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In recent years, considerable effort has been placed on developing efficient and

robust solution algorithms for the incompressible Navier–Stokes equations based

on preconditioned Krylov methods. These include physics-based methods, such as

SIMPLE, and purely algebraic preconditioners based on the approximation of the

Schur complement. All these techniques can be represented as approximate block

factorization (ABF) type preconditioners. The goal is to decompose the application

of the preconditioner into simplified sub-systems in which scalable multi-level type

solvers can be applied. In this dissertation we develop a taxonomy of these ideas

based on an adaptation of a generalized approximate factorization of the Navier-

Stokes system first presented in [45]. This taxonomy illuminates the similarities

and differences among these preconditioners and the central role played by efficient

approximation of certain Schur complement operators. We then present a parallel

computational study that examines the performance of these methods and compares

them to an additive Schwarz domain decomposition (DD) algorithm. Results are

presented for two and three-dimensional steady state problems for enclosed domains



and inflow/outflow systems on both structured and unstructured meshes. The nu-

merical experiments are performed using MPSalsa, a stabilized finite element code.

We have also tested the utility of these methods in a more realistic fluid setting by

solving an optimization problem related to the shape and topology of a microfluidic

mixing device. This flow is modeled by Induced Charged Electro-osmosis (ICEO)

described in [54]. The numerical results are performed using Sundance, a tool for

the development of finite-element solutions of partial differential equations.
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Chapter 1

Introduction and Background

1.1 Introduction

Current leading-edge engineering and scientific flow simulations often entail

complex two and three-dimensional geometries with high resolution unstructured

meshes to capture all the relevant length scales of interest. After suitable dis-

cretization and linearization of the governing partial differential equations, these

simulations can produce large linear systems of equations with on the order 105 to

108 unknowns. This leads to a central challenge in computational science and en-

gineering today which is efficiently and robustly solving large sparse linear systems

that arise from linearization and discretization of the governing equations.

The two main techniques for solving large matrix problems are direct and it-

erative methods. Direct methods, based upon the factorization of the coefficient

matrix into easily invertible matrices, are widely used in many industrial codes.

These solvers can be very robust especially for two dimensional problems and are

commonly used in structural analysis, computational fluid dynamics, and in the

design of semiconductors. However, the number of operation counts and mem-

ory requirements needed by direct methods make them prohibitive for increasing

problem size. Iterative methods require far less memory and fewer operations than

direct methods. So for large three dimensional, multiphysics simulations, iterative
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methods with preconditioning are the only option available to efficiently solve these

problems.

Generally, iterative techniques do not produce an exact answer after a cer-

tain number of steps, but rather reduce the residual by a certain amount after

each step. The iteration stops when the error is less than a user-supplied value.

This is in contrast to direct methods, which in the absence of roundoff error pro-

duce an exact answer after a finite number of steps. Historically, iterative methods

have been popular in the nuclear power and oil industries. The field of iterative

methods comprises a large variety of techniques including basic techniques, such as

Jacobi, Gauss-Seidel, SOR iterations, to Krylov subspace methods, and multilevel

techniques. The focus of this work is to increase the reliability and performance

of Krylov subspace methods by developing efficient and scalable preconditioning

strategies for the incompressible Navier-Stokes equations.

Preconditioning refers to the process of transforming a linear system, Ax = b,

into another Âx = b̂, that has better properties with respect to iterative solution

strategies. The matrix that transforms A to Â is called a preconditioner. In other

words, if Q is a matrix that approximates A, then

Q−1Ax = Q−1b (1.1)

has the same solution as the original system, Ax = b, but should be easier to solve

than Ax = b. In (1.1), the matrix Q acts as a left oriented preconditioner. We can

also precondition on the right, by

AQ−1y = b (1.2)
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where x = Q−1y. In practice, a good preconditioner Q is chosen to be easy to con-

struct and apply, while the preconditioned system should be easy to solve. In many

cases, the preconditioning matrix is designed to improve the spectral properties of

the original matrix.

The two major types of preconditioners are algebraic and physics-based. Al-

gebraic preconditioners are designed to be used with any matrix and include incom-

plete factorization (ILU), sparse approximate inverses, and, to some extent, domain

decomposition, and multilevel multigrid techniques. A further discussion of ILU

methods and other algebraic preconditioners is found in Section 1.4.1. Physics-

based preconditioners use the underlying physical problem as motivation for the

derivation of the methodology. By using information about the underlying physical

model one can develop more robust preconditioners. We briefly discuss such meth-

ods along with domain decomposition and multilevel multigrid techniques in Section

1.4.2. In Section 1.2, we give some background on our goal which is preconditioning

the incompressible Navier-Stokes equations. In Section 1.3, we discuss two iterative

solvers for solving sparse linear systems of equations, mainly CG and GMRES, and

then tell why preconditioning is important to make these solvers function efficiently.

1.2 Background

The modeling of incompressible flows are useful for understanding diverse phe-

nomena such as combustion, pollution, chemical reactions, and manufacturing pro-

cesses. We consider solution methods for the incompressible Navier-Stokes equations

3



where the equations below represent conservation of momentum and mass, and the

constitutive equation for the Newtonian stress tensor,

Momentum: ρ(u · ∇)u = ∇ · T + ρg

Mass: ∇ · u = 0

Stress Tensor: T = −P I + µ(∇u + ∇uT)

(1.3)

in Ω ⊂ R
d(d = 2 or 3). Here the velocity, u, satisfies suitable boundary conditions on

∂Ω, P represents the hydrodynamic pressure, ρ the density, µ the dynamic viscosity,

and g the body forces.

Our focus is on improving solution algorithms for the systems of equations

that arise after discretization and linearization of the system (1.3) by physics based

preconditioning. A nonlinear iteration based on an inexact Newton-Krylov method

is used to solve this problem. If the nonlinear problem to be solved is written as

G(x) = 0, where G : R
n → R

n, then at the kth step of Newton’s method, the

solution of the linear Newton equation

J(xk)sk = −g(xk) (1.4)

is required, where xk is the current solution and J(xk) denotes the Jacobian matrix

of G at xk. Once the Newton update, sk, is determined, the current approximation,

xk, is updated via

xk+1 = xk + sk.

Newton-Krylov methods [16] relax the requirement of computing an exact solution

to (1.4) by using a Krylov subspace method, such as GMRES, to obtain an iterate

4



sk that satisfies the inexact Newton condition,

‖g(xk) + J(xk)sk‖ ≤ ηk‖g(xk)‖, (1.5)

where, ηk ∈ [0, 1], is a tolerance. When ηk = 0, this is an exact Newton method. For

a discussion of the merits of different choices of ηk, see [16]. In the computational

results of Chapter 4, ηk is chosen to be a constant and our attention is focused on

preconditioning methods for use with GMRES solving for the Newton update.

For the discrete Navier-Stokes equations, the Jacobian system at the kth step

that arises from Newton’s method is








F BT

B̂ −C

















∆uk

∆pk









=









gk
u

gk
p









, (1.6)

where F is a convection-diffusion-like operator, BT is the gradient operator, B̂ is the

divergence operator that for some higher-order stabilized formulations can include

a contribution from non-zero higher-order derivative operators in the stabilized for-

mulation [10], and C is the operator that stabilizes the finite element discretization.

The right hand side vector, (gu, gp)
T , contains respectively the nonlinear residual for

the momentum and continuity equations. This Newton procedure starts with some

initial iterate u0 for the velocities, p0 for the pressure; then updates for velocities

and pressures are computed by solving the Newton equations (1.6). Problems with

a saddle point structure of this type are also found in electrical networks, structural

networks, optimal control problems, and computer graphics. This system of equa-

tions is indefinite and nonsymmetric, both qualities that make it a challenging and

difficult problem to solve.
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The cost for solving this system can be very high, and can be one of the most

time consuming components for a given simulation. One way to reduce this com-

putational time is by coupling iterative solvers with preconditioners to solve (1.6).

With the rise of mixed finite element methods and constrained optimization prob-

lems numerous techniques have been developed to efficiently solve saddle point lin-

ear systems (1.6) and the Navier-Stokes equations (1.3), examples of which can be

found in ([12, 17, 41]). Current solution techniques for the Navier-Stokes equa-

tions include fractional step methods, fully decoupled methods, and fully coupled

methods. Fractional step methods, such as pressure projection or operator splitting

([12]), and fully decoupled techniques, such as SIMPLE (Semi-Implicit Method for

Pressure Linked Equations) and SIMPLER ([41], [43]), do not preserve the coupling

of physics, which can lead to slow convergence.

The research in this dissertation explores the pressure convection-diffusion

methods which define solution techniques by coupling together the momentum and

mass equations. This leads to algorithms with good convergence properties because

the methods are insensitive to mesh size and CFL number ([17, 19, 21]). For sta-

tionary problems, there is a slight dependence on Reynolds number, whereas for

transient problems there is no Reynolds number dependence.

1.3 Iterative solvers for linear systems

The Conjugate Gradient (CG) algorithm and the Generalised Minimum Resid-

ual (GMRES) method are two important iterative solvers for linear systems of the

6



form Ax = b, where A is a square n by n matrix, b is a column vector, and x is the

sought solution. Detailed discussion on those methods along with other iterative

methods can be found in [28, 46].

CG is one of the best known algorithms for solving large sparse linear Hermi-

tian positive definite systems. It was developed in 1952 independently by Lanczos

[36] and Hestenes and Stiefel [32]. Initially, this method was seen as an exact method

because it converged to a solution in no more than n steps, where n is the problem

size. In practice, CG converges to a solution in far fewer than n steps.

If x∗ is the exact solution of Ax = b and xk is the kth iterate of some iterative

solution technique, then the error at step k is

ek = x∗ − xk

with the residual at step k

rk = b−Axk.

The CG algorithm minimises the A-norm of the error ‖ek‖A =
√

eH
k Aek for positive

definite A over the affine space x0 + Kk(A, r0) where the k-dimensional Krylov

subspace Kk(A, r0) is given by

Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0}.

The CG algorithm is very attractive because the work required per iteration is very

modest. It includes two inner products, three vector updates, and a sparse matrix-

vector product. The preconditioned version of CG has the same costs, plus an

additional (cheap) solve to apply the preconditioner. The error for this method can
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be bounded by

‖ek‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖e0‖A,

where κ = λmax

λmin
with λmax the maximum eigenvalue and λmin the minimum eigen-

value of the coefficient matrix [46]. The rate of convergence for the CG method

depends on the distribution of the eigenvalues of A. The goal of preconditioning is

to improve the convergence rate by reducing the condition number and/or number

of distinct eigenvalue clusters of the system matrix. More detailed theory on the

CG algorithm can be found in [28, 46].

When A is symmetric positive definite CG is an attractive solver because at

each iteration it minimizes the A-norm of the error and the operations required are

few and independent of the iteration. For nonsymmetric systems, there is not a

method that has both properties [46]. The Generalised Minimum Residual (GM-

RES) method proposed in [47] by Saad and Schultz is our choice for solving non-

symmetric systems because it minimizes the Euclidean-norm of the residual rk at

each iteration. The main drawback to this method, when compared to CG, is that

the work and storage per iteration grows linearly with the size of the problem. At

the kth iterate, GMRES chooses xk ∈ x0 + Kk(A, r0) to minimize the least squares

problem

min
xk∈x0+Kk(A,r0)

‖b− Axk‖.

GMRES converges to the exact solution in at most n steps, where n is the

size of the system. We can improve its performance by developing right-oriented

preconditioners (1.2). We choose the right-oriented version so that the norm being
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minimized does not depend on the preconditioner. For more details on GMRES we

refer to [28, 46].

1.4 Preconditioning Krylov Subspace Methods

We further explore the concept of preconditioning by decomposing the coeffi-

cient matrix, A, into a splitting

A = Q−R

where Q is a splitting matrix and R is the error matrix. A splitting of this type

gives rise to a stationary iterative method, which computes the approximation to

the solution using the iteration

xk = Q−1(Rxk−1 + b).

This stationary iteration can be rewritten as a specific example of a preconditioned

Krylov subspace method [17]. Furthermore, these splitting operations can be used

in conjunction with a Krylov subspace method to accelerate convergence. If we

decompose A as A = D − L− U , where D is the matrix containing the diagonal of

A, L the matrix with the lower triangular factor, and U the matrix with the upper

triangular factor. If we choose Q = D and R = L + U , this iteration is known as

Jacobi’s method. If Q = D − L and R = U , this is the Gauss-Seidel method.

1.4.1 Algebraic Preconditioners

Purely algebraic preconditioning strategies are derived directly from the co-

efficient matrix, A, and do not require any mesh or problem characteristics to be
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used. These methods are more general-purpose than physics-based precondition-

ing strategies, but are not optimal for a specific problem instance. However, these

methods tend not to be as effective as physics-based strategies. In this section, a few

general preconditioners are discussed, including diagonal scaling, Gauss-Seidel, and

incomplete factorization. The list discussed here is by no means exhaustive, but is

presented because these techniques are the most straightforward to explain and are

used in many industrial settings. Furthermore, the concepts behind these precon-

ditioners are sometimes used as building blocks for physics-based preconditioning

strategies, which we discuss in Section 1.4.2.

In Jacobi preconditioning, the preconditioner is chosen to be the diagonal of A.

While this preconditioner choice is very cheap to construct, it normally only reduces

the number of iterations by a small amount when compared to more sophisticated

techniques. This method performs well when the matrix A is diagonally dominant,

because the diagonal contains a lot of information about the matrix (and therefore

its inverse) 1. The Gauss-Seidel strategy is effective, but it is very dependent on

the ordering of unknowns in the system. If the matrix is poorly ordered, then this

strategy converges slowly. A further discussion of this issue can be found in [17].

Solving sparse systems with direct methods, such as Gaussian elimination,

can cause a high amount of fill-in, therefore causing this method to be expensive in

terms of storage and CPU time. The LU decomposition of a matrix can be used

as an effective preconditioner by ignoring any fill-in that occurs within a certain

1As a historical note, Carl Jacobi found that using diagonal scaling reduced the computational

time when he was determining the stability of the solar system in the early 1800s [4]
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tolerance. Thus, this method is known as an incomplete LU (ILU) preconditioner

[17]. One advantage is that these methods are chosen purely algebraically. For

realistic problems the choice of the fill tolerance can be a hard quantity to determine

[4]. These methods are not scalable and there is difficulty with implementing and

effectively using this technique in parallel; however they are useful as smoothers in

a multigrid iteration [14].

1.4.2 Physics-based Preconditioners

The methods discussed in Section 1.4.1 are developed from a purely algebraic

point of view. Physics-based preconditioners use the underlying physical problem

as motivation for the derivation of the methodology. By using information about

the underlying physical model one can develop more robust preconditioners. This

is especially useful in applications with PDEs, where one has good knowledge of the

problem at hand, the domain of the problem, and the boundary conditions.

For the Navier-Stokes equations, the major bottleneck in terms of CPU time

is the iterative solution of the linear systems that arise after discretizing and lin-

earizing the underlying PDE equations. The main goal of this research is to study

scalable preconditioning techniques for the incompressible Navier-Stokes equations

and to explore their utility in several applied settings. In Chapter 3, we discuss

SIMPLE, a purely physics-based preconditioning technique historically used as a

solver for the Navier-Stokes equations. In the rest of this section we focus on do-

main decomposition and multilevel multigrid techniques, which combine properties
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from both physics-based and purely algebraic preconditioning strategies.

