out data in a way

that algorithms retrieve data in contiguous chunks. Space filling curves [Sam90] have

been used for mapping n-dimensional data to one-dimension while trying to preserve

the spatial locality of the original n-dimensional data. The most popular ones are

the Z-order [OM84] and the Peano-Hilbert order [Hil91]. While the Peano-Hilbert

order has a slightly higher degree of locality, the Z-order has been more frequently
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used because of the simplicity of the conversion process between the key and its

corresponding element in the multidimensional space. Lawder [Law00] examines

different kinds of space filling curves to develop indexing schemes for fast retrieval

of data in multi-dimensional databases.

2.2.2 Multiresolution

The most common multidimensional structure for data sampled on regular

grids is the Octree [Sam90]. Time-varying volumetric data can be treated as 4-D

data considering time as the fourth dimension and a 4-D octree (a straightforward

extension of 3-D octree) can be built to control rendering speed and image quality

[WG94]. Shen et al. [SCM99] propose a Time-Space Partitioning Tree (TSP) which

can capture both the temporal and spatial coherence more efficiently than the high

dimensional octrees [WG94]. The TSP tree is basically an octree in which each

node links to a binary time tree which hierarchically represents the corresponding

subvolume through the entire time interval. In that way, they decouple the tempo-

ral and spatial coherence making it possible to capture coherence uniquely existing

in spatial or temporal dimension. Each node of the binary time tree contains in-

formation such as the mean values of the subvolume, spatial error and temporal

error in the given time span. Users can supply the desired error tolerances for the

trade-off between image quality and rendering speed. In a traversal, the nodes are

visited in a front-to-back visibility order according to a viewing direction and the

subvolumes selected by users’ error tolerance are rendered individually. The TSP
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tree is extended for parallel environments by Wang et al. [WGLS05].

Gregorski et al. [GSDJ04] describe a scheme for adaptively extracting multires-

olution isosurfaces. They generate a multiresolution representation using tetrahedral

meshes defined by longest edge bisection. At run time, they refine the tetrahedra

mesh given an error tolerance and view frustum and extract isosurfaces from the

tetrahedra using the vertex programming capability of modern graphics cards. A

data layout also follows the access pattern indicated by mesh refinement.

On the other hand, Linsen et al. [LPD+02] describe 4th root of 2 subdivision

techniques, in which they make every subdivision step only double the number of

vertices, which gives finer intermediate resolution than typical regular subdivision.

2.2.3 Compression

Neophytou and Mueller [NM02] propose a lossless compression strategy using

sampling grids called Body-Centered-Cartesian (BCC) grids, which are a generaliza-

tion of hexagonal grids. The BCC grids can reduce the number of samples by almost

30% in 3-D and 50% in 4-D without loss of fidelity under the condition that the

sample signal has a spherically bandlimited frequency spectrum. Although lossless

compression allows the exact reproduction of the compressed data and hence has the

advantage that we can remove the original data, we need to use lossy compression

to achieve greater compression rates.

For lossy compression, one has to consider both the image quality at a certain

compression ratio and decompression time. Compression schemes based on wavelet
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transform have been widely used in many applications and enable the generation

of multiresolution features as well [Wes95, GWGS02]. For time-varying data, good

compression schemes also have to exploit both spatial and temporal coherence. Tem-

poral coherence has been exploited by either using simple difference files [SJ94] or

more sophisticated techniques as described next.

Guthe and Straßer [GS01] describe a compression scheme which basically fol-

lows that of MPEG, where motion prediction and compensation are applied, process-

ing a sequence of frames consisting of I (intra-coded), B (bidirectionally predicted)

and P (predicted) frames. They compressed each I frame using wavelet transforms.

The coefficients of wavelet transforms are quantized to optimize the visual perception

and encoded using run length encoding followed by LZH or arithmetic encoding. At

run time, decompression is completely done by CPU and the decompressed volumes

are transferred to video memory and visualized by the texture mapping hardware.

Lum et al. [LMC01] used a Discrete Cosine Transform (DCT) to encode sequences

of scalars along the temporal dimension into single scalar indices by transforming

each sequence into a set of DCT coefficients, which are quantized and stored in 8-bit

values. They are encoded such that single index value represents a sequence of tem-

porally changing scalar values and therefore each index is a sample in the space of

possible time-varying scalar values. This index texture is quickly decoded through

the frame to frame manipulation of a palette on a graphics hardware instead of using

the inverse DCT.

On the other hand, as interactive visualization of static 3-D volumetric data

has become easier due to 3-D texture mapping hardware, much effort in time-varying
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volumetric data compression has been put into how to pack as many time steps as

possible into the texture memory and how to decompress the compressed data using

GPU-based hardware acceleration.

Binotto et al. [BCF03] describe a simple compression scheme to allow simple

pixel shader to decompress the data set. Their compression scheme consists of index

texture and refinement texture. In index texture, they store a coarser version of a

dataset, in which each texel stores either a representative color value using a given

transfer function in a homogeneous region or a reference to a corresponding grid in

refinement texture in a non-homogeneous region. The same refinement patterns are

shared among different time instances which are packed into the texture memory at

the same time. However its use is limited to the data set that presents high spatial

and temporal coherence. Shneider and Westermann [SW03] also address the limited

texture memory problem in the texture mapping based volume rendering. They

describe a hierarchical vector quantization scheme to encode each 43 subvolume

into one single RGB index texel, in which the red stores the mean value of the

subvolume and each of the other two stores an index to each corresponding codebook

which represents difference values from the mean value at two different resolutions.

Using this method, they achieve about 20:1 compression ratio while maintaining

reasonable texture fidelity. They show decoding and rendering can be done using

programmable graphics hardware although they report a factor of 2 to 3 performance

loss due to the complex shader, which is partially overcome in the case of sparse

data sets by skipping the execution of the shader program for empty space. For

efficient quantization of time-varying data sets, they reuse the codebook in the
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closest key frame as the initial codebook to the quantization algorithm. Akiba et

al. [AMC05] employ two different data reduction techniques for visualizing time-

varying volume on a low-cost commodity graphics card. They first convert the raw

data into a hierarchical representation using wavelet transformations [Cly03] that

permit the reconstruction of the sampled data at varying power of two resolutions.

Then they additionally reduce the data size by a packing technique, in which they

first partition the volume uniformly into a set of equal size subvolumes and only pack

the subvolumes that contain values within the user-specified range of interest into

a sequence of 3-D texture blocks. The wavelet decompression is done by the CPU;

however unpacking and rendering are done by a GPU with the help of additional

address texture.

2.3 Parallel Rendering

There are basically two models in parallel computing: shared-memory and

distributed-memory. While the shared-memory model of traditional high-performance

graphics systems provides a flexible programming environment, it did not offer the

required graphics scalability or a good performance/cost rate. While there were

research efforts in utilizing shared-memory multiprocessors for interactively visu-

alizing massive data sets [PSL+98, CD99, MP01], more efforts have recently been

placed into using low-cost commodity-based PC-clusters. Note that a commodity

PC graphics card, which costs only a few hundred dollars now, has a greater render-

ing performance than that of much more (∼ $100,000) expensive graphics machines
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years ago [HJ05]. A PC-cluster offers more scalability at a low-cost. However, it has

to be carefully employed to overcome its slow interprocess communication. In the

following, we review the main parallel rendering techniques for volume rendering.

Sorting Scheme: In graphics, in which rendering primitives are typically

polygons, a full 3-D rendering pipeline primarily consists of geometry processing

and rasterization. Depending on at which stage primitives are sorted across multi-

ple parallel graphics pipelines, there are three different ways: sort-first (sort before

the geometry processing), sort-middle (sort between geometry processing and ras-

terization), and sort-last (sort after rasterization) [MCEF94]. In volume rendering,

in which rendering primitives are voxels, there are essentially two ways: sort-first

(sort before projection) and sort-last (sort after projection).

The sort-first approach partitions the image space into N regions such that

each of N processors is responsible for completely rendering one of the N regions. In

contrast, the sort-last approach has each node completely render its subvolume onto

a full image size after which the N full images are composited to generate a final

image. The sort-first scales well with the image size making it a good solution for

tiled displays because the amount of communication is a function of data size rather

than image size. However, it causes a scalability problem as the size of the data

set increases although it can be mitigated in the case in which a frame-to-frame

coherence can be used. Also a severe load imbalance can occur when primitives

are concentrated in a region. On the other hand, the sort-last scales well with

data set size because the amount of communication is a function of image size.

However, the compositing step can be a performance bottleneck as the resolution of
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the display increases. We can also expect handling of transparency not to be easy

in this case. In addition, it will need additional efforts to enable rendering on tiled

displays because there is a limit on image size that one commodity graphics card can

render. While there were some research efforts in the sort-first parallel rendering

system [BHPB03, AR05], more research efforts in large volume visualization have

been put into the sort-last parallel rendering system [WPLM01] mostly because of

its scalability in terms of data size and also its good load-balancing property.

2.3.1 Algorithms for Clusters of Processors

Compositing in Sort-last: In the sort-last distributed rendering, after each

node renders its allocated data, all the images have to be composited to generate

the final image. There are basically two compositing methods: software-based and

hardware-based. A few specialized hardware architectures have been developed for

real-time image compositing such as Sepia [MHS99], Lightning-2 [SHE+01], and

Metabuffer [BBFZ00]. They mostly attempt to circumvent the compositing cost

by reading the frame buffers directly from the DVI outputs instead of using the

costly frame-read-back operation. However, the increased interest in constructing a

low-cost GPU-cluster system requires us to build a fast software-based compositing

scheme. Representative software compositing algorithms involve direct send [Neu94],

binary swap [MPHK94], and SLIC [SML+03]. In the direct send method [Neu94],

each processor send pixels directly to the processor responsible for compositing them.

While it is easy to implement, it could cause traffic congestion on the network. In
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the binary swap [MPHK94], the volume is partitioned using k-d trees and a pair

of rendered images at the same tree level exchange half the image and composite

them in a recursive fashion going up the tree. SLIC [SML+03] attempts to reduce

the amount of transmitted pixels based on the observation that only overlapped

pixels need to be transmitted for compositing. They send non-overlapped spans of

pixels directly to a host node and assign only each overlapped span to a node in an

interleaving fashion. They report that the compositing cost stays almost constant

as more processors are used and outperforms the previous two methods when high

resolution image (over 500x500) is desired.

Time-varying Data: Given a parallel machine with N processors, there

are basically two different strategies to render time-varying volumetric data: intra-

volume and inter-volume parallelism [MC00, HJ05]. Intra-volume parallelism is the

most widely used approach, in which a volume at each time step is partitioned and

distributed among the N processors. Time-varying data is sequentially rendered

in a batch mode fashion. In contrast, inter-volume parallelism suggests that each

processor processes subvolumes from different time steps simultaneously. In a hybrid

approach, the N processors can be grouped into multiple groups and each group

is responsible for a single time step exploiting the intra-volume parallelism. Each

group forms a pipeline and the concurrent multiple pipelines exploit the inter-volume

parallelism. In this way, the expensive I/O time between time steps in a batch mode

can be hidden leading to improved performance.

