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Presented is a method to characterize human gait and to classify human ac-

tivities using gait. Slices along the x-t dimension of a patio-temporal sequence are

extracted to construct a gait double helical signature (gait DHS). A DHS pattern

is a compact description that encodes the parameters of human gait and shows in-

herent symmetry in natural walking (without encumbered limb movement). The

symmetry takes the form of Frieze groups, and differences in DHS symmetry can

classify different activities. This thesis presents a method for extracting gait DHS,

and how the DHS can be separable by activity. Then, a Support Vector Machine

(SVM) n-class classifier is constructed using the Radial Basis Function (RBF) ker-

nel, and the performance is measured on a set of data. The SVM is a classification

tool based on learning from a training set, and fitting decision boundaries based on

an output function. This thesis examines the effect of slicing at different heights

of the body and shows the robustness of DHS to view angle, size, and direction of

motion. Experiments using real video sequences are presented.
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Chapter 1

Introduction

1.1 Motivation

Human activity recognition is used in fields like medical research, sports, and

increasingly in surveillance. Specifically, the ability to analyze gait opens up the

potential of studying physiological ailments, optimize motion, and classify and model

certain human actions. There are many modes in which to capture a gait sequence,

among them both marker and marker-less video capture, and force data [5].

The simple act of human bipedal motion is of interest in areas such as the

effects of alzheimers on gait, to modeling forces and stride for implementation in

robots. Human gait can be seen as a simple periodic signal: limbs flex and swing in a

penduluum-like fashion, the silohuette of the body deforms and returns to a starting

shape in a regular tempo. Reseach in this area has extended to identification of a

person based on his/her unique walking pattern.

In this work, we attempt to automatically declare what load conditions a

person is under while walking in front of a single camera. We can accomplish this

by analyzing the normal gait cycle of a person under no load on his back or limbs,

carrying no object, and without any physical afflictions. We then analyze how gait

under different conditions, like any of the previously named restrictions, will change

the gait signature.
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The classification problem can be divided into two important steps:

1. Characterizing the features of the subject/activity to be classified

2. Developing a method both to distinguish among those characterizations as

well as predict what an unknown characterization would be classified as

Toward the first problem, we present a characterization of human gait that

encodes body articulation and appearance of human motion as well as reveals natural

symmetry of the body in motion. We accomplish this by decomposing sequences

of frames into a stack of x-t slices. The periodic swing of limbs creates an image

similar to the double helical twist of DNA, and so we call this stack of slices the gait

Double Helical Signature, or gait DHS. The majority of this work was developed

from concepts developed by Ran and Chellappa [11, 10].

Toward the second realm, we use a machine-learning tool used for classification

and regression problems: the support vector machine (SVM). Given a set of input

feature vectors {x1, x2, , xi} and class labels for each vector, {y1, y2, , yi}, an SVM

can learn the structure of the hyperplane(s) that defines a boundary between each of

the input vectors in the feature space, and so can assign a class label to a new feature

vector. SVMs have found applications in areas like hand-written letter recognition

and gender based on face.

In this thesis, only a small number of human actions is measured, specifically

in relation to arm movement and as it is affected by weights on the leg.
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1.2 Previous Work

A great deal of work has already been done on gait and classification, either in

the area of markless gait feature extraction, gait symmetries, pattern analysis of a

sequence of temporal slices, and use of SVMs for classification/identification using

gait.

Yoo, Nixon, and Harris also used a markerless set up, but used angle data as

their feature set [18]. They would first calculate the body contour of the walker, then

perform line fitting by a least-squares method in order to the femur and tibia/fibula

of the legs. The joint angle of the knees could be calculated from these line segments

using the slope of the lines segements [18].

Mowbray and Nixon used a similar system of markerless video capture and

analysis [8]. But rather than examine the limbs individually, treating the leg as

sepearate oscialting entity, they used Fourier descriptors of the entire foreground

mask. Fourier descriptors have ”long been established as a method for represent-

ing a two-dimensional shape’s boundry” [8]. Human gait now becomes a cycle of

deformed shapes, upon which a two-dimensional Fourier series representation can

be obtained. The use of Fourier analysis is beneficial because the natural periodic-

ity and frequencies of motion become encoded in the feature space. However, it is

harder to analyze separate limb pairs, specifically arms versus legs, separately.

Nandy performed similar analysis on angle data using a marker-based data

set [9]. He further extended this data to simulate human motion for different ac-

tivies (normal walking, limping, walking with a backpack). His analysis using auto-
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regresive and moving average models and dynamic time warping shows that these

activites are both very similar among subjects and very differnt between activity

classes [9].

In [17], SVM’s are used on gait data to determine the two-class problem of

gender classification. In their work, the SVM’s were trained and classified subjects

based on angle joint data at three places: the knees, the ankles, and at the hips.

They achieved very good recognition rates, but did no work on activity classification.

Support vector machines have also been used on gait data in [16], this time

for the purpose of subject identification. The feature they use, however is a discrete

wavelet transform (DWT) decomposition of the binary silhouette of the subject,

which loses body articulation.

1.3 Contribution

In this thesis, we capture many characteristics of gait in a compact manner

using gait DHS. We also show how human gait under different loads change the

basic DHS pattern. Finally, we try to discriminate between these conditions by

classifying DHS signatures using support vector machines.