The domain decomposition method is particularly useful in parallel compu-

tation because it allows the domain of the problem to be broken into disjoint (or

slightly overlapping) subdomains, each of which can be solved on a corresponding

processor. When the subproblems on the smaller domains are preconditioned with

an ILU or sparse approximate inverse technique, domain decomposition parallelizes

well, but the requirement that coarse grids be handled by direct methods causes

it to scale poorly in parallel settings or as the problem size increases. A further

discussion of these and other techniques can be found in [4].

Multigrid methods are the most effective methods for solving linear systems

associated with discrete PDEs. Multigrid is based on the premise of resolving er-

rors by using multiple problem resolutions in an iterative scheme. High oscillatory

components of the error are mitigated by a smoothing procedure (such as Gauss-

Seidel/Jacobi), whereas low energy components are eliminated using a lower resolu-

tion version of the discrete problem on a coarse grid. Interpolation and restriction

operators are defined to move data, such as residuals, between meshes. Coarse grid

operators can be defined using the same discretization technique as used for the fine

grid operator. It is also possible to algebraically produce this operator by

Ak+1 = RT
kAkPk (1.7)

where Pk interpolates a solution from one the fine operator to the coarse operator

and RT
k restricts the solution from the coarse operator to the fine operator [9, 59].

In geometric multigrid, a sequence of different resolution meshes are created.
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Grid transfer operators are created to move data from one mesh to another, where

a new discretization is constructed on all meshes. Algebraic multigrid (AMG) mit-

igates the dependence on the grid structure by requiring no mesh or geometric

information, so instead of constructing a mesh, AMG develops coarse grid operators

from the matrix data. This makes AMG attractive for problems posed on complex

domains or unstructured meshes [59, 64].

These multilevel multigrid-like methods show promise, while combining sta-

tionary iterative methods, like Gauss-Seidel or ILU, as smoothers in a multigrid

iteration. However, there are still many open questions about them. In particu-

lar, for algebraic multigrid, there are some issues with applying these techniques to

indefinite systems, systems of PDE equations, and to three-dimensional problems

[4].

The rest of this dissertation is organized as follows. In Chapter 2, we derive the

Navier-Stokes equations from the principles of Conservation of Mass and Momentum

and then discuss some aspects of linearizing and discretizing a mixed finite element

formulation of the resultant partial differential equation. In Chapter 3, we describe

and develop a taxonomy for preconditioning strategies specifically designed for the

Navier-Stokes equations. These methods include pressure correction schemes, like

SIMPLE, developed by [41, 42] and approximate Schur complement preconditioners

designed by [19, 34, 53]. In Chapter 4, we describe numerical results posed on a

variety of sample test problems. In Chapter 5, we describe how these methods

can be applied to solving realistic shape and topology optimization of microfluidic

problems. In Chapter 6, we discuss the high performance computing environment
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used to implement and test the efficacy of these strategies.
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Chapter 2

The Navier-Stokes Equations

In this chapter, we derive, then linearize and discretize the incompressible

Navier-Stokes equations. In Section 2.1, we derive the Navier-Stokes equations us-

ing first principles, such as conservation of mass, momentum, and the transport

theorem. In Section 2.2, we describe the finite element formulation and correspond-

ing linearization of the Navier-Stokes equations that leads to the saddle point-like

linear system that we derive our preconditioners from.

2.1 Derivation of the Incompressible Navier-Stokes Equations

2.1.1 Notation

Fluid flow in a region Ω ∈ R
2 (or R

3), over a time interval [0, t] is described

with the following notation:

• p ∈ R denotes the pressure

• ν ∈ R denotes the viscosity

• u ∈ R
N denotes the velocity

• ρ ∈ R denotes the density

• Ω denotes the physical region on which the model applies
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• f represents the body forces

The incompressible Navier-Stokes equation are

αut − ν∇2u + (u · grad)u + grad p = f (Momentum equation) (2.1)

−div u = 0 (Continuity equation). (2.2)

The parameter α = 0 corresponds to the steady state problem and α = 1 the

transient case. The incompressible Navier-Stokes equations are derived using the

laws of conservation of mass and momentum. For this derivation, we assume that

the system is closed, so no fluids flow across the boundaries of Ω.

2.1.2 Conservation of Mass

We begin by stating the transport theorem, which states how to calculate the

time integral of a domain changing over time [29].

Transport Theorem: For a differentiable function, f ,

d

dt

∫

Ωt

f(x, t)dx =

∫

Ωt

(

∂

∂t
f + div(fu)

)

(x, t)dx. (2.3)

The mass of a fluid at time, t, is the integral over the density of the fluid. Since this

is a closed system, the amount of fluid at time t = 0 must equal the amount of fluid

at any other time. Therefore,

∫

Ω0

ρ(x, 0)dx =

∫

Ωt

ρ(x, t)dx.

Using (2.3), we have

∫

Ωt

(

∂

∂t
ρ+ div(ρu)

)

(x, t)dx = 0. (2.4)

16



Equation (2.4) holds for any region (Ωt), so the integral can be dropped, leaving

∂

∂t
ρ+ div(ρu) = 0

as the local form of the Conservation of Mass (COM). For an incompressible fluid,

ρ is constant so the local COM simplifies to

div u = 0

which is the continuity equation (2.2).

2.1.3 Conservation of Momentum

The momentum of a body is mass times velocity. Since a fluid’s velocity

changes with respect to its position, the momentum of a fluid is represented by the

integral over the domain,

m(t) =

∫

Ωt

ρ(x, t)u(x, t)dx. (2.5)

Recall Newton’s second law, which states:

d

dt
m(t) =

∑

forces.

For our problem, we have two types of forces, those that arise on the surface of

the region and those found on the inside of the region. The interior forces are

represented by
∫

Ωt
ρ(x, t)g(x, t)dx (where g is the force density). The surface forces

are represented by
∫

Ωt
σ(x, t)nds, where σ is the stress tensor. The interior stress

relies on two quantities, the pressure and internal friction. So, the stress tensor, σ,

is

σ(x, t) = −p(x, t)I + λ(div u)I + µ

(

∂ui

∂xj

+
∂uj

∂xi

)
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where λ and µ are two quantities that characterize the viscosity of the fluid. Then,

d

dt
m(t) =

d

dt

∫

Ωt

ρ(x, t)u(x, t)dx =

∫

Ωt

ρ(x, t)g(x, t)dx+

∫

∂Ωt

σ(x, t)n ds

Substitution of σ(x, t) into (2.5) gives

d

dt
m(t) =

∫

Ωt

ρ(x, t)g(x, t)dx+

∫

∂Ωt

−p(x, t)I + λ(div u)I + µ

(

∂ui

∂xj

+
∂uj

∂xi

)

nds

(2.6)

Applying the transport and divergence theorem term by term to (2.6) gives

∂

∂t
ρu + (u · grad (ρu)) + div u + grad p = (µ+ λ) grad(div u) + µ△u + ρg. (2.7)

Since ρ is constant for an incompressible fluid, (2.7) simplifies to

∂

∂t
u + (u · grad) (ρu) +

1

ρ
grad p =

µ

ρ
△u + g.

Then, let the viscosity be ν = µ

ρ
and lump ρ into the pressure term, to get

∂

∂t
u + (u · grad)u + grad p− ν△u = g.

Reordering terms gives

ut − ν∇2u + (u · grad)u + grad p = g,

which is (2.1). A further discussion of this derivation can be found in [29].

2.2 Finite Element Discretization

We describe how to discretize (using a mixed finite element approach) the

incompressible Navier-Stokes equations (2.1)-(2.2). We focus our attention on the
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spatial discretization of these equations. For the temporal component one can use

a variety of time-stepping strategies, including the Crank-Nicholson or Backward

Euler method [11]. In discretizing the Navier-Stokes equations, finite element spaces

and appropriate bases for these spaces are defined, followed by a discussion of how

to linearize the nonlinear convection term. In Section 2.2.4, we discuss a few details

on stabilized finite element methods for the Navier-Stokes equations.

2.2.1 Weak Formulation

To define a weak formulation of the Navier-Stokes equations, we define a set

of solution and test spaces for the velocity field, namely

H1
E = {u ∈ H1(Ω)|u = w on ∂ΩD}

H1
E0

= {v ∈ H1(Ω)|v = 0 on ∂ΩD}

where H1(Ω) is the Sobolev space of functions defined on Ω whose first derivatives

exist and are square integrable in Ω. An analogous space for the pressure field is

the space of functions that are square-integrable, denoted as L2(Ω). One can choose

L2(Ω) as the test space for the pressure, p, since derivatives of the pressure field do

not appear in the weak formulation. The weak formulation of (2.1)-(2.2) is:

Find u ∈ H1
E and p ∈ L2(Ω) such that

ν

∫

Ω

∇u∇v +

∫

Ω

(u · ∇u) · v −
∫

Ω

p(∇ · v) =

∫

Ω

f · v ∀v ∈ H1
E0

∫

Ω

q(∇ · u) = 0 ∀q ∈ L2(Ω).
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The key to an effective weak formulation is ensuring that the inf-sup condition,

infq 6=constantsupv 6=0

|q,∇ · v|
||v||1||q||

≥ 0 (2.8)

where ||v|| is a norm for the functions in H1
E and ||q|| is a quotient space norm is

satisfied. Further discussions of how this condition applied to this problem can be

found in [17, 26].

2.2.2 Treating the Nonlinear Term

Solving the Navier-Stokes equations is difficult due to the nonlinear term found

in the convection term of the momentum equation, u · ∇u. For treating the nonlin-

earity, we use Newton’s method or Picard’s method. We begin with how Newton’s

method applies to this problem in Section 2.2.2.1, followed by Picard’s method in

the following subsection.

2.2.2.1 Newton’s Method

If we begin with an initial guess, denoted (u0, p0), the nonlinear residual of the

kth iterate (uk, pk) produced by an iteration associated with the weak formulation

is

For any v ∈ H1
E0

(Ω) and q ∈ L2(Ω),

Rk =

∫

Ω

f · v −
∫

Ω

(uk∇uk) · uk − ν

∫

Ω

∇uk∇v +

∫

Ω

pk(∇ · v) (2.9)

rk = −
∫

Ω

q(∇ · uk). (2.10)
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Now, denote the nonlinear updates for the velocity and pressure by uk = uk + δuk

and pk = pk + δpk, respectively. Since δuk ∈ H1
E0

and δpk ∈ L2(Ω), it follows that

∫

Ω

(δuk+uk)·∇(δuk+uk)·v−
∫

Ω

(uk ·∇uk)·v+ν

∫

Ω

∇δuk∇v−
∫

Ω

δpk(∇·v) = Rk(v)

∫

Ω

q(∇ · δuk) = rk(q). (2.11)

If the quadratic term in (2.11) is dropped and the remaining expressions are ex-

panded, then a linear subproblem is determined, namely

For all v ∈ H1
E0

and q ∈ L2(Ω), find δuk ∈ H1
E0

and δpk ∈ L2(Ω) such that

∫

Ω

(δuk ·∇uk) ·v+

∫

Ω

(uk ·∇δuk) ·v+ν

∫

Ω

∇δuk∇v−
∫

Ω

δpk(∇·v) = Rk(v) (2.12)

∫

Ω

q(∇ · δuk) = rk(q) (2.13)

holds. Solving (2.13), generates the Newton correction. The next iterate in the

sequence is defined by uk+1 = uk + δuk and pk+1 = pk + δpk.

2.2.2.2 Picard’s Method

Another means of linearizing the convective term is by generating an iterate

for the nonlinear problem using Picard’s method. If we begin with (2.11), then this

method is derived by dropping both the nonlinear term,
∫

Ω
(δuk · ∇δuk) · v, and

the linear term,
∫

Ω
(δuk · ∇uk) · v (a zeroth order operator in δuk). Therefore, the

following linear problem is formulated
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For all v ∈ H1
E0

and q ∈ L2(Ω), find δuk ∈ H1
E0

and pk ∈ L2(Ω) such that

∫

Ω

(uk · ∇δuk) · v + ν

∫

Ω

∇δuk∇v +

∫

Ω

δpk(∇ · v) = Rk(v)

∫

Ω

q(∇ · δuk) = rk(q) (2.14)

holds. Solving (2.14), generates the Picard correction. The next iterate in the

sequence is defined by uk+1 = uk + δuk and pk+1 = pk + δpk.

2.2.2.3 Differences between Newton’s and Picard’s Methods

These two strategies for treating the nonlinear convection term each have

advantages and disadvantages. Newton’s method provides quadratic convergence,

whereas the Picard iteration is linearly convergent. One disadvantage of Newton’s

method is that its radius of convergence is typically proportional to the Reynolds

number [17]. Therefore for increasing Reynolds number better and better initial

guesses are needed to ensure this technique converges to a solution. On the other

hand, the Picard iteration has a much larger radius of convergence than Newton’s

method [33].

2.2.3 Mixed Finite Element Approximation

A discrete weak formulation is defined using finite-dimensional spaces Xh
0 ⊂

H1
E0

(Ω) and Mh ⊂ L2(Ω). Since these approximations are made independently, this

discretization is known as a mixed finite element approximation. More specifically,

given a velocity solution space, Xh
E, the discrete version of the weak formulation is
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Find uh ∈ Xh
E and ph ∈Mh such that

ν

∫

Ω

∇uh∇vh +

∫

Ω

(uh · ∇vh) · vh −
∫

Ω

ph(∇ · vh) =

∫

Ω

f · vh ∀vh ∈ Xh
0

∫

Ω

qh(∇ · uh) = 0 ∀qh ∈Mh

If we linearize the problem using Newton’s method, this gives the following discrete

weak version of (2.12):

Find corrections, δuh ∈ Xh
0 and δph ∈ Mh for all vh ∈ Xh

0 and qh ∈ Mh such

that

∫

Ω

(δuh · ∇uh) ·vh +

∫

Ω

(uh · ∇δuh) ·vh + ν

∫

Ω

∇δuh∇vh −
∫

Ω

δph(∇ ·vh) = Rk(vh)

∫

Ω

qh(∇ · δuh) = rk(qh)

holds. A set of vector basis functions, {φj} is introduced to define the corresponding

linear subproblem, namely

uh =

Nd
∑

j=1

ujφj +

Nd+ND
∑

j=Nd+1

ujφj, δuh =

Nd
∑

j=1

△ujφj (2.15)

with
∑Nd

j=1 ujφj ∈ Xh
0 , where the coefficients of uj are fixed so that the second sum

represents the boundary conditions on the domain, ∂ΩD. By introducing a set of

scalar valued pressure basis functions, {ψk}, a similar discrete sum can be defined:

ph =

m
∑

i=1

piψi, δph =

m
∑

i=1

△piψi (2.16)

Substituting these basis functions into the linearized formulation, a system of linear

equations can be determined:








νA + W + N BT

B 0

















△u

△p









=









f

g









. (2.17)
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The matrices are defined as

A = [aij ],= aij =

∫

Ω

∇φi∇φj

B = [bmj ], bkj = −
∫

Ω

ψk∇ · φj

N = [nij ],= nij =

∫

Ω

(uh · ∇φj) · φi

W = [wij],= wij =

∫

Ω

(φj · ∇uh) · φi

for i and j = 1, . . . , nd. The matrix A is the vector-Laplacian matrix and B the

divergence matrix. In addition, W is the vector-convection matrix, and N is the

Newton derivative matrix. The latter three matrices depend on the current value of

the velocity, uh, whereas the vector-Laplacian and divergence matrix do not depend

on this quantity. The entries of the right hand vectors f and g are

f = [fi], fi =

∫

Ω

f · φi −
∫

Ω

uh · ∇uh · φi − ν

∫

Ω

∇uh∇φi +

∫

Ω

ph(∇ · φi)

g = [gk], gm =

∫

Ω

ψm(∇ · uh).