Other few research efforts using only intra-volume parallelism for time-varying

volumetric data rendering are worth mentioning. Lum et al. [LMC02] employ a
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cluster to make their Discrete Cosine Transform (DCT) based compression scheme

[LMC01] scalable with large data sets. They divide each volume into N equal slabs,

where N is the number of rendering nodes. At run time, each subvolume loaded into

a texture memory is decompressed using simple pallette manipulation and rendered

using the texture mapping hardware. Wang et al. [WGLS05] extend the Time-Space

Partitioning tree (TSP) [SCM99] to a cluster environment with software ray casting

for time-varying volume rendering.

Multiresolution: As multiresolution techniques become common in large

data visualization, several research efforts have tried to port the existing multireso-

lution schemes into a cluster environment. Wang et al. [WGS04, WGLS05] extends

the Time-Space-Partitioning tree (TSP) [SCM99] for a sort-last cluster environment.

They compress each node of the TSP tree using a wavelet transform and describe

an algorithm to partition the tree and distribute the data among processors. They

distribute the data in such a way that data blocks at similar resolution levels and

error ranges are shared among different processors, using the hilbert space-filling

curve and error-guided bucketization respectively. Although they achieve a good

load balancing, the rendering time suffers from the expensive reconstruction time.

Strengert et al. [SMW+04, SMW+05] attempt to employ the hierarchical wavelet

compression technique [GWGS02] also in a sort-last cluster environment. They

address the discontinuity issues that happen when subvolumes at different quality

levels are individually rendered by different processors. They report that the per-

formance in time-varying data is limited by the decompression time because their

caching strategy for decompressed blocks only works for static data, suggesting to
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exploit the coherence between time steps.

2.3.2 Hardware Acceleration

On the other hand, innovative use of recent programmable advanced graph-

ics cards is even further improving the performance of parallel rendering systems.

Kniss et al. [KMM+01] distribute a data set into multiple graphics cards, having

each node render a subvolume using the texture mapping volume rendering tech-

nique and finally compositing them later, in a shared-memory system. Lum et al.

[LMC02] and Strengert et al. [SMW+04] use the same technique in a cluster environ-

ment. As graphics processors become more programmable, there have been efforts

to implement ray casting on the graphics cards. Stegmaier and et al. [SSKE05]

show that ray casting can be implemented on the programmable graphics processor,

and Müller et al. [MSE06] extend the hardware accelerated ray casting technique

to a cluster system. Their efforts focus on achieving a good load balance and op-

timization in a sort-first cluster environment. They use a kd-tree to assign bricks

to processors with adaptive load balancing technique and use a seemless bricking

technique to ensure no artifacts will occur between bricks. On the other hand, it is

worth mentioning some recent hardware-based ray tracing techniques for geometric

rendering since the principle of ray shooting is the same. Horn et al. [HSHH07]

show k-D tree based GPU raytracing methods and Benthin et al. [BWSF06] in-

troduce ray tracing techniques for Cell Broadband Engine, based on software cache

and hyper-threading.
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Chapter 3

Component Based Layout for Large

Volumetric Data

Efficient visualization of large 3-D/4-D data sets on current PC architectures

requires efficient strategies to deal with the storage hierarchy. First, efficient data

transfer from disk to main memory is important because the data set often can not fit

into main memory. Second, efficient data transfer from main memory to processing

units such as multi-core CPUs or GPUs is essential to achieving interactivity. In this

chapter and the next chapter, we address the initial stage, efficient out-of-core data

access, while we deal in later chapters with the second stage. We address efficient

data layout for out-of-core axis-aligned slicing problems in this chapter.

3.1 Efficient Data Layout for Slicing Queries

In n-D volumetric data, we define axis-aligned slicing as the process of ob-

taining a (n-1)-D slice by taking the sample points on the n-D plane Ij = α, where

(I1, I2, ..., In) are the dimensions and α is one of the grid values. For example, in

the case of the time-varying 3-D volumetric data, typical sequential rendering of

each time step is a slicing along the temporal dimension. In addition to the popular
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temporal dimension slicing, we consider all the axis-aligned hyper-slicings. In fact,

the non-temporal slicing can enable more effectively to observe patterns and trends

along the temporal dimension.

The widely used space filling curves such as Z-order and Peano-Hilbert order

[Sam90] store neighboring multidimensional data as close as possible in storage, and

hence they have been widely used because they provide good cache performance

for accessing n-dimensional data. While they are effective in the situation where

data access occurs across all n dimensions, more efficient data layouts are needed

for slicing queries because data access occurs across only (n-1) dimensions for each

such query.

For illustration purposes, Figure 3.1 shows how three different layouts affect

the disk I/O efficiency for a slicing query in a 2-D case. Disk I/O efficiency can be

expressed by how many contiguous disk pages are accessed for a given query. As

shown in the figure, the particular lexicographical-order sequentially stores the one-

dimensional slice corresponding to y = β and thus achieves the highest contiguity

in disk access for this particular slicing query while the other space filling curve

schemes achieve very little contiguity.

However, employing the straightforward lexicographical-order results in worse

performance for the least priority slicing query (x=α in the example) although it

achieves better performance for the other (n-1) types of slicing queries for the n-

dimensional data. The most naive approach of eliminating the single worst case

would be to create an additional copy of the data and store that copy in the

lexicographical-order in favor of the least priority slicing. However, it is not practical

33



8642 7531

8642 7531 8642 7531 8642 7531

�� �� �� ��

8642 7531 8642 7531

�� �� ��� �

��������

	 
 � �

�����

(a) z-order (b) hilbert-peano order

(c) lexicographical  order

~ Column size 
/ 2

21.5Avg.

Column size22y= �

121x= �

lexicographical
hilbert-
peanoz

Order

Query 

~ Column size 
/ 2

21.5Avg.

Column size22y= �

121x= �

lexicographical
hilbert-
peanoz

Order

Query 

(d) The number of contiguous disk block
accesses 

Figure 3.1: Data access patterns for a slicing query in a 2-D case for three different

data layouts. Grey blocks correspond to the disk blocks satisfying the slicing query

y=β.

to duplicate the already very large data set.

In the rest of this chapter, we introduce our component-based layout scheme to

address this problem in a specialized problem domain, in which it is only required

to provide fast slicing along an arbitrary dimension at every k-th value, k > 1. The

idea is to divide the n-dimensional data set into non-overlapping components and

to systematically provide a different layout scheme tailored to each component in

such a way that isolated disk accesses are eliminated.
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Figure 3.2: A 2-D example of the component-based layout for fast slicing at every

other value. Components C1 and C2 are grouped into 1-D supercells and stored in

the required lexicographical orders while C0 and C3 are grouped into 2-D supercells

and stored according to the Z-order. Note that a dotted box indicates each supercell.

3.1.1 Case I: k=2

We first explain our component-based layout scheme for k=2, meaning that

it is required to provide fast out-of-core slicing only at every other value. Figure

3.2 shows the layout scheme for two-dimensional data for illustration purposes. We

divide the 2-D grid into four non-overlapping components, and store each compo-

nent in the following way. First, we group the elements in component C1 into 1-D

supercells, which are blocks of disk page size, and store the corresponding supercells

in a lexicographical order that favors the X-slicing since C1 is required only by the
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X-slicing. Similarly, we group the elements in component C2 into 1-D supercells and

store them in a lexicographical order that favors the Y-slicing. Second, we group

the elements in components C0 and C3 into 2-D supercells and store the supercells

according to the Z-order since they are either required by both slicing types or not

required by any type of slicing. Now given a slicing query at every other value as

shown in the figure, half of the data that we access are always stored in the lexico-

graphical order in favor of that particular slicing, providing maximum contiguous

data access, while half of them are stored in Z-order.

Now, we generalize the idea to n-dimensional data. Given a n-dimensional

regular grid, let (i1, i2, ..., in) denote the index of a grid point. Then we define

Component-Code (C-CODE) of the index, C-CODE(i1, i2, ..., in), as a concatenation

of (ij mod 2), j=1,2,...,n. Then, we define each component Ci of the n-dimensional

regular grid as follows.

Ci ≡ {(i1, i2, ..., in)| C-CODE(i1, i2, ..., in)=i}

Gridn ≡ {Ci| i = 0, 1, ..., 2n − 1}

For example, the C-CODE of the 3-D grid point at (3,2,5) is 5 (=1012) and thus

belongs to component C5.

Now we define a slicing query as the query to generate the sample points

residing on the hyperplane Ij = α, where α mod 2 = 0 (because k = 2). Then, a set

of necessary components, Aj, for answering the slicing query Ij = α is

Aj = {Ci| the j-th most significant bit of i=0}
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because only the components for which ij mod 2 = 0 can be sliced by the plane

and there are a total of 2n−1 such components. For example, given a component Ci

whose C-CODE is 0102 in a 3-D grid, we know that it is required for both X- and

Z-slicing.

The 2n components comprising an n-dimensional grid consists of 4 types of

components. Let p denote the number of slicing types that a component may be

subjected to (note that it is the same as the number of ‘0’s in the C-CODE of the

component). Then each component belongs to one of the following types.

1. Type I (p=0): A component that is not required by any type of slicing. There

is only one such component such that all the bit values of its C-CODE are

equal to ‘1’.

2. Type II (p=1): A component that is exclusively required by a particular

slicing. There are n such components, each of which has a C-CODE having

only one bit equal to ‘0’.

3. Type III (2 ≤ p ≤ n − 1): A component that is commonly required by p

different types of slicing. Given p, there are nCp such components.

4. Type IV (p=n): A component that is required by all slicing types. There is

only one such component such that all the bit values of its C-CODE are equal

to ‘0’.

For out-of-core access, we store each type of components in the following way.
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• Type I and IV (p=0 or n): The elements of each component are grouped into

n-dimensional supercells, which are then stored according to the Z-order.

• Type II (p=1): The elements of each component are grouped into (n-1)-

dimensional supercells, which are then stored in a lexicographical order in

a way that the exclusive slicing type gets the highest priority.

• Type III (2 ≤ p ≤ n − 1): The elements of each component are grouped into

n-dimensional supercells, which are then stored in a lexicographical order in a

way that all the p types of slicing get higher priority than the remaining (n-p)

types.

Note that for type II, we group elements into (n-1)-dimensional supercells

because it is exclusively sliced by a particular slicing type. For type III, we always

avoid the worst case, in which any of the p types of slicing gets the least priority

in the lexicographical order, since there is always at least one slicing axis that does

not require the component and the least priority can be assigned to that dimension.

3.1.2 Case II: k > 2

Now, we consider the general case where it is required to provide fast slicing

at every k-th value, k > 2. Figure 3.3 shows a 2-D example in the case of k=3.

Note that the only change is the element size of each component, where the element

of each component is the maximal group of contiguous grid points which belong to

the same component.
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Figure 3.3: A 2-D example of the component-based layout for fast slicing at every

third value. Note that the only change is the element size of each component.

We redefine a slicing query as retrieving the sample points on the plane Ij = α,

where α mod k = 0. Then, we only need to generalize the previous Component-Code

(C-CODE) definition as follows.

C-CODE(i1, i2, ..., in) ≡ a concatenation of bj, j=1,2,...,n.

bj =







0, if (ij mod k)=0.

1, if (ij mod k) 6= 0.

Now, the element size of each component increases by a factor of (k-1) per a

bit value ‘1’ of the C-CODE because (k-1)-times more grid points get included due

to (ij mod k) 6= 0. Hence, the size increases by a factor of (k− 1)n−p, where p is the

number of ‘0’s and thus n-p is the number of ‘1’s in the C-CODE.

Since the schemes in the case of k=2 for n-dimensional data depend only on
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the C-CODE of a component, they apply to the general case of k > 2 in the same

way.