1.4 Organization of Thesis

In this chapter, we laid the ground work for what we wish to develop, a system

that can characterize and classify human activity, as well as introduced the problem

behind it and previous work concerning the solution. In chapter 2, we introduce the
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activity sequence, which is decomposed to construct the DHS, and develop a human

body model to analyze. Chapter 3 shows how the DHS pattern is constructed

from an activity sequence, and shows the common patterns for the activities we

analyze. In chapter 4, we provide a derivation of the SVM classifier, then show how

parameters are selected. Chapter 5 provides a summary of the results. Finally, in

chapter 6, we draw conclusions and suggest future work on this topic.
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Chapter 2

Activity Sequence and Human Body Model

2.1 The Data Sequences

2.1.1 Activity Sequence

Each point on the human body can be plotted in the three-dimensional space,

and as a movement is performed, a trajectory can be plotted in four-dimensional

X,Y,Z,t space. We define this as the Activity Volume.

A camera system projects the four-dimensional activity volume into a sequence

of two-dimensional images. In [11], an Activity Sequence is defined for a human

activity, where the activity is used synonymously with gait. An activity sequence is

created by stacking the two dimensional video frames, creating a three dimensional

volume (x,y,t). Motion of a point of interest in a series of video frames can be

plotted in this space. In subsequent discussions, we use the term activity sequence

and sequence interchangeably and both to mean a captured video sequence, and

Figure 2.1 shows an example of this.

2.1.2 Data Sets

We used two sources of data to extract DHS patterns from subjects. The first

is the University of South Florida (USF) gait data set. The data set consists of a

6



Figure 2.1: Example of an Activity Sequence as a Stack of Frames

subject walking a wide circle in front of a camera. The camera is positioned at body

height. The scenes are then varied based on ground type (grass or concrete), one

of two shotypes, whether the subject is carrying a briefcase in their hand or not,

either a left or right positioned camera is used, and date of data collection (May or

November 2001). This results in 32 different possible combinations of conditions.

Figure 2.2: Subject Walking Fronto-Parallel to Camera: A subject is walking fronto-

parallel to the camera such that his sagittal plane (blue) is parallel to the camera’s

image plane. This is also known as a profile view. A subject is said to be ”walking

45◦ to the camera” if their sagittal plane makes a 45◦ angle with the image plane.
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The second source consists of various activity sequences we captured at the

University of Maryland, taken in various places both indoors and outdoors, taken

during various times between 2004 and 2007. Subjects were asked to walk into

frame, either walking normally or with a load on either an arm(s) or a leg, exit out

the other side, then return through the frame, capturing both directions of travel

as well as both sides of the subject. Subjects were directed to walk fronto-parallel

to the camera, as shown in Figure 2.2, as well as to walk at an angle to the image

plane, varying from thirty to forty-five degrees.

2.2 Human Body Characteristics and Motion Model

In order to analyze human body motion, we must first examine the general

structure of the human body. When constructing a gait DHS pattern, we slice the

silhouette image at specific heights on the body. Therefore, we are very interested

in the dimensions of the body. Specifically, we wish to know the lengths of segments

like the forearms and their relation to the overall height of the body.

Studies involving the measurements of such segments have been presented in

medical literature [15] and presented in other gait signature analysis papers [18].

Figure 2.3 shows heights of the body joints as percentages of the overall height. We

use this information to determine where to position the slices on the body.

We adopt a model for the gait cycle that can be divided into different states.

Though the body goes through many discrete sub-articulations, including pronation

and supination of the foot, we focus on three general states [7]:

8



Figure 2.3: The Average relative heights of specific points on the body[15] .

1. Double Support - where both feet have contact with the ground while for-

ward motion carries weight distribution from the toes of one foot to the heel

of the other

2. Left Swing - weight is supported on the right leg as the left leg swings forward

3. Double Support (again)

4. Right Swing - like the left swing phase.

Figure 2.4 shows the transitions between these states. Though studies in [12] shows

there is an inherent asymmetry in muscle propulsion, we assume articulation in the

two swing and two double support phases mirror each other during a normal walk.
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Figure 2.4: Image of the Average Gait Cycle: Includes duration of phases relative

to the total gait cycle time [12] .

2.3 Human Body Model

A variety of models exist to represent the human shape, from ellipses to stick

figures to non-rigid models. But all create a basis upon which to analyze movement.