When (2.17) is derived using Newton’s method, this saddle point system is called

the discrete Newton problem. If the Newton derivative matrix, N, is not present

(i.e. for Picard iteration), then this is a discrete Oseen problem. We denote the

(1, 1) block of the saddle point matrix F , so that we can develop preconditioners

for either Newton’s method or the Oseen subproblem in a uniform manner. In the

case of Newton’s method, F is of the form, F = νA + W + N, whereas the Oseen

operator, F = νA + W. Therefore, the resulting subproblem is of the form

S =









F BT

B 0









.
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For a further description of the stability of this method along with issues that arise

regarding uniqueness of a solution, the reader is encouraged to look at [8, 17, 26].

2.2.4 Stabilized Finite Element Discretization

In this section, we include some details on stabilized finite element methods

for the Navier-Stokes equations. This also includes details of the stabilization used

in the finite element discretization used in our results in Chapter 4. For stable finite

elements, the pressure and velocity approximations must satisfy the discrete version

of the inf-sup condition defined in (2.8),

minqh 6=constantmaxv 6=0
|qh,∇ · vh|
||vh||1||q||

≥ 0. (2.18)

Some examples of stable finite element pairs are Q2 − Q1, Q2 − P0, or P2 − P1,

where Q refers to a quadrilateral element and P a triangular element [17]. The value

following the letter Q or P refers to the order of the approximation. So, P2 − P1

represents piecewise quadratic approximations posed on triangles for the velocity

approximation and piecewise linear approximations for the pressure approximation.

Many seemingly “natural” elements violate (2.18), so the associated discretiza-

tions are not stable. This is true, for example, for equal order velocity and pressure

elements defined on a common grid. The premise behind stabilization is to relax

the incompressibility constraint in a special way to allow the use of approximations

that do not satisfy the inf-sup condition.

Consistently stabilized finite element formulations enable the use of a wider

range of velocity-pressure pairs. Equal order pairs provide more uniform data struc-
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tures and discrete algebraic systems that are easier to solve using iterative methods

than non equal order pairs. For these reasons, stabilized finite element methods are

commonly used for discretizing both steady-state and time-dependent Navier-Stokes

problems.

We focus our attention on consistently stabilized methods which stabilize the

finite element formulation by weighting the residuals of the underlying differential

equations. More specifically, we discuss the weak formulation for a Q1-Q1 steamwise

upwinded Petrov-Galerkin method, which is a specific case of the stabilized Galerkin

Least Squares finite element method [56]. The weak formulation for our consistently

stabilized Galerkin-least squares mixed method is:

Find corrections, δuh ∈ Xh
0 and δph ∈ Mh ∀vh ∈ H1

E0
and ∀qh ∈ L2(Ω) such

that

∫

Ω

(δuh · ∇uh) · vh +

∫

Ω

(uh · ∇δuh) · vh + ν

∫

Ω

∇δuh∇vh −
∫

Ω

δph(∇ · vh) −
∫

Ω

qh(∇ · δuh)

=

∫

Ω

f · vh +
∑

K∈Th

∫

Ω

τK(−∇2(uh + δuh) + (uh + δuh) · ∇(uh + δuh) + ∇ph − f)

·(−∇2vh + (uh + δuh) · ∇vh + ∇qh)K

(2.19)

holds. The stabilization parameter, τK , is proportional to δh2 where h a measure of

the element size and δ > 0 is proportional to the viscosity. Note that the first four

integrals are similiar to the stable formulation above. The term with τK represents

the least-squares stabilization term that is added to make the mixed Galerkin for-

mulation stable for equal order elements [7, 56]. The constant τK determines the

weight of the stabilization terms in the weak formulation.
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A set of vector basis functions, {φj} for the velocity and {ψj} for the pressure

as defined in (2.15) and (2.16), respectively, are needed to determine the system of

linear equations. Substituting these basis functions into the linearized formulation,

determines the following system of equations:









νA + W + N BT

B − S̃ −C̃

















△u

△p









=









f

g̃









. (2.20)

The matrices A, W , N , BT , B, and f are defined as above. The stabilization

matrices, S̃, C̃, and g̃ are defined as:

S̃ = [s̃mj ], smj = −
∑

K∈Th

τK

∫

Ω

(△φk∇ψj)K

C̃ = [cij ], cij =
∑

K∈Th

τK

∫

Ω

(∇ψj · ∇ψi)K

g̃ = [gk], gm =
∑

K∈Th

τK

∫

Ω

(f · ∇φi)K .

When the ∼ matrices are not present, one recovers a similiar matrix to that of

the unstabilized method. The presence of the C̃ matrix in the (2, 2) entry of the

system relaxes the incompressiblity constraint and enables the use of equal order

velocity-pressure pairs.
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Chapter 3

Navier-Stokes Preconditioners - Taxonomy and Classification

Factorization Background

3.1 Taxonomy of Approximate Block Factorization Preconditioners

We focus on solution algorithms for the algebraic system of equations that re-

sults from linearization and discretization of the incompressible Navier-Stokes equa-

tions. The coefficient matrices have the general form

A =









F BT

B̂ −C









(3.1)

where F is a convection-diffusion-like operator, BT is the gradient operator, B̂ is the

divergence operator that for some higher-order stabilized formulations can include

a contribution from non-zero higher-order derivative operators in the stabilized for-

mulation [10], and C is the operator that stabilizes the finite element discretization

as described in Section 2.2.4. The strategies we employ for solving (3.1) are derived

from the LDU block factorization of this coefficient matrix,

A =









I 0

B̂F−1 I

















F 0

0 −S

















I F−1BT

0 I









, (3.2)

where

S = C + B̂F−1BT (3.3)
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is the Schur complement (of F in A). They require methods for approximating the

action of the inverse of the factors of (3.2), which, in particular, requires approx-

imation to the actions of F−1 and S−1. For large-scale computations, use of the

exact Schur complement is not feasible. Therefore, effective approximate block fac-

torization (ABF) preconditioners are often based on a careful consideration of the

spectral properties of the component block operators and the approximate Schur

complement operators. There has been a great deal of recent work on ABF meth-

ods (e.g. [5, 6, 13, 17, 34]). These techniques take a purely linear algebraic view of

preconditioning. Through these decompositions a simplified system of block compo-

nent equations is developed that encodes a specific “physics-based” decomposition.

Alternatively, one could start with “physics-based” iterative solution methods for the

Navier-Stokes equations (e.g. [41, 42]) and develop preconditioners based on these

techniques as described in [35]. In both these cases, the system has been transformed

by the factorization to component systems that are essentially convection-diffusion

and Poisson type operators. The result is a system to which multi-level methods,

and in our particular case, algebraic multi-level methods (AMG), can be applied

successfully for parallel unstructured mesh simulations.

We adopt a nomenclature for projection type methods based on algebraic split-

tings developed by Quarteroni, Saleri, and Veneziani [45] for algebraic splittings of A

for projection type methods. Let H1 represent an approximation to F−1 in the Schur

complement (3.3) and let H2 be an approximation to F−1 in the upper triangular
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block of the factorization (3.2). This results in the following decomposition:

As =









I 0

B̂F−1 I

















F 0

0 −(C + B̂H1B
T )

















I H2B
T

0 I









=









F FH2B
T

B̂ −(C + B̂(H1 −H2)B
T )









.

(3.4)

The error matrix Es = A− As is

Es =









0 (I − FH2)B
T

0 −B̂(H2 −H1)B
T









.

This decomposition is used in [45] to illuminate the structure of several projection

techniques for solving the time-dependent Navier-Stokes equations. By examining

the error, we can determine which equation (momentum or continuity) in the original

problem is perturbed by the approximations H1 or H2 in the above decomposition.

For example, if H1 = F−1 and H1 6= H2, then the operators applied to the pressure

in both the momentum equation and continuity equation are perturbed, whereas

operators applied to the velocity are not perturbed. On the other hand, if H2 = F−1

and H1 6= H2, then the (1, 2) block of the error matrix is zero. So, the momentum

equation is unperturbed, thus giving a “momentum preserving strategy,” whereas

a perturbation of the incompressibility constraint occurs [45]. If H1 = H2 6= F−1,

then the scheme is “mass preserving” because the (2, 2) block of the error matrix is

zero, so the continuity equation is not modified. Finally, if H1 6= H2 6= F−1, then

both the momentum and continuity equations are modified.

The above factorization can be generalized to incorporate “classical” methods

used for these problems, such as SIMPLE, SIMPLEC, SIMPLER, [42, 43], as well as

newer approximate commutator methods devised to generate good approximatations
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to the Schur complement [34, 53]. Let us modify (3.4) using some approximation

H1 in place of F−1 in the lower triangular block. In addition, let Ŝ represent an

approximation of the Schur complement. Then

Ã =









I 0

B̂H1 I

















F 0

0 −Ŝ

















I H2B
T

0 I









=









F FH2B
T

B̂H1F B̂H1FH2B
T − Ŝ









. (3.5)

The error, denoted Ẽ = A− Ã, is

Ẽ =









0 BT − FH2B
T

B̂ − B̂H1F Ŝ − (C + B̂H1FH2B
T )









.

By examining the error matrix, we can determine which equation (momentum or

continuity) in the original problem is perturbed by the approximations H1, H2, or

Ŝ.

Techniques explored in this chapter can be classified into two categories: those

whose factorization groups the lower triangular and the diagonal components as

[(LD)U ], and those that group the diagonal and lower triangular components as

[L(DU)]. Methods with the (LD)U grouping have the factorization

Ã(LD)U =









F 0

B̂H1F −Ŝ

















I H2B
T

0 I









. (3.6)

Methods with the L(DU) grouping have the factorization

ÃL(DU) =









I 0

B̂H1 I

















F FH2B
T

0 −Ŝ









. (3.7)

Some of the techniques considered do not use the complete factorization (3.6) or

(3.7), but rather use only triangular components of the factorization. SIMPLE uses
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the block (LD)U grouping. The approximate commutator methods are derived

from the block L(DU) grouping and use just the diagonal and upper triangular

(DU) components in the method. Finally, these classifications are further refined

by specifying strategies for approximating the Schur complement.

Next we introduce the pressure correction method as a stationary iteration

that begins with an initial iterate for the velocity, un, and pressure, pn, and calcu-

lates the next velocity, un+1 and pressure, pn+1 iterates using a systematic procedure.

Then, these methods are put into the LDU grouping in (3.5). For our computational

results in Chapters 5 and 6, both the pressure correction and approximate commu-

tator methods are implemented as preconditioners for a Krylov subspace method.

Therefore, applying the action of the inverse of Ã is required at each iteration.

3.1.1 Pressure Correction

The pressure correction family of Navier-Stokes preconditioners is derived from

the divergence free constraint with decoupling of the incompressible Navier-Stokes

equations. In the following sections, three pressure correction methods are derived,

SIMPLE, SIMPLEC, and SIMPLER (Semi-Implicit Method for Pressure Linked

Equations Revised) [42, 43, 44, 63].

3.1.1.1 The SIMPLE Preconditioner

The SIMPLE-like algorithm described here begins by solving a variant of the

momentum equation for an intermediate velocity using a previously generated pres-

32



sure; then the continuity equation is solved using the intermediate velocity to cal-

culate the pressure update. This value is used to update the velocity component.

The SIMPLE algorithm is as follows:

1. Solve: Fun+ 1

2

= f −BT pn for the velocity, u.

2. Solve: −(C + B̂diag(F )−1BT )δp = B̂un+ 1

2

+ Cpn for δp.

3. Calculate the velocity correction: δu = un+1 − un+ 1

2

= (−diag(F )−1BT )δp.

4. Update the pressure: pn+1 = pn + αδp

5. Update the velocity: un+1 = un+ 1

2

+ δu

The quantity α is a parameter in (0, 1] that damps the pressure update [43].

An alternative derivation of SIMPLE is obtained using the LDU framework

described above. The block lower triangular factor (L) and the block diagonal (D)

are grouped together. In terms of the taxonomy described above, this corresponds

to the choices H1 = F−1, H2 =(diag(F ))−1, and Ŝ = C + B̂(diag(F ))−1BT in (3.6).

The decomposition is








F BT

B̂ −C









≈









I 0

B̂F−1 I

















F 0

0 Ŝ

















I (diag(F ))−1BT

0 αI









=









F 0

B̂ −Ŝ

















I (diag(F ))−1BT

0 αI









= ÃSIMPLE.

Thus, one iteration of SIMPLE corresponds to








un+1

pn+1









=









un

pn









+ Ã−1
SIMPLE

















f

0









−A









un

pn
















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where A is defined in (3.1).

The error for this method (when α = 1) is

ESIMPLE = A− ÃSIMPLE =









0 BT − F (diag(F ))−1BT

0 0









.

SIMPLE does not affect the terms that operate on the velocity, but it perturbs

the pressure operator in the momentum equation. This results in a method that is

“mass preserving.” When diag(F )−1 is a good approximation to F−1, then ESIMPLE

is close to a zero matrix, so this method generates a very close approximation to

the original Jacobian system. From our computational experiments in MpSalsa,

we have found that the diagonal approximation can yield poor results because the

diagonal approximation does not capture enough information about the convection

operator.

3.1.1.2 The SIMPLEC Preconditioner

The SIMPLEC [63] algorithm is a variant of SIMPLE [42]. It replaces the

diagonal approximation of the inverse of F with the diagonal matrix whose entries

contain the absolute value of the row sums of F . The matrix structure is the same

(LD)U as that of SIMPLE. The symbol
∑

(|F |) denotes a matrix whose entries are

equal to the absolute value of the row sum of F . With the choices H1 = F−1, H2 =

(
∑

|F |)−1, and Ŝ = C + B̂(
∑

|F |)−1BT the SIMPLEC method can be expressed in
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terms of the block factorization (3.6). The decomposition is









F BT

B̂ −C









≈









F 0

B̂ −Ŝ

















I (
∑

(|F |)−1BT

0 αI









= ÃSIMPLEC

where Ŝ = C+B̂(
∑ |F |)−1BT and α is a parameter in (0, 1] that damps the pressure

update. The error, for this method is

ESIMPLEC = A− ÃSIMPLEC =









0 BT − F (
∑ |F |)−1BT

0 −B̂(
∑

|F |)−1BT + B̂F−1BT









.

This method perturbs the pressure operator in both the momentum and continuity

equations. The choice of the absolute value of the row sum tends to provide a

better approximation to the matrix F , therefore reducing the error associated with

this method [43]. We have found that this choice works reasonably well and is

easy to construct. Further variations of this class of methods can be determined by

choosing different approximations to F−1, such as sparse approximate inverses. For

our computational results, we use the absolute value of the row sum variant.

3.1.1.3 The SIMPLER Preconditioner

The SIMPLER algorithm is very similar to SIMPLE, except that it first de-

termines p̂n+1 using un, then it calculates an intermediate velocity value, un+ 1

2

.

This intermediate velocity is projected to enforce the continuity equation, which

determines un+1. The steps required are as follows:

1. Solve: (C + B̂diag(F )−1BT )p̂n+1 = −B̂diag(F )−1(f + Fun − BTpn) for the

pressure, p̂n+1.
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2. Solve: Fun+ 1

2

= f −BT (p̂n+1 − pn) for the velocity, u.

3. Project un+ 1

2

to obtain un+1 by: [I+(diag(F )−1)−1B̂(C+Bdiag(F )−1BT )−1BT )]un+ 1

2

4. Update the pressure: pn+1 = αp̂n+1

Once again, α is a parameter in (0, 1] that damps the pressure update. SIMPLER

can also be expressed using the LDU framework. The block diagonal (D) and the

block upper triangular (U) factors are grouped together and an additonal matrix, P ,

a projection matrix for the velocity projection in step 3, is added to the factorization.