3.2 Analysis

To analyze and compare the performance of our scheme to other schemes,

we define Contiguity as the ratio of the average number of disk blocks that can

be accessed sequentially to the total number of disk blocks needed for a particular

slicing, and Effectiveness as the ratio of the amount of data needed to the amount

of data transferred. Both indices are equally important in terms of disk I/O cost. In

fact, disk access time can be approximated by the the time to read the necessary data

at maximum transfer rate × 1

Effectiveness , plus the time for disk head movement

× 1

Contiguity . Hence, using the two indices, we can compare the component-based

layout scheme with the typical Z-order scheme in which the data is first decomposed

into n-dimensional supercells each of whose size is equal to the disk page and then

stored by Z-order.

Let COz and EFz denote the contiguity and the effectiveness of the Z-order

scheme while COc and EFc correspond to the component-based data layout scheme.

Assuming that an n-D supercell is of size L× L× ...× L
︸ ︷︷ ︸

n

(and hence the size of

a disk block is Ln) and the n-D volume consists of M ×M × ...×M
︸ ︷︷ ︸

n

supercells

(M À 2n−1), a slice of the supercell is of size Ln−1 and thus the effectiveness of the

n-D supercell is always 1
L
(=Ln−1

Ln ).

The number of sequentially accessed blocks in Z-order is 1,2,4,...,or 2n−1 ac-
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cording to the slicing axis. Table 3.1 shows the contiguity and the effectiveness of

the Z-order combined with the n-D supercell scheme.

Contiguity (COz) Effectiveness (EFz)

Z-order ©( 2n−1

Mn−1 )
1
L

Table 3.1: Contiguity and effectiveness of Z-order + n-D supercell scheme.

On the other hand, in a lexicographical order in favor of a certain slicing

priority, the contiguity becomes 1, 1
M
, 1
M2 ,... in a decreasing order of the priority

of the slicing. Table 3.2 shows the contiguity and the effectiveness in each type of

a component in the component-based layout, assuming that each component is of

full volume size. Note that type I components are never required and that type

II components have no discontiguous disk accesses and do not load any redundant

data.

Contiguity (COc) Effectiveness (EFc)

Type II 1 1

Type III Ω( 1
Mn−2 ) EFz

Type IV COz EFz

Table 3.2: Contiguity and effectiveness in each type of a component.

Since COz is upper bounded by ( 2
M
)
n−1

and COc of type III is lower bounded

by 1
Mn−2 , the value of COc for type III components is at least M

2n−1 times as high as

the COz. Thus, type III components always have better contiguity than type IV

components of Z-order and the benefit increases as the volume size gets larger. For
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example, in the case of n=3, i.e., a 3-dimensional volume, type III components have

at least M
4

times as high contiguity as type IV components of Z-order, i.e., 4
M

less

discontiguous disk head movements than Z-order.

Now given a slicing query, there are a total of 2n−1 components needed to

answer the query and among them there is only one component of type II or IV and

the other 2n−1-2 components are of type III.

3.2.1 Case I (k = 2)

Since the number of elements of all the 2n−1 components comprising a slice is

the same, we have

1

COc

=
1

2n−1
·

1

COz

+ (1−
1

2n−1
) ·

1

COc

1

EFc
= (1−

1

2n−1
) ·

1

EFz
+

1

2n−1
· 1

(Note that we use harmonic mean for more correct averaging of the two indices.

COc is an average of COc for type II and III.)

There is always contiguity improvement over the Z-order scheme, which is

upper bounded by 2n−1 times as high contiguity. In addition, there is always effec-

tiveness improvement upper bounded by a factor of 2n−1

2n−1−1
. Note that the higher

effectiveness also means less cache memory size required for the same slicing query.
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3.2.2 Case II (k > 2)

Since the element size of each component of which the C-CODE bit values have

p ‘0’s increases by a factor of (k−1)n−p, 2n−1 is replaced by Rn(k) (=
∑n

p=1 n−1Cp−1 ·

(k − 1)n−p), which is lower bounded by 2n−1 for k > 2, then,

1

COc

=
1

Rn(k)
·

1

COz

+ (1−
1

Rn(k)
) ·

1

COc

1

EFc
= (1−

(k − 1)n−1

Rn(k)
) ·

1

EFz
+

(k − 1)n−1

Rn(k)
· 1

Note that the portion that the type IV component of Z-order contributes to the

slice decreases while the contribution of type II increases more than any other types

since the element size of type II (p=1) increases by the largest factor (k−1)n−1 while

that of type IV (p=n) does not increase. As a result, we achieve better contiguity

and effectiveness as k increases.

3.3 Experimental Results

We evaluated the performance of our scheme for k=2, in which it is required

to process slicing queries at every other value. For the evaluation, we used a subset

of the visible human male anatomical image data set [Nat]. The test volumetric

data consists of 2048× 1216× 800 grid with 1-byte values, resulting in total size of

2 GB.

We ran all the tests on a single Linux machine which has dual 3.0 GHz Xeon

processors with approximately 50 MB/s maximum disk I/O transfer rate. In all our

experiments, we made use of only one of the two processors. Also, we used a simple
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buffer management system in order to control disk I/O. The blocking factor for the

data was selected arbitrarily to be 8× 8× 8.

Figure 3.4 shows the contribution of each type of components to the total

time in performing each of the slicing queries. Given a slicing query, a total of 4

components are required, among which there are only one type II and IV component

and two type III components. The type IV component, which is stored in Z-order,

takes the largest 48% of the total time while the type II component, which is stored

in a lexicographical order in a way that the exclusive slicing type gets the highest

priority, takes only 4% of the total time. Each of the two type III components takes

40% and 8% of the total time respectively. The Z-slicing takes the longest time

because the slice size is the largest.

We compare the performance of the component-based data layout scheme with

the Z-order combined with the n-D supercell scheme for three different types of axis-

aligned slicing queries.

Figures 3.5, 3.6, and 3.7 compare the total disk I/O time for reading X, Y, or

Z=α slices at full resolution. The component-based layout scheme always achieves

better performance, by a factor of 3.2 on average. In addition, it requires 16 MB

cache memory, which is 22% less than what the Z-order scheme requires. These

experimental results are close to the analytical upper bound in our analysis, by which

we expect the performance improvement and the cache size reduction to be upper

bounded respectively by a factor of 4 and 25%. Note that the same improvements

can be expected on any data of the same size given the same blocking factor, since

the content of the data is not considered in any of the above schemes.
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For k=2, an additional benefit of the component-based data layout scheme is

to be able to perform all types of the half-resolution slicing queries at the maximum

disk transfer rate because for every axis-aligned slicing type there is always one

half-resolution type II component which is stored in an optimal way for the slicing

type. Figures 3.8, 3.9, and 3.10 compare the total disk I/O time for reading X, Y,

or Z=α slices at half resolution. The component-based layout scheme is an order

of magnitude faster on average without any performance fluctuation as seen in the

figures. In addition, it requires only 1
8
of the cache memory size for the Z-order

scheme, given the particular blocking factor. Note that we compare with the Z-

order scheme at half-resolution data (i.e., type IV component).

Figure 3.11 shows a sample output slice image in each type of the slicing

queries from our test volumetric data.

3.4 Discussion

The component-based data layout scheme shows two times larger intervals

in performance fluctuation in the timing results. The performance fluctuation is

related to the blocking factor. The blocking essentially prefetches the data under

the assumption that the slicing queries are given incrementally. While the Z-order

and n-D supercells scheme prefetches the data not needed by every k-th value slicing

(k > 1) as well as the necessary data, the component-based scheme does not prefetch

the unnecessary data. Thus it can effectively prefetch larger intervals given the same

blocking factor.
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Being able to perform the half-resolution queries at maximum disk I/O transfer

rate in every slicing type (when k=2) becomes more beneficial when we deal with

larger dimensions. For a time-series of the test volumetric data, one 3-D slice could

easily be of size in the order of hundreds of megabytes to gigabytes. Unless we

replicate the already large data, it will be very difficult to achieve the maximum disk

I/O transfer rate for all the slicing types by using previous methods. In addition, our

scheme requires only the cache memory size equal to the slice size for half-resolution

queries.

While the contiguity of type III components is at least M
2n−1 times as high as

that of type IV components stored in Z-order as shown in the analysis, the perfor-

mance result in Figure 3.4 shows that type III components take almost equivalent

time (only 8% less as that of type IV components of Z-order at the worst case).

We believe that this is because the disk head movement time is different between

Z-order and lexicographical order. Although the Z-order has more discontiguous

disk block accesses, the distance between two discontiguous disk blocks is smaller

than lexicographical order. In order to investigate this further, we ran all the tests

with a 16 × 16 × 16 blocking factor, which is 8 times bigger in disk page size. We

observed 60% less time in type III components compared to type IV components in

the worst case. Overall, the change in blocking factor results in 23% less time in

component-based scheme and 15% less time in the Z-order scheme due to the cache

memory being twice as large, but with poorer peak processing time. Performance

improvement was slightly bigger (∼3.5) at full resolution.

In comparison to a lexicographical order, from the results in Figure 3.4, we
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can expect that our scheme will always produce better results except one particular

slicing type of the lexicographical order’s highest priority. Also, we can expect that

the performance of retrieving slices at grid values that are not every k-th will at

least be better than the worst case in a lexicographical order.

3.5 Conclusions

We have presented a new data layout scheme to efficiently handle out-of-core

axis-aligned slicing queries of very large multidimensional rectilinear grids. Our

component-based data layout scheme features much faster processing time for any

types of axis-aligned slicing queries at every k-th value, k > 1, with no data dupli-

cation, and can be generalized to any high dimension. We have analytically shown

that our scheme provides faster processing time and requires less cache memory than

the typical Z-order scheme for any type of axis-aligned out-of-core slicing queries at

every k-th value (k > 1), without any data replication. Through experimental re-

sults, we have also demonstrated that it can achieve 3-fold and 10-fold performance

improvements requiring only 78% and 12% of the cache memory size for the Z-order

scheme at full and half resolution respectively.
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Figure 3.4: Contribution of each type of components to total time for X, Y, and

Z=α queries.
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Figure 3.5: Performance comparison for loading X=α slices (1216× 800).
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Figure 3.6: Performance comparison for loading Y=α slices (2048× 800).
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Figure 3.7: Performance comparison for loading Z=α slices (2048× 1216).
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Figure 3.8: Performance comparison for loading X=α slices at half resolution (608×

400).
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Figure 3.9: Performance comparison for loading Y=α slices at half resolution (1024×

400).
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Figure 3.10: Performance comparison for loading Z=α slices at half resolution

(1024× 608).
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Figure 3.11: Sample slice images of the test volumetric data at X, Y, and Z=α.

(1216× 800, 2048× 800, and 2048× 1216 from top to bottom.)
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Chapter 4

Efficient Out-of-Core Indexing Structure

Isosurface rendering is an important visualization technique that enables the

visual exploration of volumetric data using surfaces. Since it basically renders sur-

faces, it is often preferable to volume rendering due to faster rendering time, es-

pecially for large volumetric data. Since the introduction of the Marching Cubes

algorithm [LC87] that performs a complete scan of all the data cells, a variety of

more efficient algorithms have appeared in the literature. These algorithms include

a preprocessing step that constructs an indexing structure to speed up the identifi-

cation of active cells (cells cut by the isosurface). Such techniques use either spatial

data structures such as the octree [WG92], or the span space [LSJ96], or the interval

tree [CMM+97], or the seed propagation technique [BPS96]. The case when the data

is too large to fit in main memory has recently received significant attention. There

are two main directions that have been pursued to deal with such large datasets.