For this project, a model was constructed of rigid limbs connected by rotating joints,

creating a kinematic chain. A single chain can consist of an upper arm, an elbow,

and a forearm, or a thigh, a knee, and a lower leg. The human model is constructed

by connecting these chains (arms, legs, and head) onto a central trunk through

additional joints (shoulders, pelvis, neck). Ran et al [11] compose such a human

model, H, consisting of rigid limbs L1, L2, . . . , Lk and joints J0, J2, . . . , Jk, connected

to a static (in space) base body in the order J0, L1, J1, L2, . . . , Jk, Lk, and a system

of coordinates X̄ = (X, Y, Z) with orgin on the base body. Figure 2.3 illustrate this,

where the open circles represent the joints. In this system, a point in the kinematic

chain model (X,Y,Z,t) is related to it’s previous position in time by a product of
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the previous point and a series of transform matrices:

XP (t) = T (t) ·XP (t) =

k0∏
i=0

Ti(t) ·XP (t) (2.1)

Where Ti(t) is the 4x4 transformation matrix of the Ji + 1 articulation. This matrix

can be further decomposed into a chain of multiplications of a position vector, Di

and 3x3 rotations Ri−1,1, for the ith relatice to the (i− 1)th part [11]:

Xp(t+ 1) = R0,1(t) ·D1(t) ·R1,2(t) ·D2(2) · . . . Rk−1,k(t) ·Xp(t) (2.2)

In the most simplest of models, and assuming an activity like ”normal” walking (i.e.

no limp, no load on any limb), the articulation parameters for a pair of limbs (one

left, one right) θ = θl, θr, are the same save for differences in phase[10]. We can

assume a periodicity of T, giving the new constraints on motion:

θl(t) = θl(t+ T ) (2.3)

θr(t) = θr(t+ T ) (2.4)

θl(t) = θr(t− T/2) (2.5)

This periodicity of limb movement and phase shift between pairs of limbs gives rise

to a specific pattern, the Double Helical Signature (or DHS). Assume a given

activity sequence, A, of a person walking normally (no load or gait impediments).

If we slice A horizonatlly, at specific heights corresponding to movement, a ”view-

dependant twisted pattern” can be seen [10].

Ran et al [11] define an Activity Signture as ”the set of shapes, S =

S1, S2, . . . formed by slicing [the activity sequence A] at all heights covering the

whole human body during a complte stride,” where each shape, Si is a DHS.
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By slicing the entire frame, it is also possible to track one or more persons, pos-

sibly through occlusions, as well as aid in background subtraction [11]. A vertically

aligned activity signature of a single person is obtained by taking slices centered at

points on the body. Like the kinematic chain model, the body can be taken as a

fixed refernce point in space. From the profile view, a vertical line can be extended

through the center of the body, and limb activity would be similar to penduluums,

swinging with steady tempo and deflection off the center line. We note that if the

pair of legs (or arms) is modeled as a simple pair of penduluums with rigid swinging

segments and joined at the pelvis, that DHS pattern at different heights vary only

by amplitude.

In Ran et al [11], a theorem was presented to show the power of this obser-

vation, specifically the compactness of a DHS analysis, a summary of the proof of

which is presented:

Theorem 2.3.1 [11] There exists a finite set of DHS as a compact representation

for the hip-to-toe activity volume A.

Proof Suppose an activity sequenceG with articulation parameters θ, and a limb/rigid

structure, L vertically aligned with the y-axis. We can mark the structure at dif-

ferent heights, y0, y1, . . . , yn, and each consecutive pair mark a a sub-interval of the

limb, Li = [yi−1, yi). For any two points in this interval, the DHS pattern is identi-

cal save some linear scaling along the x-axis, thus for any one point in the interval,

defined at height Ȳ0 ∈ [yi−1, yi), all other DHS patterns can be reconstructed by a

simple scalling. This holds true for all other intervals, and so a complete DHS can
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be represented by a set Ȳ0, Ȳ1, . . . , Ȳn−1.

The theorem applies not just to hip-to-toe activity but shoulder-to-finger ac-

tivity, or any other periodic activity that can be modeled thusly. As such, it is

possible to accurately model the motion of the entire system by taking DHS pat-

terns at the shared joint and at the ends of the pendulums. This encodes more

information with less processing.

2.4 Activity Descriptions

There are many possible actions the human body can perform (sitting, bending

over, etc.), but this project focuses on actions performed during the walking cycle.

We first recorded a regular gait, one without any load on the subject or with any

possible gait impediments (like a limp). This provides a gallery of ”normal” images

that we can train upon later as well as use a reference against pattern changes that

occur when different activities are performed.

With regard to the arms, two activities were analyzed. We captured a subject

with a load in one hand, be it a briefcase with some weight, or holding the strap of

a courier bag. The weight was added to accurately represent real world conditions.

Then the subject walked with both arms occupied: either carrying something close

to their chest, or holding onto the straps of a back pack, or possibly tucked in their

pockets. Finally, we had limited trials with a person walking with weight on one leg.

13



2.5 Description of Algorithm

With a definition of the activity sequence and a well defined model for hu-

man motion developed, we present an algorithm to decompose and classify a gait

sequence:

Figure 2.5: Flow Chart of the Proposed Algorithm: This chart shows how the method

to be described in this thesis is laid out.
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Chapter 3

GaitDHS Construction

3.1 Background Subtraction

The DHS is constructed using the silhouette of the target human, taken from

the foreground mask. To achieve background subtraction, each pixel (converted to

greyscale) was modeled simply as a Gaussian distribution. A running accumulator

calculats the mean, µ, and variance, σ2, of each greyscale pixel over a set of frames.

This model is appropriate because the camera was always stationary, leaving the

background static over the sequence of frames. Every pixel for each new frame was

compared against the background model, and pixels with greyscale intensity values

outside of the mean-plus-variance range are considered to be foreground pixels,

marked as a white pixel in the foreground mask.