Then the corresponding preconditioner is of the form: P−1(DU)−1L−1.

In terms of the taxonomy, this corresponds to the choices of H1 = diag (F )−1,

H2 = F−1, and Ŝ = C + B̂(diag(F ))−1BT in (3.7). Then








F BT

B̂ −C









≈









I 0

B̂F−1 I

















F BT

0 S









≈









I 0

B̂(diag(F ))−1 I

















F BT

0 −Ŝ









where Ŝ = C + B̂(diag(F ))−1BT . Now, the projection matrix is added to give the

SIMPLER algorithm in matrix form. This results in

ÃSIMPLER =









I + (diag(F ))−1B̂Ŝ−1BT 0

0 αI

















I 0

B̂(diag(F ))−1 I

















F BT

0 −Ŝ









(3.8)

[43]. Thus, one iteration of SIMPLER corresponds to








un+1

pn+1









=









un

pn









+ Ã−1
SIMPLER

















f

0









− A









un

pn
















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where A is defined in and ÃSIMPLER is defined in (3.8). The use of the projection

matrix, which has subsidiary solves that must be performed to very high accu-

racy, greatly degrades the performance of this method when compared to SIMPLE.

However, the projection matrix is needed to enforce the continuity equation, and

therefore produce a solution that is divergence free [43]. This method perturbs the

pressure operator in both the momentum and continuity equations.

3.1.1.4 Remarks on Pressure Correction Methods

In this section, the pressure correction methods (SIMPLE/SIMPLEC) that

begin with the underlying factorization, (LD)U and use approximations to the com-

ponents of the factors to define the preconditioner have been given. SIMPLER is

based on the decomposition L(DU) with approximations to P−1(DU)−1L−1 as the

preconditioner, where P is the projection operator defined in step 3 of the SIM-

PLER method. These methods are useful for steady state flow problems. However,

these methods tend to converge slowly and require the user to input a relaxation

parameter to improve convergence.

3.1.2 Approximate Commutator Methods

The pressure convection-diffusion preconditioners, groups together the diag-

onal and upper triangular factors and omit the lower triangular factor. Let H1 =
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H2 = F−1, then the block factorization of the coefficient matrix is








F BT

B̂ −C









=









I 0

B̂H1 I

















F FH2B
T

0 −S









=









I 0

B̂F−1 I

















F BT

0 −S









.

(3.9)

where the diagonal (D) and upper triangular (U) factors are grouped together. For

our computations, we only use the upper triangular factor, and replace the Schur

complement S by some approximation Ŝ (to be specified later). The efficacy of this

strategy can be seen by analyzing the following generalized eigenvalue problem:








F BT

B̂ −C

















u

p









= λ









F BT

0 Ŝ

















u

p









.

If Ŝ is the Schur complement, then all the eigenvalues of the preconditioned matrix

are identically one. Further, this operator contains Jordan blocks of dimension

at most 2, and consequently at most two iterations of a preconditioned GMRES

iteration would be needed to solve the system [40].

We motivate the Approximate Commutator Methods by examining the compu-

tational issues associated with applying this preconditioner Q in a Krylov subspace

iteration. At each step, the application of Q−1 to a vector is needed. By expressing

this operation in factored form,








F BT

0 −S









−1

=









F−1 0

0 I

















I −BT

0 I

















I 0

0 −S−1









two potentially difficult operations can be seen: S−1 must be applied to a vector

in the discrete pressure space, and F−1 must be applied to a vector in the discrete

velocity space. The application of F−1 can be performed relatively cheaply using
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an iterative technique, such as multigrid. However applying S−1 to a vector is

too expensive. An effective preconditioner can be built by replacing this operation

with an inexpensive approximation. We discuss three preconditioning strategies, the

pressure convection-diffusion (P-CD), the Least Squares Commutator (LSC), and

the approximate scaled commutator (ASC).

3.1.2.1 The Pressure Convection-Diffusion Preconditioner

Pressure convection-diffusion preconditioners take a fundamentally different

approach to approximate the inverse Schur complement. The basic idea hints on

the notion of an approximate commutator. To understand this, consider a discrete

version of the convection-diffusion operator

(ν∇2 + (w · grad)). (3.10)

where w is a constant vector. When w is an approximation to the velocity obtained

from the previous nonlinear step, (3.10) can be viewed as an Oseen linearization of

the nonlinear term in (2.1). Suppose that there is an analogous operator defined on

the pressure space,

(ν∇2 + (w · grad))p.

Consider the commutator of these operators with the gradient:

ǫ = (ν∇2 + (w · grad))∇−∇(ν∇2 + (w · grad))p. (3.11)
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Supposing that ǫ is small, multiplication on both sides of (3.11) by the divergence

operator gives

∇2(ν∇2 + (w · grad))−1
p ≈ ∇ · (ν∇2 + (w · grad))−1∇ (3.12)

In discrete form, using finite elements this usually takes the form

(Q−1
p Ap)(Q

−1
p Fp)

−1 ≈ (Q−1
p B)(Q−1

v F )−1(Q−1
v BT )

ApF
−1
p ≈ Q−1

p (BF−1BT )

where here F represents a discrete convection-diffusion operator on the velocity

space, Fp is the discrete convection-diffusion operator on the pressure space, Ap is

a discrete Laplacian operator, Qv the velocity mass matrix, and Qp is the lumped

pressure mass matrix. This suggests the approximation for the Schur complement

S ≈ Ŝ = ApF
−1
p Qp (3.13)

for a stable finite element discretization when C = 0. In the case of pressure

stabilized finite element discretizations, the same type of approximation is required

[17]:

S = C + B̂F−1BT ≈ ApF
−1
p Qp. (3.14)

Applying the action of the inverse ofApF
−1
p Qp to a vector requires solving a system of

equations with a discrete Laplacian operator, then multiplication by the matrix Fp,

and solving a system of equations with the pressure mass matrix. The convection-

diffusion-like system, F , and the Laplace system, Ap, can be handled using multigrid

with little deterioration of effectiveness.
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In terms of the taxonomy, the pressure convection-diffusion method is gen-

erated by grouping together the upper triangular and diagonal factors, choosing

H2 = F−1 and Ŝ as in (3.14). In matrix form this is

ÃPCD =









F FH2B
T

0 −Ŝ









=









F BT

0 −ApF
−1
p Qp.









.

The error matrix is

EPCD = A− ÃPCD =









0 0

0 −ApF
−1
p Qp + C − B̂F−1BT









,

which shows that the momentum equation is unperturbed and only the pressure

operator in the continuity equation is perturbed by this method, thus giving a

“momentum preserving” strategy.

Considerable empirical evidence for two and three-dimensional problems indi-

cates that this preconditioning strategy is effective, leading to convergence rates that

are independent of mesh size and mildly dependent on Reynolds numbers for steady

flow problems [18, 23, 34, 53]. A proof that convergence rates are independent of

the mesh is given in [38]. One drawback is the requirement that the matrix Fp be

constructed. There might be situations where a developer of a solver does not have

access to the code that would be needed to construct Fp. This issue is addressed in

the next section.
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3.1.2.2 The Least Squares Commutator Preconditioner

The Least Squares Commutator (LSC) method automatically generates an

Fp matrix by solving the normal equations associated with a certain least squares

problem derived from the commutator [19]. This approach leads to the following

definition of Fp:

Fp = Qp(B̂Q
−1
v BT )−1(B̂Q−1

v FQ−1
v BT ). (3.15)

Substitution of the operator into (3.14) generates an approximation to the Schur

complement for div-stable finite element discretizations (i.e. C = 0):

B̂F−1BT ≈ (B̂Q−1
v BT )−1(B̂Q−1

v FQ−1
v BT )−1(BQ−1

v BT ). (3.16)

For stabilized finite element discretizations, this can be modified to

B̂F−1BT ≈ (B̂Q−1
v BT + γC)−1(B̂Q−1

v FQ−1
v BT )(B̂Q−1

v BT + γC)−1 + αD−1 (3.17)

where α, and β are scaling factors, and D is the diagonal of (B̂diag(F )−1BT + C)

[20]. For a further discussion of the merits of this method including heuristics for

generating α and β, see [20].

In terms of the taxonomy, the LSC is generated by grouping together the upper

triangular and diagonal factors, choosing H2 = F−1 and Ŝ as in (3.17). In matrix

form this is

ALSC = =









F FH2B
T

0 −Ŝ









=









F BT

0 (B̂Q−1
v BT + γC)(B̂Q−1

v FQ−1
v BT )−1(B̂Q−1

v BT + γC) + αD









.
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The error matrix is

ELSC = A− ÃLSC

=









0 0

0 (B̂Q−1
v BT + γC)(B̂Q−1

v FQ−1
v BT )−1(B̂Q−1

v BT + γC) + αD − C − B̂F−1BT









,

so that the momentum equation is again unperturbed. Empirical evidence indicates

that this strategy is effective, leading to convergence rates that are mildly dependent

on Reynolds numbers for steady flow problems.

3.1.2.3 The Approximate SIMPLE Commutator Preconditioner

In this section, we define an alternative strategy that uses the same factors as

SIMPLE, together with the commutator used to derive the P-CD and LSC factoriza-

tions. This results in a “mass preserving” strategy. In terms of the taxonomy, this

method is generated by grouping together the lower triangular and diagonal factors,

choosing H1 = F−1 and Ŝ = C + B̂diag(F )−1BTF−1
p . Insertion of the choices into

(3.7) leads to

AASC =









F BT

B̂ −C









=









F 0

B̂H1F −Ŝ

















I H2B
T

0 I









=









F 0

B̂ −(C + B̂diag(F )−1BTF−1
p )

















I H2B
T

0 I









.
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We can approximate theH2B
T term in the upper triangular factor by diag(F )−1BTF−1

p .

In matrix form this becomes

AASC =









F BT

B̂ −C









=









F 0

B̂ −(C + B̂diag(F )−1BTF−1
p )

















I diag(F )−1BTF−1
p

0 I









.

The error matrix is

EASC = A− ÃASC

=









0 BT − Fdiag(F )−1BTF−1
p

0 0









.

Here the continuity equation is unperturbed. This method performs well when

the error in the (1, 2) block is small. More details on the method with a further

discussion of how this method compares to SIMPLE can be found in [19].
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Chapter 4

Numerical Results in MpSalsa

4.1 Introduction

For our computational study, we have focused our efforts on steady solutions

of two benchmark problems, the lid driven cavity problem and flow over an ob-

struction, each posed in both two and three spatial dimensions. We have tested the

methods discussed above using MPSalsa [49], a code that models chemically reactive,

incompressible fluids, developed at Sandia National Laboratory. The discretization

of the Navier-Stokes equations provided by MPSalsa is a pressure stabilized, stream-

line upwinded Petrov Galerkin finite element scheme [57] with Q1-Q1 elements. In

Section 4.2, we describe these benchmark problems. In Section 4.4, we discuss the

CPU timings and iteration counts for these benchmark problems. In Section 4.5,

we discuss a few of the optimization steps we took to get efficient parallel results.

4.2 Benchmark Problems

4.2.1 Driven Cavity Problem

For the two-dimensional driven cavity, we consider a square region with unit

length sides. Velocities are zero on all edges except the top (the lid), which has

a driving horizontal velocity of one. For the three-dimensional driven cavity, the
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Figure 4.1: Sample velocity field and pressure field from a 2D lid driven cavity.

h = 1/128, Re = 100.

domain is a cube with unit length sides. Velocities are zero on all faces of the cube,

except the top (lid), which has a driving velocity of one. Each of these problems

is then discretized on a uniform mesh of width h. In two dimensions, we have

approximately 3/h2 unknowns, i.e. 1/h2 pressure and 2/h2 velocity unknowns. In

three dimensions, we have approximately 4/h3 unknowns.

The lid driven cavity is a well-known benchmark for fluids problems because

it contains many features of harder flows, such as recirculations. The lid driven

cavity poses challenges to both linear and nonlinear solvers and exhibits unsteady

solutions and multiple solutions at high Reynolds numbers. In two dimensions,

unsteady solutions appear around Reynolds number 8000 [25]. In three dimensions,

unsteady solutions appear around Reynolds number 100 [52]. Figure 4.1 shows the

velocity field and pressure field for an example solution to a two-dimensional lid

driven cavity problem with h = 1/128.
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Figure 4.2: Sample velocity field from a 2D flow over a diamond obstruction. 62K

unknowns, Re = 25.

Figure 4.3: Sample velocity field and unstructured mesh from a 2D flow over a

diamond obstruction.
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Figure 4.4: Sample contour plot and isosurface from a 3D flow over a cube obstruc-

tion, Re = 50.

Figure 4.5: Sample unstructured mesh from a 2D flow over a diamond obstruction.

62K unknowns, Re = 25.
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Figure 4.6: Sample refined unstructured from a 2D flow over a diamond obstruction.

1M unknowns, Re = 25.

Figure 4.7: Sample velocity streamlines from a 2D flow over a diamond obstruction.

62K unknowns, Re = 25.
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4.2.2 Flow over an Obstruction

For the two-dimensional flow over a diamond obstruction, we consider a rect-

angular region with width of unit length and a channel length of seven units, where

the fluid flows in one side of a channel, then around the obstruction and out the

other end of the channel. Velocities are zero along the top and bottom of the chan-

nel and along the obstruction. The flow is set with a parabolic inflow condition, i.e.

ux = 1 − y2,uy = 0 and a natural outflow condition, i.e. ∂ux

∂x
= p and ∂uy

∂x
= 0.

For the three-dimensional flow over a cube, we consider a rectangular region

with a width of one and a half units, a height of three units, and a channel length of

five units. The fluid flows in one side of the channel, then around the cube, and out

the other end of the channel. Velocities are zero along the top and bottom of the

channel, and along the obstruction. The flow is set with a parabolic inflow condition

similiar to the two-dimensional case and with a natural outflow condition.

The flow over an obstruction also poses many difficulties for both linear and

nonlinear solvers. This problem contains an unstructured mesh with inflow and

outflow conditions which generates a different flow than the enclosed flow of a driven

cavity. In two dimensions, unsteady solutions appear around Reynolds number 50

[24]. Figure 4.2 and Figure 4.3 shows the velocity field and unstructured mesh

for an example solution to a two-dimensional flow over a diamond obstruction for

Re 25. Figure 4.4 shows the velocity field and mesh for an example solution to a

three-dimensional flow over a cube obstruction for Re 50.
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4.3 Implementation Environment

We have tested the methods discussed above using MPSalsa [49], a code that

models chemically reactive, incompressible fluids, developed at Sandia National Lab-

oratory. The discretization of the Navier-Stokes equations provided by MPSalsa is a

pressure stabilized, streamline upwinded Petrov Galerkin finite element scheme [57]

with Q1-Q1 elements. One advantage of equal order interpolants is that the velocity

and pressure degrees of freedom are defined at the same grid points, so the same

interpolants for both velocity and pressure are used.