The first focuses on the development of out-of-core efficient implementations of in-

ternal memory algorithms (e.g. [CS97, CSS98]), while the second direction makes

use of parallel processing to achieve good performance on multiprocessor systems

(e.g. [BPTZ99, CFSW01, ZBR02]).

For time-varying volumetric data, a 4-D isosurface can be defined as the set of
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points that satisfy f(x, y, z, t) = c, for a given isovalue c. The problem of extracting

linear approximations to 4-D isosurfaces from sampling over a structured grid was

addressed by Weigle and Banks [WB98] and Bhaniramka et al. [BWC04] but these

techniques are computationally quite expensive and are only practical for very small

datasets. Instead of dealing with the extraction of 4-D isosurfaces, most of the other

work on time-varying data has focused on the problem of generating isosurfaces for

each of the given time steps separately. For example, Chiang [Chi03] develops an out-

of-core version of the hierarchical temporal tree described in [She98] by incorporating

an out-of-core version of the interval tree indexing structure. Another example is

the temporal branch-on-need (T-BON) octree described in [SH00] based on the

branch-on-need octree structure [WG92].

In this chapter, we address the problem of exploring 4-D isosurfaces of time

varying volumetric data by rendering the 3-D isosurfaces obtained through an axis-

orthogonal hyperplane cut. Such a cut is defined by a constraint of the form x[y,

z, or t]=α, for a user-specified α. This is an axis-orthogonal hyperplane, where

the axes are x,y,z, or t. Note in particular that a temporal cut t = α may fall

in between two consecutive time steps in which case we will use interpolation on

the fly to generate the corresponding isosurface. Our approach provides a rich

environment that enables users to more effectively observe patterns and trends along

the temporal dimension through the use of arbitrary spatial cuts x[y,or z]=α, and

to render isosurfaces for any intermediate time step, without explicitly constructing

the simplices needed for extracting the 4-D isosurface or decomposing hypercubes

into simplices, as in [WB98, BWC04]. Carrying out such a plan on a large scale
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dataset requires a space efficient and scalable indexing structure that allows the fast

retrieval of active data blocks from disk, that is, blocks that are necessary to build

the 3-D isosurface corresponding to the parameters specified by the user, an isovalue

and an axis-orthogonal hyperplane.

None of the existing indexing structures can be easily extended to effectively

solve such a problem, except possibly for the T-BON structure [SH00] but in this

case we can only use temporal cuts along the given time steps. Moreover, The

T-BON structure consumes a large amount of space that grows linearly with the

number of time steps because it does not exploit any type of possible coherence

across the temporal dimension. This lack of scalability becomes more problematic

as we generate higher and higher resolution data in every dimension including the

time dimension.

In the chapter, we present a new efficient out-of-core multidimensional indexing

structure, Information-Aware 2n tree (IA-2n tree). Our strategy is to basically build

an n-dimensional indexing structure on n-dimensional data because it can exploit

the coherence across all n dimensions and thus lead to compact size, addressing the

scalability problem. However, we need to also consider indexing effectiveness as well

as the scalability. The effectiveness of out-of-core indexing can be measured by how

much data is actually needed from the loaded data because the finest indexed object

is not an individual voxel, but a group of data of disk page size. Thus, using the

new structure, we seek to increase the ratio of indexing effectiveness to indexing

structure size, which we define as indexing structure efficiency.
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4.1 Information-Aware 2n tree

Information-Aware 2n trees (IA-2n trees) are basically 2n trees (e.g. quadtrees

for 2-D and octrees for 3-D [Sam90]) for n-dimensional data. However, it is different

in terms of the extent ratios of a subvolume determined when multi-dimensions

are integrated into one hierarchical indexing structure. The coherence information

along each dimension is extracted and used for the decision so that each subvolume

contains as much coherence as possible along each dimension.

4.1.1 Dimension Integration

We present an entropy-based dimension integration technique. Entropy [CT91]

is a numerical measure of the uncertainty of the outcome for an event x, given by

H(x) = −
∑n

i=1 pi log2 pi, where x is a random variable, n is the number of possible

states of x, and pi is the probability of x being in state i. This measure indicates how

much information is contained in observing x. The more the variability of x, the

more unpredictable x is, and the higher the entropy. For example, consider the series

of scalar field values for a voxel v over the time dimension. The temporal entropy of v

indicates the degree of variability in the series. Therefore, high entropy implies high

information content, and thus more resources are required to store or communicate

the series. Note that the entropy is maximized when all the probabilities pi are

equal.

We use the entropy notion to determine the relative sizes of the extents of the

supercell (that is, a leaf node in the trees). Higher entropy of a dimension relative
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Figure 4.1: Entropy estimation in each dimension. Note that the y dimension has

almost zero entropy in this example.

to the other dimensions implies that this dimension needs to be split at finer scales

than the other dimensions. For example, if a temporal entropy is twice as much as

the spatial entropy, we design the supercell to be of size s × s × s × s
2
(x × y × z

× t), where s is the size of the spatial dimension of the supercell.

Figures 4.1 and 4.2 show how this entropy-based dimension integration leads

to an indexing structure for the 3-D case. Figure 4.1 shows an extreme case in

which the values along the y dimension remain almost constant over all possible

(x, z) values (that is, the entropy of y is almost zero) while each of the x and z

dimensions has some degree of variability. The supercell size and the corresponding

hierarchical indexing structure will be designed as shown in Figure 4.2 (b), that is,

it has a quadtree structure unlike the standard octree of Figure 4.2 (a) in which the

supercell has the same size in each dimension.

To estimate the entropy, we select a set of time steps, referred to as reference

time steps, and compute spatial entropies for the corresponding 3-D volumes. These
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Figure 4.2: Different supercell sizes and corresponding hierarchical indexing struc-

tures for the data of Figure 4.1: (a) standard supercell; (b) information-aware su-

percell.

time steps are selected uniformly from the overall time series (or can be adaptively

sampled at a higher rate in the time domain of high temporal entropy for more cor-

rect estimation). For each corresponding 3-D volume, we compute spatial entropies

for a random subset of subvolumes. Consider for example one sampled subvolume

shown in Figure 4.3. Assuming the scalar field values v ∈ [1, 2, ..., n], the entropy

Ex is defined as follows (direction lyz is parallel to the x-axis and is anchored at the

point (y, z)) :

P yz
v =

] of occurrences of the scalar field value v

Total ] of voxels on the direction lyz
(4.1)
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Figure 4.3: A sampled subvolume along time steps. Entropy computation of x

dimension is performed on the line lyz and averaged over all (y,z) values, while the

one of t (time) dimension on lxyz and averaged over all (x,y,z) values.

Eyz
x = −

n∑

v=1

P yz
v log2 P

yz
v (4.2)

Ex =

∑

y,z E
y,z
x

∑

y,z

(4.3)

where
∑

y,z is over the grid points in the (y, z) plane.

On the other hand, the entropy of the temporal dimension Et is computed by

taking values at the same voxel along the time-axis as follows.

P xyz
v =

] of occurrences of the scalar field value v

Total ] of voxels along the temporal direction lxyz
(4.4)

E
xyz
t = −

n∑

v=1

P xyz
v log2 P

xyz
v (4.5)

Et =

∑

x,y,z E
x,y,z
t

∑

x,y,z

(4.6)

where
∑

x,y,z is the number of voxels at a time step.

If the number of the possible scalar field values is large (as for example would

be the case for floating point scalar field values), we first quantize the original values

into n values using a non-uniform quantizer such as the Lloyd-max quantizer [Jai89].
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Note that this quantization is only used for the purpose of computing the entropies.

Even though it can apply to general cases, we are primarily concerned about

establishing the relationship between spatial and temporal dimensions because there

is usually constant difference in the coherence of data values between the two differ-

ent types of dimensions. Thus we compute the spatio-temporal entropy ratio defined

as the ratio of the average spatial entropy to the temporal entropy.

We note that in general a time series will consist of a number of temporal

domains during which the spatio-temporal entropy ratio can be different. Our gen-

eral strategy is to decompose the time series into a set of temporal regions, each of

which will be characterized by its spatio-temporal entropy ratio. Hence we build a

separate IA-Octree for each temporal region.

4.1.2 Indexing Structure

The starting point of our IA-Octree is the 4-D octree structure that usually

divides the 4-dimensional space into 24 subspaces. We make use of the spatio-

temporal entropy ratio to determine the branching factor and the size of the 4-

D volumes at the leaves, and follow the branch-on-need strategy [WG92] as well.

We delay the branching until it is absolutely necessary as in [WG92]; however the

temporal branching is further delayed by a factor of the spatio-temporal entropy

ratio if the ratio is more than 1 or expedited by that factor if it is less than 1. Each

tree node contains the minimum and maximum values of the scalar fields in the

region represented by the node, a pointer to the first child, and a branching factor.
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4.2 Tree Traversal and Controllable Delayed Fetch-

ing

To optimize disk accesses and make rendering scalable, we organize the access

of active data blocks in large contiguous chunks, each of which corresponds to a

subspace of the original data as shown in Figure 4.4 for the 3-D case. We essentially

delay the retrieval of a supercell until a subtree, whose root is at a preset level, is

completely traversed. We traverse the IA-Octree in a depth-first order by checking

whether the node’s minimum and maximum values span the isovalue and the user-

specified hyperplane intersects the node. Once we reach the active supercells at the

lowest level, we insert each supercell into a priority queue using the priority key

(t,z,y,x) in the ordering that complies with the underlying data layout.

Figure 4.4: Controllable delayed data fetching. Disk accesses for the active supercells

in the subvolume corresponding to the grey node are delayed until the traversal

revisits the grey node.

The actual data fetching of the active supercells is delayed until the depth-first

order tree traversal revisits the nodes at a preset level. For example, disk accesses
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for the active supercells in the subvolume in Figure 4.4 are delayed until the tree

traversal revisits the grey node and then actual data fetching starts by popping

the top entry of the priority-queue and issuing the corresponding disk access. This

process continues until the priority-queue is empty after which the tree traversal

proceeds in depth-first order. Note that the example shows a 3-D case for illustration

purposes.

The controllable delayed fetching enables us to optimize the disk accesses and

is also quite effective in enabling scalable rendering which we explain in the next

section. We adjust the preset level at which delayed fetching is carried out depending

on the sizes of the data and main memory, as well as rendering speed. Setting the

prefetching level is a trade-off between efficient access (the higher the level the more

efficient the disk access is) and scalability.

4.3 Scalable Rendering

Each time we fetch the data at a preset level, isosurface extraction for the

corresponding subspace is performed. Scalar field values corresponding to all the

active supercells are loaded into a main memory. Consider a spatial-cut query type

specified by an isovalue and a hyperplane x[y or z] = α. If α is along a grid

line, we extract the corresponding slice from each of the loaded supercells, and

organize all the slices together to constitute a 3-D volume. For example, for the

x = α hyperplane query, we create a 3-D volume whose dimensions are equal to

the subvolume’s y, z, and t dimensions. Then we use the standard marching cubes
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algorithm [LC87] to extract triangles in the 3-D volume. However the volume is

selectively traversed because we know which portions of the volume are filled with

the data from the active supercells. This partial assembly of slices and triangle

extraction performed after every delayed fetching enables us to avoid forming a

large 3-D volume in main memory for triangle extraction in the spatial-cut query.