In some sequences, shadows changed pixel intensity enough to be considered

foreground pixels, and if the subject were walking close to a wall, the shadow next to

them could alter the foreground mask considerably. In this case, a mean background

image was constructed, but in three-channel RGB instead of greyscale. The gain be-

tween the current frame and the background was calculated with the knowledge that

unaffected background pixels have a gain that is (very close to) unity, while shad-

owed pixels have a gain close to unity, but at a distance that could be thresholded

between background and shadowed background pixels shown in figure 3.1.
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Figure 3.1: Background Subtraction on the Same Frame: The left image shows the

original frame (with bounding box and lines drawn across slice heights (described

later). The top right image shows the monochromatic, Gaussian background sub-

traction scheme, which was sensative to shadow or near-foreground-chroma areas,

while the bottom right image shows background subtraction using chroma gain and

off-unity thresholding. They grey line is the center line of the body, and not used

in background subtraction.
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3.2 Size Filtering and Target Tracking

Using the foreground mask created from one of the two methods mentioned

above, morphological operations (dilation, then erosion) were performed on the pixel

blobs to close any gaps between very near groups. This was done in the event that

a neck was accidently labeled as a background, resulting in the head and the body

as two separate blobs. This is important because the resulting blobs were filtered

by size, in order to eliminate small foreground pixel groups that may have been due

to moving leaves on trees or other artifacts from the video encoder.

A minimum size bounding box was drawn around the foreground blob, and

given a target identification number depending on if it was recognized as a new target

or not. A target was considered previously tracked if its bounding box overlapped

with that of a target from the previous frame. If it did, the new bounding box

received the target identification number of the target in the previous frame, other

wise the target was given a new number.

3.3 Image slicing and DHS construction

The video sequences showed that a person walking at a natural pace takes

approximately two seconds to complete two complete gait cycles. One complete

cycle can the thought of as the time from when the right heel makes ground after

swinging the leg forward to the time the left heel touches the ground. For each

target, a buffer of the last foreground images was kept, as well as its age as described

by the number of frames it had been in consecutively. The video sequences were
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encoded at 30 frames per second, so when a target reached the age of 64 frames,

which approximates two gait cycles, the gait DHS was constructed.

A single row of gait DHS consists of a binary, single-pixel-height row of data of

the targets foreground mask, taken from the region of interest of the frame dictated

by the bounding box. A slice is taken at height, y, such that for over all target

height, H, and a percentage of that height, p ∈ [0, 1]:

y = p ∗H

such that p = 0⇒ y = 0 = top of the head

and p = 1⇒ y = H = bottom of the feet.

For each of the 64 buffer images, a slice was taken at the same p value, and these

data rows were stacked vertically, creating a x-t spatio-temporal representation of

the activity at that height.

Figure 2.3 shows the average heights of specific joints of the body, though with

the p = 0 reference point taken at the feet instead of the top of the head. Slices

were taken at vales p={0.064, 0.182, 0.37, 0.47, 0.71, 0.83, 0.9}, which correspond

to the head, shoulders, elbows, wrists, knees, shins, and ankles.

The widths of bounding boxes of the 64 frames are adjusted so that the bound-

ing box is centered horizontally with respect to the shoulder. The shoulder was

chosen because it was always found along the vertical centerline of the body, unlike

the head which moved in some sequences, and remained horizontally static, unlike

the limbs. Of these 64 bounding boxes, the largest width was found and all other
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bounding boxes are adjusted to this width. The subsequent DHS pattern is now

vertically aligned and normalized to the maximum bounding box width. In the

video sequences, the maximum width was often dictated by the largest stride taken.

DHS images where then resized to a standard image size of 102 x 64. Shown are

two such DHS patterns taken at the knee height. Figure 3.2 shows the process of

background subtraction, slicing, and stacking to create a DHS pattern. From the

DHS pattern, characteristics of gait, such as stride (step length) and cadence, are

extracted as shown in figure 3.3.

Figure 3.2: Gait DHS construction process: The activity sequence (a) and the sil-

houettes produced (b) are used to create slices at specific heights like the ankle (c).

Theses slices are stacked over time to create the DHS band (d).
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Figure 3.3: Gait Parameters Captured by the DHS pattern.

3.4 DHS patterns of Activities and Symmetries

Research in human activity classification shows that for a given method of

measurement, there exists a measurable similarity in the way multiple persons per-

form the same action, and that there is a measurable difference between the two

different actions. We can show that as different activities are performed by a person,

there will be a change in the periodic/aperiodic behavior and symmetry of the DHS.

3.5 Symmetry: Frieze Groups

Occurring frequently in areas like art decoration and architecture, symme-

try underlies visual elements that show recurrence. Studied in Geometric Group

Theory[14], symmetric patterns in the two-dimensions belong to a class of isome-

tries on the 2D plane. It can be shown that every isometry (rotation, translation,

glide, or reflection) is the product of at most three reflections [3]. Groups of these

isometries are called Frieze groups. These groups can be enumerated by seven forms
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(the names in parentheses are the Orbifold notation):

1. Translation only (hop)

2. Glide and Translation (step)

3. Reflection across the horizontal axis and Translation and Glide (jump)

4. Translation and Reflection across the vertical axis (sidle)

5. Translation and 180◦ rotation (spinning hop)

6. Reflections across the vertical axis, Translation, Glide, and Rotation (spinning

sidle)

7. Translation, Glide, Reflection (in both axes) and Rotations (spinning jump).

Examples of these groups are show in figure 3.4. Liu et al using frieze patterns to

Frieze group classification to determine viewing camera angle and align gait signa-

tures using dynamic time warping [6]. We show that DHS patterns display these

types of symmetries.