4.3.1 Problem and Preconditioner Structure

The nonlinear system is solved by Newton’s method where the structure of a

two-dimensional steady version of F is a 2× 2 block matrix consisting of a discrete

version of the operator









−ν∆ + u(n−1) · ∇ + (u
(n−1)
1 )x (u

(n−1)
1 )y

(u
(n−1)
2 )x −ν∆ + u(n−1) · ∇ + (u

(n−1)
2 )y









. (4.1)

For the pressure convection-diffusion preconditioning strategy, we need to specify the

operators Fp, Ap, andQp. These operators, are generated using the application code,

MPSalsa. For the Ap operator required by this strategy, we choose it by taking 1/ν

times the symmetric part of Fp. This generates a Laplacian type operator suitable

for the use in this preconditioning strategy. For Qp, we use a lumped version of the

pressure mass matrix. For problems with inflow boundary conditions, we specify

Dirichlet boundary conditions on the inflow boundary for all of the preconditioning
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operators [17]. For singular operators found in problems with enclosed flow, the

hydrostatic pressure makes BT and the Jacobian system rank-deficient by one. Since

we are given a Jacobian matrix from MPSalsa that is “pinned,” i.e. a row and column

that is causing the rank deficiency is removed, we pin all of the operators in the

preconditioner (Fp, Ap, Qp) as the Jacobian matrix is pinned. The other methods

(i.e. SIMPLE, LSC) in this study were built as described in Section 3.1.

One aspect of the block preconditioners discussed here is that they require two

subsidiary scalar computations, solutions for the Schur complement approximation

and convection-diffusion-like subproblem. Both of these computations are amenable

to multigrid methods. We employ smoothed aggregation algebraic multigrid (AMG)

for these computations because AMG does not require mesh or geometric informa-

tion, and thus is attractive for problems posed on complex domains or unstructured

meshes. More details on AMG can be found in [61, 64].

4.3.2 Operations Required

Once all of the matrices and matrix-vector products are defined, we can use

Trilinos [31], a software environment developed at Sandia National Laboratories to

develop parallel solution algorithms using a collection of object-oriented software

packages, to solve the incompressible Navier–Stokes equations. We use our block

preconditioner with specific choices of linear solvers for the Jacobian system, the

convection–diffusion, and Schur complement approximation subproblems.

For solving the system with coefficient matrix F we use GMRES precondi-
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tioned with four levels of algebraic multigrid, and for the pressure Poisson problem,

we use the conjugate gradient (CG) preconditioned with four levels of algebraic

multigrid. For the convection-diffusion problem, a block Gauss Seidel (GS) smoother

is used and for the pressure Poisson problem, a multilevel smoother polynomial is

used for the smoothing operations [2]. The block GS smoother is a domain-based

Gauss Seidel smoother where the diagonal blocks of the matrix (the velocity com-

ponents) correspond to subdomains, and a traditional point GS sweep occurs in the

smoothing step. The local Gauss-Seidel procedure includes a communication step

(which updates ghost values around each subdomain’s internal boundary) followed

by a traditional Gauss-Seidel sweep within the subdomain. For the coarsest level in

the multigrid scheme, a direct LU solve was employed. We used the smoothed aggre-

gation multigrid solvers available in Trilinos. To solve the linear problem associated

with each Newton iteration, we use GMRESR, a variation on GMRES proposed by

van der Vorst and Vuik [62] allowing the preconditioner to vary at each iteration.

GMRESR is required because we use a preconditioned Krylov subspace method to

generate approximate solutions in the subsidiary computations (pressure Poisson

and convection-diffusion-like) of the preconditioner, so the preconditioner is not a

fixed linear operator.

In our experiments, we compare methods from pressure correction (SIMPLEC)

and approximate commutator (PC-D) with a one-level Schwarz domain decomposi-

tion preconditioner [50]. This preconditioner does not vary from iteration to itera-

tion (as the block preconditioners do), so GMRES can be used as the outer solver.

Domain decomposition methods are based upon computing approximate solutions
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on subdomains. Robustness can be improved by increasing the coupling between

processors, thus expanding the original subdomains to include unknowns outside of

the processor’s assigned nodes. Again, the original Jacobian system matrix is parti-

tioned into subdomains using CHACO, whereas AztecOO is used to implement the

one-level Schwarz method and automatically construct the overlapping submatrices.

Instead of solving the submatrix systems exactly we use an incomplete factorization

technique on each subdomain (processor). For our experiments, we used an ILU

with a fill-in of 1.0 and a drop tolerance of 0.0. Therefore, the ILU factors have the

same number of nonzeros as the original matrix with no entries dropped. A 2-level

or 3-level Schwarz scheme might perform better. However, there are some issues

with directly applying a coarsening scheme to the entire Jacobian-system due to the

indefinite nature of the system [50].

In order to minimize the CPU time and thus reduce the number of outer iter-

ations, we have found that for the SIMPLEC preconditioner, we could not perform

the Schur complement approximation solve and the solve with F as loosely as we

did with the pressure convection-diffusion preconditioner. For SIMPLEC, we fix a

tolerance of 10−5 for the solve with coefficient matrix F in (4.3) and the solve with

the Schur complement approximation.

For the pressure convection-diffusion and SIMPLEC preconditioners, we use

a Krylov subspace size of 300 and a maximum number of iterations of 900. For the

2D domain decomposition preconditioner, we use a Krylov subspace of 600 and a

maximum number of iterations of 1800. For the 3D domain decomposition precon-

ditioner, we use a Krylov subspace of 400 and a maximum number of iterations of
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1200. All of these values are chosen to limit the number of restarts needed for the

solver, while balancing the memory on the compute node. The results were obtained

in parallel on Sandia’s Institutional Computing Cluster (ICC). Each of this cluster’s

compute nodes are dual Intel 3.6 GHz Xenon processors with 2GB of RAM.

4.4 Numerical Results

We terminate the nonlinear iteration when the relative error in the residual is

10−4, i.e.
∥

∥

∥

∥

∥

∥

∥

∥









f − (F (u)u +BTp)

g − (B̂u − Cp)









∥

∥

∥

∥

∥

∥

∥

∥

≤ 10−4

∥

∥

∥

∥

∥

∥

∥

∥









f

g









∥

∥

∥

∥

∥

∥

∥

∥

. (4.2)

The tolerance ηk for (1.5), the solve with the Jacobian system, is fixed at 10−5 with

zero initial guess. For all of the problems with the pressure convection-diffusion

preconditioner, we employ inexact solves on the subsidiary pressure Poisson type

and convection-diffusion subproblems. For solving the system with coefficient ma-

trix Ap, we use six iterations of algebraic multigrid preconditioned CG and for the

convection-diffusion-like subproblem, with coefficient matrix F , we fix a tolerance

of 10−2, i.e. this iteration is terminated when

‖(y − Fu)‖ ≤ 10−2‖y‖. (4.3)

We compare this method to a one-level overlapping Schwarz domain decomposition

preconditioner [51] that uses GMRES to solve the Jacobian system at each step

using the same tolerances for the Jacobian system and nonlinear iteration.
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4.4.1 Lid Driven Cavity Problem

We first compare the performance of the pressure convection-diffusion precon-

ditioner to the domain decomposition preconditioner on the lid driven cavity prob-

lem generated by MPSalsa. In the first column of Table 4.1, we list the Reynolds

number followed by three mesh sizes in column two. In columns three, four, and

five, we list the total CPU time and the average number of outer linear iterations

per Newton step for the pressure convection-diffusion, domain decomposition, and

SIMPLEC preconditioners, respectively. For the pressure convection-diffusion pre-

conditioner, we notice iteration counts that are largely independent of mesh size for

a given Reynolds number. As the mesh is refined, we do notice an increase in the

computational time for a given Reynolds number. This is mostly due to the increas-

ing cost of the coarsest level solve in the multilevel method, which relies on a sparse

direct solver. One can control this cost by adding additional levels to the multilevel

method or by changing the coarse direct solve to an incomplete LU factorization

or iterative solve. The domain decomposition preconditioner does not display mesh

independent convergence behavior as the mesh is refined. However, there is much

less computational effort involved in one iteration of preconditioning with domain

decomposition than in one iteration of preconditioning with pressure convection-

diffusion. For the fine meshes, the CPU time for the pressure convection-diffusion

preconditioner is four times smaller than for domain decomposition. The SIMPLEC

method does not display mesh independent convergence behavior, but it provides

solutions in fewer iterations and in less CPU time for finer meshes than the domain
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decomposition preconditioner. For large Re, SIMPLEC is sensitive to the damping

parameter (described in Section 3.1.1.2) on the pressure update. For the results

below, the damping factor was 0.01; for larger values of α the method stagnated.

We found SIMPLE to be less effective than SIMPLEC and do not report results for

SIMPLE.

For the 3D driven cavity problems in Table 4.3, we find that the pressure

convection-diffusion method is faster on larger meshes than the one-level domain

decomposition method. The pressure convection-diffusion method again displays

iteration counts that are largely independent of the mesh size, and it displays a slight

dependence on the Reynolds number. The SIMPLEC method produces iteration

counts that are less dependent on the Reynolds number than domain decomposition,

but it is competitive and in many cases faster than domain decomposition in terms

of CPU time.

The timings for the pressure convection-diffusion (and SIMPLEC) solvers are

functions of the costs of the component operations that define them. In particular,

as Reynolds number increases, the convection-diffusion-like solve is becoming more

expensive, i.e., more steps and therefore more CPU time is needed to reach the

stopping tolerance (4.3). In addition, the coarse grid solve in the multigrid itera-

tions, which is a direct LU factorization, increases as the mesh is refined. Solving

nonsymmetic problems with algebraic multigrid is an active research topic [4]; if a

more effective scalable solver did exist for this subproblem, then the CPU timings

would be considerably lower and more scalable.

In the first column of Table 4.2, we list the Reynolds number followed by two
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Re Number Mesh Size Pressure C-D SIMPLEC DD One-level Procs

iters time iters time iters time

Re = 10 64 × 64 19.4 17.2 41.8 32.9 79.4 19.4 1

128 × 128 21.2 28.4 66.0 78.9 220.6 79.8 4

256 × 256 23.0 69.3 104.3 229.2 467.2 619.4 16

512 × 512 23.2 257.2 164.0 619.4 1356.8 2901.9 64

Re = 100 64 × 64 35.0 28.7 52.0 50.8 86.5 26.4 1

128 × 128 35.9 59.5 71.8 87.9 300.3 130.2 4

256 × 256 41.3 102.1 109.8 410.5 528.8 593.1 16

512 × 512 41.0 345.7 169.4 941.2 NC NC 64

Re = 500 64 × 64 73.0 200.5 73.9 206.7 89.7 44.4 1

128 × 128 79.1 385.6 107.5 401.2 334.9 215.9 4

256 × 256 84.3 607.4 177.6 1600.6 896.1 1592.5 16

512 × 512 90.2 1811.1 204.3 4109.2 NC NC 64

Re = 1000 64 × 64 NC NC NC NC NC NC 1

128 × 128 126.4 570.9 142.0 1220.4 352.5 275.8 4

256 × 256 126.6 1207.6 251.6 3494.2 839.5 2009.6 16

512 × 512 143.2 2563.2 401.2 7598.2 NC NC 64

Table 4.1: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion, SIMPLEC, and domain decomposition preconditioners for the

2D lid driven cavity problem. NC stands for no covergence.
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mesh sizes in column two. In columns three, four, five, and six, we list the aver-

age number of outer linear iterations per Newton step for the pressure convection-

diffusion, least squares commutator, SIMPLEC, and SIMPLE preconditioners, re-

spectively. In this table we see that the PC-D and LSC perform similiarly to one

other for low Re, but as the Re number increases the LSC iteration counts increase

greatly. This is likely due to the preconditioning operator not properly account-

ing for the stabilization in the finite element discretization. A similiar trend is for

SIMPLE and SIMPLEC. For Re 500, SIMPLE does not perform as well as SIM-

PLEC. As the problem becomes more convective, the diagonal of F does not contain

enough information about the physical nature of the problem. Therefore, the diago-

nal approximation in SIMPLE begins to break down. For the rest of our benchmark

problems, we just compare PC-D and SIMPLEC to DD.

4.4.2 Flow over a Diamond Obstruction

The pressure convection-diffusion preconditioner, SIMPLEC, and the domain

decomposition preconditioner are compared for the diamond obstruction problem.

Many of the trends are similiar to the results from the driven cavity problem, mainly

iteration counts that are largely independent of mesh size for a given Reynolds num-

ber and an increase in the computational time as the mesh size is refined. The do-

main decomposition preconditioner does not display mesh independent convergence

behavior as the mesh is refined. For Re 10 and Re 25, the pressure convection-

diffusion preconditioner was faster in all cases. For Re 40, it was faster for all
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Re Number Mesh Size Pressure C-D LSC SIMPLEC SIMPLE Procs

Re = 10 64 × 64 19.4 21.8 41.8 42.3 1

128 × 128 21.2 22.6 66.0 66.8 4

Re = 100 64 × 64 35.0 39.2 52.0 57.0 1

128 × 128 35.9 40.5 71.8 83.0 4

Re = 500 64 × 64 73.0 115.9 73.9 201.8 1

128 × 128 79.1 104.1 107.5 242.7 4

Table 4.2: Comparison of the iteration counts for the pressure convection-diffusion,

LSC, SIMPLEC, and SIMPLE preconditioners for the 2D lid driven cavity problem.

NC stands for no covergence.

meshes except for the small problems with 62,000 unknowns run on one processor.

Note that the GMRES solver preconditioned with domain decomposition stagnated

before a solution was found for the problems with 4 million unknowns. The pressure

convection-diffusion preconditioner converged without difficulty on this problem. On

modest sized problems (those with more than 256K unknowns) where both meth-

ods converged, the pressure convection-diffusion preconditioner ranged from 4 to 15

times faster than domain decomposition.

In Table 4.5, we compare the impact of inexact solves of the subsidiary systems

required for the pressure convection-diffusion preconditioner. In particular, we look

at the “exact” pressure convection-diffusion preconditioner, where we solved the

subsidiary systems to a tolerance of 10−5. The exact pc-d preconditioner shows
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Re Number Mesh Size Pressure C-D SIMPLEC One-level DD Procs

iters time iters time iters time

Re = 10 32 × 32 × 32 28.0 803.2 30.5 1205.6 67.0 634.6 1

64 × 64 × 64 28.4 865.2 50.8 2034.1 159.8 1507.5 8

128 × 128 × 128 31.1 1249.0 280.8 12490.5 356.2 4529.3 64

Re = 50 32 × 32 × 32 40.2 946.9 33.3 1302.6 62.2 615.5 1

64 × 64 × 64 47.8 1061.6 52.5 2457.6 162.6 1533.2 8

128 × 128 × 128 50.1 2101.2 291.2 14987.2 385.5 6460.9 64

Re = 100 32 × 32 × 32 56.0 1232.7 40.8 1884.4 61.7 730.7 1

64 × 64 × 64 62.1 1697.8 61.6 3184.4 168.5 2131.6 8

128 × 128 × 128 64.2 3019.2 299.1 17184.2 404.6 6953.9 64

Table 4.3: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion, SIMPLEC, and domain decomposition preconditioners for the

3D lid driven cavity problem.
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iteration counts that are mesh independent and reduce as the mesh is refined, but

with increasing CPU cost. However, the exact method is still considerably faster

than domain decomposition for this problem. For a user of these methods, we

recommend the inexact variant because the iteration counts are nearly independent

and require less CPU time.

4.5 Code Optimization

Generating the results found in the above tables took countless trials and

considerable optimization steps. Due to space limitations, we comment on only

two steps we took to optimize the solver and the CPU times in a high performance

computing environment. These include making the algebraic multigrid (AMG) more

efficient by implementing a more efficient way of accessing data and the addition of

extra memory which helps better control the CPU cost of the coarse grid solve in

the convection-diffusion solver.