If α is not along a grid line, we extract the two consecutive slices containing α,

and perform a linear interpolation pointwise, to generate the slice corresponding

to α. The process is now completed as before. For temporal-cut queries, triangle

extraction is straightforward for cuts along one of the given time steps since each

loaded disk page corresponds to a 3-D supercell that satisfies the query. Otherwise,

we load the two supercells corresponding to consecutive time steps containing α,

and interpolate to generate the appropriate supercell. Now we can proceed as in the

spatial cut case using the loaded supercells.

Isosurface rendering is incrementally performed by rendering the extracted

triangles whenever the number of triangles reaches some preset threshold value,

concurrently with tree traversal, data movement, and triangle extraction.

4.4 Experimental Results

We compared the indexing structure efficiency of our IA 2n-tree with a typ-

ical 2n-tree and also the T-BON scheme [SH00], which is one of the two most

popular schemes for time-varying isosurface rendering and can also handle slicing

queries. For evaluation, we consider two large time-varying volumetric data sets:
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the Richtmyer-Meshkov data set for time steps 100 − 139, each down-sampled by

two along each spatial dimension, and the Five Jets data set [JET] consisting of

2000 time steps. Each time step of the Richtmyer-Meshkov data set involves a 1024

× 1024 × 960 grid with one-byte scalar values resulting in total 40 GB data set.

The Five Jets data set consists of 128 × 128 × 128 grid with 4-bytes floating point

values resulting in total 16 GB.

We ran all the tests on a single Linux machine which has dual 3.0 GHz Xeon

processors with approximately 50 MB/s maximum disk I/O transfer rate. In all our

experiments, we made use of only one of the two processors. Also, we used a simple

buffer management system in order to control disk I/O.

Table 4.1: Query performance comparison between IA 2n-tree and 2n-tree for the

Richtmyer-Meshkov data set. The results are the average values over various types

of slicing and different isovalues.

We first compare the IA 2n-tree with a 2n-tree for the Richtmyer-Meshkov data

set. Using the entropy measure, we obtained a spatio-temporal entropy ratio equal

to 1.5 over the time steps 100− 139 for the data set, resulting in 30% less indexing

structure size than the 2n-tree. However, Table 4.1 shows that it experiences only

3% indexing effectiveness reduction. Note that the tree traversal time decreases
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because the number of nodes that the tree has to visit decreases. Overall, it results

in 1.4 times better indexing structure efficiency.

Figure 4.5: Spatio-temporal entropy ratios computed at uniformly selected 100 ref-

erence time steps among the 2000 time steps in the Five Jets data. Each dashed

box corresponds to a time region.

Now we also compare the IA 2n-tree with the T-BON scheme for both the

Richtmyer-Meshkov and the Jet data set. The size of IA 2n-tree is only about 1/9

of the T-BON structure for the Richtmyer-Meshkov data set. For the Jet data set,

we arbitrarily divided the temporal domain of the Five Jets data set into four time

regions (see Figure 4.5) having respectively the spatio-temporal entropy ratios of

0.5, 1, 3, and 4. We separately built our tree on each time region. The size of IA

2n-tree is only about 1/8 of the T-BON structure for the Jet data. However, Table

4.2 shows that the indexing effectiveness reduction is only 9% and 6% respectively

for each of the two data sets. It results in about 8 times better indexing structure

efficiency.
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Table 4.2: Query performance comparison between IA 2n-tree and T-BON for the

Richtmyer-Meshkov and the Jet data set. The results are the average values over

various types of slicing and different isovalues.

The experimental results show that we can even obtain slightly better timing

results. This is because the effect of the increased data transfer due to the reduced

effectiveness can be mitigated by memory cache effect, but there is no way that

the longer tree traversal time of the larger T-BON structure and 2n-tree can be

mitigated in the course of successive queries.

4.5 Conclusions

We introduced a new indexing structure called Information-Aware 2n-trees.

Building a series of (n-1)-dimensional indexing structures causes a scalability prob-

lem in the current situation of continually growing resolution in every dimension.

However, building a single n-dimensional indexing structure can cause an indexing

effectiveness problem compared to the former case. The Information-Aware 2n-tree

is an effort to maximize the indexing structure efficiency by measuring the entropy

of the data and use it to ensure that the subdivision of space has as much coherence
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Figure 4.6: Isosurface of the Richtmyer-Meshkov instability data set (1024× 1024×

960) rendered at isovalue=70 and T=139.
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Figure 4.7: Isosurface of the Richtmyer-Meshkov instability data set (1024× 1024×

960, T=100-139) cut by isovalue=70 and Y=300.

as possible along each dimension. As a result, it provides higher indexing structure

efficiency than the previous 2n tree or n× 2n−1 trees.
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Figure 4.8: Zoomed image of Fig. 4.7.

Figure 4.9: Isosurface of the Richtmyer-Meshkov instability data set (1024× 1024×

960, T=100-139) cut by isovalue=70 and Z=500. (Time axis is orthogonal to the

paper.)
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Figure 4.10: Zoomed image of Fig. 4.9.
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Chapter 5

Volume Ray Casting on Cell Broadband

Engine

Ray casting [Lev90] has been recognized as a fundamental volume rendering

technique that can produce very high quality images. However, its application has

been limited only to datasets of very small sizes because of its high computational

requirements and its irregular data accesses. In particular, the amount of data to

be processed and the generally irregular access patterns required make it very hard

to exploit caches, which in general result in high memory latencies. Thus, it is very

difficult for current general purpose desktop computers to deliver the targeted level

of interactivity for most practical volumetric datasets.

Significant research efforts have attempted to accelerate volume rendering us-

ing graphics hardware. A representative technique is based on the exploitation of

the texture-mapping capabilities of the graphics hardware [CCF94, KMM+01]. The

texture-mapping based volume rendering has enabled a single PC with a commodity

graphics card to achieve interactive frame rates for moderate-sized data. However,

the rendering quality is generally not satisfactory [MHB+00]. Also, the size of the

data that can interactively be rendered is limited by the graphics memory size,

which is typically substantially smaller than system memory. When the data set
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does not fit in the graphics memory, which is often the case in time-series data,

interactivity becomes very hard to achieve because data has to be transferred from

system memory to graphics memory, a process that usually takes at least an order

of magnitude more time than the graphics memory bandwidth.

On the other hand, in order to address the increasing demands on interactive,

higher-quality video rendering, Sony, Toshiba and IBM (STI) teamed together to

develop the Cell Broadband Engine (Cell B.E.) [JAKS05], which is the first imple-

mentation of a chip multiprocessor with a significant number of general purpose

programmable cores. The Cell B.E. is a heterogeneous multicore chip capable of

massive floating point processing optimized for computation-intensive workloads

and rich broadband media applications, and thus opening up the opportunity to

put the ray casting algorithm into widespread, practical use.

In this chapter, we introduce a carefully tailored, efficient parallel implemen-

tation of volume ray casting on the Cell B.E. In general, achieving high performance

for demanding computations with highly irregular data movements is extremely dif-

ficult on the Cell B.E. as it was primarily designed for large scale SIMD operations

on media data streaming through the core processors. In our work, we aim to take

full advantage of the unique capabilities of the Cell B.E while overcoming its unique

challenges. In particular, we achieve an optimized implementation of two main ac-

celeration techniques for volume ray casting [Lev90] - empty space skipping and

early ray termination - on the Cell B.E.

We present a streaming model based scheme to efficiently employ both acceler-

ation techniques. This scheme makes an effective use of the heterogeneous cores and
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asynchronous DMA features of the Cell B.E. In our scheme, a PPE (the PowerPC

processor in the Cell B.E.) is responsible for traversing a hierarchical data structure

and generating the lists of intersecting voxels along the rays over non-empty regions,

as well as it is responsible for feeding the SPEs (Synergistic Processing Elements -

SIMD type cores with very high peak floating point performance) with the corre-

sponding lists. The SPEs are responsible for actual rendering of the data received

from the PPE, and naturally implement the early ray termination acceleration tech-

nique. To deal with the speed gap between the heterogeneous cores (PPE versus

SPEs), we introduce a couple of important techniques.

Our streaming model based scheme provides the following two key benefits.

First, we essentially remove the overhead caused by traversing the hierarchical data

structure by overlapping the empty space skipping process with the actual rendering

process. Second, using prefetching, we essentially remove memory access latency,

which has been the main performance degradation factor that is due to the irregular

data access patterns. In addition to these two key benefits, we can also achieve better

SIMD utilization in the SPEs because the SPEs know the sampling voxels to process

in advance and thus they can pack them into SIMD operations.

5.1 Cell Broadband Engine Overview

The Cell Broadband Engine (Cell B.E.) [JAKS05], as shown in Figure 5.1,

consists of one 64-bit PowerPC Processor Element (PPE) and eight Synergistic

Processor Elements (SPEs), all connected together by a high-bandwidth Element
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Interconnect Bus (EIB).

Each SPE contains a Synergistic Processor Unit (SPU), a Memory Flow Con-

troller (MFC) and 256K bytes of local storage (LS). The MFC has DMA engines that

can asynchronously transfer data across the EIB between the LS and main memory.

Each SPU contains a 128-bit-wide SIMD engine enabling 4-way 32-bit floating point

operations. The SPU can not access main memory directly. It obtains data and

instruction from its 256 Kbytes local storage and it has to issue DMA commands to

the MFC to bring data into the local store or write results back to main memory.

Cell allows using the same virtual addresses to specify system memory loca-

tions regardless of processor element type and thus, it enables seamless data sharing

between threads on both the PPE and SPE. It is also possible for SPEs to reference

different virtual memory spaces associated with respective applications executing

concurrently in the system.

With a clock speed of 3.2 GHz, the Cell B.E. has a theoretical peak perfor-

mance of 204.8 GFlops/s. The EIB supports a peak bandwidth of 204.8 GBytes/s

for on-chip data transfers. The memory interface controller provides 25.6 GBytes/s

bandwidth to main memory at peak performance.

5.2 Primary Work Decomposition and Allocation

In this section, we describe our primary work decomposition and assignment

scheme for volume ray casting on the Cell B.E. Our scheme is illustrated in Fig-

ure 5.2.
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Figure 5.1: Cell Broadband Engine Overview [IBM06].

Our work decomposition scheme is based on fine-grain task parallelism that

achieves load balancing among the SPEs as well as matching workload between the

PPE and the SPEs. In ray casting, the overall concurrency is obvious since we can

compute each pixel value on the screen independently of all the other pixels. To

take advantage of this fact, we divide the screen into a grid of small tiles. Each

tile will be independently rendered by a certain SPE. The size of the tile should be

small enough to balance loads between the SPEs. Also, an SPE should be able to

store in its very limited local memory the task list generated by the PPE as well as

the tile image itself. Note that the size of the task list from the PPE increases as

the tile size does. On the other hand, the tile size should be large enough to ensure

enough work between synchronizations.

The high communication bandwidth of the Cell B.E. makes it possible to

achieve excellent performance using image-based fine-grain decomposition despite

the fact that the Cell B.E. is essentially a distributed memory system, in which

object-based coarse-grain decomposition is usually chosen. This fine-grain task par-
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Figure 5.2: Work decomposition and assignment to the SPEs.

allelism enables us to achieve near-optimal load balancing and also to overcome the

limited local memory size.