3.6 DHS patterns

We now present common DHS patterns for the tested activities. It should be

noted that the images of the subjects have been resized (either stretched or shrunk)

to be uniform and visible. However, the DHS patterns are as they are originally

outputted, so the sizes of the subjects will not reflect the silhouette DHS bands.
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Figure 3.4: Frieze Groups: Examples of the seven Freeze symmetry groups: (1) Hop,

(2) Step, (3) Jump, (4) Sidle, (5) Spinning Hop, (6) Spinning Sidle, (7) Spinning

Jump
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Figure 3.5 shows the DHS patterns of slices taken at the elbow and wrist

heights among the three activity classes, taken for a subject walking fronto-parallel

to the camera. The subject in the first picture is walking naturally, without anything

in his/her hands. The periodic bumps on the left side of the slice are caused by the

alternating swing of the subject’s arms (left arm, right arm, repeat) extending past

her body. Not present in many DHS patterns taken for a subject walking fronto-

parallel are bumps on the other side, like pictured. These appear if the subject has

noticeable back swing to their arms. From this angle, the subjects body occluded

the backswing of her right arm.

In the second picture, the subject is holding a black briefcase in his left hand.

The weight of the brief case is such that stability of motion is maximized and energy

input is minimized so long as the weight is kept at the lowest part of the swing i.e.

the arm is kept down beside the body. The resulting bumps come from the swing

of the right hand.

The third image shows the subject holding onto the straps of a (negligibly

weighted) backpack, preventing either arms from swinging. The subjects displays

no bumps like the first two activities. Also, the DHS pattern at the elbow slice is

thicker than at the wrist, unlike the previous two. This is because taking DHS slices

at elbow height includes the backpack, but the wrist height is close to the waist and

lower body, below the backpack.

Figure 3.6 shows the DHS patterns for slices taken at knee and ankle height

among the two loading conditions for the leg, taken for subjects walking fronto-
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Figure 3.5: DHS patterns for Arm Activities: Common DHS patterns for the three

types of arm loading conditions are shown for slices taken at approximate elbow

and wrist height. The red box is the bounding box drawn by the DHS construction

program.
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parallel to the camera. For the first loading condition, slices showed a consistent

cadence and stride length. For the second loading condition, stride length changed.

Swing from the leg without load created the longer strides. This is most noticeable

in the ankle-height slices.

Figure 3.6: DHS patterns for Leg Activities: Common DHS patterns for the two

types of leg loading conditions. In the second image, the subject’s right leg is being

loaded by three five pound leg weights.
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3.6.1 Symmetry and Periodicity of Arm DHS patterns

The leg slices show mainly a translational symmetry, but keep a constant

period. The different arm loading conditions, however, can change in periodicity

and/or symmetry, depending on the activity and view angle. Figure 3.7 shows how

differences in load change the periodicity of the subject. We recall that the arms

swing out of phase with the legs. If we define the period of leg swing as T, then arm

swing periodicity becomes a multiple of T.

Figure 3.7: Periodicity and Symmetry Across Arm Activities: Under the same view

(fronto-parallel), all arm activities display translational symmetry (type 1 Frieze

group), except for the ”Two Arms Occupied” case. The difference comes in period-

icity. Slices are taken at wrist height.
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Chapter 4

Gait SVM Construciton

4.1 SVM derivation

Support vector machines are increasingly used for pattern classification, pri-

marily in the presence of labeled exemplars. Its creation is attributed to Vladimir

Vapnik who, with Alexy Chervonenkis, developed V-C theory for computational

learning[1]. We have shown that DHS patterns characterizing different activities

are distinguishable. We use this fact to train an SVM for classifying DHS patterns.

In the following, we introduce the basic linear kernel SVM for a two class, linear

separable set of data, then show how to handle the more realistic non-separable

data set. Finally we generalize to the non-linear kernel SVM, which maps the input

vectors to a high-dimension feature space before estimating the minimal enclosing

hypersphere. This derivation can also be found in [4] We also address the case of

the n-class classifier (n ≥ 2), which is what all our SVMs will be.

4.1.1 Linearly Separable Dataset

For the a set of N points, xi , belonging to one of two classes, we can assign a

label, yi to each point, indicated by -1 or 1. The dataset can be writen as:

{(x1, y1), (x2, y2), ..., (xN , yN)} (4.1)
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We construct a method to predict the sign of yi. In the linearly separable case, there

exists a combination {w,b}, which dictate a hyperplane, such that:

yi(w · xi + b) > 0 (4.2)

for every input point. In the geometric representation, all xi’s of one sign are strictly

on one side of the hyperplane. The sets of points can be surrounded by convex hulls.

There can exist a family of separating hyperplanes between the hulls, but we choose

the hyperplane that is maximally furthest from both.