4.5.1 CSR Matrix Optimization

The sparse Jacobian matrix generated by MpSalsa is initially stored in a sparse

matrix format known as variable-block row (VBR). Due to efficiency reasons, we

convert these VBR matrices and store them in compressed storage row (CSR) sparse

matrix format [15]. This matrix representation format allows more optimized matrix

vector products than VBR. Moreover, the CSR format is the most general sparse

matrix storage format because it makes no assumptions about the structure of the

62



Re Number Unknowns PC-D SIMPLEC DD One-level Procs

iters time iters time iters time

Re = 10 62K 21.7 138.8 52.8 502.2 110.8 186.6 1

256K 22.6 192.7 83.6 1203.9 282.6 1054.9 4

1M 25.6 252.3 130.8 1845.3 890.2 6187.4 16

4M 29.7 397.5 212.6 5834.6 NC NC 64

Re = 25 62K 34.9 248.0 66.5 760.5 101.7 198.8 1

256K 40.4 384.6 104.7 1920.3 273.8 1118.6 4

1M 43.6 445.9 160.8 2985.2 864.5 6226.0 16

4M 49.1 736.6 402.1 8241.3 NC NC 64

Re = 40 62K 64.6 565.8 74.8 1278.7 70.4 267.2 1

256K 68.9 975.2 113.6 2718.9 203.9 1269.3 4

1M 72.7 1039.2 260.9 7535.0 770.0 6933.5 16

4M 78.3 1528.6 410.1 11992.2 NC NC 64

Table 4.4: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion, SIMPLEC and domain decomposition preconditioners for the

2D flow over a diamond obstruction. NC stands for no convergence.
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Re Number Unknowns Inexact PC-D Exact PC-D DD One-level Procs

iters time iters time iters time

Re = 10 62K 21.7 138.8 18.7 194.8 110.8 186.6 1

256K 22.6 192.7 16.8 294.0 282.6 1054.9 4

1M 25.6 252.3 16.1 406.4 890.2 6187.4 16

4M 29.7 397.5 14.8 655.8 NC NC 64

Re = 25 62K 34.9 248.0 32.8 695.2 101.7 198.8 1

256K 40.4 384.6 31.6 621.4 273.8 1118.6 4

1M 43.6 445.9 28.6 778.8 864.5 6226.0 16

4M 49.1 736.6 25.3 1312.8 NC NC 64

Re = 40 62K 64.6 565.8 44.4 781.3 70.4 267.2 1

256K 68.9 975.2 39.2 1116.7 203.9 1269.3 4

1M 72.7 1039.2 38.7 1352.7 770.0 6933.5 16

4M 78.3 1528.6 35.2 2280.3 NC NC 64

Table 4.5: Comparison of the iteration counts and CPU time for the inexact pressure

convection-diffusion, exact pressure convection-diffusion and domain decomposition

preconditioners for the 2D flow over a diamond obstruction. NC stands for no

convergence.
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Re Number Unknowns PC-D SIMPLEC DD One-level Procs

iters time iters time iters time

Re = 10 270K 20.7 997.7 45.2 1897.1 67.2 859.8 1

2.1M 21.7 1507.5 79.3 4593.2 151.2 2004.0 8

16.8M 24.7 1997.7 118.7 19907.1 667.2 20908.0 64

Re = 50 270K 35.9 1209.7 49.2 2109.2 69.4 889.2 1

2.1M 38.7 1797.7 84.9 3201.3 132.4 2676.1 8

16.8M 44.7 2397.7 140.2 28156.1 637.2 18646.0 64

Table 4.6: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion and domain decomposition preconditioners for the flow over

a 3D cube. NC stands for no convergence.
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matrix. It is prudent in its memory usage because it does not store any unnecessary

elements and stores the nonzero entries in contiguous memory locations.

Once the matrix is stored in this manner, we can more efficiently access the

data, thus reducing the number of times of accessing the disk when applying the

algebraic multilevel multigrid preconditioner. The CSR format resulted in matrix

vector products (and smoothing operations) that were approximately 20% more

efficient than those implemented in the VBR format. This savings was realized in

the smoothing operations and by eliminating the getrow function call, which forced

the AMG to create a local copy of the matrix and required many read/write calls

to disk to build this local matrix copy. Since the matrix was formatted as a CSR

matrix, we could eliminate this procedure by getting the memory address of the first

stored matrix entry and then passing through the data in a sequential way since the

rows of the matrix are stored in contiguous memory blocks. The following listing

shows a sample profile for the code before the change to CSR:

percent time function call

35.72 79.88 Epetra_CrsMatrix::Multiply

27.87 62.32 Epetra_ML_getrow

16.48 36.86 ML_Smoother_BlockGS

2.95 6.60 Epetra_CrsGraph::ExtractMyRowView

2.92 6.53 CSR_matvec

1.77 3.95 Epetra_BlockMap::GlobalToLocalSetup

1.62 3.63 ML_get_matrix_row
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1.15 2.57 ML_Cheby

In the above listing, the first column represents the percentage of time in that

function call, the second column the time in that function, and the last column

names the function being profiled. After eliminating the getrow call (which cost

27%), the profile reduced to:

percent time function call

22.12 37.86 ML_Smoother_BlockGS

14.88 25.33 epetra_dcrsmv_

14.17 24.29 dgemv_

9.72 13.88 Epetra_CrsMatrix::GeneralMV

3.70 3.53 CSR_matvec

2.32 2.95 Epetra_BlockMap::GlobalToLocalSetup

1.95 2.77 ML_Cheby

Note that the change to CSR format also allowed us use better optimized BLAS2

matrix vector product routines (epetra dcrsmv ) versus the original Epetra matrix

vector products (Epetra CrsMatrix::Multiply) we were using before [3]. In Figure

4.8, we include a bar chart of the timings of the various components (prolongation,

restriction, etc) of the multigrid iteration. For this particular example, one can see

that the application of the BlockGS smoother to the finest level of the convection-

diffusion solve takes the most computational effort, followed by the application of

the MLS smoothing polynomial on the finest level of the Ap solve, and finally the

direct LU decomposition in the coarse level solve takes the third largest amount
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Figure 4.8: Sample velocity field from 2D flow over a diamond obstruction. 62K

unknowns, Re = 25.

of time. For larger problems, we have seen the cost of the coarse level direct solve

increase. We comment more on this point in the next subsection.

4.5.2 Effects of Additional Memory/Cost of LU solve

The cost of the preconditioning operator is a function of the subsidiary com-

putations that define it, such as matrix vector products or algebraic multigrid. For

a given simulation, any inefficiency in these subsidiary computations has a great

effect on the entire CPU time. We found that it is crucial to keep a close watch on

the coarsest level direct solve for the convection-diffusion solver.

We realized great improvements in the CPU time when a mechanism was

added to the computing cluster that allowed the simulations to increase memory

usage from 1 GB of RAM to 2 GB per node. This reduced memory swapping and
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disk input/output1. Most importantly this change allowed us to add more levels to

the multilevel multigrid iteration, thus reducing the solve time for the convection-

diffusion matrix. In Table 4.7, we show the problem size in column 1, followed

by the number of processors in column 2, then the number of levels used in the

multilevel method for the F solve in column 3, followed by an approximate number

of iterations of the F solver in column 4, and finally the cost of the LU time in

column 5. As the mesh is refined, one notices an increase not only in the number of

iterations, but in the CPU time of the LU solve.

Unknowns Nprocs Number of levels F its LU time

256K 4 3 7 0.02

1M 16 3 7 0.01

4M 64 3 15 1

256K 4 4 8 0.001

1M 16 4 8 0.004

4M 64 4 11 0.03

Table 4.7: Comparison of CPU times and iterations for three and four levels of Re

25 on the diamond obstruction problem.

We can curb the rise in the CPU time by adding additional levels to the AMG

scheme. This is because the size of the coarsest level has drastically reduced with

1By invoking a “top” command from a UNIX shell we could see that all of the memory on a

compute node was being used in a particular simulation.

69



the additional level. In Table 4.8, we detail this trend. In this table, we vary the

size of the problem and then show the number of unknowns across the columns in

each level of the AMG scheme. For example, in a three level AMG scheme on the

64K unknown problem, the finest level has 41,536 unknowns, the second level 2,750,

while the coarsest level has 200 unknowns. This 3-level scheme is fine for smaller

problems, but in larger problems, say with 4M unknowns, this coarse level matrix

is 12,440 by 12,440. Solving a system with this matrix using a direct LU solver is

too cumbersome (especially since the coarse level matrix is nearly fully dense). So,

adding an additional level (which was not effective before the additional memory

was added) reduces the size of the coarse grid operator to 932 by 932. This is much

more manageable for a sparse direct solver and is crucial to control the CPU time

for this solve. Prior to having 2 GB of memory per compute node, a fourth level

did not help the CPU times because the additional matrix operations required by

the additional level were too expensive.

Unknowns L1 L2 L3 L4

64K 41,536 2,750 200 19

256K 164,608 10,586 766 68

1M 655,360 43,691 3,088 274

4M 2,615,296 170,708 12,440 932

Table 4.8: Comparison of the size of the various levels in the AMG solver.

In Table 4.9, we show results for the lid driven cavity problem for 1 GB of
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memory per compute node. Contrasting these results with those found in Table 4.1

(which use 2 GB of memory), we notice a substantial decrease in the CPU time by

adding the additional memory. We also notice a similiar result for the flow over a

diamond problem in Table 4.10 when compared with Table 4.4.
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Re Number Mesh Size Pressure C-D SIMPLEC DD One-level Procs

iters time iters time iters time

Re = 10 64 × 64 19.4 18.2 42.0 38.8 79.4 19.4 1

128 × 128 21.2 28.4 66.0 98.9 220.6 91.4 4

256 × 256 23.0 69.3 104.3 249.2 1018.6 596.6 16

Re = 100 64 × 64 34.2 38.7 52.0 82.7 86.5 26.4 1

128 × 128 35.9 69.5 69.8 152.7 300.3 150.2 4

256 × 256 40.3 152.1 109.8 365.9 1603.9 1326.6 16

Re = 500 64 × 64 73.0 290.5 74.9 206.7 89.7 44.4 1

128 × 128 78.1 428.0 111.4 401.2 334.9 258.9 4

256 × 256 83.3 767.4 187.6 1650.1 5433.1 4543.9 16

Re = 1000 64 × 64 NC NC NC NC NC NC 1

128 × 128 120.4 770.9 152.0 1520.4 352.5 325.5 4

256 × 256 124.6 3207.6 261.6 4494.2 4412.7 7497.9 16

Table 4.9: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion, SIMPLEC, and domain decomposition preconditioners for the

2D lid driven cavity problem with 1GB of memory per compute node. NC stands

for no convergence.
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Re Number Unknowns PC-D SIMPLEC DD One-level Procs

iters time iters time iters time

Re = 10 62K 20.5 138.8 54.6 502.2 110.8 186.6 1

256K 22.5 266.2 86.6 1203.9 284.6 1657.4 4

1M 22.9 501.0 153.0 3513.3 1329.0 7825.5 16

4M 29.4 1841.7 392.6 48891.7 NC NC 64

Re = 25 62K 32.9 248.0 66.5 760.5 101.7 198.8 1

256K 35.9 480.6 104.7 1920.3 273.8 1583.1 4

1M 38.3 956.9 207.3 6259.4 1104.8 7631.5 16

4M 42.0 4189.8 506.8 78326.5 NC NC 64

Re = 40 62K 54.6 565.8 74.8 1278.7 70.4 267.2 1

256K 70.1 1280.9 113.6 2718.9 203.9 1420.7 4

1M 65.4 2011.7 260.9 10356.4 997.1 8188.2 16

4M 79.8 9387.9 660.6 140412.5 NC NC 64

Table 4.10: Comparison of the iteration counts and CPU time for the pressure

convection-diffusion, SIMPLEC, and domain decomposition preconditioners for the

2D flow over a diamond obstruction with 1GB of memory per compute node. NC

stands for no convergence.
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Chapter 5

Applications to Shape and Topology Microfluidic Applications

The increased ability to manufacture devices at small length scales has created

a growing interest in construction of miniature devices for use in biomedical screening

and chemical analysis. At the heart of these devices are flow problems that have a

length scale between 10-100 µm, with a low fluid volume, so the Reynolds number

is small. This results in laminar flow of the type commonly found in modeling blood

samples, bacterial cell suspensions, or protein/antibody solutions. Microfluidics, the

methods for controlling and manipulating fluids with length scales less than 1 mm,

is a key ingredient in this process [55]. However, robust techniques for pumping and

mixing in microfluidic devices are in short supply. Although mixing is one of the

most time-consuming steps in biological agent detection, research and development

of microfluidic mixing systems is relatively new. In this chapter, we explore the

use of techniques for modeling microfluidic mixing systems, and we show that the

numerical solution algorithms discussed in Chapter 3 for the discrete Navier-Stokes

equations can be used to solve the resulting algebraic systems.

We divide the types of mixing into two broad classes, passive (pressure/capillary)

and active (electric/magnetic) mixing. Passive mixing, which occurs when liquids

are forced through tortuous paths (baffles, turns, etc), continually dilutes the sam-

ple as long as the process continues. Such pressure-driven flows are commonly used
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in microfluidic devices and can be very effective when the channel dimensions are

not too small (> 10µm). However, these methods scale poorly with miniaturization

and do not offer local control of flow direction [37].

Active mixing does not suffer from these problems because an independent

source of motion is used to mix liquids which are otherwise stationary. Strategies

for active mixing include production of recirculating flows by ultrasonic means (these

tend to be larger, bulky systems) or by oscillatory electro-osmosis [54]. Both of these

methods mix dyes in a few seconds, but require specific properties of the reagents.

From our prospective, the latter approach, which is denoted Induced Charge Electro-

osmosis (ICEO) provides the best option because it can mix dyes in a few seconds,

while producing time dependent 2D/3D flows [54].

In the ICEO model, the flow is pumped by electrokinetic means, where an

obstruction in a microchannel is charged, generating a varying “double layer” of

ions on the walls of the channel. When an electric field is applied to this channel,

the double layer moves to the opposite polarity, thus creating motion of fluid near the

obstruction [54]. This motion is transferred to the bulk of the fluid, creating mixing

and movement of fluid in the channel. ICEO provides a bounty of desirable effects

that allow the flow to be tailored to the volume. These include the ability to control

the position, shape, and potential of the flow “inducing surfaces” in microchannels.

In addition, the flows are confined because they can recirculate within a prescribed

volume so the mixing operation does not disperse the sample beyond the intended

volume.

ICEO results when an electrical conductor (polarizable material) is placed
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Figure 5.1: Double layer flows around a circular and triangular conductor.

in a liquid (electrolyte) in the presence of an electric field. Consider a cylindrical

conductor immersed in a liquid with an electric field present, as shown in Figure 5.1

(left). The conductor is free floating and free of current so it becomes polarized, thus

making the field within it zero. The charge on the surface of the conductor attracts

counter ions in the surrounding liquid so an electrical double layer is formed adjacent

to the conductor surface. The applied field acts on this ionic charge layer, which

has been created by the field. The mobile ions move in response to the electric field,

and the ions drag the surrounding fluid with them by viscous forces. The resultant

“slip” velocity at the surface of the conductor is proportional to the product of the

electric field squared and the characteristic length of the conductor [54].

The ICEO flow pattern depends on the shape of the conductor(s). A symmetric

shape typically results in symmetric recirculating flows surrounding the conductor.

In the case of the cylindrical conductor shown in Figure 5.1, the flow will be com-

posed of four symmetric vortices. There may be many of these conductors resulting

in a periodic flow pattern. An asymmetric shape, such as the triangle shown in Fig-

ure 5.1 (right), creates non-symmetric flows because it follows the non-symmetric

shape of the post.