Our work assignment scheme is static. We assign each tile to each SPE in some

order as shown in Figure 5.2, which shows Z-order based scheme. Such an ordering

tries to exploit spatial locality as much as possible. Even though the assignment

is static, the time it takes to render all the assigned tiles in each SPE is almost

identical for the different SPEs because of the fine-grain work decomposition.

5.3 Implementation of Acceleration Techniques

There are two most widely used acceleration techniques for ray casting [Lev90]:

empty space skipping and early ray termination. To skip empty space, one usually

constructs a hierarchical data structure that stores the information about which
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subvolume is empty and skips the subvolume during traversal. This acceleration

technique is very useful in most volumetric datasets since they usually have signifi-

cant portions that are empty space. On the other hand, early ray termination can

also save significant time by stopping a ray traversal after its opacity value reaches

some threshold since its final pixel value will hardly change by further ray traversal.

This acceleration technique is particularly useful when the objects embedded in the

volume are mostly opaque. Efficiently implementing these two acceleration tech-

niques is very important since it significantly affects the ray casting performance.

5.3.1 Streaming model for acceleration

Our basic idea for implementing the acceleration techniques on the Cell B.E.

is to assign empty space skipping to the PPE and early ray termination to the SPEs.

The PPE is a full-fledged 64-bit PowerPC with L1 and L2 caches, and hence can

handle branch prediction much better than the SPE. Clearly the PPE is a better

candidate for efficiently traversing a hierarchical data structure. Furthermore, the

SPE would have substantial overhead in handling empty space skipping due to the

limited local memory size as the size of the hierarchical data structure increases.

On the other hand, the SPE is ideal for the rendering work since it was designed

for compute-intensive workloads using SIMD style operations. Thus, we naturally

implement early ray termination on the SPE.

We streamline the empty space skipping process and the actual rendering

process. Given a ray, the PPE traverses the hierarchical data structure along the
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ray direction and collects ray segments (defining the corresponding sampled voxels)

which are only in non-empty subvolumes. Each ray segment is characterized by two

parameters R and L such that R is the ray offset from the viewpoint and L is the

length of the corresponding segment. The collected ray segments for all the pixels

of a tile are concatenated and transferred to the SPE in charge of the corresponding

tile, which then renders the tile with early ray termination option. This streaming

model is illustrated in Figure 5.3.

PPE SPETile (i, j )

R: Ray offset 
L : Segment Length

{R, L} {R, L} … {R, L}

Figure 5.3: Our streaming model for acceleration techniques.

In this streaming model, the PPE side is responsible for generating and sending

only the contributing (non-empty) ray segments to the SPEs. For that, we use a

simple 3-D octree data structure, in which each node has 8 children and stores a

maximum value of any voxel in the subvolume rooted at the node. However we

should carefully set the leaf node size. The smaller the size of the leaf node, the

more traversal time and the more amount of data needs to be transferred to the

SPEs. However, the larger the leaf size, the more empty space will need to be

handled by the SPEs, eventually leading to significant increase in rendering time.

Empty space can be determined by either opacity values after classification or raw

voxel values. If opacity values are used, the octree would have to be updated every

time the classification table is changed.
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Figure 5.4: Main algorithms in PPE and SPE.
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SPEs are responsible for the actual rendering process. An SPE waits until it

gets a signal from the PPE that it has collected all the contributing ray segments

corresponding to all the pixels in the tile under consideration. Once it receives

the signal from the PPE, it starts the rendering process for the corresponding tile.

The rendering process consists of four main steps: prefetching, interpolation, shad-

ing/classification, and compositing. During the rendering, four ray sampling points

are processed together in a loop to exploit the SIMD capabilities of the SPE. First,

for prefetching, we take advantage of the asynchronous DMA feature of the Cell

B.E. and use double buffering [IBM06]. We prefetch the next 4 subvolumes required

for rendering the next 4 ray sampling points into a buffer. To achieve peak perfor-

mance, we arrange the volume residing in main memory into a 3-D grid of small

subvolumes. If the 4 subvolumes necessary for rendering the current 4 ray sampling

points are ready, we concurrently perform 4 tri-linear interpolations using 4-way

SIMD instructions to reconstruct the signals. Reconstructed values are mapped to

a color and opacity value using shading and classification tables. Finally, we com-

posite the 4 values sequentially since compositing can not be concurrently done.

However, we concurrently composite the R, G, B values, and hence we utilize 3/4 of

the SIMD capability of the SPE. The final opacity value is then tested for early ray

termination, and, if so, we proceed to the next ray. After getting all the pixel values

for the tile, we send the tile image back to the main memory using asynchronous

DMA, and proceed to the next tile.
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5.3.2 Techniques for filling performance gap between het-

erogeneous cores

The successful implementation of our streaming model critically depends on

how much we can match the executions of the two stages of the model. If the PPE

performs its tasks faster than the SPE, the outputs generated by the PPE should be

stored somewhere so that it can proceed to execute the next task. However, much

more difficult is the situation when the PPE performs its tasks slower than the

SPE. In that case, the SPEs will be idle waiting for the inputs from the PPE, which

can substantially degrade the overall performance and negatively impact scalability

since the more the number of SPEs, the more work has to be performed by the PPE

and hence the more time the SPE will have to wait. In the following, we introduce

a couple of techniques for taking care of the possible performance gap between the

heterogeneous cores.

We first describe a simple way to handle the case when the PPE executes its

tasks faster than the SPEs handling of their corresponding tasks. We keep a small

buffer for each SPE in main memory, where each entry stores a complete list of

contributing ray segments for a tile. When the PPE finishes the task of creating a

list of ray segments for a tile, it stores the list in the buffer and sends a message,

which is actually the size of the list, to the mailbox of the SPE assigned for the

tile. Then, the SPE initiates the transfer from the buffer to its local memory. The

SPE keeps track of the entry from which it has to transfer data for the current tile.

Since the mailbox in the SPE has 4 entries, we essentially use it as a 4-entry queue
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so that the messages from the PPE can be buffered and used immediately when the

SPE is ready to proceed to the next tile. This scheme of using buffers on both PPE

and SPE enables us to efficiently deal with the situation of overflowing inputs from

PPE.

In the following subsections, we introduce our ”approximation+refining” scheme

to deal with the other case, in which the PPE is not fast enough to feed the SPEs.

This is unfortunately the case for the current Cell B.E.

Approximation

In order to reduce the workload of the PPE, we only generate the list of

contributing ray segments for every k × k-th pixel, rather than for every pixel.

Each segment is now computed by projecting the boundary of an intersected octree

leaf (corresponding to non-empty subvolume) onto the ray direction as shown in

Figure 5.5. We estimate the contributing ray segments for each subtile by taking

the union of the ray segments lists at the surrounding 4 corners. Then, the SPE

assigned to the tile uses the resulting list to render to all the pixels in the subtile of

size k × k. This method significantly reduces the processing time in the PPE by a

factor of k2. However, it increases the processing time in the SPE because the SPE

ends up with processing much more empty voxels due to the approximate nature of

the contributing ray segments used for each pixel.

In this approximation technique, we might miss some intersecting subvolumes

for some pixels as shown in Figure 5.6 even though we use the projected ray seg-

ments since we selectively shoot rays to get the contributing ray segments. Missed

subvolumes may lead to incorrect rendering since it can end up with reporting no
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Figure 5.5: Approximation technique.

contributing ray segments for a particular subtile even though there is a non-empty

subvolume, which is not traversed by any of the four rays.

Thus, we need to make sure that we never miss any subvolume for correct

rendering. In orthographic ray casting, where all rays are cast in parallel, we only

need to make sure the interval value k is smaller than the minimum distance between

any two grid points of the leaf subvolume. In perspective ray casting, we can easily

prove the following.

Proposition 1 Two rays that are k apart on the image plane, originating

from the same viewpoint, never diverge more than 2k inside the volume as along as

the distance from the viewpoint to the image plane, diste, is larger than the distance
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k

Figure 5.6: The case of missing non-empty subvolumes. In the figure, the shaded

region is not checked by any of rays using the approximation technique.

from the image plane to the far end of the volume, distv. See Figure 5.7.

k y

diste distv

Image Plane
Volume 

Figure 5.7: Proof of proposition 1.

Proof. First, for the case when the image plane is beyond the far end of the volume,

rays are always less than k apart inside the volume. For the other case, we have a

simple relationship diste : k = (diste + distv) : y, where k is the distance between

the two rays on the image plane and y is the one on the far end of the volume. In

order to have y less than 2k, diste must be larger than distv.

Thus, we use the approximation technique by setting the k value to half of

the minimum distance between any two grid points of the leaf subvolume. Then,
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we can guarantee that we can safely zoom out up to 1/2 and zoom in to infinity

since the eye distance to the image plane is always larger than the distance from the

image plane to the far end of the volume. This guarantee is acceptable in volume

rendering since we are not interested in investigating objects in smaller size.

Refining

In order to reduce the amount of additional work performed by the SPE due to

the approximation technique, we send to SPEs additional information about which

subvolume is empty so that SPEs can skip the processing of the sampling points that

belong to empty subvolumes. We use hashing to capture this additional information

as follows.

Given a tile, we keep a hash table for every k × k-th ray and record which

subvolume is not empty using the following universal hashing function.

key= ( ranX · x + ranY · y + ranZ · z ) modulo PR

hash-table[ key ] = 1






PR: prime number equal to the hash table size

0 < random number ranX, ranY, ranZ < PR

x,y,z: the smallest coordinates of the subvolume

Then, we approximate the hash table for a subtile by taking the union of the

hash tables at the 4 surrounding corners and send it to a corresponding SPE. The

SPE skips a sampling point if it belongs to an empty subvolume by checking the

hash table. Note that by using the hash table, we might have the case where an

empty subvolume is recognized as non-empty, but will never have the opposite case.

Also, by setting the hash table size large enough, we can significantly reduce the
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false alarm rate.

5.4 Experimental Results

Dataset Size Characteristic

Foot 2563 (16MB) small empty space + moderate opaque interior

Aneurism 2563 (16MB) moderate empty space + moderate opaque interior

Engine 2562 × 128 (8MB) small empty space + small opaque interior

Fuel 2563 (16MB) large empty space + small opaque interior

Table 5.1: Test Datasets. (Fuel dataset size is originally 643. We enlarged it for

better comparison.)

To evaluate the performance of our streaming model based methods, we se-

lected four volumetric datasets that are widely used in the literature: two from the

medical domain (foot and aneurism) and two from the science/engineering domain

(fuel and engine) [Dat]. Table 5.1 summarizes the characteristics of the correspond-

ing datasets.

All default rendering modes are semi-transparent and default rendering image

size is 2562. All experimental results were obtained by averaging the results from 24

randomly selected view points. We chose 16×16 for tile size and 8 for the k-value by

experiments. We used one Cell B.E. 3.2GHz throughout the evaluation. Figure 5.8

shows rendered images obtained using our method.

We first demonstrate that our streaming model with the ”approximation+refining”
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scheme removes the overhead of traversing the octree structure for empty space skip-

ping by almost fully overlapping it with the actual rendering process. Figure 5.9

shows the processing time for the PPE and the SPEs for three different combina-

tions of the techniques using the four datasets. Processing time on the PPE is the

time it takes to traverse the octree data structure and to generate the contributing

ray segments. The SPE time is the time it takes to perform the actual rendering.