This is done by determining the point on each hull such that the length of the

line connecting the two points is the minimum. The hyperplane is laid perpendicular

to the connecting line at the midpoint, making it far away as possible from both.

Figure 4.1 shows an example of this.

It is possible to scale w and b by a positive number and still satisfy (4.2). We

can choose these values such that for any xi:

yi(w · x1 + b) ≥ D (4.3)

where D is a constant that can be chosen as D = 1. Now, we can select points

xj and xk, one each from the different classes that achieve equality when their

labels are -1 and 1, respectively, placing them on opposite sides of the hyperplane.

These points are, among their clusters of like-class data points, the closest to the

hyperplane (note: there might be several such points from either class). Plugging

in these points into (4.3) and adding gives w · (xj − xk) = 2.

We wish to maximize the distance of the points (and so the hulls) to the

hyperplane such that a new feature vector maybe properly classified, even if falls
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Figure 4.1: Linear Separable Case: black dots are one class, white stars are another.

The input space is separable by a simple hyperplane or in the 2D realm, a boundary

line.
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near but outside the convex hull. Using the sum we just obtained, we get:

Dist(xj, hyperplane) +Dist(xk, hyperplane) =

(
w

|w|
· xj +

b

|w|

)
−
(

w

|w|
· xk +

b

|w|

)
=

w

|w|
· (xj − xk)

=
2

|w|

(4.4)

In other words, to maximize the distances from the hyperplane is to minimize |w|
2

,

subject to (4.3). These two constraints establish a problem that can be optimized

using Lagrange multipliers:

L(w, b) =
|w|
2
−

N∑
i=1

αi(yi(w · xi + b)− 1) (4.5)

The optimal solution must satisfy the Karush-Kuhn-Tucker (KKT) conditions, where

taking the partial derivatives of L with respect to w and b gives:

w =
N∑

i=1

αiyixi (4.6)

N∑
i=1

αiyi = 0 (4.7)

Substituting back into (4.5) and manipulting, we obtain the dual problem of

maximization:

maximize:
N∑

i=0

αi −
1

2

N∑
i,j=1

αi(yiyjxi · xj)αj

subject to: αi ≥ 0

and
N∑

i=1

αiyi = 0

(4.8)
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And classification becomes:

class(x) = sign(w · x + b)

= sign(
N∑

i,j=1

αiyixi · xj + b)

(4.9)

4.1.2 Non-Linearly Separable Data Set

Figure 4.2: Non-Linear Separable Case: Outliers may exist, but not addressing them

could alter the hyperplane. Adding an error margin relaxes the constraints on the

boundary and maintains a good separating hyperplane.

In reality, the data is rarely cleanly separable in two events: (1) the case

of outliers for each class and (2) the separation boundary is modeled better by a

hypersphere or some shape that is not a straight hyperplane. Figure 4.2 shows an

example of an outlier in the input space. In the first case, one can introduce a slack
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variable, ν, which relaxes the constraint and gives:

yi(w · x1 + b) ≥ 1 + ν (4.10)

The minimization problem is altered now as:

minimize:
|w|
2
− C

N∑
i=1

νi

subject to: yi(w · x1 + b) ≥ 1 + νi

and νi ≥ 0

(4.11)

Where C is the cost weight of constraint violations. The dual problem of maximiza-

tion holds the same form as before, but with the altered constraint that C ≥ αi ≥ 0.

4.1.3 Non-Linear Kernel SVM Method

Toward the second problem of a more complex boundary shape, we use a non-

linear kernel to map the input data to a higher dimensional feature space. In this

space, a separating hyperplane is easier to construct, which translates back into

a more complex geometric form in the original feature space, like the separating

boundary in figure 4.3.

We define a mapping for x′i = φ(xi). The optimization problem becomes:

maximize:
N∑

i=0

αi −
1

2

N∑
i,j=1

αi(yiyjx
′
i · x′j)αj

=
N∑

i=0

αi −
1

2

N∑
i,j=1

αi(yiyjφ(xi) · φ(xj))αj

(4.12)

subject to the same constraints on αi and yi as before. Likewise, the classifier
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Figure 4.3: Separation With a Complex Boundary: The input space can be mapped

to a higher dimension feature space where a simple separating hyperplane exists.

Mapping back to the original input space creates a more complex and accurate

boundary.
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becomes:

class(x) = sign(
N∑

i,j=1

alphaiyix
′
i · x′j + b)

= sign(
N∑

i,j=1

αiyiφ(xi) · φ(xj) + b)

(4.13)

Here, we apply the ”kernel trick”, which basically states that we can use a kernel

K(x,y) = φ(x) ·φ(y) if φ(x) ·φ(y) is positive. Kernel functions are ”a computation-

ally efficient technique to map the data into the induced feature space...” [2]. The

kernel function must, however, satisfy Mercer’s Theorem [13], which states that ”in

order for a kernel function” K(x,y) to take on an eigenfunction expansion:

K(x,y) = 〈φ(x), φ(y)〉 =
∞∑

kj=1

bkφ(x)φ(y)

must be positive semi-definite:∫
K(x,y)g(x)g(y) dxdy ≥ 0,∀g(·) ∈ L2

We can now use a common positive semi-definite kernel to provide a more

robust SVM functions. The maximization problem (4.12) and classifier function

(4.13) become:

maximize:
N∑

i=0

αi −
1

2

N∑
i,j=1

αi(yiyjφ(xi) · φ(xj))

class(x) = sign(
N∑

i,j=1

αiyiφ(xi) · φ(xj) + b)

In this project, we used the Radial Basis Function (RBF) as the kernel:

K(x,y) = exp(−γ‖x− y‖)

The RBF is used in applications like artificial neural networks. In [2], the

RBF kernel is used to detect anomalies in hyper-spectral imagery, while [16] uses
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the RBF kernel along with dynamic time-warping to identify people from gait. The

parameter γ controls the strictness of the classifier on input data: the larger the γ

value, the more likely the SVM rejects a true value as not belonging to the class.