The two types of ICEO are fixed-charge and fixed-potential. Fixed-charge
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Figure 5.2: Sample domain for the multiple cylinder problem.

ICEO results when the conductor is isolated such that its potential floats, and takes

on a value dependent on its location in the field. Fixed-potential ICEO results when

the conductor is energized to a prescribed potential. It provides another method for

creating non-symmetric flows and it can produce much faster flows than fixed-charge

ICEO flows. In Section 5.1 we discuss how we model this scenario.

We would like to design an ICEO driven microfluidic mixing device for com-

bining a sample fluid with a reagent. This device could be useful as part of a

miniaturized biological detector. However, the shape and topology of the ICEO

conducting region is an open question. Our goal is to investigate this question by

running an optimization loop, where a sequence of fluid problems like (3.1) must be

solved, to minimize the mixing of two fluids by manipulating the shape and topol-

ogy of the charged region. Therefore, scalable solvers are needed to effectively solve

this optimization problem. Our initial configuration is a rectangular region with 10

circular posts equally spaced in the middle of the rectangle, two inlets to the left

of the rectangular region, and one outlet to the right of the rectangular region. An

image of this domain can be found in Figure 5.2.
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5.1 Model Description

A finite element model was used to calculate the electric field, the ICEO flow,

and the mass transport in a multi-species liquid. The low-frequency AC field is

assumed to be in a liquid with neutral charge. Under these conditions the electric

field is governed by Laplace’s equation,

∇φ = 0 (5.1)

where φ is the electric potential. The electric field is obtained from the potential as

E = ∇φ. The boundary conditions for (5.1) are either Neumann conditions (zero

normal gradient of the potential) at the channel boundaries and Dirichlet conditions

(specified potential) at the electrodes. Note that the insulating boundary condition

applied on the surfaces of the posts is the same as that for the remainder of the

channel walls. The metallized posts are assumed to be completely shielded from the

field by the double layer.

The incompressible form of the Navier-Stokes Equations is used to calculate

momentum transport

−ν∇2u + (u · grad)u + grad p = f (5.2)

−div u = 0 (5.3)

as was defined in Chapter 2. No-slip velocity boundary conditions were used on all

channel surfaces except the metallized post surfaces, where a slip velocity boundary

condition was used. This is given by

v =
ǫδEt

µ
(5.4)
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where ǫ is the fluid permittivity, δ is the potential drop across the electrical double

layer, Et is the tangential electric field obtained from solving (5.1), and µ is the fluid

viscosity [54].

Once the velocities are obtained from the Navier-Stokes equations, the mass

fraction of the solute is obtained by solving the advection-diffusion equation for mass

transport,

u · ∇m = D∇2m (5.5)

where m is the mass fraction of solute and D is the diffusivity. We chose the

diffusivity coefficient, D = 1.8 × 10−9 cm2

s
, which represents ∼ 3 mm particles in

an aqueous solution. This value was chosen because particles create the largest

challenge to mixing and are a good test case for any mixing device. The small

value of D results in a large (∼ 105) Peclet number, Pe = uL/D, where L is the

characteristic length scale of the device, indicating that much of the mass transport

needed for mixing occurs by advection. For the boundary conditions in this equation,

we use Neumann zero flux conditions on the solid surfaces and Dirichlet conditions

of 1 on one inflow boundary (denoted A in Figure 5.2) and 0 on the other inflow

boundary (denoted B in Figure 5.2) . The mass transport equation in (5.5) is a useful

formula to model mixing because it is a mass transfer process that occurs through

a combination of convection and diffusion. The fluids of interest here are liquids,

where diffusive mass transport is very slow over distances typical of microchannels.

Thus, convective transport is needed to stretch and fold the liquids, i.e. to increase

interfacial area between the two liquid volumes and to reduce the distances over
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which diffusion must occur.

A mixing metric was defined to quantify the extent of mixing based on the

calculated results,

M =

∫

(m− m̄)2dV

V
(5.6)

where m̄ is the average concentration of solute in the liquid mixture and the integral

was carried out over the volume, V , of the mixing domain. This metric varies from

some initial value that depends on the degree of segregation at the beginning of the

mixing process and after the loading process, to zero as perfect mixing is approached.

Our goal is to determine an optimal mixing strategy for this microfluidic prob-

lem by varying the shape and orientation of the electrically charged posts. This

requires us to solve a series of problems (5.1),(5.2), (5.3), and (5.5) at each step of

the optimization loop where we want to

minimize M subject to (5.7)

di ≥ 0 (5.8)

where di is a 38 component design variable related to the shape and orientation of

the charged posts and the objective function, M , is the mixing metric defined in

(5.6). A further description of the design variables is found in Section 5.4.

5.2 Implementation and Testing Environment

We have modeled the ICEO mixing process using Sundance, a finite element

code developed at Sandia National Laboratory [39]. To minimize the objective

function we use APPSPACK which is an Asynchronous Parallel Pattern Search code
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also developed at Sandia National Laboratory. Both Sundance and APPSPACK are

further described in Section 6.3.2.

At each step of the optimization loop we need to perform a series of computa-

tions. First we generate a mesh to correspond to the new choice of design variables,

then use that mesh to solve a series of problems to model the ICEO flow and the

mixing process. We generate the mesh using the software package CUBIT, which

is developed at Sandia National Laboratory [1]. The meshes we develop in the

course of the optimization loop are triangular elements with an extra level of refine-

ment around the conducting surfaces. This is done to resolve the relevant physics

found in the boundary layer. Then we model the ICEO flow, by solving a poten-

tial equation,(5.1), which we use to implement a slip velocity boundary condition,

(5.4), on the Navier-Stokes equations (5.2)-(5.3). The calculated velocity value from

the solution of the Navier-Stokes equations is used in the mass-transport equation,

(5.5). The mass fraction, calculated from the mass transport equation, is used to

calculate the mixing metric, (5.6), which is the value we want to minimize. These

are the major calculations required at each step of the optimization algorithm. In

the remainder of this section we describe the discretization details for each equa-

tion and our solver choice for each of the discrete systems of equations. We solve

the problems using the techniques and software described in the previous chapters,

including AMG methods to solve the potential and advection-diffusion equations.

• We discretize the potential equation using piecewise quadratic, P2, finite ele-

ments interpolated with 2nd order Gaussian quadrature. For solving the linear
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system resulting from the discretization of the potential equation we use CG

preconditioned with two levels of algebraic multigrid. The smoother for this

problem is an incomplete LU factorization. We terminate this iteration when

the residual is reduced by a factor of 10−10.

• We discretize the incompressible Navier Stokes equations using Taylor-Hood

P2 − P1 finite elements with 4th order Gaussian quadrature. This is a stable

choice of finite element pairs, so the stabilization matrix, C, is zero. The

nonlinear system is solved by Picard’s method where the structure of a two-

dimensional steady version of F is a 2×2 block matrix consisting of a discrete

version of the operator









−ν∆ + u(n−1) · ∇ 0

0 −ν∆ + u(n−1) · ∇









(5.9)

where u(n−1) is a velocity value from a previous iteration. We terminate the

nonlinear iteration when the relative error in the residual is 10−4, i.e.

∥

∥

∥

∥

∥

∥

∥

∥









f − (F (u)u +BTp)

g − Bu









∥

∥

∥

∥

∥

∥

∥

∥

≤ 10−4

∥

∥

∥

∥

∥

∥

∥

∥









f

g









∥

∥

∥

∥

∥

∥

∥

∥

. (5.10)

The tolerance ηk for (1.5), the solve with the Oseen system, is fixed at 10−5

with zero initial guess. We solve the resulting linear system using GMRES

preconditioned with the pressure convection-diffusion preconditioner. We de-

scribed this method in Chapter 3 and have found this method to work well

when tested on some sample fluids problems in Chapter 4. This method is

scalable and mesh independent and we wish to show its applicability in a more
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applied setting. The Fp, Ap, and Qp operators required by this strategy are

all generated by the application code, Sundance. For the pressure convection-

diffusion preconditioner, we solve the subsidiary pressure Poisson type and

convection-diffusion subproblems to a tolerance of 10−5, i.e. this iteration is

terminated when

‖(y − Fu)‖ ≤ 10−5‖y‖. (5.11)

For solving the system with coefficient matrix F we use GMRES precondi-

tioned with four levels of algebraic multigrid, and for the pressure Poisson

problem with coefficient matrix (Ap), we use conjugate gradient (CG) precon-

ditioned with four levels of algebraic multigrid. For the convection-diffusion

problem, a block Gauss Seidel (GS) smoother is used and for the pressure

Poisson problem, a traditional point GS smoother is used for the smoothing

operations. The block GS smoother is a domain-based Gauss Seidel smoother

where the diagonal blocks of the matrix (the velocity components) correspond

to subdomains, and a traditional point GS sweep occurs in the smoothing step.

The local Gauss-Seidel procedure includes a communication step (which up-

dates ghost values around each subdomain’s internal boundary) followed by a

traditional Gauss-Seidel sweep within the subdomain. For the coarsest level in

the multigrid scheme, a direct LU solve was employed. We used the smoothed

aggregation multigrid solvers available in Trilinos. To solve the linear problem

associated with each Picard iteration, we use GMRES.

For the pressure convection-diffusion solver we use a Krylov subspace size
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of 300 and a maximum number of iterations of 600. All of these values are

chosen to limit the number of restarts needed for the solver, while balancing

the memory on the compute node.

• We discretize the mass transport equation (5.5), using P2 finite elements with

4th order Gaussian quadrature. For solving (5.5), we use GMRES precondi-

tioned with three levels of smoothed aggregation multigrid. The smoother at

the finest two levels is an incomplete LU factorization. On the coarsest level,

we use a direct LU solve. We terminate this iteration when the residual is

reduced by a factor of 10−5.

• To minimize the objective function found in (5.7), we use APPSPACK, which

is an Asynchronous Parallel Pattern Search code developed at Sandia National

Laboratory [27]. This code minimizes the objective function by asynchronous

parallel generating set search, which handles bound and linear constraints by

choosing search directions that conform to a nearby boundary. In generating

set search, the next point in the optimization is determined solely by the

value of the function on a set of points around the current point. These search

points are generated from a fixed set of directions, called the generating set.

The evaluation of the function on the search points, or search step, lends itself

naturally to a parallel implementation. This code is suited for problems with

a small number of design variables (i.e., n ≤ 100), but expensive objective

function evaluations. So this code is well suited for solving this problem.

In Section 5.3.1, we discuss some examples where we tested a microfluidic
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flow problem with one charged circular post in the center of the domain. Section

5.3.2 describes an example where we solved the flow problem on multiple cylinders

without the mixing coefficients. Finally, Section 5.4 gives more insight into the

optimization process and objective function, and shows a few sample meshes and

numerical results that were created during the optimization loop. The results were

obtained in parallel on Sandia’s Institutional Computing Cluster (ICC) using 8 to

100 processors per run. Each of this cluster’s compute nodes are dual Intel 3.6 GHz

Xenon processors with 2GB of RAM.

5.3 Numerical Results for Microfluidic Cylinders

5.3.1 One Cylinder

In Table 5.1, we display a set of iteration counts for the linearized Navier-Stokes

solves for the microfluidic problem with one charged cylinder. These numbers are

the average iteration counts for solving the Oseen equations during the course of

the Picard iterations. In Figure 5.3 we show an image of an example mesh and in

Figure 5.4 we show an image of the refined mesh with 320K unknowns. We also

show images of a variety of flow field in Figures 5.5, 5.6, and 5.7. In Table 5.1, we

list example iteration counts for two meshes. Both of these display iteration counts

that are independent of the mesh size for a given Reynolds number. We also see

very slight dependence on Reynolds number.
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Re Number Mesh Size Pressure C-D

Re = 1 140K 52.1

320K 51.2

Re = 20 140K 57.2

320K 56.3

Table 5.1: Average number of linear iterations per nonlinear step for the pressure

convection-diffusion preconditioner for the one cylinder microfluidic problem.

Figure 5.3: Sample coarse mesh for the multiple cylinder domain.

86



Figure 5.4: Sample refined mesh for one charged cylinder.

Figure 5.5: Sample ux velocity field for one charged cylinder.
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Figure 5.6: Sample uy velocity field for one charged cylinder.

Figure 5.7: Sample higher intensity ux velocity field for one charged cylinder.
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5.3.2 Multiple Cylinders

In Figure 5.8 we show an image of the triangular mesh used to discretize this

problem. We also show a few images of a variety of flow fields in Figures 5.9 and 5.10.

Note that the flow field is asymmetric around each post, but symmetric with respect

to the origin. We see enlarged recirculation zones around the inflow and outflow,

which is a result of the boundary effects not be totally resolved. In this table, we

have example iteration counts for two meshes. Both of these display iteration counts

that are independent of the mesh size for a given Reynolds number. These iteration

counts are the average number of linear iterations per nonlinear iteration. We also

see very slight dependence on Reynolds number.

Re Number Mesh Size Pressure C-D

1 62K 64.0

256K 62.1

20 62K 68.0

256K 67.9

50 62K 77.0

256K 74.9

Table 5.2: Average number of linear iterations per nonlinear step for the pressure

convection-diffusion preconditioner for the multiple cylinder microfluidic problem.
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Figure 5.8: Sample mesh for the multiple cylinder domain.

Figure 5.9: Sample velocity field for the multiple cylinder domain.
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Figure 5.10: Sample velocity field for a zoomed in region of the multiple cylinder

domain.
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5.4 Numerical Results for Shape Optimization

Our goal is to optimize the shape of the microfluidic mixing device to maximize

the amount of mixing being done in the channel. To do so, we use the objective

function found in (5.7) constrained to 38 design variables. We parameterize each

post as a set of piecewise line segments that connect 10 points. Each of these points

is defined using a distance and angle with respect to the origin of our system. This

results in 20 design variables. Each of the other 9 posts is offset by a distance from

the central post and rotated by an angle, giving 18 more variables. We use the

same finite element formulation and solvers as was used in the one and multiple

post cases.

5.4.1 Simulation and Numerical Results

In Section 5.2, we described the steps necessary to solve our optimization prob-

lem. In this section, we show a variety of flow fields obtained from various steps of

the optimization loop and include the value of the mixing metric to show the qual-

ity of mixing for that particular mesh. We follow these images with a table listing

the iteration counts for solving the ICEO flow problem and the CPU time required

to evaluate the mixing metric, i.e. to generate the mesh, then solve (5.1),(5.2)-

(5.3), and (5.5). The solver for the Navier-Stokes component of the ICEO flow was

GMRES preconditioned with the pressure convection-diffusion preconditioner. This

method generated scalable results for the results in Chapter 4 and we see similiar

trends when applying this technology to this problem.
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For the original configuration of the posts found in Figure 5.9, the initial value

of the mixing metric is 0.0287106. We improved on this value by manipulating

the posts. In the following figures, we show the flow field at various points of

the optimization loop and list the value of the mixing metric in the caption of

each figure. Figure 5.11 shows one of the preliminary configurations chosen by the

optimization algorithm. Notice that the posts are dimpled. In Figure 5.12 we show

a flow field where the fifth and sixth posts have been stretched apart; this resulted

in an increase in the mixing metric from the initial value. Due to this increase,

the pattern search algorithm tended to stay away from configurations of this type.

Figures 5.13, 5.14, and 5.15 show a few sample flow fields where the mixing function

value is decreasing, but the obstructions are not aligned for optimal mixing. Figures

5.16 and 5.17 show two configurations for a low mixing metric (values of 0.000811796

and 0.00092394). The value of the mixing metric in these two examples is two orders

of magnitude lower than the value of the original mixing metric. We consider this

to be an adequate reduction in the cost function. It is interesting to note that

the final configurations retained a strong memory to the initial configuration. This

suggests that this initial configuration (symmetric circles) leads to a local minimum.