When none of the techniques is used, we end up starving the SPEs due to the long

processing time on the PPE. When only the approximation technique is used, we

significantly reduce the processing time on the PPE, but end up with increased SPE

time. Finally, when the approximation technique is used in combination with the

refining technique, we achieve the best results. Figure 5.9 also shows that the cur-

rent implementation can scale up to the double number of SPEs since the processing

time on the PPE is allowed to double for the balance of performance between the

PPE and the SPE.

Another important benefit of our streaming model is that it essentially removes

the latency due to the access of volume data by making it possible to almost always

prefetch the data. The first two rows of Table 5.2 compares the rendering time

with and without prefetching and shows that prefetching reduces rendering time by

about one half.

However, it does not show that there is no memory access latency. The SPE

program is blocked until the subvolumes required for rendering the current sampling

points are moved to the local memory. If prefetching hides memory latency, our

rendering time should be approximately the same as the time it takes for rendering
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foot aneurism engine fuel

w/o prefetch 224 210 133 76

w/ prefetch 113 99 72 38

local volume,

w/o early ter-

mination

161 103 85 39

w/ prefetch,

w/o early ter-

mination

179 112 88 41

Table 5.2: Effects of prefetching (in milliseconds).

any volumetric data stored in the local memory. The third and fourth row of

Table 5.2 compares the rendering time on local volume with one with our prefetching

scheme. Note that since early ray termination makes the rendering time depend on

the data contents, we disabled early ray termination in those experiments. We

believe that the ∼ 7% increase in the results is from prefetch I/O overhead because

we achieved only less than 1% better results in the same experiments with only

difference in the size of data transfer, which was set to zero.

Our fine-grain task decomposition allows us to achieve very good load balance.

Figure 5.10 shows that our scheme achieves near-optimal load balance with average

percentage standard deviation 1.7% among the 8 SPEs of the Cell B.E.

Finally, we compare the rendering performance on the Cell B.E. 3.2GHz with

that of the Intel Xeon dual processor 3GHz with SSE2. We implemented the same

acceleration techniques with the same ray casting algorithm. SSE2 vector instruc-
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tions are used for interpolation and compositing in the same way as in the SPEs at

Cell B.E. We created two threads on Intel Xeon while creating two threads on the

PPE and 8 threads on the SPEs. Two threads on each of Xeon and the PPE reduce

tree traversal time by dividing the traversal work. Figure 5.14 shows that our scheme

for Cell B.E. consistently achieves an order of magnitude better performance.

5.5 Conclusions

We presented a streaming model based volume ray casting, which is a new

strategy for performing ray casting. This strategy enables the full utilization of

empty space skipping and early ray termination, in addition to removing memory

latency overheads typically encountered in ray casting due to irregular data accesses.

Moreover, to successfully implement this strategy on the Cell B.E., we introduced

a few additional techniques including the ”approximation+ refining” technique to

balance the performance gap between the two streaming stages. We have presented

experimental results that illustrate the effectiveness of our new techniques.
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Figure 5.8: Rendered images from four datasets throughout the tests.
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Figure 5.10: Load balance among eight SPEs.
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Scalability with Volume Size
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Figure 5.12: Performance with respect to the volume size.
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Chapter 6

Volume Ray Casting on CUDA

The performance of graphics processors (GPUs) is improving at a rapid rate,

almost doubling every year. Such an evolution has been made possible because

the GPU is specialized for highly parallel compute-intensive applications, primarily

graphics rendering, and thus designed such that more transistors are devoted to

computation rather than caching and branch prediction units. Due to compute-

intensive applications’ high arithmetic intensity (the ratio of arithmetic operations to

memory operations), the memory latency can be hidden with computations instead

of using caches on GPUs. In addition, since the same instructions are executed

on many data elements in parallel, sophisticated flow control units such as branch

prediction units in CPUs are not required on GPUs as much.

Although the performance of 3D graphics rendering achieved by dedicating

graphics hardware to it far exceeds the performance achievable from just using CPU,

graphics programmers had up to now to give up programmability in exchange for

speed. They were limited to using a fixed set of graphics operations. On the other

hand, instead of using GPUs, images for films and videos are rendered using an

off-line rendering system that uses general purpose CPUs to render a frame in hours

because the general purpose CPUs give graphics programmers a lot of flexibility to
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create rich effects. The generality and flexibility of CPUs are what the GPU has

been missing until very recently.

In order to reduce the gap, graphics hardware designers have continuously

introduced more programmability through several generations of GPUs. Up until

2000, no programmability was supported in GPUs. However, in 2001, vertex-level

programmability started to appear, and in 2002, pixel-level programmability also

started being provided on GPUs such as NVIDIA’s GeForce FX family and ATI’s

Radeon 9700 series. This level of programmability allows programmers to have

considerably more configurability by making it possible to specify a sequence of

instructions for processing both vertex and fragment processors.

However, accessing the computational power of GPUs for non-graphics appli-

cations or global illumination rendering such as ray tracing often requires ingenious

efforts. One reason is that GPUs could only be programmed using a graphics API

such as OpenGL, which imposes a significant overhead to the non-graphics appli-

cations. Programmers had to express their algorithms in terms of the inadequate

APIs, which required sometimes heroic efforts to make an efficient use of the GPU.

Another reason is the limited writing capability of the GPU. The GPU program

could gather data element from any part of memory, but could not scatter data to

arbitrary locations, which removes lots of the programming flexibility available on

the CPU.

In order to overcome the above limitation, NVIDIA has developed a new hard-

ware and software architecture, called CUDA (Compute Unified Device Architec-

ture), for issuing and managing computations on the GPU as a data-parallel com-
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puting device that does not require mapping instructions to a graphics API [NVI07].

CUDA provides the general memory access feature, and thus, the GPU program is

now allowed to read from and write to any location in memory on CUDA.

In order to harness the power of the CUDA architecture, we need new design

strategies and techniques that fully utilize the new features of the architecture.

CUDA is basically tailored for data-parallel computations and thus is not well suited

for other types of computations. Moreover, the current version of CUDA requires

programmers to understand the specific architecture details in order to achieve the

desired performance gains. Programs written without the careful attention to the

architecture details are very likely to perform poorly.

In this chapter, we explore the application of our streaming model, which was

introduced in the previous chapter for the Cell processor, for the CUDA architecture.

Since the model is designed for heterogeneous compute resource environment, it is

also well suited for the CPU and CUDA combined environment. Our basic strategy

in the streaming model is the same as in the case of Cell processor. We assign

the work list generation to the first stage (CPU) and actual rendering work to the

second stage (CUDA) with data movement streamlined through the two stages. The

key is that the we carefully match the performances of the two stages so that two

processes are completely overlapped and no stage has to wait for the input from the

other stage.

Our scheme features the following. First, we essentially remove the overhead

caused by traversing the hierarchical data structure by overlapping the empty space

skipping process with the actual rendering process. Second, our algorithms are
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carefully tailored to take into account the CUDA architecture’s unique details such

as the concept of warp and local shared memory to achieve high performance. Last,

the ray casting performance is 1.5 times better than that of the Cell processor with

only a third lines of codes of the Cell processor and 15 times better than that of

Intel Xeon processor.

6.1 The CUDA Architecture Overview

The CUDA (Compute Unified Device Architecture) hardware model has a set

of SIMD multiprocessors as shown in Figure 6.1. Each multiprocessor has a small

local shared memory, constant cache, texture cache and a set of processors. At any

given clock, every processor in the multiprocessor executes the same instruction. For

example, NVIDIA Geforce 8800GTX architecture is comprised of 16 multiprocessors.

Each multiprocessor has 8 streaming processors for a total of 128 processors.

Figure 6.2 shows the CUDA programming model. CUDA allows programmers

to use C-language to program it instead of graphics APIs such as OpenGL and

Direct3D. In CUDA, the GPU is a compute device that can execute a very high

number of threads concurrently. The batch of threads is organized as a grid of

thread blocks as shown in the Figure 6.2. A thread block is a group of threads

that can synchronize and efficiently share data through the local shared memory.

One or more thread blocks are dispatched to each multiprocessor and executed

using time sharing. Blocks are further organized into a grid. However, threads in

different blocks can not communicate and synchronize with each other. In fact,
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Figure 6.1: CUDA Hardware Architecture [NVI07].

synchronization mechanism is provided only to the threads in the same block, and

thus, the correctness of any other communication attempts is not guaranteed because

there is no mechanism that can determine the order of the threads executions in the

case. This block independence makes CUDA scalable architecture because we can

process more blocks in parallel as we add more processing units although it reduces

programming flexibility.

As the memory and register file in a multiprocessor are shared by one or more

blocks of a large number of threads, there is a limit in how many threads and blocks

can be launched, depending on how much resources each thread and block requires.
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Figure 6.2: CUDA Programming Model [NVI07].

It is important to optimize the resource usage per thread so that more threads and

blocks can be launched because as more threads get available there is a better chance

that memory latency can be hidden.

It is also important to efficiently use memory hierarchy of CUDA to achieve

high performance. The shared memory in each multiprocessor provides more than

two orders of magnitude faster access to data than what the device memory does,

therefore it is important to utilize the shared memory. The best way is to pre-load

data that is frequently accessed in the program onto the shared memory before it is

used.
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Another important aspect of the current version of CUDA is the concept of

warps. A warp is a SIMD group of threads, which constitute the unit of threads

that a thread scheduler for a multiprocessor periodically switches to maximize the

computational unit usage. If a warp of threads can not progress any more for

some reason, then the scheduler replaces the current one with another warp that

was waiting in the threads pool. A block of threads is typically comprised of a

few warps. If the threads in a warp execute different instructions or their memory

accesses cause bank conflicts, then the execution of the threads in the warp will be

serialized, which will cause significant performance degradation. Thus, it is very

important to take the concept of warp into consideration when programming for

CDUA so that we can fully take advantage of the simultaneous computations of the

multiprocessor.

6.2 CELL v.s. CUDA

Table 6.1 compares the two different architectures, Cell processor and CUDA,

with a traditional CPU architecture in several categories. The main feature of Cell

processor is that it provides more general parallel programming models than CUDA,

making it a better choice for more general applications. For example, CUDA can

not implement a streaming model on the chip, where a group of threads produce

data and another group of threads consume the data for a certain processing at one

kernel launch, while Cell can support that streaming programming model. However,

CUDA provides much easier parallel programing model than Cell. For example, our
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ported code of the core volume rendering function for the Cell processor has more

than 3 times as many lines as that of CUDA.

Cell B.E. CUDA CPU

Programming model SPMD, MPMD SPMD SPSD

Simultaneous Threads tens Thousands 1

Programmability Difficult Medium Easy

Handling Memory La-

tency

Pre-fetching and

Double Buffering

Multithreading Cache

Feature Various Parallel

Programming

Model

Easier Parallel

Programming

General Pur-

pose

Limitation Explicit data

movement by

programmers

Limited Program-

ming Model

Low Perfor-

mance

Table 6.1: Comparison of three different architectures.

In the context of volume rendering, besides the programmability and perfor-

mance difference, another main difference of the two parallel architectures is that

Cell processor provides more scalable support to large volume rendering because it

uses main memory as a primary data storage. On the other hand, CUDA has to

move data from main memory to graphics device memory which is usually smaller

than main memory and because the data communication bandwidth is usually an

order of magnitude slower than graphics memory bandwidth, it loses significant
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amount of performance once it begins communicating with main memory during

run time.