To increase the positive detection rate, we iterate over the γ and cost, C,

parameters and use cross validation to find an approximate good value for each.

4.1.4 n-class classifiers

The discussion thus far has been primarily about the binary classifier, but

we need a classifier that can handle n ≥ 2 classes. The two common strategies for

dealing with the multi-class problem starts with creating a series of binary classifiers

(i) one-versus-all, where the output function gives out a strong value for vectors that

belong to the class and small values for vectors that do not; the classifier with the

highest output is automatically declared the winner, and (ii) one-versus-one, where

inputs are compared against pairs of classes, and a voting tally is kept amongst the

competitions; the class with the most votes wins.

4.2 Training on the DHS patterns

In this thesis, heavy use was made of the OpenCV library, an open source

C library for computer vision. The library includes a machine learning class that

handles n-class SVMs using the one-versus-one strategy. The steps to train are:

1. Extract DHS pattern

2. Label the data (e.g. ”1” for two hands free, ”2” for one hand occupied, ”3”
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for two hands occupied)

3. Crop DHS band so that the pattern fills a standard size (in our case, 102 x 64

pixels).

4. Pass DHS’s and Labels to SVM training function

The reflection across the vertical axis of each slice is also trained to address the

pattern differences between a subject walking left-to-right and right-to-left.
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Chapter 5

Results

5.1 DHS Under Changes in Walking Angle

While symmetry stays constant and periodicity change across different activ-

ities for the same view, both can change for different views. Figure 5.1 shows the

three arm activities for the from before (at wrist height), as well as an example of

the DHS of the same activity for a subject walking at an angle to the camera. The

DHS pattern of the ”Two Hands Occupied” case stays consistent. The ”One Hand

Occupied” case maintains the same 2T periodicity and type 1 Frieze group.

The only thing that changes are arm stride and which side of the DHS the

bumps occur. Arm stride, or the amplitude of the bumps, depends on the angle to

the camera the subject is walking, where walking fronto-parallel shows the biggest

arm stride, and walking straight on to the camera shows nearly no movement, like

the two hands occupied case. If the person is walking away from the camera, the

back swing of the arm may be captured. Shown in 5.1, the body occludes the

forward swing of the left arm and the back swing of the right arm.

The loaded limb conditions create similar patterns at an angle to their fronto-

parallel counterpart, but the DHS pattern for ”No Hands Occupied” shows a greater

change at an angle. Periodicity goes from T to 2T, like the one arm occupied case,

but symmetry falls into the type 3 Frieze group (”Jump”), where the bumps are
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Figure 5.1: DHS patterns for Arm Activities at an Angle: The first row shows the

arm DHS patterns as in figure 3.5, while the second row shows the DHS patterns of

the same activity, but for the subject walking at 45◦, 45◦, and 40◦ from left to right.

Similar patterns exist for loaded arm conditions, but a different pattern exists for

the ”No Hands Occupied” case.
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reflected across the vertical line of the DHS pattern. In this case the body occludes

the half of the swing cycle, while pronouncing backswing during the other half of

the cycle. In figure 5.1, the body occludes the forward swing of the left arm and

the backswing of the right arm. Changes in DHS patterns under different viewing

angles suggests the ability to predict camera viewpoint from the change in Frieze

group symmetry, as was shown in [6].

5.2 SVM results

We now present the outcome of using SVMs to classify the different activities

based on their DHS patterns. An SVM was created for each of the elbow, wrist,

knee, and ankle slices. Tables 5.2 through 5.5 show the (non-symmetrc) confusion

matrices for each SVM. The output performance of the SVMs are listed horizon-

tally across the top, while the true classification is listed along the leftmost vertical

column.

5.2.1 Determining Parameters through Test Set Validation

Finding good values for γ and C are important to constructing a well function-

ing SVM. The process involves training the SVM on the training set with a selected

pair of values, then evaluating performance over a smaller set of labeled test data.

A grid search was performed on the γ’s, iterating first over magnitudes of ten, then

over finer steps. For each γ, the C parameter was iterated over to find an optimal

value.
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The OpenCV library, in addition to constructing an SVM and using it to

classify, also has a cross validation function. However, using it often returned pa-

rameter values that gave poor performance (one class may end up with zero positive

detections). It was useful however in giving a base starting gamma around which

to search. Figures 5.2 and 5.3 show the results of such searches. Table 5.1 shows

the final selected parameters.