In further studies, we hope to change the initial post configuration and see what

change (if any) this has on the final post configuration.
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Figure 5.11: Mixing Value: 0.0233216

Figure 5.12: Mixing Value: 0.032451

Figure 5.13: Mixing Value: 0.0249871
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Figure 5.14: Mixing Value: 0.018406

Figure 5.15: Mixing Value: 0.00127773

Figure 5.16: Mixing Value: 0.000811796
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Figure 5.17: Mixing Value: 0.000923394

Figure 5.18: Mixing Value: 0.0331203
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Figure Number Iteration Counts CPU Time (sec)

5.8 64.0 21765.1

5.11 62.1 20831.1

5.12 67.1 21874.1

5.13 66.1 20923.9

5.14 68.2 20643.1

5.15 69.2 20173.8

5.16 60.4 20515.5

5.17 67.3 20488.9

5.18 66.3 20898.2

Table 5.3: Average number of iteration counts per nonlinear step for the pressure

convection-diffusion preconditioner for the optimization of a multiple cylinder mi-

crofluidic problem.

In Table 5.3, we list the figure number in column one, followed by the average

number of outer linear iterations per Picard step for the pressure convection-diffusion

preconditioner in column two, and then list the CPU time in seconds in column 3.

The iteration counts for this problem are all in the range of 80 to 90 iterations

per nonlinear step. This suggests that changes in the obstruction have little effect

on the solver for the discrete Navier-Stokes linear systems of equations. The CPU
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times are also very consistent from one type of configuration to another. In the

future, we plan to experiment with the effect of changing boundary conditions on the

preconditioning operator. This change may decrease the number of linear iterations

needed to converge to a solution, thus decreasing the overall CPU time for this

simulation.
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Chapter 6

Implementation and Testing Environment

We have tested the utility of the preconditioning methods described in Chapter

3 in a realistic industrial fluids code. This required the creation of a parallel, object-

oriented software package, called Meros. This chapter summarizes the construction

and use of this package. Section 6.1 provides an overview of Trilinos, which is the

software framework where Meros is embedded. An example problem with Meros is

discussed in Section 6.2. Section 6.3 provides an overview of the two application

codes we have linked Meros to in order to test the preconditioning strategies. Finally,

we conclude with Section 6.4, which lists some of the verification and validation steps

that were done to make sure Meros generates accurate solutions and is functioning

properly.

6.1 Trilinos Framework

Our implementation of preconditioned Krylov subspace solution algorithms

uses Trilinos [31], a software environment developed at Sandia National Laboratories

to develop parallel solution algorithms using a collection of object-oriented software

packages for large-scale, parallel multiphysics simulations. This project is designed

to facilitate the design, development and support of mathematical software libraries.

One advantage of using Trilinos is its capability to seamlessly use other component

99



packages for core operations. We use the following components of Trilinos:

1. Epetra - This package provides the fundamental construction routines and op-

erations needed for serial and parallel linear algebra libraries. It is one of the

base packages in Trilinos. Many Trilinos solver packages use Epetra objects

for basic linear algebra computations. Epetra also facilitates matrix construc-

tion on parallel distributed machines. Each processor constructs the subset of

matrix rows assigned to it via the static domain decomposition partitioning

generated by stand-alone library,i.e. CHACO [30], and a local matrix-vector

product is defined. Epetra handles all of the details of performing distributed

parallel matrix operations (e.g. local indices versus global indices, communica-

tion for matrix-vector products, etc.). Once the matrices F , B, B̂, and C are

defined, a global matrix-vector product for (1.6) is defined using the matrix-

vector products for the individual systems. Construction of the preconditioner

follows in a similiar fashion.

2. AztecOO - This package is a massively parallel iterative solver library for

sparse linear systems. AztecOO is a collection of C++ classes that support

the construction and use of objects for solving linear systems of equations of

the form Ax = b via preconditioned Krylov methods, as provided in Aztec.

AztecOO also provides mechanisms for using Ifpack, ML [58] and AztecOO

itself as preconditioners. All of the Krylov methods (i.e. those for solving (1.6),

for the F , and Schur complement approximation subsystems) are supplied by

AztecOO [60].
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3. ML - This is a multilevel algebraic multgrid preconditioning package. We use

this package with AztecOO to solve the F and Schur complement approxima-

tion subsystems. ML is designed to solve large sparse linear systems of equa-

tions arising primarily from elliptic PDE discretizations. ML based smoothed

aggregation preconditioners have been used on thousands of processors for a

variety of problems, including the incompressible Navier-Stokes equations with

heat and mass transfer, linear and nonlinear elasticity equations, the Maxwell

equations, semiconductor equations, and more.

4. NOX - This is a package for solving nonlinear systems of equations. We use

NOX for the inexact nonlinear Newton solver.

The actual preconditioning strategies are found in Meros, which we discuss next.

6.2 Meros: Software for Block Preconditioning the Navier-Stokes

Equations

Meros is a segregated preconditioning package within Trilinos. Meros provides

scalable block preconditioning for problems, such as Navier-Stokes problems, that

couple simultaneous solution variables . Both the pressure convection-diffusion and

variants of the SIMPLE preconditioner detailed in this study are implemented in

this package. Meros uses the Epetra package for basic linear algebra functions.

The block preconditioners can be used to solve block linear systems with co-
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efficient matrices of the form

Ã =









F BT

B̂ −C









(6.1)

where Ã is a user supplied matrix of size n × n that arises from linearization and

discretization of the incompressible Navier-Stokes equations. We denote F the

convection-diffusion-like operator of dimension v × v, BT the pressure gradient of

dimension v×p , B̂ the divergence operator of dimension p×v , and C is a stabiliza-

tion matrix of dimension p×p. Depending on the discretization C might be the zero

matrix [17]. Meros is intended to be used on large block sparse linear systems arising

from partial differential equation (PDE) discretizations. Meros is designed for linear

systems with components that are amenable to solution by multigrid methods (e.g.

elliptic PDEs). The motivations for block preconditioning, include

• The desire for the scalability and mesh-independence of multigrid

• Difficulties of applying multigrid to the whole system

• Efficiences achieved by segregating blocks and applying multigrid separately

to subproblems

The released version of Meros 1.0 includes the following classes of methods:

• Approximate Commutator Methods

1. Pressure Convection-Diffusion (PC-D) methods

2. Least Squares Commutator (LSC) methods

• Pressure-Projection Methods
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1. SIMPLE - Semi Implicit Methods for Pressure Linked Equations

2. SIMPLEC - Semi Implicit Methods for Pressure Linked Equations Con-

strained

3. SIMPLER - Semi Implicit Method for Pressure Linked Equations Revised

Meros has been designed to balance usability with efficiency. Here is an ex-

ample of the code required to build the block preconditioner:

// Build an Fp block preconditioner with Meros

//

// | inv(F) 0 | | I -Bt | | I |

// | 0 I | | I | | -inv(X)|

//

// where inv(X) = Fp inv(Ap)

// We’ll do this in 4 steps:

// 1) Build a solver for inv(F)

// 2) Build a SchurFactory that can make an inv(X) approximation

// 3) Build a block preconditioner factory with the F solver and

// Schur factory

// 4) Make the preconditioner and get a TSFLinearOperator

// representing the prec.

// 1) Build inv(F) so that it corresponds to using GMRES with ML.

// Set up an F solver using parameter lists
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string FSolverFile = ‘‘FParams.xml’’;

string path = ‘‘../../example/’’;

ParameterXMLFileReader FReader(path + FSolverFile);

ParameterList FSolverParams = FReader.getParameters();

LinearSolver<double> FSolver =

LinearSolverBuilder::createSolver(FSolverParams);

// 2) Build a SchurFactory that can make an inv(X) approximation

// First set up an Ap solver using parameter lists

string ApSolverFile = ‘‘ApParams.xml’’;

ParameterXMLFileReader ApReader(path + ApSolverFile);

ParameterList ApSolverParams = ApReader.getParameters();

LinearSolver<double> ApSolver =

LinearSolverBuilder::createSolver(ApSolverParams);

RefCountPtr<FpSchurFactory> fpschur = rcp(new FpSchurFactory(ApSolver));

// 3) Build a block preconditioner with the F solver and Schur factory

RefCountPtr<PressConvDiffPreconditionerFactory> precfac =

rcp(new PressConvDiffPreconditionerFactory(FSolver, fpschur));
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// Build an FpOperatorSource to give us access to the saddle

// operator and the Ap and Fp operators.

RefCountPtr<FpOperatorSource> fpOpSrc =

rcp(new FpOperatorSource(blockOp, Ap, Fp));

// 4) Get the preconditioner.

Preconditioner<double> Prec = precfac->createPreconditioner(fpOpSrc);

LinearOperator<double> saddlePrec = Prec.right();

LinearOperator<double> PA = saddlePrec*blockOp;

// Set up a solver (outer solver)

ParameterList myParams;

myParams.set(‘‘Max Iterations’’, 100);

myParams.set(‘‘Restart’’, 100);

myParams.set(‘‘Tolerance’’, 10e-6);

myParams.set(‘‘Verbosity’’, 4);

LinearSolver<double> solver = new GMRESSolver<double>(myParams);

SolverState<double> state = solver.solve(PA,

PA*rhsblockvec,

solnblockvec);
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6.3 Application Codes

6.3.1 Testing using MpSalsa

We have tested the preconditioning methods discussed in Chapter 3 using MP-

Salsa [49], a code developed at Sandia National Laboratory, that models chemically

reactive, incompressible fluids. The discretization of the Navier-Stokes equations

provided by MPSalsa is a pressure stabilized, streamwise upwinded Petrov-Galerkin

least squares finite element scheme [57] with Q1-Q1 elements. One advantage of

equal order interpolants is that the velocity and pressure degrees of freedom are de-

fined at the same grid points, so the same interpolants for both velocity and pressure

are used.

6.3.2 Testing using Sundance

We have also tested these methods on solving an optimization problem related

to the shape and topology of a microfluidic mixing device. To model this problem,

which we describe in Chapter 6, we use Sundance [39] for the finite element dis-

cretization and APPSPACK [27] for the optimization. Sundance is a new tool for

development of finite-element solutions of partial differential equations developed at

Sandia National Laboratory. It is built using an engine for automatic differentiation

of symbolic objects, which allows the user to enable differentiable simulations for

use in optimization problems. The motivation behind the development of Sundance

is the belief that a user should be able to code a finite element problem using the

same level of abstraction as one would use to describe the problem in a classroom
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setting or in a book. Sundance provides a set of high-level components with which

the user can setup, describe, and solve a problem without worrying about book-

keeping details. This approach allows a high degree of flexibility in the formulation,

discretization, and solution of a problem [39].

For the optimization loop, where we want to determine the optimal mixing

strategy for a microfluidic device by manipulating the shape of the obstruction we

use APPSPACK, which is an Asynchronous Parallel Pattern Search code developed

at Sandia National Laboratory. APPSPACK is a parallel, derivative-free optimiza-

tion software package for solving nonlinear unconstrained, bound-constrained, and

linearly-constrained optimization problems, with possibly noisy and expensive ob-

jective functions. To find a solution of this optimization problem, APPSPACK

implements asynchronous parallel generating set search, which handles bound and

linear constraints by choosing search directions that conform to the nearby bound-

ary. In generating set search, the next point in the optimization is determined solely

by the value of the function on a set of points around the current point. These search

points are generated from a fixed set of directions, called the generating set. The

basic optimization problem is of the form

min f(x)

subject to cL ≤ AIx ≤ cu

AEx = b

l ≤ x ≤ u

where f(x) is the objective function, the inequality constraints are denoted by the

107



matrix AI and the upper and lower bounds by cL and cU respectively. The equality

constraints are denoted by the matrix AE and the right hand side, B . Finally, l

and u denote the lower and upper bounds [27].

APPSPACK is written in C++ and uses MPI for parallelism. Our approach

for using APPSPACK to solve optimization problems is that only function values are

required for the optimization, so it can be applied easily. We have a small number

of design variables (i.e., n ≤ 100), but expensive objective function evaluations.

Parallelism is achieved by assigning the individual function evaluations to different

processors. The asynchronism enables better load balancing.

6.4 Verification and Validation

We have performed many steps to ensure that Meros is implemented correctly

and that the solvers are functioning in the correct manner. Software Verification

and Validation (V&V) is the process of ensuring that software being developed or

changed will satisfy functional and other requirements (validation) and each step in

the process of building the software yields the right products (verification). This is

important because it indicates whether or not the codes are solving the governing

equations correctly [48].

We designed Meros to fit into Sandia’s Trilinos framework [31]. We initially

tested Meros on matrices dumped directly from the Matlab package, IFISS [22].

This software generates linear systems arising from finite element discretizations

of PDEs that govern diffusion, convection-diffusion, Stokes flow and Navier-Stokes
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flow problems. With this package, we compared iteration counts, residuals at each

iteration of the solver, and plots of the velocity streamlines. Once we received

agreement on these fronts, we considered the code verified.

To test Meros inside of MpSalsa, we benchmarked our solver to the already

verified domain decomposition solver in MpSalsa. This allowed us to check the

maximum, minimum, and average of the velocity at each nonlinear iteration. It

also allowed us to compare the linear system solutions from the Meros solver with

the domain decomposition solver. We were able to benchmark the LSC and PCD

solvers by making sure their analytical properties, such as mesh independence and

slight Re number dependence held.
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Chapter 7

Conclusions

In this dissertation, we have shown how some preconditioning strategies for

the linearized incompressible Navier-Stokes equations can be used effectively in high-

performance computing environments to solve a variety of flow problems in two and

three dimensions. We have described a taxonomy for preconditioning techniques

which includes traditional methods of pressure projection and pressure correction

type along with newer approximate commutator methods derived from an approxi-

mation of the Schur complement. This taxonomy is based upon a block factorization

of the Jacobian matrix in the Newton nonlinear iteration where methods are deter-

mined by making choices on the grouping of the block upper, lower, and diagonal

factors along with approximations to the action of the inverse of certain operators

and the Schur complement. All the methods require solutions of discrete scalar sys-

tems of convection diffusion and pressure Poisson-type that are significantly easier

to solve than the entire coupled system.

In experiments with these methods using benchmark problems from MPSalsa

we have demonstrated that the pressure convection-diffusion method gives superior

iteration counts and CPU times for 2D and 3D problems with the one-level ad-

ditive Schwarz domain decomposition method. For the approximate commutator

methods we have demonstrated asymptotic convergence behavior that is essentially
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mesh independent in 2D and 3D for problems generated by an application code,

MPSalsa, over a range of Reynolds numbers and problems discretized on structured

and unstructured meshes with inflow and outflow conditions. For the steady-state

problems explored, the iteration counts show only a slight degradation for increasing

Reynolds number.

We have also demonstrated the effectiveness of the pressure convection-diffusion

method in solving an optimization problem to determine the optimal conducting re-

gion of an ICEO driven microfluidic mixing device. The optimization was driven by

APPSPACK where the 2D problems were generated by an application code, Sun-

dance. For the approximate commutator methods we have demonstrated asymptotic

convergence behavior that is essentially mesh independent in 2D. In the course of

the optimization, we were also able to reduce the mixing metric by two orders of

magnitude by manipulating the shape of the obstructions. We hope to explore

this further by varying the objective function in the optimization algorithm. We

also hope to improve the Navier-Stokes solver by exploring the effects of boundary

conditions on the preconditioning operator.
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