6.3 Primary Work Decomposition and Allocation

In this section, we describe our primary work decomposition and allocation

scheme for volume ray casting on CUDA.

x

y

Multiprocessor 0 Multiprocessor 15

CUDA

Figure 6.3: Work decomposition and assignment on CUDA. A tile consists of x by

y block of threads and is dispatched into one of the multiprocessors.

Our work decomposition scheme is based on fine-grain task parallelism that

achieves load balancing among the multiprocessors. In ray casting, the overall con-

currency is obvious since we can compute each pixel value on the screen indepen-

dently of all the other pixels. To take advantage of this fact, we divide the screen
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into a grid of small tiles as we did in the case of Cell processor. A block of threads

equal to the number of pixels on each tile will be allocated for the tile and the block

of threads will be executed by a multiprocessor, independently of other blocks of

threads.

However, there are several significant details that are different than the case

of Cell processor. First, the maximum size of the tile is determined by how much

resource each thread requires. Since the register file and shared memory are shared

by one or more blocks of threads, we can only launch as many threads as the

resource allows. Second, the dimensions of the tile are carefully selected considering

the concept of warp. Since the threads in a warp should share the work list to

achieve high performance, we design the dimensions of the tile such that a warp of

threads occupy a rectangular region with as equal dimensions as possible. In our

implementation, we use a tile of 4x32 dimension with a 4x4 subtile sharing the work

list. Last, the assignment of each tile to a multiprocessor is done by the CUDA

scheduler while we had to assign the tasks to the cores of the Cell processor.

6.4 Implementation of the Streaming Model

In this section, we describe the implementation of our streaming model from

the previous chapter on CUDA architecture. As in the case of Cell processor, we

assign two optimization techniques, empty space skipping and early ray termination,

to an appropriate hardware, and streamline the data movement between the stages

in the model. Efficiently implementing these two acceleration techniques is very
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important since it significantly affects the ray casting performance.

6.4.1 Stage 1: Work List Generation

A general purpose processor is clearly a better candidate for efficiently travers-

ing a hierarchical data structure. Furthermore, CUDA would have a substantial

overhead in handling empty space skipping due to the concept of warp, in which

a group threads, 32 in the current version of CUDA, have to execute the same

instruction at any given clock cycle for high performance.

The procedure for generating work lists is the same as in the case of Cell

processor. Given a ray, a CPU traverses the hierarchical data structure along the ray

direction and collects contributing ray segments traversing non-empty subvolumes.

Each ray segment is characterized by the ray offset from the viewpoint and the

length of the corresponding segment. The collected ray segments for all the pixels

of a tile are concatenated and transferred to CUDA.

We also employ the approximation technique used for Cell processor. However,

for CUDA, there is another reason for using this technique. Due to the concept of

warp, it is better for a group of threads to share the work lists than each thread

in the same warp to run independently. Therefore, we only generate the list of

contributing ray segments for every k × k-th pixel, rather than for every pixel. For

example, our tile (thread block) dimensions are 4 × 32 and we choose every 4 ×

4-th pixel for the work list generation. The region (16 threads) surrounded by the

4 chosen pixels is half warp size, and we estimate the contributing ray segments for
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the region by taking the union of the ray segments lists at the surrounding 4 corners.

Then, CUDA uses the resulting list to render to all the pixels in the region of size

k× k. Note that the current version of CUDA has a shared memory organized into

16 banks and thus it is recommended that at least a half warp of threads executes

the same instruction.

k

k

A contributing ray segment in 
approximation

A contributing ray segment in 
original

A Tile

Figure 6.4: Approximation technique on CUDA.

The main difference of implementing the streaming model from the case of the

Cell processor is the method used to stream the data. While we have multiple chan-

nels from the first stage (a PPE) to the second stage (SPEs) on the Cell processor

because each SPE runs independently, we have only one channel to CUDA because

CUDA does not allow the independent access to each multiprocessor. Therefore,

we need a large streaming unit to move to all the multiprocessors at one kernel

launch as illustrated in Figure 6.5. In our implementation, our streaming unit is

32 tiles (blocks), which will allocate 2 blocks of threads to each multiprocessor on

the Geforce 8800GTX with 16 multiprocessors. After launching 32 tiles of work on

CUDA, the CPU starts getting the contributing lists for the next 32 tiles and wait
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until the previous launch is completed.

CPU

Contributing 
Ray Segment List

(Offset, Length)…

A set of tiles

Volumetric Data

CUDA

Rendered image

Figure 6.5: The streaming model for CUDA. Note that the streaming unit is a set

of tiless compared to one tile in the case of Cell processor.

6.4.2 Stage 2: Rendering

CUDA is ideal for the actual rendering work since it was designed for compute-

intensive parallel workloads. Thus, we naturally implement rendering and early ray

termination on CUDA. Before the rendering starts, we pre-load all the work lists

for the current tile into the shared memory since the shared memory provides data

with the latency of L-1 cache (1∼2 cycles). The other procedures are the same as

before. We perform reconstruction, shading, classification, and finally compositing

on the sample points along all the contributing ray segments. The final image is

transferred back into main memory after a final kernel launch is finished.
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Load Balance (CPU v.s. CUDA)
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Figure 6.6: Load balance between CPU and CUDA.

6.5 Experimental Results

To evaluate the performance of our streaming model based implementation,

we used the same four volumetric datasets and rendering mode used in the case of

Cell processor. Please refer to Table 5.1 for the characteristics of the datasets. We

used Geforce 8800GTX with a ver 1.0 CUDA drivers with Intel core 2 duo processor

throughout the evaluation.

We first demonstrate that our streaming model implemented on the CUDA

environment removes the overhead of traversing the octree structure for empty space

skipping by fully overlapping it with the actual rendering process. Figure 6.6 shows

the processing time for CPU and CUDA on the four datasets. Processing time

on the CPU is the time it takes to traverse the octree data structure to generate

the contributing ray segments. The CUDA time is the time it takes to perform the

actual rendering. This figure shows that the empty space skipping time is completely
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Scalability with Volume Size
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Figure 6.7: Performance with respect to the volume size.

Scalability with Screen Size
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Figure 6.8: Performance with respect to the screen size.
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Intel Xeon 3GHz v.s. Cell 3.2GHz v.s. CUDA
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Figure 6.9: Performance comparison (CPU v.s. Cell v.s. CUDA).

hidden.

Figure 6.7 and 6.8 show that the performance of our implementation with

respect to input volumetric size and output screen size.

We compare the rendering performance on CUDA with the Cell B.E. 3.2GHz

and also Intel Xeon dual processor 3GHz with SSE2. Figure 6.9 shows that the

performance on CUDA consistently achieves 15 times better performance that that

of Intel and 1.5 times better than that of Cell processor. Also, it is very likely

that it will produce even better performance once its 3-D texture unit is exposed

in the later version of CUDA because we can utilize the texture cache unit in each

multiprocessor.

This results show that the new multi-core/many-core architectures can handle
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compute and communication intensive applications such as volume ray casting in

much more efficient way since in particular, the Xeon processor and the Cell proces-

sor that we have used for the experiments do not have much difference in the number

of transistors (286 million and 234 million, respectively) and operate at about the

same frequency (3GHz and 3.2GHz, respectively).

6.6 Conclusions

In this chapter, we explored the application of our streaming model, which was

introduced in the previous chapter for Cell processor, for the CUDA architecture.

Our scheme fully utilizes the heterogeneous compute resource environment by using

both task parallelism (simultaneous processing of the optimization techniques on

different types of cores) and data parallelism (rendering by thousands of threads).

CUDA provides about 1.5 times better performance than Cell processor while

the CUDA program has only a third of parallel code lines of that of Cell processor

in our implementation. However, aside from other factors such as the number of

transistors and price, CUDA has a scalability problem with data set size because it

can only efficiently render a data set which can fit in graphics memory, while the

Cell processor can handle as large data as main memory allows.

The improvements in GPU performance and flexibility are likely to continue in

the future and will allow programmers to write increasingly diverse and sophisticated

programs that take advantage of the capabilities of the GPUs. There are emerging

efforts that combine CPU and GPU into a single chip. However, we will need
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efficient algorithmic strategies to make use of the available heterogeneous compute

resources.
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Chapter 7

Conclusion

In this dissertation, we have explored how to efficiently render large volumet-

ric data sets. In [Dub05], Intel recognized that recognition, mining, and synthesis

applications will be future workloads, which will push computers into the era of

Teraflops. They are all compute intensive, highly parallel applications. Volume ren-

dering, as a compute intensive and highly parallel synthesis application, represents a

future workload on computers. The methods presented here are efforts to maximize

what the current computer system can offer for this future workload. Based on our

two most critical observations on our current computer systems (wider gap between

computation and communication performance, and trend toward heterogeneous par-

allel compute resources), this dissertation has made the following contributions to

the field.

• We have shown how to layout data on a disk to efficiently perform an out-

of-core axis-aligned slicing of large multidimensional scalar fields. We have

analytically and through experimental results shown that our scheme provides

faster processing time and requires less cache memory than the typical Z-

order scheme for any type of axis-aligned out-of-core slicing queries at every

k-th value (k > 1), without any data replication. Our scheme is currently the
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best known scheme for this application.

• We have shown how to efficiently build an out-of-core indexing structure for

an arbitrary n-dimensional volumetric data. Our scheme uses the entropy

theoretic notion to maximize the indexing structure efficiency and is partic-

ularly useful when dealing with time-series volumetric data. We have shown

that our scheme achieves an order of magnitude higher indexing structure

efficiency than the best previous known indexing structures.

• We have presented a streaming model to efficiently implement volume ren-

dering on a heterogeneous compute resource environment. We have shown

how to efficiently implement two main optimization techniques on a hetero-

geneous multi-core chip. We have particularly shown how to implement the

model on Cell Broadband Engine. Through the experimental results, we have

shown that our model essentially removes the optimization overhead occurred

in previous sequential models and moreover it enables us to essentially remove

memory access latency through prefetching.

• We have shown that our streaming model can be applied to other heteroge-

neous compute resource environment. We have extended the streaming model

for volume rendering used on Cell processor to the PC environment where

CPU and GPU (particularly CUDA) are combined into a single system. We

have shown that our model gives the same benefits as in the Cell processor.

Also, we have compared the strengths and weaknesses of three processor ar-

chitectures (Intel Xeon processor, Sony/Toshiba/IBM Cell Broadband Engine,
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and NVIDIA CUDA architecture) and reported with the performance results

on each architecture for a number of widely used benchmarks.

Parallel processors such as multi-cores and GPUs have certainly become a

mainstream computing environment. Currently, what is missing is efficient pro-

gramming models for those heterogeneous, parallel processors. Developing efficient

parallel programming models is very important to make those parallel processors

successfully accepted. An efficient programming model makes it easier to harness

the strength of a particular hardware without having to write low level code tightly

coupled to the architecture. It lightens the burden of programmers throughout the

whole software development process including coding, debugging, and maintenance.

It should abstract the hardware so that programmers do not have to consider low

architecture details which may change in later versions of the hardware and possibly

support cross-platform portability. However, unfortunately, programmers currently

must know low architecture details to get any good performance on those parallel

processors and portability is almost never achievable. Our work on the Cell and

CUDA has aimed at providing a high-level programming model that can facilitate

the exposure of the strengths of those parallel architectures for a specific applica-

tion. We believe that our work provides insights for developing better programming

models for wider applications.
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