Figure 5.2: Average Detection Rate Across a Range of Gammas for Arm Height

Slices

5.2.2 Arm Performances

Tables 5.2 and 5.3 show the SVM confusion matrices for DHS patterns at

elbow and wrist height respectively. We see that at elbow height, the trained SVM
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Figure 5.3: Average Detection Rate Across a Range of Gammas for Leg Height Slices

Table 5.1: Selected Parameters

Slice γ C

Elbow 5.0625 x 10−4 2.6

Wrist 5.0625 x 10−4 6

Knee 11 8

Ankle 11 8
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had an average true positive detection rate of 75.87%, while an average rate of

80.53% was achieved at wrist height slices. While the average detection rate only

differs by 4.66%, it hints that using the lower part of the arm acting as a better

indicator of arm-loading conditions.

This is most likely due to the fact that the ends of the kinetic chains have

the greatest swing length. This creates a more pronounced DHS pattern. We also

note that the performance rates shown include subjects walking both fronto-parallel

and at an angle to the camera, and that at wrist height, the SVM achieved 90.2%

recognition for the ”Two Arms Free” case, despite the different DHS patterns at an

angle. This is due to proper training of the SVM, where so long as the training set

covers a good spread of conditions, performance is still good.

Table 5.2: Confusion Matrix for Slices Taken at Elbow Height

Classified as 2 Arms Free 1 Arm Occupied Two Arms Occu. Number Tested

Two Arms Free 75.5% 24.5% 0% 129

1 Arm Occupied 14.1% 83.5% 2.4% 131

2 Arms Occu. 2.9% 28.4% 68.6% 69

5.2.3 Leg Performances

Tables 5.4 and 5.5 show the SVM confusion matrices for DHS patterns at knee

and ankle heights respectively. We see that at knee height, the trained SVM had an
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Table 5.3: Confusion Matrix for Slices Taken at Wrist Height

Classified as 2 Arms Free 1 Arm Occupied Two Arms Occu. Number Tested

Two Arms Free 90.2% 8.2% 1.6% 129

1 Arm Occupied 15.3% 80.0% 4.7% 131

2 Arms Occu. 2.0% 8.6% 71.4% 69

average true positive detection rate of 76%, while ankle height saw an average rate

of 78%. The difference in average performance is even smaller than for the arms,

so more testing is needed to suggest better performance of one slice height over the

other.

We note however that detection rates for the leg weighted case are considerably

lower than any other activity at any other height. The patterns between un-weighted

and weighted leg are very similar. Changes in stride were not visually discernible

in the DHS pattern when weights less than 15 pounds were applied. We suggest

exploring other conditions for leg activity alteration: walking without a shoe on (to

force a limp), or perhaps even walking with a cane or crutches.

Table 5.4: Confusion Matrix for Slices Taken at Knee Height

Classified as Unweighted Weighted Number Tested

Unweighted 93% 7% 75

Weighted 41% 59% 75
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Table 5.5: Confusion Matrix for Slices Taken at Ankle Height

Classified as Unweighted Weighted Number Tested

Unweighted 94.6% 5.4% 75

Weighted 38.7% 61.3% 75
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Chapter 6

Conclusion and Future Work

In this thesis, we presented a method to autonomously differentiate between

human gait patterns. The classification problem can be divided into two sections:

feature extraction and classification based on features. We explored gait DHS as a

way to encode multiple features of gait, including symmetry and periodic charac-

teristics. Then we used SVMs, for classifying DHS patterns.

Through test set validation, we found good base γ and C parameters for a

RBF kernel-based SVM. We have shown through our results that the SVM is able

to distinguish fairly well between different DHS patterns of arms under different

loads.

We have developed a method to classify gait under different loaded limb con-

ditions that shows good potential, but there are still avenues to explore and modi-

fications to be tested.

6.1 Modification

Because the DHS pattern is built from the silhouette, good background sub-

traction is very important. Modeling background pixels with a Normal distribution

has worked well with this method, but there are events where if the skin color or

clothing color of the arm, for example, is too similar to the background, it may be
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cut off in the silhouette, and completely change the DHS pattern. Likewise, shad-

ows can dramatically alter the silhouette, and while we have used a simple solution,

there are better methods to detect and remove shadows from the foreground mask.

Creating a silhouette that can capture the periodic deformation of the body is very

important.

6.2 Extension

In addition to the gait activities described here, additional actions should be

explored. This can include different loading conditions on the limbs or on the trunk

of the body. We have presented classification results for a limited set of leg-loaded

sequences, and have seen that regarding weights, most adult males do not display

a significant change in DHS pattern unless loaded by approximately 15 pounds on

one leg. Additional leg activities, like walking with a limp would be good to explore

The DHS pattern captures the x-displacement over time, and extending the

DHS band beyond the 64 frames/two seconds creates a time line of motion. This

provides the opportunity not only to focus on discrete activity sequences, but possi-

bly to characterize the transitions between different activities (changing directions,

picking up objects, etc.).

Also, periodicity in the leg slices could be used to classify a target as human,

inanimate (like a rolling ball or a car), or perhaps quadrupedal (where two DHS

strands would be created per band).

In this thesis, we have presented a nascent method of gait activity classifica-
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tion, and believe that it performs well and can be honed and extended into a well

functioning system.
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